uipc_socket.c revision 1.151.6.3 1 /* $NetBSD: uipc_socket.c,v 1.151.6.3 2008/06/29 09:33:14 mjf Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.151.6.3 2008/06/29 09:33:14 mjf Exp $");
67
68 #include "opt_sock_counters.h"
69 #include "opt_sosend_loan.h"
70 #include "opt_mbuftrace.h"
71 #include "opt_somaxkva.h"
72 #include "opt_multiprocessor.h" /* XXX */
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/proc.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/malloc.h>
80 #include <sys/mbuf.h>
81 #include <sys/domain.h>
82 #include <sys/kernel.h>
83 #include <sys/protosw.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/signalvar.h>
87 #include <sys/resourcevar.h>
88 #include <sys/event.h>
89 #include <sys/poll.h>
90 #include <sys/kauth.h>
91 #include <sys/mutex.h>
92 #include <sys/condvar.h>
93
94 #include <uvm/uvm.h>
95
96 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
97 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
98
99 extern const struct fileops socketops;
100
101 extern int somaxconn; /* patchable (XXX sysctl) */
102 int somaxconn = SOMAXCONN;
103 kmutex_t *softnet_lock;
104
105 #ifdef SOSEND_COUNTERS
106 #include <sys/device.h>
107
108 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
109 NULL, "sosend", "loan big");
110 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
111 NULL, "sosend", "copy big");
112 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
113 NULL, "sosend", "copy small");
114 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
115 NULL, "sosend", "kva limit");
116
117 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
118
119 EVCNT_ATTACH_STATIC(sosend_loan_big);
120 EVCNT_ATTACH_STATIC(sosend_copy_big);
121 EVCNT_ATTACH_STATIC(sosend_copy_small);
122 EVCNT_ATTACH_STATIC(sosend_kvalimit);
123 #else
124
125 #define SOSEND_COUNTER_INCR(ev) /* nothing */
126
127 #endif /* SOSEND_COUNTERS */
128
129 static struct callback_entry sokva_reclaimerentry;
130
131 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
132 int sock_loan_thresh = -1;
133 #else
134 int sock_loan_thresh = 4096;
135 #endif
136
137 static kmutex_t so_pendfree_lock;
138 static struct mbuf *so_pendfree;
139
140 #ifndef SOMAXKVA
141 #define SOMAXKVA (16 * 1024 * 1024)
142 #endif
143 int somaxkva = SOMAXKVA;
144 static int socurkva;
145 static kcondvar_t socurkva_cv;
146
147 #define SOCK_LOAN_CHUNK 65536
148
149 static size_t sodopendfree(void);
150 static size_t sodopendfreel(void);
151
152 static vsize_t
153 sokvareserve(struct socket *so, vsize_t len)
154 {
155 int error;
156
157 mutex_enter(&so_pendfree_lock);
158 while (socurkva + len > somaxkva) {
159 size_t freed;
160
161 /*
162 * try to do pendfree.
163 */
164
165 freed = sodopendfreel();
166
167 /*
168 * if some kva was freed, try again.
169 */
170
171 if (freed)
172 continue;
173
174 SOSEND_COUNTER_INCR(&sosend_kvalimit);
175 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
176 if (error) {
177 len = 0;
178 break;
179 }
180 }
181 socurkva += len;
182 mutex_exit(&so_pendfree_lock);
183 return len;
184 }
185
186 static void
187 sokvaunreserve(vsize_t len)
188 {
189
190 mutex_enter(&so_pendfree_lock);
191 socurkva -= len;
192 cv_broadcast(&socurkva_cv);
193 mutex_exit(&so_pendfree_lock);
194 }
195
196 /*
197 * sokvaalloc: allocate kva for loan.
198 */
199
200 vaddr_t
201 sokvaalloc(vsize_t len, struct socket *so)
202 {
203 vaddr_t lva;
204
205 /*
206 * reserve kva.
207 */
208
209 if (sokvareserve(so, len) == 0)
210 return 0;
211
212 /*
213 * allocate kva.
214 */
215
216 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
217 if (lva == 0) {
218 sokvaunreserve(len);
219 return (0);
220 }
221
222 return lva;
223 }
224
225 /*
226 * sokvafree: free kva for loan.
227 */
228
229 void
230 sokvafree(vaddr_t sva, vsize_t len)
231 {
232
233 /*
234 * free kva.
235 */
236
237 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
238
239 /*
240 * unreserve kva.
241 */
242
243 sokvaunreserve(len);
244 }
245
246 static void
247 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
248 {
249 vaddr_t sva, eva;
250 vsize_t len;
251 int npgs;
252
253 KASSERT(pgs != NULL);
254
255 eva = round_page((vaddr_t) buf + size);
256 sva = trunc_page((vaddr_t) buf);
257 len = eva - sva;
258 npgs = len >> PAGE_SHIFT;
259
260 pmap_kremove(sva, len);
261 pmap_update(pmap_kernel());
262 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
263 sokvafree(sva, len);
264 }
265
266 static size_t
267 sodopendfree(void)
268 {
269 size_t rv;
270
271 if (__predict_true(so_pendfree == NULL))
272 return 0;
273
274 mutex_enter(&so_pendfree_lock);
275 rv = sodopendfreel();
276 mutex_exit(&so_pendfree_lock);
277
278 return rv;
279 }
280
281 /*
282 * sodopendfreel: free mbufs on "pendfree" list.
283 * unlock and relock so_pendfree_lock when freeing mbufs.
284 *
285 * => called with so_pendfree_lock held.
286 */
287
288 static size_t
289 sodopendfreel(void)
290 {
291 struct mbuf *m, *next;
292 size_t rv = 0;
293
294 KASSERT(mutex_owned(&so_pendfree_lock));
295
296 while (so_pendfree != NULL) {
297 m = so_pendfree;
298 so_pendfree = NULL;
299 mutex_exit(&so_pendfree_lock);
300
301 for (; m != NULL; m = next) {
302 next = m->m_next;
303 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
304 KASSERT(m->m_ext.ext_refcnt == 0);
305
306 rv += m->m_ext.ext_size;
307 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
308 m->m_ext.ext_size);
309 pool_cache_put(mb_cache, m);
310 }
311
312 mutex_enter(&so_pendfree_lock);
313 }
314
315 return (rv);
316 }
317
318 void
319 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
320 {
321
322 KASSERT(m != NULL);
323
324 /*
325 * postpone freeing mbuf.
326 *
327 * we can't do it in interrupt context
328 * because we need to put kva back to kernel_map.
