uipc_socket.c revision 1.140.2.1 1 /* $NetBSD: uipc_socket.c,v 1.140.2.1 2007/08/15 13:49:18 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.140.2.1 2007/08/15 13:49:18 skrll Exp $");
72
73 #include "opt_sock_counters.h"
74 #include "opt_sosend_loan.h"
75 #include "opt_mbuftrace.h"
76 #include "opt_somaxkva.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/file.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/domain.h>
85 #include <sys/kernel.h>
86 #include <sys/protosw.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/signalvar.h>
90 #include <sys/resourcevar.h>
91 #include <sys/pool.h>
92 #include <sys/event.h>
93 #include <sys/poll.h>
94 #include <sys/kauth.h>
95 #include <sys/mutex.h>
96 #include <sys/condvar.h>
97
98 #include <uvm/uvm.h>
99
100 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL,
101 IPL_SOFTNET);
102
103 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
104 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
105
106 extern int somaxconn; /* patchable (XXX sysctl) */
107 int somaxconn = SOMAXCONN;
108
109 #ifdef SOSEND_COUNTERS
110 #include <sys/device.h>
111
112 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
113 NULL, "sosend", "loan big");
114 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
115 NULL, "sosend", "copy big");
116 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
117 NULL, "sosend", "copy small");
118 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
119 NULL, "sosend", "kva limit");
120
121 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
122
123 EVCNT_ATTACH_STATIC(sosend_loan_big);
124 EVCNT_ATTACH_STATIC(sosend_copy_big);
125 EVCNT_ATTACH_STATIC(sosend_copy_small);
126 EVCNT_ATTACH_STATIC(sosend_kvalimit);
127 #else
128
129 #define SOSEND_COUNTER_INCR(ev) /* nothing */
130
131 #endif /* SOSEND_COUNTERS */
132
133 static struct callback_entry sokva_reclaimerentry;
134
135 #ifdef SOSEND_NO_LOAN
136 int sock_loan_thresh = -1;
137 #else
138 int sock_loan_thresh = 4096;
139 #endif
140
141 static kmutex_t so_pendfree_lock;
142 static struct mbuf *so_pendfree;
143
144 #ifndef SOMAXKVA
145 #define SOMAXKVA (16 * 1024 * 1024)
146 #endif
147 int somaxkva = SOMAXKVA;
148 static int socurkva;
149 static kcondvar_t socurkva_cv;
150
151 #define SOCK_LOAN_CHUNK 65536
152
153 static size_t sodopendfree(void);
154 static size_t sodopendfreel(void);
155
156 static vsize_t
157 sokvareserve(struct socket *so, vsize_t len)
158 {
159 int error;
160
161 mutex_enter(&so_pendfree_lock);
162 while (socurkva + len > somaxkva) {
163 size_t freed;
164
165 /*
166 * try to do pendfree.
167 */
168
169 freed = sodopendfreel();
170
171 /*
172 * if some kva was freed, try again.
173 */
174
175 if (freed)
176 continue;
177
178 SOSEND_COUNTER_INCR(&sosend_kvalimit);
179 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
180 if (error) {
181 len = 0;
182 break;
183 }
184 }
185 socurkva += len;
186 mutex_exit(&so_pendfree_lock);
187 return len;
188 }
189
190 static void
191 sokvaunreserve(vsize_t len)
192 {
193
194 mutex_enter(&so_pendfree_lock);
195 socurkva -= len;
196 cv_broadcast(&socurkva_cv);
197 mutex_exit(&so_pendfree_lock);
198 }
199
200 /*
201 * sokvaalloc: allocate kva for loan.
202 */
203
204 vaddr_t
205 sokvaalloc(vsize_t len, struct socket *so)
206 {
207 vaddr_t lva;
208
209 /*
210 * reserve kva.
211 */
212
213 if (sokvareserve(so, len) == 0)
214 return 0;
215
216 /*
217 * allocate kva.
218 */
219
220 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
221 if (lva == 0) {
222 sokvaunreserve(len);
223 return (0);
224 }
225
226 return lva;
227 }
228
229 /*
230 * sokvafree: free kva for loan.
231 */
232
233 void
234 sokvafree(vaddr_t sva, vsize_t len)
235 {
236
237 /*
238 * free kva.
239 */
240
241 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
242
243 /*
244 * unreserve kva.
245 */
246
247 sokvaunreserve(len);
248 }
249
250 static void
251 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
252 {
253 vaddr_t va, sva, eva;
254 vsize_t len;
255 paddr_t pa;
256 int i, npgs;
257
258 eva = round_page((vaddr_t) buf + size);
259 sva = trunc_page((vaddr_t) buf);
260 len = eva - sva;
261 npgs = len >> PAGE_SHIFT;
262
263 if (__predict_false(pgs == NULL)) {
264 pgs = alloca(npgs * sizeof(*pgs));
265
266 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
267 if (pmap_extract(pmap_kernel(), va, &pa) == false)
268 panic("sodoloanfree: va 0x%lx not mapped", va);
269 pgs[i] = PHYS_TO_VM_PAGE(pa);
270 }
271 }
272
273 pmap_kremove(sva, len);
274 pmap_update(pmap_kernel());
275 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
276 sokvafree(sva, len);
277 }
278
279 static size_t
280 sodopendfree()
281 {
282 size_t rv;
283
284 mutex_enter(&so_pendfree_lock);
285 rv = sodopendfreel();
286 mutex_exit(&so_pendfree_lock);
287
288 return rv;
289 }
290
291 /*
292 * sodopendfreel: free mbufs on "pendfree" list.
293 * unlock and relock so_pendfree_lock when freeing mbufs.
294 *
295 * => called with so_pendfree_lock held.
296 */
297
298 static size_t
299 sodopendfreel()
300 {
301 struct mbuf *m, *next;
302 size_t rv = 0;
303 int s;
304
305 KASSERT(mutex_owned(&so_pendfree_lock));
306
307 while (so_pendfree != NULL) {
308 m = so_pendfree;
309 so_pendfree = NULL;
310 mutex_exit(&so_pendfree_lock);
311
312 for (; m != NULL; m = next) {
313 next = m->m_next;
314
315 rv += m->m_ext.ext_size;
316 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
317 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
318 m->m_ext.ext_size);
319 s = splvm();
320 pool_cache_put(&mbpool_cache, m);
321 splx(s);
322 }
323
324 mutex_enter(&so_pendfree_lock);
325 }
326
327 return (rv);
328 }
329
330 void
331 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
332 {
333
334 if (m == NULL) {
335
336 /*
337 * called from MEXTREMOVE.
