Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.151
      1 /*	$NetBSD: uipc_socket.c,v 1.151 2008/02/06 21:57:54 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.151 2008/02/06 21:57:54 ad Exp $");
     72 
     73 #include "opt_sock_counters.h"
     74 #include "opt_sosend_loan.h"
     75 #include "opt_mbuftrace.h"
     76 #include "opt_somaxkva.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/proc.h>
     81 #include <sys/file.h>
     82 #include <sys/filedesc.h>
     83 #include <sys/malloc.h>
     84 #include <sys/mbuf.h>
     85 #include <sys/domain.h>
     86 #include <sys/kernel.h>
     87 #include <sys/protosw.h>
     88 #include <sys/socket.h>
     89 #include <sys/socketvar.h>
     90 #include <sys/signalvar.h>
     91 #include <sys/resourcevar.h>
     92 #include <sys/pool.h>
     93 #include <sys/event.h>
     94 #include <sys/poll.h>
     95 #include <sys/kauth.h>
     96 #include <sys/mutex.h>
     97 #include <sys/condvar.h>
     98 
     99 #include <uvm/uvm.h>
    100 
    101 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL,
    102     IPL_SOFTNET);
    103 
    104 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
    105 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    106 
    107 extern const struct fileops socketops;
    108 
    109 extern int	somaxconn;			/* patchable (XXX sysctl) */
    110 int		somaxconn = SOMAXCONN;
    111 
    112 #ifdef SOSEND_COUNTERS
    113 #include <sys/device.h>
    114 
    115 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    116     NULL, "sosend", "loan big");
    117 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    118     NULL, "sosend", "copy big");
    119 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    120     NULL, "sosend", "copy small");
    121 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    122     NULL, "sosend", "kva limit");
    123 
    124 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    125 
    126 EVCNT_ATTACH_STATIC(sosend_loan_big);
    127 EVCNT_ATTACH_STATIC(sosend_copy_big);
    128 EVCNT_ATTACH_STATIC(sosend_copy_small);
    129 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    130 #else
    131 
    132 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    133 
    134 #endif /* SOSEND_COUNTERS */
    135 
    136 static struct callback_entry sokva_reclaimerentry;
    137 
    138 #ifdef SOSEND_NO_LOAN
    139 int sock_loan_thresh = -1;
    140 #else
    141 int sock_loan_thresh = 4096;
    142 #endif
    143 
    144 static kmutex_t so_pendfree_lock;
    145 static struct mbuf *so_pendfree;
    146 
    147 #ifndef SOMAXKVA
    148 #define	SOMAXKVA (16 * 1024 * 1024)
    149 #endif
    150 int somaxkva = SOMAXKVA;
    151 static int socurkva;
    152 static kcondvar_t socurkva_cv;
    153 
    154 #define	SOCK_LOAN_CHUNK		65536
    155 
    156 static size_t sodopendfree(void);
    157 static size_t sodopendfreel(void);
    158 
    159 static vsize_t
    160 sokvareserve(struct socket *so, vsize_t len)
    161 {
    162 	int error;
    163 
    164 	mutex_enter(&so_pendfree_lock);
    165 	while (socurkva + len > somaxkva) {
    166 		size_t freed;
    167 
    168 		/*
    169 		 * try to do pendfree.
    170 		 */
    171 
    172 		freed = sodopendfreel();
    173 
    174 		/*
    175 		 * if some kva was freed, try again.
    176 		 */
    177 
    178 		if (freed)
    179 			continue;
    180 
    181 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    182 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    183 		if (error) {
    184 			len = 0;
    185 			break;
    186 		}
    187 	}
    188 	socurkva += len;
    189 	mutex_exit(&so_pendfree_lock);
    190 	return len;
    191 }
    192 
    193 static void
    194 sokvaunreserve(vsize_t len)
    195 {
    196 
    197 	mutex_enter(&so_pendfree_lock);
    198 	socurkva -= len;
    199 	cv_broadcast(&socurkva_cv);
    200 	mutex_exit(&so_pendfree_lock);
    201 }
    202 
    203 /*
    204  * sokvaalloc: allocate kva for loan.
    205  */
    206 
    207 vaddr_t
    208 sokvaalloc(vsize_t len, struct socket *so)
    209 {
    210 	vaddr_t lva;
    211 
    212 	/*
    213 	 * reserve kva.
    214 	 */
    215 
    216 	if (sokvareserve(so, len) == 0)
    217 		return 0;
    218 
    219 	/*
    220 	 * allocate kva.
    221 	 */
    222 
    223 	lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    224 	if (lva == 0) {
    225 		sokvaunreserve(len);
    226 		return (0);
    227 	}
    228 
    229 	return lva;
    230 }
    231 
    232 /*
    233  * sokvafree: free kva for loan.
    234  */
    235 
    236 void
    237 sokvafree(vaddr_t sva, vsize_t len)
    238 {
    239 
    240 	/*
    241 	 * free kva.
    242 	 */
    243 
    244 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    245 
    246 	/*
    247 	 * unreserve kva.
    248 	 */
    249 
    250 	sokvaunreserve(len);
    251 }
    252 
    253 static void
    254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    255 {
    256 	vaddr_t va, sva, eva;
    257 	vsize_t len;
    258 	paddr_t pa;
    259 	int i, npgs;
    260 
    261 	eva = round_page((vaddr_t) buf + size);
    262 	sva = trunc_page((vaddr_t) buf);
    263 	len = eva - sva;
    264 	npgs = len >> PAGE_SHIFT;
    265 
    266 	if (__predict_false(pgs == NULL)) {
    267 		pgs = alloca(npgs * sizeof(*pgs));
    268 
    269 		for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
    270 			if (pmap_extract(pmap_kernel(), va, &pa) == false)
    271 				panic("sodoloanfree: va 0x%lx not mapped", va);
    272 			pgs[i] = PHYS_TO_VM_PAGE(pa);
    273 		}
    274 	}
    275 
    276 	pmap_kremove(sva, len);
    277 	pmap_update(pmap_kernel());
    278 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    279 	sokvafree(sva, len);
    280 }
    281 
    282 static size_t
    283 sodopendfree()
    284 {
    285 	size_t rv;
    286 
    287 	mutex_enter(&so_pendfree_lock);
    288 	rv = sodopendfreel();
    289 	mutex_exit(&so_pendfree_lock);
    290 
    291 	return rv;
    292 }
    293 
    294 /*
    295  * sodopendfreel: free mbufs on "pendfree" list.
    296  * unlock and relock so_pendfree_lock when freeing mbufs.
    297  *
    298  * => called with so_pendfree_lock held.
    299  */
    300 
    301 static size_t
    302 sodopendfreel()
    303 {
    304 	struct mbuf *m, *next;
    305 	size_t rv = 0;
    306 
    307 	KASSERT(mutex_owned(&so_pendfree_lock));
    308 
    309 	while (so_pendfree != NULL) {
    310 		m = so_pendfree;
    311 		so_pendfree = NULL;
    312 		mutex_exit(&so_pendfree_lock);
    313 
    314 		for (; m != NULL; m = next) {
    315 			next = m->m_next;
    316 
    317 			rv += m->m_ext.ext_size;
    318 			sodoloanfree((m->m_flags & M_EXT_PAGES) ?
    319 			    m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
    320 			    m->m_ext.ext_size);
    321 			pool_cache_put(mb_cache, m);
    322 		}
    323 
    324 		mutex_enter(&so_pendfree_lock);
    325 	}
    326 
    327 	return (rv);
    328 }
    329 
    330 void
    331 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    332 {
    333 
    334 	if (m == NULL) {
    335 
    336 		/*
    337 		 * called from MEXTREMOVE.