329 */
330
331 mutex_enter(&so_pendfree_lock);
332 m->m_next = so_pendfree;
333 so_pendfree = m;
334 cv_broadcast(&socurkva_cv);
335 mutex_exit(&so_pendfree_lock);
336 }
337
338 static long
339 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
340 {
341 struct iovec *iov = uio->uio_iov;
342 vaddr_t sva, eva;
343 vsize_t len;
344 vaddr_t lva;
345 int npgs, error;
346 vaddr_t va;
347 int i;
348
349 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
350 return (0);
351
352 if (iov->iov_len < (size_t) space)
353 space = iov->iov_len;
354 if (space > SOCK_LOAN_CHUNK)
355 space = SOCK_LOAN_CHUNK;
356
357 eva = round_page((vaddr_t) iov->iov_base + space);
358 sva = trunc_page((vaddr_t) iov->iov_base);
359 len = eva - sva;
360 npgs = len >> PAGE_SHIFT;
361
362 KASSERT(npgs <= M_EXT_MAXPAGES);
363
364 lva = sokvaalloc(len, so);
365 if (lva == 0)
366 return 0;
367
368 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
369 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
370 if (error) {
371 sokvafree(lva, len);
372 return (0);
373 }
374
375 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
376 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
377 VM_PROT_READ);
378 pmap_update(pmap_kernel());
379
380 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
381
382 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
383 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
384
385 uio->uio_resid -= space;
386 /* uio_offset not updated, not set/used for write(2) */
387 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
388 uio->uio_iov->iov_len -= space;
389 if (uio->uio_iov->iov_len == 0) {
390 uio->uio_iov++;
391 uio->uio_iovcnt--;
392 }
393
394 return (space);
395 }
396
397 static int
398 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
399 {
400
401 KASSERT(ce == &sokva_reclaimerentry);
402 KASSERT(obj == NULL);
403
404 sodopendfree();
405 if (!vm_map_starved_p(kernel_map)) {
406 return CALLBACK_CHAIN_ABORT;
407 }
408 return CALLBACK_CHAIN_CONTINUE;
409 }
410
411 struct mbuf *
412 getsombuf(struct socket *so, int type)
413 {
414 struct mbuf *m;
415
416 m = m_get(M_WAIT, type);
417 MCLAIM(m, so->so_mowner);
418 return m;
419 }
420
421 struct mbuf *
422 m_intopt(struct socket *so, int val)
423 {
424 struct mbuf *m;
425
426 m = getsombuf(so, MT_SOOPTS);
427 m->m_len = sizeof(int);
428 *mtod(m, int *) = val;
429 return m;
430 }
431
432 void
433 soinit(void)
434 {
435
436 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
437 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
438 cv_init(&socurkva_cv, "sokva");
439 soinit2();
440
441 /* Set the initial adjusted socket buffer size. */
442 if (sb_max_set(sb_max))
443 panic("bad initial sb_max value: %lu", sb_max);
444
445 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
446 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
447 }
448
449 /*
450 * Socket operation routines.
451 * These routines are called by the routines in
452 * sys_socket.c or from a system process, and
453 * implement the semantics of socket operations by
454 * switching out to the protocol specific routines.
455 */
456 /*ARGSUSED*/
457 int
458 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
459 struct socket *lockso)
460 {
461 const struct protosw *prp;
462 struct socket *so;
463 uid_t uid;
464 int error;
465 kmutex_t *lock;
466
467 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
468 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
469 KAUTH_ARG(proto));
470 if (error != 0)
471 return error;
472
473 if (proto)
474 prp = pffindproto(dom, proto, type);
475 else
476 prp = pffindtype(dom, type);
477 if (prp == NULL) {
478 /* no support for domain */
479 if (pffinddomain(dom) == 0)
480 return EAFNOSUPPORT;
481 /* no support for socket type */
482 if (proto == 0 && type != 0)
483 return EPROTOTYPE;
484 return EPROTONOSUPPORT;
485 }
486 if (prp->pr_usrreq == NULL)
487 return EPROTONOSUPPORT;
488 if (prp->pr_type != type)
489 return EPROTOTYPE;
490
491 so = soget(true);
492 so->so_type = type;
493 so->so_proto = prp;
494 so->so_send = sosend;
495 so->so_receive = soreceive;
496 #ifdef MBUFTRACE
497 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
498 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
499 so->so_mowner = &prp->pr_domain->dom_mowner;
500 #endif
501 uid = kauth_cred_geteuid(l->l_cred);
502 so->so_uidinfo = uid_find(uid);
503 so->so_egid = kauth_cred_getegid(l->l_cred);
504 so->so_cpid = l->l_proc->p_pid;
505 if (lockso != NULL) {
506 /* Caller wants us to share a lock. */
507 lock = lockso->so_lock;
508 so->so_lock = lock;
509 mutex_obj_hold(lock);
510 mutex_enter(lock);
511 } else {
512 /* Lock assigned and taken during PRU_ATTACH. */
513 }
514 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
515 (struct mbuf *)(long)proto, NULL, l);
516 KASSERT(solocked(so));
517 if (error != 0) {
518 so->so_state |= SS_NOFDREF;
519 sofree(so);
520 return error;
521 }
522 sounlock(so);
523 *aso = so;
524 return 0;
525 }
526
527 /* On success, write file descriptor to fdout and return zero. On
528 * failure, return non-zero; *fdout will be undefined.
529 */
530 int
531 fsocreate(int domain, struct socket **sop, int type, int protocol,
532 struct lwp *l, int *fdout)
533 {
534 struct socket *so;
535 struct file *fp;
536 int fd, error;
537
538 if ((error = fd_allocfile(&fp, &fd)) != 0)
539 return (error);
540 fp->f_flag = FREAD|FWRITE;
541 fp->f_type = DTYPE_SOCKET;
542 fp->f_ops = &socketops;
543 error = socreate(domain, &so, type, protocol, l, NULL);
544 if (error != 0) {
545 fd_abort(curproc, fp, fd);
546 } else {
547 if (sop != NULL)
548 *sop = so;
549 fp->f_data = so;
550 fd_affix(curproc, fp, fd);
551 *fdout = fd;
552 }
553 return error;
554 }
555
556 int
557 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
558 {
559 int error;
560
561 solock(so);
562 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
563 sounlock(so);
564 return error;
565 }
566
567 int
568 solisten(struct socket *so, int backlog, struct lwp *l)
569 {
570 int error;
571
572 solock(so);
573 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
574 SS_ISDISCONNECTING)) != 0) {
575 sounlock(so);
576 return (EOPNOTSUPP);
577 }
578 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
579 NULL, NULL, l);
580 if (error != 0) {
581 sounlock(so);
582 return error;
583 }
584 if (TAILQ_EMPTY(&so->so_q))
585 so->so_options |= SO_ACCEPTCONN;
586 if (backlog < 0)
587 backlog = 0;
588 so->so_qlimit = min(backlog, somaxconn);
589 sounlock(so);
590 return 0;
591 }
592
593 void
594 sofree(struct socket *so)
595 {
596 u_int refs;
597
598 KASSERT(solocked(so));
599
600 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
601 sounlock(so);
602 return;
603 }
604 if (so->so_head) {
605 /*
606 * We must not decommission a socket that's on the accept(2)
607 * queue. If we do, then accept(2) may hang after select(2)
608 * indicated that the listening socket was ready.
609 */
610 if (!soqremque(so, 0)) {
611 sounlock(so);
612 return;
613 }
614 }
615 if (so->so_rcv.sb_hiwat)
616 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
617 RLIM_INFINITY);
618 if (so->so_snd.sb_hiwat)
619 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
620 RLIM_INFINITY);
621 sbrelease(&so->so_snd, so);
622 KASSERT(!cv_has_waiters(&so->so_cv));
623 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
624 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
625 sorflush(so);
626 refs = so->so_aborting; /* XXX */
627 sounlock(so);
628 if (refs == 0) /* XXX */
629 soput(so);
630 }
631
632 /*
633 * Close a socket on last file table reference removal.
634 * Initiate disconnect if connected.
635 * Free socket when disconnect complete.
