uipc_socket.c revision 1.140.6.4 1 /* $NetBSD: uipc_socket.c,v 1.140.6.4 2007/11/11 16:48:17 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.140.6.4 2007/11/11 16:48:17 joerg Exp $");
72
73 #include "opt_sock_counters.h"
74 #include "opt_sosend_loan.h"
75 #include "opt_mbuftrace.h"
76 #include "opt_somaxkva.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/file.h>
82 #include <sys/filedesc.h>
83 #include <sys/malloc.h>
84 #include <sys/mbuf.h>
85 #include <sys/domain.h>
86 #include <sys/kernel.h>
87 #include <sys/protosw.h>
88 #include <sys/socket.h>
89 #include <sys/socketvar.h>
90 #include <sys/signalvar.h>
91 #include <sys/resourcevar.h>
92 #include <sys/pool.h>
93 #include <sys/event.h>
94 #include <sys/poll.h>
95 #include <sys/kauth.h>
96 #include <sys/mutex.h>
97 #include <sys/condvar.h>
98
99 #include <uvm/uvm.h>
100
101 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL,
102 IPL_SOFTNET);
103
104 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
105 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
106
107 extern const struct fileops socketops;
108
109 extern int somaxconn; /* patchable (XXX sysctl) */
110 int somaxconn = SOMAXCONN;
111
112 #ifdef SOSEND_COUNTERS
113 #include <sys/device.h>
114
115 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
116 NULL, "sosend", "loan big");
117 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
118 NULL, "sosend", "copy big");
119 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
120 NULL, "sosend", "copy small");
121 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
122 NULL, "sosend", "kva limit");
123
124 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
125
126 EVCNT_ATTACH_STATIC(sosend_loan_big);
127 EVCNT_ATTACH_STATIC(sosend_copy_big);
128 EVCNT_ATTACH_STATIC(sosend_copy_small);
129 EVCNT_ATTACH_STATIC(sosend_kvalimit);
130 #else
131
132 #define SOSEND_COUNTER_INCR(ev) /* nothing */
133
134 #endif /* SOSEND_COUNTERS */
135
136 static struct callback_entry sokva_reclaimerentry;
137
138 #ifdef SOSEND_NO_LOAN
139 int sock_loan_thresh = -1;
140 #else
141 int sock_loan_thresh = 4096;
142 #endif
143
144 static kmutex_t so_pendfree_lock;
145 static struct mbuf *so_pendfree;
146
147 #ifndef SOMAXKVA
148 #define SOMAXKVA (16 * 1024 * 1024)
149 #endif
150 int somaxkva = SOMAXKVA;
151 static int socurkva;
152 static kcondvar_t socurkva_cv;
153
154 #define SOCK_LOAN_CHUNK 65536
155
156 static size_t sodopendfree(void);
157 static size_t sodopendfreel(void);
158
159 static vsize_t
160 sokvareserve(struct socket *so, vsize_t len)
161 {
162 int error;
163
164 mutex_enter(&so_pendfree_lock);
165 while (socurkva + len > somaxkva) {
166 size_t freed;
167
168 /*
169 * try to do pendfree.
170 */
171
172 freed = sodopendfreel();
173
174 /*
175 * if some kva was freed, try again.
176 */
177
178 if (freed)
179 continue;
180
181 SOSEND_COUNTER_INCR(&sosend_kvalimit);
182 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
183 if (error) {
184 len = 0;
185 break;
186 }
187 }
188 socurkva += len;
189 mutex_exit(&so_pendfree_lock);
190 return len;
191 }
192
193 static void
194 sokvaunreserve(vsize_t len)
195 {
196
197 mutex_enter(&so_pendfree_lock);
198 socurkva -= len;
199 cv_broadcast(&socurkva_cv);
200 mutex_exit(&so_pendfree_lock);
201 }
202
203 /*
204 * sokvaalloc: allocate kva for loan.
205 */
206
207 vaddr_t
208 sokvaalloc(vsize_t len, struct socket *so)
209 {
210 vaddr_t lva;
211
212 /*
213 * reserve kva.
214 */
215
216 if (sokvareserve(so, len) == 0)
217 return 0;
218
219 /*
220 * allocate kva.
221 */
222
223 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
224 if (lva == 0) {
225 sokvaunreserve(len);
226 return (0);
227 }
228
229 return lva;
230 }
231
232 /*
233 * sokvafree: free kva for loan.
234 */
235
236 void
237 sokvafree(vaddr_t sva, vsize_t len)
238 {
239
240 /*
241 * free kva.
242 */
243
244 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
245
246 /*
247 * unreserve kva.
248 */
249
250 sokvaunreserve(len);
251 }
252
253 static void
254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
255 {
256 vaddr_t va, sva, eva;
257 vsize_t len;
258 paddr_t pa;
259 int i, npgs;
260
261 eva = round_page((vaddr_t) buf + size);
262 sva = trunc_page((vaddr_t) buf);
263 len = eva - sva;
264 npgs = len >> PAGE_SHIFT;
265
266 if (__predict_false(pgs == NULL)) {
267 pgs = alloca(npgs * sizeof(*pgs));
268
269 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
270 if (pmap_extract(pmap_kernel(), va, &pa) == false)
271 panic("sodoloanfree: va 0x%lx not mapped", va);
272 pgs[i] = PHYS_TO_VM_PAGE(pa);
273 }
274 }
275
276 pmap_kremove(sva, len);
277 pmap_update(pmap_kernel());
278 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
279 sokvafree(sva, len);
280 }
281
282 static size_t
283 sodopendfree()
284 {
285 size_t rv;
286
287 mutex_enter(&so_pendfree_lock);
288 rv = sodopendfreel();
289 mutex_exit(&so_pendfree_lock);
290
291 return rv;
292 }
293
294 /*
295 * sodopendfreel: free mbufs on "pendfree" list.
296 * unlock and relock so_pendfree_lock when freeing mbufs.
297 *
298 * => called with so_pendfree_lock held.
299 */
300
301 static size_t
302 sodopendfreel()
303 {
304 struct mbuf *m, *next;
305 size_t rv = 0;
306
307 KASSERT(mutex_owned(&so_pendfree_lock));
308
309 while (so_pendfree != NULL) {
310 m = so_pendfree;
311 so_pendfree = NULL;
312 mutex_exit(&so_pendfree_lock);
313
314 for (; m != NULL; m = next) {
315 next = m->m_next;
316
317 rv += m->m_ext.ext_size;
318 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
319 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
320 m->m_ext.ext_size);
321 pool_cache_put(mb_cache, m);
322 }
323
324 mutex_enter(&so_pendfree_lock);
325 }
326
327 return (rv);
328 }
329
330 void
331 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
332 {
333
334 if (m == NULL) {
335
336 /*
337 * called from MEXTREMOVE.