    338 		 */
    339 
    340 		sodoloanfree(NULL, buf, size);
    341 		return;
    342 	}
    343 
    344 	/*
    345 	 * postpone freeing mbuf.
    346 	 *
    347 	 * we can't do it in interrupt context
    348 	 * because we need to put kva back to kernel_map.
    349 	 */
    350 
    351 	mutex_enter(&so_pendfree_lock);
    352 	m->m_next = so_pendfree;
    353 	so_pendfree = m;
    354 	cv_broadcast(&socurkva_cv);
    355 	mutex_exit(&so_pendfree_lock);
    356 }
    357 
    358 static long
    359 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    360 {
    361 	struct iovec *iov = uio->uio_iov;
    362 	vaddr_t sva, eva;
    363 	vsize_t len;
    364 	vaddr_t lva, va;
    365 	int npgs, i, error;
    366 
    367 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    368 		return (0);
    369 
    370 	if (iov->iov_len < (size_t) space)
    371 		space = iov->iov_len;
    372 	if (space > SOCK_LOAN_CHUNK)
    373 		space = SOCK_LOAN_CHUNK;
    374 
    375 	eva = round_page((vaddr_t) iov->iov_base + space);
    376 	sva = trunc_page((vaddr_t) iov->iov_base);
    377 	len = eva - sva;
    378 	npgs = len >> PAGE_SHIFT;
    379 
    380 	/* XXX KDASSERT */
    381 	KASSERT(npgs <= M_EXT_MAXPAGES);
    382 
    383 	lva = sokvaalloc(len, so);
    384 	if (lva == 0)
    385 		return 0;
    386 
    387 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    388 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    389 	if (error) {
    390 		sokvafree(lva, len);
    391 		return (0);
    392 	}
    393 
    394 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    395 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    396 		    VM_PROT_READ);
    397 	pmap_update(pmap_kernel());
    398 
    399 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    400 
    401 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    402 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    403 
    404 	uio->uio_resid -= space;
    405 	/* uio_offset not updated, not set/used for write(2) */
    406 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    407 	uio->uio_iov->iov_len -= space;
    408 	if (uio->uio_iov->iov_len == 0) {
    409 		uio->uio_iov++;
    410 		uio->uio_iovcnt--;
    411 	}
    412 
    413 	return (space);
    414 }
    415 
    416 static int
    417 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    418 {
    419 
    420 	KASSERT(ce == &sokva_reclaimerentry);
    421 	KASSERT(obj == NULL);
    422 
    423 	sodopendfree();
    424 	if (!vm_map_starved_p(kernel_map)) {
    425 		return CALLBACK_CHAIN_ABORT;
    426 	}
    427 	return CALLBACK_CHAIN_CONTINUE;
    428 }
    429 
    430 struct mbuf *
    431 getsombuf(struct socket *so, int type)
    432 {
    433 	struct mbuf *m;
    434 
    435 	m = m_get(M_WAIT, type);
    436 	MCLAIM(m, so->so_mowner);
    437 	return m;
    438 }
    439 
    440 struct mbuf *
    441 m_intopt(struct socket *so, int val)
    442 {
    443 	struct mbuf *m;
    444 
    445 	m = getsombuf(so, MT_SOOPTS);
    446 	m->m_len = sizeof(int);
    447 	*mtod(m, int *) = val;
    448 	return m;
    449 }
    450 
    451 void
    452 soinit(void)
    453 {
    454 
    455 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    456 	cv_init(&socurkva_cv, "sokva");
    457 
    458 	/* Set the initial adjusted socket buffer size. */
    459 	if (sb_max_set(sb_max))
    460 		panic("bad initial sb_max value: %lu", sb_max);
    461 
    462 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    463 	    &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
    464 }
    465 
    466 /*
    467  * Socket operation routines.
    468  * These routines are called by the routines in
    469  * sys_socket.c or from a system process, and
    470  * implement the semantics of socket operations by
    471  * switching out to the protocol specific routines.
    472  */
    473 /*ARGSUSED*/
    474 int
    475 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
    476 {
    477 	const struct protosw	*prp;
    478 	struct socket	*so;
    479 	uid_t		uid;
    480 	int		error, s;
    481 
    482 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    483 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    484 	    KAUTH_ARG(proto));
    485 	if (error != 0)
    486 		return error;
    487 
    488 	if (proto)
    489 		prp = pffindproto(dom, proto, type);
    490 	else
    491 		prp = pffindtype(dom, type);
    492 	if (prp == NULL) {
    493 		/* no support for domain */
    494 		if (pffinddomain(dom) == 0)
    495 			return EAFNOSUPPORT;
    496 		/* no support for socket type */
    497 		if (proto == 0 && type != 0)
    498 			return EPROTOTYPE;
    499 		return EPROTONOSUPPORT;
    500 	}
    501 	if (prp->pr_usrreq == NULL)
    502 		return EPROTONOSUPPORT;
    503 	if (prp->pr_type != type)
    504 		return EPROTOTYPE;
    505 	s = splsoftnet();
    506 	so = pool_get(&socket_pool, PR_WAITOK);
    507 	memset(so, 0, sizeof(*so));
    508 	TAILQ_INIT(&so->so_q0);
    509 	TAILQ_INIT(&so->so_q);
    510 	so->so_type = type;
    511 	so->so_proto = prp;
    512 	so->so_send = sosend;
    513 	so->so_receive = soreceive;
    514 #ifdef MBUFTRACE
    515 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    516 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    517 	so->so_mowner = &prp->pr_domain->dom_mowner;
    518 #endif
    519 	selinit(&so->so_rcv.sb_sel);
    520 	selinit(&so->so_snd.sb_sel);
    521 	uid = kauth_cred_geteuid(l->l_cred);
    522 	so->so_uidinfo = uid_find(uid);
    523 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
    524 	    (struct mbuf *)(long)proto, NULL, l);
    525 	if (error != 0) {
    526 		so->so_state |= SS_NOFDREF;
    527 		sofree(so);
    528 		splx(s);
    529 		return error;
    530 	}
    531 	splx(s);
    532 	*aso = so;
    533 	return 0;
    534 }
    535 
    536 /* On success, write file descriptor to fdout and return zero.  On
    537  * failure, return non-zero; *fdout will be undefined.
    538  */
    539 int
    540 fsocreate(int domain, struct socket **sop, int type, int protocol,
    541     struct lwp *l, int *fdout)
    542 {
    543 	struct filedesc	*fdp;
    544 	struct socket	*so;
    545 	struct file	*fp;
    546 	int		fd, error;
    547 
    548 	fdp = l->l_proc->p_fd;
    549 	/* falloc() will use the desciptor for us */
    550 	if ((error = falloc(l, &fp, &fd)) != 0)
    551 		return (error);
    552 	fp->f_flag = FREAD|FWRITE;
    553 	fp->f_type = DTYPE_SOCKET;
    554 	fp->f_ops = &socketops;
    555 	error = socreate(domain, &so, type, protocol, l);
    556 	if (error != 0) {
    557 		FILE_UNUSE(fp, l);
    558 		fdremove(fdp, fd);
    559 		ffree(fp);
    560 	} else {
    561 		if (sop != NULL)
    562 			*sop = so;
    563 		fp->f_data = so;
    564 		FILE_SET_MATURE(fp);
    565 		FILE_UNUSE(fp, l);
    566 		*fdout = fd;
    567 	}
    568 	return error;
    569 }
    570 
    571 int
    572 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    573 {
    574 	int	s, error;
    575 
    576 	s = splsoftnet();
    577 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
    578 	splx(s);
    579 	return error;
    580 }
    581 
    582 int
    583 solisten(struct socket *so, int backlog, struct lwp *l)
    584 {
    585 	int	s, error;
    586 
    587 	s = splsoftnet();
    588 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
    589 	    NULL, NULL, l);
    590 	if (error != 0) {
    591 		splx(s);
    592 		return error;
    593 	}
    594 	if (TAILQ_EMPTY(&so->so_q))
    595 		so->so_options |= SO_ACCEPTCONN;
    596 	if (backlog < 0)
    597 		backlog = 0;
    598 	so->so_qlimit = min(backlog, somaxconn);
    599 	splx(s);
    600 	return 0;
    601 }
    602 
    603 void
    604 sofree(struct socket *so)
    605 {
    606 
    607 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
    608 		return;
    609 	if (so->so_head) {
    610 		/*
    611 		 * We must not decommission a socket that's on the accept(2)
    612 		 * queue.  If we do, then accept(2) may hang after select(2)
    613 		 * indicated that the listening socket was ready.
