Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.151.6.3
      1 /*	$NetBSD: uipc_socket.c,v 1.151.6.3 2008/06/29 09:33:14 mjf Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.151.6.3 2008/06/29 09:33:14 mjf Exp $");
     67 
     68 #include "opt_sock_counters.h"
     69 #include "opt_sosend_loan.h"
     70 #include "opt_mbuftrace.h"
     71 #include "opt_somaxkva.h"
     72 #include "opt_multiprocessor.h"	/* XXX */
     73 
     74 #include <sys/param.h>
     75 #include <sys/systm.h>
     76 #include <sys/proc.h>
     77 #include <sys/file.h>
     78 #include <sys/filedesc.h>
     79 #include <sys/malloc.h>
     80 #include <sys/mbuf.h>
     81 #include <sys/domain.h>
     82 #include <sys/kernel.h>
     83 #include <sys/protosw.h>
     84 #include <sys/socket.h>
     85 #include <sys/socketvar.h>
     86 #include <sys/signalvar.h>
     87 #include <sys/resourcevar.h>
     88 #include <sys/event.h>
     89 #include <sys/poll.h>
     90 #include <sys/kauth.h>
     91 #include <sys/mutex.h>
     92 #include <sys/condvar.h>
     93 
     94 #include <uvm/uvm.h>
     95 
     96 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
     97 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
     98 
     99 extern const struct fileops socketops;
    100 
    101 extern int	somaxconn;			/* patchable (XXX sysctl) */
    102 int		somaxconn = SOMAXCONN;
    103 kmutex_t	*softnet_lock;
    104 
    105 #ifdef SOSEND_COUNTERS
    106 #include <sys/device.h>
    107 
    108 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    109     NULL, "sosend", "loan big");
    110 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    111     NULL, "sosend", "copy big");
    112 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    113     NULL, "sosend", "copy small");
    114 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    115     NULL, "sosend", "kva limit");
    116 
    117 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    118 
    119 EVCNT_ATTACH_STATIC(sosend_loan_big);
    120 EVCNT_ATTACH_STATIC(sosend_copy_big);
    121 EVCNT_ATTACH_STATIC(sosend_copy_small);
    122 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    123 #else
    124 
    125 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    126 
    127 #endif /* SOSEND_COUNTERS */
    128 
    129 static struct callback_entry sokva_reclaimerentry;
    130 
    131 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    132 int sock_loan_thresh = -1;
    133 #else
    134 int sock_loan_thresh = 4096;
    135 #endif
    136 
    137 static kmutex_t so_pendfree_lock;
    138 static struct mbuf *so_pendfree;
    139 
    140 #ifndef SOMAXKVA
    141 #define	SOMAXKVA (16 * 1024 * 1024)
    142 #endif
    143 int somaxkva = SOMAXKVA;
    144 static int socurkva;
    145 static kcondvar_t socurkva_cv;
    146 
    147 #define	SOCK_LOAN_CHUNK		65536
    148 
    149 static size_t sodopendfree(void);
    150 static size_t sodopendfreel(void);
    151 
    152 static vsize_t
    153 sokvareserve(struct socket *so, vsize_t len)
    154 {
    155 	int error;
    156 
    157 	mutex_enter(&so_pendfree_lock);
    158 	while (socurkva + len > somaxkva) {
    159 		size_t freed;
    160 
    161 		/*
    162 		 * try to do pendfree.
    163 		 */
    164 
    165 		freed = sodopendfreel();
    166 
    167 		/*
    168 		 * if some kva was freed, try again.
    169 		 */
    170 
    171 		if (freed)
    172 			continue;
    173 
    174 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    175 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    176 		if (error) {
    177 			len = 0;
    178 			break;
    179 		}
    180 	}
    181 	socurkva += len;
    182 	mutex_exit(&so_pendfree_lock);
    183 	return len;
    184 }
    185 
    186 static void
    187 sokvaunreserve(vsize_t len)
    188 {
    189 
    190 	mutex_enter(&so_pendfree_lock);
    191 	socurkva -= len;
    192 	cv_broadcast(&socurkva_cv);
    193 	mutex_exit(&so_pendfree_lock);
    194 }
    195 
    196 /*
    197  * sokvaalloc: allocate kva for loan.
    198  */
    199 
    200 vaddr_t
    201 sokvaalloc(vsize_t len, struct socket *so)
    202 {
    203 	vaddr_t lva;
    204 
    205 	/*
    206 	 * reserve kva.
    207 	 */
    208 
    209 	if (sokvareserve(so, len) == 0)
    210 		return 0;
    211 
    212 	/*
    213 	 * allocate kva.
    214 	 */
    215 
    216 	lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    217 	if (lva == 0) {
    218 		sokvaunreserve(len);
    219 		return (0);
    220 	}
    221 
    222 	return lva;
    223 }
    224 
    225 /*
    226  * sokvafree: free kva for loan.
    227  */
    228 
    229 void
    230 sokvafree(vaddr_t sva, vsize_t len)
    231 {
    232 
    233 	/*
    234 	 * free kva.
    235 	 */
    236 
    237 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    238 
    239 	/*
    240 	 * unreserve kva.
    241 	 */
    242 
    243 	sokvaunreserve(len);
    244 }
    245 
    246 static void
    247 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    248 {
    249 	vaddr_t sva, eva;
    250 	vsize_t len;
    251 	int npgs;
    252 
    253 	KASSERT(pgs != NULL);
    254 
    255 	eva = round_page((vaddr_t) buf + size);
    256 	sva = trunc_page((vaddr_t) buf);
    257 	len = eva - sva;
    258 	npgs = len >> PAGE_SHIFT;
    259 
    260 	pmap_kremove(sva, len);
    261 	pmap_update(pmap_kernel());
    262 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    263 	sokvafree(sva, len);
    264 }
    265 
    266 static size_t
    267 sodopendfree(void)
    268 {
    269 	size_t rv;
    270 
    271 	if (__predict_true(so_pendfree == NULL))
    272 		return 0;
    273 
    274 	mutex_enter(&so_pendfree_lock);
    275 	rv = sodopendfreel();
    276 	mutex_exit(&so_pendfree_lock);
    277 
    278 	return rv;
    279 }
    280 
    281 /*
    282  * sodopendfreel: free mbufs on "pendfree" list.
    283  * unlock and relock so_pendfree_lock when freeing mbufs.
    284  *
    285  * => called with so_pendfree_lock held.
    286  */
    287 
    288 static size_t
    289 sodopendfreel(void)
    290 {
    291 	struct mbuf *m, *next;
    292 	size_t rv = 0;
    293 
    294 	KASSERT(mutex_owned(&so_pendfree_lock));
    295 
    296 	while (so_pendfree != NULL) {
    297 		m = so_pendfree;
    298 		so_pendfree = NULL;
    299 		mutex_exit(&so_pendfree_lock);
    300 
    301 		for (; m != NULL; m = next) {
    302 			next = m->m_next;
    303 			KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
    304 			KASSERT(m->m_ext.ext_refcnt == 0);
    305 
    306 			rv += m->m_ext.ext_size;
    307 			sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    308 			    m->m_ext.ext_size);
    309 			pool_cache_put(mb_cache, m);
    310 		}
    311 
    312 		mutex_enter(&so_pendfree_lock);
    313 	}
    314 
    315 	return (rv);
    316 }
    317 
    318 void
    319 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    320 {
    321 
    322 	KASSERT(m != NULL);
    323 
    324 	/*
    325 	 * postpone freeing mbuf.
    326 	 *
    327 	 * we can't do it in interrupt context
    328 	 * because we need to put kva back to kernel_map.