636 */
637 int
638 soclose(struct socket *so)
639 {
640 struct socket *so2;
641 int error;
642 int error2;
643
644 error = 0;
645 solock(so);
646 if (so->so_options & SO_ACCEPTCONN) {
647 do {
648 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
649 KASSERT(solocked2(so, so2));
650 (void) soqremque(so2, 0);
651 /* soabort drops the lock. */
652 (void) soabort(so2);
653 solock(so);
654 continue;
655 }
656 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
657 KASSERT(solocked2(so, so2));
658 (void) soqremque(so2, 1);
659 /* soabort drops the lock. */
660 (void) soabort(so2);
661 solock(so);
662 continue;
663 }
664 } while (0);
665 }
666 if (so->so_pcb == 0)
667 goto discard;
668 if (so->so_state & SS_ISCONNECTED) {
669 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
670 error = sodisconnect(so);
671 if (error)
672 goto drop;
673 }
674 if (so->so_options & SO_LINGER) {
675 if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
676 goto drop;
677 while (so->so_state & SS_ISCONNECTED) {
678 error = sowait(so, so->so_linger * hz);
679 if (error)
680 break;
681 }
682 }
683 }
684 drop:
685 if (so->so_pcb) {
686 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
687 NULL, NULL, NULL, NULL);
688 if (error == 0)
689 error = error2;
690 }
691 discard:
692 if (so->so_state & SS_NOFDREF)
693 panic("soclose: NOFDREF");
694 so->so_state |= SS_NOFDREF;
695 sofree(so);
696 return (error);
697 }
698
699 /*
700 * Must be called with the socket locked.. Will return with it unlocked.
701 */
702 int
703 soabort(struct socket *so)
704 {
705 u_int refs;
706 int error;
707
708 KASSERT(solocked(so));
709 KASSERT(so->so_head == NULL);
710
711 so->so_aborting++; /* XXX */
712 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
713 NULL, NULL, NULL);
714 refs = --so->so_aborting; /* XXX */
715 if (error || (refs == 0)) {
716 sofree(so);
717 } else {
718 sounlock(so);
719 }
720 return error;
721 }
722
723 int
724 soaccept(struct socket *so, struct mbuf *nam)
725 {
726 int error;
727
728 KASSERT(solocked(so));
729
730 error = 0;
731 if ((so->so_state & SS_NOFDREF) == 0)
732 panic("soaccept: !NOFDREF");
733 so->so_state &= ~SS_NOFDREF;
734 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
735 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
736 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
737 NULL, nam, NULL, NULL);
738 else
739 error = ECONNABORTED;
740
741 return (error);
742 }
743
744 int
745 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
746 {
747 int error;
748
749 KASSERT(solocked(so));
750
751 if (so->so_options & SO_ACCEPTCONN)
752 return (EOPNOTSUPP);
753 /*
754 * If protocol is connection-based, can only connect once.
755 * Otherwise, if connected, try to disconnect first.
756 * This allows user to disconnect by connecting to, e.g.,
757 * a null address.
758 */
759 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
760 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
761 (error = sodisconnect(so))))
762 error = EISCONN;
763 else
764 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
765 NULL, nam, NULL, l);
766 return (error);
767 }
768
769 int
770 soconnect2(struct socket *so1, struct socket *so2)
771 {
772 int error;
773
774 KASSERT(solocked2(so1, so2));
775
776 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
777 NULL, (struct mbuf *)so2, NULL, NULL);
778 return (error);
779 }
780
781 int
782 sodisconnect(struct socket *so)
783 {
784 int error;
785
786 KASSERT(solocked(so));
787
788 if ((so->so_state & SS_ISCONNECTED) == 0) {
789 error = ENOTCONN;
790 } else if (so->so_state & SS_ISDISCONNECTING) {
791 error = EALREADY;
792 } else {
793 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
794 NULL, NULL, NULL, NULL);
795 }
796 sodopendfree();
797 return (error);
798 }
799
800 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
801 /*
802 * Send on a socket.
803 * If send must go all at once and message is larger than
804 * send buffering, then hard error.
805 * Lock against other senders.
806 * If must go all at once and not enough room now, then
807 * inform user that this would block and do nothing.
808 * Otherwise, if nonblocking, send as much as possible.
809 * The data to be sent is described by "uio" if nonzero,
810 * otherwise by the mbuf chain "top" (which must be null
811 * if uio is not). Data provided in mbuf chain must be small
812 * enough to send all at once.
813 *
814 * Returns nonzero on error, timeout or signal; callers
815 * must check for short counts if EINTR/ERESTART are returned.
816 * Data and control buffers are freed on return.
817 */
818 int
819 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
820 struct mbuf *control, int flags, struct lwp *l)
821 {
822 struct mbuf **mp, *m;
823 struct proc *p;
824 long space, len, resid, clen, mlen;
825 int error, s, dontroute, atomic;
826
827 p = l->l_proc;
828 sodopendfree();
829 clen = 0;
830
831 /*
832 * solock() provides atomicity of access. splsoftnet() prevents
833 * protocol processing soft interrupts from interrupting us and
834 * blocking (expensive).
835 */
836 s = splsoftnet();
837 solock(so);
838 atomic = sosendallatonce(so) || top;
839 if (uio)
840 resid = uio->uio_resid;
841 else
842 resid = top->m_pkthdr.len;
843 /*
844 * In theory resid should be unsigned.
845 * However, space must be signed, as it might be less than 0
846 * if we over-committed, and we must use a signed comparison
847 * of space and resid. On the other hand, a negative resid
848 * causes us to loop sending 0-length segments to the protocol.
849 */
850 if (resid < 0) {
851 error = EINVAL;
852 goto out;
853 }
854 dontroute =
855 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
856 (so->so_proto->pr_flags & PR_ATOMIC);
857 l->l_ru.ru_msgsnd++;
858 if (control)
859 clen = control->m_len;
860 restart:
861 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
862 goto out;
863 do {
864 if (so->so_state & SS_CANTSENDMORE) {
865 error = EPIPE;
866 goto release;
867 }
868 if (so->so_error) {
869 error = so->so_error;
870 so->so_error = 0;
871 goto release;
872 }
873 if ((so->so_state & SS_ISCONNECTED) == 0) {
874 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
875 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
876 !(resid == 0 && clen != 0)) {
877 error = ENOTCONN;
878 goto release;
879 }
880 } else if (addr == 0) {
881 error = EDESTADDRREQ;
882 goto release;
883 }
884 }
885 space = sbspace(&so->so_snd);
886 if (flags & MSG_OOB)
887 space += 1024;
888 if ((atomic && resid > so->so_snd.sb_hiwat) ||
889 clen > so->so_snd.sb_hiwat) {
890 error = EMSGSIZE;
891 goto release;
892 }
893 if (space < resid + clen &&
894 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
895 if (so->so_nbio) {
896 error = EWOULDBLOCK;
897 goto release;
898 }
899 sbunlock(&so->so_snd);
900 error = sbwait(&so->so_snd);
901 if (error)
902 goto out;
903 goto restart;
904 }
905 mp = ⊤
906 space -= clen;
907 do {
908 if (uio == NULL) {
909 /*
910 * Data is prepackaged in "top".