    614 		 */
    615 		if (!soqremque(so, 0))
    616 			return;
    617 	}
    618 	if (so->so_rcv.sb_hiwat)
    619 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    620 		    RLIM_INFINITY);
    621 	if (so->so_snd.sb_hiwat)
    622 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    623 		    RLIM_INFINITY);
    624 	sbrelease(&so->so_snd, so);
    625 	sorflush(so);
    626 	seldestroy(&so->so_rcv.sb_sel);
    627 	seldestroy(&so->so_snd.sb_sel);
    628 	pool_put(&socket_pool, so);
    629 }
    630 
    631 /*
    632  * Close a socket on last file table reference removal.
    633  * Initiate disconnect if connected.
    634  * Free socket when disconnect complete.
    635  */
    636 int
    637 soclose(struct socket *so)
    638 {
    639 	struct socket	*so2;
    640 	int		s, error;
    641 
    642 	error = 0;
    643 	s = splsoftnet();		/* conservative */
    644 	if (so->so_options & SO_ACCEPTCONN) {
    645 		while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    646 			(void) soqremque(so2, 0);
    647 			(void) soabort(so2);
    648 		}
    649 		while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    650 			(void) soqremque(so2, 1);
    651 			(void) soabort(so2);
    652 		}
    653 	}
    654 	if (so->so_pcb == 0)
    655 		goto discard;
    656 	if (so->so_state & SS_ISCONNECTED) {
    657 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    658 			error = sodisconnect(so);
    659 			if (error)
    660 				goto drop;
    661 		}
    662 		if (so->so_options & SO_LINGER) {
    663 			if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
    664 				goto drop;
    665 			while (so->so_state & SS_ISCONNECTED) {
    666 				error = tsleep((void *)&so->so_timeo,
    667 					       PSOCK | PCATCH, netcls,
    668 					       so->so_linger * hz);
    669 				if (error)
    670 					break;
    671 			}
    672 		}
    673 	}
    674  drop:
    675 	if (so->so_pcb) {
    676 		int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    677 		    NULL, NULL, NULL, NULL);
    678 		if (error == 0)
    679 			error = error2;
    680 	}
    681  discard:
    682 	if (so->so_state & SS_NOFDREF)
    683 		panic("soclose: NOFDREF");
    684 	so->so_state |= SS_NOFDREF;
    685 	sofree(so);
    686 	splx(s);
    687 	return (error);
    688 }
    689 
    690 /*
    691  * Must be called at splsoftnet...
    692  */
    693 int
    694 soabort(struct socket *so)
    695 {
    696 	int error;
    697 
    698 	KASSERT(so->so_head == NULL);
    699 	error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
    700 	    NULL, NULL, NULL);
    701 	if (error) {
    702 		sofree(so);
    703 	}
    704 	return error;
    705 }
    706 
    707 int
    708 soaccept(struct socket *so, struct mbuf *nam)
    709 {
    710 	int	s, error;
    711 
    712 	error = 0;
    713 	s = splsoftnet();
    714 	if ((so->so_state & SS_NOFDREF) == 0)
    715 		panic("soaccept: !NOFDREF");
    716 	so->so_state &= ~SS_NOFDREF;
    717 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    718 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    719 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    720 		    NULL, nam, NULL, NULL);
    721 	else
    722 		error = ECONNABORTED;
    723 
    724 	splx(s);
    725 	return (error);
    726 }
    727 
    728 int
    729 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    730 {
    731 	int		s, error;
    732 
    733 	if (so->so_options & SO_ACCEPTCONN)
    734 		return (EOPNOTSUPP);
    735 	s = splsoftnet();
    736 	/*
    737 	 * If protocol is connection-based, can only connect once.
    738 	 * Otherwise, if connected, try to disconnect first.
    739 	 * This allows user to disconnect by connecting to, e.g.,
    740 	 * a null address.
    741 	 */
    742 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    743 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    744 	    (error = sodisconnect(so))))
    745 		error = EISCONN;
    746 	else
    747 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    748 		    NULL, nam, NULL, l);
    749 	splx(s);
    750 	return (error);
    751 }
    752 
    753 int
    754 soconnect2(struct socket *so1, struct socket *so2)
    755 {
    756 	int	s, error;
    757 
    758 	s = splsoftnet();
    759 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    760 	    NULL, (struct mbuf *)so2, NULL, NULL);
    761 	splx(s);
    762 	return (error);
    763 }
    764 
    765 int
    766 sodisconnect(struct socket *so)
    767 {
    768 	int	s, error;
    769 
    770 	s = splsoftnet();
    771 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    772 		error = ENOTCONN;
    773 		goto bad;
    774 	}
    775 	if (so->so_state & SS_ISDISCONNECTING) {
    776 		error = EALREADY;
    777 		goto bad;
    778 	}
    779 	error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    780 	    NULL, NULL, NULL, NULL);
    781  bad:
    782 	splx(s);
    783 	sodopendfree();
    784 	return (error);
    785 }
    786 
    787 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    788 /*
    789  * Send on a socket.
    790  * If send must go all at once and message is larger than
    791  * send buffering, then hard error.
    792  * Lock against other senders.
    793  * If must go all at once and not enough room now, then
    794  * inform user that this would block and do nothing.
    795  * Otherwise, if nonblocking, send as much as possible.
    796  * The data to be sent is described by "uio" if nonzero,
    797  * otherwise by the mbuf chain "top" (which must be null
    798  * if uio is not).  Data provided in mbuf chain must be small
    799  * enough to send all at once.
    800  *
    801  * Returns nonzero on error, timeout or signal; callers
    802  * must check for short counts if EINTR/ERESTART are returned.
    803  * Data and control buffers are freed on return.
    804  */
    805 int
    806 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    807 	struct mbuf *control, int flags, struct lwp *l)
    808 {
    809 	struct mbuf	**mp, *m;
    810 	struct proc	*p;
    811 	long		space, len, resid, clen, mlen;
    812 	int		error, s, dontroute, atomic;
    813 
    814 	p = l->l_proc;
    815 	sodopendfree();
    816 
    817 	clen = 0;
    818 	atomic = sosendallatonce(so) || top;
    819 	if (uio)
    820 		resid = uio->uio_resid;
    821 	else
    822 		resid = top->m_pkthdr.len;
    823 	/*
    824 	 * In theory resid should be unsigned.
