uipc_socket.c revision 1.154 1 /* $NetBSD: uipc_socket.c,v 1.154 2008/03/20 19:23:15 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.154 2008/03/20 19:23:15 ad Exp $");
72
73 #include "opt_sock_counters.h"
74 #include "opt_sosend_loan.h"
75 #include "opt_mbuftrace.h"
76 #include "opt_somaxkva.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/file.h>
82 #include <sys/filedesc.h>
83 #include <sys/malloc.h>
84 #include <sys/mbuf.h>
85 #include <sys/domain.h>
86 #include <sys/kernel.h>
87 #include <sys/protosw.h>
88 #include <sys/socket.h>
89 #include <sys/socketvar.h>
90 #include <sys/signalvar.h>
91 #include <sys/resourcevar.h>
92 #include <sys/pool.h>
93 #include <sys/event.h>
94 #include <sys/poll.h>
95 #include <sys/kauth.h>
96 #include <sys/mutex.h>
97 #include <sys/condvar.h>
98
99 #include <uvm/uvm.h>
100
101 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL,
102 IPL_SOFTNET);
103
104 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
105 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
106
107 extern const struct fileops socketops;
108
109 extern int somaxconn; /* patchable (XXX sysctl) */
110 int somaxconn = SOMAXCONN;
111
112 #ifdef SOSEND_COUNTERS
113 #include <sys/device.h>
114
115 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
116 NULL, "sosend", "loan big");
117 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
118 NULL, "sosend", "copy big");
119 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
120 NULL, "sosend", "copy small");
121 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
122 NULL, "sosend", "kva limit");
123
124 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
125
126 EVCNT_ATTACH_STATIC(sosend_loan_big);
127 EVCNT_ATTACH_STATIC(sosend_copy_big);
128 EVCNT_ATTACH_STATIC(sosend_copy_small);
129 EVCNT_ATTACH_STATIC(sosend_kvalimit);
130 #else
131
132 #define SOSEND_COUNTER_INCR(ev) /* nothing */
133
134 #endif /* SOSEND_COUNTERS */
135
136 static struct callback_entry sokva_reclaimerentry;
137
138 #ifdef SOSEND_NO_LOAN
139 int sock_loan_thresh = -1;
140 #else
141 int sock_loan_thresh = 4096;
142 #endif
143
144 static kmutex_t so_pendfree_lock;
145 static struct mbuf *so_pendfree;
146
147 #ifndef SOMAXKVA
148 #define SOMAXKVA (16 * 1024 * 1024)
149 #endif
150 int somaxkva = SOMAXKVA;
151 static int socurkva;
152 static kcondvar_t socurkva_cv;
153
154 #define SOCK_LOAN_CHUNK 65536
155
156 static size_t sodopendfree(void);
157 static size_t sodopendfreel(void);
158
159 static vsize_t
160 sokvareserve(struct socket *so, vsize_t len)
161 {
162 int error;
163
164 mutex_enter(&so_pendfree_lock);
165 while (socurkva + len > somaxkva) {
166 size_t freed;
167
168 /*
169 * try to do pendfree.
170 */
171
172 freed = sodopendfreel();
173
174 /*
175 * if some kva was freed, try again.
176 */
177
178 if (freed)
179 continue;
180
181 SOSEND_COUNTER_INCR(&sosend_kvalimit);
182 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
183 if (error) {
184 len = 0;
185 break;
186 }
187 }
188 socurkva += len;
189 mutex_exit(&so_pendfree_lock);
190 return len;
191 }
192
193 static void
194 sokvaunreserve(vsize_t len)
195 {
196
197 mutex_enter(&so_pendfree_lock);
198 socurkva -= len;
199 cv_broadcast(&socurkva_cv);
200 mutex_exit(&so_pendfree_lock);
201 }
202
203 /*
204 * sokvaalloc: allocate kva for loan.
205 */
206
207 vaddr_t
208 sokvaalloc(vsize_t len, struct socket *so)
209 {
210 vaddr_t lva;
211
212 /*
213 * reserve kva.
214 */
215
216 if (sokvareserve(so, len) == 0)
217 return 0;
218
219 /*
220 * allocate kva.
221 */
222
223 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
224 if (lva == 0) {
225 sokvaunreserve(len);
226 return (0);
227 }
228
229 return lva;
230 }
231
232 /*
233 * sokvafree: free kva for loan.
234 */
235
236 void
237 sokvafree(vaddr_t sva, vsize_t len)
238 {
239
240 /*
241 * free kva.
242 */
243
244 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
245
246 /*
247 * unreserve kva.
248 */
249
250 sokvaunreserve(len);
251 }
252
253 static void
254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
255 {
256 vaddr_t va, sva, eva;
257 vsize_t len;
258 paddr_t pa;
259 int i, npgs;
260
261 eva = round_page((vaddr_t) buf + size);
262 sva = trunc_page((vaddr_t) buf);
263 len = eva - sva;
264 npgs = len >> PAGE_SHIFT;
265
266 if (__predict_false(pgs == NULL)) {
267 pgs = alloca(npgs * sizeof(*pgs));
268
269 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
270 if (pmap_extract(pmap_kernel(), va, &pa) == false)
271 panic("sodoloanfree: va 0x%lx not mapped", va);
272 pgs[i] = PHYS_TO_VM_PAGE(pa);
273 }
274 }
275
276 pmap_kremove(sva, len);
277 pmap_update(pmap_kernel());
278 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
279 sokvafree(sva, len);
280 }
281
282 static size_t
283 sodopendfree(void)
284 {
285 size_t rv;
286
287 mutex_enter(&so_pendfree_lock);
288 rv = sodopendfreel();
289 mutex_exit(&so_pendfree_lock);
290
291 return rv;
292 }
293
294 /*
295 * sodopendfreel: free mbufs on "pendfree" list.