    329 	 */
    330 
    331 	mutex_enter(&so_pendfree_lock);
    332 	m->m_next = so_pendfree;
    333 	so_pendfree = m;
    334 	cv_broadcast(&socurkva_cv);
    335 	mutex_exit(&so_pendfree_lock);
    336 }
    337 
    338 static long
    339 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    340 {
    341 	struct iovec *iov = uio->uio_iov;
    342 	vaddr_t sva, eva;
    343 	vsize_t len;
    344 	vaddr_t lva;
    345 	int npgs, error;
    346 	vaddr_t va;
    347 	int i;
    348 
    349 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    350 		return (0);
    351 
    352 	if (iov->iov_len < (size_t) space)
    353 		space = iov->iov_len;
    354 	if (space > SOCK_LOAN_CHUNK)
    355 		space = SOCK_LOAN_CHUNK;
    356 
    357 	eva = round_page((vaddr_t) iov->iov_base + space);
    358 	sva = trunc_page((vaddr_t) iov->iov_base);
    359 	len = eva - sva;
    360 	npgs = len >> PAGE_SHIFT;
    361 
    362 	KASSERT(npgs <= M_EXT_MAXPAGES);
    363 
    364 	lva = sokvaalloc(len, so);
    365 	if (lva == 0)
    366 		return 0;
    367 
    368 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    369 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    370 	if (error) {
    371 		sokvafree(lva, len);
    372 		return (0);
    373 	}
    374 
    375 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    376 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    377 		    VM_PROT_READ);
    378 	pmap_update(pmap_kernel());
    379 
    380 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    381 
    382 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    383 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    384 
    385 	uio->uio_resid -= space;
    386 	/* uio_offset not updated, not set/used for write(2) */
    387 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    388 	uio->uio_iov->iov_len -= space;
    389 	if (uio->uio_iov->iov_len == 0) {
    390 		uio->uio_iov++;
    391 		uio->uio_iovcnt--;
    392 	}
    393 
    394 	return (space);
    395 }
    396 
    397 static int
    398 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    399 {
    400 
    401 	KASSERT(ce == &sokva_reclaimerentry);
    402 	KASSERT(obj == NULL);
    403 
    404 	sodopendfree();
    405 	if (!vm_map_starved_p(kernel_map)) {
    406 		return CALLBACK_CHAIN_ABORT;
    407 	}
    408 	return CALLBACK_CHAIN_CONTINUE;
    409 }
    410 
    411 struct mbuf *
    412 getsombuf(struct socket *so, int type)
    413 {
    414 	struct mbuf *m;
    415 
    416 	m = m_get(M_WAIT, type);
    417 	MCLAIM(m, so->so_mowner);
    418 	return m;
    419 }
    420 
    421 struct mbuf *
    422 m_intopt(struct socket *so, int val)
    423 {
    424 	struct mbuf *m;
    425 
    426 	m = getsombuf(so, MT_SOOPTS);
    427 	m->m_len = sizeof(int);
    428 	*mtod(m, int *) = val;
    429 	return m;
    430 }
    431 
    432 void
    433 soinit(void)
    434 {
    435 
    436 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    437 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    438 	cv_init(&socurkva_cv, "sokva");
    439 	soinit2();
    440 
    441 	/* Set the initial adjusted socket buffer size. */
    442 	if (sb_max_set(sb_max))
    443 		panic("bad initial sb_max value: %lu", sb_max);
    444 
    445 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    446 	    &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
    447 }
    448 
    449 /*
    450  * Socket operation routines.
    451  * These routines are called by the routines in
    452  * sys_socket.c or from a system process, and
    453  * implement the semantics of socket operations by
    454  * switching out to the protocol specific routines.
    455  */
    456 /*ARGSUSED*/
    457 int
    458 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    459 	 struct socket *lockso)
    460 {
    461 	const struct protosw	*prp;
    462 	struct socket	*so;
    463 	uid_t		uid;
    464 	int		error;
    465 	kmutex_t	*lock;
    466 
    467 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    468 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    469 	    KAUTH_ARG(proto));
    470 	if (error != 0)
    471 		return error;
    472 
    473 	if (proto)
    474 		prp = pffindproto(dom, proto, type);
    475 	else
    476 		prp = pffindtype(dom, type);
    477 	if (prp == NULL) {
    478 		/* no support for domain */
    479 		if (pffinddomain(dom) == 0)
    480 			return EAFNOSUPPORT;
    481 		/* no support for socket type */
    482 		if (proto == 0 && type != 0)
    483 			return EPROTOTYPE;
    484 		return EPROTONOSUPPORT;
    485 	}
    486 	if (prp->pr_usrreq == NULL)
    487 		return EPROTONOSUPPORT;
    488 	if (prp->pr_type != type)
    489 		return EPROTOTYPE;
    490 
    491 	so = soget(true);
    492 	so->so_type = type;
    493 	so->so_proto = prp;
    494 	so->so_send = sosend;
    495 	so->so_receive = soreceive;
    496 #ifdef MBUFTRACE
    497 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    498 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    499 	so->so_mowner = &prp->pr_domain->dom_mowner;
    500 #endif
    501 	uid = kauth_cred_geteuid(l->l_cred);
    502 	so->so_uidinfo = uid_find(uid);
    503 	so->so_egid = kauth_cred_getegid(l->l_cred);
    504 	so->so_cpid = l->l_proc->p_pid;
    505 	if (lockso != NULL) {
    506 		/* Caller wants us to share a lock. */
    507 		lock = lockso->so_lock;
    508 		so->so_lock = lock;
    509 		mutex_obj_hold(lock);
    510 		mutex_enter(lock);
    511 	} else {
    512 		/* Lock assigned and taken during PRU_ATTACH. */
    513 	}
    514 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
    515 	    (struct mbuf *)(long)proto, NULL, l);
    516 	KASSERT(solocked(so));
    517 	if (error != 0) {
    518 		so->so_state |= SS_NOFDREF;
    519 		sofree(so);
    520 		return error;
    521 	}
    522 	sounlock(so);
    523 	*aso = so;
    524 	return 0;
    525 }
    526 
    527 /* On success, write file descriptor to fdout and return zero.  On
    528  * failure, return non-zero; *fdout will be undefined.
    529  */
    530 int
    531 fsocreate(int domain, struct socket **sop, int type, int protocol,
    532     struct lwp *l, int *fdout)
    533 {
    534 	struct socket	*so;
    535 	struct file	*fp;
    536 	int		fd, error;
    537 
    538 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    539 		return (error);
    540 	fp->f_flag = FREAD|FWRITE;
    541 	fp->f_type = DTYPE_SOCKET;
    542 	fp->f_ops = &socketops;
    543 	error = socreate(domain, &so, type, protocol, l, NULL);
    544 	if (error != 0) {
    545 		fd_abort(curproc, fp, fd);
    546 	} else {
    547 		if (sop != NULL)
    548 			*sop = so;
    549 		fp->f_data = so;
    550 		fd_affix(curproc, fp, fd);
    551 		*fdout = fd;
    552 	}
    553 	return error;
    554 }
    555 
    556 int
    557 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    558 {
    559 	int	error;
    560 
    561 	solock(so);
    562 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
    563 	sounlock(so);
    564 	return error;
    565 }
    566 
    567 int
    568 solisten(struct socket *so, int backlog, struct lwp *l)
    569 {
    570 	int	error;
    571 
    572 	solock(so);
    573 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    574 	    SS_ISDISCONNECTING)) != 0) {
    575 	    	sounlock(so);
    576 		return (EOPNOTSUPP);
    577 	}
    578 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
    579 	    NULL, NULL, l);
    580 	if (error != 0) {
    581 		sounlock(so);
    582 		return error;
    583 	}
    584 	if (TAILQ_EMPTY(&so->so_q))
    585 		so->so_options |= SO_ACCEPTCONN;
    586 	if (backlog < 0)
    587 		backlog = 0;
    588 	so->so_qlimit = min(backlog, somaxconn);
    589 	sounlock(so);
    590 	return 0;
    591 }
    592 
    593 void
    594 sofree(struct socket *so)
    595 {
    596 	u_int refs;
    597 
    598 	KASSERT(solocked(so));
    599 
    600 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    601 		sounlock(so);
    602 		return;
    603 	}
    604 	if (so->so_head) {
    605 		/*
    606 		 * We must not decommission a socket that's on the accept(2)
    607 		 * queue.  If we do, then accept(2) may hang after select(2)
    608 		 * indicated that the listening socket was ready.
    609 		 */
    610 		if (!soqremque(so, 0)) {
    611 			sounlock(so);
    612 			return;
    613 		}
    614 	}
    615 	if (so->so_rcv.sb_hiwat)
    616 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    617 		    RLIM_INFINITY);
    618 	if (so->so_snd.sb_hiwat)
    619 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    620 		    RLIM_INFINITY);
    621 	sbrelease(&so->so_snd, so);
    622 	KASSERT(!cv_has_waiters(&so->so_cv));
    623 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    624 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    625 	sorflush(so);
    626 	refs = so->so_aborting;	/* XXX */
    627 	sounlock(so);
    628 	if (refs == 0)		/* XXX */
    629 		soput(so);
    630 }
    631 
    632 /*
    633  * Close a socket on last file table reference removal.