911 */
912 resid = 0;
913 if (flags & MSG_EOR)
914 top->m_flags |= M_EOR;
915 } else do {
916 sounlock(so);
917 splx(s);
918 if (top == NULL) {
919 m = m_gethdr(M_WAIT, MT_DATA);
920 mlen = MHLEN;
921 m->m_pkthdr.len = 0;
922 m->m_pkthdr.rcvif = NULL;
923 } else {
924 m = m_get(M_WAIT, MT_DATA);
925 mlen = MLEN;
926 }
927 MCLAIM(m, so->so_snd.sb_mowner);
928 if (sock_loan_thresh >= 0 &&
929 uio->uio_iov->iov_len >= sock_loan_thresh &&
930 space >= sock_loan_thresh &&
931 (len = sosend_loan(so, uio, m,
932 space)) != 0) {
933 SOSEND_COUNTER_INCR(&sosend_loan_big);
934 space -= len;
935 goto have_data;
936 }
937 if (resid >= MINCLSIZE && space >= MCLBYTES) {
938 SOSEND_COUNTER_INCR(&sosend_copy_big);
939 m_clget(m, M_WAIT);
940 if ((m->m_flags & M_EXT) == 0)
941 goto nopages;
942 mlen = MCLBYTES;
943 if (atomic && top == 0) {
944 len = lmin(MCLBYTES - max_hdr,
945 resid);
946 m->m_data += max_hdr;
947 } else
948 len = lmin(MCLBYTES, resid);
949 space -= len;
950 } else {
951 nopages:
952 SOSEND_COUNTER_INCR(&sosend_copy_small);
953 len = lmin(lmin(mlen, resid), space);
954 space -= len;
955 /*
956 * For datagram protocols, leave room
957 * for protocol headers in first mbuf.
958 */
959 if (atomic && top == 0 && len < mlen)
960 MH_ALIGN(m, len);
961 }
962 error = uiomove(mtod(m, void *), (int)len, uio);
963 have_data:
964 resid = uio->uio_resid;
965 m->m_len = len;
966 *mp = m;
967 top->m_pkthdr.len += len;
968 s = splsoftnet();
969 solock(so);
970 if (error != 0)
971 goto release;
972 mp = &m->m_next;
973 if (resid <= 0) {
974 if (flags & MSG_EOR)
975 top->m_flags |= M_EOR;
976 break;
977 }
978 } while (space > 0 && atomic);
979
980 if (so->so_state & SS_CANTSENDMORE) {
981 error = EPIPE;
982 goto release;
983 }
984 if (dontroute)
985 so->so_options |= SO_DONTROUTE;
986 if (resid > 0)
987 so->so_state |= SS_MORETOCOME;
988 error = (*so->so_proto->pr_usrreq)(so,
989 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
990 top, addr, control, curlwp);
991 if (dontroute)
992 so->so_options &= ~SO_DONTROUTE;
993 if (resid > 0)
994 so->so_state &= ~SS_MORETOCOME;
995 clen = 0;
996 control = NULL;
997 top = NULL;
998 mp = ⊤
999 if (error != 0)
1000 goto release;
1001 } while (resid && space > 0);
1002 } while (resid);
1003
1004 release:
1005 sbunlock(&so->so_snd);
1006 out:
1007 sounlock(so);
1008 splx(s);
1009 if (top)
1010 m_freem(top);
1011 if (control)
1012 m_freem(control);
1013 return (error);
1014 }
1015
1016 /*
1017 * Following replacement or removal of the first mbuf on the first
1018 * mbuf chain of a socket buffer, push necessary state changes back
1019 * into the socket buffer so that other consumers see the values
1020 * consistently. 'nextrecord' is the callers locally stored value of
1021 * the original value of sb->sb_mb->m_nextpkt which must be restored
1022 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1023 */
1024 static void
1025 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1026 {
1027
1028 KASSERT(solocked(sb->sb_so));
1029
1030 /*
1031 * First, update for the new value of nextrecord. If necessary,
1032 * make it the first record.
1033 */
1034 if (sb->sb_mb != NULL)
1035 sb->sb_mb->m_nextpkt = nextrecord;
1036 else
1037 sb->sb_mb = nextrecord;
1038
1039 /*
1040 * Now update any dependent socket buffer fields to reflect
1041 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1042 * the addition of a second clause that takes care of the
1043 * case where sb_mb has been updated, but remains the last
1044 * record.
1045 */
1046 if (sb->sb_mb == NULL) {
1047 sb->sb_mbtail = NULL;
1048 sb->sb_lastrecord = NULL;
1049 } else if (sb->sb_mb->m_nextpkt == NULL)
1050 sb->sb_lastrecord = sb->sb_mb;
1051 }
1052
1053 /*
1054 * Implement receive operations on a socket.
1055 * We depend on the way that records are added to the sockbuf
1056 * by sbappend*. In particular, each record (mbufs linked through m_next)
1057 * must begin with an address if the protocol so specifies,
1058 * followed by an optional mbuf or mbufs containing ancillary data,
1059 * and then zero or more mbufs of data.
1060 * In order to avoid blocking network interrupts for the entire time here,
1061 * we splx() while doing the actual copy to user space.
1062 * Although the sockbuf is locked, new data may still be appended,
1063 * and thus we must maintain consistency of the sockbuf during that time.
1064 *
1065 * The caller may receive the data as a single mbuf chain by supplying
1066 * an mbuf **mp0 for use in returning the chain. The uio is then used
1067 * only for the count in uio_resid.
1068 */
1069 int
1070 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1071 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1072 {
1073 struct lwp *l = curlwp;
1074 struct mbuf *m, **mp, *mt;
1075 int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1076 const struct protosw *pr;
1077 struct mbuf *nextrecord;
1078 int mbuf_removed = 0;
1079 const struct domain *dom;
1080
1081 pr = so->so_proto;
1082 atomic = pr->pr_flags & PR_ATOMIC;
1083 dom = pr->pr_domain;
1084 mp = mp0;
1085 type = 0;
1086 orig_resid = uio->uio_resid;
1087
1088 if (paddr != NULL)
1089 *paddr = NULL;
1090 if (controlp != NULL)
1091 *controlp = NULL;
1092 if (flagsp != NULL)
1093 flags = *flagsp &~ MSG_EOR;
1094 else
1095 flags = 0;
1096
1097 if ((flags & MSG_DONTWAIT) == 0)
1098 sodopendfree();
1099
1100 if (flags & MSG_OOB) {
1101 m = m_get(M_WAIT, MT_DATA);
1102 solock(so);
1103 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1104 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1105 sounlock(so);
1106 if (error)
1107 goto bad;
1108 do {
1109 error = uiomove(mtod(m, void *),
1110 (int) min(uio->uio_resid, m->m_len), uio);
1111 m = m_free(m);
1112 } while (uio->uio_resid > 0 && error == 0 && m);
1113 bad:
1114 if (m != NULL)
1115 m_freem(m);
1116 return error;
1117 }
1118 if (mp != NULL)
1119 *mp = NULL;
1120
1121 /*
1122 * solock() provides atomicity of access. splsoftnet() prevents
1123 * protocol processing soft interrupts from interrupting us and
1124 * blocking (expensive).
1125 */
1126 s = splsoftnet();
1127 solock(so);
1128 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1129 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1130
1131 restart:
1132 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1133 sounlock(so);
1134 splx(s);
1135 return error;
1136 }
1137
1138 m = so->so_rcv.sb_mb;
1139 /*
1140 * If we have less data than requested, block awaiting more
1141 * (subject to any timeout) if:
1142 * 1. the current count is less than the low water mark,
1143 * 2. MSG_WAITALL is set, and it is possible to do the entire
1144 * receive operation at once if we block (resid <= hiwat), or
1145 * 3. MSG_DONTWAIT is not set.
