Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.151.6.2
      1 /*	$NetBSD: uipc_socket.c,v 1.151.6.2 2008/06/02 13:24:13 mjf Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.151.6.2 2008/06/02 13:24:13 mjf Exp $");
     67 
     68 #include "opt_sock_counters.h"
     69 #include "opt_sosend_loan.h"
     70 #include "opt_mbuftrace.h"
     71 #include "opt_somaxkva.h"
     72 #include "opt_multiprocessor.h"	/* XXX */
     73 
     74 #include <sys/param.h>
     75 #include <sys/systm.h>
     76 #include <sys/proc.h>
     77 #include <sys/file.h>
     78 #include <sys/filedesc.h>
     79 #include <sys/malloc.h>
     80 #include <sys/mbuf.h>
     81 #include <sys/domain.h>
     82 #include <sys/kernel.h>
     83 #include <sys/protosw.h>
     84 #include <sys/socket.h>
     85 #include <sys/socketvar.h>
     86 #include <sys/signalvar.h>
     87 #include <sys/resourcevar.h>
     88 #include <sys/event.h>
     89 #include <sys/poll.h>
     90 #include <sys/kauth.h>
     91 #include <sys/mutex.h>
     92 #include <sys/condvar.h>
     93 
     94 #include <uvm/uvm.h>
     95 
     96 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
     97 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
     98 
     99 extern const struct fileops socketops;
    100 
    101 extern int	somaxconn;			/* patchable (XXX sysctl) */
    102 int		somaxconn = SOMAXCONN;
    103 kmutex_t	*softnet_lock;
    104 
    105 #ifdef SOSEND_COUNTERS
    106 #include <sys/device.h>
    107 
    108 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    109     NULL, "sosend", "loan big");
    110 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    111     NULL, "sosend", "copy big");
    112 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    113     NULL, "sosend", "copy small");
    114 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    115     NULL, "sosend", "kva limit");
    116 
    117 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    118 
    119 EVCNT_ATTACH_STATIC(sosend_loan_big);
    120 EVCNT_ATTACH_STATIC(sosend_copy_big);
    121 EVCNT_ATTACH_STATIC(sosend_copy_small);
    122 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    123 #else
    124 
    125 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    126 
    127 #endif /* SOSEND_COUNTERS */
    128 
    129 static struct callback_entry sokva_reclaimerentry;
    130 
    131 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    132 int sock_loan_thresh = -1;
    133 #else
    134 int sock_loan_thresh = 4096;
    135 #endif
    136 
    137 static kmutex_t so_pendfree_lock;
    138 static struct mbuf *so_pendfree;
    139 
    140 #ifndef SOMAXKVA
    141 #define	SOMAXKVA (16 * 1024 * 1024)
    142 #endif
    143 int somaxkva = SOMAXKVA;
    144 static int socurkva;
    145 static kcondvar_t socurkva_cv;
    146 
    147 #define	SOCK_LOAN_CHUNK		65536
    148 
    149 static size_t sodopendfree(void);
    150 static size_t sodopendfreel(void);
    151 
    152 static vsize_t
    153 sokvareserve(struct socket *so, vsize_t len)
    154 {
    155 	int error;
    156 
    157 	mutex_enter(&so_pendfree_lock);
    158 	while (socurkva + len > somaxkva) {
    159 		size_t freed;
    160 
    161 		/*
    162 		 * try to do pendfree.
    163 		 */
    164 
    165 		freed = sodopendfreel();
    166 
    167 		/*
    168 		 * if some kva was freed, try again.
    169 		 */
    170 
    171 		if (freed)
    172 			continue;
    173 
    174 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    175 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    176 		if (error) {
    177 			len = 0;
    178 			break;
    179 		}
    180 	}
    181 	socurkva += len;
    182 	mutex_exit(&so_pendfree_lock);
    183 	return len;
    184 }
    185 
    186 static void
    187 sokvaunreserve(vsize_t len)
    188 {
    189 
    190 	mutex_enter(&so_pendfree_lock);
    191 	socurkva -= len;
    192 	cv_broadcast(&socurkva_cv);
    193 	mutex_exit(&so_pendfree_lock);
    194 }
    195 
    196 /*
    197  * sokvaalloc: allocate kva for loan.
    198  */
    199 
    200 vaddr_t
    201 sokvaalloc(vsize_t len, struct socket *so)
    202 {
    203 	vaddr_t lva;
    204 
    205 	/*
    206 	 * reserve kva.
    207 	 */
    208 
    209 	if (sokvareserve(so, len) == 0)
    210 		return 0;
    211 
    212 	/*
    213 	 * allocate kva.
    214 	 */
    215 
    216 	lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    217 	if (lva == 0) {
    218 		sokvaunreserve(len);
    219 		return (0);
    220 	}
    221 
    222 	return lva;
    223 }
    224 
    225 /*
    226  * sokvafree: free kva for loan.
    227  */
    228 
    229 void
    230 sokvafree(vaddr_t sva, vsize_t len)
    231 {
    232 
    233 	/*
    234 	 * free kva.
    235 	 */
    236 
    237 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    238 
    239 	/*
    240 	 * unreserve kva.
    241 	 */
    242 
    243 	sokvaunreserve(len);
    244 }
    245 
    246 static void
    247 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    248 {
    249 	vaddr_t sva, eva;
    250 	vsize_t len;
    251 	int npgs;
    252 
    253 	KASSERT(pgs != NULL);
    254 
    255 	eva = round_page((vaddr_t) buf + size);
    256 	sva = trunc_page((vaddr_t) buf);
    257 	len = eva - sva;
    258 	npgs = len >> PAGE_SHIFT;
    259 
    260 	pmap_kremove(sva, len);
    261 	pmap_update(pmap_kernel());
    262 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    263 	sokvafree(sva, len);
    264 }
    265 
    266 static size_t
    267 sodopendfree(void)
    268 {
    269 	size_t rv;
    270 
    271 	if (__predict_true(so_pendfree == NULL))
    272 		return 0;
    273 
    274 	mutex_enter(&so_pendfree_lock);
    275 	rv = sodopendfreel();
    276 	mutex_exit(&so_pendfree_lock);
    277 
    278 	return rv;
    279 }
    280 
    281 /*
    282  * sodopendfreel: free mbufs on "pendfree" list.
    283  * unlock and relock so_pendfree_lock when freeing mbufs.
    284  *
    285  * => called with so_pendfree_lock held.
    286  */
    287 
    288 static size_t
    289 sodopendfreel(void)
    290 {
    291 	struct mbuf *m, *next;
    292 	size_t rv = 0;
    293 
    294 	KASSERT(mutex_owned(&so_pendfree_lock));
    295 
    296 	while (so_pendfree != NULL) {
    297 		m = so_pendfree;
    298 		so_pendfree = NULL;
    299 		mutex_exit(&so_pendfree_lock);
    300 
    301 		for (; m != NULL; m = next) {
    302 			next = m->m_next;
    303 			KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
    304 			KASSERT(m->m_ext.ext_refcnt == 0);
    305 
    306 			rv += m->m_ext.ext_size;
    307 			sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    308 			    m->m_ext.ext_size);
    309 			pool_cache_put(mb_cache, m);
    310 		}
    311 
    312 		mutex_enter(&so_pendfree_lock);
    313 	}
    314 
    315 	return (rv);
    316 }
    317 
    318 void
    319 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    320 {
    321 
    322 	KASSERT(m != NULL);
    323 
    324 	/*
    325 	 * postpone freeing mbuf.
    326 	 *
    327 	 * we can't do it in interrupt context
    328 	 * because we need to put kva back to kernel_map.