296 * unlock and relock so_pendfree_lock when freeing mbufs.
297 *
298 * => called with so_pendfree_lock held.
299 */
300
301 static size_t
302 sodopendfreel(void)
303 {
304 struct mbuf *m, *next;
305 size_t rv = 0;
306
307 KASSERT(mutex_owned(&so_pendfree_lock));
308
309 while (so_pendfree != NULL) {
310 m = so_pendfree;
311 so_pendfree = NULL;
312 mutex_exit(&so_pendfree_lock);
313
314 for (; m != NULL; m = next) {
315 next = m->m_next;
316
317 rv += m->m_ext.ext_size;
318 sodoloanfree((m->m_flags & M_EXT_PAGES) ?
319 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
320 m->m_ext.ext_size);
321 pool_cache_put(mb_cache, m);
322 }
323
324 mutex_enter(&so_pendfree_lock);
325 }
326
327 return (rv);
328 }
329
330 void
331 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
332 {
333
334 if (m == NULL) {
335
336 /*
337 * called from MEXTREMOVE.
338 */
339
340 sodoloanfree(NULL, buf, size);
341 return;
342 }
343
344 /*
345 * postpone freeing mbuf.
346 *
347 * we can't do it in interrupt context
348 * because we need to put kva back to kernel_map.
349 */
350
351 mutex_enter(&so_pendfree_lock);
352 m->m_next = so_pendfree;
353 so_pendfree = m;
354 cv_broadcast(&socurkva_cv);
355 mutex_exit(&so_pendfree_lock);
356 }
357
358 static long
359 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
360 {
361 struct iovec *iov = uio->uio_iov;
362 vaddr_t sva, eva;
363 vsize_t len;
364 vaddr_t lva, va;
365 int npgs, i, error;
366
367 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
368 return (0);
369
370 if (iov->iov_len < (size_t) space)
371 space = iov->iov_len;
372 if (space > SOCK_LOAN_CHUNK)
373 space = SOCK_LOAN_CHUNK;
374
375 eva = round_page((vaddr_t) iov->iov_base + space);
376 sva = trunc_page((vaddr_t) iov->iov_base);
377 len = eva - sva;
378 npgs = len >> PAGE_SHIFT;
379
380 /* XXX KDASSERT */
381 KASSERT(npgs <= M_EXT_MAXPAGES);
382
383 lva = sokvaalloc(len, so);
384 if (lva == 0)
385 return 0;
386
387 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
388 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
389 if (error) {
390 sokvafree(lva, len);
391 return (0);
392 }
393
394 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
395 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
396 VM_PROT_READ);
397 pmap_update(pmap_kernel());
398
399 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
400
401 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
402 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
403
404 uio->uio_resid -= space;
405 /* uio_offset not updated, not set/used for write(2) */
406 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
407 uio->uio_iov->iov_len -= space;
408 if (uio->uio_iov->iov_len == 0) {
409 uio->uio_iov++;
410 uio->uio_iovcnt--;
411 }
412
413 return (space);
414 }
415
416 static int
417 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
418 {
419
420 KASSERT(ce == &sokva_reclaimerentry);
421 KASSERT(obj == NULL);
422
423 sodopendfree();
424 if (!vm_map_starved_p(kernel_map)) {
425 return CALLBACK_CHAIN_ABORT;
426 }
427 return CALLBACK_CHAIN_CONTINUE;
428 }
429
430 struct mbuf *
431 getsombuf(struct socket *so, int type)
432 {
433 struct mbuf *m;
434
435 m = m_get(M_WAIT, type);
436 MCLAIM(m, so->so_mowner);
437 return m;
438 }
439
440 struct mbuf *
441 m_intopt(struct socket *so, int val)
442 {
443 struct mbuf *m;
444
445 m = getsombuf(so, MT_SOOPTS);
446 m->m_len = sizeof(int);
447 *mtod(m, int *) = val;
448 return m;
449 }
450
451 void
452 soinit(void)
453 {
454
455 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
456 cv_init(&socurkva_cv, "sokva");
457
458 /* Set the initial adjusted socket buffer size. */
459 if (sb_max_set(sb_max))
460 panic("bad initial sb_max value: %lu", sb_max);
461
462 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
463 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
464 }
465
466 /*
467 * Socket operation routines.
468 * These routines are called by the routines in
469 * sys_socket.c or from a system process, and
470 * implement the semantics of socket operations by
471 * switching out to the protocol specific routines.
472 */
473 /*ARGSUSED*/
474 int
475 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
476 {
477 const struct protosw *prp;
478 struct socket *so;
479 uid_t uid;
480 int error, s;
481
482 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
483 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
484 KAUTH_ARG(proto));
485 if (error != 0)
486 return error;
487
488 if (proto)
489 prp = pffindproto(dom, proto, type);
490 else
491 prp = pffindtype(dom, type);
492 if (prp == NULL) {
493 /* no support for domain */
494 if (pffinddomain(dom) == 0)
495 return EAFNOSUPPORT;
496 /* no support for socket type */
497 if (proto == 0 && type != 0)
498 return EPROTOTYPE;
499 return EPROTONOSUPPORT;
500 }
501 if (prp->pr_usrreq == NULL)
502 return EPROTONOSUPPORT;
503 if (prp->pr_type != type)
504 return EPROTOTYPE;
505 s = splsoftnet();
506 so = pool_get(&socket_pool, PR_WAITOK);
507 memset(so, 0, sizeof(*so));
508 TAILQ_INIT(&so->so_q0);
509 TAILQ_INIT(&so->so_q);
510 so->so_type = type;
511 so->so_proto = prp;
512 so->so_send = sosend;
513 so->so_receive = soreceive;
514 #ifdef MBUFTRACE
515 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
516 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
517 so->so_mowner = &prp->pr_domain->dom_mowner;
518 #endif
519 selinit(&so->so_rcv.sb_sel);
520 selinit(&so->so_snd.sb_sel);
521 uid = kauth_cred_geteuid(l->l_cred);
522 so->so_uidinfo = uid_find(uid);
523 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
524 (struct mbuf *)(long)proto, NULL, l);
525 if (error != 0) {
526 so->so_state |= SS_NOFDREF;
527 sofree(so);
528 splx(s);
529 return error;
530 }
531 splx(s);
532 *aso = so;
533 return 0;
534 }
535
536 /* On success, write file descriptor to fdout and return zero. On
537 * failure, return non-zero; *fdout will be undefined.