1146 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1147 * we have to do the receive in sections, and thus risk returning
1148 * a short count if a timeout or signal occurs after we start.
1149 */
1150 if (m == NULL ||
1151 ((flags & MSG_DONTWAIT) == 0 &&
1152 so->so_rcv.sb_cc < uio->uio_resid &&
1153 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1154 ((flags & MSG_WAITALL) &&
1155 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1156 m->m_nextpkt == NULL && !atomic)) {
1157 #ifdef DIAGNOSTIC
1158 if (m == NULL && so->so_rcv.sb_cc)
1159 panic("receive 1");
1160 #endif
1161 if (so->so_error) {
1162 if (m != NULL)
1163 goto dontblock;
1164 error = so->so_error;
1165 if ((flags & MSG_PEEK) == 0)
1166 so->so_error = 0;
1167 goto release;
1168 }
1169 if (so->so_state & SS_CANTRCVMORE) {
1170 if (m != NULL)
1171 goto dontblock;
1172 else
1173 goto release;
1174 }
1175 for (; m != NULL; m = m->m_next)
1176 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1177 m = so->so_rcv.sb_mb;
1178 goto dontblock;
1179 }
1180 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1181 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1182 error = ENOTCONN;
1183 goto release;
1184 }
1185 if (uio->uio_resid == 0)
1186 goto release;
1187 if (so->so_nbio || (flags & MSG_DONTWAIT)) {
1188 error = EWOULDBLOCK;
1189 goto release;
1190 }
1191 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1192 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1193 sbunlock(&so->so_rcv);
1194 error = sbwait(&so->so_rcv);
1195 if (error != 0) {
1196 sounlock(so);
1197 splx(s);
1198 return error;
1199 }
1200 goto restart;
1201 }
1202 dontblock:
1203 /*
1204 * On entry here, m points to the first record of the socket buffer.
1205 * From this point onward, we maintain 'nextrecord' as a cache of the
1206 * pointer to the next record in the socket buffer. We must keep the
1207 * various socket buffer pointers and local stack versions of the
1208 * pointers in sync, pushing out modifications before dropping the
1209 * socket lock, and re-reading them when picking it up.
1210 *
1211 * Otherwise, we will race with the network stack appending new data
1212 * or records onto the socket buffer by using inconsistent/stale
1213 * versions of the field, possibly resulting in socket buffer
1214 * corruption.
1215 *
1216 * By holding the high-level sblock(), we prevent simultaneous
1217 * readers from pulling off the front of the socket buffer.
1218 */
1219 if (l != NULL)
1220 l->l_ru.ru_msgrcv++;
1221 KASSERT(m == so->so_rcv.sb_mb);
1222 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1223 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1224 nextrecord = m->m_nextpkt;
1225 if (pr->pr_flags & PR_ADDR) {
1226 #ifdef DIAGNOSTIC
1227 if (m->m_type != MT_SONAME)
1228 panic("receive 1a");
1229 #endif
1230 orig_resid = 0;
1231 if (flags & MSG_PEEK) {
1232 if (paddr)
1233 *paddr = m_copy(m, 0, m->m_len);
1234 m = m->m_next;
1235 } else {
1236 sbfree(&so->so_rcv, m);
1237 mbuf_removed = 1;
1238 if (paddr != NULL) {
1239 *paddr = m;
1240 so->so_rcv.sb_mb = m->m_next;
1241 m->m_next = NULL;
1242 m = so->so_rcv.sb_mb;
1243 } else {
1244 MFREE(m, so->so_rcv.sb_mb);
1245 m = so->so_rcv.sb_mb;
1246 }
1247 sbsync(&so->so_rcv, nextrecord);
1248 }
1249 }
1250
1251 /*
1252 * Process one or more MT_CONTROL mbufs present before any data mbufs
1253 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1254 * just copy the data; if !MSG_PEEK, we call into the protocol to
1255 * perform externalization (or freeing if controlp == NULL).
1256 */
1257 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1258 struct mbuf *cm = NULL, *cmn;
1259 struct mbuf **cme = &cm;
1260
1261 do {
1262 if (flags & MSG_PEEK) {
1263 if (controlp != NULL) {
1264 *controlp = m_copy(m, 0, m->m_len);
1265 controlp = &(*controlp)->m_next;
1266 }
1267 m = m->m_next;
1268 } else {
1269 sbfree(&so->so_rcv, m);
1270 so->so_rcv.sb_mb = m->m_next;
1271 m->m_next = NULL;
1272 *cme = m;
1273 cme = &(*cme)->m_next;
1274 m = so->so_rcv.sb_mb;
1275 }
1276 } while (m != NULL && m->m_type == MT_CONTROL);
1277 if ((flags & MSG_PEEK) == 0)
1278 sbsync(&so->so_rcv, nextrecord);
1279 for (; cm != NULL; cm = cmn) {
1280 cmn = cm->m_next;
1281 cm->m_next = NULL;
1282 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1283 if (controlp != NULL) {
1284 if (dom->dom_externalize != NULL &&
1285 type == SCM_RIGHTS) {
1286 sounlock(so);
1287 splx(s);
1288 error = (*dom->dom_externalize)(cm, l);
1289 s = splsoftnet();
1290 solock(so);
1291 }
1292 *controlp = cm;
1293 while (*controlp != NULL)
1294 controlp = &(*controlp)->m_next;
1295 } else {
1296 /*
1297 * Dispose of any SCM_RIGHTS message that went
1298 * through the read path rather than recv.
1299 */
1300 if (dom->dom_dispose != NULL &&
1301 type == SCM_RIGHTS) {
1302 sounlock(so);
1303 (*dom->dom_dispose)(cm);
1304 solock(so);
1305 }
1306 m_freem(cm);
1307 }
1308 }
1309 if (m != NULL)
1310 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1311 else
1312 nextrecord = so->so_rcv.sb_mb;
1313 orig_resid = 0;
1314 }
1315
1316 /* If m is non-NULL, we have some data to read. */
1317 if (__predict_true(m != NULL)) {
1318 type = m->m_type;
1319 if (type == MT_OOBDATA)
1320 flags |= MSG_OOB;
1321 }
1322 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1323 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1324
1325 moff = 0;
1326 offset = 0;
1327 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1328 if (m->m_type == MT_OOBDATA) {
1329 if (type != MT_OOBDATA)
1330 break;
1331 } else if (type == MT_OOBDATA)
1332 break;
1333 #ifdef DIAGNOSTIC
1334 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1335 panic("receive 3");
1336 #endif
1337 so->so_state &= ~SS_RCVATMARK;
1338 len = uio->uio_resid;
1339 if (so->so_oobmark && len > so->so_oobmark - offset)
1340 len = so->so_oobmark - offset;
1341 if (len > m->m_len - moff)
1342 len = m->m_len - moff;
1343 /*
1344 * If mp is set, just pass back the mbufs.
1345 * Otherwise copy them out via the uio, then free.
1346 * Sockbuf must be consistent here (points to current mbuf,
1347 * it points to next record) when we drop priority;
1348 * we must note any additions to the sockbuf when we
1349 * block interrupts again.
