uipc_socket.c revision 1.151.6.5 1 /* $NetBSD: uipc_socket.c,v 1.151.6.5 2009/01/17 13:29:20 mjf Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.151.6.5 2009/01/17 13:29:20 mjf Exp $");
67
68 #include "opt_compat_netbsd.h"
69 #include "opt_sock_counters.h"
70 #include "opt_sosend_loan.h"
71 #include "opt_mbuftrace.h"
72 #include "opt_somaxkva.h"
73 #include "opt_multiprocessor.h" /* XXX */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/file.h>
79 #include <sys/filedesc.h>
80 #include <sys/kmem.h>
81 #include <sys/mbuf.h>
82 #include <sys/domain.h>
83 #include <sys/kernel.h>
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/signalvar.h>
88 #include <sys/resourcevar.h>
89 #include <sys/uidinfo.h>
90 #include <sys/event.h>
91 #include <sys/poll.h>
92 #include <sys/kauth.h>
93 #include <sys/mutex.h>
94 #include <sys/condvar.h>
95
96 #ifdef COMPAT_50
97 #include <compat/sys/time.h>
98 #define SO_OSNDTIMEO 0x1005
99 #define SO_ORCVTIMEO 0x1006
100 #endif
101
102 #include <uvm/uvm.h>
103
104 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
105 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
106
107 extern const struct fileops socketops;
108
109 extern int somaxconn; /* patchable (XXX sysctl) */
110 int somaxconn = SOMAXCONN;
111 kmutex_t *softnet_lock;
112
113 #ifdef SOSEND_COUNTERS
114 #include <sys/device.h>
115
116 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
117 NULL, "sosend", "loan big");
118 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
119 NULL, "sosend", "copy big");
120 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
121 NULL, "sosend", "copy small");
122 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
123 NULL, "sosend", "kva limit");
124
125 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
126
127 EVCNT_ATTACH_STATIC(sosend_loan_big);
128 EVCNT_ATTACH_STATIC(sosend_copy_big);
129 EVCNT_ATTACH_STATIC(sosend_copy_small);
130 EVCNT_ATTACH_STATIC(sosend_kvalimit);
131 #else
132
133 #define SOSEND_COUNTER_INCR(ev) /* nothing */
134
135 #endif /* SOSEND_COUNTERS */
136
137 static struct callback_entry sokva_reclaimerentry;
138
139 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
140 int sock_loan_thresh = -1;
141 #else
142 int sock_loan_thresh = 4096;
143 #endif
144
145 static kmutex_t so_pendfree_lock;
146 static struct mbuf *so_pendfree;
147
148 #ifndef SOMAXKVA
149 #define SOMAXKVA (16 * 1024 * 1024)
150 #endif
151 int somaxkva = SOMAXKVA;
152 static int socurkva;
153 static kcondvar_t socurkva_cv;
154
155 #define SOCK_LOAN_CHUNK 65536
156
157 static size_t sodopendfree(void);
158 static size_t sodopendfreel(void);
159
160 static void sysctl_kern_somaxkva_setup(void);
161 static struct sysctllog *socket_sysctllog;
162
163 static vsize_t
164 sokvareserve(struct socket *so, vsize_t len)
165 {
166 int error;
167
168 mutex_enter(&so_pendfree_lock);
169 while (socurkva + len > somaxkva) {
170 size_t freed;
171
172 /*
173 * try to do pendfree.
174 */
175
176 freed = sodopendfreel();
177
178 /*
179 * if some kva was freed, try again.
180 */
181
182 if (freed)
183 continue;
184
185 SOSEND_COUNTER_INCR(&sosend_kvalimit);
186 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
187 if (error) {
188 len = 0;
189 break;
190 }
191 }
192 socurkva += len;
193 mutex_exit(&so_pendfree_lock);
194 return len;
195 }
196
197 static void
198 sokvaunreserve(vsize_t len)
199 {
200
201 mutex_enter(&so_pendfree_lock);
202 socurkva -= len;
203 cv_broadcast(&socurkva_cv);
204 mutex_exit(&so_pendfree_lock);
205 }
206
207 /*
208 * sokvaalloc: allocate kva for loan.
209 */
210
211 vaddr_t
212 sokvaalloc(vsize_t len, struct socket *so)
213 {
214 vaddr_t lva;
215
216 /*
217 * reserve kva.
218 */
219
220 if (sokvareserve(so, len) == 0)
221 return 0;
222
223 /*
224 * allocate kva.
225 */
226
227 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
228 if (lva == 0) {
229 sokvaunreserve(len);
230 return (0);
231 }
232
233 return lva;
234 }
235
236 /*
237 * sokvafree: free kva for loan.
238 */
239
240 void
241 sokvafree(vaddr_t sva, vsize_t len)
242 {
243
244 /*
245 * free kva.
246 */
247
248 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
249
250 /*
251 * unreserve kva.
252 */
253
254 sokvaunreserve(len);
255 }
256
257 static void
258 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
259 {
260 vaddr_t sva, eva;
261 vsize_t len;
262 int npgs;
263
264 KASSERT(pgs != NULL);
265
266 eva = round_page((vaddr_t) buf + size);
267 sva = trunc_page((vaddr_t) buf);
268 len = eva - sva;
269 npgs = len >> PAGE_SHIFT;
270
271 pmap_kremove(sva, len);
272 pmap_update(pmap_kernel());
273 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
274 sokvafree(sva, len);
275 }
276
277 static size_t
278 sodopendfree(void)
279 {
280 size_t rv;
281
282 if (__predict_true(so_pendfree == NULL))
283 return 0;
284
285 mutex_enter(&so_pendfree_lock);
286 rv = sodopendfreel();
287 mutex_exit(&so_pendfree_lock);
288
289 return rv;
290 }
291
292 /*
293 * sodopendfreel: free mbufs on "pendfree" list.
294 * unlock and relock so_pendfree_lock when freeing mbufs.
295 *
296 * => called with so_pendfree_lock held.
297 */
298
299 static size_t
300 sodopendfreel(void)
301 {
302 struct mbuf *m, *next;
303 size_t rv = 0;
304
305 KASSERT(mutex_owned(&so_pendfree_lock));
306
307 while (so_pendfree != NULL) {
308 m = so_pendfree;
309 so_pendfree = NULL;
310 mutex_exit(&so_pendfree_lock);
311
312 for (; m != NULL; m = next) {
313 next = m->m_next;
314 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
315 KASSERT(m->m_ext.ext_refcnt == 0);
316
317 rv += m->m_ext.ext_size;
318 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
319 m->m_ext.ext_size);
320 pool_cache_put(mb_cache, m);
321 }
322
323 mutex_enter(&so_pendfree_lock);
324 }
325
326 return (rv);
327 }
328
329 void
330 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
331 {
332
333 KASSERT(m != NULL);
334
335 /*
336 * postpone freeing mbuf.
337 *
338 * we can't do it in interrupt context
339 * because we need to put kva back to kernel_map.