338 */
339
340 sodoloanfree(NULL, buf, size);
341 return;
342 }
343
344 /*
345 * postpone freeing mbuf.
346 *
347 * we can't do it in interrupt context
348 * because we need to put kva back to kernel_map.
349 */
350
351 mutex_enter(&so_pendfree_lock);
352 m->m_next = so_pendfree;
353 so_pendfree = m;
354 cv_broadcast(&socurkva_cv);
355 mutex_exit(&so_pendfree_lock);
356 }
357
358 static long
359 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
360 {
361 struct iovec *iov = uio->uio_iov;
362 vaddr_t sva, eva;
363 vsize_t len;
364 vaddr_t lva, va;
365 int npgs, i, error;
366
367 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
368 return (0);
369
370 if (iov->iov_len < (size_t) space)
371 space = iov->iov_len;
372 if (space > SOCK_LOAN_CHUNK)
373 space = SOCK_LOAN_CHUNK;
374
375 eva = round_page((vaddr_t) iov->iov_base + space);
376 sva = trunc_page((vaddr_t) iov->iov_base);
377 len = eva - sva;
378 npgs = len >> PAGE_SHIFT;
379
380 /* XXX KDASSERT */
381 KASSERT(npgs <= M_EXT_MAXPAGES);
382
383 lva = sokvaalloc(len, so);
384 if (lva == 0)
385 return 0;
386
387 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
388 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
389 if (error) {
390 sokvafree(lva, len);
391 return (0);
392 }
393
394 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
395 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
396 VM_PROT_READ);
397 pmap_update(pmap_kernel());
398
399 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
400
401 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
402 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
403
404 uio->uio_resid -= space;
405 /* uio_offset not updated, not set/used for write(2) */
406 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
407 uio->uio_iov->iov_len -= space;
408 if (uio->uio_iov->iov_len == 0) {
409 uio->uio_iov++;
410 uio->uio_iovcnt--;
411 }
412
413 return (space);
414 }
415
416 static int
417 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
418 {
419
420 KASSERT(ce == &sokva_reclaimerentry);
421 KASSERT(obj == NULL);
422
423 sodopendfree();
424 if (!vm_map_starved_p(kernel_map)) {
425 return CALLBACK_CHAIN_ABORT;
426 }
427 return CALLBACK_CHAIN_CONTINUE;
428 }
429
430 struct mbuf *
431 getsombuf(struct socket *so)
432 {
433 struct mbuf *m;
434
435 m = m_get(M_WAIT, MT_SONAME);
436 MCLAIM(m, so->so_mowner);
437 return m;
438 }
439
440 struct mbuf *
441 m_intopt(struct socket *so, int val)
442 {
443 struct mbuf *m;
444
445 m = getsombuf(so);
446 m->m_len = sizeof(int);
447 *mtod(m, int *) = val;
448 return m;
449 }
450
451 void
452 soinit(void)
453 {
454
455 mutex_init(&so_pendfree_lock, MUTEX_DRIVER, IPL_VM);
456 cv_init(&socurkva_cv, "sokva");
457
458 /* Set the initial adjusted socket buffer size. */
459 if (sb_max_set(sb_max))
460 panic("bad initial sb_max value: %lu", sb_max);
461
462 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
463 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
464 }
465
466 /*
467 * Socket operation routines.
468 * These routines are called by the routines in
469 * sys_socket.c or from a system process, and
470 * implement the semantics of socket operations by
471 * switching out to the protocol specific routines.
472 */
473 /*ARGSUSED*/
474 int
475 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
476 {
477 const struct protosw *prp;
478 struct socket *so;
479 uid_t uid;
480 int error, s;
481
482 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
483 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
484 KAUTH_ARG(proto));
485 if (error != 0)
486 return error;
487
488 if (proto)
489 prp = pffindproto(dom, proto, type);
490 else
491 prp = pffindtype(dom, type);
492 if (prp == NULL) {
493 /* no support for domain */
494 if (pffinddomain(dom) == 0)
495 return EAFNOSUPPORT;
496 /* no support for socket type */
497 if (proto == 0 && type != 0)
498 return EPROTOTYPE;
499 return EPROTONOSUPPORT;
500 }
501 if (prp->pr_usrreq == NULL)
502 return EPROTONOSUPPORT;
503 if (prp->pr_type != type)
504 return EPROTOTYPE;
505 s = splsoftnet();
506 so = pool_get(&socket_pool, PR_WAITOK);
507 memset(so, 0, sizeof(*so));
508 TAILQ_INIT(&so->so_q0);
509 TAILQ_INIT(&so->so_q);
510 so->so_type = type;
511 so->so_proto = prp;
512 so->so_send = sosend;
513 so->so_receive = soreceive;
514 #ifdef MBUFTRACE
515 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
516 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
517 so->so_mowner = &prp->pr_domain->dom_mowner;
518 #endif
519 selinit(&so->so_rcv.sb_sel);
520 selinit(&so->so_snd.sb_sel);
521 uid = kauth_cred_geteuid(l->l_cred);
522 so->so_uidinfo = uid_find(uid);
523 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
524 (struct mbuf *)(long)proto, NULL, l);
525 if (error != 0) {
526 so->so_state |= SS_NOFDREF;
527 sofree(so);
528 splx(s);
529 return error;
530 }
531 splx(s);
532 *aso = so;
533 return 0;
534 }
535
536 /* On success, write file descriptor to fdout and return zero. On
537 * failure, return non-zero; *fdout will be undefined.
538 */
539 int
540 fsocreate(int domain, struct socket **sop, int type, int protocol,
541 struct lwp *l, int *fdout)
542 {
543 struct filedesc *fdp;
544 struct socket *so;
545 struct file *fp;
546 int fd, error;
547
548 fdp = l->l_proc->p_fd;
549 /* falloc() will use the desciptor for us */
550 if ((error = falloc(l, &fp, &fd)) != 0)
551 return (error);
552 fp->f_flag = FREAD|FWRITE;
553 fp->f_type = DTYPE_SOCKET;
554 fp->f_ops = &socketops;
555 error = socreate(domain, &so, type, protocol, l);
556 if (error != 0) {
557 FILE_UNUSE(fp, l);
558 fdremove(fdp, fd);
559 ffree(fp);
560 } else {
561 if (sop != NULL)
562 *sop = so;
563 fp->f_data = so;
564 FILE_SET_MATURE(fp);
565 FILE_UNUSE(fp, l);
566 *fdout = fd;
567 }
568 return error;
569 }
570
571 int
572 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
573 {
574 int s, error;
575
576 s = splsoftnet();
577 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
578 splx(s);
579 return error;
580 }
581
582 int
583 solisten(struct socket *so, int backlog)
584 {
585 int s, error;
586
587 s = splsoftnet();
588 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
589 NULL, NULL, NULL);
590 if (error != 0) {
591 splx(s);
592 return error;
593 }
594 if (TAILQ_EMPTY(&so->so_q))
595 so->so_options |= SO_ACCEPTCONN;
596 if (backlog < 0)
597 backlog = 0;
598 so->so_qlimit = min(backlog, somaxconn);
599 splx(s);
600 return 0;
601 }
602
603 void
604 sofree(struct socket *so)
605 {
606
607 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
608 return;
609 if (so->so_head) {
610 /*
611 * We must not decommission a socket that's on the accept(2)
612 * queue. If we do, then accept(2) may hang after select(2)
613 * indicated that the listening socket was ready.