1350 */
1351 if (mp == NULL) {
1352 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1353 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1354 sounlock(so);
1355 splx(s);
1356 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1357 s = splsoftnet();
1358 solock(so);
1359 if (error != 0) {
1360 /*
1361 * If any part of the record has been removed
1362 * (such as the MT_SONAME mbuf, which will
1363 * happen when PR_ADDR, and thus also
1364 * PR_ATOMIC, is set), then drop the entire
1365 * record to maintain the atomicity of the
1366 * receive operation.
1367 *
1368 * This avoids a later panic("receive 1a")
1369 * when compiled with DIAGNOSTIC.
1370 */
1371 if (m && mbuf_removed && atomic)
1372 (void) sbdroprecord(&so->so_rcv);
1373
1374 goto release;
1375 }
1376 } else
1377 uio->uio_resid -= len;
1378 if (len == m->m_len - moff) {
1379 if (m->m_flags & M_EOR)
1380 flags |= MSG_EOR;
1381 if (flags & MSG_PEEK) {
1382 m = m->m_next;
1383 moff = 0;
1384 } else {
1385 nextrecord = m->m_nextpkt;
1386 sbfree(&so->so_rcv, m);
1387 if (mp) {
1388 *mp = m;
1389 mp = &m->m_next;
1390 so->so_rcv.sb_mb = m = m->m_next;
1391 *mp = NULL;
1392 } else {
1393 MFREE(m, so->so_rcv.sb_mb);
1394 m = so->so_rcv.sb_mb;
1395 }
1396 /*
1397 * If m != NULL, we also know that
1398 * so->so_rcv.sb_mb != NULL.
1399 */
1400 KASSERT(so->so_rcv.sb_mb == m);
1401 if (m) {
1402 m->m_nextpkt = nextrecord;
1403 if (nextrecord == NULL)
1404 so->so_rcv.sb_lastrecord = m;
1405 } else {
1406 so->so_rcv.sb_mb = nextrecord;
1407 SB_EMPTY_FIXUP(&so->so_rcv);
1408 }
1409 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1410 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1411 }
1412 } else if (flags & MSG_PEEK)
1413 moff += len;
1414 else {
1415 if (mp != NULL) {
1416 mt = m_copym(m, 0, len, M_NOWAIT);
1417 if (__predict_false(mt == NULL)) {
1418 sounlock(so);
1419 mt = m_copym(m, 0, len, M_WAIT);
1420 solock(so);
1421 }
1422 *mp = mt;
1423 }
1424 m->m_data += len;
1425 m->m_len -= len;
1426 so->so_rcv.sb_cc -= len;
1427 }
1428 if (so->so_oobmark) {
1429 if ((flags & MSG_PEEK) == 0) {
1430 so->so_oobmark -= len;
1431 if (so->so_oobmark == 0) {
1432 so->so_state |= SS_RCVATMARK;
1433 break;
1434 }
1435 } else {
1436 offset += len;
1437 if (offset == so->so_oobmark)
1438 break;
1439 }
1440 }
1441 if (flags & MSG_EOR)
1442 break;
1443 /*
1444 * If the MSG_WAITALL flag is set (for non-atomic socket),
1445 * we must not quit until "uio->uio_resid == 0" or an error
1446 * termination. If a signal/timeout occurs, return
1447 * with a short count but without error.
1448 * Keep sockbuf locked against other readers.
1449 */
1450 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1451 !sosendallatonce(so) && !nextrecord) {
1452 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1453 break;
1454 /*
1455 * If we are peeking and the socket receive buffer is
1456 * full, stop since we can't get more data to peek at.
1457 */
1458 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1459 break;
1460 /*
1461 * If we've drained the socket buffer, tell the
1462 * protocol in case it needs to do something to
1463 * get it filled again.
1464 */
1465 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1466 (*pr->pr_usrreq)(so, PRU_RCVD,
1467 NULL, (struct mbuf *)(long)flags, NULL, l);
1468 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1469 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1470 error = sbwait(&so->so_rcv);
1471 if (error != 0) {
1472 sbunlock(&so->so_rcv);
1473 sounlock(so);
1474 splx(s);
1475 return 0;
1476 }
1477 if ((m = so->so_rcv.sb_mb) != NULL)
1478 nextrecord = m->m_nextpkt;
1479 }
1480 }
1481
1482 if (m && atomic) {
1483 flags |= MSG_TRUNC;
1484 if ((flags & MSG_PEEK) == 0)
1485 (void) sbdroprecord(&so->so_rcv);
1486 }
1487 if ((flags & MSG_PEEK) == 0) {
1488 if (m == NULL) {
1489 /*
1490 * First part is an inline SB_EMPTY_FIXUP(). Second
1491 * part makes sure sb_lastrecord is up-to-date if
1492 * there is still data in the socket buffer.
1493 */
1494 so->so_rcv.sb_mb = nextrecord;
1495 if (so->so_rcv.sb_mb == NULL) {
1496 so->so_rcv.sb_mbtail = NULL;
1497 so->so_rcv.sb_lastrecord = NULL;
1498 } else if (nextrecord->m_nextpkt == NULL)
1499 so->so_rcv.sb_lastrecord = nextrecord;
1500 }
1501 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1502 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1503 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1504 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1505 (struct mbuf *)(long)flags, NULL, l);
1506 }
1507 if (orig_resid == uio->uio_resid && orig_resid &&
1508 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1509 sbunlock(&so->so_rcv);
1510 goto restart;
1511 }
1512
1513 if (flagsp != NULL)
1514 *flagsp |= flags;
1515 release:
1516 sbunlock(&so->so_rcv);
1517 sounlock(so);
1518 splx(s);
1519 return error;
1520 }
1521
1522 int
1523 soshutdown(struct socket *so, int how)
1524 {
1525 const struct protosw *pr;
1526 int error;
1527
1528 KASSERT(solocked(so));
1529
1530 pr = so->so_proto;
1531 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1532 return (EINVAL);
1533
1534 if (how == SHUT_RD || how == SHUT_RDWR) {
1535 sorflush(so);
1536 error = 0;
1537 }
1538 if (how == SHUT_WR || how == SHUT_RDWR)
1539 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1540 NULL, NULL, NULL);
1541
1542 return error;
1543 }
1544
1545 void
1546 sorflush(struct socket *so)
1547 {
1548 struct sockbuf *sb, asb;
1549 const struct protosw *pr;
1550
1551 KASSERT(solocked(so));
1552
1553 sb = &so->so_rcv;
1554 pr = so->so_proto;
1555 socantrcvmore(so);
1556 sb->sb_flags |= SB_NOINTR;
1557 (void )sblock(sb, M_WAITOK);
1558 sbunlock(sb);
1559 asb = *sb;
1560 /*
1561 * Clear most of the sockbuf structure, but leave some of the
1562 * fields valid.