338 */
339
340 sodoloanfree(NULL, buf, size);
341 return;
342 }
343
344 /*
345 * postpone freeing mbuf.
346 *
347 * we can't do it in interrupt context
348 * because we need to put kva back to kernel_map.
349 */
350
351 mutex_enter(&so_pendfree_lock);
352 m->m_next = so_pendfree;
353 so_pendfree = m;
354 cv_broadcast(&socurkva_cv);
355 mutex_exit(&so_pendfree_lock);
356 }
357
358 static long
359 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
360 {
361 struct iovec *iov = uio->uio_iov;
362 vaddr_t sva, eva;
363 vsize_t len;
364 vaddr_t lva, va;
365 int npgs, i, error;
366
367 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
368 return (0);
369
370 if (iov->iov_len < (size_t) space)
371 space = iov->iov_len;
372 if (space > SOCK_LOAN_CHUNK)
373 space = SOCK_LOAN_CHUNK;
374
375 eva = round_page((vaddr_t) iov->iov_base + space);
376 sva = trunc_page((vaddr_t) iov->iov_base);
377 len = eva - sva;
378 npgs = len >> PAGE_SHIFT;
379
380 /* XXX KDASSERT */
381 KASSERT(npgs <= M_EXT_MAXPAGES);
382
383 lva = sokvaalloc(len, so);
384 if (lva == 0)
385 return 0;
386
387 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
388 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
389 if (error) {
390 sokvafree(lva, len);
391 return (0);
392 }
393
394 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
395 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
396 VM_PROT_READ);
397 pmap_update(pmap_kernel());
398
399 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
400
401 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
402 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
403
404 uio->uio_resid -= space;
405 /* uio_offset not updated, not set/used for write(2) */
406 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
407 uio->uio_iov->iov_len -= space;
408 if (uio->uio_iov->iov_len == 0) {
409 uio->uio_iov++;
410 uio->uio_iovcnt--;
411 }
412
413 return (space);
414 }
415
416 static int
417 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
418 {
419
420 KASSERT(ce == &sokva_reclaimerentry);
421 KASSERT(obj == NULL);
422
423 sodopendfree();
424 if (!vm_map_starved_p(kernel_map)) {
425 return CALLBACK_CHAIN_ABORT;
426 }
427 return CALLBACK_CHAIN_CONTINUE;
428 }
429
430 void
431 soinit(void)
432 {
433
434 mutex_init(&so_pendfree_lock, MUTEX_DRIVER, IPL_VM);
435 cv_init(&socurkva_cv, "sokva");
436
437 /* Set the initial adjusted socket buffer size. */
438 if (sb_max_set(sb_max))
439 panic("bad initial sb_max value: %lu", sb_max);
440
441 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
442 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
443 }
444
445 /*
446 * Socket operation routines.
447 * These routines are called by the routines in
448 * sys_socket.c or from a system process, and
449 * implement the semantics of socket operations by
450 * switching out to the protocol specific routines.
451 */
452 /*ARGSUSED*/
453 int
454 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
455 {
456 const struct protosw *prp;
457 struct socket *so;
458 uid_t uid;
459 int error, s;
460
461 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
462 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
463 KAUTH_ARG(proto));
464 if (error != 0)
465 return error;
466
467 if (proto)
468 prp = pffindproto(dom, proto, type);
469 else
470 prp = pffindtype(dom, type);
471 if (prp == NULL) {
472 /* no support for domain */
473 if (pffinddomain(dom) == 0)
474 return EAFNOSUPPORT;
475 /* no support for socket type */
476 if (proto == 0 && type != 0)
477 return EPROTOTYPE;
478 return EPROTONOSUPPORT;
479 }
480 if (prp->pr_usrreq == NULL)
481 return EPROTONOSUPPORT;
482 if (prp->pr_type != type)
483 return EPROTOTYPE;
484 s = splsoftnet();
485 so = pool_get(&socket_pool, PR_WAITOK);
486 memset(so, 0, sizeof(*so));
487 TAILQ_INIT(&so->so_q0);
488 TAILQ_INIT(&so->so_q);
489 so->so_type = type;
490 so->so_proto = prp;
491 so->so_send = sosend;
492 so->so_receive = soreceive;
493 #ifdef MBUFTRACE
494 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
495 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
496 so->so_mowner = &prp->pr_domain->dom_mowner;
497 #endif
498 uid = kauth_cred_geteuid(l->l_cred);
499 so->so_uidinfo = uid_find(uid);
500 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
501 (struct mbuf *)(long)proto, NULL, l);
502 if (error != 0) {
503 so->so_state |= SS_NOFDREF;
504 sofree(so);
505 splx(s);
506 return error;
507 }
508 splx(s);
509 *aso = so;
510 return 0;
511 }
512
513 int
514 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
515 {
516 int s, error;
517
518 s = splsoftnet();
519 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
520 splx(s);
521 return error;
522 }
523
524 int
525 solisten(struct socket *so, int backlog)
526 {
527 int s, error;
528
529 s = splsoftnet();
530 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
531 NULL, NULL, NULL);
532 if (error != 0) {
533 splx(s);
534 return error;
535 }
536 if (TAILQ_EMPTY(&so->so_q))
537 so->so_options |= SO_ACCEPTCONN;
538 if (backlog < 0)
539 backlog = 0;
540 so->so_qlimit = min(backlog, somaxconn);
541 splx(s);
542 return 0;
543 }
544
545 void
546 sofree(struct socket *so)
547 {
548
549 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
550 return;
551 if (so->so_head) {
552 /*
553 * We must not decommission a socket that's on the accept(2)
554 * queue. If we do, then accept(2) may hang after select(2)
555 * indicated that the listening socket was ready.
556 */
557 if (!soqremque(so, 0))
558 return;
559 }
560 if (so->so_rcv.sb_hiwat)
561 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
562 RLIM_INFINITY);
563 if (so->so_snd.sb_hiwat)
564 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
565 RLIM_INFINITY);
566 sbrelease(&so->so_snd, so);
567 sorflush(so);
568 pool_put(&socket_pool, so);
569 }
570
571 /*
572 * Close a socket on last file table reference removal.
573 * Initiate disconnect if connected.
574 * Free socket when disconnect complete.