614 */
615 if (!soqremque(so, 0))
616 return;
617 }
618 if (so->so_rcv.sb_hiwat)
619 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
620 RLIM_INFINITY);
621 if (so->so_snd.sb_hiwat)
622 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
623 RLIM_INFINITY);
624 sbrelease(&so->so_snd, so);
625 sorflush(so);
626 seldestroy(&so->so_rcv.sb_sel);
627 seldestroy(&so->so_snd.sb_sel);
628 pool_put(&socket_pool, so);
629 }
630
631 /*
632 * Close a socket on last file table reference removal.
633 * Initiate disconnect if connected.
634 * Free socket when disconnect complete.
635 */
636 int
637 soclose(struct socket *so)
638 {
639 struct socket *so2;
640 int s, error;
641
642 error = 0;
643 s = splsoftnet(); /* conservative */
644 if (so->so_options & SO_ACCEPTCONN) {
645 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
646 (void) soqremque(so2, 0);
647 (void) soabort(so2);
648 }
649 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
650 (void) soqremque(so2, 1);
651 (void) soabort(so2);
652 }
653 }
654 if (so->so_pcb == 0)
655 goto discard;
656 if (so->so_state & SS_ISCONNECTED) {
657 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
658 error = sodisconnect(so);
659 if (error)
660 goto drop;
661 }
662 if (so->so_options & SO_LINGER) {
663 if ((so->so_state & SS_ISDISCONNECTING) &&
664 (so->so_state & SS_NBIO))
665 goto drop;
666 while (so->so_state & SS_ISCONNECTED) {
667 error = tsleep((void *)&so->so_timeo,
668 PSOCK | PCATCH, netcls,
669 so->so_linger * hz);
670 if (error)
671 break;
672 }
673 }
674 }
675 drop:
676 if (so->so_pcb) {
677 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
678 NULL, NULL, NULL, NULL);
679 if (error == 0)
680 error = error2;
681 }
682 discard:
683 if (so->so_state & SS_NOFDREF)
684 panic("soclose: NOFDREF");
685 so->so_state |= SS_NOFDREF;
686 sofree(so);
687 splx(s);
688 return (error);
689 }
690
691 /*
692 * Must be called at splsoftnet...
693 */
694 int
695 soabort(struct socket *so)
696 {
697 int error;
698
699 KASSERT(so->so_head == NULL);
700 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
701 NULL, NULL, NULL);
702 if (error) {
703 sofree(so);
704 }
705 return error;
706 }
707
708 int
709 soaccept(struct socket *so, struct mbuf *nam)
710 {
711 int s, error;
712
713 error = 0;
714 s = splsoftnet();
715 if ((so->so_state & SS_NOFDREF) == 0)
716 panic("soaccept: !NOFDREF");
717 so->so_state &= ~SS_NOFDREF;
718 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
719 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
720 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
721 NULL, nam, NULL, NULL);
722 else
723 error = ECONNABORTED;
724
725 splx(s);
726 return (error);
727 }
728
729 int
730 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
731 {
732 int s, error;
733
734 if (so->so_options & SO_ACCEPTCONN)
735 return (EOPNOTSUPP);
736 s = splsoftnet();
737 /*
738 * If protocol is connection-based, can only connect once.
739 * Otherwise, if connected, try to disconnect first.
740 * This allows user to disconnect by connecting to, e.g.,
741 * a null address.
742 */
743 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
744 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
745 (error = sodisconnect(so))))
746 error = EISCONN;
747 else
748 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
749 NULL, nam, NULL, l);
750 splx(s);
751 return (error);
752 }
753
754 int
755 soconnect2(struct socket *so1, struct socket *so2)
756 {
757 int s, error;
758
759 s = splsoftnet();
760 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
761 NULL, (struct mbuf *)so2, NULL, NULL);
762 splx(s);
763 return (error);
764 }
765
766 int
767 sodisconnect(struct socket *so)
768 {
769 int s, error;
770
771 s = splsoftnet();
772 if ((so->so_state & SS_ISCONNECTED) == 0) {
773 error = ENOTCONN;
774 goto bad;
775 }
776 if (so->so_state & SS_ISDISCONNECTING) {
777 error = EALREADY;
778 goto bad;
779 }
780 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
781 NULL, NULL, NULL, NULL);
782 bad:
783 splx(s);
784 sodopendfree();
785 return (error);
786 }
787
788 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
789 /*
790 * Send on a socket.
791 * If send must go all at once and message is larger than
792 * send buffering, then hard error.
793 * Lock against other senders.
794 * If must go all at once and not enough room now, then
795 * inform user that this would block and do nothing.
796 * Otherwise, if nonblocking, send as much as possible.
797 * The data to be sent is described by "uio" if nonzero,
798 * otherwise by the mbuf chain "top" (which must be null
799 * if uio is not). Data provided in mbuf chain must be small
800 * enough to send all at once.
801 *
802 * Returns nonzero on error, timeout or signal; callers
803 * must check for short counts if EINTR/ERESTART are returned.
804 * Data and control buffers are freed on return.
805 */
806 int
807 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
808 struct mbuf *control, int flags, struct lwp *l)
809 {
810 struct mbuf **mp, *m;
811 struct proc *p;
812 long space, len, resid, clen, mlen;
813 int error, s, dontroute, atomic;
814
815 p = l->l_proc;
816 sodopendfree();
817
818 clen = 0;
819 atomic = sosendallatonce(so) || top;
820 if (uio)
821 resid = uio->uio_resid;
822 else
823 resid = top->m_pkthdr.len;
824 /*
825 * In theory resid should be unsigned.
826 * However, space must be signed, as it might be less than 0
827 * if we over-committed, and we must use a signed comparison
828 * of space and resid. On the other hand, a negative resid
829 * causes us to loop sending 0-length segments to the protocol.