340 */
341
342 mutex_enter(&so_pendfree_lock);
343 m->m_next = so_pendfree;
344 so_pendfree = m;
345 cv_broadcast(&socurkva_cv);
346 mutex_exit(&so_pendfree_lock);
347 }
348
349 static long
350 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
351 {
352 struct iovec *iov = uio->uio_iov;
353 vaddr_t sva, eva;
354 vsize_t len;
355 vaddr_t lva;
356 int npgs, error;
357 vaddr_t va;
358 int i;
359
360 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
361 return (0);
362
363 if (iov->iov_len < (size_t) space)
364 space = iov->iov_len;
365 if (space > SOCK_LOAN_CHUNK)
366 space = SOCK_LOAN_CHUNK;
367
368 eva = round_page((vaddr_t) iov->iov_base + space);
369 sva = trunc_page((vaddr_t) iov->iov_base);
370 len = eva - sva;
371 npgs = len >> PAGE_SHIFT;
372
373 KASSERT(npgs <= M_EXT_MAXPAGES);
374
375 lva = sokvaalloc(len, so);
376 if (lva == 0)
377 return 0;
378
379 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
380 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
381 if (error) {
382 sokvafree(lva, len);
383 return (0);
384 }
385
386 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
387 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
388 VM_PROT_READ);
389 pmap_update(pmap_kernel());
390
391 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
392
393 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
394 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
395
396 uio->uio_resid -= space;
397 /* uio_offset not updated, not set/used for write(2) */
398 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
399 uio->uio_iov->iov_len -= space;
400 if (uio->uio_iov->iov_len == 0) {
401 uio->uio_iov++;
402 uio->uio_iovcnt--;
403 }
404
405 return (space);
406 }
407
408 static int
409 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
410 {
411
412 KASSERT(ce == &sokva_reclaimerentry);
413 KASSERT(obj == NULL);
414
415 sodopendfree();
416 if (!vm_map_starved_p(kernel_map)) {
417 return CALLBACK_CHAIN_ABORT;
418 }
419 return CALLBACK_CHAIN_CONTINUE;
420 }
421
422 struct mbuf *
423 getsombuf(struct socket *so, int type)
424 {
425 struct mbuf *m;
426
427 m = m_get(M_WAIT, type);
428 MCLAIM(m, so->so_mowner);
429 return m;
430 }
431
432 void
433 soinit(void)
434 {
435
436 sysctl_kern_somaxkva_setup();
437
438 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
439 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
440 cv_init(&socurkva_cv, "sokva");
441 soinit2();
442
443 /* Set the initial adjusted socket buffer size. */
444 if (sb_max_set(sb_max))
445 panic("bad initial sb_max value: %lu", sb_max);
446
447 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
448 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
449 }
450
451 /*
452 * Socket operation routines.
453 * These routines are called by the routines in
454 * sys_socket.c or from a system process, and
455 * implement the semantics of socket operations by
456 * switching out to the protocol specific routines.
457 */
458 /*ARGSUSED*/
459 int
460 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
461 struct socket *lockso)
462 {
463 const struct protosw *prp;
464 struct socket *so;
465 uid_t uid;
466 int error;
467 kmutex_t *lock;
468
469 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
470 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
471 KAUTH_ARG(proto));
472 if (error != 0)
473 return error;
474
475 if (proto)
476 prp = pffindproto(dom, proto, type);
477 else
478 prp = pffindtype(dom, type);
479 if (prp == NULL) {
480 /* no support for domain */
481 if (pffinddomain(dom) == 0)
482 return EAFNOSUPPORT;
483 /* no support for socket type */
484 if (proto == 0 && type != 0)
485 return EPROTOTYPE;
486 return EPROTONOSUPPORT;
487 }
488 if (prp->pr_usrreq == NULL)
489 return EPROTONOSUPPORT;
490 if (prp->pr_type != type)
491 return EPROTOTYPE;
492
493 so = soget(true);
494 so->so_type = type;
495 so->so_proto = prp;
496 so->so_send = sosend;
497 so->so_receive = soreceive;
498 #ifdef MBUFTRACE
499 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
500 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
501 so->so_mowner = &prp->pr_domain->dom_mowner;
502 #endif
503 uid = kauth_cred_geteuid(l->l_cred);
504 so->so_uidinfo = uid_find(uid);
505 so->so_egid = kauth_cred_getegid(l->l_cred);
506 so->so_cpid = l->l_proc->p_pid;
507 if (lockso != NULL) {
508 /* Caller wants us to share a lock. */
509 lock = lockso->so_lock;
510 so->so_lock = lock;
511 mutex_obj_hold(lock);
512 mutex_enter(lock);
513 } else {
514 /* Lock assigned and taken during PRU_ATTACH. */
515 }
516 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
517 (struct mbuf *)(long)proto, NULL, l);
518 KASSERT(solocked(so));
519 if (error != 0) {
520 so->so_state |= SS_NOFDREF;
521 sofree(so);
522 return error;
523 }
524 sounlock(so);
525 *aso = so;
526 return 0;
527 }
528
529 /* On success, write file descriptor to fdout and return zero. On
530 * failure, return non-zero; *fdout will be undefined.
531 */
532 int
533 fsocreate(int domain, struct socket **sop, int type, int protocol,
534 struct lwp *l, int *fdout)
535 {
536 struct socket *so;
537 struct file *fp;
538 int fd, error;
539
540 if ((error = fd_allocfile(&fp, &fd)) != 0)
541 return (error);
542 fp->f_flag = FREAD|FWRITE;
543 fp->f_type = DTYPE_SOCKET;
544 fp->f_ops = &socketops;
545 error = socreate(domain, &so, type, protocol, l, NULL);
546 if (error != 0) {
547 fd_abort(curproc, fp, fd);
548 } else {
549 if (sop != NULL)
550 *sop = so;
551 fp->f_data = so;
552 fd_affix(curproc, fp, fd);
553 *fdout = fd;
554 }
555 return error;
556 }
557
558 int
559 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
560 {
561 int error;
562
563 solock(so);
564 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
565 sounlock(so);
566 return error;
567 }
568
569 int
570 solisten(struct socket *so, int backlog, struct lwp *l)
571 {
572 int error;
573
574 solock(so);
575 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
576 SS_ISDISCONNECTING)) != 0) {
577 sounlock(so);
578 return (EOPNOTSUPP);
579 }
580 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
581 NULL, NULL, l);
582 if (error != 0) {
583 sounlock(so);
584 return error;
585 }
586 if (TAILQ_EMPTY(&so->so_q))
587 so->so_options |= SO_ACCEPTCONN;
588 if (backlog < 0)
589 backlog = 0;
590 so->so_qlimit = min(backlog, somaxconn);
591 sounlock(so);
592 return 0;
593 }
594
595 void
596 sofree(struct socket *so)
597 {
598 u_int refs;
599
600 KASSERT(solocked(so));
601
602 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
603 sounlock(so);
604 return;
605 }
606 if (so->so_head) {
607 /*
608 * We must not decommission a socket that's on the accept(2)
609 * queue. If we do, then accept(2) may hang after select(2)
610 * indicated that the listening socket was ready.
611 */
612 if (!soqremque(so, 0)) {
613 sounlock(so);
614 return;
615 }
616 }
617 if (so->so_rcv.sb_hiwat)
618 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
619 RLIM_INFINITY);
620 if (so->so_snd.sb_hiwat)
621 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
622 RLIM_INFINITY);
623 sbrelease(&so->so_snd, so);
624 KASSERT(!cv_has_waiters(&so->so_cv));
625 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
626 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
627 sorflush(so);
628 refs = so->so_aborting; /* XXX */
629 /* Remove acccept filter if one is present. */
630 if (so->so_accf != NULL)
631 (void)accept_filt_clear(so);
632 sounlock(so);
633 if (refs == 0) /* XXX */
634 soput(so);
635 }
636
637 /*
638 * Close a socket on last file table reference removal.
639 * Initiate disconnect if connected.
640 * Free socket when disconnect complete.
641 */
642 int
643 soclose(struct socket *so)
644 {
645 struct socket *so2;
646 int error;
647 int error2;
648
649 error = 0;
650 solock(so);
651 if (so->so_options & SO_ACCEPTCONN) {
652 for (;;) {
653 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
654 KASSERT(solocked2(so, so2));
655 (void) soqremque(so2, 0);
656 /* soabort drops the lock. */
657 (void) soabort(so2);
658 solock(so);
659 continue;
660 }
661 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
662 KASSERT(solocked2(so, so2));
663 (void) soqremque(so2, 1);
664 /* soabort drops the lock. */
665 (void) soabort(so2);
666 solock(so);
667 continue;
668 }
669 break;
670 }
671 }
672 if (so->so_pcb == 0)
673 goto discard;
674 if (so->so_state & SS_ISCONNECTED) {
675 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
676 error = sodisconnect(so);
677 if (error)
678 goto drop;
679 }
680 if (so->so_options & SO_LINGER) {
681 if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
682 goto drop;
683 while (so->so_state & SS_ISCONNECTED) {
684 error = sowait(so, so->so_linger * hz);
685 if (error)
686 break;
687 }
688 }
689 }
690 drop:
691 if (so->so_pcb) {
692 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
693 NULL, NULL, NULL, NULL);
694 if (error == 0)
695 error = error2;
696 }
697 discard:
698 if (so->so_state & SS_NOFDREF)
699 panic("soclose: NOFDREF");
700 so->so_state |= SS_NOFDREF;
701 sofree(so);
702 return (error);
703 }
704
705 /*
706 * Must be called with the socket locked.. Will return with it unlocked.