538 */
539 int
540 fsocreate(int domain, struct socket **sop, int type, int protocol,
541 struct lwp *l, int *fdout)
542 {
543 struct filedesc *fdp;
544 struct socket *so;
545 struct file *fp;
546 int fd, error;
547
548 fdp = l->l_proc->p_fd;
549 /* falloc() will use the desciptor for us */
550 if ((error = falloc(l, &fp, &fd)) != 0)
551 return (error);
552 fp->f_flag = FREAD|FWRITE;
553 fp->f_type = DTYPE_SOCKET;
554 fp->f_ops = &socketops;
555 error = socreate(domain, &so, type, protocol, l);
556 if (error != 0) {
557 FILE_UNUSE(fp, l);
558 fdremove(fdp, fd);
559 ffree(fp);
560 } else {
561 if (sop != NULL)
562 *sop = so;
563 fp->f_data = so;
564 FILE_SET_MATURE(fp);
565 FILE_UNUSE(fp, l);
566 *fdout = fd;
567 }
568 return error;
569 }
570
571 int
572 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
573 {
574 int s, error;
575
576 s = splsoftnet();
577 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
578 splx(s);
579 return error;
580 }
581
582 int
583 solisten(struct socket *so, int backlog, struct lwp *l)
584 {
585 int s, error;
586
587 s = splsoftnet();
588 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
589 NULL, NULL, l);
590 if (error != 0) {
591 splx(s);
592 return error;
593 }
594 if (TAILQ_EMPTY(&so->so_q))
595 so->so_options |= SO_ACCEPTCONN;
596 if (backlog < 0)
597 backlog = 0;
598 so->so_qlimit = min(backlog, somaxconn);
599 splx(s);
600 return 0;
601 }
602
603 void
604 sofree(struct socket *so)
605 {
606
607 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
608 return;
609 if (so->so_head) {
610 /*
611 * We must not decommission a socket that's on the accept(2)
612 * queue. If we do, then accept(2) may hang after select(2)
613 * indicated that the listening socket was ready.
614 */
615 if (!soqremque(so, 0))
616 return;
617 }
618 if (so->so_rcv.sb_hiwat)
619 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
620 RLIM_INFINITY);
621 if (so->so_snd.sb_hiwat)
622 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
623 RLIM_INFINITY);
624 sbrelease(&so->so_snd, so);
625 sorflush(so);
626 seldestroy(&so->so_rcv.sb_sel);
627 seldestroy(&so->so_snd.sb_sel);
628 pool_put(&socket_pool, so);
629 }
630
631 /*
632 * Close a socket on last file table reference removal.
633 * Initiate disconnect if connected.
634 * Free socket when disconnect complete.
635 */
636 int
637 soclose(struct socket *so)
638 {
639 struct socket *so2;
640 int s, error;
641
642 error = 0;
643 s = splsoftnet(); /* conservative */
644 if (so->so_options & SO_ACCEPTCONN) {
645 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
646 (void) soqremque(so2, 0);
647 (void) soabort(so2);
648 }
649 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
650 (void) soqremque(so2, 1);
651 (void) soabort(so2);
652 }
653 }
654 if (so->so_pcb == 0)
655 goto discard;
656 if (so->so_state & SS_ISCONNECTED) {
657 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
658 error = sodisconnect(so);
659 if (error)
660 goto drop;
661 }
662 if (so->so_options & SO_LINGER) {
663 if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
664 goto drop;
665 while (so->so_state & SS_ISCONNECTED) {
666 error = tsleep((void *)&so->so_timeo,
667 PSOCK | PCATCH, netcls,
668 so->so_linger * hz);
669 if (error)
670 break;
671 }
672 }
673 }
674 drop:
675 if (so->so_pcb) {
676 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
677 NULL, NULL, NULL, NULL);
678 if (error == 0)
679 error = error2;
680 }
681 discard:
682 if (so->so_state & SS_NOFDREF)
683 panic("soclose: NOFDREF");
684 so->so_state |= SS_NOFDREF;
685 sofree(so);
686 splx(s);
687 return (error);
688 }
689
690 /*
691 * Must be called at splsoftnet...
692 */
693 int
694 soabort(struct socket *so)
695 {
696 int error;
697
698 KASSERT(so->so_head == NULL);
699 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
700 NULL, NULL, NULL);
701 if (error) {
702 sofree(so);
703 }
704 return error;
705 }
706
707 int
708 soaccept(struct socket *so, struct mbuf *nam)
709 {
710 int s, error;
711
712 error = 0;
713 s = splsoftnet();
714 if ((so->so_state & SS_NOFDREF) == 0)
715 panic("soaccept: !NOFDREF");
716 so->so_state &= ~SS_NOFDREF;
717 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
718 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
719 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
720 NULL, nam, NULL, NULL);
721 else
722 error = ECONNABORTED;
723
724 splx(s);
725 return (error);
726 }
727
728 int
729 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
730 {
731 int s, error;
732
733 if (so->so_options & SO_ACCEPTCONN)
734 return (EOPNOTSUPP);
735 s = splsoftnet();
736 /*
737 * If protocol is connection-based, can only connect once.
738 * Otherwise, if connected, try to disconnect first.