830 */
831 if (resid < 0) {
832 error = EINVAL;
833 goto out;
834 }
835 dontroute =
836 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
837 (so->so_proto->pr_flags & PR_ATOMIC);
838 if (p)
839 p->p_stats->p_ru.ru_msgsnd++;
840 if (control)
841 clen = control->m_len;
842 #define snderr(errno) { error = errno; splx(s); goto release; }
843
844 restart:
845 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
846 goto out;
847 do {
848 s = splsoftnet();
849 if (so->so_state & SS_CANTSENDMORE)
850 snderr(EPIPE);
851 if (so->so_error) {
852 error = so->so_error;
853 so->so_error = 0;
854 splx(s);
855 goto release;
856 }
857 if ((so->so_state & SS_ISCONNECTED) == 0) {
858 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
859 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
860 !(resid == 0 && clen != 0))
861 snderr(ENOTCONN);
862 } else if (addr == 0)
863 snderr(EDESTADDRREQ);
864 }
865 space = sbspace(&so->so_snd);
866 if (flags & MSG_OOB)
867 space += 1024;
868 if ((atomic && resid > so->so_snd.sb_hiwat) ||
869 clen > so->so_snd.sb_hiwat)
870 snderr(EMSGSIZE);
871 if (space < resid + clen &&
872 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
873 if (so->so_state & SS_NBIO)
874 snderr(EWOULDBLOCK);
875 sbunlock(&so->so_snd);
876 error = sbwait(&so->so_snd);
877 splx(s);
878 if (error)
879 goto out;
880 goto restart;
881 }
882 splx(s);
883 mp = ⊤
884 space -= clen;
885 do {
886 if (uio == NULL) {
887 /*
888 * Data is prepackaged in "top".
889 */
890 resid = 0;
891 if (flags & MSG_EOR)
892 top->m_flags |= M_EOR;
893 } else do {
894 if (top == NULL) {
895 m = m_gethdr(M_WAIT, MT_DATA);
896 mlen = MHLEN;
897 m->m_pkthdr.len = 0;
898 m->m_pkthdr.rcvif = NULL;
899 } else {
900 m = m_get(M_WAIT, MT_DATA);
901 mlen = MLEN;
902 }
903 MCLAIM(m, so->so_snd.sb_mowner);
904 if (sock_loan_thresh >= 0 &&
905 uio->uio_iov->iov_len >= sock_loan_thresh &&
906 space >= sock_loan_thresh &&
907 (len = sosend_loan(so, uio, m,
908 space)) != 0) {
909 SOSEND_COUNTER_INCR(&sosend_loan_big);
910 space -= len;
911 goto have_data;
912 }
913 if (resid >= MINCLSIZE && space >= MCLBYTES) {
914 SOSEND_COUNTER_INCR(&sosend_copy_big);
915 m_clget(m, M_WAIT);
916 if ((m->m_flags & M_EXT) == 0)
917 goto nopages;
918 mlen = MCLBYTES;
919 if (atomic && top == 0) {
920 len = lmin(MCLBYTES - max_hdr,
921 resid);
922 m->m_data += max_hdr;
923 } else
924 len = lmin(MCLBYTES, resid);
925 space -= len;
926 } else {
927 nopages:
928 SOSEND_COUNTER_INCR(&sosend_copy_small);
929 len = lmin(lmin(mlen, resid), space);
930 space -= len;
931 /*
932 * For datagram protocols, leave room
933 * for protocol headers in first mbuf.
934 */
935 if (atomic && top == 0 && len < mlen)
936 MH_ALIGN(m, len);
937 }
938 error = uiomove(mtod(m, void *), (int)len, uio);
939 have_data:
940 resid = uio->uio_resid;
941 m->m_len = len;
942 *mp = m;
943 top->m_pkthdr.len += len;
944 if (error != 0)
945 goto release;
946 mp = &m->m_next;
947 if (resid <= 0) {
948 if (flags & MSG_EOR)
949 top->m_flags |= M_EOR;
950 break;
951 }
952 } while (space > 0 && atomic);
953
954 s = splsoftnet();
955
956 if (so->so_state & SS_CANTSENDMORE)
957 snderr(EPIPE);
958
959 if (dontroute)
960 so->so_options |= SO_DONTROUTE;
961 if (resid > 0)
962 so->so_state |= SS_MORETOCOME;
963 error = (*so->so_proto->pr_usrreq)(so,
964 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
965 top, addr, control, curlwp); /* XXX */
966 if (dontroute)
967 so->so_options &= ~SO_DONTROUTE;
968 if (resid > 0)
969 so->so_state &= ~SS_MORETOCOME;
970 splx(s);
971
972 clen = 0;
973 control = NULL;
974 top = NULL;
975 mp = ⊤
976 if (error != 0)
977 goto release;
978 } while (resid && space > 0);
979 } while (resid);
980
981 release:
982 sbunlock(&so->so_snd);
983 out:
984 if (top)
985 m_freem(top);
986 if (control)
987 m_freem(control);
988 return (error);
989 }
990
991 /*
992 * Implement receive operations on a socket.
993 * We depend on the way that records are added to the sockbuf
994 * by sbappend*. In particular, each record (mbufs linked through m_next)
995 * must begin with an address if the protocol so specifies,
996 * followed by an optional mbuf or mbufs containing ancillary data,
997 * and then zero or more mbufs of data.
998 * In order to avoid blocking network interrupts for the entire time here,
999 * we splx() while doing the actual copy to user space.
1000 * Although the sockbuf is locked, new data may still be appended,
1001 * and thus we must maintain consistency of the sockbuf during that time.
1002 *
1003 * The caller may receive the data as a single mbuf chain by supplying
1004 * an mbuf **mp0 for use in returning the chain. The uio is then used
1005 * only for the count in uio_resid.