    634  * Initiate disconnect if connected.
    635  * Free socket when disconnect complete.
    636  */
    637 int
    638 soclose(struct socket *so)
    639 {
    640 	struct socket	*so2;
    641 	int		error;
    642 	int		error2;
    643 
    644 	error = 0;
    645 	solock(so);
    646 	if (so->so_options & SO_ACCEPTCONN) {
    647 		do {
    648 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    649 				KASSERT(solocked2(so, so2));
    650 				(void) soqremque(so2, 0);
    651 				/* soabort drops the lock. */
    652 				(void) soabort(so2);
    653 				solock(so);
    654 				continue;
    655 			}
    656 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    657 				KASSERT(solocked2(so, so2));
    658 				(void) soqremque(so2, 1);
    659 				/* soabort drops the lock. */
    660 				(void) soabort(so2);
    661 				solock(so);
    662 				continue;
    663 			}
    664 		} while (0);
    665 	}
    666 	if (so->so_pcb == 0)
    667 		goto discard;
    668 	if (so->so_state & SS_ISCONNECTED) {
    669 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    670 			error = sodisconnect(so);
    671 			if (error)
    672 				goto drop;
    673 		}
    674 		if (so->so_options & SO_LINGER) {
    675 			if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
    676 				goto drop;
    677 			while (so->so_state & SS_ISCONNECTED) {
    678 				error = sowait(so, so->so_linger * hz);
    679 				if (error)
    680 					break;
    681 			}
    682 		}
    683 	}
    684  drop:
    685 	if (so->so_pcb) {
    686 		error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    687 		    NULL, NULL, NULL, NULL);
    688 		if (error == 0)
    689 			error = error2;
    690 	}
    691  discard:
    692 	if (so->so_state & SS_NOFDREF)
    693 		panic("soclose: NOFDREF");
    694 	so->so_state |= SS_NOFDREF;
    695 	sofree(so);
    696 	return (error);
    697 }
    698 
    699 /*
    700  * Must be called with the socket locked..  Will return with it unlocked.
    701  */
    702 int
    703 soabort(struct socket *so)
    704 {
    705 	u_int refs;
    706 	int error;
    707 
    708 	KASSERT(solocked(so));
    709 	KASSERT(so->so_head == NULL);
    710 
    711 	so->so_aborting++;		/* XXX */
    712 	error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
    713 	    NULL, NULL, NULL);
    714 	refs = --so->so_aborting;	/* XXX */
    715 	if (error || (refs == 0)) {
    716 		sofree(so);
    717 	} else {
    718 		sounlock(so);
    719 	}
    720 	return error;
    721 }
    722 
    723 int
    724 soaccept(struct socket *so, struct mbuf *nam)
    725 {
    726 	int	error;
    727 
    728 	KASSERT(solocked(so));
    729 
    730 	error = 0;
    731 	if ((so->so_state & SS_NOFDREF) == 0)
    732 		panic("soaccept: !NOFDREF");
    733 	so->so_state &= ~SS_NOFDREF;
    734 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    735 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    736 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    737 		    NULL, nam, NULL, NULL);
    738 	else
    739 		error = ECONNABORTED;
    740 
    741 	return (error);
    742 }
    743 
    744 int
    745 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    746 {
    747 	int		error;
    748 
    749 	KASSERT(solocked(so));
    750 
    751 	if (so->so_options & SO_ACCEPTCONN)
    752 		return (EOPNOTSUPP);
    753 	/*
    754 	 * If protocol is connection-based, can only connect once.
    755 	 * Otherwise, if connected, try to disconnect first.
    756 	 * This allows user to disconnect by connecting to, e.g.,
    757 	 * a null address.
    758 	 */
    759 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    760 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    761 	    (error = sodisconnect(so))))
    762 		error = EISCONN;
    763 	else
    764 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    765 		    NULL, nam, NULL, l);
    766 	return (error);
    767 }
    768 
    769 int
    770 soconnect2(struct socket *so1, struct socket *so2)
    771 {
    772 	int	error;
    773 
    774 	KASSERT(solocked2(so1, so2));
    775 
    776 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    777 	    NULL, (struct mbuf *)so2, NULL, NULL);
    778 	return (error);
    779 }
    780 
    781 int
    782 sodisconnect(struct socket *so)
    783 {
    784 	int	error;
    785 
    786 	KASSERT(solocked(so));
    787 
    788 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    789 		error = ENOTCONN;
    790 	} else if (so->so_state & SS_ISDISCONNECTING) {
    791 		error = EALREADY;
    792 	} else {
    793 		error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    794 		    NULL, NULL, NULL, NULL);
    795 	}
    796 	sodopendfree();
    797 	return (error);
    798 }
    799 
    800 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    801 /*
    802  * Send on a socket.
    803  * If send must go all at once and message is larger than
    804  * send buffering, then hard error.
    805  * Lock against other senders.
    806  * If must go all at once and not enough room now, then
    807  * inform user that this would block and do nothing.
    808  * Otherwise, if nonblocking, send as much as possible.
    809  * The data to be sent is described by "uio" if nonzero,
    810  * otherwise by the mbuf chain "top" (which must be null
    811  * if uio is not).  Data provided in mbuf chain must be small
    812  * enough to send all at once.
    813  *
    814  * Returns nonzero on error, timeout or signal; callers
    815  * must check for short counts if EINTR/ERESTART are returned.
    816  * Data and control buffers are freed on return.
    817  */
    818 int
    819 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    820 	struct mbuf *control, int flags, struct lwp *l)
    821 {
    822 	struct mbuf	**mp, *m;
    823 	struct proc	*p;
    824 	long		space, len, resid, clen, mlen;
    825 	int		error, s, dontroute, atomic;
    826 
    827 	p = l->l_proc;
    828 	sodopendfree();
    829 	clen = 0;
    830 
    831 	/*
    832 	 * solock() provides atomicity of access.  splsoftnet() prevents
    833 	 * protocol processing soft interrupts from interrupting us and
    834 	 * blocking (expensive).
    835 	 */
    836 	s = splsoftnet();
    837 	solock(so);
    838 	atomic = sosendallatonce(so) || top;
    839 	if (uio)
    840 		resid = uio->uio_resid;
    841 	else
    842 		resid = top->m_pkthdr.len;
    843 	/*
    844 	 * In theory resid should be unsigned.
    845 	 * However, space must be signed, as it might be less than 0
    846 	 * if we over-committed, and we must use a signed comparison
    847 	 * of space and resid.  On the other hand, a negative resid
    848 	 * causes us to loop sending 0-length segments to the protocol.
    849 	 */
    850 	if (resid < 0) {
    851 		error = EINVAL;
    852 		goto out;
    853 	}
    854 	dontroute =
    855 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    856 	    (so->so_proto->pr_flags & PR_ATOMIC);
    857 	l->l_ru.ru_msgsnd++;
    858 	if (control)
    859 		clen = control->m_len;
    860  restart:
    861 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    862 		goto out;
    863 	do {
    864 		if (so->so_state & SS_CANTSENDMORE) {
    865 			error = EPIPE;
    866 			goto release;
    867 		}
    868 		if (so->so_error) {
    869 			error = so->so_error;
    870 			so->so_error = 0;
    871 			goto release;
    872 		}
    873 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    874 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    875 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    876 				    !(resid == 0 && clen != 0)) {
    877 					error = ENOTCONN;
    878 					goto release;
    879 				}
    880 			} else if (addr == 0) {
    881 				error = EDESTADDRREQ;
    882 				goto release;
    883 			}
    884 		}
    885 		space = sbspace(&so->so_snd);
    886 		if (flags & MSG_OOB)
    887 			space += 1024;
    888 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    889 		    clen > so->so_snd.sb_hiwat) {
    890 			error = EMSGSIZE;
    891 			goto release;
    892 		}
    893 		if (space < resid + clen &&
    894 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    895 			if (so->so_nbio) {
    896 				error = EWOULDBLOCK;
    897 				goto release;
    898 			}
    899 			sbunlock(&so->so_snd);
    900 			error = sbwait(&so->so_snd);
    901 			if (error)
    902 				goto out;
    903 			goto restart;
    904 		}
    905 		mp = &top;
    906 		space -= clen;
    907 		do {
    908 			if (uio == NULL) {
    909 				/*
    910 				 * Data is prepackaged in "top".