707 */
708 int
709 soabort(struct socket *so)
710 {
711 u_int refs;
712 int error;
713
714 KASSERT(solocked(so));
715 KASSERT(so->so_head == NULL);
716
717 so->so_aborting++; /* XXX */
718 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
719 NULL, NULL, NULL);
720 refs = --so->so_aborting; /* XXX */
721 if (error || (refs == 0)) {
722 sofree(so);
723 } else {
724 sounlock(so);
725 }
726 return error;
727 }
728
729 int
730 soaccept(struct socket *so, struct mbuf *nam)
731 {
732 int error;
733
734 KASSERT(solocked(so));
735
736 error = 0;
737 if ((so->so_state & SS_NOFDREF) == 0)
738 panic("soaccept: !NOFDREF");
739 so->so_state &= ~SS_NOFDREF;
740 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
741 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
742 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
743 NULL, nam, NULL, NULL);
744 else
745 error = ECONNABORTED;
746
747 return (error);
748 }
749
750 int
751 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
752 {
753 int error;
754
755 KASSERT(solocked(so));
756
757 if (so->so_options & SO_ACCEPTCONN)
758 return (EOPNOTSUPP);
759 /*
760 * If protocol is connection-based, can only connect once.
761 * Otherwise, if connected, try to disconnect first.
762 * This allows user to disconnect by connecting to, e.g.,
763 * a null address.
764 */
765 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
766 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
767 (error = sodisconnect(so))))
768 error = EISCONN;
769 else
770 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
771 NULL, nam, NULL, l);
772 return (error);
773 }
774
775 int
776 soconnect2(struct socket *so1, struct socket *so2)
777 {
778 int error;
779
780 KASSERT(solocked2(so1, so2));
781
782 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
783 NULL, (struct mbuf *)so2, NULL, NULL);
784 return (error);
785 }
786
787 int
788 sodisconnect(struct socket *so)
789 {
790 int error;
791
792 KASSERT(solocked(so));
793
794 if ((so->so_state & SS_ISCONNECTED) == 0) {
795 error = ENOTCONN;
796 } else if (so->so_state & SS_ISDISCONNECTING) {
797 error = EALREADY;
798 } else {
799 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
800 NULL, NULL, NULL, NULL);
801 }
802 sodopendfree();
803 return (error);
804 }
805
806 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
807 /*
808 * Send on a socket.
809 * If send must go all at once and message is larger than
810 * send buffering, then hard error.
811 * Lock against other senders.
812 * If must go all at once and not enough room now, then
813 * inform user that this would block and do nothing.
814 * Otherwise, if nonblocking, send as much as possible.
815 * The data to be sent is described by "uio" if nonzero,
816 * otherwise by the mbuf chain "top" (which must be null
817 * if uio is not). Data provided in mbuf chain must be small
818 * enough to send all at once.
819 *
820 * Returns nonzero on error, timeout or signal; callers
821 * must check for short counts if EINTR/ERESTART are returned.
822 * Data and control buffers are freed on return.
823 */
824 int
825 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
826 struct mbuf *control, int flags, struct lwp *l)
827 {
828 struct mbuf **mp, *m;
829 struct proc *p;
830 long space, len, resid, clen, mlen;
831 int error, s, dontroute, atomic;
832
833 p = l->l_proc;
834 sodopendfree();
835 clen = 0;
836
837 /*
838 * solock() provides atomicity of access. splsoftnet() prevents
839 * protocol processing soft interrupts from interrupting us and
840 * blocking (expensive).
841 */
842 s = splsoftnet();
843 solock(so);
844 atomic = sosendallatonce(so) || top;
845 if (uio)
846 resid = uio->uio_resid;
847 else
848 resid = top->m_pkthdr.len;
849 /*
850 * In theory resid should be unsigned.
851 * However, space must be signed, as it might be less than 0
852 * if we over-committed, and we must use a signed comparison
853 * of space and resid. On the other hand, a negative resid
854 * causes us to loop sending 0-length segments to the protocol.
855 */
856 if (resid < 0) {
857 error = EINVAL;
858 goto out;
859 }
860 dontroute =
861 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
862 (so->so_proto->pr_flags & PR_ATOMIC);
863 l->l_ru.ru_msgsnd++;
864 if (control)
865 clen = control->m_len;
866 restart:
867 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
868 goto out;
869 do {
870 if (so->so_state & SS_CANTSENDMORE) {
871 error = EPIPE;
872 goto release;
873 }
874 if (so->so_error) {
875 error = so->so_error;
876 so->so_error = 0;
877 goto release;
878 }
879 if ((so->so_state & SS_ISCONNECTED) == 0) {
880 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
881 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
882 !(resid == 0 && clen != 0)) {
883 error = ENOTCONN;
884 goto release;
885 }
886 } else if (addr == 0) {
887 error = EDESTADDRREQ;
888 goto release;
889 }
890 }
891 space = sbspace(&so->so_snd);
892 if (flags & MSG_OOB)
893 space += 1024;
894 if ((atomic && resid > so->so_snd.sb_hiwat) ||
895 clen > so->so_snd.sb_hiwat) {
896 error = EMSGSIZE;
897 goto release;
898 }
899 if (space < resid + clen &&
900 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
901 if (so->so_nbio) {
902 error = EWOULDBLOCK;
903 goto release;
904 }
905 sbunlock(&so->so_snd);
906 error = sbwait(&so->so_snd);
907 if (error)
908 goto out;
909 goto restart;
910 }
911 mp = ⊤
912 space -= clen;
913 do {
914 if (uio == NULL) {
915 /*
916 * Data is prepackaged in "top".
917 */
918 resid = 0;
919 if (flags & MSG_EOR)
920 top->m_flags |= M_EOR;
921 } else do {
922 sounlock(so);
923 splx(s);
924 if (top == NULL) {
925 m = m_gethdr(M_WAIT, MT_DATA);
926 mlen = MHLEN;
927 m->m_pkthdr.len = 0;
928 m->m_pkthdr.rcvif = NULL;
929 } else {
930 m = m_get(M_WAIT, MT_DATA);
931 mlen = MLEN;
932 }
933 MCLAIM(m, so->so_snd.sb_mowner);
934 if (sock_loan_thresh >= 0 &&
935 uio->uio_iov->iov_len >= sock_loan_thresh &&
936 space >= sock_loan_thresh &&
937 (len = sosend_loan(so, uio, m,
938 space)) != 0) {
939 SOSEND_COUNTER_INCR(&sosend_loan_big);
940 space -= len;
941 goto have_data;
942 }
943 if (resid >= MINCLSIZE && space >= MCLBYTES) {
944 SOSEND_COUNTER_INCR(&sosend_copy_big);
945 m_clget(m, M_WAIT);
946 if ((m->m_flags & M_EXT) == 0)
947 goto nopages;
948 mlen = MCLBYTES;
949 if (atomic && top == 0) {
950 len = lmin(MCLBYTES - max_hdr,
951 resid);
952 m->m_data += max_hdr;
953 } else
954 len = lmin(MCLBYTES, resid);
955 space -= len;
956 } else {
957 nopages:
958 SOSEND_COUNTER_INCR(&sosend_copy_small);
959 len = lmin(lmin(mlen, resid), space);
960 space -= len;
961 /*
962 * For datagram protocols, leave room
963 * for protocol headers in first mbuf.