1006 */
1007 int
1008 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1009 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1010 {
1011 struct lwp *l = curlwp;
1012 struct mbuf *m, **mp;
1013 int flags, len, error, s, offset, moff, type, orig_resid;
1014 const struct protosw *pr;
1015 struct mbuf *nextrecord;
1016 int mbuf_removed = 0;
1017
1018 pr = so->so_proto;
1019 mp = mp0;
1020 type = 0;
1021 orig_resid = uio->uio_resid;
1022
1023 if (paddr != NULL)
1024 *paddr = NULL;
1025 if (controlp != NULL)
1026 *controlp = NULL;
1027 if (flagsp != NULL)
1028 flags = *flagsp &~ MSG_EOR;
1029 else
1030 flags = 0;
1031
1032 if ((flags & MSG_DONTWAIT) == 0)
1033 sodopendfree();
1034
1035 if (flags & MSG_OOB) {
1036 m = m_get(M_WAIT, MT_DATA);
1037 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1038 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1039 if (error)
1040 goto bad;
1041 do {
1042 error = uiomove(mtod(m, void *),
1043 (int) min(uio->uio_resid, m->m_len), uio);
1044 m = m_free(m);
1045 } while (uio->uio_resid > 0 && error == 0 && m);
1046 bad:
1047 if (m != NULL)
1048 m_freem(m);
1049 return error;
1050 }
1051 if (mp != NULL)
1052 *mp = NULL;
1053 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1054 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1055
1056 restart:
1057 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
1058 return error;
1059 s = splsoftnet();
1060
1061 m = so->so_rcv.sb_mb;
1062 /*
1063 * If we have less data than requested, block awaiting more
1064 * (subject to any timeout) if:
1065 * 1. the current count is less than the low water mark,
1066 * 2. MSG_WAITALL is set, and it is possible to do the entire
1067 * receive operation at once if we block (resid <= hiwat), or
1068 * 3. MSG_DONTWAIT is not set.
1069 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1070 * we have to do the receive in sections, and thus risk returning
1071 * a short count if a timeout or signal occurs after we start.
1072 */
1073 if (m == NULL ||
1074 ((flags & MSG_DONTWAIT) == 0 &&
1075 so->so_rcv.sb_cc < uio->uio_resid &&
1076 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1077 ((flags & MSG_WAITALL) &&
1078 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1079 m->m_nextpkt == NULL &&
1080 (pr->pr_flags & PR_ATOMIC) == 0)) {
1081 #ifdef DIAGNOSTIC
1082 if (m == NULL && so->so_rcv.sb_cc)
1083 panic("receive 1");
1084 #endif
1085 if (so->so_error) {
1086 if (m != NULL)
1087 goto dontblock;
1088 error = so->so_error;
1089 if ((flags & MSG_PEEK) == 0)
1090 so->so_error = 0;
1091 goto release;
1092 }
1093 if (so->so_state & SS_CANTRCVMORE) {
1094 if (m != NULL)
1095 goto dontblock;
1096 else
1097 goto release;
1098 }
1099 for (; m != NULL; m = m->m_next)
1100 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1101 m = so->so_rcv.sb_mb;
1102 goto dontblock;
1103 }
1104 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1105 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1106 error = ENOTCONN;
1107 goto release;
1108 }
1109 if (uio->uio_resid == 0)
1110 goto release;
1111 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
1112 error = EWOULDBLOCK;
1113 goto release;
1114 }
1115 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1116 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1117 sbunlock(&so->so_rcv);
1118 error = sbwait(&so->so_rcv);
1119 splx(s);
1120 if (error != 0)
1121 return error;
1122 goto restart;
1123 }
1124 dontblock:
1125 /*
1126 * On entry here, m points to the first record of the socket buffer.
1127 * While we process the initial mbufs containing address and control
1128 * info, we save a copy of m->m_nextpkt into nextrecord.
1129 */
1130 if (l != NULL)
1131 l->l_proc->p_stats->p_ru.ru_msgrcv++;
1132 KASSERT(m == so->so_rcv.sb_mb);
1133 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1134 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1135 nextrecord = m->m_nextpkt;
1136 if (pr->pr_flags & PR_ADDR) {
1137 #ifdef DIAGNOSTIC
1138 if (m->m_type != MT_SONAME)
1139 panic("receive 1a");
1140 #endif
1141 orig_resid = 0;
1142 if (flags & MSG_PEEK) {
1143 if (paddr)
1144 *paddr = m_copy(m, 0, m->m_len);
1145 m = m->m_next;
1146 } else {
1147 sbfree(&so->so_rcv, m);
1148 mbuf_removed = 1;
1149 if (paddr != NULL) {
1150 *paddr = m;
1151 so->so_rcv.sb_mb = m->m_next;
1152 m->m_next = NULL;
1153 m = so->so_rcv.sb_mb;
1154 } else {
1155 MFREE(m, so->so_rcv.sb_mb);
1156 m = so->so_rcv.sb_mb;
1157 }
1158 }
1159 }
1160 while (m != NULL && m->m_type == MT_CONTROL && error == 0) {
1161 if (flags & MSG_PEEK) {
1162 if (controlp != NULL)
1163 *controlp = m_copy(m, 0, m->m_len);
1164 m = m->m_next;
1165 } else {
1166 sbfree(&so->so_rcv, m);
1167 mbuf_removed = 1;
1168 if (controlp != NULL) {
1169 struct domain *dom = pr->pr_domain;
1170 if (dom->dom_externalize && l &&
1171 mtod(m, struct cmsghdr *)->cmsg_type ==
1172 SCM_RIGHTS)
1173 error = (*dom->dom_externalize)(m, l);
1174 *controlp = m;
1175 so->so_rcv.sb_mb = m->m_next;
1176 m->m_next = NULL;
1177 m = so->so_rcv.sb_mb;
1178 } else {
1179 /*
1180 * Dispose of any SCM_RIGHTS message that went
1181 * through the read path rather than recv.
1182 */
1183 if (pr->pr_domain->dom_dispose &&
1184 mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
1185 (*pr->pr_domain->dom_dispose)(m);
1186 MFREE(m, so->so_rcv.sb_mb);
1187 m = so->so_rcv.sb_mb;
1188 }
1189 }
1190 if (controlp != NULL) {
1191 orig_resid = 0;
1192 controlp = &(*controlp)->m_next;
1193 }
1194 }
1195
1196 /*
1197 * If m is non-NULL, we have some data to read. From now on,
1198 * make sure to keep sb_lastrecord consistent when working on
1199 * the last packet on the chain (nextrecord == NULL) and we
1200 * change m->m_nextpkt.
1201 */
1202 if (m != NULL) {
1203 if ((flags & MSG_PEEK) == 0) {
1204 m->m_nextpkt = nextrecord;
1205 /*
1206 * If nextrecord == NULL (this is a single chain),
1207 * then sb_lastrecord may not be valid here if m
1208 * was changed earlier.