    329 	 */
    330 
    331 	mutex_enter(&so_pendfree_lock);
    332 	m->m_next = so_pendfree;
    333 	so_pendfree = m;
    334 	cv_broadcast(&socurkva_cv);
    335 	mutex_exit(&so_pendfree_lock);
    336 }
    337 
    338 static long
    339 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    340 {
    341 	struct iovec *iov = uio->uio_iov;
    342 	vaddr_t sva, eva;
    343 	vsize_t len;
    344 	vaddr_t lva;
    345 	int npgs, error;
    346 	vaddr_t va;
    347 	int i;
    348 
    349 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    350 		return (0);
    351 
    352 	if (iov->iov_len < (size_t) space)
    353 		space = iov->iov_len;
    354 	if (space > SOCK_LOAN_CHUNK)
    355 		space = SOCK_LOAN_CHUNK;
    356 
    357 	eva = round_page((vaddr_t) iov->iov_base + space);
    358 	sva = trunc_page((vaddr_t) iov->iov_base);
    359 	len = eva - sva;
    360 	npgs = len >> PAGE_SHIFT;
    361 
    362 	KASSERT(npgs <= M_EXT_MAXPAGES);
    363 
    364 	lva = sokvaalloc(len, so);
    365 	if (lva == 0)
    366 		return 0;
    367 
    368 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    369 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    370 	if (error) {
    371 		sokvafree(lva, len);
    372 		return (0);
    373 	}
    374 
    375 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    376 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    377 		    VM_PROT_READ);
    378 	pmap_update(pmap_kernel());
    379 
    380 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    381 
    382 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    383 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    384 
    385 	uio->uio_resid -= space;
    386 	/* uio_offset not updated, not set/used for write(2) */
    387 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    388 	uio->uio_iov->iov_len -= space;
    389 	if (uio->uio_iov->iov_len == 0) {
    390 		uio->uio_iov++;
    391 		uio->uio_iovcnt--;
    392 	}
    393 
    394 	return (space);
    395 }
    396 
    397 static int
    398 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    399 {
    400 
    401 	KASSERT(ce == &sokva_reclaimerentry);
    402 	KASSERT(obj == NULL);
    403 
    404 	sodopendfree();
    405 	if (!vm_map_starved_p(kernel_map)) {
    406 		return CALLBACK_CHAIN_ABORT;
    407 	}
    408 	return CALLBACK_CHAIN_CONTINUE;
    409 }
    410 
    411 struct mbuf *
    412 getsombuf(struct socket *so, int type)
    413 {
    414 	struct mbuf *m;
    415 
    416 	m = m_get(M_WAIT, type);
    417 	MCLAIM(m, so->so_mowner);
    418 	return m;
    419 }
    420 
    421 struct mbuf *
    422 m_intopt(struct socket *so, int val)
    423 {
    424 	struct mbuf *m;
    425 
    426 	m = getsombuf(so, MT_SOOPTS);
    427 	m->m_len = sizeof(int);
    428 	*mtod(m, int *) = val;
    429 	return m;
    430 }
    431 
    432 void
    433 soinit(void)
    434 {
    435 
    436 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    437 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    438 	cv_init(&socurkva_cv, "sokva");
    439 	soinit2();
    440 
    441 	/* Set the initial adjusted socket buffer size. */
    442 	if (sb_max_set(sb_max))
    443 		panic("bad initial sb_max value: %lu", sb_max);
    444 
    445 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    446 	    &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
    447 }
    448 
    449 /*
    450  * Socket operation routines.
    451  * These routines are called by the routines in
    452  * sys_socket.c or from a system process, and
    453  * implement the semantics of socket operations by
    454  * switching out to the protocol specific routines.
    455  */
    456 /*ARGSUSED*/
    457 int
    458 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    459 	 struct socket *lockso)
    460 {
    461 	const struct protosw	*prp;
    462 	struct socket	*so;
    463 	uid_t		uid;
    464 	int		error;
    465 	kmutex_t	*lock;
    466 
    467 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    468 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    469 	    KAUTH_ARG(proto));
    470 	if (error != 0)
    471 		return error;
    472 
    473 	if (proto)
    474 		prp = pffindproto(dom, proto, type);
    475 	else
    476 		prp = pffindtype(dom, type);
    477 	if (prp == NULL) {
    478 		/* no support for domain */
    479 		if (pffinddomain(dom) == 0)
    480 			return EAFNOSUPPORT;
    481 		/* no support for socket type */
    482 		if (proto == 0 && type != 0)
    483 			return EPROTOTYPE;
    484 		return EPROTONOSUPPORT;
    485 	}
    486 	if (prp->pr_usrreq == NULL)
    487 		return EPROTONOSUPPORT;
    488 	if (prp->pr_type != type)
    489 		return EPROTOTYPE;
    490 
    491 	so = soget(true);
    492 	so->so_type = type;
    493 	so->so_proto = prp;
    494 	so->so_send = sosend;
    495 	so->so_receive = soreceive;
    496 #ifdef MBUFTRACE
    497 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    498 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    499 	so->so_mowner = &prp->pr_domain->dom_mowner;
    500 #endif
    501 	uid = kauth_cred_geteuid(l->l_cred);
    502 	so->so_uidinfo = uid_find(uid);
    503 	if (lockso != NULL) {
    504 		/* Caller wants us to share a lock. */
    505 		lock = lockso->so_lock;
    506 		so->so_lock = lock;
    507 		mutex_obj_hold(lock);
    508 		mutex_enter(lock);
    509 	} else {
    510 		/* Lock assigned and taken during PRU_ATTACH. */
    511 	}
    512 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
    513 	    (struct mbuf *)(long)proto, NULL, l);
    514 	KASSERT(solocked(so));
    515 	if (error != 0) {
    516 		so->so_state |= SS_NOFDREF;
    517 		sofree(so);
    518 		return error;
    519 	}
    520 	sounlock(so);
    521 	*aso = so;
    522 	return 0;
    523 }
    524 
    525 /* On success, write file descriptor to fdout and return zero.  On
    526  * failure, return non-zero; *fdout will be undefined.
    527  */
    528 int
    529 fsocreate(int domain, struct socket **sop, int type, int protocol,
    530     struct lwp *l, int *fdout)
    531 {
    532 	struct socket	*so;
    533 	struct file	*fp;
    534 	int		fd, error;
    535 
    536 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    537 		return (error);
    538 	fp->f_flag = FREAD|FWRITE;
    539 	fp->f_type = DTYPE_SOCKET;
    540 	fp->f_ops = &socketops;
    541 	error = socreate(domain, &so, type, protocol, l, NULL);
    542 	if (error != 0) {
    543 		fd_abort(curproc, fp, fd);
    544 	} else {
    545 		if (sop != NULL)
    546 			*sop = so;
    547 		fp->f_data = so;
    548 		fd_affix(curproc, fp, fd);
    549 		*fdout = fd;
    550 	}
    551 	return error;
    552 }
    553 
    554 int
    555 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    556 {
    557 	int	error;
    558 
    559 	solock(so);
    560 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
    561 	sounlock(so);
    562 	return error;
    563 }
    564 
    565 int
    566 solisten(struct socket *so, int backlog, struct lwp *l)
    567 {
    568 	int	error;
    569 
    570 	solock(so);
    571 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    572 	    SS_ISDISCONNECTING)) != 0) {
    573 	    	sounlock(so);
    574 		return (EOPNOTSUPP);
    575 	}
    576 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
    577 	    NULL, NULL, l);
    578 	if (error != 0) {
    579 		sounlock(so);
    580 		return error;
    581 	}
    582 	if (TAILQ_EMPTY(&so->so_q))
    583 		so->so_options |= SO_ACCEPTCONN;
    584 	if (backlog < 0)
    585 		backlog = 0;
    586 	so->so_qlimit = min(backlog, somaxconn);
    587 	sounlock(so);
    588 	return 0;
    589 }
    590 
    591 void
    592 sofree(struct socket *so)
    593 {
    594 	u_int refs;
    595 
    596 	KASSERT(solocked(so));
    597 
    598 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    599 		sounlock(so);
    600 		return;
    601 	}
    602 	if (so->so_head) {
    603 		/*
    604 		 * We must not decommission a socket that's on the accept(2)
    605 		 * queue.  If we do, then accept(2) may hang after select(2)
    606 		 * indicated that the listening socket was ready.
    607 		 */
    608 		if (!soqremque(so, 0)) {
    609 			sounlock(so);
    610 			return;
    611 		}
    612 	}
    613 	if (so->so_rcv.sb_hiwat)
    614 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    615 		    RLIM_INFINITY);
    616 	if (so->so_snd.sb_hiwat)
    617 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    618 		    RLIM_INFINITY);
    619 	sbrelease(&so->so_snd, so);
    620 	KASSERT(!cv_has_waiters(&so->so_cv));
    621 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    622 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    623 	sorflush(so);
    624 	refs = so->so_aborting;	/* XXX */
    625 	sounlock(so);
    626 	if (refs == 0)		/* XXX */
    627 		soput(so);
    628 }
    629 
    630 /*
    631  * Close a socket on last file table reference removal.