739 * This allows user to disconnect by connecting to, e.g.,
740 * a null address.
741 */
742 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
743 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
744 (error = sodisconnect(so))))
745 error = EISCONN;
746 else
747 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
748 NULL, nam, NULL, l);
749 splx(s);
750 return (error);
751 }
752
753 int
754 soconnect2(struct socket *so1, struct socket *so2)
755 {
756 int s, error;
757
758 s = splsoftnet();
759 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
760 NULL, (struct mbuf *)so2, NULL, NULL);
761 splx(s);
762 return (error);
763 }
764
765 int
766 sodisconnect(struct socket *so)
767 {
768 int s, error;
769
770 s = splsoftnet();
771 if ((so->so_state & SS_ISCONNECTED) == 0) {
772 error = ENOTCONN;
773 goto bad;
774 }
775 if (so->so_state & SS_ISDISCONNECTING) {
776 error = EALREADY;
777 goto bad;
778 }
779 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
780 NULL, NULL, NULL, NULL);
781 bad:
782 splx(s);
783 sodopendfree();
784 return (error);
785 }
786
787 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
788 /*
789 * Send on a socket.
790 * If send must go all at once and message is larger than
791 * send buffering, then hard error.
792 * Lock against other senders.
793 * If must go all at once and not enough room now, then
794 * inform user that this would block and do nothing.
795 * Otherwise, if nonblocking, send as much as possible.
796 * The data to be sent is described by "uio" if nonzero,
797 * otherwise by the mbuf chain "top" (which must be null
798 * if uio is not). Data provided in mbuf chain must be small
799 * enough to send all at once.
800 *
801 * Returns nonzero on error, timeout or signal; callers
802 * must check for short counts if EINTR/ERESTART are returned.
803 * Data and control buffers are freed on return.
804 */
805 int
806 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
807 struct mbuf *control, int flags, struct lwp *l)
808 {
809 struct mbuf **mp, *m;
810 struct proc *p;
811 long space, len, resid, clen, mlen;
812 int error, s, dontroute, atomic;
813
814 p = l->l_proc;
815 sodopendfree();
816
817 clen = 0;
818 atomic = sosendallatonce(so) || top;
819 if (uio)
820 resid = uio->uio_resid;
821 else
822 resid = top->m_pkthdr.len;
823 /*
824 * In theory resid should be unsigned.
825 * However, space must be signed, as it might be less than 0
826 * if we over-committed, and we must use a signed comparison
827 * of space and resid. On the other hand, a negative resid
828 * causes us to loop sending 0-length segments to the protocol.
829 */
830 if (resid < 0) {
831 error = EINVAL;
832 goto out;
833 }
834 dontroute =
835 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
836 (so->so_proto->pr_flags & PR_ATOMIC);
837 if (p)
838 p->p_stats->p_ru.ru_msgsnd++;
839 if (control)
840 clen = control->m_len;
841 #define snderr(errno) { error = errno; splx(s); goto release; }
842
843 restart:
844 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
845 goto out;
846 do {
847 s = splsoftnet();
848 if (so->so_state & SS_CANTSENDMORE)
849 snderr(EPIPE);
850 if (so->so_error) {
851 error = so->so_error;
852 so->so_error = 0;
853 splx(s);
854 goto release;
855 }
856 if ((so->so_state & SS_ISCONNECTED) == 0) {
857 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
858 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
859 !(resid == 0 && clen != 0))
860 snderr(ENOTCONN);
861 } else if (addr == 0)
862 snderr(EDESTADDRREQ);
863 }
864 space = sbspace(&so->so_snd);
865 if (flags & MSG_OOB)
866 space += 1024;
867 if ((atomic && resid > so->so_snd.sb_hiwat) ||
868 clen > so->so_snd.sb_hiwat)
869 snderr(EMSGSIZE);
870 if (space < resid + clen &&
871 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
872 if (so->so_nbio)
873 snderr(EWOULDBLOCK);
874 sbunlock(&so->so_snd);
875 error = sbwait(&so->so_snd);
876 splx(s);
877 if (error)
878 goto out;
879 goto restart;
880 }
881 splx(s);
882 mp = ⊤
883 space -= clen;
884 do {
885 if (uio == NULL) {
886 /*
887 * Data is prepackaged in "top".
888 */
889 resid = 0;
890 if (flags & MSG_EOR)
891 top->m_flags |= M_EOR;
892 } else do {
893 if (top == NULL) {
894 m = m_gethdr(M_WAIT, MT_DATA);
895 mlen = MHLEN;
896 m->m_pkthdr.len = 0;
897 m->m_pkthdr.rcvif = NULL;
898 } else {
899 m = m_get(M_WAIT, MT_DATA);
900 mlen = MLEN;
901 }
902 MCLAIM(m, so->so_snd.sb_mowner);
903 if (sock_loan_thresh >= 0 &&
904 uio->uio_iov->iov_len >= sock_loan_thresh &&
905 space >= sock_loan_thresh &&
906 (len = sosend_loan(so, uio, m,
907 space)) != 0) {
908 SOSEND_COUNTER_INCR(&sosend_loan_big);
909 space -= len;
910 goto have_data;
911 }
912 if (resid >= MINCLSIZE && space >= MCLBYTES) {
913 SOSEND_COUNTER_INCR(&sosend_copy_big);
914 m_clget(m, M_WAIT);
915 if ((m->m_flags & M_EXT) == 0)
916 goto nopages;
917 mlen = MCLBYTES;
918 if (atomic && top == 0) {
919 len = lmin(MCLBYTES - max_hdr,
920 resid);
921 m->m_data += max_hdr;
922 } else
923 len = lmin(MCLBYTES, resid);
924 space -= len;
925 } else {
926 nopages:
927 SOSEND_COUNTER_INCR(&sosend_copy_small);
928 len = lmin(lmin(mlen, resid), space);
929 space -= len;
930 /*
931 * For datagram protocols, leave room
932 * for protocol headers in first mbuf.