575 */
576 int
577 soclose(struct socket *so)
578 {
579 struct socket *so2;
580 int s, error;
581
582 error = 0;
583 s = splsoftnet(); /* conservative */
584 if (so->so_options & SO_ACCEPTCONN) {
585 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
586 (void) soqremque(so2, 0);
587 (void) soabort(so2);
588 }
589 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
590 (void) soqremque(so2, 1);
591 (void) soabort(so2);
592 }
593 }
594 if (so->so_pcb == 0)
595 goto discard;
596 if (so->so_state & SS_ISCONNECTED) {
597 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
598 error = sodisconnect(so);
599 if (error)
600 goto drop;
601 }
602 if (so->so_options & SO_LINGER) {
603 if ((so->so_state & SS_ISDISCONNECTING) &&
604 (so->so_state & SS_NBIO))
605 goto drop;
606 while (so->so_state & SS_ISCONNECTED) {
607 error = tsleep((void *)&so->so_timeo,
608 PSOCK | PCATCH, netcls,
609 so->so_linger * hz);
610 if (error)
611 break;
612 }
613 }
614 }
615 drop:
616 if (so->so_pcb) {
617 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
618 NULL, NULL, NULL, NULL);
619 if (error == 0)
620 error = error2;
621 }
622 discard:
623 if (so->so_state & SS_NOFDREF)
624 panic("soclose: NOFDREF");
625 so->so_state |= SS_NOFDREF;
626 sofree(so);
627 splx(s);
628 return (error);
629 }
630
631 /*
632 * Must be called at splsoftnet...
633 */
634 int
635 soabort(struct socket *so)
636 {
637 int error;
638
639 KASSERT(so->so_head == NULL);
640 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
641 NULL, NULL, NULL);
642 if (error) {
643 sofree(so);
644 }
645 return error;
646 }
647
648 int
649 soaccept(struct socket *so, struct mbuf *nam)
650 {
651 int s, error;
652
653 error = 0;
654 s = splsoftnet();
655 if ((so->so_state & SS_NOFDREF) == 0)
656 panic("soaccept: !NOFDREF");
657 so->so_state &= ~SS_NOFDREF;
658 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
659 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
660 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
661 NULL, nam, NULL, NULL);
662 else
663 error = ECONNABORTED;
664
665 splx(s);
666 return (error);
667 }
668
669 int
670 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
671 {
672 int s, error;
673
674 if (so->so_options & SO_ACCEPTCONN)
675 return (EOPNOTSUPP);
676 s = splsoftnet();
677 /*
678 * If protocol is connection-based, can only connect once.
679 * Otherwise, if connected, try to disconnect first.
680 * This allows user to disconnect by connecting to, e.g.,
681 * a null address.
682 */
683 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
684 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
685 (error = sodisconnect(so))))
686 error = EISCONN;
687 else
688 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
689 NULL, nam, NULL, l);
690 splx(s);
691 return (error);
692 }
693
694 int
695 soconnect2(struct socket *so1, struct socket *so2)
696 {
697 int s, error;
698
699 s = splsoftnet();
700 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
701 NULL, (struct mbuf *)so2, NULL, NULL);
702 splx(s);
703 return (error);
704 }
705
706 int
707 sodisconnect(struct socket *so)
708 {
709 int s, error;
710
711 s = splsoftnet();
712 if ((so->so_state & SS_ISCONNECTED) == 0) {
713 error = ENOTCONN;
714 goto bad;
715 }
716 if (so->so_state & SS_ISDISCONNECTING) {
717 error = EALREADY;
718 goto bad;
719 }
720 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
721 NULL, NULL, NULL, NULL);
722 bad:
723 splx(s);
724 sodopendfree();
725 return (error);
726 }
727
728 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
729 /*
730 * Send on a socket.
731 * If send must go all at once and message is larger than
732 * send buffering, then hard error.
733 * Lock against other senders.
734 * If must go all at once and not enough room now, then
735 * inform user that this would block and do nothing.
736 * Otherwise, if nonblocking, send as much as possible.
737 * The data to be sent is described by "uio" if nonzero,
738 * otherwise by the mbuf chain "top" (which must be null
739 * if uio is not). Data provided in mbuf chain must be small
740 * enough to send all at once.
741 *
742 * Returns nonzero on error, timeout or signal; callers
743 * must check for short counts if EINTR/ERESTART are returned.
744 * Data and control buffers are freed on return.
745 */
746 int
747 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
748 struct mbuf *control, int flags, struct lwp *l)
749 {
750 struct mbuf **mp, *m;
751 struct proc *p;
752 long space, len, resid, clen, mlen;
753 int error, s, dontroute, atomic;
754
755 p = l->l_proc;
756 sodopendfree();
757
758 clen = 0;
759 atomic = sosendallatonce(so) || top;
760 if (uio)
761 resid = uio->uio_resid;
762 else
763 resid = top->m_pkthdr.len;
764 /*
765 * In theory resid should be unsigned.
766 * However, space must be signed, as it might be less than 0
767 * if we over-committed, and we must use a signed comparison
768 * of space and resid. On the other hand, a negative resid
769 * causes us to loop sending 0-length segments to the protocol.
770 */
771 if (resid < 0) {
772 error = EINVAL;
773 goto out;
774 }
775 dontroute =
776 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
777 (so->so_proto->pr_flags & PR_ATOMIC);
778 if (p)
779 p->p_stats->p_ru.ru_msgsnd++;
780 if (control)
781 clen = control->m_len;
782 #define snderr(errno) { error = errno; splx(s); goto release; }
783
784 restart:
785 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
786 goto out;
787 do {
788 s = splsoftnet();
789 if (so->so_state & SS_CANTSENDMORE)
790 snderr(EPIPE);
791 if (so->so_error) {
792 error = so->so_error;
793 so->so_error = 0;
794 splx(s);
795 goto release;
796 }
797 if ((so->so_state & SS_ISCONNECTED) == 0) {
798 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
799 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
800 !(resid == 0 && clen != 0))
801 snderr(ENOTCONN);
802 } else if (addr == 0)
803 snderr(EDESTADDRREQ);
804 }
805 space = sbspace(&so->so_snd);
806 if (flags & MSG_OOB)
807 space += 1024;
808 if ((atomic && resid > so->so_snd.sb_hiwat) ||
809 clen > so->so_snd.sb_hiwat)
810 snderr(EMSGSIZE);
811 if (space < resid + clen &&
812 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
813 if (so->so_state & SS_NBIO)
814 snderr(EWOULDBLOCK);
815 sbunlock(&so->so_snd);
816 error = sbwait(&so->so_snd);
817 splx(s);
818 if (error)
819 goto out;
820 goto restart;
821 }
822 splx(s);
823 mp = ⊤
824 space -= clen;
825 do {
826 if (uio == NULL) {
827 /*
828 * Data is prepackaged in "top".