    911 				 */
    912 				resid = 0;
    913 				if (flags & MSG_EOR)
    914 					top->m_flags |= M_EOR;
    915 			} else do {
    916 				sounlock(so);
    917 				splx(s);
    918 				if (top == NULL) {
    919 					m = m_gethdr(M_WAIT, MT_DATA);
    920 					mlen = MHLEN;
    921 					m->m_pkthdr.len = 0;
    922 					m->m_pkthdr.rcvif = NULL;
    923 				} else {
    924 					m = m_get(M_WAIT, MT_DATA);
    925 					mlen = MLEN;
    926 				}
    927 				MCLAIM(m, so->so_snd.sb_mowner);
    928 				if (sock_loan_thresh >= 0 &&
    929 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
    930 				    space >= sock_loan_thresh &&
    931 				    (len = sosend_loan(so, uio, m,
    932 						       space)) != 0) {
    933 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    934 					space -= len;
    935 					goto have_data;
    936 				}
    937 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
    938 					SOSEND_COUNTER_INCR(&sosend_copy_big);
    939 					m_clget(m, M_WAIT);
    940 					if ((m->m_flags & M_EXT) == 0)
    941 						goto nopages;
    942 					mlen = MCLBYTES;
    943 					if (atomic && top == 0) {
    944 						len = lmin(MCLBYTES - max_hdr,
    945 						    resid);
    946 						m->m_data += max_hdr;
    947 					} else
    948 						len = lmin(MCLBYTES, resid);
    949 					space -= len;
    950 				} else {
    951  nopages:
    952 					SOSEND_COUNTER_INCR(&sosend_copy_small);
    953 					len = lmin(lmin(mlen, resid), space);
    954 					space -= len;
    955 					/*
    956 					 * For datagram protocols, leave room
    957 					 * for protocol headers in first mbuf.
    958 					 */
    959 					if (atomic && top == 0 && len < mlen)
    960 						MH_ALIGN(m, len);
    961 				}
    962 				error = uiomove(mtod(m, void *), (int)len, uio);
    963  have_data:
    964 				resid = uio->uio_resid;
    965 				m->m_len = len;
    966 				*mp = m;
    967 				top->m_pkthdr.len += len;
    968 				s = splsoftnet();
    969 				solock(so);
    970 				if (error != 0)
    971 					goto release;
    972 				mp = &m->m_next;
    973 				if (resid <= 0) {
    974 					if (flags & MSG_EOR)
    975 						top->m_flags |= M_EOR;
    976 					break;
    977 				}
    978 			} while (space > 0 && atomic);
    979 
    980 			if (so->so_state & SS_CANTSENDMORE) {
    981 				error = EPIPE;
    982 				goto release;
    983 			}
    984 			if (dontroute)
    985 				so->so_options |= SO_DONTROUTE;
    986 			if (resid > 0)
    987 				so->so_state |= SS_MORETOCOME;
    988 			error = (*so->so_proto->pr_usrreq)(so,
    989 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
    990 			    top, addr, control, curlwp);
    991 			if (dontroute)
    992 				so->so_options &= ~SO_DONTROUTE;
    993 			if (resid > 0)
    994 				so->so_state &= ~SS_MORETOCOME;
    995 			clen = 0;
    996 			control = NULL;
    997 			top = NULL;
    998 			mp = &top;
    999 			if (error != 0)
   1000 				goto release;
   1001 		} while (resid && space > 0);
   1002 	} while (resid);
   1003 
   1004  release:
   1005 	sbunlock(&so->so_snd);
   1006  out:
   1007 	sounlock(so);
   1008 	splx(s);
   1009 	if (top)
   1010 		m_freem(top);
   1011 	if (control)
   1012 		m_freem(control);
   1013 	return (error);
   1014 }
   1015 
   1016 /*
   1017  * Following replacement or removal of the first mbuf on the first
   1018  * mbuf chain of a socket buffer, push necessary state changes back
   1019  * into the socket buffer so that other consumers see the values
   1020  * consistently.  'nextrecord' is the callers locally stored value of
   1021  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1022  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1023  */
   1024 static void
   1025 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1026 {
   1027 
   1028 	KASSERT(solocked(sb->sb_so));
   1029 
   1030 	/*
   1031 	 * First, update for the new value of nextrecord.  If necessary,
   1032 	 * make it the first record.
   1033 	 */
   1034 	if (sb->sb_mb != NULL)
   1035 		sb->sb_mb->m_nextpkt = nextrecord;
   1036 	else
   1037 		sb->sb_mb = nextrecord;
   1038 
   1039         /*
   1040          * Now update any dependent socket buffer fields to reflect
   1041          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1042          * the addition of a second clause that takes care of the
   1043          * case where sb_mb has been updated, but remains the last
   1044          * record.
   1045          */
   1046         if (sb->sb_mb == NULL) {
   1047                 sb->sb_mbtail = NULL;
   1048                 sb->sb_lastrecord = NULL;
   1049         } else if (sb->sb_mb->m_nextpkt == NULL)
   1050                 sb->sb_lastrecord = sb->sb_mb;
   1051 }
   1052 
   1053 /*
   1054  * Implement receive operations on a socket.
   1055  * We depend on the way that records are added to the sockbuf
   1056  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1057  * must begin with an address if the protocol so specifies,
   1058  * followed by an optional mbuf or mbufs containing ancillary data,
   1059  * and then zero or more mbufs of data.
   1060  * In order to avoid blocking network interrupts for the entire time here,
   1061  * we splx() while doing the actual copy to user space.
   1062  * Although the sockbuf is locked, new data may still be appended,
   1063  * and thus we must maintain consistency of the sockbuf during that time.
   1064  *
   1065  * The caller may receive the data as a single mbuf chain by supplying
   1066  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1067  * only for the count in uio_resid.
   1068  */
   1069 int
   1070 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1071 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1072 {
   1073 	struct lwp *l = curlwp;
   1074 	struct mbuf	*m, **mp, *mt;
   1075 	int atomic, flags, len, error, s, offset, moff, type, orig_resid;
   1076 	const struct protosw	*pr;
   1077 	struct mbuf	*nextrecord;
   1078 	int		mbuf_removed = 0;
   1079 	const struct domain *dom;
   1080 
   1081 	pr = so->so_proto;
   1082 	atomic = pr->pr_flags & PR_ATOMIC;
   1083 	dom = pr->pr_domain;
   1084 	mp = mp0;
   1085 	type = 0;
   1086 	orig_resid = uio->uio_resid;
   1087 
   1088 	if (paddr != NULL)
   1089 		*paddr = NULL;
   1090 	if (controlp != NULL)
   1091 		*controlp = NULL;
   1092 	if (flagsp != NULL)
   1093 		flags = *flagsp &~ MSG_EOR;
   1094 	else
   1095 		flags = 0;
   1096 
   1097 	if ((flags & MSG_DONTWAIT) == 0)
   1098 		sodopendfree();
   1099 
   1100 	if (flags & MSG_OOB) {
   1101 		m = m_get(M_WAIT, MT_DATA);
   1102 		solock(so);
   1103 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
   1104 		    (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
   1105 		sounlock(so);
   1106 		if (error)
   1107 			goto bad;
   1108 		do {
   1109 			error = uiomove(mtod(m, void *),
   1110 			    (int) min(uio->uio_resid, m->m_len), uio);
   1111 			m = m_free(m);
   1112 		} while (uio->uio_resid > 0 && error == 0 && m);
   1113  bad:
   1114 		if (m != NULL)
   1115 			m_freem(m);
   1116 		return error;
   1117 	}
   1118 	if (mp != NULL)
   1119 		*mp = NULL;
   1120 
   1121 	/*
   1122 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1123 	 * protocol processing soft interrupts from interrupting us and
   1124 	 * blocking (expensive).