    825 	 * However, space must be signed, as it might be less than 0
    826 	 * if we over-committed, and we must use a signed comparison
    827 	 * of space and resid.  On the other hand, a negative resid
    828 	 * causes us to loop sending 0-length segments to the protocol.
    829 	 */
    830 	if (resid < 0) {
    831 		error = EINVAL;
    832 		goto out;
    833 	}
    834 	dontroute =
    835 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    836 	    (so->so_proto->pr_flags & PR_ATOMIC);
    837 	if (p)
    838 		p->p_stats->p_ru.ru_msgsnd++;
    839 	if (control)
    840 		clen = control->m_len;
    841 #define	snderr(errno)	{ error = errno; splx(s); goto release; }
    842 
    843  restart:
    844 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    845 		goto out;
    846 	do {
    847 		s = splsoftnet();
    848 		if (so->so_state & SS_CANTSENDMORE)
    849 			snderr(EPIPE);
    850 		if (so->so_error) {
    851 			error = so->so_error;
    852 			so->so_error = 0;
    853 			splx(s);
    854 			goto release;
    855 		}
    856 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    857 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    858 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    859 				    !(resid == 0 && clen != 0))
    860 					snderr(ENOTCONN);
    861 			} else if (addr == 0)
    862 				snderr(EDESTADDRREQ);
    863 		}
    864 		space = sbspace(&so->so_snd);
    865 		if (flags & MSG_OOB)
    866 			space += 1024;
    867 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    868 		    clen > so->so_snd.sb_hiwat)
    869 			snderr(EMSGSIZE);
    870 		if (space < resid + clen &&
    871 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    872 			if (so->so_nbio)
    873 				snderr(EWOULDBLOCK);
    874 			sbunlock(&so->so_snd);
    875 			error = sbwait(&so->so_snd);
    876 			splx(s);
    877 			if (error)
    878 				goto out;
    879 			goto restart;
    880 		}
    881 		splx(s);
    882 		mp = &top;
    883 		space -= clen;
    884 		do {
    885 			if (uio == NULL) {
    886 				/*
    887 				 * Data is prepackaged in "top".
    888 				 */
    889 				resid = 0;
    890 				if (flags & MSG_EOR)
    891 					top->m_flags |= M_EOR;
    892 			} else do {
    893 				if (top == NULL) {
    894 					m = m_gethdr(M_WAIT, MT_DATA);
    895 					mlen = MHLEN;
    896 					m->m_pkthdr.len = 0;
    897 					m->m_pkthdr.rcvif = NULL;
    898 				} else {
    899 					m = m_get(M_WAIT, MT_DATA);
    900 					mlen = MLEN;
    901 				}
    902 				MCLAIM(m, so->so_snd.sb_mowner);
    903 				if (sock_loan_thresh >= 0 &&
    904 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
    905 				    space >= sock_loan_thresh &&
    906 				    (len = sosend_loan(so, uio, m,
    907 						       space)) != 0) {
    908 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    909 					space -= len;
    910 					goto have_data;
    911 				}
    912 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
    913 					SOSEND_COUNTER_INCR(&sosend_copy_big);
    914 					m_clget(m, M_WAIT);
    915 					if ((m->m_flags & M_EXT) == 0)
    916 						goto nopages;
    917 					mlen = MCLBYTES;
    918 					if (atomic && top == 0) {
    919 						len = lmin(MCLBYTES - max_hdr,
    920 						    resid);
    921 						m->m_data += max_hdr;
    922 					} else
    923 						len = lmin(MCLBYTES, resid);
    924 					space -= len;
    925 				} else {
    926  nopages:
    927 					SOSEND_COUNTER_INCR(&sosend_copy_small);
    928 					len = lmin(lmin(mlen, resid), space);
    929 					space -= len;
    930 					/*
    931 					 * For datagram protocols, leave room
    932 					 * for protocol headers in first mbuf.
    933 					 */
    934 					if (atomic && top == 0 && len < mlen)
    935 						MH_ALIGN(m, len);
    936 				}
    937 				error = uiomove(mtod(m, void *), (int)len, uio);
    938  have_data:
    939 				resid = uio->uio_resid;
    940 				m->m_len = len;
    941 				*mp = m;
    942 				top->m_pkthdr.len += len;
    943 				if (error != 0)
    944 					goto release;
    945 				mp = &m->m_next;
    946 				if (resid <= 0) {
    947 					if (flags & MSG_EOR)
    948 						top->m_flags |= M_EOR;
    949 					break;
    950 				}
    951 			} while (space > 0 && atomic);
    952 
    953 			s = splsoftnet();
    954 
    955 			if (so->so_state & SS_CANTSENDMORE)
    956 				snderr(EPIPE);
    957 
    958 			if (dontroute)
    959 				so->so_options |= SO_DONTROUTE;
    960 			if (resid > 0)
    961 				so->so_state |= SS_MORETOCOME;
    962 			error = (*so->so_proto->pr_usrreq)(so,
    963 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
    964 			    top, addr, control, curlwp);	/* XXX */
    965 			if (dontroute)
    966 				so->so_options &= ~SO_DONTROUTE;
    967 			if (resid > 0)
    968 				so->so_state &= ~SS_MORETOCOME;
    969 			splx(s);
    970 
    971 			clen = 0;
    972 			control = NULL;
    973 			top = NULL;
    974 			mp = &top;
    975 			if (error != 0)
    976 				goto release;
    977 		} while (resid && space > 0);
    978 	} while (resid);
    979 
    980  release:
    981 	sbunlock(&so->so_snd);
    982  out:
    983 	if (top)
    984 		m_freem(top);
    985 	if (control)
    986 		m_freem(control);
    987 	return (error);
    988 }
    989 
    990 /*
    991  * Implement receive operations on a socket.
    992  * We depend on the way that records are added to the sockbuf
    993  * by sbappend*.  In particular, each record (mbufs linked through m_next)
    994  * must begin with an address if the protocol so specifies,
    995  * followed by an optional mbuf or mbufs containing ancillary data,
    996  * and then zero or more mbufs of data.
    997  * In order to avoid blocking network interrupts for the entire time here,
    998  * we splx() while doing the actual copy to user space.
    999  * Although the sockbuf is locked, new data may still be appended,
   1000  * and thus we must maintain consistency of the sockbuf during that time.
   1001  *
   1002  * The caller may receive the data as a single mbuf chain by supplying
   1003  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1004  * only for the count in uio_resid.
   1005  */
   1006 int
   1007 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1008 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1009 {
   1010 	struct lwp *l = curlwp;
   1011 	struct mbuf	*m, **mp;
   1012 	int atomic, flags, len, error, s, offset, moff, type, orig_resid;
   1013 	const struct protosw	*pr;
   1014 	struct mbuf	*nextrecord;
   1015 	int		mbuf_removed = 0;
   1016 	const struct domain *dom;
   1017 
   1018 	pr = so->so_proto;
   1019 	atomic = pr->pr_flags & PR_ATOMIC;
   1020 	dom = pr->pr_domain;
   1021 	mp = mp0;
   1022 	type = 0;
   1023 	orig_resid = uio->uio_resid;
   1024 
   1025 	if (paddr != NULL)
   1026 		*paddr = NULL;
   1027 	if (controlp != NULL)
   1028 		*controlp = NULL;
   1029 	if (flagsp != NULL)
   1030 		flags = *flagsp &~ MSG_EOR;
   1031 	else
   1032 		flags = 0;
   1033 
   1034 	if ((flags & MSG_DONTWAIT) == 0)
   1035 		sodopendfree();
   1036 
   1037 	if (flags & MSG_OOB) {
   1038 		m = m_get(M_WAIT, MT_DATA);
   1039 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
   1040 		    (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
   1041 		if (error)
   1042 			goto bad;
   1043 		do {
   1044 			error = uiomove(mtod(m, void *),
   1045 			    (int) min(uio->uio_resid, m->m_len), uio);
   1046 			m = m_free(m);
   1047 		} while (uio->uio_resid > 0 && error == 0 && m);
   1048  bad:
   1049 		if (m != NULL)
   1050 			m_freem(m);
   1051 		return error;
   1052 	}
   1053 	if (mp != NULL)
   1054 		*mp = NULL;
   1055 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
   1056 		(*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
   1057 
   1058  restart:
   1059 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
   1060 		return error;
   1061 	s = splsoftnet();
   1062 
   1063 	m = so->so_rcv.sb_mb;
   1064 	/*
   1065 	 * If we have less data than requested, block awaiting more
   1066 	 * (subject to any timeout) if:
   1067 	 *   1. the current count is less than the low water mark,
   1068 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1069 	 *	receive operation at once if we block (resid <= hiwat), or
   1070 	 *   3. MSG_DONTWAIT is not set.