829 */
830 resid = 0;
831 if (flags & MSG_EOR)
832 top->m_flags |= M_EOR;
833 } else do {
834 if (top == 0) {
835 m = m_gethdr(M_WAIT, MT_DATA);
836 mlen = MHLEN;
837 m->m_pkthdr.len = 0;
838 m->m_pkthdr.rcvif = NULL;
839 } else {
840 m = m_get(M_WAIT, MT_DATA);
841 mlen = MLEN;
842 }
843 MCLAIM(m, so->so_snd.sb_mowner);
844 if (sock_loan_thresh >= 0 &&
845 uio->uio_iov->iov_len >= sock_loan_thresh &&
846 space >= sock_loan_thresh &&
847 (len = sosend_loan(so, uio, m,
848 space)) != 0) {
849 SOSEND_COUNTER_INCR(&sosend_loan_big);
850 space -= len;
851 goto have_data;
852 }
853 if (resid >= MINCLSIZE && space >= MCLBYTES) {
854 SOSEND_COUNTER_INCR(&sosend_copy_big);
855 m_clget(m, M_WAIT);
856 if ((m->m_flags & M_EXT) == 0)
857 goto nopages;
858 mlen = MCLBYTES;
859 if (atomic && top == 0) {
860 len = lmin(MCLBYTES - max_hdr,
861 resid);
862 m->m_data += max_hdr;
863 } else
864 len = lmin(MCLBYTES, resid);
865 space -= len;
866 } else {
867 nopages:
868 SOSEND_COUNTER_INCR(&sosend_copy_small);
869 len = lmin(lmin(mlen, resid), space);
870 space -= len;
871 /*
872 * For datagram protocols, leave room
873 * for protocol headers in first mbuf.
874 */
875 if (atomic && top == 0 && len < mlen)
876 MH_ALIGN(m, len);
877 }
878 error = uiomove(mtod(m, void *), (int)len,
879 uio);
880 have_data:
881 resid = uio->uio_resid;
882 m->m_len = len;
883 *mp = m;
884 top->m_pkthdr.len += len;
885 if (error)
886 goto release;
887 mp = &m->m_next;
888 if (resid <= 0) {
889 if (flags & MSG_EOR)
890 top->m_flags |= M_EOR;
891 break;
892 }
893 } while (space > 0 && atomic);
894
895 s = splsoftnet();
896
897 if (so->so_state & SS_CANTSENDMORE)
898 snderr(EPIPE);
899
900 if (dontroute)
901 so->so_options |= SO_DONTROUTE;
902 if (resid > 0)
903 so->so_state |= SS_MORETOCOME;
904 error = (*so->so_proto->pr_usrreq)(so,
905 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
906 top, addr, control, curlwp); /* XXX */
907 if (dontroute)
908 so->so_options &= ~SO_DONTROUTE;
909 if (resid > 0)
910 so->so_state &= ~SS_MORETOCOME;
911 splx(s);
912
913 clen = 0;
914 control = 0;
915 top = 0;
916 mp = ⊤
917 if (error)
918 goto release;
919 } while (resid && space > 0);
920 } while (resid);
921
922 release:
923 sbunlock(&so->so_snd);
924 out:
925 if (top)
926 m_freem(top);
927 if (control)
928 m_freem(control);
929 return (error);
930 }
931
932 /*
933 * Implement receive operations on a socket.
934 * We depend on the way that records are added to the sockbuf
935 * by sbappend*. In particular, each record (mbufs linked through m_next)
936 * must begin with an address if the protocol so specifies,
937 * followed by an optional mbuf or mbufs containing ancillary data,
938 * and then zero or more mbufs of data.
939 * In order to avoid blocking network interrupts for the entire time here,
940 * we splx() while doing the actual copy to user space.
941 * Although the sockbuf is locked, new data may still be appended,
942 * and thus we must maintain consistency of the sockbuf during that time.
943 *
944 * The caller may receive the data as a single mbuf chain by supplying
945 * an mbuf **mp0 for use in returning the chain. The uio is then used
946 * only for the count in uio_resid.
947 */
948 int
949 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
950 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
951 {
952 struct lwp *l = curlwp;
953 struct mbuf *m, **mp;
954 int flags, len, error, s, offset, moff, type, orig_resid;
955 const struct protosw *pr;
956 struct mbuf *nextrecord;
957 int mbuf_removed = 0;
958
959 pr = so->so_proto;
960 mp = mp0;
961 type = 0;
962 orig_resid = uio->uio_resid;
963
964 if (paddr)
965 *paddr = 0;
966 if (controlp)
967 *controlp = 0;
968 if (flagsp)
969 flags = *flagsp &~ MSG_EOR;
970 else
971 flags = 0;
972
973 if ((flags & MSG_DONTWAIT) == 0)
974 sodopendfree();
975
976 if (flags & MSG_OOB) {
977 m = m_get(M_WAIT, MT_DATA);
978 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
979 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
980 if (error)
981 goto bad;
982 do {
983 error = uiomove(mtod(m, void *),
984 (int) min(uio->uio_resid, m->m_len), uio);
985 m = m_free(m);
986 } while (uio->uio_resid && error == 0 && m);
987 bad:
988 if (m)
989 m_freem(m);
990 return (error);
991 }
992 if (mp)
993 *mp = NULL;
994 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
995 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
996
997 restart:
998 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
999 return (error);
1000 s = splsoftnet();
1001
1002 m = so->so_rcv.sb_mb;
1003 /*
1004 * If we have less data than requested, block awaiting more
1005 * (subject to any timeout) if:
1006 * 1. the current count is less than the low water mark,
1007 * 2. MSG_WAITALL is set, and it is possible to do the entire
1008 * receive operation at once if we block (resid <= hiwat), or
1009 * 3. MSG_DONTWAIT is not set.
1010 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1011 * we have to do the receive in sections, and thus risk returning
1012 * a short count if a timeout or signal occurs after we start.