964 */
965 if (atomic && top == 0 && len < mlen)
966 MH_ALIGN(m, len);
967 }
968 error = uiomove(mtod(m, void *), (int)len, uio);
969 have_data:
970 resid = uio->uio_resid;
971 m->m_len = len;
972 *mp = m;
973 top->m_pkthdr.len += len;
974 s = splsoftnet();
975 solock(so);
976 if (error != 0)
977 goto release;
978 mp = &m->m_next;
979 if (resid <= 0) {
980 if (flags & MSG_EOR)
981 top->m_flags |= M_EOR;
982 break;
983 }
984 } while (space > 0 && atomic);
985
986 if (so->so_state & SS_CANTSENDMORE) {
987 error = EPIPE;
988 goto release;
989 }
990 if (dontroute)
991 so->so_options |= SO_DONTROUTE;
992 if (resid > 0)
993 so->so_state |= SS_MORETOCOME;
994 error = (*so->so_proto->pr_usrreq)(so,
995 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
996 top, addr, control, curlwp);
997 if (dontroute)
998 so->so_options &= ~SO_DONTROUTE;
999 if (resid > 0)
1000 so->so_state &= ~SS_MORETOCOME;
1001 clen = 0;
1002 control = NULL;
1003 top = NULL;
1004 mp = ⊤
1005 if (error != 0)
1006 goto release;
1007 } while (resid && space > 0);
1008 } while (resid);
1009
1010 release:
1011 sbunlock(&so->so_snd);
1012 out:
1013 sounlock(so);
1014 splx(s);
1015 if (top)
1016 m_freem(top);
1017 if (control)
1018 m_freem(control);
1019 return (error);
1020 }
1021
1022 /*
1023 * Following replacement or removal of the first mbuf on the first
1024 * mbuf chain of a socket buffer, push necessary state changes back
1025 * into the socket buffer so that other consumers see the values
1026 * consistently. 'nextrecord' is the callers locally stored value of
1027 * the original value of sb->sb_mb->m_nextpkt which must be restored
1028 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1029 */
1030 static void
1031 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1032 {
1033
1034 KASSERT(solocked(sb->sb_so));
1035
1036 /*
1037 * First, update for the new value of nextrecord. If necessary,
1038 * make it the first record.
1039 */
1040 if (sb->sb_mb != NULL)
1041 sb->sb_mb->m_nextpkt = nextrecord;
1042 else
1043 sb->sb_mb = nextrecord;
1044
1045 /*
1046 * Now update any dependent socket buffer fields to reflect
1047 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1048 * the addition of a second clause that takes care of the
1049 * case where sb_mb has been updated, but remains the last
1050 * record.
1051 */
1052 if (sb->sb_mb == NULL) {
1053 sb->sb_mbtail = NULL;
1054 sb->sb_lastrecord = NULL;
1055 } else if (sb->sb_mb->m_nextpkt == NULL)
1056 sb->sb_lastrecord = sb->sb_mb;
1057 }
1058
1059 /*
1060 * Implement receive operations on a socket.
1061 * We depend on the way that records are added to the sockbuf
1062 * by sbappend*. In particular, each record (mbufs linked through m_next)
1063 * must begin with an address if the protocol so specifies,
1064 * followed by an optional mbuf or mbufs containing ancillary data,
1065 * and then zero or more mbufs of data.
1066 * In order to avoid blocking network interrupts for the entire time here,
1067 * we splx() while doing the actual copy to user space.
1068 * Although the sockbuf is locked, new data may still be appended,
1069 * and thus we must maintain consistency of the sockbuf during that time.
1070 *
1071 * The caller may receive the data as a single mbuf chain by supplying
1072 * an mbuf **mp0 for use in returning the chain. The uio is then used
1073 * only for the count in uio_resid.
1074 */
1075 int
1076 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1077 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1078 {
1079 struct lwp *l = curlwp;
1080 struct mbuf *m, **mp, *mt;
1081 int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1082 const struct protosw *pr;
1083 struct mbuf *nextrecord;
1084 int mbuf_removed = 0;
1085 const struct domain *dom;
1086
1087 pr = so->so_proto;
1088 atomic = pr->pr_flags & PR_ATOMIC;
1089 dom = pr->pr_domain;
1090 mp = mp0;
1091 type = 0;
1092 orig_resid = uio->uio_resid;
1093
1094 if (paddr != NULL)
1095 *paddr = NULL;
1096 if (controlp != NULL)
1097 *controlp = NULL;
1098 if (flagsp != NULL)
1099 flags = *flagsp &~ MSG_EOR;
1100 else
1101 flags = 0;
1102
1103 if ((flags & MSG_DONTWAIT) == 0)
1104 sodopendfree();
1105
1106 if (flags & MSG_OOB) {
1107 m = m_get(M_WAIT, MT_DATA);
1108 solock(so);
1109 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1110 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1111 sounlock(so);
1112 if (error)
1113 goto bad;
1114 do {
1115 error = uiomove(mtod(m, void *),
1116 (int) min(uio->uio_resid, m->m_len), uio);
1117 m = m_free(m);
1118 } while (uio->uio_resid > 0 && error == 0 && m);
1119 bad:
1120 if (m != NULL)
1121 m_freem(m);
1122 return error;
1123 }
1124 if (mp != NULL)
1125 *mp = NULL;
1126
1127 /*
1128 * solock() provides atomicity of access. splsoftnet() prevents
1129 * protocol processing soft interrupts from interrupting us and
1130 * blocking (expensive).
1131 */
1132 s = splsoftnet();
1133 solock(so);
1134 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1135 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1136
1137 restart:
1138 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1139 sounlock(so);
1140 splx(s);
1141 return error;
1142 }
1143
1144 m = so->so_rcv.sb_mb;
1145 /*
1146 * If we have less data than requested, block awaiting more
1147 * (subject to any timeout) if:
1148 * 1. the current count is less than the low water mark,
1149 * 2. MSG_WAITALL is set, and it is possible to do the entire
1150 * receive operation at once if we block (resid <= hiwat), or
1151 * 3. MSG_DONTWAIT is not set.
1152 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1153 * we have to do the receive in sections, and thus risk returning
1154 * a short count if a timeout or signal occurs after we start.
1155 */
1156 if (m == NULL ||
1157 ((flags & MSG_DONTWAIT) == 0 &&
1158 so->so_rcv.sb_cc < uio->uio_resid &&
1159 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1160 ((flags & MSG_WAITALL) &&
1161 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1162 m->m_nextpkt == NULL && !atomic)) {
1163 #ifdef DIAGNOSTIC
1164 if (m == NULL && so->so_rcv.sb_cc)
1165 panic("receive 1");
1166 #endif
1167 if (so->so_error) {
1168 if (m != NULL)
1169 goto dontblock;
1170 error = so->so_error;
1171 if ((flags & MSG_PEEK) == 0)
1172 so->so_error = 0;
1173 goto release;
1174 }
1175 if (so->so_state & SS_CANTRCVMORE) {
1176 if (m != NULL)
1177 goto dontblock;
1178 else
1179 goto release;
1180 }
1181 for (; m != NULL; m = m->m_next)
1182 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1183 m = so->so_rcv.sb_mb;
1184 goto dontblock;
1185 }
1186 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1187 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1188 error = ENOTCONN;
1189 goto release;
1190 }
1191 if (uio->uio_resid == 0)
1192 goto release;
1193 if (so->so_nbio || (flags & MSG_DONTWAIT)) {
1194 error = EWOULDBLOCK;
1195 goto release;
1196 }
1197 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1198 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1199 sbunlock(&so->so_rcv);
1200 error = sbwait(&so->so_rcv);
1201 if (error != 0) {
1202 sounlock(so);
1203 splx(s);
1204 return error;
1205 }
1206 goto restart;
1207 }
1208 dontblock:
1209 /*
1210 * On entry here, m points to the first record of the socket buffer.
1211 * From this point onward, we maintain 'nextrecord' as a cache of the
1212 * pointer to the next record in the socket buffer. We must keep the
1213 * various socket buffer pointers and local stack versions of the
1214 * pointers in sync, pushing out modifications before dropping the
1215 * socket lock, and re-reading them when picking it up.
1216 *
1217 * Otherwise, we will race with the network stack appending new data
1218 * or records onto the socket buffer by using inconsistent/stale
1219 * versions of the field, possibly resulting in socket buffer
1220 * corruption.
1221 *
1222 * By holding the high-level sblock(), we prevent simultaneous
1223 * readers from pulling off the front of the socket buffer.