    632  * Initiate disconnect if connected.
    633  * Free socket when disconnect complete.
    634  */
    635 int
    636 soclose(struct socket *so)
    637 {
    638 	struct socket	*so2;
    639 	int		error;
    640 	int		error2;
    641 
    642 	error = 0;
    643 	solock(so);
    644 	if (so->so_options & SO_ACCEPTCONN) {
    645 		do {
    646 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    647 				KASSERT(solocked2(so, so2));
    648 				(void) soqremque(so2, 0);
    649 				/* soabort drops the lock. */
    650 				(void) soabort(so2);
    651 				solock(so);
    652 				continue;
    653 			}
    654 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    655 				KASSERT(solocked2(so, so2));
    656 				(void) soqremque(so2, 1);
    657 				/* soabort drops the lock. */
    658 				(void) soabort(so2);
    659 				solock(so);
    660 				continue;
    661 			}
    662 		} while (0);
    663 	}
    664 	if (so->so_pcb == 0)
    665 		goto discard;
    666 	if (so->so_state & SS_ISCONNECTED) {
    667 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    668 			error = sodisconnect(so);
    669 			if (error)
    670 				goto drop;
    671 		}
    672 		if (so->so_options & SO_LINGER) {
    673 			if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
    674 				goto drop;
    675 			while (so->so_state & SS_ISCONNECTED) {
    676 				error = sowait(so, so->so_linger * hz);
    677 				if (error)
    678 					break;
    679 			}
    680 		}
    681 	}
    682  drop:
    683 	if (so->so_pcb) {
    684 		error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    685 		    NULL, NULL, NULL, NULL);
    686 		if (error == 0)
    687 			error = error2;
    688 	}
    689  discard:
    690 	if (so->so_state & SS_NOFDREF)
    691 		panic("soclose: NOFDREF");
    692 	so->so_state |= SS_NOFDREF;
    693 	sofree(so);
    694 	return (error);
    695 }
    696 
    697 /*
    698  * Must be called with the socket locked..  Will return with it unlocked.
    699  */
    700 int
    701 soabort(struct socket *so)
    702 {
    703 	u_int refs;
    704 	int error;
    705 
    706 	KASSERT(solocked(so));
    707 	KASSERT(so->so_head == NULL);
    708 
    709 	so->so_aborting++;		/* XXX */
    710 	error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
    711 	    NULL, NULL, NULL);
    712 	refs = --so->so_aborting;	/* XXX */
    713 	if (error || (refs == 0)) {
    714 		sofree(so);
    715 	} else {
    716 		sounlock(so);
    717 	}
    718 	return error;
    719 }
    720 
    721 int
    722 soaccept(struct socket *so, struct mbuf *nam)
    723 {
    724 	int	error;
    725 
    726 	KASSERT(solocked(so));
    727 
    728 	error = 0;
    729 	if ((so->so_state & SS_NOFDREF) == 0)
    730 		panic("soaccept: !NOFDREF");
    731 	so->so_state &= ~SS_NOFDREF;
    732 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    733 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    734 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    735 		    NULL, nam, NULL, NULL);
    736 	else
    737 		error = ECONNABORTED;
    738 
    739 	return (error);
    740 }
    741 
    742 int
    743 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    744 {
    745 	int		error;
    746 
    747 	KASSERT(solocked(so));
    748 
    749 	if (so->so_options & SO_ACCEPTCONN)
    750 		return (EOPNOTSUPP);
    751 	/*
    752 	 * If protocol is connection-based, can only connect once.
    753 	 * Otherwise, if connected, try to disconnect first.
    754 	 * This allows user to disconnect by connecting to, e.g.,
    755 	 * a null address.
    756 	 */
    757 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    758 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    759 	    (error = sodisconnect(so))))
    760 		error = EISCONN;
    761 	else
    762 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    763 		    NULL, nam, NULL, l);
    764 	return (error);
    765 }
    766 
    767 int
    768 soconnect2(struct socket *so1, struct socket *so2)
    769 {
    770 	int	error;
    771 
    772 	KASSERT(solocked2(so1, so2));
    773 
    774 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    775 	    NULL, (struct mbuf *)so2, NULL, NULL);
    776 	return (error);
    777 }
    778 
    779 int
    780 sodisconnect(struct socket *so)
    781 {
    782 	int	error;
    783 
    784 	KASSERT(solocked(so));
    785 
    786 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    787 		error = ENOTCONN;
    788 	} else if (so->so_state & SS_ISDISCONNECTING) {
    789 		error = EALREADY;
    790 	} else {
    791 		error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    792 		    NULL, NULL, NULL, NULL);
    793 	}
    794 	sodopendfree();
    795 	return (error);
    796 }
    797 
    798 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    799 /*
    800  * Send on a socket.
    801  * If send must go all at once and message is larger than
    802  * send buffering, then hard error.
    803  * Lock against other senders.
    804  * If must go all at once and not enough room now, then
    805  * inform user that this would block and do nothing.
    806  * Otherwise, if nonblocking, send as much as possible.
    807  * The data to be sent is described by "uio" if nonzero,
    808  * otherwise by the mbuf chain "top" (which must be null
    809  * if uio is not).  Data provided in mbuf chain must be small
    810  * enough to send all at once.
    811  *
    812  * Returns nonzero on error, timeout or signal; callers
    813  * must check for short counts if EINTR/ERESTART are returned.
    814  * Data and control buffers are freed on return.
    815  */
    816 int
    817 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    818 	struct mbuf *control, int flags, struct lwp *l)
    819 {
    820 	struct mbuf	**mp, *m;
    821 	struct proc	*p;
    822 	long		space, len, resid, clen, mlen;
    823 	int		error, s, dontroute, atomic;
    824 
    825 	p = l->l_proc;
    826 	sodopendfree();
    827 	clen = 0;
    828 
    829 	/*
    830 	 * solock() provides atomicity of access.  splsoftnet() prevents
    831 	 * protocol processing soft interrupts from interrupting us and
    832 	 * blocking (expensive).
    833 	 */
    834 	s = splsoftnet();
    835 	solock(so);
    836 	atomic = sosendallatonce(so) || top;
    837 	if (uio)
    838 		resid = uio->uio_resid;
    839 	else
    840 		resid = top->m_pkthdr.len;
    841 	/*
    842 	 * In theory resid should be unsigned.
    843 	 * However, space must be signed, as it might be less than 0
    844 	 * if we over-committed, and we must use a signed comparison
    845 	 * of space and resid.  On the other hand, a negative resid
    846 	 * causes us to loop sending 0-length segments to the protocol.
    847 	 */
    848 	if (resid < 0) {
    849 		error = EINVAL;
    850 		goto out;
    851 	}
    852 	dontroute =
    853 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    854 	    (so->so_proto->pr_flags & PR_ATOMIC);
    855 	l->l_ru.ru_msgsnd++;
    856 	if (control)
    857 		clen = control->m_len;
    858  restart:
    859 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    860 		goto out;
    861 	do {
    862 		if (so->so_state & SS_CANTSENDMORE) {
    863 			error = EPIPE;
    864 			goto release;
    865 		}
    866 		if (so->so_error) {
    867 			error = so->so_error;
    868 			so->so_error = 0;
    869 			goto release;
    870 		}
    871 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    872 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    873 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    874 				    !(resid == 0 && clen != 0)) {
    875 					error = ENOTCONN;
    876 					goto release;
    877 				}
    878 			} else if (addr == 0) {
    879 				error = EDESTADDRREQ;
    880 				goto release;
    881 			}
    882 		}
    883 		space = sbspace(&so->so_snd);
    884 		if (flags & MSG_OOB)
    885 			space += 1024;
    886 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    887 		    clen > so->so_snd.sb_hiwat) {
    888 			error = EMSGSIZE;
    889 			goto release;
    890 		}
    891 		if (space < resid + clen &&
    892 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    893 			if (so->so_nbio) {
    894 				error = EWOULDBLOCK;
    895 				goto release;
    896 			}
    897 			sbunlock(&so->so_snd);
    898 			error = sbwait(&so->so_snd);
    899 			if (error)
    900 				goto out;
    901 			goto restart;
    902 		}
    903 		mp = &top;
    904 		space -= clen;
    905 		do {
    906 			if (uio == NULL) {
    907 				/*
    908 				 * Data is prepackaged in "top".