1013 */
1014 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
1015 so->so_rcv.sb_cc < uio->uio_resid) &&
1016 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1017 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1018 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
1019 #ifdef DIAGNOSTIC
1020 if (m == 0 && so->so_rcv.sb_cc)
1021 panic("receive 1");
1022 #endif
1023 if (so->so_error) {
1024 if (m)
1025 goto dontblock;
1026 error = so->so_error;
1027 if ((flags & MSG_PEEK) == 0)
1028 so->so_error = 0;
1029 goto release;
1030 }
1031 if (so->so_state & SS_CANTRCVMORE) {
1032 if (m)
1033 goto dontblock;
1034 else
1035 goto release;
1036 }
1037 for (; m; m = m->m_next)
1038 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1039 m = so->so_rcv.sb_mb;
1040 goto dontblock;
1041 }
1042 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1043 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1044 error = ENOTCONN;
1045 goto release;
1046 }
1047 if (uio->uio_resid == 0)
1048 goto release;
1049 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
1050 error = EWOULDBLOCK;
1051 goto release;
1052 }
1053 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1054 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1055 sbunlock(&so->so_rcv);
1056 error = sbwait(&so->so_rcv);
1057 splx(s);
1058 if (error)
1059 return (error);
1060 goto restart;
1061 }
1062 dontblock:
1063 /*
1064 * On entry here, m points to the first record of the socket buffer.
1065 * While we process the initial mbufs containing address and control
1066 * info, we save a copy of m->m_nextpkt into nextrecord.
1067 */
1068 if (l)
1069 l->l_proc->p_stats->p_ru.ru_msgrcv++;
1070 KASSERT(m == so->so_rcv.sb_mb);
1071 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1072 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1073 nextrecord = m->m_nextpkt;
1074 if (pr->pr_flags & PR_ADDR) {
1075 #ifdef DIAGNOSTIC
1076 if (m->m_type != MT_SONAME)
1077 panic("receive 1a");
1078 #endif
1079 orig_resid = 0;
1080 if (flags & MSG_PEEK) {
1081 if (paddr)
1082 *paddr = m_copy(m, 0, m->m_len);
1083 m = m->m_next;
1084 } else {
1085 sbfree(&so->so_rcv, m);
1086 mbuf_removed = 1;
1087 if (paddr) {
1088 *paddr = m;
1089 so->so_rcv.sb_mb = m->m_next;
1090 m->m_next = 0;
1091 m = so->so_rcv.sb_mb;
1092 } else {
1093 MFREE(m, so->so_rcv.sb_mb);
1094 m = so->so_rcv.sb_mb;
1095 }
1096 }
1097 }
1098 while (m && m->m_type == MT_CONTROL && error == 0) {
1099 if (flags & MSG_PEEK) {
1100 if (controlp)
1101 *controlp = m_copy(m, 0, m->m_len);
1102 m = m->m_next;
1103 } else {
1104 sbfree(&so->so_rcv, m);
1105 mbuf_removed = 1;
1106 if (controlp) {
1107 struct domain *dom = pr->pr_domain;
1108 if (dom->dom_externalize && l &&
1109 mtod(m, struct cmsghdr *)->cmsg_type ==
1110 SCM_RIGHTS)
1111 error = (*dom->dom_externalize)(m, l);
1112 *controlp = m;
1113 so->so_rcv.sb_mb = m->m_next;
1114 m->m_next = 0;
1115 m = so->so_rcv.sb_mb;
1116 } else {
1117 /*
1118 * Dispose of any SCM_RIGHTS message that went
1119 * through the read path rather than recv.
1120 */
1121 if (pr->pr_domain->dom_dispose &&
1122 mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
1123 (*pr->pr_domain->dom_dispose)(m);
1124 MFREE(m, so->so_rcv.sb_mb);
1125 m = so->so_rcv.sb_mb;
1126 }
1127 }
1128 if (controlp) {
1129 orig_resid = 0;
1130 controlp = &(*controlp)->m_next;
1131 }
1132 }
1133
1134 /*
1135 * If m is non-NULL, we have some data to read. From now on,
1136 * make sure to keep sb_lastrecord consistent when working on
1137 * the last packet on the chain (nextrecord == NULL) and we
1138 * change m->m_nextpkt.
1139 */
1140 if (m) {
1141 if ((flags & MSG_PEEK) == 0) {
1142 m->m_nextpkt = nextrecord;
1143 /*
1144 * If nextrecord == NULL (this is a single chain),
1145 * then sb_lastrecord may not be valid here if m
1146 * was changed earlier.
1147 */
1148 if (nextrecord == NULL) {
1149 KASSERT(so->so_rcv.sb_mb == m);
1150 so->so_rcv.sb_lastrecord = m;
1151 }
1152 }
1153 type = m->m_type;
1154 if (type == MT_OOBDATA)
1155 flags |= MSG_OOB;
1156 } else {
1157 if ((flags & MSG_PEEK) == 0) {
1158 KASSERT(so->so_rcv.sb_mb == m);
1159 so->so_rcv.sb_mb = nextrecord;
1160 SB_EMPTY_FIXUP(&so->so_rcv);
1161 }
1162 }
1163 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1164 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1165
1166 moff = 0;
1167 offset = 0;
1168 while (m && uio->uio_resid > 0 && error == 0) {
1169 if (m->m_type == MT_OOBDATA) {
1170 if (type != MT_OOBDATA)
1171 break;
1172 } else if (type == MT_OOBDATA)
1173 break;
1174 #ifdef DIAGNOSTIC
1175 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1176 panic("receive 3");
1177 #endif
1178 so->so_state &= ~SS_RCVATMARK;
1179 len = uio->uio_resid;
1180 if (so->so_oobmark && len > so->so_oobmark - offset)
1181 len = so->so_oobmark - offset;
1182 if (len > m->m_len - moff)
1183 len = m->m_len - moff;
1184 /*
1185 * If mp is set, just pass back the mbufs.
1186 * Otherwise copy them out via the uio, then free.
1187 * Sockbuf must be consistent here (points to current mbuf,
1188 * it points to next record) when we drop priority;
1189 * we must note any additions to the sockbuf when we
1190 * block interrupts again.
1191 */
1192 if (mp == 0) {
1193 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1194 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1195 splx(s);
1196 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1197 s = splsoftnet();
1198 if (error) {
1199 /*
1200 * If any part of the record has been removed
1201 * (such as the MT_SONAME mbuf, which will
1202 * happen when PR_ADDR, and thus also
1203 * PR_ATOMIC, is set), then drop the entire
1204 * record to maintain the atomicity of the
1205 * receive operation.