   1071 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1072 	 * we have to do the receive in sections, and thus risk returning
   1073 	 * a short count if a timeout or signal occurs after we start.
   1074 	 */
   1075 	if (m == NULL ||
   1076 	    ((flags & MSG_DONTWAIT) == 0 &&
   1077 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1078 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1079 	      ((flags & MSG_WAITALL) &&
   1080 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1081 	     m->m_nextpkt == NULL && !atomic)) {
   1082 #ifdef DIAGNOSTIC
   1083 		if (m == NULL && so->so_rcv.sb_cc)
   1084 			panic("receive 1");
   1085 #endif
   1086 		if (so->so_error) {
   1087 			if (m != NULL)
   1088 				goto dontblock;
   1089 			error = so->so_error;
   1090 			if ((flags & MSG_PEEK) == 0)
   1091 				so->so_error = 0;
   1092 			goto release;
   1093 		}
   1094 		if (so->so_state & SS_CANTRCVMORE) {
   1095 			if (m != NULL)
   1096 				goto dontblock;
   1097 			else
   1098 				goto release;
   1099 		}
   1100 		for (; m != NULL; m = m->m_next)
   1101 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1102 				m = so->so_rcv.sb_mb;
   1103 				goto dontblock;
   1104 			}
   1105 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1106 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1107 			error = ENOTCONN;
   1108 			goto release;
   1109 		}
   1110 		if (uio->uio_resid == 0)
   1111 			goto release;
   1112 		if (so->so_nbio || (flags & MSG_DONTWAIT)) {
   1113 			error = EWOULDBLOCK;
   1114 			goto release;
   1115 		}
   1116 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1117 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1118 		sbunlock(&so->so_rcv);
   1119 		error = sbwait(&so->so_rcv);
   1120 		splx(s);
   1121 		if (error != 0)
   1122 			return error;
   1123 		goto restart;
   1124 	}
   1125  dontblock:
   1126 	/*
   1127 	 * On entry here, m points to the first record of the socket buffer.
   1128 	 * While we process the initial mbufs containing address and control
   1129 	 * info, we save a copy of m->m_nextpkt into nextrecord.
   1130 	 */
   1131 	if (l != NULL)
   1132 		l->l_proc->p_stats->p_ru.ru_msgrcv++;
   1133 	KASSERT(m == so->so_rcv.sb_mb);
   1134 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1135 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1136 	nextrecord = m->m_nextpkt;
   1137 	if (pr->pr_flags & PR_ADDR) {
   1138 #ifdef DIAGNOSTIC
   1139 		if (m->m_type != MT_SONAME)
   1140 			panic("receive 1a");
   1141 #endif
   1142 		orig_resid = 0;
   1143 		if (flags & MSG_PEEK) {
   1144 			if (paddr)
   1145 				*paddr = m_copy(m, 0, m->m_len);
   1146 			m = m->m_next;
   1147 		} else {
   1148 			sbfree(&so->so_rcv, m);
   1149 			mbuf_removed = 1;
   1150 			if (paddr != NULL) {
   1151 				*paddr = m;
   1152 				so->so_rcv.sb_mb = m->m_next;
   1153 				m->m_next = NULL;
   1154 				m = so->so_rcv.sb_mb;
   1155 			} else {
   1156 				MFREE(m, so->so_rcv.sb_mb);
   1157 				m = so->so_rcv.sb_mb;
   1158 			}
   1159 		}
   1160 	}
   1161 	while (m != NULL && m->m_type == MT_CONTROL && error == 0) {
   1162 		if (flags & MSG_PEEK) {
   1163 			if (controlp != NULL)
   1164 				*controlp = m_copy(m, 0, m->m_len);
   1165 			m = m->m_next;
   1166 		} else {
   1167 			sbfree(&so->so_rcv, m);
   1168 			mbuf_removed = 1;
   1169 			if (controlp != NULL) {
   1170 				if (dom->dom_externalize && l &&
   1171 				    mtod(m, struct cmsghdr *)->cmsg_type ==
   1172 				    SCM_RIGHTS)
   1173 					error = (*dom->dom_externalize)(m, l);
   1174 				*controlp = m;
   1175 				so->so_rcv.sb_mb = m->m_next;
   1176 				m->m_next = NULL;
   1177 				m = so->so_rcv.sb_mb;
   1178 			} else {
   1179 				/*
   1180 				 * Dispose of any SCM_RIGHTS message that went
   1181 				 * through the read path rather than recv.
   1182 				 */
   1183 				if (dom->dom_dispose &&
   1184 				    mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
   1185 					(*dom->dom_dispose)(m);
   1186 				MFREE(m, so->so_rcv.sb_mb);
   1187 				m = so->so_rcv.sb_mb;
   1188 			}
   1189 		}
   1190 		if (controlp != NULL) {
   1191 			orig_resid = 0;
   1192 			controlp = &(*controlp)->m_next;
   1193 		}
   1194 	}
   1195 
   1196 	/*
   1197 	 * If m is non-NULL, we have some data to read.  From now on,
   1198 	 * make sure to keep sb_lastrecord consistent when working on
   1199 	 * the last packet on the chain (nextrecord == NULL) and we
   1200 	 * change m->m_nextpkt.
   1201 	 */
   1202 	if (m != NULL) {
   1203 		if ((flags & MSG_PEEK) == 0) {
   1204 			m->m_nextpkt = nextrecord;
   1205 			/*
   1206 			 * If nextrecord == NULL (this is a single chain),
   1207 			 * then sb_lastrecord may not be valid here if m
   1208 			 * was changed earlier.
   1209 			 */
   1210 			if (nextrecord == NULL) {
   1211 				KASSERT(so->so_rcv.sb_mb == m);
   1212 				so->so_rcv.sb_lastrecord = m;
   1213 			}
   1214 		}
   1215 		type = m->m_type;
   1216 		if (type == MT_OOBDATA)
   1217 			flags |= MSG_OOB;
   1218 	} else {
   1219 		if ((flags & MSG_PEEK) == 0) {
   1220 			KASSERT(so->so_rcv.sb_mb == m);
   1221 			so->so_rcv.sb_mb = nextrecord;
   1222 			SB_EMPTY_FIXUP(&so->so_rcv);
   1223 		}
   1224 	}
   1225 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1226 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1227 
   1228 	moff = 0;
   1229 	offset = 0;
   1230 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1231 		if (m->m_type == MT_OOBDATA) {
   1232 			if (type != MT_OOBDATA)
   1233 				break;
   1234 		} else if (type == MT_OOBDATA)
   1235 			break;
   1236 #ifdef DIAGNOSTIC
   1237 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1238 			panic("receive 3");
   1239 #endif
   1240 		so->so_state &= ~SS_RCVATMARK;
   1241 		len = uio->uio_resid;
   1242 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1243 			len = so->so_oobmark - offset;
   1244 		if (len > m->m_len - moff)
   1245 			len = m->m_len - moff;
   1246 		/*
   1247 		 * If mp is set, just pass back the mbufs.