1209 */
1210 if (nextrecord == NULL) {
1211 KASSERT(so->so_rcv.sb_mb == m);
1212 so->so_rcv.sb_lastrecord = m;
1213 }
1214 }
1215 type = m->m_type;
1216 if (type == MT_OOBDATA)
1217 flags |= MSG_OOB;
1218 } else {
1219 if ((flags & MSG_PEEK) == 0) {
1220 KASSERT(so->so_rcv.sb_mb == m);
1221 so->so_rcv.sb_mb = nextrecord;
1222 SB_EMPTY_FIXUP(&so->so_rcv);
1223 }
1224 }
1225 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1226 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1227
1228 moff = 0;
1229 offset = 0;
1230 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1231 if (m->m_type == MT_OOBDATA) {
1232 if (type != MT_OOBDATA)
1233 break;
1234 } else if (type == MT_OOBDATA)
1235 break;
1236 #ifdef DIAGNOSTIC
1237 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1238 panic("receive 3");
1239 #endif
1240 so->so_state &= ~SS_RCVATMARK;
1241 len = uio->uio_resid;
1242 if (so->so_oobmark && len > so->so_oobmark - offset)
1243 len = so->so_oobmark - offset;
1244 if (len > m->m_len - moff)
1245 len = m->m_len - moff;
1246 /*
1247 * If mp is set, just pass back the mbufs.
1248 * Otherwise copy them out via the uio, then free.
1249 * Sockbuf must be consistent here (points to current mbuf,
1250 * it points to next record) when we drop priority;
1251 * we must note any additions to the sockbuf when we
1252 * block interrupts again.
1253 */
1254 if (mp == NULL) {
1255 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1256 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1257 splx(s);
1258 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1259 s = splsoftnet();
1260 if (error != 0) {
1261 /*
1262 * If any part of the record has been removed
1263 * (such as the MT_SONAME mbuf, which will
1264 * happen when PR_ADDR, and thus also
1265 * PR_ATOMIC, is set), then drop the entire
1266 * record to maintain the atomicity of the
1267 * receive operation.
1268 *
1269 * This avoids a later panic("receive 1a")
1270 * when compiled with DIAGNOSTIC.
1271 */
1272 if (m && mbuf_removed
1273 && (pr->pr_flags & PR_ATOMIC))
1274 (void) sbdroprecord(&so->so_rcv);
1275
1276 goto release;
1277 }
1278 } else
1279 uio->uio_resid -= len;
1280 if (len == m->m_len - moff) {
1281 if (m->m_flags & M_EOR)
1282 flags |= MSG_EOR;
1283 if (flags & MSG_PEEK) {
1284 m = m->m_next;
1285 moff = 0;
1286 } else {
1287 nextrecord = m->m_nextpkt;
1288 sbfree(&so->so_rcv, m);
1289 if (mp) {
1290 *mp = m;
1291 mp = &m->m_next;
1292 so->so_rcv.sb_mb = m = m->m_next;
1293 *mp = NULL;
1294 } else {
1295 MFREE(m, so->so_rcv.sb_mb);
1296 m = so->so_rcv.sb_mb;
1297 }
1298 /*
1299 * If m != NULL, we also know that
1300 * so->so_rcv.sb_mb != NULL.
1301 */
1302 KASSERT(so->so_rcv.sb_mb == m);
1303 if (m) {
1304 m->m_nextpkt = nextrecord;
1305 if (nextrecord == NULL)
1306 so->so_rcv.sb_lastrecord = m;
1307 } else {
1308 so->so_rcv.sb_mb = nextrecord;
1309 SB_EMPTY_FIXUP(&so->so_rcv);
1310 }
1311 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1312 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1313 }
1314 } else if (flags & MSG_PEEK)
1315 moff += len;
1316 else {
1317 if (mp != NULL)
1318 *mp = m_copym(m, 0, len, M_WAIT);
1319 m->m_data += len;
1320 m->m_len -= len;
1321 so->so_rcv.sb_cc -= len;
1322 }
1323 if (so->so_oobmark) {
1324 if ((flags & MSG_PEEK) == 0) {
1325 so->so_oobmark -= len;
1326 if (so->so_oobmark == 0) {
1327 so->so_state |= SS_RCVATMARK;
1328 break;
1329 }
1330 } else {
1331 offset += len;
1332 if (offset == so->so_oobmark)
1333 break;
1334 }
1335 }
1336 if (flags & MSG_EOR)
1337 break;
1338 /*
1339 * If the MSG_WAITALL flag is set (for non-atomic socket),
1340 * we must not quit until "uio->uio_resid == 0" or an error
1341 * termination. If a signal/timeout occurs, return
1342 * with a short count but without error.
1343 * Keep sockbuf locked against other readers.
1344 */
1345 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1346 !sosendallatonce(so) && !nextrecord) {
1347 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1348 break;
1349 /*
1350 * If we are peeking and the socket receive buffer is
1351 * full, stop since we can't get more data to peek at.
1352 */
1353 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1354 break;
1355 /*
1356 * If we've drained the socket buffer, tell the
1357 * protocol in case it needs to do something to
1358 * get it filled again.
1359 */
1360 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1361 (*pr->pr_usrreq)(so, PRU_RCVD,
1362 NULL, (struct mbuf *)(long)flags, NULL, l);
1363 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1364 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1365 error = sbwait(&so->so_rcv);
1366 if (error != 0) {
1367 sbunlock(&so->so_rcv);
1368 splx(s);
1369 return 0;
1370 }
1371 if ((m = so->so_rcv.sb_mb) != NULL)
1372 nextrecord = m->m_nextpkt;
1373 }
1374 }
1375
1376 if (m && pr->pr_flags & PR_ATOMIC) {
1377 flags |= MSG_TRUNC;
1378 if ((flags & MSG_PEEK) == 0)
1379 (void) sbdroprecord(&so->so_rcv);
1380 }
1381 if ((flags & MSG_PEEK) == 0) {
1382 if (m == NULL) {
1383 /*
1384 * First part is an inline SB_EMPTY_FIXUP(). Second
1385 * part makes sure sb_lastrecord is up-to-date if
1386 * there is still data in the socket buffer.
1387 */
1388 so->so_rcv.sb_mb = nextrecord;
1389 if (so->so_rcv.sb_mb == NULL) {
1390 so->so_rcv.sb_mbtail = NULL;
1391 so->so_rcv.sb_lastrecord = NULL;
1392 } else if (nextrecord->m_nextpkt == NULL)
1393 so->so_rcv.sb_lastrecord = nextrecord;
1394 }
1395 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1396 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1397 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1398 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1399 (struct mbuf *)(long)flags, NULL, l);
1400 }
1401 if (orig_resid == uio->uio_resid && orig_resid &&
1402 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1403 sbunlock(&so->so_rcv);
1404 splx(s);
1405 goto restart;
1406 }
1407
1408 if (flagsp != NULL)
1409 *flagsp |= flags;
1410 release:
1411 sbunlock(&so->so_rcv);
1412 splx(s);
1413 return error;
1414 }
1415
1416 int
1417 soshutdown(struct socket *so, int how)
1418 {
1419 const struct protosw *pr;
1420
1421 pr = so->so_proto;
1422 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1423 return (EINVAL);
1424
1425 if (how == SHUT_RD || how == SHUT_RDWR)
1426 sorflush(so);
1427 if (how == SHUT_WR || how == SHUT_RDWR)
1428 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1429 NULL, NULL, NULL);
1430 return 0;
1431 }
1432
1433 void
1434 sorflush(struct socket *so)
1435 {
1436 struct sockbuf *sb, asb;
1437 const struct protosw *pr;
1438 int s;
1439
1440 sb = &so->so_rcv;
1441 pr = so->so_proto;
1442 sb->sb_flags |= SB_NOINTR;
1443 (void) sblock(sb, M_WAITOK);
1444 s = splnet();
1445 socantrcvmore(so);
1446 sbunlock(sb);
1447 asb = *sb;
1448 /*
1449 * Clear most of the sockbuf structure, but leave some of the
1450 * fields valid.