933 */
934 if (atomic && top == 0 && len < mlen)
935 MH_ALIGN(m, len);
936 }
937 error = uiomove(mtod(m, void *), (int)len, uio);
938 have_data:
939 resid = uio->uio_resid;
940 m->m_len = len;
941 *mp = m;
942 top->m_pkthdr.len += len;
943 if (error != 0)
944 goto release;
945 mp = &m->m_next;
946 if (resid <= 0) {
947 if (flags & MSG_EOR)
948 top->m_flags |= M_EOR;
949 break;
950 }
951 } while (space > 0 && atomic);
952
953 s = splsoftnet();
954
955 if (so->so_state & SS_CANTSENDMORE)
956 snderr(EPIPE);
957
958 if (dontroute)
959 so->so_options |= SO_DONTROUTE;
960 if (resid > 0)
961 so->so_state |= SS_MORETOCOME;
962 error = (*so->so_proto->pr_usrreq)(so,
963 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
964 top, addr, control, curlwp); /* XXX */
965 if (dontroute)
966 so->so_options &= ~SO_DONTROUTE;
967 if (resid > 0)
968 so->so_state &= ~SS_MORETOCOME;
969 splx(s);
970
971 clen = 0;
972 control = NULL;
973 top = NULL;
974 mp = ⊤
975 if (error != 0)
976 goto release;
977 } while (resid && space > 0);
978 } while (resid);
979
980 release:
981 sbunlock(&so->so_snd);
982 out:
983 if (top)
984 m_freem(top);
985 if (control)
986 m_freem(control);
987 return (error);
988 }
989
990 /*
991 * Implement receive operations on a socket.
992 * We depend on the way that records are added to the sockbuf
993 * by sbappend*. In particular, each record (mbufs linked through m_next)
994 * must begin with an address if the protocol so specifies,
995 * followed by an optional mbuf or mbufs containing ancillary data,
996 * and then zero or more mbufs of data.
997 * In order to avoid blocking network interrupts for the entire time here,
998 * we splx() while doing the actual copy to user space.
999 * Although the sockbuf is locked, new data may still be appended,
1000 * and thus we must maintain consistency of the sockbuf during that time.
1001 *
1002 * The caller may receive the data as a single mbuf chain by supplying
1003 * an mbuf **mp0 for use in returning the chain. The uio is then used
1004 * only for the count in uio_resid.
1005 */
1006 int
1007 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1008 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1009 {
1010 struct lwp *l = curlwp;
1011 struct mbuf *m, **mp;
1012 int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1013 const struct protosw *pr;
1014 struct mbuf *nextrecord;
1015 int mbuf_removed = 0;
1016 const struct domain *dom;
1017
1018 pr = so->so_proto;
1019 atomic = pr->pr_flags & PR_ATOMIC;
1020 dom = pr->pr_domain;
1021 mp = mp0;
1022 type = 0;
1023 orig_resid = uio->uio_resid;
1024
1025 if (paddr != NULL)
1026 *paddr = NULL;
1027 if (controlp != NULL)
1028 *controlp = NULL;
1029 if (flagsp != NULL)
1030 flags = *flagsp &~ MSG_EOR;
1031 else
1032 flags = 0;
1033
1034 if ((flags & MSG_DONTWAIT) == 0)
1035 sodopendfree();
1036
1037 if (flags & MSG_OOB) {
1038 m = m_get(M_WAIT, MT_DATA);
1039 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1040 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1041 if (error)
1042 goto bad;
1043 do {
1044 error = uiomove(mtod(m, void *),
1045 (int) min(uio->uio_resid, m->m_len), uio);
1046 m = m_free(m);
1047 } while (uio->uio_resid > 0 && error == 0 && m);
1048 bad:
1049 if (m != NULL)
1050 m_freem(m);
1051 return error;
1052 }
1053 if (mp != NULL)
1054 *mp = NULL;
1055 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1056 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1057
1058 restart:
1059 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
1060 return error;
1061 s = splsoftnet();
1062
1063 m = so->so_rcv.sb_mb;
1064 /*
1065 * If we have less data than requested, block awaiting more
1066 * (subject to any timeout) if:
1067 * 1. the current count is less than the low water mark,
1068 * 2. MSG_WAITALL is set, and it is possible to do the entire
1069 * receive operation at once if we block (resid <= hiwat), or
1070 * 3. MSG_DONTWAIT is not set.
1071 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1072 * we have to do the receive in sections, and thus risk returning
1073 * a short count if a timeout or signal occurs after we start.
1074 */
1075 if (m == NULL ||
1076 ((flags & MSG_DONTWAIT) == 0 &&
1077 so->so_rcv.sb_cc < uio->uio_resid &&
1078 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1079 ((flags & MSG_WAITALL) &&
1080 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1081 m->m_nextpkt == NULL && !atomic)) {
1082 #ifdef DIAGNOSTIC
1083 if (m == NULL && so->so_rcv.sb_cc)
1084 panic("receive 1");
1085 #endif
1086 if (so->so_error) {
1087 if (m != NULL)
1088 goto dontblock;
1089 error = so->so_error;
1090 if ((flags & MSG_PEEK) == 0)
1091 so->so_error = 0;
1092 goto release;
1093 }
1094 if (so->so_state & SS_CANTRCVMORE) {
1095 if (m != NULL)
1096 goto dontblock;
1097 else
1098 goto release;
1099 }
1100 for (; m != NULL; m = m->m_next)
1101 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1102 m = so->so_rcv.sb_mb;
1103 goto dontblock;
1104 }
1105 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1106 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1107 error = ENOTCONN;
1108 goto release;
1109 }
1110 if (uio->uio_resid == 0)
1111 goto release;
1112 if (so->so_nbio || (flags & MSG_DONTWAIT)) {
1113 error = EWOULDBLOCK;
1114 goto release;
1115 }
1116 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1117 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1118 sbunlock(&so->so_rcv);
1119 error = sbwait(&so->so_rcv);
1120 splx(s);
1121 if (error != 0)
1122 return error;
1123 goto restart;
1124 }
1125 dontblock:
1126 /*
1127 * On entry here, m points to the first record of the socket buffer.