    909 				 */
    910 				resid = 0;
    911 				if (flags & MSG_EOR)
    912 					top->m_flags |= M_EOR;
    913 			} else do {
    914 				sounlock(so);
    915 				splx(s);
    916 				if (top == NULL) {
    917 					m = m_gethdr(M_WAIT, MT_DATA);
    918 					mlen = MHLEN;
    919 					m->m_pkthdr.len = 0;
    920 					m->m_pkthdr.rcvif = NULL;
    921 				} else {
    922 					m = m_get(M_WAIT, MT_DATA);
    923 					mlen = MLEN;
    924 				}
    925 				MCLAIM(m, so->so_snd.sb_mowner);
    926 				if (sock_loan_thresh >= 0 &&
    927 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
    928 				    space >= sock_loan_thresh &&
    929 				    (len = sosend_loan(so, uio, m,
    930 						       space)) != 0) {
    931 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    932 					space -= len;
    933 					goto have_data;
    934 				}
    935 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
    936 					SOSEND_COUNTER_INCR(&sosend_copy_big);
    937 					m_clget(m, M_WAIT);
    938 					if ((m->m_flags & M_EXT) == 0)
    939 						goto nopages;
    940 					mlen = MCLBYTES;
    941 					if (atomic && top == 0) {
    942 						len = lmin(MCLBYTES - max_hdr,
    943 						    resid);
    944 						m->m_data += max_hdr;
    945 					} else
    946 						len = lmin(MCLBYTES, resid);
    947 					space -= len;
    948 				} else {
    949  nopages:
    950 					SOSEND_COUNTER_INCR(&sosend_copy_small);
    951 					len = lmin(lmin(mlen, resid), space);
    952 					space -= len;
    953 					/*
    954 					 * For datagram protocols, leave room
    955 					 * for protocol headers in first mbuf.
    956 					 */
    957 					if (atomic && top == 0 && len < mlen)
    958 						MH_ALIGN(m, len);
    959 				}
    960 				error = uiomove(mtod(m, void *), (int)len, uio);
    961  have_data:
    962 				resid = uio->uio_resid;
    963 				m->m_len = len;
    964 				*mp = m;
    965 				top->m_pkthdr.len += len;
    966 				s = splsoftnet();
    967 				solock(so);
    968 				if (error != 0)
    969 					goto release;
    970 				mp = &m->m_next;
    971 				if (resid <= 0) {
    972 					if (flags & MSG_EOR)
    973 						top->m_flags |= M_EOR;
    974 					break;
    975 				}
    976 			} while (space > 0 && atomic);
    977 
    978 			if (so->so_state & SS_CANTSENDMORE) {
    979 				error = EPIPE;
    980 				goto release;
    981 			}
    982 			if (dontroute)
    983 				so->so_options |= SO_DONTROUTE;
    984 			if (resid > 0)
    985 				so->so_state |= SS_MORETOCOME;
    986 			error = (*so->so_proto->pr_usrreq)(so,
    987 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
    988 			    top, addr, control, curlwp);
    989 			if (dontroute)
    990 				so->so_options &= ~SO_DONTROUTE;
    991 			if (resid > 0)
    992 				so->so_state &= ~SS_MORETOCOME;
    993 			clen = 0;
    994 			control = NULL;
    995 			top = NULL;
    996 			mp = &top;
    997 			if (error != 0)
    998 				goto release;
    999 		} while (resid && space > 0);
   1000 	} while (resid);
   1001 
   1002  release:
   1003 	sbunlock(&so->so_snd);
   1004  out:
   1005 	sounlock(so);
   1006 	splx(s);
   1007 	if (top)
   1008 		m_freem(top);
   1009 	if (control)
   1010 		m_freem(control);
   1011 	return (error);
   1012 }
   1013 
   1014 /*
   1015  * Following replacement or removal of the first mbuf on the first
   1016  * mbuf chain of a socket buffer, push necessary state changes back
   1017  * into the socket buffer so that other consumers see the values
   1018  * consistently.  'nextrecord' is the callers locally stored value of
   1019  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1020  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1021  */
   1022 static void
   1023 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1024 {
   1025 
   1026 	KASSERT(solocked(sb->sb_so));
   1027 
   1028 	/*
   1029 	 * First, update for the new value of nextrecord.  If necessary,
   1030 	 * make it the first record.
   1031 	 */
   1032 	if (sb->sb_mb != NULL)
   1033 		sb->sb_mb->m_nextpkt = nextrecord;
   1034 	else
   1035 		sb->sb_mb = nextrecord;
   1036 
   1037         /*
   1038          * Now update any dependent socket buffer fields to reflect
   1039          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1040          * the addition of a second clause that takes care of the
   1041          * case where sb_mb has been updated, but remains the last
   1042          * record.
   1043          */
   1044         if (sb->sb_mb == NULL) {
   1045                 sb->sb_mbtail = NULL;
   1046                 sb->sb_lastrecord = NULL;
   1047         } else if (sb->sb_mb->m_nextpkt == NULL)
   1048                 sb->sb_lastrecord = sb->sb_mb;
   1049 }
   1050 
   1051 /*
   1052  * Implement receive operations on a socket.
   1053  * We depend on the way that records are added to the sockbuf
   1054  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1055  * must begin with an address if the protocol so specifies,
   1056  * followed by an optional mbuf or mbufs containing ancillary data,
   1057  * and then zero or more mbufs of data.
   1058  * In order to avoid blocking network interrupts for the entire time here,
   1059  * we splx() while doing the actual copy to user space.
   1060  * Although the sockbuf is locked, new data may still be appended,
   1061  * and thus we must maintain consistency of the sockbuf during that time.
   1062  *
   1063  * The caller may receive the data as a single mbuf chain by supplying
   1064  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1065  * only for the count in uio_resid.
   1066  */
   1067 int
   1068 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1069 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1070 {
   1071 	struct lwp *l = curlwp;
   1072 	struct mbuf	*m, **mp, *mt;
   1073 	int atomic, flags, len, error, s, offset, moff, type, orig_resid;
   1074 	const struct protosw	*pr;
   1075 	struct mbuf	*nextrecord;
   1076 	int		mbuf_removed = 0;
   1077 	const struct domain *dom;
   1078 
   1079 	pr = so->so_proto;
   1080 	atomic = pr->pr_flags & PR_ATOMIC;
   1081 	dom = pr->pr_domain;
   1082 	mp = mp0;
   1083 	type = 0;
   1084 	orig_resid = uio->uio_resid;
   1085 
   1086 	if (paddr != NULL)
   1087 		*paddr = NULL;
   1088 	if (controlp != NULL)
   1089 		*controlp = NULL;
   1090 	if (flagsp != NULL)
   1091 		flags = *flagsp &~ MSG_EOR;
   1092 	else
   1093 		flags = 0;
   1094 
   1095 	if ((flags & MSG_DONTWAIT) == 0)
   1096 		sodopendfree();
   1097 
   1098 	if (flags & MSG_OOB) {
   1099 		m = m_get(M_WAIT, MT_DATA);
   1100 		solock(so);
   1101 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
   1102 		    (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
   1103 		sounlock(so);
   1104 		if (error)
   1105 			goto bad;
   1106 		do {
   1107 			error = uiomove(mtod(m, void *),
   1108 			    (int) min(uio->uio_resid, m->m_len), uio);
   1109 			m = m_free(m);
   1110 		} while (uio->uio_resid > 0 && error == 0 && m);
   1111  bad:
   1112 		if (m != NULL)
   1113 			m_freem(m);
   1114 		return error;
   1115 	}
   1116 	if (mp != NULL)
   1117 		*mp = NULL;
   1118 
   1119 	/*
   1120 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1121 	 * protocol processing soft interrupts from interrupting us and
   1122 	 * blocking (expensive).