1563 */
1564 memset(&sb->sb_startzero, 0,
1565 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1566 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1567 sounlock(so);
1568 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1569 solock(so);
1570 }
1571 sbrelease(&asb, so);
1572 }
1573
1574 static int
1575 sosetopt1(struct socket *so, int level, int optname, struct mbuf *m)
1576 {
1577 int optval, val;
1578 struct linger *l;
1579 struct sockbuf *sb;
1580 struct timeval *tv;
1581
1582 switch (optname) {
1583
1584 case SO_LINGER:
1585 if (m == NULL || m->m_len != sizeof(struct linger))
1586 return EINVAL;
1587 l = mtod(m, struct linger *);
1588 if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
1589 l->l_linger > (INT_MAX / hz))
1590 return EDOM;
1591 so->so_linger = l->l_linger;
1592 if (l->l_onoff)
1593 so->so_options |= SO_LINGER;
1594 else
1595 so->so_options &= ~SO_LINGER;
1596 break;
1597
1598 case SO_DEBUG:
1599 case SO_KEEPALIVE:
1600 case SO_DONTROUTE:
1601 case SO_USELOOPBACK:
1602 case SO_BROADCAST:
1603 case SO_REUSEADDR:
1604 case SO_REUSEPORT:
1605 case SO_OOBINLINE:
1606 case SO_TIMESTAMP:
1607 if (m == NULL || m->m_len < sizeof(int))
1608 return EINVAL;
1609 if (*mtod(m, int *))
1610 so->so_options |= optname;
1611 else
1612 so->so_options &= ~optname;
1613 break;
1614
1615 case SO_SNDBUF:
1616 case SO_RCVBUF:
1617 case SO_SNDLOWAT:
1618 case SO_RCVLOWAT:
1619 if (m == NULL || m->m_len < sizeof(int))
1620 return EINVAL;
1621
1622 /*
1623 * Values < 1 make no sense for any of these
1624 * options, so disallow them.
1625 */
1626 optval = *mtod(m, int *);
1627 if (optval < 1)
1628 return EINVAL;
1629
1630 switch (optname) {
1631
1632 case SO_SNDBUF:
1633 case SO_RCVBUF:
1634 sb = (optname == SO_SNDBUF) ?
1635 &so->so_snd : &so->so_rcv;
1636 if (sbreserve(sb, (u_long)optval, so) == 0)
1637 return ENOBUFS;
1638 sb->sb_flags &= ~SB_AUTOSIZE;
1639 break;
1640
1641 /*
1642 * Make sure the low-water is never greater than
1643 * the high-water.
1644 */
1645 case SO_SNDLOWAT:
1646 so->so_snd.sb_lowat =
1647 (optval > so->so_snd.sb_hiwat) ?
1648 so->so_snd.sb_hiwat : optval;
1649 break;
1650 case SO_RCVLOWAT:
1651 so->so_rcv.sb_lowat =
1652 (optval > so->so_rcv.sb_hiwat) ?
1653 so->so_rcv.sb_hiwat : optval;
1654 break;
1655 }
1656 break;
1657
1658 case SO_SNDTIMEO:
1659 case SO_RCVTIMEO:
1660 if (m == NULL || m->m_len < sizeof(*tv))
1661 return EINVAL;
1662 tv = mtod(m, struct timeval *);
1663 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz)
1664 return EDOM;
1665 val = tv->tv_sec * hz + tv->tv_usec / tick;
1666 if (val == 0 && tv->tv_usec != 0)
1667 val = 1;
1668
1669 switch (optname) {
1670
1671 case SO_SNDTIMEO:
1672 so->so_snd.sb_timeo = val;
1673 break;
1674 case SO_RCVTIMEO:
1675 so->so_rcv.sb_timeo = val;
1676 break;
1677 }
1678 break;
1679
1680 default:
1681 return ENOPROTOOPT;
1682 }
1683 return 0;
1684 }
1685
1686 int
1687 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
1688 {
1689 int error, prerr;
1690
1691 solock(so);
1692 if (level == SOL_SOCKET)
1693 error = sosetopt1(so, level, optname, m);
1694 else
1695 error = ENOPROTOOPT;
1696
1697 if ((error == 0 || error == ENOPROTOOPT) &&
1698 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1699 /* give the protocol stack a shot */
1700 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, level,
1701 optname, &m);
1702 if (prerr == 0)
1703 error = 0;
1704 else if (prerr != ENOPROTOOPT)
1705 error = prerr;
1706 } else if (m != NULL)
1707 (void)m_free(m);
1708 sounlock(so);
1709 return error;
1710 }
1711
1712 int
1713 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1714 {
1715 struct mbuf *m;
1716 int error;
1717
1718 solock(so);
1719 if (level != SOL_SOCKET) {
1720 if (so->so_proto && so->so_proto->pr_ctloutput) {
1721 error = ((*so->so_proto->pr_ctloutput)
1722 (PRCO_GETOPT, so, level, optname, mp));
1723 } else
1724 error = (ENOPROTOOPT);
1725 } else {
1726 m = m_get(M_WAIT, MT_SOOPTS);
1727 m->m_len = sizeof(int);
1728
1729 switch (optname) {
1730
1731 case SO_LINGER:
1732 m->m_len = sizeof(struct linger);
1733 mtod(m, struct linger *)->l_onoff =
1734 (so->so_options & SO_LINGER) ? 1 : 0;
1735 mtod(m, struct linger *)->l_linger = so->so_linger;
1736 break;
1737
1738 case SO_USELOOPBACK:
1739 case SO_DONTROUTE:
1740 case SO_DEBUG:
1741 case SO_KEEPALIVE:
1742 case SO_REUSEADDR:
1743 case SO_REUSEPORT:
1744 case SO_BROADCAST:
1745 case SO_OOBINLINE:
1746 case SO_TIMESTAMP:
1747 *mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
1748 break;
1749
1750 case SO_TYPE:
1751 *mtod(m, int *) = so->so_type;
1752 break;
1753
1754 case SO_ERROR:
1755 *mtod(m, int *) = so->so_error;
1756 so->so_error = 0;
1757 break;
1758
1759 case SO_SNDBUF:
1760 *mtod(m, int *) = so->so_snd.sb_hiwat;
1761 break;
1762
1763 case SO_RCVBUF:
1764 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1765 break;
1766
1767 case SO_SNDLOWAT:
1768 *mtod(m, int *) = so->so_snd.sb_lowat;
1769 break;
1770
1771 case SO_RCVLOWAT:
1772 *mtod(m, int *) = so->so_rcv.sb_lowat;
1773 break;
1774
1775 case SO_SNDTIMEO:
1776 case SO_RCVTIMEO:
1777 {
1778 int val = (optname == SO_SNDTIMEO ?