   1125 	 */
   1126 	s = splsoftnet();
   1127 	solock(so);
   1128 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
   1129 		(*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
   1130 
   1131  restart:
   1132 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1133 		sounlock(so);
   1134 		splx(s);
   1135 		return error;
   1136 	}
   1137 
   1138 	m = so->so_rcv.sb_mb;
   1139 	/*
   1140 	 * If we have less data than requested, block awaiting more
   1141 	 * (subject to any timeout) if:
   1142 	 *   1. the current count is less than the low water mark,
   1143 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1144 	 *	receive operation at once if we block (resid <= hiwat), or
   1145 	 *   3. MSG_DONTWAIT is not set.
   1146 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1147 	 * we have to do the receive in sections, and thus risk returning
   1148 	 * a short count if a timeout or signal occurs after we start.
   1149 	 */
   1150 	if (m == NULL ||
   1151 	    ((flags & MSG_DONTWAIT) == 0 &&
   1152 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1153 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1154 	      ((flags & MSG_WAITALL) &&
   1155 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1156 	     m->m_nextpkt == NULL && !atomic)) {
   1157 #ifdef DIAGNOSTIC
   1158 		if (m == NULL && so->so_rcv.sb_cc)
   1159 			panic("receive 1");
   1160 #endif
   1161 		if (so->so_error) {
   1162 			if (m != NULL)
   1163 				goto dontblock;
   1164 			error = so->so_error;
   1165 			if ((flags & MSG_PEEK) == 0)
   1166 				so->so_error = 0;
   1167 			goto release;
   1168 		}
   1169 		if (so->so_state & SS_CANTRCVMORE) {
   1170 			if (m != NULL)
   1171 				goto dontblock;
   1172 			else
   1173 				goto release;
   1174 		}
   1175 		for (; m != NULL; m = m->m_next)
   1176 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1177 				m = so->so_rcv.sb_mb;
   1178 				goto dontblock;
   1179 			}
   1180 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1181 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1182 			error = ENOTCONN;
   1183 			goto release;
   1184 		}
   1185 		if (uio->uio_resid == 0)
   1186 			goto release;
   1187 		if (so->so_nbio || (flags & MSG_DONTWAIT)) {
   1188 			error = EWOULDBLOCK;
   1189 			goto release;
   1190 		}
   1191 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1192 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1193 		sbunlock(&so->so_rcv);
   1194 		error = sbwait(&so->so_rcv);
   1195 		if (error != 0) {
   1196 			sounlock(so);
   1197 			splx(s);
   1198 			return error;
   1199 		}
   1200 		goto restart;
   1201 	}
   1202  dontblock:
   1203 	/*
   1204 	 * On entry here, m points to the first record of the socket buffer.
   1205 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1206 	 * pointer to the next record in the socket buffer.  We must keep the
   1207 	 * various socket buffer pointers and local stack versions of the
   1208 	 * pointers in sync, pushing out modifications before dropping the
   1209 	 * socket lock, and re-reading them when picking it up.
   1210 	 *
   1211 	 * Otherwise, we will race with the network stack appending new data
   1212 	 * or records onto the socket buffer by using inconsistent/stale
   1213 	 * versions of the field, possibly resulting in socket buffer
   1214 	 * corruption.
   1215 	 *
   1216 	 * By holding the high-level sblock(), we prevent simultaneous
   1217 	 * readers from pulling off the front of the socket buffer.
   1218 	 */
   1219 	if (l != NULL)
   1220 		l->l_ru.ru_msgrcv++;
   1221 	KASSERT(m == so->so_rcv.sb_mb);
   1222 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1223 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1224 	nextrecord = m->m_nextpkt;
   1225 	if (pr->pr_flags & PR_ADDR) {
   1226 #ifdef DIAGNOSTIC
   1227 		if (m->m_type != MT_SONAME)
   1228 			panic("receive 1a");
   1229 #endif
   1230 		orig_resid = 0;
   1231 		if (flags & MSG_PEEK) {
   1232 			if (paddr)
   1233 				*paddr = m_copy(m, 0, m->m_len);
   1234 			m = m->m_next;
   1235 		} else {
   1236 			sbfree(&so->so_rcv, m);
   1237 			mbuf_removed = 1;
   1238 			if (paddr != NULL) {
   1239 				*paddr = m;
   1240 				so->so_rcv.sb_mb = m->m_next;
   1241 				m->m_next = NULL;
   1242 				m = so->so_rcv.sb_mb;
   1243 			} else {
   1244 				MFREE(m, so->so_rcv.sb_mb);
   1245 				m = so->so_rcv.sb_mb;
   1246 			}
   1247 			sbsync(&so->so_rcv, nextrecord);
   1248 		}
   1249 	}
   1250 
   1251 	/*
   1252 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1253 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1254 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1255 	 * perform externalization (or freeing if controlp == NULL).
   1256 	 */
   1257 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1258 		struct mbuf *cm = NULL, *cmn;
   1259 		struct mbuf **cme = &cm;
   1260 
   1261 		do {
   1262 			if (flags & MSG_PEEK) {
   1263 				if (controlp != NULL) {
   1264 					*controlp = m_copy(m, 0, m->m_len);
   1265 					controlp = &(*controlp)->m_next;
   1266 				}
   1267 				m = m->m_next;
   1268 			} else {
   1269 				sbfree(&so->so_rcv, m);
   1270 				so->so_rcv.sb_mb = m->m_next;
   1271 				m->m_next = NULL;
   1272 				*cme = m;
   1273 				cme = &(*cme)->m_next;
   1274 				m = so->so_rcv.sb_mb;
   1275 			}
   1276 		} while (m != NULL && m->m_type == MT_CONTROL);
   1277 		if ((flags & MSG_PEEK) == 0)
   1278 			sbsync(&so->so_rcv, nextrecord);
   1279 		for (; cm != NULL; cm = cmn) {
   1280 			cmn = cm->m_next;
   1281 			cm->m_next = NULL;
   1282 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1283 			if (controlp != NULL) {
   1284 				if (dom->dom_externalize != NULL &&
   1285 				    type == SCM_RIGHTS) {
   1286 					sounlock(so);
   1287 					splx(s);
   1288 					error = (*dom->dom_externalize)(cm, l);
   1289 					s = splsoftnet();
   1290 					solock(so);
   1291 				}
   1292 				*controlp = cm;
   1293 				while (*controlp != NULL)
   1294 					controlp = &(*controlp)->m_next;
   1295 			} else {
   1296 				/*
   1297 				 * Dispose of any SCM_RIGHTS message that went
   1298 				 * through the read path rather than recv.
   1299 				 */
   1300 				if (dom->dom_dispose != NULL &&
   1301 				    type == SCM_RIGHTS) {
   1302 				    	sounlock(so);
   1303 					(*dom->dom_dispose)(cm);
   1304 					solock(so);
   1305 				}
   1306 				m_freem(cm);
   1307 			}
   1308 		}
   1309 		if (m != NULL)
   1310 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1311 		else
   1312 			nextrecord = so->so_rcv.sb_mb;
   1313 		orig_resid = 0;
   1314 	}
   1315 
   1316 	/* If m is non-NULL, we have some data to read. */
   1317 	if (__predict_true(m != NULL)) {
   1318 		type = m->m_type;
   1319 		if (type == MT_OOBDATA)
   1320 			flags |= MSG_OOB;
   1321 	}
   1322 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1323 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1324 
   1325 	moff = 0;
   1326 	offset = 0;
   1327 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1328 		if (m->m_type == MT_OOBDATA) {
   1329 			if (type != MT_OOBDATA)
   1330 				break;
   1331 		} else if (type == MT_OOBDATA)
   1332 			break;
   1333 #ifdef DIAGNOSTIC
   1334 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1335 			panic("receive 3");
   1336 #endif
   1337 		so->so_state &= ~SS_RCVATMARK;
   1338 		len = uio->uio_resid;
   1339 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1340 			len = so->so_oobmark - offset;
   1341 		if (len > m->m_len - moff)
   1342 			len = m->m_len - moff;
   1343 		/*
   1344 		 * If mp is set, just pass back the mbufs.
   1345 		 * Otherwise copy them out via the uio, then free.
   1346 		 * Sockbuf must be consistent here (points to current mbuf,
   1347 		 * it points to next record) when we drop priority;
   1348 		 * we must note any additions to the sockbuf when we
   1349 		 * block interrupts again.