   1248 		 * Otherwise copy them out via the uio, then free.
   1249 		 * Sockbuf must be consistent here (points to current mbuf,
   1250 		 * it points to next record) when we drop priority;
   1251 		 * we must note any additions to the sockbuf when we
   1252 		 * block interrupts again.
   1253 		 */
   1254 		if (mp == NULL) {
   1255 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1256 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1257 			splx(s);
   1258 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
   1259 			s = splsoftnet();
   1260 			if (error != 0) {
   1261 				/*
   1262 				 * If any part of the record has been removed
   1263 				 * (such as the MT_SONAME mbuf, which will
   1264 				 * happen when PR_ADDR, and thus also
   1265 				 * PR_ATOMIC, is set), then drop the entire
   1266 				 * record to maintain the atomicity of the
   1267 				 * receive operation.
   1268 				 *
   1269 				 * This avoids a later panic("receive 1a")
   1270 				 * when compiled with DIAGNOSTIC.
   1271 				 */
   1272 				if (m && mbuf_removed && atomic)
   1273 					(void) sbdroprecord(&so->so_rcv);
   1274 
   1275 				goto release;
   1276 			}
   1277 		} else
   1278 			uio->uio_resid -= len;
   1279 		if (len == m->m_len - moff) {
   1280 			if (m->m_flags & M_EOR)
   1281 				flags |= MSG_EOR;
   1282 			if (flags & MSG_PEEK) {
   1283 				m = m->m_next;
   1284 				moff = 0;
   1285 			} else {
   1286 				nextrecord = m->m_nextpkt;
   1287 				sbfree(&so->so_rcv, m);
   1288 				if (mp) {
   1289 					*mp = m;
   1290 					mp = &m->m_next;
   1291 					so->so_rcv.sb_mb = m = m->m_next;
   1292 					*mp = NULL;
   1293 				} else {
   1294 					MFREE(m, so->so_rcv.sb_mb);
   1295 					m = so->so_rcv.sb_mb;
   1296 				}
   1297 				/*
   1298 				 * If m != NULL, we also know that
   1299 				 * so->so_rcv.sb_mb != NULL.
   1300 				 */
   1301 				KASSERT(so->so_rcv.sb_mb == m);
   1302 				if (m) {
   1303 					m->m_nextpkt = nextrecord;
   1304 					if (nextrecord == NULL)
   1305 						so->so_rcv.sb_lastrecord = m;
   1306 				} else {
   1307 					so->so_rcv.sb_mb = nextrecord;
   1308 					SB_EMPTY_FIXUP(&so->so_rcv);
   1309 				}
   1310 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1311 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1312 			}
   1313 		} else if (flags & MSG_PEEK)
   1314 			moff += len;
   1315 		else {
   1316 			if (mp != NULL)
   1317 				*mp = m_copym(m, 0, len, M_WAIT);
   1318 			m->m_data += len;
   1319 			m->m_len -= len;
   1320 			so->so_rcv.sb_cc -= len;
   1321 		}
   1322 		if (so->so_oobmark) {
   1323 			if ((flags & MSG_PEEK) == 0) {
   1324 				so->so_oobmark -= len;
   1325 				if (so->so_oobmark == 0) {
   1326 					so->so_state |= SS_RCVATMARK;
   1327 					break;
   1328 				}
   1329 			} else {
   1330 				offset += len;
   1331 				if (offset == so->so_oobmark)
   1332 					break;
   1333 			}
   1334 		}
   1335 		if (flags & MSG_EOR)
   1336 			break;
   1337 		/*
   1338 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1339 		 * we must not quit until "uio->uio_resid == 0" or an error
   1340 		 * termination.  If a signal/timeout occurs, return
   1341 		 * with a short count but without error.
   1342 		 * Keep sockbuf locked against other readers.
   1343 		 */
   1344 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1345 		    !sosendallatonce(so) && !nextrecord) {
   1346 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1347 				break;
   1348 			/*
   1349 			 * If we are peeking and the socket receive buffer is
   1350 			 * full, stop since we can't get more data to peek at.
   1351 			 */
   1352 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1353 				break;
   1354 			/*
   1355 			 * If we've drained the socket buffer, tell the
   1356 			 * protocol in case it needs to do something to
   1357 			 * get it filled again.
   1358 			 */
   1359 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1360 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1361 				    NULL, (struct mbuf *)(long)flags, NULL, l);
   1362 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1363 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1364 			error = sbwait(&so->so_rcv);
   1365 			if (error != 0) {
   1366 				sbunlock(&so->so_rcv);
   1367 				splx(s);
   1368 				return 0;
   1369 			}
   1370 			if ((m = so->so_rcv.sb_mb) != NULL)
   1371 				nextrecord = m->m_nextpkt;
   1372 		}
   1373 	}
   1374 
   1375 	if (m && atomic) {
   1376 		flags |= MSG_TRUNC;
   1377 		if ((flags & MSG_PEEK) == 0)
   1378 			(void) sbdroprecord(&so->so_rcv);
   1379 	}
   1380 	if ((flags & MSG_PEEK) == 0) {
   1381 		if (m == NULL) {
   1382 			/*
   1383 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1384 			 * part makes sure sb_lastrecord is up-to-date if
   1385 			 * there is still data in the socket buffer.
   1386 			 */
   1387 			so->so_rcv.sb_mb = nextrecord;
   1388 			if (so->so_rcv.sb_mb == NULL) {
   1389 				so->so_rcv.sb_mbtail = NULL;
   1390 				so->so_rcv.sb_lastrecord = NULL;
   1391 			} else if (nextrecord->m_nextpkt == NULL)
   1392 				so->so_rcv.sb_lastrecord = nextrecord;
   1393 		}
   1394 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1395 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1396 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1397 			(*pr->pr_usrreq)(so, PRU_RCVD, NULL,
   1398 			    (struct mbuf *)(long)flags, NULL, l);
   1399 	}
   1400 	if (orig_resid == uio->uio_resid && orig_resid &&
   1401 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1402 		sbunlock(&so->so_rcv);
   1403 		splx(s);
   1404 		goto restart;
   1405 	}
   1406 
   1407 	if (flagsp != NULL)
   1408 		*flagsp |= flags;
   1409  release:
   1410 	sbunlock(&so->so_rcv);
   1411 	splx(s);
   1412 	return error;
   1413 }
   1414 
   1415 int
   1416 soshutdown(struct socket *so, int how)
   1417 {
   1418 	const struct protosw	*pr;
   1419 
   1420 	pr = so->so_proto;
   1421 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1422 		return (EINVAL);
   1423 
   1424 	if (how == SHUT_RD || how == SHUT_RDWR)
   1425 		sorflush(so);
   1426 	if (how == SHUT_WR || how == SHUT_RDWR)
   1427 		return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
   1428 		    NULL, NULL, NULL);
   1429 	return 0;
   1430 }
   1431 
   1432 void
   1433 sorflush(struct socket *so)
   1434 {
   1435 	struct sockbuf	*sb, asb;
   1436 	const struct protosw	*pr;
   1437 	int		s;
   1438 
   1439 	sb = &so->so_rcv;
   1440 	pr = so->so_proto;
   1441 	sb->sb_flags |= SB_NOINTR;
   1442 	(void) sblock(sb, M_WAITOK);
   1443 	s = splnet();
   1444 	socantrcvmore(so);
   1445 	sbunlock(sb);
   1446 	asb = *sb;
   1447 	/*
   1448 	 * Clear most of the sockbuf structure, but leave some of the
   1449 	 * fields valid.