1128 * While we process the initial mbufs containing address and control
1129 * info, we save a copy of m->m_nextpkt into nextrecord.
1130 */
1131 if (l != NULL)
1132 l->l_proc->p_stats->p_ru.ru_msgrcv++;
1133 KASSERT(m == so->so_rcv.sb_mb);
1134 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1135 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1136 nextrecord = m->m_nextpkt;
1137 if (pr->pr_flags & PR_ADDR) {
1138 #ifdef DIAGNOSTIC
1139 if (m->m_type != MT_SONAME)
1140 panic("receive 1a");
1141 #endif
1142 orig_resid = 0;
1143 if (flags & MSG_PEEK) {
1144 if (paddr)
1145 *paddr = m_copy(m, 0, m->m_len);
1146 m = m->m_next;
1147 } else {
1148 sbfree(&so->so_rcv, m);
1149 mbuf_removed = 1;
1150 if (paddr != NULL) {
1151 *paddr = m;
1152 so->so_rcv.sb_mb = m->m_next;
1153 m->m_next = NULL;
1154 m = so->so_rcv.sb_mb;
1155 } else {
1156 MFREE(m, so->so_rcv.sb_mb);
1157 m = so->so_rcv.sb_mb;
1158 }
1159 }
1160 }
1161 while (m != NULL && m->m_type == MT_CONTROL && error == 0) {
1162 if (flags & MSG_PEEK) {
1163 if (controlp != NULL)
1164 *controlp = m_copy(m, 0, m->m_len);
1165 m = m->m_next;
1166 } else {
1167 sbfree(&so->so_rcv, m);
1168 mbuf_removed = 1;
1169 if (controlp != NULL) {
1170 if (dom->dom_externalize && l &&
1171 mtod(m, struct cmsghdr *)->cmsg_type ==
1172 SCM_RIGHTS)
1173 error = (*dom->dom_externalize)(m, l);
1174 *controlp = m;
1175 so->so_rcv.sb_mb = m->m_next;
1176 m->m_next = NULL;
1177 m = so->so_rcv.sb_mb;
1178 } else {
1179 /*
1180 * Dispose of any SCM_RIGHTS message that went
1181 * through the read path rather than recv.
1182 */
1183 if (dom->dom_dispose &&
1184 mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
1185 (*dom->dom_dispose)(m);
1186 MFREE(m, so->so_rcv.sb_mb);
1187 m = so->so_rcv.sb_mb;
1188 }
1189 }
1190 if (controlp != NULL) {
1191 orig_resid = 0;
1192 controlp = &(*controlp)->m_next;
1193 }
1194 }
1195
1196 /*
1197 * If m is non-NULL, we have some data to read. From now on,
1198 * make sure to keep sb_lastrecord consistent when working on
1199 * the last packet on the chain (nextrecord == NULL) and we
1200 * change m->m_nextpkt.
1201 */
1202 if (m != NULL) {
1203 if ((flags & MSG_PEEK) == 0) {
1204 m->m_nextpkt = nextrecord;
1205 /*
1206 * If nextrecord == NULL (this is a single chain),
1207 * then sb_lastrecord may not be valid here if m
1208 * was changed earlier.
1209 */
1210 if (nextrecord == NULL) {
1211 KASSERT(so->so_rcv.sb_mb == m);
1212 so->so_rcv.sb_lastrecord = m;
1213 }
1214 }
1215 type = m->m_type;
1216 if (type == MT_OOBDATA)
1217 flags |= MSG_OOB;
1218 } else {
1219 if ((flags & MSG_PEEK) == 0) {
1220 KASSERT(so->so_rcv.sb_mb == m);
1221 so->so_rcv.sb_mb = nextrecord;
1222 SB_EMPTY_FIXUP(&so->so_rcv);
1223 }
1224 }
1225 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1226 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1227
1228 moff = 0;
1229 offset = 0;
1230 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1231 if (m->m_type == MT_OOBDATA) {
1232 if (type != MT_OOBDATA)
1233 break;
1234 } else if (type == MT_OOBDATA)
1235 break;
1236 #ifdef DIAGNOSTIC
1237 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1238 panic("receive 3");
1239 #endif
1240 so->so_state &= ~SS_RCVATMARK;
1241 len = uio->uio_resid;
1242 if (so->so_oobmark && len > so->so_oobmark - offset)
1243 len = so->so_oobmark - offset;
1244 if (len > m->m_len - moff)
1245 len = m->m_len - moff;
1246 /*
1247 * If mp is set, just pass back the mbufs.
1248 * Otherwise copy them out via the uio, then free.
1249 * Sockbuf must be consistent here (points to current mbuf,
1250 * it points to next record) when we drop priority;
1251 * we must note any additions to the sockbuf when we
1252 * block interrupts again.
1253 */
1254 if (mp == NULL) {
1255 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1256 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1257 splx(s);
1258 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1259 s = splsoftnet();
1260 if (error != 0) {
1261 /*
1262 * If any part of the record has been removed
1263 * (such as the MT_SONAME mbuf, which will
1264 * happen when PR_ADDR, and thus also
1265 * PR_ATOMIC, is set), then drop the entire
1266 * record to maintain the atomicity of the
1267 * receive operation.
1268 *
1269 * This avoids a later panic("receive 1a")
1270 * when compiled with DIAGNOSTIC.