1224 */
1225 if (l != NULL)
1226 l->l_ru.ru_msgrcv++;
1227 KASSERT(m == so->so_rcv.sb_mb);
1228 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1229 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1230 nextrecord = m->m_nextpkt;
1231 if (pr->pr_flags & PR_ADDR) {
1232 #ifdef DIAGNOSTIC
1233 if (m->m_type != MT_SONAME)
1234 panic("receive 1a");
1235 #endif
1236 orig_resid = 0;
1237 if (flags & MSG_PEEK) {
1238 if (paddr)
1239 *paddr = m_copy(m, 0, m->m_len);
1240 m = m->m_next;
1241 } else {
1242 sbfree(&so->so_rcv, m);
1243 mbuf_removed = 1;
1244 if (paddr != NULL) {
1245 *paddr = m;
1246 so->so_rcv.sb_mb = m->m_next;
1247 m->m_next = NULL;
1248 m = so->so_rcv.sb_mb;
1249 } else {
1250 MFREE(m, so->so_rcv.sb_mb);
1251 m = so->so_rcv.sb_mb;
1252 }
1253 sbsync(&so->so_rcv, nextrecord);
1254 }
1255 }
1256
1257 /*
1258 * Process one or more MT_CONTROL mbufs present before any data mbufs
1259 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1260 * just copy the data; if !MSG_PEEK, we call into the protocol to
1261 * perform externalization (or freeing if controlp == NULL).
1262 */
1263 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1264 struct mbuf *cm = NULL, *cmn;
1265 struct mbuf **cme = &cm;
1266
1267 do {
1268 if (flags & MSG_PEEK) {
1269 if (controlp != NULL) {
1270 *controlp = m_copy(m, 0, m->m_len);
1271 controlp = &(*controlp)->m_next;
1272 }
1273 m = m->m_next;
1274 } else {
1275 sbfree(&so->so_rcv, m);
1276 so->so_rcv.sb_mb = m->m_next;
1277 m->m_next = NULL;
1278 *cme = m;
1279 cme = &(*cme)->m_next;
1280 m = so->so_rcv.sb_mb;
1281 }
1282 } while (m != NULL && m->m_type == MT_CONTROL);
1283 if ((flags & MSG_PEEK) == 0)
1284 sbsync(&so->so_rcv, nextrecord);
1285 for (; cm != NULL; cm = cmn) {
1286 cmn = cm->m_next;
1287 cm->m_next = NULL;
1288 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1289 if (controlp != NULL) {
1290 if (dom->dom_externalize != NULL &&
1291 type == SCM_RIGHTS) {
1292 sounlock(so);
1293 splx(s);
1294 error = (*dom->dom_externalize)(cm, l);
1295 s = splsoftnet();
1296 solock(so);
1297 }
1298 *controlp = cm;
1299 while (*controlp != NULL)
1300 controlp = &(*controlp)->m_next;
1301 } else {
1302 /*
1303 * Dispose of any SCM_RIGHTS message that went
1304 * through the read path rather than recv.
1305 */
1306 if (dom->dom_dispose != NULL &&
1307 type == SCM_RIGHTS) {
1308 sounlock(so);
1309 (*dom->dom_dispose)(cm);
1310 solock(so);
1311 }
1312 m_freem(cm);
1313 }
1314 }
1315 if (m != NULL)
1316 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1317 else
1318 nextrecord = so->so_rcv.sb_mb;
1319 orig_resid = 0;
1320 }
1321
1322 /* If m is non-NULL, we have some data to read. */
1323 if (__predict_true(m != NULL)) {
1324 type = m->m_type;
1325 if (type == MT_OOBDATA)
1326 flags |= MSG_OOB;
1327 }
1328 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1329 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1330
1331 moff = 0;
1332 offset = 0;
1333 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1334 if (m->m_type == MT_OOBDATA) {
1335 if (type != MT_OOBDATA)
1336 break;
1337 } else if (type == MT_OOBDATA)
1338 break;
1339 #ifdef DIAGNOSTIC
1340 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1341 panic("receive 3");
1342 #endif
1343 so->so_state &= ~SS_RCVATMARK;
1344 len = uio->uio_resid;
1345 if (so->so_oobmark && len > so->so_oobmark - offset)
1346 len = so->so_oobmark - offset;
1347 if (len > m->m_len - moff)
1348 len = m->m_len - moff;
1349 /*
1350 * If mp is set, just pass back the mbufs.
1351 * Otherwise copy them out via the uio, then free.
1352 * Sockbuf must be consistent here (points to current mbuf,
1353 * it points to next record) when we drop priority;
1354 * we must note any additions to the sockbuf when we
1355 * block interrupts again.
1356 */
1357 if (mp == NULL) {
1358 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1359 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1360 sounlock(so);
1361 splx(s);
1362 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1363 s = splsoftnet();
1364 solock(so);
1365 if (error != 0) {
1366 /*
1367 * If any part of the record has been removed
1368 * (such as the MT_SONAME mbuf, which will
1369 * happen when PR_ADDR, and thus also
1370 * PR_ATOMIC, is set), then drop the entire
1371 * record to maintain the atomicity of the
1372 * receive operation.
1373 *
1374 * This avoids a later panic("receive 1a")
1375 * when compiled with DIAGNOSTIC.
1376 */
1377 if (m && mbuf_removed && atomic)
1378 (void) sbdroprecord(&so->so_rcv);
1379
1380 goto release;
1381 }
1382 } else
1383 uio->uio_resid -= len;
1384 if (len == m->m_len - moff) {
1385 if (m->m_flags & M_EOR)
1386 flags |= MSG_EOR;
1387 if (flags & MSG_PEEK) {
1388 m = m->m_next;
1389 moff = 0;
1390 } else {
1391 nextrecord = m->m_nextpkt;
1392 sbfree(&so->so_rcv, m);
1393 if (mp) {
1394 *mp = m;
1395 mp = &m->m_next;
1396 so->so_rcv.sb_mb = m = m->m_next;
1397 *mp = NULL;
1398 } else {
1399 MFREE(m, so->so_rcv.sb_mb);
1400 m = so->so_rcv.sb_mb;
1401 }
1402 /*
1403 * If m != NULL, we also know that
1404 * so->so_rcv.sb_mb != NULL.
1405 */
1406 KASSERT(so->so_rcv.sb_mb == m);
1407 if (m) {
1408 m->m_nextpkt = nextrecord;
1409 if (nextrecord == NULL)
1410 so->so_rcv.sb_lastrecord = m;
1411 } else {
1412 so->so_rcv.sb_mb = nextrecord;
1413 SB_EMPTY_FIXUP(&so->so_rcv);
1414 }
1415 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1416 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1417 }
1418 } else if (flags & MSG_PEEK)
1419 moff += len;
1420 else {
1421 if (mp != NULL) {
1422 mt = m_copym(m, 0, len, M_NOWAIT);
1423 if (__predict_false(mt == NULL)) {
1424 sounlock(so);
1425 mt = m_copym(m, 0, len, M_WAIT);
1426 solock(so);
1427 }
1428 *mp = mt;
1429 }
1430 m->m_data += len;
1431 m->m_len -= len;
1432 so->so_rcv.sb_cc -= len;
1433 }
1434 if (so->so_oobmark) {
1435 if ((flags & MSG_PEEK) == 0) {
1436 so->so_oobmark -= len;
1437 if (so->so_oobmark == 0) {
1438 so->so_state |= SS_RCVATMARK;
1439 break;
1440 }
1441 } else {
1442 offset += len;
1443 if (offset == so->so_oobmark)
1444 break;
1445 }
1446 }
1447 if (flags & MSG_EOR)
1448 break;
1449 /*
1450 * If the MSG_WAITALL flag is set (for non-atomic socket),
1451 * we must not quit until "uio->uio_resid == 0" or an error
1452 * termination. If a signal/timeout occurs, return
1453 * with a short count but without error.
1454 * Keep sockbuf locked against other readers.
1455 */
1456 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1457 !sosendallatonce(so) && !nextrecord) {
1458 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1459 break;
1460 /*
1461 * If we are peeking and the socket receive buffer is
1462 * full, stop since we can't get more data to peek at.