   1450 	 */
   1451 	memset(&sb->sb_startzero, 0,
   1452 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1453 	splx(s);
   1454 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
   1455 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1456 	sbrelease(&asb, so);
   1457 }
   1458 
   1459 static int
   1460 sosetopt1(struct socket *so, int level, int optname, struct mbuf *m)
   1461 {
   1462 	int optval, val;
   1463 	struct linger	*l;
   1464 	struct sockbuf	*sb;
   1465 	struct timeval *tv;
   1466 
   1467 	switch (optname) {
   1468 
   1469 	case SO_LINGER:
   1470 		if (m == NULL || m->m_len != sizeof(struct linger))
   1471 			return EINVAL;
   1472 		l = mtod(m, struct linger *);
   1473 		if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
   1474 		    l->l_linger > (INT_MAX / hz))
   1475 			return EDOM;
   1476 		so->so_linger = l->l_linger;
   1477 		if (l->l_onoff)
   1478 			so->so_options |= SO_LINGER;
   1479 		else
   1480 			so->so_options &= ~SO_LINGER;
   1481 		break;
   1482 
   1483 	case SO_DEBUG:
   1484 	case SO_KEEPALIVE:
   1485 	case SO_DONTROUTE:
   1486 	case SO_USELOOPBACK:
   1487 	case SO_BROADCAST:
   1488 	case SO_REUSEADDR:
   1489 	case SO_REUSEPORT:
   1490 	case SO_OOBINLINE:
   1491 	case SO_TIMESTAMP:
   1492 		if (m == NULL || m->m_len < sizeof(int))
   1493 			return EINVAL;
   1494 		if (*mtod(m, int *))
   1495 			so->so_options |= optname;
   1496 		else
   1497 			so->so_options &= ~optname;
   1498 		break;
   1499 
   1500 	case SO_SNDBUF:
   1501 	case SO_RCVBUF:
   1502 	case SO_SNDLOWAT:
   1503 	case SO_RCVLOWAT:
   1504 		if (m == NULL || m->m_len < sizeof(int))
   1505 			return EINVAL;
   1506 
   1507 		/*
   1508 		 * Values < 1 make no sense for any of these
   1509 		 * options, so disallow them.
   1510 		 */
   1511 		optval = *mtod(m, int *);
   1512 		if (optval < 1)
   1513 			return EINVAL;
   1514 
   1515 		switch (optname) {
   1516 
   1517 		case SO_SNDBUF:
   1518 		case SO_RCVBUF:
   1519 			sb = (optname == SO_SNDBUF) ?
   1520 			    &so->so_snd : &so->so_rcv;
   1521 			if (sbreserve(sb, (u_long)optval, so) == 0)
   1522 				return ENOBUFS;
   1523 			sb->sb_flags &= ~SB_AUTOSIZE;
   1524 			break;
   1525 
   1526 		/*
   1527 		 * Make sure the low-water is never greater than
   1528 		 * the high-water.
   1529 		 */
   1530 		case SO_SNDLOWAT:
   1531 			so->so_snd.sb_lowat =
   1532 			    (optval > so->so_snd.sb_hiwat) ?
   1533 			    so->so_snd.sb_hiwat : optval;
   1534 			break;
   1535 		case SO_RCVLOWAT:
   1536 			so->so_rcv.sb_lowat =
   1537 			    (optval > so->so_rcv.sb_hiwat) ?
   1538 			    so->so_rcv.sb_hiwat : optval;
   1539 			break;
   1540 		}
   1541 		break;
   1542 
   1543 	case SO_SNDTIMEO:
   1544 	case SO_RCVTIMEO:
   1545 		if (m == NULL || m->m_len < sizeof(*tv))
   1546 			return EINVAL;
   1547 		tv = mtod(m, struct timeval *);
   1548 		if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz)
   1549 			return EDOM;
   1550 		val = tv->tv_sec * hz + tv->tv_usec / tick;
   1551 		if (val == 0 && tv->tv_usec != 0)
   1552 			val = 1;
   1553 
   1554 		switch (optname) {
   1555 
   1556 		case SO_SNDTIMEO:
   1557 			so->so_snd.sb_timeo = val;
   1558 			break;
   1559 		case SO_RCVTIMEO:
   1560 			so->so_rcv.sb_timeo = val;
   1561 			break;
   1562 		}
   1563 		break;
   1564 
   1565 	default:
   1566 		return ENOPROTOOPT;
   1567 	}
   1568 	return 0;
   1569 }
   1570 
   1571 int
   1572 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
   1573 {
   1574 	int error, prerr;
   1575 
   1576 	if (level == SOL_SOCKET)
   1577 		error = sosetopt1(so, level, optname, m);
   1578 	else
   1579 		error = ENOPROTOOPT;
   1580 
   1581 	if ((error == 0 || error == ENOPROTOOPT) &&
   1582 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1583 		/* give the protocol stack a shot */
   1584 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, level,
   1585 		    optname, &m);
   1586 		if (prerr == 0)
   1587 			error = 0;
   1588 		else if (prerr != ENOPROTOOPT)
   1589 			error = prerr;
   1590 	} else if (m != NULL)
   1591 		(void)m_free(m);
   1592 	return error;
   1593 }
   1594 
   1595 int
   1596 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
   1597 {
   1598 	struct mbuf	*m;
   1599 
   1600 	if (level != SOL_SOCKET) {
   1601 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1602 			return ((*so->so_proto->pr_ctloutput)
   1603 				  (PRCO_GETOPT, so, level, optname, mp));
   1604 		} else
   1605 			return (ENOPROTOOPT);
   1606 	} else {
   1607 		m = m_get(M_WAIT, MT_SOOPTS);
   1608 		m->m_len = sizeof(int);
   1609 
   1610 		switch (optname) {
   1611 
   1612 		case SO_LINGER:
   1613 			m->m_len = sizeof(struct linger);
   1614 			mtod(m, struct linger *)->l_onoff =
   1615 			    (so->so_options & SO_LINGER) ? 1 : 0;
   1616 			mtod(m, struct linger *)->l_linger = so->so_linger;
   1617 			break;
   1618 
   1619 		case SO_USELOOPBACK:
   1620 		case SO_DONTROUTE:
   1621 		case SO_DEBUG:
   1622 		case SO_KEEPALIVE:
   1623 		case SO_REUSEADDR:
   1624 		case SO_REUSEPORT:
   1625 		case SO_BROADCAST:
   1626 		case SO_OOBINLINE:
   1627 		case SO_TIMESTAMP:
   1628 			*mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
   1629 			break;
   1630 
   1631 		case SO_TYPE:
   1632 			*mtod(m, int *) = so->so_type;
   1633 			break;
   1634 
   1635 		case SO_ERROR:
   1636 			*mtod(m, int *) = so->so_error;
   1637 			so->so_error = 0;
   1638 			break;
   1639 
   1640 		case SO_SNDBUF:
   1641 			*mtod(m, int *) = so->so_snd.sb_hiwat;
   1642 			break;
   1643 
   1644 		case SO_RCVBUF:
   1645 			*mtod(m, int *) = so->so_rcv.sb_hiwat;
   1646 			break;
   1647 
   1648 		case SO_SNDLOWAT:
   1649 			*mtod(m, int *) = so->so_snd.sb_lowat;
   1650 			break;
   1651 
   1652 		case SO_RCVLOWAT:
   1653 			*mtod(m, int *) = so->so_rcv.sb_lowat;
   1654 			break;
   1655 
   1656 		case SO_SNDTIMEO:
   1657 		case SO_RCVTIMEO:
   1658 		    {
   1659 			int val = (optname == SO_SNDTIMEO ?