   1350 		 */
   1351 		if (mp == NULL) {
   1352 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1353 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1354 			sounlock(so);
   1355 			splx(s);
   1356 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
   1357 			s = splsoftnet();
   1358 			solock(so);
   1359 			if (error != 0) {
   1360 				/*
   1361 				 * If any part of the record has been removed
   1362 				 * (such as the MT_SONAME mbuf, which will
   1363 				 * happen when PR_ADDR, and thus also
   1364 				 * PR_ATOMIC, is set), then drop the entire
   1365 				 * record to maintain the atomicity of the
   1366 				 * receive operation.
   1367 				 *
   1368 				 * This avoids a later panic("receive 1a")
   1369 				 * when compiled with DIAGNOSTIC.
   1370 				 */
   1371 				if (m && mbuf_removed && atomic)
   1372 					(void) sbdroprecord(&so->so_rcv);
   1373 
   1374 				goto release;
   1375 			}
   1376 		} else
   1377 			uio->uio_resid -= len;
   1378 		if (len == m->m_len - moff) {
   1379 			if (m->m_flags & M_EOR)
   1380 				flags |= MSG_EOR;
   1381 			if (flags & MSG_PEEK) {
   1382 				m = m->m_next;
   1383 				moff = 0;
   1384 			} else {
   1385 				nextrecord = m->m_nextpkt;
   1386 				sbfree(&so->so_rcv, m);
   1387 				if (mp) {
   1388 					*mp = m;
   1389 					mp = &m->m_next;
   1390 					so->so_rcv.sb_mb = m = m->m_next;
   1391 					*mp = NULL;
   1392 				} else {
   1393 					MFREE(m, so->so_rcv.sb_mb);
   1394 					m = so->so_rcv.sb_mb;
   1395 				}
   1396 				/*
   1397 				 * If m != NULL, we also know that
   1398 				 * so->so_rcv.sb_mb != NULL.
   1399 				 */
   1400 				KASSERT(so->so_rcv.sb_mb == m);
   1401 				if (m) {
   1402 					m->m_nextpkt = nextrecord;
   1403 					if (nextrecord == NULL)
   1404 						so->so_rcv.sb_lastrecord = m;
   1405 				} else {
   1406 					so->so_rcv.sb_mb = nextrecord;
   1407 					SB_EMPTY_FIXUP(&so->so_rcv);
   1408 				}
   1409 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1410 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1411 			}
   1412 		} else if (flags & MSG_PEEK)
   1413 			moff += len;
   1414 		else {
   1415 			if (mp != NULL) {
   1416 				mt = m_copym(m, 0, len, M_NOWAIT);
   1417 				if (__predict_false(mt == NULL)) {
   1418 					sounlock(so);
   1419 					mt = m_copym(m, 0, len, M_WAIT);
   1420 					solock(so);
   1421 				}
   1422 				*mp = mt;
   1423 			}
   1424 			m->m_data += len;
   1425 			m->m_len -= len;
   1426 			so->so_rcv.sb_cc -= len;
   1427 		}
   1428 		if (so->so_oobmark) {
   1429 			if ((flags & MSG_PEEK) == 0) {
   1430 				so->so_oobmark -= len;
   1431 				if (so->so_oobmark == 0) {
   1432 					so->so_state |= SS_RCVATMARK;
   1433 					break;
   1434 				}
   1435 			} else {
   1436 				offset += len;
   1437 				if (offset == so->so_oobmark)
   1438 					break;
   1439 			}
   1440 		}
   1441 		if (flags & MSG_EOR)
   1442 			break;
   1443 		/*
   1444 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1445 		 * we must not quit until "uio->uio_resid == 0" or an error
   1446 		 * termination.  If a signal/timeout occurs, return
   1447 		 * with a short count but without error.
   1448 		 * Keep sockbuf locked against other readers.
   1449 		 */
   1450 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1451 		    !sosendallatonce(so) && !nextrecord) {
   1452 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1453 				break;
   1454 			/*
   1455 			 * If we are peeking and the socket receive buffer is
   1456 			 * full, stop since we can't get more data to peek at.
   1457 			 */
   1458 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1459 				break;
   1460 			/*
   1461 			 * If we've drained the socket buffer, tell the
   1462 			 * protocol in case it needs to do something to
   1463 			 * get it filled again.
   1464 			 */
   1465 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1466 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1467 				    NULL, (struct mbuf *)(long)flags, NULL, l);
   1468 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1469 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1470 			error = sbwait(&so->so_rcv);
   1471 			if (error != 0) {
   1472 				sbunlock(&so->so_rcv);
   1473 				sounlock(so);
   1474 				splx(s);
   1475 				return 0;
   1476 			}
   1477 			if ((m = so->so_rcv.sb_mb) != NULL)
   1478 				nextrecord = m->m_nextpkt;
   1479 		}
   1480 	}
   1481 
   1482 	if (m && atomic) {
   1483 		flags |= MSG_TRUNC;
   1484 		if ((flags & MSG_PEEK) == 0)
   1485 			(void) sbdroprecord(&so->so_rcv);
   1486 	}
   1487 	if ((flags & MSG_PEEK) == 0) {
   1488 		if (m == NULL) {
   1489 			/*
   1490 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1491 			 * part makes sure sb_lastrecord is up-to-date if
   1492 			 * there is still data in the socket buffer.
   1493 			 */
   1494 			so->so_rcv.sb_mb = nextrecord;
   1495 			if (so->so_rcv.sb_mb == NULL) {
   1496 				so->so_rcv.sb_mbtail = NULL;
   1497 				so->so_rcv.sb_lastrecord = NULL;
   1498 			} else if (nextrecord->m_nextpkt == NULL)
   1499 				so->so_rcv.sb_lastrecord = nextrecord;
   1500 		}
   1501 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1502 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1503 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1504 			(*pr->pr_usrreq)(so, PRU_RCVD, NULL,
   1505 			    (struct mbuf *)(long)flags, NULL, l);
   1506 	}
   1507 	if (orig_resid == uio->uio_resid && orig_resid &&
   1508 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1509 		sbunlock(&so->so_rcv);
   1510 		goto restart;
   1511 	}
   1512 
   1513 	if (flagsp != NULL)
   1514 		*flagsp |= flags;
   1515  release:
   1516 	sbunlock(&so->so_rcv);
   1517 	sounlock(so);
   1518 	splx(s);
   1519 	return error;
   1520 }
   1521 
   1522 int
   1523 soshutdown(struct socket *so, int how)
   1524 {
   1525 	const struct protosw	*pr;
   1526 	int	error;
   1527 
   1528 	KASSERT(solocked(so));
   1529 
   1530 	pr = so->so_proto;
   1531 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1532 		return (EINVAL);
   1533 
   1534 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1535 		sorflush(so);
   1536 		error = 0;
   1537 	}
   1538 	if (how == SHUT_WR || how == SHUT_RDWR)
   1539 		error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
   1540 		    NULL, NULL, NULL);
   1541 
   1542 	return error;
   1543 }
   1544 
   1545 void
   1546 sorflush(struct socket *so)
   1547 {
   1548 	struct sockbuf	*sb, asb;
   1549 	const struct protosw	*pr;
   1550 
   1551 	KASSERT(solocked(so));
   1552 
   1553 	sb = &so->so_rcv;
   1554 	pr = so->so_proto;
   1555 	socantrcvmore(so);
   1556 	sb->sb_flags |= SB_NOINTR;
   1557 	(void )sblock(sb, M_WAITOK);
   1558 	sbunlock(sb);
   1559 	asb = *sb;
   1560 	/*
   1561 	 * Clear most of the sockbuf structure, but leave some of the
   1562 	 * fields valid.