1206 *
1207 * This avoids a later panic("receive 1a")
1208 * when compiled with DIAGNOSTIC.
1209 */
1210 if (m && mbuf_removed
1211 && (pr->pr_flags & PR_ATOMIC))
1212 (void) sbdroprecord(&so->so_rcv);
1213
1214 goto release;
1215 }
1216 } else
1217 uio->uio_resid -= len;
1218 if (len == m->m_len - moff) {
1219 if (m->m_flags & M_EOR)
1220 flags |= MSG_EOR;
1221 if (flags & MSG_PEEK) {
1222 m = m->m_next;
1223 moff = 0;
1224 } else {
1225 nextrecord = m->m_nextpkt;
1226 sbfree(&so->so_rcv, m);
1227 if (mp) {
1228 *mp = m;
1229 mp = &m->m_next;
1230 so->so_rcv.sb_mb = m = m->m_next;
1231 *mp = NULL;
1232 } else {
1233 MFREE(m, so->so_rcv.sb_mb);
1234 m = so->so_rcv.sb_mb;
1235 }
1236 /*
1237 * If m != NULL, we also know that
1238 * so->so_rcv.sb_mb != NULL.
1239 */
1240 KASSERT(so->so_rcv.sb_mb == m);
1241 if (m) {
1242 m->m_nextpkt = nextrecord;
1243 if (nextrecord == NULL)
1244 so->so_rcv.sb_lastrecord = m;
1245 } else {
1246 so->so_rcv.sb_mb = nextrecord;
1247 SB_EMPTY_FIXUP(&so->so_rcv);
1248 }
1249 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1250 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1251 }
1252 } else {
1253 if (flags & MSG_PEEK)
1254 moff += len;
1255 else {
1256 if (mp)
1257 *mp = m_copym(m, 0, len, M_WAIT);
1258 m->m_data += len;
1259 m->m_len -= len;
1260 so->so_rcv.sb_cc -= len;
1261 }
1262 }
1263 if (so->so_oobmark) {
1264 if ((flags & MSG_PEEK) == 0) {
1265 so->so_oobmark -= len;
1266 if (so->so_oobmark == 0) {
1267 so->so_state |= SS_RCVATMARK;
1268 break;
1269 }
1270 } else {
1271 offset += len;
1272 if (offset == so->so_oobmark)
1273 break;
1274 }
1275 }
1276 if (flags & MSG_EOR)
1277 break;
1278 /*
1279 * If the MSG_WAITALL flag is set (for non-atomic socket),
1280 * we must not quit until "uio->uio_resid == 0" or an error
1281 * termination. If a signal/timeout occurs, return
1282 * with a short count but without error.
1283 * Keep sockbuf locked against other readers.
1284 */
1285 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
1286 !sosendallatonce(so) && !nextrecord) {
1287 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1288 break;
1289 /*
1290 * If we are peeking and the socket receive buffer is
1291 * full, stop since we can't get more data to peek at.
1292 */
1293 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1294 break;
1295 /*
1296 * If we've drained the socket buffer, tell the
1297 * protocol in case it needs to do something to
1298 * get it filled again.
1299 */
1300 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1301 (*pr->pr_usrreq)(so, PRU_RCVD,
1302 NULL, (struct mbuf *)(long)flags, NULL, l);
1303 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1304 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1305 error = sbwait(&so->so_rcv);
1306 if (error) {
1307 sbunlock(&so->so_rcv);
1308 splx(s);
1309 return (0);
1310 }
1311 if ((m = so->so_rcv.sb_mb) != NULL)
1312 nextrecord = m->m_nextpkt;
1313 }
1314 }
1315
1316 if (m && pr->pr_flags & PR_ATOMIC) {
1317 flags |= MSG_TRUNC;
1318 if ((flags & MSG_PEEK) == 0)
1319 (void) sbdroprecord(&so->so_rcv);
1320 }
1321 if ((flags & MSG_PEEK) == 0) {
1322 if (m == 0) {
1323 /*
1324 * First part is an inline SB_EMPTY_FIXUP(). Second
1325 * part makes sure sb_lastrecord is up-to-date if
1326 * there is still data in the socket buffer.
1327 */
1328 so->so_rcv.sb_mb = nextrecord;
1329 if (so->so_rcv.sb_mb == NULL) {
1330 so->so_rcv.sb_mbtail = NULL;
1331 so->so_rcv.sb_lastrecord = NULL;
1332 } else if (nextrecord->m_nextpkt == NULL)
1333 so->so_rcv.sb_lastrecord = nextrecord;
1334 }
1335 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1336 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1337 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1338 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1339 (struct mbuf *)(long)flags, NULL, l);
1340 }
1341 if (orig_resid == uio->uio_resid && orig_resid &&
1342 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1343 sbunlock(&so->so_rcv);
1344 splx(s);
1345 goto restart;
1346 }
1347
1348 if (flagsp)
1349 *flagsp |= flags;
1350 release:
1351 sbunlock(&so->so_rcv);
1352 splx(s);
1353 return (error);
1354 }
1355
1356 int
1357 soshutdown(struct socket *so, int how)
1358 {
1359 const struct protosw *pr;
1360
1361 pr = so->so_proto;
1362 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1363 return (EINVAL);
1364
1365 if (how == SHUT_RD || how == SHUT_RDWR)
1366 sorflush(so);
1367 if (how == SHUT_WR || how == SHUT_RDWR)
1368 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1369 NULL, NULL, NULL);
1370 return (0);
1371 }
1372
1373 void
1374 sorflush(struct socket *so)
1375 {
1376 struct sockbuf *sb, asb;
1377 const struct protosw *pr;
1378 int s;
1379
1380 sb = &so->so_rcv;
1381 pr = so->so_proto;
1382 sb->sb_flags |= SB_NOINTR;
1383 (void) sblock(sb, M_WAITOK);
1384 s = splnet();
1385 socantrcvmore(so);
1386 sbunlock(sb);
1387 asb = *sb;
1388 /*
1389 * Clear most of the sockbuf structure, but leave some of the
1390 * fields valid.