1271 */
1272 if (m && mbuf_removed && atomic)
1273 (void) sbdroprecord(&so->so_rcv);
1274
1275 goto release;
1276 }
1277 } else
1278 uio->uio_resid -= len;
1279 if (len == m->m_len - moff) {
1280 if (m->m_flags & M_EOR)
1281 flags |= MSG_EOR;
1282 if (flags & MSG_PEEK) {
1283 m = m->m_next;
1284 moff = 0;
1285 } else {
1286 nextrecord = m->m_nextpkt;
1287 sbfree(&so->so_rcv, m);
1288 if (mp) {
1289 *mp = m;
1290 mp = &m->m_next;
1291 so->so_rcv.sb_mb = m = m->m_next;
1292 *mp = NULL;
1293 } else {
1294 MFREE(m, so->so_rcv.sb_mb);
1295 m = so->so_rcv.sb_mb;
1296 }
1297 /*
1298 * If m != NULL, we also know that
1299 * so->so_rcv.sb_mb != NULL.
1300 */
1301 KASSERT(so->so_rcv.sb_mb == m);
1302 if (m) {
1303 m->m_nextpkt = nextrecord;
1304 if (nextrecord == NULL)
1305 so->so_rcv.sb_lastrecord = m;
1306 } else {
1307 so->so_rcv.sb_mb = nextrecord;
1308 SB_EMPTY_FIXUP(&so->so_rcv);
1309 }
1310 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1311 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1312 }
1313 } else if (flags & MSG_PEEK)
1314 moff += len;
1315 else {
1316 if (mp != NULL)
1317 *mp = m_copym(m, 0, len, M_WAIT);
1318 m->m_data += len;
1319 m->m_len -= len;
1320 so->so_rcv.sb_cc -= len;
1321 }
1322 if (so->so_oobmark) {
1323 if ((flags & MSG_PEEK) == 0) {
1324 so->so_oobmark -= len;
1325 if (so->so_oobmark == 0) {
1326 so->so_state |= SS_RCVATMARK;
1327 break;
1328 }
1329 } else {
1330 offset += len;
1331 if (offset == so->so_oobmark)
1332 break;
1333 }
1334 }
1335 if (flags & MSG_EOR)
1336 break;
1337 /*
1338 * If the MSG_WAITALL flag is set (for non-atomic socket),
1339 * we must not quit until "uio->uio_resid == 0" or an error
1340 * termination. If a signal/timeout occurs, return
1341 * with a short count but without error.
1342 * Keep sockbuf locked against other readers.
1343 */
1344 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1345 !sosendallatonce(so) && !nextrecord) {
1346 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1347 break;
1348 /*
1349 * If we are peeking and the socket receive buffer is
1350 * full, stop since we can't get more data to peek at.
1351 */
1352 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1353 break;
1354 /*
1355 * If we've drained the socket buffer, tell the
1356 * protocol in case it needs to do something to
1357 * get it filled again.
1358 */
1359 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1360 (*pr->pr_usrreq)(so, PRU_RCVD,
1361 NULL, (struct mbuf *)(long)flags, NULL, l);
1362 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1363 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1364 error = sbwait(&so->so_rcv);
1365 if (error != 0) {
1366 sbunlock(&so->so_rcv);
1367 splx(s);
1368 return 0;
1369 }
1370 if ((m = so->so_rcv.sb_mb) != NULL)
1371 nextrecord = m->m_nextpkt;
1372 }
1373 }
1374
1375 if (m && atomic) {
1376 flags |= MSG_TRUNC;
1377 if ((flags & MSG_PEEK) == 0)
1378 (void) sbdroprecord(&so->so_rcv);
1379 }
1380 if ((flags & MSG_PEEK) == 0) {
1381 if (m == NULL) {
1382 /*
1383 * First part is an inline SB_EMPTY_FIXUP(). Second
1384 * part makes sure sb_lastrecord is up-to-date if
1385 * there is still data in the socket buffer.
1386 */
1387 so->so_rcv.sb_mb = nextrecord;
1388 if (so->so_rcv.sb_mb == NULL) {
1389 so->so_rcv.sb_mbtail = NULL;
1390 so->so_rcv.sb_lastrecord = NULL;
1391 } else if (nextrecord->m_nextpkt == NULL)
1392 so->so_rcv.sb_lastrecord = nextrecord;
1393 }
1394 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1395 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1396 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1397 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1398 (struct mbuf *)(long)flags, NULL, l);
1399 }
1400 if (orig_resid == uio->uio_resid && orig_resid &&
1401 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1402 sbunlock(&so->so_rcv);
1403 splx(s);
1404 goto restart;
1405 }
1406
1407 if (flagsp != NULL)
1408 *flagsp |= flags;
1409 release:
1410 sbunlock(&so->so_rcv);
1411 splx(s);
1412 return error;
1413 }
1414
1415 int
1416 soshutdown(struct socket *so, int how)
1417 {
1418 const struct protosw *pr;
1419
1420 pr = so->so_proto;
1421 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1422 return (EINVAL);
1423
1424 if (how == SHUT_RD || how == SHUT_RDWR)
1425 sorflush(so);
1426 if (how == SHUT_WR || how == SHUT_RDWR)
1427 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1428 NULL, NULL, NULL);
1429 return 0;
1430 }
1431
1432 void
1433 sorflush(struct socket *so)
1434 {
1435 struct sockbuf *sb, asb;
1436 const struct protosw *pr;
1437 int s;
1438
1439 sb = &so->so_rcv;
1440 pr = so->so_proto;
1441 sb->sb_flags |= SB_NOINTR;
1442 (void) sblock(sb, M_WAITOK);
1443 s = splnet();
1444 socantrcvmore(so);
1445 sbunlock(sb);
1446 asb = *sb;
1447 /*
1448 * Clear most of the sockbuf structure, but leave some of the
1449 * fields valid.