   1123 	 */
   1124 	s = splsoftnet();
   1125 	solock(so);
   1126 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
   1127 		(*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
   1128 
   1129  restart:
   1130 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1131 		sounlock(so);
   1132 		splx(s);
   1133 		return error;
   1134 	}
   1135 
   1136 	m = so->so_rcv.sb_mb;
   1137 	/*
   1138 	 * If we have less data than requested, block awaiting more
   1139 	 * (subject to any timeout) if:
   1140 	 *   1. the current count is less than the low water mark,
   1141 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1142 	 *	receive operation at once if we block (resid <= hiwat), or
   1143 	 *   3. MSG_DONTWAIT is not set.
   1144 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1145 	 * we have to do the receive in sections, and thus risk returning
   1146 	 * a short count if a timeout or signal occurs after we start.
   1147 	 */
   1148 	if (m == NULL ||
   1149 	    ((flags & MSG_DONTWAIT) == 0 &&
   1150 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1151 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1152 	      ((flags & MSG_WAITALL) &&
   1153 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1154 	     m->m_nextpkt == NULL && !atomic)) {
   1155 #ifdef DIAGNOSTIC
   1156 		if (m == NULL && so->so_rcv.sb_cc)
   1157 			panic("receive 1");
   1158 #endif
   1159 		if (so->so_error) {
   1160 			if (m != NULL)
   1161 				goto dontblock;
   1162 			error = so->so_error;
   1163 			if ((flags & MSG_PEEK) == 0)
   1164 				so->so_error = 0;
   1165 			goto release;
   1166 		}
   1167 		if (so->so_state & SS_CANTRCVMORE) {
   1168 			if (m != NULL)
   1169 				goto dontblock;
   1170 			else
   1171 				goto release;
   1172 		}
   1173 		for (; m != NULL; m = m->m_next)
   1174 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1175 				m = so->so_rcv.sb_mb;
   1176 				goto dontblock;
   1177 			}
   1178 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1179 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1180 			error = ENOTCONN;
   1181 			goto release;
   1182 		}
   1183 		if (uio->uio_resid == 0)
   1184 			goto release;
   1185 		if (so->so_nbio || (flags & MSG_DONTWAIT)) {
   1186 			error = EWOULDBLOCK;
   1187 			goto release;
   1188 		}
   1189 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1190 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1191 		sbunlock(&so->so_rcv);
   1192 		error = sbwait(&so->so_rcv);
   1193 		if (error != 0) {
   1194 			sounlock(so);
   1195 			splx(s);
   1196 			return error;
   1197 		}
   1198 		goto restart;
   1199 	}
   1200  dontblock:
   1201 	/*
   1202 	 * On entry here, m points to the first record of the socket buffer.
   1203 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1204 	 * pointer to the next record in the socket buffer.  We must keep the
   1205 	 * various socket buffer pointers and local stack versions of the
   1206 	 * pointers in sync, pushing out modifications before dropping the
   1207 	 * socket lock, and re-reading them when picking it up.
   1208 	 *
   1209 	 * Otherwise, we will race with the network stack appending new data
   1210 	 * or records onto the socket buffer by using inconsistent/stale
   1211 	 * versions of the field, possibly resulting in socket buffer
   1212 	 * corruption.
   1213 	 *
   1214 	 * By holding the high-level sblock(), we prevent simultaneous
   1215 	 * readers from pulling off the front of the socket buffer.
   1216 	 */
   1217 	if (l != NULL)
   1218 		l->l_ru.ru_msgrcv++;
   1219 	KASSERT(m == so->so_rcv.sb_mb);
   1220 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1221 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1222 	nextrecord = m->m_nextpkt;
   1223 	if (pr->pr_flags & PR_ADDR) {
   1224 #ifdef DIAGNOSTIC
   1225 		if (m->m_type != MT_SONAME)
   1226 			panic("receive 1a");
   1227 #endif
   1228 		orig_resid = 0;
   1229 		if (flags & MSG_PEEK) {
   1230 			if (paddr)
   1231 				*paddr = m_copy(m, 0, m->m_len);
   1232 			m = m->m_next;
   1233 		} else {
   1234 			sbfree(&so->so_rcv, m);
   1235 			mbuf_removed = 1;
   1236 			if (paddr != NULL) {
   1237 				*paddr = m;
   1238 				so->so_rcv.sb_mb = m->m_next;
   1239 				m->m_next = NULL;
   1240 				m = so->so_rcv.sb_mb;
   1241 			} else {
   1242 				MFREE(m, so->so_rcv.sb_mb);
   1243 				m = so->so_rcv.sb_mb;
   1244 			}
   1245 			sbsync(&so->so_rcv, nextrecord);
   1246 		}
   1247 	}
   1248 
   1249 	/*
   1250 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1251 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1252 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1253 	 * perform externalization (or freeing if controlp == NULL).
   1254 	 */
   1255 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1256 		struct mbuf *cm = NULL, *cmn;
   1257 		struct mbuf **cme = &cm;
   1258 
   1259 		do {
   1260 			if (flags & MSG_PEEK) {
   1261 				if (controlp != NULL) {
   1262 					*controlp = m_copy(m, 0, m->m_len);
   1263 					controlp = &(*controlp)->m_next;
   1264 				}
   1265 				m = m->m_next;
   1266 			} else {
   1267 				sbfree(&so->so_rcv, m);
   1268 				so->so_rcv.sb_mb = m->m_next;
   1269 				m->m_next = NULL;
   1270 				*cme = m;
   1271 				cme = &(*cme)->m_next;
   1272 				m = so->so_rcv.sb_mb;
   1273 			}
   1274 		} while (m != NULL && m->m_type == MT_CONTROL);
   1275 		if ((flags & MSG_PEEK) == 0)
   1276 			sbsync(&so->so_rcv, nextrecord);
   1277 		for (; cm != NULL; cm = cmn) {
   1278 			cmn = cm->m_next;
   1279 			cm->m_next = NULL;
   1280 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1281 			if (controlp != NULL) {
   1282 				if (dom->dom_externalize != NULL &&
   1283 				    type == SCM_RIGHTS) {
   1284 					sounlock(so);
   1285 					splx(s);
   1286 					error = (*dom->dom_externalize)(cm, l);
   1287 					s = splsoftnet();
   1288 					solock(so);
   1289 				}
   1290 				*controlp = cm;
   1291 				while (*controlp != NULL)
   1292 					controlp = &(*controlp)->m_next;
   1293 			} else {
   1294 				/*
   1295 				 * Dispose of any SCM_RIGHTS message that went
   1296 				 * through the read path rather than recv.
   1297 				 */
   1298 				if (dom->dom_dispose != NULL &&
   1299 				    type == SCM_RIGHTS) {
   1300 				    	sounlock(so);
   1301 					(*dom->dom_dispose)(cm);
   1302 					solock(so);
   1303 				}
   1304 				m_freem(cm);
   1305 			}
   1306 		}
   1307 		if (m != NULL)
   1308 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1309 		else
   1310 			nextrecord = so->so_rcv.sb_mb;
   1311 		orig_resid = 0;
   1312 	}
   1313 
   1314 	/* If m is non-NULL, we have some data to read. */
   1315 	if (__predict_true(m != NULL)) {
   1316 		type = m->m_type;
   1317 		if (type == MT_OOBDATA)
   1318 			flags |= MSG_OOB;
   1319 	}
   1320 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1321 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1322 
   1323 	moff = 0;
   1324 	offset = 0;
   1325 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1326 		if (m->m_type == MT_OOBDATA) {
   1327 			if (type != MT_OOBDATA)
   1328 				break;
   1329 		} else if (type == MT_OOBDATA)
   1330 			break;
   1331 #ifdef DIAGNOSTIC
   1332 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1333 			panic("receive 3");
   1334 #endif
   1335 		so->so_state &= ~SS_RCVATMARK;
   1336 		len = uio->uio_resid;
   1337 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1338 			len = so->so_oobmark - offset;
   1339 		if (len > m->m_len - moff)
   1340 			len = m->m_len - moff;
   1341 		/*
   1342 		 * If mp is set, just pass back the mbufs.
   1343 		 * Otherwise copy them out via the uio, then free.
   1344 		 * Sockbuf must be consistent here (points to current mbuf,
   1345 		 * it points to next record) when we drop priority;
   1346 		 * we must note any additions to the sockbuf when we
   1347 		 * block interrupts again.