1463 */
1464 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1465 break;
1466 /*
1467 * If we've drained the socket buffer, tell the
1468 * protocol in case it needs to do something to
1469 * get it filled again.
1470 */
1471 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1472 (*pr->pr_usrreq)(so, PRU_RCVD,
1473 NULL, (struct mbuf *)(long)flags, NULL, l);
1474 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1475 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1476 error = sbwait(&so->so_rcv);
1477 if (error != 0) {
1478 sbunlock(&so->so_rcv);
1479 sounlock(so);
1480 splx(s);
1481 return 0;
1482 }
1483 if ((m = so->so_rcv.sb_mb) != NULL)
1484 nextrecord = m->m_nextpkt;
1485 }
1486 }
1487
1488 if (m && atomic) {
1489 flags |= MSG_TRUNC;
1490 if ((flags & MSG_PEEK) == 0)
1491 (void) sbdroprecord(&so->so_rcv);
1492 }
1493 if ((flags & MSG_PEEK) == 0) {
1494 if (m == NULL) {
1495 /*
1496 * First part is an inline SB_EMPTY_FIXUP(). Second
1497 * part makes sure sb_lastrecord is up-to-date if
1498 * there is still data in the socket buffer.
1499 */
1500 so->so_rcv.sb_mb = nextrecord;
1501 if (so->so_rcv.sb_mb == NULL) {
1502 so->so_rcv.sb_mbtail = NULL;
1503 so->so_rcv.sb_lastrecord = NULL;
1504 } else if (nextrecord->m_nextpkt == NULL)
1505 so->so_rcv.sb_lastrecord = nextrecord;
1506 }
1507 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1508 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1509 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1510 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1511 (struct mbuf *)(long)flags, NULL, l);
1512 }
1513 if (orig_resid == uio->uio_resid && orig_resid &&
1514 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1515 sbunlock(&so->so_rcv);
1516 goto restart;
1517 }
1518
1519 if (flagsp != NULL)
1520 *flagsp |= flags;
1521 release:
1522 sbunlock(&so->so_rcv);
1523 sounlock(so);
1524 splx(s);
1525 return error;
1526 }
1527
1528 int
1529 soshutdown(struct socket *so, int how)
1530 {
1531 const struct protosw *pr;
1532 int error;
1533
1534 KASSERT(solocked(so));
1535
1536 pr = so->so_proto;
1537 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1538 return (EINVAL);
1539
1540 if (how == SHUT_RD || how == SHUT_RDWR) {
1541 sorflush(so);
1542 error = 0;
1543 }
1544 if (how == SHUT_WR || how == SHUT_RDWR)
1545 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1546 NULL, NULL, NULL);
1547
1548 return error;
1549 }
1550
1551 void
1552 sorflush(struct socket *so)
1553 {
1554 struct sockbuf *sb, asb;
1555 const struct protosw *pr;
1556
1557 KASSERT(solocked(so));
1558
1559 sb = &so->so_rcv;
1560 pr = so->so_proto;
1561 socantrcvmore(so);
1562 sb->sb_flags |= SB_NOINTR;
1563 (void )sblock(sb, M_WAITOK);
1564 sbunlock(sb);
1565 asb = *sb;
1566 /*
1567 * Clear most of the sockbuf structure, but leave some of the
1568 * fields valid.
1569 */
1570 memset(&sb->sb_startzero, 0,
1571 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1572 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1573 sounlock(so);
1574 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1575 solock(so);
1576 }
1577 sbrelease(&asb, so);
1578 }
1579
1580 /*
1581 * internal set SOL_SOCKET options
1582 */
1583 static int
1584 sosetopt1(struct socket *so, const struct sockopt *sopt)
1585 {
1586 int error = EINVAL, optval, opt;
1587 struct linger l;
1588 struct timeval tv;
1589
1590 switch ((opt = sopt->sopt_name)) {
1591
1592 case SO_ACCEPTFILTER:
1593 error = accept_filt_setopt(so, sopt);
1594 KASSERT(solocked(so));
1595 break;
1596
1597 case SO_LINGER:
1598 error = sockopt_get(sopt, &l, sizeof(l));
1599 solock(so);
1600 if (error)
1601 break;
1602 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1603 l.l_linger > (INT_MAX / hz)) {
1604 error = EDOM;
1605 break;
1606 }
1607 so->so_linger = l.l_linger;
1608 if (l.l_onoff)
1609 so->so_options |= SO_LINGER;
1610 else
1611 so->so_options &= ~SO_LINGER;
1612 break;
1613
1614 case SO_DEBUG:
1615 case SO_KEEPALIVE:
1616 case SO_DONTROUTE:
1617 case SO_USELOOPBACK:
1618 case SO_BROADCAST:
1619 case SO_REUSEADDR:
1620 case SO_REUSEPORT:
1621 case SO_OOBINLINE:
1622 case SO_TIMESTAMP:
1623 error = sockopt_getint(sopt, &optval);
1624 solock(so);
1625 if (error)
1626 break;
1627 if (optval)
1628 so->so_options |= opt;
1629 else
1630 so->so_options &= ~opt;
1631 break;
1632
1633 case SO_SNDBUF:
1634 case SO_RCVBUF:
1635 case SO_SNDLOWAT:
1636 case SO_RCVLOWAT:
1637 error = sockopt_getint(sopt, &optval);
1638 solock(so);
1639 if (error)
1640 break;
1641
1642 /*
1643 * Values < 1 make no sense for any of these
1644 * options, so disallow them.
1645 */
1646 if (optval < 1) {
1647 error = EINVAL;
1648 break;
1649 }
1650
1651 switch (opt) {
1652 case SO_SNDBUF:
1653 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1654 error = ENOBUFS;
1655 break;
1656 }
1657 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1658 break;
1659
1660 case SO_RCVBUF:
1661 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1662 error = ENOBUFS;
1663 break;
1664 }
1665 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1666 break;
1667
1668 /*
1669 * Make sure the low-water is never greater than
1670 * the high-water.