   1660 			     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1661 
   1662 			m->m_len = sizeof(struct timeval);
   1663 			mtod(m, struct timeval *)->tv_sec = val / hz;
   1664 			mtod(m, struct timeval *)->tv_usec =
   1665 			    (val % hz) * tick;
   1666 			break;
   1667 		    }
   1668 
   1669 		case SO_OVERFLOWED:
   1670 			*mtod(m, int *) = so->so_rcv.sb_overflowed;
   1671 			break;
   1672 
   1673 		default:
   1674 			(void)m_free(m);
   1675 			return (ENOPROTOOPT);
   1676 		}
   1677 		*mp = m;
   1678 		return (0);
   1679 	}
   1680 }
   1681 
   1682 void
   1683 sohasoutofband(struct socket *so)
   1684 {
   1685 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   1686 	selwakeup(&so->so_rcv.sb_sel);
   1687 }
   1688 
   1689 static void
   1690 filt_sordetach(struct knote *kn)
   1691 {
   1692 	struct socket	*so;
   1693 
   1694 	so = (struct socket *)kn->kn_fp->f_data;
   1695 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   1696 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   1697 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   1698 }
   1699 
   1700 /*ARGSUSED*/
   1701 static int
   1702 filt_soread(struct knote *kn, long hint)
   1703 {
   1704 	struct socket	*so;
   1705 
   1706 	so = (struct socket *)kn->kn_fp->f_data;
   1707 	kn->kn_data = so->so_rcv.sb_cc;
   1708 	if (so->so_state & SS_CANTRCVMORE) {
   1709 		kn->kn_flags |= EV_EOF;
   1710 		kn->kn_fflags = so->so_error;
   1711 		return (1);
   1712 	}
   1713 	if (so->so_error)	/* temporary udp error */
   1714 		return (1);
   1715 	if (kn->kn_sfflags & NOTE_LOWAT)
   1716 		return (kn->kn_data >= kn->kn_sdata);
   1717 	return (kn->kn_data >= so->so_rcv.sb_lowat);
   1718 }
   1719 
   1720 static void
   1721 filt_sowdetach(struct knote *kn)
   1722 {
   1723 	struct socket	*so;
   1724 
   1725 	so = (struct socket *)kn->kn_fp->f_data;
   1726 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   1727 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   1728 		so->so_snd.sb_flags &= ~SB_KNOTE;
   1729 }
   1730 
   1731 /*ARGSUSED*/
   1732 static int
   1733 filt_sowrite(struct knote *kn, long hint)
   1734 {
   1735 	struct socket	*so;
   1736 
   1737 	so = (struct socket *)kn->kn_fp->f_data;
   1738 	kn->kn_data = sbspace(&so->so_snd);
   1739 	if (so->so_state & SS_CANTSENDMORE) {
   1740 		kn->kn_flags |= EV_EOF;
   1741 		kn->kn_fflags = so->so_error;
   1742 		return (1);
   1743 	}
   1744 	if (so->so_error)	/* temporary udp error */
   1745 		return (1);
   1746 	if (((so->so_state & SS_ISCONNECTED) == 0) &&
   1747 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   1748 		return (0);
   1749 	if (kn->kn_sfflags & NOTE_LOWAT)
   1750 		return (kn->kn_data >= kn->kn_sdata);
   1751 	return (kn->kn_data >= so->so_snd.sb_lowat);
   1752 }
   1753 
   1754 /*ARGSUSED*/
   1755 static int
   1756 filt_solisten(struct knote *kn, long hint)
   1757 {
   1758 	struct socket	*so;
   1759 
   1760 	so = (struct socket *)kn->kn_fp->f_data;
   1761 
   1762 	/*
   1763 	 * Set kn_data to number of incoming connections, not
   1764 	 * counting partial (incomplete) connections.
   1765 	 */
   1766 	kn->kn_data = so->so_qlen;
   1767 	return (kn->kn_data > 0);
   1768 }
   1769 
   1770 static const struct filterops solisten_filtops =
   1771 	{ 1, NULL, filt_sordetach, filt_solisten };
   1772 static const struct filterops soread_filtops =
   1773 	{ 1, NULL, filt_sordetach, filt_soread };
   1774 static const struct filterops sowrite_filtops =
   1775 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   1776 
   1777 int
   1778 soo_kqfilter(struct file *fp, struct knote *kn)
   1779 {
   1780 	struct socket	*so;
   1781 	struct sockbuf	*sb;
   1782 
   1783 	so = (struct socket *)kn->kn_fp->f_data;
   1784 	switch (kn->kn_filter) {
   1785 	case EVFILT_READ:
   1786 		if (so->so_options & SO_ACCEPTCONN)
   1787 			kn->kn_fop = &solisten_filtops;
   1788 		else
   1789 			kn->kn_fop = &soread_filtops;
   1790 		sb = &so->so_rcv;
   1791 		break;
   1792 	case EVFILT_WRITE:
   1793 		kn->kn_fop = &sowrite_filtops;
   1794 		sb = &so->so_snd;
   1795 		break;
   1796 	default:
   1797 		return (EINVAL);
   1798 	}
   1799 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   1800 	sb->sb_flags |= SB_KNOTE;
   1801 	return (0);
   1802 }
   1803 
   1804 #include <sys/sysctl.h>
   1805 
   1806 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   1807 
   1808 /*
   1809  * sysctl helper routine for kern.somaxkva.  ensures that the given
   1810  * value is not too small.
   1811  * (XXX should we maybe make sure it's not too large as well?)
   1812  */
   1813 static int
   1814 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   1815 {
   1816 	int error, new_somaxkva;
   1817 	struct sysctlnode node;
   1818 
   1819 	new_somaxkva = somaxkva;
   1820 	node = *rnode;
   1821 	node.sysctl_data = &new_somaxkva;
   1822 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1823 	if (error || newp == NULL)
   1824 		return (error);
   1825 
   1826 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   1827 		return (EINVAL);
   1828 
   1829 	mutex_enter(&so_pendfree_lock);
   1830 	somaxkva = new_somaxkva;
   1831 	cv_broadcast(&socurkva_cv);
   1832 	mutex_exit(&so_pendfree_lock);
   1833 
   1834 	return (error);
   1835 }
   1836 
   1837 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
   1838 {
   1839 
   1840 	sysctl_createv(clog, 0, NULL, NULL,
   1841 		       CTLFLAG_PERMANENT,
   1842 		       CTLTYPE_NODE, "kern", NULL,
   1843 		       NULL, 0, NULL, 0,
   1844 		       CTL_KERN, CTL_EOL);
   1845 
   1846 	sysctl_createv(clog, 0, NULL, NULL,
   1847 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1848 		       CTLTYPE_INT, "somaxkva",
   1849 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   1850 				    "used for socket buffers"),
   1851 		       sysctl_kern_somaxkva, 0, NULL, 0,
   1852 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   1853 }
   1854