1451 */
1452 memset(&sb->sb_startzero, 0,
1453 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1454 splx(s);
1455 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1456 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1457 sbrelease(&asb, so);
1458 }
1459
1460 static int
1461 sosetopt1(struct socket *so, int level, int optname, struct mbuf *m)
1462 {
1463 int optval, val;
1464 struct linger *l;
1465 struct sockbuf *sb;
1466 struct timeval *tv;
1467
1468 switch (optname) {
1469
1470 case SO_LINGER:
1471 if (m == NULL || m->m_len != sizeof(struct linger))
1472 return EINVAL;
1473 l = mtod(m, struct linger *);
1474 if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
1475 l->l_linger > (INT_MAX / hz))
1476 return EDOM;
1477 so->so_linger = l->l_linger;
1478 if (l->l_onoff)
1479 so->so_options |= SO_LINGER;
1480 else
1481 so->so_options &= ~SO_LINGER;
1482 break;
1483
1484 case SO_DEBUG:
1485 case SO_KEEPALIVE:
1486 case SO_DONTROUTE:
1487 case SO_USELOOPBACK:
1488 case SO_BROADCAST:
1489 case SO_REUSEADDR:
1490 case SO_REUSEPORT:
1491 case SO_OOBINLINE:
1492 case SO_TIMESTAMP:
1493 if (m == NULL || m->m_len < sizeof(int))
1494 return EINVAL;
1495 if (*mtod(m, int *))
1496 so->so_options |= optname;
1497 else
1498 so->so_options &= ~optname;
1499 break;
1500
1501 case SO_SNDBUF:
1502 case SO_RCVBUF:
1503 case SO_SNDLOWAT:
1504 case SO_RCVLOWAT:
1505 if (m == NULL || m->m_len < sizeof(int))
1506 return EINVAL;
1507
1508 /*
1509 * Values < 1 make no sense for any of these
1510 * options, so disallow them.
1511 */
1512 optval = *mtod(m, int *);
1513 if (optval < 1)
1514 return EINVAL;
1515
1516 switch (optname) {
1517
1518 case SO_SNDBUF:
1519 case SO_RCVBUF:
1520 sb = (optname == SO_SNDBUF) ?
1521 &so->so_snd : &so->so_rcv;
1522 if (sbreserve(sb, (u_long)optval, so) == 0)
1523 return ENOBUFS;
1524 sb->sb_flags &= ~SB_AUTOSIZE;
1525 break;
1526
1527 /*
1528 * Make sure the low-water is never greater than
1529 * the high-water.
1530 */
1531 case SO_SNDLOWAT:
1532 so->so_snd.sb_lowat =
1533 (optval > so->so_snd.sb_hiwat) ?
1534 so->so_snd.sb_hiwat : optval;
1535 break;
1536 case SO_RCVLOWAT:
1537 so->so_rcv.sb_lowat =
1538 (optval > so->so_rcv.sb_hiwat) ?
1539 so->so_rcv.sb_hiwat : optval;
1540 break;
1541 }
1542 break;
1543
1544 case SO_SNDTIMEO:
1545 case SO_RCVTIMEO:
1546 if (m == NULL || m->m_len < sizeof(*tv))
1547 return EINVAL;
1548 tv = mtod(m, struct timeval *);
1549 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz)
1550 return EDOM;
1551 val = tv->tv_sec * hz + tv->tv_usec / tick;
1552 if (val == 0 && tv->tv_usec != 0)
1553 val = 1;
1554
1555 switch (optname) {
1556
1557 case SO_SNDTIMEO:
1558 so->so_snd.sb_timeo = val;
1559 break;
1560 case SO_RCVTIMEO:
1561 so->so_rcv.sb_timeo = val;
1562 break;
1563 }
1564 break;
1565
1566 default:
1567 return ENOPROTOOPT;
1568 }
1569 return 0;
1570 }
1571
1572 int
1573 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
1574 {
1575 int error, prerr;
1576
1577 if (level == SOL_SOCKET)
1578 error = sosetopt1(so, level, optname, m);
1579 else
1580 error = ENOPROTOOPT;
1581
1582 if ((error == 0 || error == ENOPROTOOPT) &&
1583 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1584 /* give the protocol stack a shot */
1585 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, level,
1586 optname, &m);
1587 if (prerr == 0)
1588 error = 0;
1589 else if (prerr != ENOPROTOOPT)
1590 error = prerr;
1591 } else if (m != NULL)
1592 (void)m_free(m);
1593 return error;
1594 }
1595
1596 int
1597 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1598 {
1599 struct mbuf *m;
1600
1601 if (level != SOL_SOCKET) {
1602 if (so->so_proto && so->so_proto->pr_ctloutput) {
1603 return ((*so->so_proto->pr_ctloutput)
1604 (PRCO_GETOPT, so, level, optname, mp));
1605 } else
1606 return (ENOPROTOOPT);
1607 } else {
1608 m = m_get(M_WAIT, MT_SOOPTS);
1609 m->m_len = sizeof(int);
1610
1611 switch (optname) {
1612
1613 case SO_LINGER:
1614 m->m_len = sizeof(struct linger);
1615 mtod(m, struct linger *)->l_onoff =
1616 (so->so_options & SO_LINGER) ? 1 : 0;
1617 mtod(m, struct linger *)->l_linger = so->so_linger;
1618 break;
1619
1620 case SO_USELOOPBACK:
1621 case SO_DONTROUTE:
1622 case SO_DEBUG:
1623 case SO_KEEPALIVE:
1624 case SO_REUSEADDR:
1625 case SO_REUSEPORT:
1626 case SO_BROADCAST:
1627 case SO_OOBINLINE:
1628 case SO_TIMESTAMP:
1629 *mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
1630 break;
1631
1632 case SO_TYPE:
1633 *mtod(m, int *) = so->so_type;
1634 break;
1635
1636 case SO_ERROR:
1637 *mtod(m, int *) = so->so_error;
1638 so->so_error = 0;
1639 break;
1640
1641 case SO_SNDBUF:
1642 *mtod(m, int *) = so->so_snd.sb_hiwat;
1643 break;
1644
1645 case SO_RCVBUF:
1646 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1647 break;
1648
1649 case SO_SNDLOWAT:
1650 *mtod(m, int *) = so->so_snd.sb_lowat;
1651 break;
1652
1653 case SO_RCVLOWAT:
1654 *mtod(m, int *) = so->so_rcv.sb_lowat;
1655 break;
1656
1657 case SO_SNDTIMEO:
1658 case SO_RCVTIMEO:
1659 {
1660 int val = (optname == SO_SNDTIMEO ?