   1348 		 */
   1349 		if (mp == NULL) {
   1350 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1351 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1352 			sounlock(so);
   1353 			splx(s);
   1354 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
   1355 			s = splsoftnet();
   1356 			solock(so);
   1357 			if (error != 0) {
   1358 				/*
   1359 				 * If any part of the record has been removed
   1360 				 * (such as the MT_SONAME mbuf, which will
   1361 				 * happen when PR_ADDR, and thus also
   1362 				 * PR_ATOMIC, is set), then drop the entire
   1363 				 * record to maintain the atomicity of the
   1364 				 * receive operation.
   1365 				 *
   1366 				 * This avoids a later panic("receive 1a")
   1367 				 * when compiled with DIAGNOSTIC.
   1368 				 */
   1369 				if (m && mbuf_removed && atomic)
   1370 					(void) sbdroprecord(&so->so_rcv);
   1371 
   1372 				goto release;
   1373 			}
   1374 		} else
   1375 			uio->uio_resid -= len;
   1376 		if (len == m->m_len - moff) {
   1377 			if (m->m_flags & M_EOR)
   1378 				flags |= MSG_EOR;
   1379 			if (flags & MSG_PEEK) {
   1380 				m = m->m_next;
   1381 				moff = 0;
   1382 			} else {
   1383 				nextrecord = m->m_nextpkt;
   1384 				sbfree(&so->so_rcv, m);
   1385 				if (mp) {
   1386 					*mp = m;
   1387 					mp = &m->m_next;
   1388 					so->so_rcv.sb_mb = m = m->m_next;
   1389 					*mp = NULL;
   1390 				} else {
   1391 					MFREE(m, so->so_rcv.sb_mb);
   1392 					m = so->so_rcv.sb_mb;
   1393 				}
   1394 				/*
   1395 				 * If m != NULL, we also know that
   1396 				 * so->so_rcv.sb_mb != NULL.
   1397 				 */
   1398 				KASSERT(so->so_rcv.sb_mb == m);
   1399 				if (m) {
   1400 					m->m_nextpkt = nextrecord;
   1401 					if (nextrecord == NULL)
   1402 						so->so_rcv.sb_lastrecord = m;
   1403 				} else {
   1404 					so->so_rcv.sb_mb = nextrecord;
   1405 					SB_EMPTY_FIXUP(&so->so_rcv);
   1406 				}
   1407 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1408 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1409 			}
   1410 		} else if (flags & MSG_PEEK)
   1411 			moff += len;
   1412 		else {
   1413 			if (mp != NULL) {
   1414 				mt = m_copym(m, 0, len, M_NOWAIT);
   1415 				if (__predict_false(mt == NULL)) {
   1416 					sounlock(so);
   1417 					mt = m_copym(m, 0, len, M_WAIT);
   1418 					solock(so);
   1419 				}
   1420 				*mp = mt;
   1421 			}
   1422 			m->m_data += len;
   1423 			m->m_len -= len;
   1424 			so->so_rcv.sb_cc -= len;
   1425 		}
   1426 		if (so->so_oobmark) {
   1427 			if ((flags & MSG_PEEK) == 0) {
   1428 				so->so_oobmark -= len;
   1429 				if (so->so_oobmark == 0) {
   1430 					so->so_state |= SS_RCVATMARK;
   1431 					break;
   1432 				}
   1433 			} else {
   1434 				offset += len;
   1435 				if (offset == so->so_oobmark)
   1436 					break;
   1437 			}
   1438 		}
   1439 		if (flags & MSG_EOR)
   1440 			break;
   1441 		/*
   1442 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1443 		 * we must not quit until "uio->uio_resid == 0" or an error
   1444 		 * termination.  If a signal/timeout occurs, return
   1445 		 * with a short count but without error.
   1446 		 * Keep sockbuf locked against other readers.
   1447 		 */
   1448 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1449 		    !sosendallatonce(so) && !nextrecord) {
   1450 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1451 				break;
   1452 			/*
   1453 			 * If we are peeking and the socket receive buffer is
   1454 			 * full, stop since we can't get more data to peek at.
   1455 			 */
   1456 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1457 				break;
   1458 			/*
   1459 			 * If we've drained the socket buffer, tell the
   1460 			 * protocol in case it needs to do something to
   1461 			 * get it filled again.
   1462 			 */
   1463 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1464 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1465 				    NULL, (struct mbuf *)(long)flags, NULL, l);
   1466 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1467 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1468 			error = sbwait(&so->so_rcv);
   1469 			if (error != 0) {
   1470 				sbunlock(&so->so_rcv);
   1471 				sounlock(so);
   1472 				splx(s);
   1473 				return 0;
   1474 			}
   1475 			if ((m = so->so_rcv.sb_mb) != NULL)
   1476 				nextrecord = m->m_nextpkt;
   1477 		}
   1478 	}
   1479 
   1480 	if (m && atomic) {
   1481 		flags |= MSG_TRUNC;
   1482 		if ((flags & MSG_PEEK) == 0)
   1483 			(void) sbdroprecord(&so->so_rcv);
   1484 	}
   1485 	if ((flags & MSG_PEEK) == 0) {
   1486 		if (m == NULL) {
   1487 			/*
   1488 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1489 			 * part makes sure sb_lastrecord is up-to-date if
   1490 			 * there is still data in the socket buffer.
   1491 			 */
   1492 			so->so_rcv.sb_mb = nextrecord;
   1493 			if (so->so_rcv.sb_mb == NULL) {
   1494 				so->so_rcv.sb_mbtail = NULL;
   1495 				so->so_rcv.sb_lastrecord = NULL;
   1496 			} else if (nextrecord->m_nextpkt == NULL)
   1497 				so->so_rcv.sb_lastrecord = nextrecord;
   1498 		}
   1499 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1500 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1501 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1502 			(*pr->pr_usrreq)(so, PRU_RCVD, NULL,
   1503 			    (struct mbuf *)(long)flags, NULL, l);
   1504 	}
   1505 	if (orig_resid == uio->uio_resid && orig_resid &&
   1506 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1507 		sbunlock(&so->so_rcv);
   1508 		goto restart;
   1509 	}
   1510 
   1511 	if (flagsp != NULL)
   1512 		*flagsp |= flags;
   1513  release:
   1514 	sbunlock(&so->so_rcv);
   1515 	sounlock(so);
   1516 	splx(s);
   1517 	return error;
   1518 }
   1519 
   1520 int
   1521 soshutdown(struct socket *so, int how)
   1522 {
   1523 	const struct protosw	*pr;
   1524 	int	error;
   1525 
   1526 	KASSERT(solocked(so));
   1527 
   1528 	pr = so->so_proto;
   1529 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1530 		return (EINVAL);
   1531 
   1532 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1533 		sorflush(so);
   1534 		error = 0;
   1535 	}
   1536 	if (how == SHUT_WR || how == SHUT_RDWR)
   1537 		error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
   1538 		    NULL, NULL, NULL);
   1539 
   1540 	return error;
   1541 }
   1542 
   1543 void
   1544 sorflush(struct socket *so)
   1545 {
   1546 	struct sockbuf	*sb, asb;
   1547 	const struct protosw	*pr;
   1548 
   1549 	KASSERT(solocked(so));
   1550 
   1551 	sb = &so->so_rcv;
   1552 	pr = so->so_proto;
   1553 	socantrcvmore(so);
   1554 	sb->sb_flags |= SB_NOINTR;
   1555 	(void )sblock(sb, M_WAITOK);
   1556 	sbunlock(sb);
   1557 	asb = *sb;
   1558 	/*
   1559 	 * Clear most of the sockbuf structure, but leave some of the
   1560 	 * fields valid.