1779 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1780
1781 m->m_len = sizeof(struct timeval);
1782 mtod(m, struct timeval *)->tv_sec = val / hz;
1783 mtod(m, struct timeval *)->tv_usec =
1784 (val % hz) * tick;
1785 break;
1786 }
1787
1788 case SO_OVERFLOWED:
1789 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1790 break;
1791
1792 default:
1793 sounlock(so);
1794 (void)m_free(m);
1795 return (ENOPROTOOPT);
1796 }
1797 *mp = m;
1798 error = 0;
1799 }
1800
1801 sounlock(so);
1802 return (error);
1803 }
1804
1805 void
1806 sohasoutofband(struct socket *so)
1807 {
1808
1809 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1810 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, 0);
1811 }
1812
1813 static void
1814 filt_sordetach(struct knote *kn)
1815 {
1816 struct socket *so;
1817
1818 so = ((file_t *)kn->kn_obj)->f_data;
1819 solock(so);
1820 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1821 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1822 so->so_rcv.sb_flags &= ~SB_KNOTE;
1823 sounlock(so);
1824 }
1825
1826 /*ARGSUSED*/
1827 static int
1828 filt_soread(struct knote *kn, long hint)
1829 {
1830 struct socket *so;
1831 int rv;
1832
1833 so = ((file_t *)kn->kn_obj)->f_data;
1834 if (hint != NOTE_SUBMIT)
1835 solock(so);
1836 kn->kn_data = so->so_rcv.sb_cc;
1837 if (so->so_state & SS_CANTRCVMORE) {
1838 kn->kn_flags |= EV_EOF;
1839 kn->kn_fflags = so->so_error;
1840 rv = 1;
1841 } else if (so->so_error) /* temporary udp error */
1842 rv = 1;
1843 else if (kn->kn_sfflags & NOTE_LOWAT)
1844 rv = (kn->kn_data >= kn->kn_sdata);
1845 else
1846 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
1847 if (hint != NOTE_SUBMIT)
1848 sounlock(so);
1849 return rv;
1850 }
1851
1852 static void
1853 filt_sowdetach(struct knote *kn)
1854 {
1855 struct socket *so;
1856
1857 so = ((file_t *)kn->kn_obj)->f_data;
1858 solock(so);
1859 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1860 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1861 so->so_snd.sb_flags &= ~SB_KNOTE;
1862 sounlock(so);
1863 }
1864
1865 /*ARGSUSED*/
1866 static int
1867 filt_sowrite(struct knote *kn, long hint)
1868 {
1869 struct socket *so;
1870 int rv;
1871
1872 so = ((file_t *)kn->kn_obj)->f_data;
1873 if (hint != NOTE_SUBMIT)
1874 solock(so);
1875 kn->kn_data = sbspace(&so->so_snd);
1876 if (so->so_state & SS_CANTSENDMORE) {
1877 kn->kn_flags |= EV_EOF;
1878 kn->kn_fflags = so->so_error;
1879 rv = 1;
1880 } else if (so->so_error) /* temporary udp error */
1881 rv = 1;
1882 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
1883 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1884 rv = 0;
1885 else if (kn->kn_sfflags & NOTE_LOWAT)
1886 rv = (kn->kn_data >= kn->kn_sdata);
1887 else
1888 rv = (kn->kn_data >= so->so_snd.sb_lowat);
1889 if (hint != NOTE_SUBMIT)
1890 sounlock(so);
1891 return rv;
1892 }
1893
1894 /*ARGSUSED*/
1895 static int
1896 filt_solisten(struct knote *kn, long hint)
1897 {
1898 struct socket *so;
1899 int rv;
1900
1901 so = ((file_t *)kn->kn_obj)->f_data;
1902
1903 /*
1904 * Set kn_data to number of incoming connections, not
1905 * counting partial (incomplete) connections.
1906 */
1907 if (hint != NOTE_SUBMIT)
1908 solock(so);
1909 kn->kn_data = so->so_qlen;
1910 rv = (kn->kn_data > 0);
1911 if (hint != NOTE_SUBMIT)
1912 sounlock(so);
1913 return rv;
1914 }
1915
1916 static const struct filterops solisten_filtops =
1917 { 1, NULL, filt_sordetach, filt_solisten };
1918 static const struct filterops soread_filtops =
1919 { 1, NULL, filt_sordetach, filt_soread };
1920 static const struct filterops sowrite_filtops =
1921 { 1, NULL, filt_sowdetach, filt_sowrite };
1922
1923 int
1924 soo_kqfilter(struct file *fp, struct knote *kn)
1925 {
1926 struct socket *so;
1927 struct sockbuf *sb;
1928
1929 so = ((file_t *)kn->kn_obj)->f_data;
1930 solock(so);
1931 switch (kn->kn_filter) {
1932 case EVFILT_READ:
1933 if (so->so_options & SO_ACCEPTCONN)
1934 kn->kn_fop = &solisten_filtops;
1935 else
1936 kn->kn_fop = &soread_filtops;
1937 sb = &so->so_rcv;
1938 break;
1939 case EVFILT_WRITE:
1940 kn->kn_fop = &sowrite_filtops;
1941 sb = &so->so_snd;
1942 break;
1943 default:
1944 sounlock(so);
1945 return (EINVAL);
1946 }
1947 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1948 sb->sb_flags |= SB_KNOTE;
1949 sounlock(so);
1950 return (0);
1951 }
1952
1953 static int
1954 sodopoll(struct socket *so, int events)
1955 {
1956 int revents;
1957
1958 revents = 0;
1959
1960 if (events & (POLLIN | POLLRDNORM))
1961 if (soreadable(so))
1962 revents |= events & (POLLIN | POLLRDNORM);
1963
1964 if (events & (POLLOUT | POLLWRNORM))
1965 if (sowritable(so))
1966 revents |= events & (POLLOUT | POLLWRNORM);
1967
1968 if (events & (POLLPRI | POLLRDBAND))
1969 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
1970 revents |= events & (POLLPRI | POLLRDBAND);
1971
1972 return revents;
1973 }
1974
1975 int
1976 sopoll(struct socket *so, int events)
1977 {
1978 int revents = 0;
1979
1980 #ifndef DIAGNOSTIC
1981 /*
1982 * Do a quick, unlocked check in expectation that the socket
1983 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
1984 * as the solocked() assertions will fail.
1985 */
1986 if ((revents = sodopoll(so, events)) != 0)
1987 return revents;
1988 #endif
1989
1990 solock(so);
1991 if ((revents = sodopoll(so, events)) == 0) {
1992 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
1993 selrecord(curlwp, &so->so_rcv.sb_sel);
1994 so->so_rcv.sb_flags |= SB_NOTIFY;
1995 }
1996
1997 if (events & (POLLOUT | POLLWRNORM)) {
1998 selrecord(curlwp, &so->so_snd.sb_sel);
1999 so->so_snd.sb_flags |= SB_NOTIFY;
2000 }
2001 }
2002 sounlock(so);
2003
2004 return revents;
2005 }
2006
2007
2008 #include <sys/sysctl.h>
2009
2010 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2011
2012 /*
2013 * sysctl helper routine for kern.somaxkva. ensures that the given
2014 * value is not too small.
2015 * (XXX should we maybe make sure it's not too large as well?)
2016 */
2017 static int
2018 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2019 {
2020 int error, new_somaxkva;
2021 struct sysctlnode node;
2022
2023 new_somaxkva = somaxkva;
2024 node = *rnode;
2025 node.sysctl_data = &new_somaxkva;
2026 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2027 if (error || newp == NULL)
2028 return (error);
2029
2030 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2031 return (EINVAL);
2032
2033 mutex_enter(&so_pendfree_lock);
2034 somaxkva = new_somaxkva;
2035 cv_broadcast(&socurkva_cv);
2036 mutex_exit(&so_pendfree_lock);
2037
2038 return (error);
2039 }
2040
2041 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
2042 {
2043
2044 sysctl_createv(clog, 0, NULL, NULL,
2045 CTLFLAG_PERMANENT,
2046 CTLTYPE_NODE, "kern", NULL,
2047 NULL, 0, NULL, 0,
2048 CTL_KERN, CTL_EOL);
2049
2050 sysctl_createv(clog, 0, NULL, NULL,
2051 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2052 CTLTYPE_INT, "somaxkva",
2053 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2054 "used for socket buffers"),
2055 sysctl_kern_somaxkva, 0, NULL, 0,
2056 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2057 }
2058