1671 */
1672 case SO_SNDLOWAT:
1673 if (optval > so->so_snd.sb_hiwat)
1674 optval = so->so_snd.sb_hiwat;
1675
1676 so->so_snd.sb_lowat = optval;
1677 break;
1678
1679 case SO_RCVLOWAT:
1680 if (optval > so->so_rcv.sb_hiwat)
1681 optval = so->so_rcv.sb_hiwat;
1682
1683 so->so_rcv.sb_lowat = optval;
1684 break;
1685 }
1686 break;
1687
1688 #ifdef COMPAT_50
1689 case SO_OSNDTIMEO:
1690 case SO_ORCVTIMEO: {
1691 struct timeval50 otv;
1692 error = sockopt_get(sopt, &otv, sizeof(otv));
1693 if (error)
1694 break;
1695 timeval50_to_timeval(&otv, &tv);
1696 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1697 error = 0;
1698 /*FALLTHROUGH*/
1699 }
1700 #endif /* COMPAT_50 */
1701
1702 case SO_SNDTIMEO:
1703 case SO_RCVTIMEO:
1704 if (error)
1705 error = sockopt_get(sopt, &tv, sizeof(tv));
1706 solock(so);
1707 if (error)
1708 break;
1709
1710 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1711 error = EDOM;
1712 break;
1713 }
1714
1715 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1716 if (optval == 0 && tv.tv_usec != 0)
1717 optval = 1;
1718
1719 switch (opt) {
1720 case SO_SNDTIMEO:
1721 so->so_snd.sb_timeo = optval;
1722 break;
1723 case SO_RCVTIMEO:
1724 so->so_rcv.sb_timeo = optval;
1725 break;
1726 }
1727 break;
1728
1729 default:
1730 solock(so);
1731 error = ENOPROTOOPT;
1732 break;
1733 }
1734 KASSERT(solocked(so));
1735 return error;
1736 }
1737
1738 int
1739 sosetopt(struct socket *so, struct sockopt *sopt)
1740 {
1741 int error, prerr;
1742
1743 if (sopt->sopt_level == SOL_SOCKET) {
1744 error = sosetopt1(so, sopt);
1745 KASSERT(solocked(so));
1746 } else {
1747 error = ENOPROTOOPT;
1748 solock(so);
1749 }
1750
1751 if ((error == 0 || error == ENOPROTOOPT) &&
1752 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1753 /* give the protocol stack a shot */
1754 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1755 if (prerr == 0)
1756 error = 0;
1757 else if (prerr != ENOPROTOOPT)
1758 error = prerr;
1759 }
1760 sounlock(so);
1761 return error;
1762 }
1763
1764 /*
1765 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1766 */
1767 int
1768 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1769 const void *val, size_t valsize)
1770 {
1771 struct sockopt sopt;
1772 int error;
1773
1774 KASSERT(valsize == 0 || val != NULL);
1775
1776 sockopt_init(&sopt, level, name, valsize);
1777 sockopt_set(&sopt, val, valsize);
1778
1779 error = sosetopt(so, &sopt);
1780
1781 sockopt_destroy(&sopt);
1782
1783 return error;
1784 }
1785
1786 /*
1787 * internal get SOL_SOCKET options
1788 */
1789 static int
1790 sogetopt1(struct socket *so, struct sockopt *sopt)
1791 {
1792 int error, optval, opt;
1793 struct linger l;
1794 struct timeval tv;
1795
1796 switch ((opt = sopt->sopt_name)) {
1797
1798 case SO_ACCEPTFILTER:
1799 error = accept_filt_getopt(so, sopt);
1800 break;
1801
1802 case SO_LINGER:
1803 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1804 l.l_linger = so->so_linger;
1805
1806 error = sockopt_set(sopt, &l, sizeof(l));
1807 break;
1808
1809 case SO_USELOOPBACK:
1810 case SO_DONTROUTE:
1811 case SO_DEBUG:
1812 case SO_KEEPALIVE:
1813 case SO_REUSEADDR:
1814 case SO_REUSEPORT:
1815 case SO_BROADCAST:
1816 case SO_OOBINLINE:
1817 case SO_TIMESTAMP:
1818 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1819 break;
1820
1821 case SO_TYPE:
1822 error = sockopt_setint(sopt, so->so_type);
1823 break;
1824
1825 case SO_ERROR:
1826 error = sockopt_setint(sopt, so->so_error);
1827 so->so_error = 0;
1828 break;
1829
1830 case SO_SNDBUF:
1831 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1832 break;
1833
1834 case SO_RCVBUF:
1835 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1836 break;
1837
1838 case SO_SNDLOWAT:
1839 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1840 break;
1841
1842 case SO_RCVLOWAT:
1843 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1844 break;
1845
1846 #ifdef COMPAT_50
1847 case SO_OSNDTIMEO:
1848 case SO_ORCVTIMEO: {
1849 struct timeval50 otv;
1850
1851 optval = (opt == SO_OSNDTIMEO ?
1852 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1853
1854 otv.tv_sec = optval / hz;
1855 otv.tv_usec = (optval % hz) * tick;
1856
1857 error = sockopt_set(sopt, &otv, sizeof(otv));
1858 break;
1859 }
1860 #endif /* COMPAT_50 */
1861
1862 case SO_SNDTIMEO:
1863 case SO_RCVTIMEO:
1864 optval = (opt == SO_SNDTIMEO ?
1865 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1866
1867 tv.tv_sec = optval / hz;
1868 tv.tv_usec = (optval % hz) * tick;
1869
1870 error = sockopt_set(sopt, &tv, sizeof(tv));
1871 break;
1872
1873 case SO_OVERFLOWED:
1874 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1875 break;
1876
1877 default:
1878 error = ENOPROTOOPT;
1879 break;
1880 }
1881
1882 return (error);
1883 }
1884
1885 int
1886 sogetopt(struct socket *so, struct sockopt *sopt)
1887 {
1888 int error;
1889
1890 solock(so);
1891 if (sopt->sopt_level != SOL_SOCKET) {
1892 if (so->so_proto && so->so_proto->pr_ctloutput) {
1893 error = ((*so->so_proto->pr_ctloutput)
1894 (PRCO_GETOPT, so, sopt));
1895 } else
1896 error = (ENOPROTOOPT);
1897 } else {
1898 error = sogetopt1(so, sopt);
1899 }
1900 sounlock(so);
1901 return (error);
1902 }
1903
1904 /*
1905 * alloc sockopt data buffer buffer
1906 * - will be released at destroy
1907 */
1908 static int
1909 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
1910 {
1911
1912 KASSERT(sopt->sopt_size == 0);
1913
1914 if (len > sizeof(sopt->sopt_buf)) {
1915 sopt->sopt_data = kmem_zalloc(len, kmflag);
1916 if (sopt->sopt_data == NULL)
1917 return ENOMEM;
1918 } else
1919 sopt->sopt_data = sopt->sopt_buf;
1920
1921 sopt->sopt_size = len;
1922 return 0;
1923 }
1924
1925 /*
1926 * initialise sockopt storage
1927 * - MAY sleep during allocation
1928 */
1929 void
1930 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
1931 {
1932
1933 memset(sopt, 0, sizeof(*sopt));
1934
1935 sopt->sopt_level = level;
1936 sopt->sopt_name = name;
1937 (void)sockopt_alloc(sopt, size, KM_SLEEP);
1938 }
1939
1940 /*
1941 * destroy sockopt storage
1942 * - will release any held memory references
1943 */
1944 void
1945 sockopt_destroy(struct sockopt *sopt)
1946 {
1947
1948 if (sopt->sopt_data != sopt->sopt_buf)
1949 kmem_free(sopt->sopt_data, sopt->sopt_size);
1950
1951 memset(sopt, 0, sizeof(*sopt));
1952 }
1953
1954 /*
1955 * set sockopt value
1956 * - value is copied into sockopt
1957 * - memory is allocated when necessary, will not sleep
1958 */
1959 int
1960 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
1961 {
1962 int error;
1963
1964 if (sopt->sopt_size == 0) {
1965 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
1966 if (error)
1967 return error;
1968 }
1969
1970 KASSERT(sopt->sopt_size == len);
1971 memcpy(sopt->sopt_data, buf, len);
1972 return 0;
1973 }
1974
1975 /*
1976 * common case of set sockopt integer value
1977 */
1978 int
1979 sockopt_setint(struct sockopt *sopt, int val)
1980 {
1981
1982 return sockopt_set(sopt, &val, sizeof(int));
1983 }
1984
1985 /*
1986 * get sockopt value
1987 * - correct size must be given
1988 */
1989 int
1990 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
1991 {
1992
1993 if (sopt->sopt_size != len)
1994 return EINVAL;
1995
1996 memcpy(buf, sopt->sopt_data, len);
1997 return 0;
1998 }
1999
2000 /*
2001 * common case of get sockopt integer value
2002 */
2003 int
2004 sockopt_getint(const struct sockopt *sopt, int *valp)
2005 {
2006
2007 return sockopt_get(sopt, valp, sizeof(int));
2008 }
2009
2010 /*
2011 * set sockopt value from mbuf
2012 * - ONLY for legacy code
2013 * - mbuf is released by sockopt
2014 * - will not sleep
2015 */
2016 int
2017 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2018 {