1661 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1662
1663 m->m_len = sizeof(struct timeval);
1664 mtod(m, struct timeval *)->tv_sec = val / hz;
1665 mtod(m, struct timeval *)->tv_usec =
1666 (val % hz) * tick;
1667 break;
1668 }
1669
1670 case SO_OVERFLOWED:
1671 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1672 break;
1673
1674 default:
1675 (void)m_free(m);
1676 return (ENOPROTOOPT);
1677 }
1678 *mp = m;
1679 return (0);
1680 }
1681 }
1682
1683 void
1684 sohasoutofband(struct socket *so)
1685 {
1686 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1687 selwakeup(&so->so_rcv.sb_sel);
1688 }
1689
1690 static void
1691 filt_sordetach(struct knote *kn)
1692 {
1693 struct socket *so;
1694
1695 so = (struct socket *)kn->kn_fp->f_data;
1696 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1697 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1698 so->so_rcv.sb_flags &= ~SB_KNOTE;
1699 }
1700
1701 /*ARGSUSED*/
1702 static int
1703 filt_soread(struct knote *kn, long hint)
1704 {
1705 struct socket *so;
1706
1707 so = (struct socket *)kn->kn_fp->f_data;
1708 kn->kn_data = so->so_rcv.sb_cc;
1709 if (so->so_state & SS_CANTRCVMORE) {
1710 kn->kn_flags |= EV_EOF;
1711 kn->kn_fflags = so->so_error;
1712 return (1);
1713 }
1714 if (so->so_error) /* temporary udp error */
1715 return (1);
1716 if (kn->kn_sfflags & NOTE_LOWAT)
1717 return (kn->kn_data >= kn->kn_sdata);
1718 return (kn->kn_data >= so->so_rcv.sb_lowat);
1719 }
1720
1721 static void
1722 filt_sowdetach(struct knote *kn)
1723 {
1724 struct socket *so;
1725
1726 so = (struct socket *)kn->kn_fp->f_data;
1727 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1728 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1729 so->so_snd.sb_flags &= ~SB_KNOTE;
1730 }
1731
1732 /*ARGSUSED*/
1733 static int
1734 filt_sowrite(struct knote *kn, long hint)
1735 {
1736 struct socket *so;
1737
1738 so = (struct socket *)kn->kn_fp->f_data;
1739 kn->kn_data = sbspace(&so->so_snd);
1740 if (so->so_state & SS_CANTSENDMORE) {
1741 kn->kn_flags |= EV_EOF;
1742 kn->kn_fflags = so->so_error;
1743 return (1);
1744 }
1745 if (so->so_error) /* temporary udp error */
1746 return (1);
1747 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1748 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1749 return (0);
1750 if (kn->kn_sfflags & NOTE_LOWAT)
1751 return (kn->kn_data >= kn->kn_sdata);
1752 return (kn->kn_data >= so->so_snd.sb_lowat);
1753 }
1754
1755 /*ARGSUSED*/
1756 static int
1757 filt_solisten(struct knote *kn, long hint)
1758 {
1759 struct socket *so;
1760
1761 so = (struct socket *)kn->kn_fp->f_data;
1762
1763 /*
1764 * Set kn_data to number of incoming connections, not
1765 * counting partial (incomplete) connections.
1766 */
1767 kn->kn_data = so->so_qlen;
1768 return (kn->kn_data > 0);
1769 }
1770
1771 static const struct filterops solisten_filtops =
1772 { 1, NULL, filt_sordetach, filt_solisten };
1773 static const struct filterops soread_filtops =
1774 { 1, NULL, filt_sordetach, filt_soread };
1775 static const struct filterops sowrite_filtops =
1776 { 1, NULL, filt_sowdetach, filt_sowrite };
1777
1778 int
1779 soo_kqfilter(struct file *fp, struct knote *kn)
1780 {
1781 struct socket *so;
1782 struct sockbuf *sb;
1783
1784 so = (struct socket *)kn->kn_fp->f_data;
1785 switch (kn->kn_filter) {
1786 case EVFILT_READ:
1787 if (so->so_options & SO_ACCEPTCONN)
1788 kn->kn_fop = &solisten_filtops;
1789 else
1790 kn->kn_fop = &soread_filtops;
1791 sb = &so->so_rcv;
1792 break;
1793 case EVFILT_WRITE:
1794 kn->kn_fop = &sowrite_filtops;
1795 sb = &so->so_snd;
1796 break;
1797 default:
1798 return (1);
1799 }
1800 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1801 sb->sb_flags |= SB_KNOTE;
1802 return (0);
1803 }
1804
1805 #include <sys/sysctl.h>
1806
1807 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
1808
1809 /*
1810 * sysctl helper routine for kern.somaxkva. ensures that the given
1811 * value is not too small.
1812 * (XXX should we maybe make sure it's not too large as well?)
1813 */
1814 static int
1815 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1816 {
1817 int error, new_somaxkva;
1818 struct sysctlnode node;
1819
1820 new_somaxkva = somaxkva;
1821 node = *rnode;
1822 node.sysctl_data = &new_somaxkva;
1823 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1824 if (error || newp == NULL)
1825 return (error);
1826
1827 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1828 return (EINVAL);
1829
1830 mutex_enter(&so_pendfree_lock);
1831 somaxkva = new_somaxkva;
1832 cv_broadcast(&socurkva_cv);
1833 mutex_exit(&so_pendfree_lock);
1834
1835 return (error);
1836 }
1837
1838 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
1839 {
1840
1841 sysctl_createv(clog, 0, NULL, NULL,
1842 CTLFLAG_PERMANENT,
1843 CTLTYPE_NODE, "kern", NULL,
1844 NULL, 0, NULL, 0,
1845 CTL_KERN, CTL_EOL);
1846
1847 sysctl_createv(clog, 0, NULL, NULL,
1848 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1849 CTLTYPE_INT, "somaxkva",
1850 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1851 "used for socket buffers"),
1852 sysctl_kern_somaxkva, 0, NULL, 0,
1853 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
1854 }
1855