   1561 	 */
   1562 	memset(&sb->sb_startzero, 0,
   1563 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1564 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1565 		sounlock(so);
   1566 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1567 		solock(so);
   1568 	}
   1569 	sbrelease(&asb, so);
   1570 }
   1571 
   1572 static int
   1573 sosetopt1(struct socket *so, int level, int optname, struct mbuf *m)
   1574 {
   1575 	int optval, val;
   1576 	struct linger	*l;
   1577 	struct sockbuf	*sb;
   1578 	struct timeval *tv;
   1579 
   1580 	switch (optname) {
   1581 
   1582 	case SO_LINGER:
   1583 		if (m == NULL || m->m_len != sizeof(struct linger))
   1584 			return EINVAL;
   1585 		l = mtod(m, struct linger *);
   1586 		if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
   1587 		    l->l_linger > (INT_MAX / hz))
   1588 			return EDOM;
   1589 		so->so_linger = l->l_linger;
   1590 		if (l->l_onoff)
   1591 			so->so_options |= SO_LINGER;
   1592 		else
   1593 			so->so_options &= ~SO_LINGER;
   1594 		break;
   1595 
   1596 	case SO_DEBUG:
   1597 	case SO_KEEPALIVE:
   1598 	case SO_DONTROUTE:
   1599 	case SO_USELOOPBACK:
   1600 	case SO_BROADCAST:
   1601 	case SO_REUSEADDR:
   1602 	case SO_REUSEPORT:
   1603 	case SO_OOBINLINE:
   1604 	case SO_TIMESTAMP:
   1605 		if (m == NULL || m->m_len < sizeof(int))
   1606 			return EINVAL;
   1607 		if (*mtod(m, int *))
   1608 			so->so_options |= optname;
   1609 		else
   1610 			so->so_options &= ~optname;
   1611 		break;
   1612 
   1613 	case SO_SNDBUF:
   1614 	case SO_RCVBUF:
   1615 	case SO_SNDLOWAT:
   1616 	case SO_RCVLOWAT:
   1617 		if (m == NULL || m->m_len < sizeof(int))
   1618 			return EINVAL;
   1619 
   1620 		/*
   1621 		 * Values < 1 make no sense for any of these
   1622 		 * options, so disallow them.
   1623 		 */
   1624 		optval = *mtod(m, int *);
   1625 		if (optval < 1)
   1626 			return EINVAL;
   1627 
   1628 		switch (optname) {
   1629 
   1630 		case SO_SNDBUF:
   1631 		case SO_RCVBUF:
   1632 			sb = (optname == SO_SNDBUF) ?
   1633 			    &so->so_snd : &so->so_rcv;
   1634 			if (sbreserve(sb, (u_long)optval, so) == 0)
   1635 				return ENOBUFS;
   1636 			sb->sb_flags &= ~SB_AUTOSIZE;
   1637 			break;
   1638 
   1639 		/*
   1640 		 * Make sure the low-water is never greater than
   1641 		 * the high-water.
   1642 		 */
   1643 		case SO_SNDLOWAT:
   1644 			so->so_snd.sb_lowat =
   1645 			    (optval > so->so_snd.sb_hiwat) ?
   1646 			    so->so_snd.sb_hiwat : optval;
   1647 			break;
   1648 		case SO_RCVLOWAT:
   1649 			so->so_rcv.sb_lowat =
   1650 			    (optval > so->so_rcv.sb_hiwat) ?
   1651 			    so->so_rcv.sb_hiwat : optval;
   1652 			break;
   1653 		}
   1654 		break;
   1655 
   1656 	case SO_SNDTIMEO:
   1657 	case SO_RCVTIMEO:
   1658 		if (m == NULL || m->m_len < sizeof(*tv))
   1659 			return EINVAL;
   1660 		tv = mtod(m, struct timeval *);
   1661 		if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz)
   1662 			return EDOM;
   1663 		val = tv->tv_sec * hz + tv->tv_usec / tick;
   1664 		if (val == 0 && tv->tv_usec != 0)
   1665 			val = 1;
   1666 
   1667 		switch (optname) {
   1668 
   1669 		case SO_SNDTIMEO:
   1670 			so->so_snd.sb_timeo = val;
   1671 			break;
   1672 		case SO_RCVTIMEO:
   1673 			so->so_rcv.sb_timeo = val;
   1674 			break;
   1675 		}
   1676 		break;
   1677 
   1678 	default:
   1679 		return ENOPROTOOPT;
   1680 	}
   1681 	return 0;
   1682 }
   1683 
   1684 int
   1685 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
   1686 {
   1687 	int error, prerr;
   1688 
   1689 	solock(so);
   1690 	if (level == SOL_SOCKET)
   1691 		error = sosetopt1(so, level, optname, m);
   1692 	else
   1693 		error = ENOPROTOOPT;
   1694 
   1695 	if ((error == 0 || error == ENOPROTOOPT) &&
   1696 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1697 		/* give the protocol stack a shot */
   1698 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, level,
   1699 		    optname, &m);
   1700 		if (prerr == 0)
   1701 			error = 0;
   1702 		else if (prerr != ENOPROTOOPT)
   1703 			error = prerr;
   1704 	} else if (m != NULL)
   1705 		(void)m_free(m);
   1706 	sounlock(so);
   1707 	return error;
   1708 }
   1709 
   1710 int
   1711 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
   1712 {
   1713 	struct mbuf	*m;
   1714 	int		error;
   1715 
   1716 	solock(so);
   1717 	if (level != SOL_SOCKET) {
   1718 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1719 			error = ((*so->so_proto->pr_ctloutput)
   1720 				  (PRCO_GETOPT, so, level, optname, mp));
   1721 		} else
   1722 			error = (ENOPROTOOPT);
   1723 	} else {
   1724 		m = m_get(M_WAIT, MT_SOOPTS);
   1725 		m->m_len = sizeof(int);
   1726 
   1727 		switch (optname) {
   1728 
   1729 		case SO_LINGER:
   1730 			m->m_len = sizeof(struct linger);
   1731 			mtod(m, struct linger *)->l_onoff =
   1732 			    (so->so_options & SO_LINGER) ? 1 : 0;
   1733 			mtod(m, struct linger *)->l_linger = so->so_linger;
   1734 			break;
   1735 
   1736 		case SO_USELOOPBACK:
   1737 		case SO_DONTROUTE:
   1738 		case SO_DEBUG:
   1739 		case SO_KEEPALIVE:
   1740 		case SO_REUSEADDR:
   1741 		case SO_REUSEPORT:
   1742 		case SO_BROADCAST:
   1743 		case SO_OOBINLINE:
   1744 		case SO_TIMESTAMP:
   1745 			*mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
   1746 			break;
   1747 
   1748 		case SO_TYPE:
   1749 			*mtod(m, int *) = so->so_type;
   1750 			break;
   1751 
   1752 		case SO_ERROR:
   1753 			*mtod(m, int *) = so->so_error;
   1754 			so->so_error = 0;
   1755 			break;
   1756 
   1757 		case SO_SNDBUF:
   1758 			*mtod(m, int *) = so->so_snd.sb_hiwat;
   1759 			break;
   1760 
   1761 		case SO_RCVBUF:
   1762 			*mtod(m, int *) = so->so_rcv.sb_hiwat;
   1763 			break;
   1764 
   1765 		case SO_SNDLOWAT:
   1766 			*mtod(m, int *) = so->so_snd.sb_lowat;
   1767 			break;
   1768 
   1769 		case SO_RCVLOWAT:
   1770 			*mtod(m, int *) = so->so_rcv.sb_lowat;
   1771 			break;
   1772 
   1773 		case SO_SNDTIMEO:
   1774 		case SO_RCVTIMEO:
   1775 		    {
   1776 			int val = (optname == SO_SNDTIMEO ?