   1563 	 */
   1564 	memset(&sb->sb_startzero, 0,
   1565 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1566 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1567 		sounlock(so);
   1568 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1569 		solock(so);
   1570 	}
   1571 	sbrelease(&asb, so);
   1572 }
   1573 
   1574 static int
   1575 sosetopt1(struct socket *so, int level, int optname, struct mbuf *m)
   1576 {
   1577 	int optval, val;
   1578 	struct linger	*l;
   1579 	struct sockbuf	*sb;
   1580 	struct timeval *tv;
   1581 
   1582 	switch (optname) {
   1583 
   1584 	case SO_LINGER:
   1585 		if (m == NULL || m->m_len != sizeof(struct linger))
   1586 			return EINVAL;
   1587 		l = mtod(m, struct linger *);
   1588 		if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
   1589 		    l->l_linger > (INT_MAX / hz))
   1590 			return EDOM;
   1591 		so->so_linger = l->l_linger;
   1592 		if (l->l_onoff)
   1593 			so->so_options |= SO_LINGER;
   1594 		else
   1595 			so->so_options &= ~SO_LINGER;
   1596 		break;
   1597 
   1598 	case SO_DEBUG:
   1599 	case SO_KEEPALIVE:
   1600 	case SO_DONTROUTE:
   1601 	case SO_USELOOPBACK:
   1602 	case SO_BROADCAST:
   1603 	case SO_REUSEADDR:
   1604 	case SO_REUSEPORT:
   1605 	case SO_OOBINLINE:
   1606 	case SO_TIMESTAMP:
   1607 		if (m == NULL || m->m_len < sizeof(int))
   1608 			return EINVAL;
   1609 		if (*mtod(m, int *))
   1610 			so->so_options |= optname;
   1611 		else
   1612 			so->so_options &= ~optname;
   1613 		break;
   1614 
   1615 	case SO_SNDBUF:
   1616 	case SO_RCVBUF:
   1617 	case SO_SNDLOWAT:
   1618 	case SO_RCVLOWAT:
   1619 		if (m == NULL || m->m_len < sizeof(int))
   1620 			return EINVAL;
   1621 
   1622 		/*
   1623 		 * Values < 1 make no sense for any of these
   1624 		 * options, so disallow them.
   1625 		 */
   1626 		optval = *mtod(m, int *);
   1627 		if (optval < 1)
   1628 			return EINVAL;
   1629 
   1630 		switch (optname) {
   1631 
   1632 		case SO_SNDBUF:
   1633 		case SO_RCVBUF:
   1634 			sb = (optname == SO_SNDBUF) ?
   1635 			    &so->so_snd : &so->so_rcv;
   1636 			if (sbreserve(sb, (u_long)optval, so) == 0)
   1637 				return ENOBUFS;
   1638 			sb->sb_flags &= ~SB_AUTOSIZE;
   1639 			break;
   1640 
   1641 		/*
   1642 		 * Make sure the low-water is never greater than
   1643 		 * the high-water.
   1644 		 */
   1645 		case SO_SNDLOWAT:
   1646 			so->so_snd.sb_lowat =
   1647 			    (optval > so->so_snd.sb_hiwat) ?
   1648 			    so->so_snd.sb_hiwat : optval;
   1649 			break;
   1650 		case SO_RCVLOWAT:
   1651 			so->so_rcv.sb_lowat =
   1652 			    (optval > so->so_rcv.sb_hiwat) ?
   1653 			    so->so_rcv.sb_hiwat : optval;
   1654 			break;
   1655 		}
   1656 		break;
   1657 
   1658 	case SO_SNDTIMEO:
   1659 	case SO_RCVTIMEO:
   1660 		if (m == NULL || m->m_len < sizeof(*tv))
   1661 			return EINVAL;
   1662 		tv = mtod(m, struct timeval *);
   1663 		if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz)
   1664 			return EDOM;
   1665 		val = tv->tv_sec * hz + tv->tv_usec / tick;
   1666 		if (val == 0 && tv->tv_usec != 0)
   1667 			val = 1;
   1668 
   1669 		switch (optname) {
   1670 
   1671 		case SO_SNDTIMEO:
   1672 			so->so_snd.sb_timeo = val;
   1673 			break;
   1674 		case SO_RCVTIMEO:
   1675 			so->so_rcv.sb_timeo = val;
   1676 			break;
   1677 		}
   1678 		break;
   1679 
   1680 	default:
   1681 		return ENOPROTOOPT;
   1682 	}
   1683 	return 0;
   1684 }
   1685 
   1686 int
   1687 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
   1688 {
   1689 	int error, prerr;
   1690 
   1691 	solock(so);
   1692 	if (level == SOL_SOCKET)
   1693 		error = sosetopt1(so, level, optname, m);
   1694 	else
   1695 		error = ENOPROTOOPT;
   1696 
   1697 	if ((error == 0 || error == ENOPROTOOPT) &&
   1698 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1699 		/* give the protocol stack a shot */
   1700 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, level,
   1701 		    optname, &m);
   1702 		if (prerr == 0)
   1703 			error = 0;
   1704 		else if (prerr != ENOPROTOOPT)
   1705 			error = prerr;
   1706 	} else if (m != NULL)
   1707 		(void)m_free(m);
   1708 	sounlock(so);
   1709 	return error;
   1710 }
   1711 
   1712 int
   1713 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
   1714 {
   1715 	struct mbuf	*m;
   1716 	int		error;
   1717 
   1718 	solock(so);
   1719 	if (level != SOL_SOCKET) {
   1720 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1721 			error = ((*so->so_proto->pr_ctloutput)
   1722 				  (PRCO_GETOPT, so, level, optname, mp));
   1723 		} else
   1724 			error = (ENOPROTOOPT);
   1725 	} else {
   1726 		m = m_get(M_WAIT, MT_SOOPTS);
   1727 		m->m_len = sizeof(int);
   1728 
   1729 		switch (optname) {
   1730 
   1731 		case SO_LINGER:
   1732 			m->m_len = sizeof(struct linger);
   1733 			mtod(m, struct linger *)->l_onoff =
   1734 			    (so->so_options & SO_LINGER) ? 1 : 0;
   1735 			mtod(m, struct linger *)->l_linger = so->so_linger;
   1736 			break;
   1737 
   1738 		case SO_USELOOPBACK:
   1739 		case SO_DONTROUTE:
   1740 		case SO_DEBUG:
   1741 		case SO_KEEPALIVE:
   1742 		case SO_REUSEADDR:
   1743 		case SO_REUSEPORT:
   1744 		case SO_BROADCAST:
   1745 		case SO_OOBINLINE:
   1746 		case SO_TIMESTAMP:
   1747 			*mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
   1748 			break;
   1749 
   1750 		case SO_TYPE:
   1751 			*mtod(m, int *) = so->so_type;
   1752 			break;
   1753 
   1754 		case SO_ERROR:
   1755 			*mtod(m, int *) = so->so_error;
   1756 			so->so_error = 0;
   1757 			break;
   1758 
   1759 		case SO_SNDBUF:
   1760 			*mtod(m, int *) = so->so_snd.sb_hiwat;
   1761 			break;
   1762 
   1763 		case SO_RCVBUF:
   1764 			*mtod(m, int *) = so->so_rcv.sb_hiwat;
   1765 			break;
   1766 
   1767 		case SO_SNDLOWAT:
   1768 			*mtod(m, int *) = so->so_snd.sb_lowat;
   1769 			break;
   1770 
   1771 		case SO_RCVLOWAT:
   1772 			*mtod(m, int *) = so->so_rcv.sb_lowat;
   1773 			break;
   1774 
   1775 		case SO_SNDTIMEO:
   1776 		case SO_RCVTIMEO:
   1777 		    {
   1778 			int val = (optname == SO_SNDTIMEO ?