1391 */
1392 memset(&sb->sb_startzero, 0,
1393 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1394 splx(s);
1395 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1396 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1397 sbrelease(&asb, so);
1398 }
1399
1400 int
1401 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
1402 {
1403 int error;
1404 struct mbuf *m;
1405 struct linger *l;
1406 struct sockbuf *sb;
1407
1408 error = 0;
1409 m = m0;
1410 if (level != SOL_SOCKET) {
1411 if (so->so_proto && so->so_proto->pr_ctloutput)
1412 return ((*so->so_proto->pr_ctloutput)
1413 (PRCO_SETOPT, so, level, optname, &m0));
1414 error = ENOPROTOOPT;
1415 } else {
1416 switch (optname) {
1417
1418 case SO_LINGER:
1419 if (m == NULL || m->m_len != sizeof(struct linger)) {
1420 error = EINVAL;
1421 goto bad;
1422 }
1423 l = mtod(m, struct linger *);
1424 if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
1425 l->l_linger > (INT_MAX / hz)) {
1426 error = EDOM;
1427 goto bad;
1428 }
1429 so->so_linger = l->l_linger;
1430 if (l->l_onoff)
1431 so->so_options |= SO_LINGER;
1432 else
1433 so->so_options &= ~SO_LINGER;
1434 break;
1435
1436 case SO_DEBUG:
1437 case SO_KEEPALIVE:
1438 case SO_DONTROUTE:
1439 case SO_USELOOPBACK:
1440 case SO_BROADCAST:
1441 case SO_REUSEADDR:
1442 case SO_REUSEPORT:
1443 case SO_OOBINLINE:
1444 case SO_TIMESTAMP:
1445 if (m == NULL || m->m_len < sizeof(int)) {
1446 error = EINVAL;
1447 goto bad;
1448 }
1449 if (*mtod(m, int *))
1450 so->so_options |= optname;
1451 else
1452 so->so_options &= ~optname;
1453 break;
1454
1455 case SO_SNDBUF:
1456 case SO_RCVBUF:
1457 case SO_SNDLOWAT:
1458 case SO_RCVLOWAT:
1459 {
1460 int optval;
1461
1462 if (m == NULL || m->m_len < sizeof(int)) {
1463 error = EINVAL;
1464 goto bad;
1465 }
1466
1467 /*
1468 * Values < 1 make no sense for any of these
1469 * options, so disallow them.
1470 */
1471 optval = *mtod(m, int *);
1472 if (optval < 1) {
1473 error = EINVAL;
1474 goto bad;
1475 }
1476
1477 switch (optname) {
1478
1479 case SO_SNDBUF:
1480 case SO_RCVBUF:
1481 sb = (optname == SO_SNDBUF) ?
1482 &so->so_snd : &so->so_rcv;
1483 if (sbreserve(sb, (u_long)optval, so) == 0) {
1484 error = ENOBUFS;
1485 goto bad;
1486 }
1487 sb->sb_flags &= ~SB_AUTOSIZE;
1488 break;
1489
1490 /*
1491 * Make sure the low-water is never greater than
1492 * the high-water.
1493 */
1494 case SO_SNDLOWAT:
1495 so->so_snd.sb_lowat =
1496 (optval > so->so_snd.sb_hiwat) ?
1497 so->so_snd.sb_hiwat : optval;
1498 break;
1499 case SO_RCVLOWAT:
1500 so->so_rcv.sb_lowat =
1501 (optval > so->so_rcv.sb_hiwat) ?
1502 so->so_rcv.sb_hiwat : optval;
1503 break;
1504 }
1505 break;
1506 }
1507
1508 case SO_SNDTIMEO:
1509 case SO_RCVTIMEO:
1510 {
1511 struct timeval *tv;
1512 int val;
1513
1514 if (m == NULL || m->m_len < sizeof(*tv)) {
1515 error = EINVAL;
1516 goto bad;
1517 }
1518 tv = mtod(m, struct timeval *);
1519 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz) {
1520 error = EDOM;
1521 goto bad;
1522 }
1523 val = tv->tv_sec * hz + tv->tv_usec / tick;
1524 if (val == 0 && tv->tv_usec != 0)
1525 val = 1;
1526
1527 switch (optname) {
1528
1529 case SO_SNDTIMEO:
1530 so->so_snd.sb_timeo = val;
1531 break;
1532 case SO_RCVTIMEO:
1533 so->so_rcv.sb_timeo = val;
1534 break;
1535 }
1536 break;
1537 }
1538
1539 default:
1540 error = ENOPROTOOPT;
1541 break;
1542 }
1543 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1544 (void) ((*so->so_proto->pr_ctloutput)
1545 (PRCO_SETOPT, so, level, optname, &m0));
1546 m = NULL; /* freed by protocol */
1547 }
1548 }
1549 bad:
1550 if (m)
1551 (void) m_free(m);
1552 return (error);
1553 }
1554
1555 int
1556 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1557 {
1558 struct mbuf *m;
1559
1560 if (level != SOL_SOCKET) {
1561 if (so->so_proto && so->so_proto->pr_ctloutput) {
1562 return ((*so->so_proto->pr_ctloutput)
1563 (PRCO_GETOPT, so, level, optname, mp));
1564 } else
1565 return (ENOPROTOOPT);
1566 } else {
1567 m = m_get(M_WAIT, MT_SOOPTS);
1568 m->m_len = sizeof(int);
1569
1570 switch (optname) {
1571
1572 case SO_LINGER:
1573 m->m_len = sizeof(struct linger);
1574 mtod(m, struct linger *)->l_onoff =
1575 (so->so_options & SO_LINGER) ? 1 : 0;
1576 mtod(m, struct linger *)->l_linger = so->so_linger;
1577 break;
1578
1579 case SO_USELOOPBACK:
1580 case SO_DONTROUTE:
1581 case SO_DEBUG:
1582 case SO_KEEPALIVE:
1583 case SO_REUSEADDR:
1584 case SO_REUSEPORT:
1585 case SO_BROADCAST:
1586 case SO_OOBINLINE:
1587 case SO_TIMESTAMP:
1588 *mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
1589 break;
1590
1591 case SO_TYPE:
1592 *mtod(m, int *) = so->so_type;
1593 break;
1594
1595 case SO_ERROR:
1596 *mtod(m, int *) = so->so_error;
1597 so->so_error = 0;
1598 break;
1599
1600 case SO_SNDBUF:
1601 *mtod(m, int *) = so->so_snd.sb_hiwat;
1602 break;
1603
1604 case SO_RCVBUF:
1605 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1606 break;
1607
1608 case SO_SNDLOWAT:
1609 *mtod(m, int *) = so->so_snd.sb_lowat;
1610 break;
1611
1612 case SO_RCVLOWAT:
1613 *mtod(m, int *) = so->so_rcv.sb_lowat;
1614 break;
1615
1616 case SO_SNDTIMEO:
1617 case SO_RCVTIMEO:
1618 {
1619 int val = (optname == SO_SNDTIMEO ?