   1777 			     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1778 
   1779 			m->m_len = sizeof(struct timeval);
   1780 			mtod(m, struct timeval *)->tv_sec = val / hz;
   1781 			mtod(m, struct timeval *)->tv_usec =
   1782 			    (val % hz) * tick;
   1783 			break;
   1784 		    }
   1785 
   1786 		case SO_OVERFLOWED:
   1787 			*mtod(m, int *) = so->so_rcv.sb_overflowed;
   1788 			break;
   1789 
   1790 		default:
   1791 			sounlock(so);
   1792 			(void)m_free(m);
   1793 			return (ENOPROTOOPT);
   1794 		}
   1795 		*mp = m;
   1796 		error = 0;
   1797 	}
   1798 
   1799 	sounlock(so);
   1800 	return (error);
   1801 }
   1802 
   1803 void
   1804 sohasoutofband(struct socket *so)
   1805 {
   1806 
   1807 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   1808 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, 0);
   1809 }
   1810 
   1811 static void
   1812 filt_sordetach(struct knote *kn)
   1813 {
   1814 	struct socket	*so;
   1815 
   1816 	so = ((file_t *)kn->kn_obj)->f_data;
   1817 	solock(so);
   1818 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   1819 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   1820 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   1821 	sounlock(so);
   1822 }
   1823 
   1824 /*ARGSUSED*/
   1825 static int
   1826 filt_soread(struct knote *kn, long hint)
   1827 {
   1828 	struct socket	*so;
   1829 	int rv;
   1830 
   1831 	so = ((file_t *)kn->kn_obj)->f_data;
   1832 	if (hint != NOTE_SUBMIT)
   1833 		solock(so);
   1834 	kn->kn_data = so->so_rcv.sb_cc;
   1835 	if (so->so_state & SS_CANTRCVMORE) {
   1836 		kn->kn_flags |= EV_EOF;
   1837 		kn->kn_fflags = so->so_error;
   1838 		rv = 1;
   1839 	} else if (so->so_error)	/* temporary udp error */
   1840 		rv = 1;
   1841 	else if (kn->kn_sfflags & NOTE_LOWAT)
   1842 		rv = (kn->kn_data >= kn->kn_sdata);
   1843 	else
   1844 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   1845 	if (hint != NOTE_SUBMIT)
   1846 		sounlock(so);
   1847 	return rv;
   1848 }
   1849 
   1850 static void
   1851 filt_sowdetach(struct knote *kn)
   1852 {
   1853 	struct socket	*so;
   1854 
   1855 	so = ((file_t *)kn->kn_obj)->f_data;
   1856 	solock(so);
   1857 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   1858 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   1859 		so->so_snd.sb_flags &= ~SB_KNOTE;
   1860 	sounlock(so);
   1861 }
   1862 
   1863 /*ARGSUSED*/
   1864 static int
   1865 filt_sowrite(struct knote *kn, long hint)
   1866 {
   1867 	struct socket	*so;
   1868 	int rv;
   1869 
   1870 	so = ((file_t *)kn->kn_obj)->f_data;
   1871 	if (hint != NOTE_SUBMIT)
   1872 		solock(so);
   1873 	kn->kn_data = sbspace(&so->so_snd);
   1874 	if (so->so_state & SS_CANTSENDMORE) {
   1875 		kn->kn_flags |= EV_EOF;
   1876 		kn->kn_fflags = so->so_error;
   1877 		rv = 1;
   1878 	} else if (so->so_error)	/* temporary udp error */
   1879 		rv = 1;
   1880 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   1881 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   1882 		rv = 0;
   1883 	else if (kn->kn_sfflags & NOTE_LOWAT)
   1884 		rv = (kn->kn_data >= kn->kn_sdata);
   1885 	else
   1886 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   1887 	if (hint != NOTE_SUBMIT)
   1888 		sounlock(so);
   1889 	return rv;
   1890 }
   1891 
   1892 /*ARGSUSED*/
   1893 static int
   1894 filt_solisten(struct knote *kn, long hint)
   1895 {
   1896 	struct socket	*so;
   1897 	int rv;
   1898 
   1899 	so = ((file_t *)kn->kn_obj)->f_data;
   1900 
   1901 	/*
   1902 	 * Set kn_data to number of incoming connections, not
   1903 	 * counting partial (incomplete) connections.
   1904 	 */
   1905 	if (hint != NOTE_SUBMIT)
   1906 		solock(so);
   1907 	kn->kn_data = so->so_qlen;
   1908 	rv = (kn->kn_data > 0);
   1909 	if (hint != NOTE_SUBMIT)
   1910 		sounlock(so);
   1911 	return rv;
   1912 }
   1913 
   1914 static const struct filterops solisten_filtops =
   1915 	{ 1, NULL, filt_sordetach, filt_solisten };
   1916 static const struct filterops soread_filtops =
   1917 	{ 1, NULL, filt_sordetach, filt_soread };
   1918 static const struct filterops sowrite_filtops =
   1919 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   1920 
   1921 int
   1922 soo_kqfilter(struct file *fp, struct knote *kn)
   1923 {
   1924 	struct socket	*so;
   1925 	struct sockbuf	*sb;
   1926 
   1927 	so = ((file_t *)kn->kn_obj)->f_data;
   1928 	solock(so);
   1929 	switch (kn->kn_filter) {
   1930 	case EVFILT_READ:
   1931 		if (so->so_options & SO_ACCEPTCONN)
   1932 			kn->kn_fop = &solisten_filtops;
   1933 		else
   1934 			kn->kn_fop = &soread_filtops;
   1935 		sb = &so->so_rcv;
   1936 		break;
   1937 	case EVFILT_WRITE:
   1938 		kn->kn_fop = &sowrite_filtops;
   1939 		sb = &so->so_snd;
   1940 		break;
   1941 	default:
   1942 		sounlock(so);
   1943 		return (EINVAL);
   1944 	}
   1945 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   1946 	sb->sb_flags |= SB_KNOTE;
   1947 	sounlock(so);
   1948 	return (0);
   1949 }
   1950 
   1951 static int
   1952 sodopoll(struct socket *so, int events)
   1953 {
   1954 	int revents;
   1955 
   1956 	revents = 0;
   1957 
   1958 	if (events & (POLLIN | POLLRDNORM))
   1959 		if (soreadable(so))
   1960 			revents |= events & (POLLIN | POLLRDNORM);
   1961 
   1962 	if (events & (POLLOUT | POLLWRNORM))
   1963 		if (sowritable(so))
   1964 			revents |= events & (POLLOUT | POLLWRNORM);
   1965 
   1966 	if (events & (POLLPRI | POLLRDBAND))
   1967 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   1968 			revents |= events & (POLLPRI | POLLRDBAND);
   1969 
   1970 	return revents;
   1971 }
   1972 
   1973 int
   1974 sopoll(struct socket *so, int events)
   1975 {
   1976 	int revents = 0;
   1977 
   1978 #ifndef DIAGNOSTIC
   1979 	/*
   1980 	 * Do a quick, unlocked check in expectation that the socket
   1981 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   1982 	 * as the solocked() assertions will fail.
   1983 	 */
   1984 	if ((revents = sodopoll(so, events)) != 0)
   1985 		return revents;
   1986 #endif
   1987 
   1988 	solock(so);
   1989 	if ((revents = sodopoll(so, events)) == 0) {
   1990 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   1991 			selrecord(curlwp, &so->so_rcv.sb_sel);
   1992 			so->so_rcv.sb_flags |= SB_NOTIFY;
   1993 		}
   1994 
   1995 		if (events & (POLLOUT | POLLWRNORM)) {
   1996 			selrecord(curlwp, &so->so_snd.sb_sel);
   1997 			so->so_snd.sb_flags |= SB_NOTIFY;
   1998 		}
   1999 	}
   2000 	sounlock(so);
   2001 
   2002 	return revents;
   2003 }
   2004 
   2005 
   2006 #include <sys/sysctl.h>
   2007 
   2008 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2009 
   2010 /*
   2011  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2012  * value is not too small.
   2013  * (XXX should we maybe make sure it's not too large as well?)
   2014  */
   2015 static int
   2016 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2017 {
   2018 	int error, new_somaxkva;
   2019 	struct sysctlnode node;
   2020 
   2021 	new_somaxkva = somaxkva;
   2022 	node = *rnode;
   2023 	node.sysctl_data = &new_somaxkva;
   2024 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2025 	if (error || newp == NULL)
   2026 		return (error);
   2027 
   2028 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2029 		return (EINVAL);
   2030 
   2031 	mutex_enter(&so_pendfree_lock);
   2032 	somaxkva = new_somaxkva;
   2033 	cv_broadcast(&socurkva_cv);
   2034 	mutex_exit(&so_pendfree_lock);
   2035 
   2036 	return (error);
   2037 }
   2038 
   2039 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
   2040 {
   2041 
   2042 	sysctl_createv(clog, 0, NULL, NULL,
   2043 		       CTLFLAG_PERMANENT,
   2044 		       CTLTYPE_NODE, "kern", NULL,
   2045 		       NULL, 0, NULL, 0,
   2046 		       CTL_KERN, CTL_EOL);
   2047 
   2048 	sysctl_createv(clog, 0, NULL, NULL,
   2049 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2050 		       CTLTYPE_INT, "somaxkva",
   2051 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2052 				    "used for socket buffers"),
   2053 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2054 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2055 }
   2056