   1779 			     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1780 
   1781 			m->m_len = sizeof(struct timeval);
   1782 			mtod(m, struct timeval *)->tv_sec = val / hz;
   1783 			mtod(m, struct timeval *)->tv_usec =
   1784 			    (val % hz) * tick;
   1785 			break;
   1786 		    }
   1787 
   1788 		case SO_OVERFLOWED:
   1789 			*mtod(m, int *) = so->so_rcv.sb_overflowed;
   1790 			break;
   1791 
   1792 		default:
   1793 			sounlock(so);
   1794 			(void)m_free(m);
   1795 			return (ENOPROTOOPT);
   1796 		}
   1797 		*mp = m;
   1798 		error = 0;
   1799 	}
   1800 
   1801 	sounlock(so);
   1802 	return (error);
   1803 }
   1804 
   1805 void
   1806 sohasoutofband(struct socket *so)
   1807 {
   1808 
   1809 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   1810 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, 0);
   1811 }
   1812 
   1813 static void
   1814 filt_sordetach(struct knote *kn)
   1815 {
   1816 	struct socket	*so;
   1817 
   1818 	so = ((file_t *)kn->kn_obj)->f_data;
   1819 	solock(so);
   1820 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   1821 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   1822 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   1823 	sounlock(so);
   1824 }
   1825 
   1826 /*ARGSUSED*/
   1827 static int
   1828 filt_soread(struct knote *kn, long hint)
   1829 {
   1830 	struct socket	*so;
   1831 	int rv;
   1832 
   1833 	so = ((file_t *)kn->kn_obj)->f_data;
   1834 	if (hint != NOTE_SUBMIT)
   1835 		solock(so);
   1836 	kn->kn_data = so->so_rcv.sb_cc;
   1837 	if (so->so_state & SS_CANTRCVMORE) {
   1838 		kn->kn_flags |= EV_EOF;
   1839 		kn->kn_fflags = so->so_error;
   1840 		rv = 1;
   1841 	} else if (so->so_error)	/* temporary udp error */
   1842 		rv = 1;
   1843 	else if (kn->kn_sfflags & NOTE_LOWAT)
   1844 		rv = (kn->kn_data >= kn->kn_sdata);
   1845 	else
   1846 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   1847 	if (hint != NOTE_SUBMIT)
   1848 		sounlock(so);
   1849 	return rv;
   1850 }
   1851 
   1852 static void
   1853 filt_sowdetach(struct knote *kn)
   1854 {
   1855 	struct socket	*so;
   1856 
   1857 	so = ((file_t *)kn->kn_obj)->f_data;
   1858 	solock(so);
   1859 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   1860 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   1861 		so->so_snd.sb_flags &= ~SB_KNOTE;
   1862 	sounlock(so);
   1863 }
   1864 
   1865 /*ARGSUSED*/
   1866 static int
   1867 filt_sowrite(struct knote *kn, long hint)
   1868 {
   1869 	struct socket	*so;
   1870 	int rv;
   1871 
   1872 	so = ((file_t *)kn->kn_obj)->f_data;
   1873 	if (hint != NOTE_SUBMIT)
   1874 		solock(so);
   1875 	kn->kn_data = sbspace(&so->so_snd);
   1876 	if (so->so_state & SS_CANTSENDMORE) {
   1877 		kn->kn_flags |= EV_EOF;
   1878 		kn->kn_fflags = so->so_error;
   1879 		rv = 1;
   1880 	} else if (so->so_error)	/* temporary udp error */
   1881 		rv = 1;
   1882 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   1883 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   1884 		rv = 0;
   1885 	else if (kn->kn_sfflags & NOTE_LOWAT)
   1886 		rv = (kn->kn_data >= kn->kn_sdata);
   1887 	else
   1888 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   1889 	if (hint != NOTE_SUBMIT)
   1890 		sounlock(so);
   1891 	return rv;
   1892 }
   1893 
   1894 /*ARGSUSED*/
   1895 static int
   1896 filt_solisten(struct knote *kn, long hint)
   1897 {
   1898 	struct socket	*so;
   1899 	int rv;
   1900 
   1901 	so = ((file_t *)kn->kn_obj)->f_data;
   1902 
   1903 	/*
   1904 	 * Set kn_data to number of incoming connections, not
   1905 	 * counting partial (incomplete) connections.
   1906 	 */
   1907 	if (hint != NOTE_SUBMIT)
   1908 		solock(so);
   1909 	kn->kn_data = so->so_qlen;
   1910 	rv = (kn->kn_data > 0);
   1911 	if (hint != NOTE_SUBMIT)
   1912 		sounlock(so);
   1913 	return rv;
   1914 }
   1915 
   1916 static const struct filterops solisten_filtops =
   1917 	{ 1, NULL, filt_sordetach, filt_solisten };
   1918 static const struct filterops soread_filtops =
   1919 	{ 1, NULL, filt_sordetach, filt_soread };
   1920 static const struct filterops sowrite_filtops =
   1921 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   1922 
   1923 int
   1924 soo_kqfilter(struct file *fp, struct knote *kn)
   1925 {
   1926 	struct socket	*so;
   1927 	struct sockbuf	*sb;
   1928 
   1929 	so = ((file_t *)kn->kn_obj)->f_data;
   1930 	solock(so);
   1931 	switch (kn->kn_filter) {
   1932 	case EVFILT_READ:
   1933 		if (so->so_options & SO_ACCEPTCONN)
   1934 			kn->kn_fop = &solisten_filtops;
   1935 		else
   1936 			kn->kn_fop = &soread_filtops;
   1937 		sb = &so->so_rcv;
   1938 		break;
   1939 	case EVFILT_WRITE:
   1940 		kn->kn_fop = &sowrite_filtops;
   1941 		sb = &so->so_snd;
   1942 		break;
   1943 	default:
   1944 		sounlock(so);
   1945 		return (EINVAL);
   1946 	}
   1947 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   1948 	sb->sb_flags |= SB_KNOTE;
   1949 	sounlock(so);
   1950 	return (0);
   1951 }
   1952 
   1953 static int
   1954 sodopoll(struct socket *so, int events)
   1955 {
   1956 	int revents;
   1957 
   1958 	revents = 0;
   1959 
   1960 	if (events & (POLLIN | POLLRDNORM))
   1961 		if (soreadable(so))
   1962 			revents |= events & (POLLIN | POLLRDNORM);
   1963 
   1964 	if (events & (POLLOUT | POLLWRNORM))
   1965 		if (sowritable(so))
   1966 			revents |= events & (POLLOUT | POLLWRNORM);
   1967 
   1968 	if (events & (POLLPRI | POLLRDBAND))
   1969 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   1970 			revents |= events & (POLLPRI | POLLRDBAND);
   1971 
   1972 	return revents;
   1973 }
   1974 
   1975 int
   1976 sopoll(struct socket *so, int events)
   1977 {
   1978 	int revents = 0;
   1979 
   1980 #ifndef DIAGNOSTIC
   1981 	/*
   1982 	 * Do a quick, unlocked check in expectation that the socket
   1983 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   1984 	 * as the solocked() assertions will fail.
   1985 	 */
   1986 	if ((revents = sodopoll(so, events)) != 0)
   1987 		return revents;
   1988 #endif
   1989 
   1990 	solock(so);
   1991 	if ((revents = sodopoll(so, events)) == 0) {
   1992 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   1993 			selrecord(curlwp, &so->so_rcv.sb_sel);
   1994 			so->so_rcv.sb_flags |= SB_NOTIFY;
   1995 		}
   1996 
   1997 		if (events & (POLLOUT | POLLWRNORM)) {
   1998 			selrecord(curlwp, &so->so_snd.sb_sel);
   1999 			so->so_snd.sb_flags |= SB_NOTIFY;
   2000 		}
   2001 	}
   2002 	sounlock(so);
   2003 
   2004 	return revents;
   2005 }
   2006 
   2007 
   2008 #include <sys/sysctl.h>
   2009 
   2010 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2011 
   2012 /*
   2013  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2014  * value is not too small.
   2015  * (XXX should we maybe make sure it's not too large as well?)
   2016  */
   2017 static int
   2018 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2019 {
   2020 	int error, new_somaxkva;
   2021 	struct sysctlnode node;
   2022 
   2023 	new_somaxkva = somaxkva;
   2024 	node = *rnode;
   2025 	node.sysctl_data = &new_somaxkva;
   2026 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2027 	if (error || newp == NULL)
   2028 		return (error);
   2029 
   2030 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2031 		return (EINVAL);
   2032 
   2033 	mutex_enter(&so_pendfree_lock);
   2034 	somaxkva = new_somaxkva;
   2035 	cv_broadcast(&socurkva_cv);
   2036 	mutex_exit(&so_pendfree_lock);
   2037 
   2038 	return (error);
   2039 }
   2040 
   2041 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
   2042 {
   2043 
   2044 	sysctl_createv(clog, 0, NULL, NULL,
   2045 		       CTLFLAG_PERMANENT,
   2046 		       CTLTYPE_NODE, "kern", NULL,
   2047 		       NULL, 0, NULL, 0,
   2048 		       CTL_KERN, CTL_EOL);
   2049 
   2050 	sysctl_createv(clog, 0, NULL, NULL,
   2051 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2052 		       CTLTYPE_INT, "somaxkva",
   2053 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2054 				    "used for socket buffers"),
   2055 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2056 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2057 }
   2058