1620 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1621
1622 m->m_len = sizeof(struct timeval);
1623 mtod(m, struct timeval *)->tv_sec = val / hz;
1624 mtod(m, struct timeval *)->tv_usec =
1625 (val % hz) * tick;
1626 break;
1627 }
1628
1629 case SO_OVERFLOWED:
1630 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1631 break;
1632
1633 default:
1634 (void)m_free(m);
1635 return (ENOPROTOOPT);
1636 }
1637 *mp = m;
1638 return (0);
1639 }
1640 }
1641
1642 void
1643 sohasoutofband(struct socket *so)
1644 {
1645 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1646 selwakeup(&so->so_rcv.sb_sel);
1647 }
1648
1649 static void
1650 filt_sordetach(struct knote *kn)
1651 {
1652 struct socket *so;
1653
1654 so = (struct socket *)kn->kn_fp->f_data;
1655 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1656 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1657 so->so_rcv.sb_flags &= ~SB_KNOTE;
1658 }
1659
1660 /*ARGSUSED*/
1661 static int
1662 filt_soread(struct knote *kn, long hint)
1663 {
1664 struct socket *so;
1665
1666 so = (struct socket *)kn->kn_fp->f_data;
1667 kn->kn_data = so->so_rcv.sb_cc;
1668 if (so->so_state & SS_CANTRCVMORE) {
1669 kn->kn_flags |= EV_EOF;
1670 kn->kn_fflags = so->so_error;
1671 return (1);
1672 }
1673 if (so->so_error) /* temporary udp error */
1674 return (1);
1675 if (kn->kn_sfflags & NOTE_LOWAT)
1676 return (kn->kn_data >= kn->kn_sdata);
1677 return (kn->kn_data >= so->so_rcv.sb_lowat);
1678 }
1679
1680 static void
1681 filt_sowdetach(struct knote *kn)
1682 {
1683 struct socket *so;
1684
1685 so = (struct socket *)kn->kn_fp->f_data;
1686 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1687 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1688 so->so_snd.sb_flags &= ~SB_KNOTE;
1689 }
1690
1691 /*ARGSUSED*/
1692 static int
1693 filt_sowrite(struct knote *kn, long hint)
1694 {
1695 struct socket *so;
1696
1697 so = (struct socket *)kn->kn_fp->f_data;
1698 kn->kn_data = sbspace(&so->so_snd);
1699 if (so->so_state & SS_CANTSENDMORE) {
1700 kn->kn_flags |= EV_EOF;
1701 kn->kn_fflags = so->so_error;
1702 return (1);
1703 }
1704 if (so->so_error) /* temporary udp error */
1705 return (1);
1706 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1707 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1708 return (0);
1709 if (kn->kn_sfflags & NOTE_LOWAT)
1710 return (kn->kn_data >= kn->kn_sdata);
1711 return (kn->kn_data >= so->so_snd.sb_lowat);
1712 }
1713
1714 /*ARGSUSED*/
1715 static int
1716 filt_solisten(struct knote *kn, long hint)
1717 {
1718 struct socket *so;
1719
1720 so = (struct socket *)kn->kn_fp->f_data;
1721
1722 /*
1723 * Set kn_data to number of incoming connections, not
1724 * counting partial (incomplete) connections.
1725 */
1726 kn->kn_data = so->so_qlen;
1727 return (kn->kn_data > 0);
1728 }
1729
1730 static const struct filterops solisten_filtops =
1731 { 1, NULL, filt_sordetach, filt_solisten };
1732 static const struct filterops soread_filtops =
1733 { 1, NULL, filt_sordetach, filt_soread };
1734 static const struct filterops sowrite_filtops =
1735 { 1, NULL, filt_sowdetach, filt_sowrite };
1736
1737 int
1738 soo_kqfilter(struct file *fp, struct knote *kn)
1739 {
1740 struct socket *so;
1741 struct sockbuf *sb;
1742
1743 so = (struct socket *)kn->kn_fp->f_data;
1744 switch (kn->kn_filter) {
1745 case EVFILT_READ:
1746 if (so->so_options & SO_ACCEPTCONN)
1747 kn->kn_fop = &solisten_filtops;
1748 else
1749 kn->kn_fop = &soread_filtops;
1750 sb = &so->so_rcv;
1751 break;
1752 case EVFILT_WRITE:
1753 kn->kn_fop = &sowrite_filtops;
1754 sb = &so->so_snd;
1755 break;
1756 default:
1757 return (1);
1758 }
1759 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1760 sb->sb_flags |= SB_KNOTE;
1761 return (0);
1762 }
1763
1764 #include <sys/sysctl.h>
1765
1766 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
1767
1768 /*
1769 * sysctl helper routine for kern.somaxkva. ensures that the given
1770 * value is not too small.
1771 * (XXX should we maybe make sure it's not too large as well?)
1772 */
1773 static int
1774 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1775 {
1776 int error, new_somaxkva;
1777 struct sysctlnode node;
1778
1779 new_somaxkva = somaxkva;
1780 node = *rnode;
1781 node.sysctl_data = &new_somaxkva;
1782 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1783 if (error || newp == NULL)
1784 return (error);
1785
1786 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1787 return (EINVAL);
1788
1789 mutex_enter(&so_pendfree_lock);
1790 somaxkva = new_somaxkva;
1791 cv_broadcast(&socurkva_cv);
1792 mutex_exit(&so_pendfree_lock);
1793
1794 return (error);
1795 }
1796
1797 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
1798 {
1799
1800 sysctl_createv(clog, 0, NULL, NULL,
1801 CTLFLAG_PERMANENT,
1802 CTLTYPE_NODE, "kern", NULL,
1803 NULL, 0, NULL, 0,
1804 CTL_KERN, CTL_EOL);
1805
1806 sysctl_createv(clog, 0, NULL, NULL,
1807 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1808 CTLTYPE_INT, "somaxkva",
1809 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1810 "used for socket buffers"),
1811 sysctl_kern_somaxkva, 0, NULL, 0,
1812 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
1813 }
1814