2019 size_t len;
2020 int error;
2021
2022 len = m_length(m);
2023
2024 if (sopt->sopt_size == 0) {
2025 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2026 if (error)
2027 return error;
2028 }
2029
2030 KASSERT(sopt->sopt_size == len);
2031 m_copydata(m, 0, len, sopt->sopt_data);
2032 m_freem(m);
2033
2034 return 0;
2035 }
2036
2037 /*
2038 * get sockopt value into mbuf
2039 * - ONLY for legacy code
2040 * - mbuf to be released by the caller
2041 * - will not sleep
2042 */
2043 struct mbuf *
2044 sockopt_getmbuf(const struct sockopt *sopt)
2045 {
2046 struct mbuf *m;
2047
2048 if (sopt->sopt_size > MCLBYTES)
2049 return NULL;
2050
2051 m = m_get(M_DONTWAIT, MT_SOOPTS);
2052 if (m == NULL)
2053 return NULL;
2054
2055 if (sopt->sopt_size > MLEN) {
2056 MCLGET(m, M_DONTWAIT);
2057 if ((m->m_flags & M_EXT) == 0) {
2058 m_free(m);
2059 return NULL;
2060 }
2061 }
2062
2063 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2064 m->m_len = sopt->sopt_size;
2065
2066 return m;
2067 }
2068
2069 void
2070 sohasoutofband(struct socket *so)
2071 {
2072
2073 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2074 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, 0);
2075 }
2076
2077 static void
2078 filt_sordetach(struct knote *kn)
2079 {
2080 struct socket *so;
2081
2082 so = ((file_t *)kn->kn_obj)->f_data;
2083 solock(so);
2084 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2085 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2086 so->so_rcv.sb_flags &= ~SB_KNOTE;
2087 sounlock(so);
2088 }
2089
2090 /*ARGSUSED*/
2091 static int
2092 filt_soread(struct knote *kn, long hint)
2093 {
2094 struct socket *so;
2095 int rv;
2096
2097 so = ((file_t *)kn->kn_obj)->f_data;
2098 if (hint != NOTE_SUBMIT)
2099 solock(so);
2100 kn->kn_data = so->so_rcv.sb_cc;
2101 if (so->so_state & SS_CANTRCVMORE) {
2102 kn->kn_flags |= EV_EOF;
2103 kn->kn_fflags = so->so_error;
2104 rv = 1;
2105 } else if (so->so_error) /* temporary udp error */
2106 rv = 1;
2107 else if (kn->kn_sfflags & NOTE_LOWAT)
2108 rv = (kn->kn_data >= kn->kn_sdata);
2109 else
2110 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2111 if (hint != NOTE_SUBMIT)
2112 sounlock(so);
2113 return rv;
2114 }
2115
2116 static void
2117 filt_sowdetach(struct knote *kn)
2118 {
2119 struct socket *so;
2120
2121 so = ((file_t *)kn->kn_obj)->f_data;
2122 solock(so);
2123 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2124 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2125 so->so_snd.sb_flags &= ~SB_KNOTE;
2126 sounlock(so);
2127 }
2128
2129 /*ARGSUSED*/
2130 static int
2131 filt_sowrite(struct knote *kn, long hint)
2132 {
2133 struct socket *so;
2134 int rv;
2135
2136 so = ((file_t *)kn->kn_obj)->f_data;
2137 if (hint != NOTE_SUBMIT)
2138 solock(so);
2139 kn->kn_data = sbspace(&so->so_snd);
2140 if (so->so_state & SS_CANTSENDMORE) {
2141 kn->kn_flags |= EV_EOF;
2142 kn->kn_fflags = so->so_error;
2143 rv = 1;
2144 } else if (so->so_error) /* temporary udp error */
2145 rv = 1;
2146 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2147 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2148 rv = 0;
2149 else if (kn->kn_sfflags & NOTE_LOWAT)
2150 rv = (kn->kn_data >= kn->kn_sdata);
2151 else
2152 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2153 if (hint != NOTE_SUBMIT)
2154 sounlock(so);
2155 return rv;
2156 }
2157
2158 /*ARGSUSED*/
2159 static int
2160 filt_solisten(struct knote *kn, long hint)
2161 {
2162 struct socket *so;
2163 int rv;
2164
2165 so = ((file_t *)kn->kn_obj)->f_data;
2166
2167 /*
2168 * Set kn_data to number of incoming connections, not
2169 * counting partial (incomplete) connections.
2170 */
2171 if (hint != NOTE_SUBMIT)
2172 solock(so);
2173 kn->kn_data = so->so_qlen;
2174 rv = (kn->kn_data > 0);
2175 if (hint != NOTE_SUBMIT)
2176 sounlock(so);
2177 return rv;
2178 }
2179
2180 static const struct filterops solisten_filtops =
2181 { 1, NULL, filt_sordetach, filt_solisten };
2182 static const struct filterops soread_filtops =
2183 { 1, NULL, filt_sordetach, filt_soread };
2184 static const struct filterops sowrite_filtops =
2185 { 1, NULL, filt_sowdetach, filt_sowrite };
2186
2187 int
2188 soo_kqfilter(struct file *fp, struct knote *kn)
2189 {
2190 struct socket *so;
2191 struct sockbuf *sb;
2192
2193 so = ((file_t *)kn->kn_obj)->f_data;
2194 solock(so);
2195 switch (kn->kn_filter) {
2196 case EVFILT_READ:
2197 if (so->so_options & SO_ACCEPTCONN)
2198 kn->kn_fop = &solisten_filtops;
2199 else
2200 kn->kn_fop = &soread_filtops;
2201 sb = &so->so_rcv;
2202 break;
2203 case EVFILT_WRITE:
2204 kn->kn_fop = &sowrite_filtops;
2205 sb = &so->so_snd;
2206 break;
2207 default:
2208 sounlock(so);
2209 return (EINVAL);
2210 }
2211 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2212 sb->sb_flags |= SB_KNOTE;
2213 sounlock(so);
2214 return (0);
2215 }
2216
2217 static int
2218 sodopoll(struct socket *so, int events)
2219 {
2220 int revents;
2221
2222 revents = 0;
2223
2224 if (events & (POLLIN | POLLRDNORM))
2225 if (soreadable(so))
2226 revents |= events & (POLLIN | POLLRDNORM);
2227
2228 if (events & (POLLOUT | POLLWRNORM))
2229 if (sowritable(so))
2230 revents |= events & (POLLOUT | POLLWRNORM);
2231
2232 if (events & (POLLPRI | POLLRDBAND))
2233 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2234 revents |= events & (POLLPRI | POLLRDBAND);
2235
2236 return revents;
2237 }
2238
2239 int
2240 sopoll(struct socket *so, int events)
2241 {
2242 int revents = 0;
2243
2244 #ifndef DIAGNOSTIC
2245 /*
2246 * Do a quick, unlocked check in expectation that the socket
2247 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2248 * as the solocked() assertions will fail.
2249 */
2250 if ((revents = sodopoll(so, events)) != 0)
2251 return revents;
2252 #endif
2253
2254 solock(so);
2255 if ((revents = sodopoll(so, events)) == 0) {
2256 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2257 selrecord(curlwp, &so->so_rcv.sb_sel);
2258 so->so_rcv.sb_flags |= SB_NOTIFY;
2259 }
2260
2261 if (events & (POLLOUT | POLLWRNORM)) {
2262 selrecord(curlwp, &so->so_snd.sb_sel);
2263 so->so_snd.sb_flags |= SB_NOTIFY;
2264 }
2265 }
2266 sounlock(so);
2267
2268 return revents;
2269 }
2270
2271
2272 #include <sys/sysctl.h>
2273
2274 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2275
2276 /*
2277 * sysctl helper routine for kern.somaxkva. ensures that the given
2278 * value is not too small.
2279 * (XXX should we maybe make sure it's not too large as well?)
2280 */
2281 static int
2282 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2283 {
2284 int error, new_somaxkva;
2285 struct sysctlnode node;
2286
2287 new_somaxkva = somaxkva;
2288 node = *rnode;
2289 node.sysctl_data = &new_somaxkva;
2290 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2291 if (error || newp == NULL)
2292 return (error);
2293
2294 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2295 return (EINVAL);
2296
2297 mutex_enter(&so_pendfree_lock);
2298 somaxkva = new_somaxkva;
2299 cv_broadcast(&socurkva_cv);
2300 mutex_exit(&so_pendfree_lock);
2301
2302 return (error);
2303 }
2304
2305 static void
2306 sysctl_kern_somaxkva_setup()
2307 {
2308
2309 KASSERT(socket_sysctllog == NULL);
2310 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2311 CTLFLAG_PERMANENT,
2312 CTLTYPE_NODE, "kern", NULL,
2313 NULL, 0, NULL, 0,
2314 CTL_KERN, CTL_EOL);
2315
2316 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2317 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2318 CTLTYPE_INT, "somaxkva",
2319 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2320 "used for socket buffers"),
2321 sysctl_kern_somaxkva, 0, NULL, 0,
2322 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2323 }
2324