1450 */
1451 memset(&sb->sb_startzero, 0,
1452 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1453 splx(s);
1454 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1455 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1456 sbrelease(&asb, so);
1457 }
1458
1459 static int
1460 sosetopt1(struct socket *so, int level, int optname, struct mbuf *m)
1461 {
1462 int optval, val;
1463 struct linger *l;
1464 struct sockbuf *sb;
1465 struct timeval *tv;
1466
1467 switch (optname) {
1468
1469 case SO_LINGER:
1470 if (m == NULL || m->m_len != sizeof(struct linger))
1471 return EINVAL;
1472 l = mtod(m, struct linger *);
1473 if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
1474 l->l_linger > (INT_MAX / hz))
1475 return EDOM;
1476 so->so_linger = l->l_linger;
1477 if (l->l_onoff)
1478 so->so_options |= SO_LINGER;
1479 else
1480 so->so_options &= ~SO_LINGER;
1481 break;
1482
1483 case SO_DEBUG:
1484 case SO_KEEPALIVE:
1485 case SO_DONTROUTE:
1486 case SO_USELOOPBACK:
1487 case SO_BROADCAST:
1488 case SO_REUSEADDR:
1489 case SO_REUSEPORT:
1490 case SO_OOBINLINE:
1491 case SO_TIMESTAMP:
1492 if (m == NULL || m->m_len < sizeof(int))
1493 return EINVAL;
1494 if (*mtod(m, int *))
1495 so->so_options |= optname;
1496 else
1497 so->so_options &= ~optname;
1498 break;
1499
1500 case SO_SNDBUF:
1501 case SO_RCVBUF:
1502 case SO_SNDLOWAT:
1503 case SO_RCVLOWAT:
1504 if (m == NULL || m->m_len < sizeof(int))
1505 return EINVAL;
1506
1507 /*
1508 * Values < 1 make no sense for any of these
1509 * options, so disallow them.
1510 */
1511 optval = *mtod(m, int *);
1512 if (optval < 1)
1513 return EINVAL;
1514
1515 switch (optname) {
1516
1517 case SO_SNDBUF:
1518 case SO_RCVBUF:
1519 sb = (optname == SO_SNDBUF) ?
1520 &so->so_snd : &so->so_rcv;
1521 if (sbreserve(sb, (u_long)optval, so) == 0)
1522 return ENOBUFS;
1523 sb->sb_flags &= ~SB_AUTOSIZE;
1524 break;
1525
1526 /*
1527 * Make sure the low-water is never greater than
1528 * the high-water.
1529 */
1530 case SO_SNDLOWAT:
1531 so->so_snd.sb_lowat =
1532 (optval > so->so_snd.sb_hiwat) ?
1533 so->so_snd.sb_hiwat : optval;
1534 break;
1535 case SO_RCVLOWAT:
1536 so->so_rcv.sb_lowat =
1537 (optval > so->so_rcv.sb_hiwat) ?
1538 so->so_rcv.sb_hiwat : optval;
1539 break;
1540 }
1541 break;
1542
1543 case SO_SNDTIMEO:
1544 case SO_RCVTIMEO:
1545 if (m == NULL || m->m_len < sizeof(*tv))
1546 return EINVAL;
1547 tv = mtod(m, struct timeval *);
1548 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz)
1549 return EDOM;
1550 val = tv->tv_sec * hz + tv->tv_usec / tick;
1551 if (val == 0 && tv->tv_usec != 0)
1552 val = 1;
1553
1554 switch (optname) {
1555
1556 case SO_SNDTIMEO:
1557 so->so_snd.sb_timeo = val;
1558 break;
1559 case SO_RCVTIMEO:
1560 so->so_rcv.sb_timeo = val;
1561 break;
1562 }
1563 break;
1564
1565 default:
1566 return ENOPROTOOPT;
1567 }
1568 return 0;
1569 }
1570
1571 int
1572 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
1573 {
1574 int error, prerr;
1575
1576 if (level == SOL_SOCKET)
1577 error = sosetopt1(so, level, optname, m);
1578 else
1579 error = ENOPROTOOPT;
1580
1581 if ((error == 0 || error == ENOPROTOOPT) &&
1582 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1583 /* give the protocol stack a shot */
1584 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, level,
1585 optname, &m);
1586 if (prerr == 0)
1587 error = 0;
1588 else if (prerr != ENOPROTOOPT)
1589 error = prerr;
1590 } else if (m != NULL)
1591 (void)m_free(m);
1592 return error;
1593 }
1594
1595 int
1596 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1597 {
1598 struct mbuf *m;
1599
1600 if (level != SOL_SOCKET) {
1601 if (so->so_proto && so->so_proto->pr_ctloutput) {
1602 return ((*so->so_proto->pr_ctloutput)
1603 (PRCO_GETOPT, so, level, optname, mp));
1604 } else
1605 return (ENOPROTOOPT);
1606 } else {
1607 m = m_get(M_WAIT, MT_SOOPTS);
1608 m->m_len = sizeof(int);
1609
1610 switch (optname) {
1611
1612 case SO_LINGER:
1613 m->m_len = sizeof(struct linger);
1614 mtod(m, struct linger *)->l_onoff =
1615 (so->so_options & SO_LINGER) ? 1 : 0;
1616 mtod(m, struct linger *)->l_linger = so->so_linger;
1617 break;
1618
1619 case SO_USELOOPBACK:
1620 case SO_DONTROUTE:
1621 case SO_DEBUG:
1622 case SO_KEEPALIVE:
1623 case SO_REUSEADDR:
1624 case SO_REUSEPORT:
1625 case SO_BROADCAST:
1626 case SO_OOBINLINE:
1627 case SO_TIMESTAMP:
1628 *mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
1629 break;
1630
1631 case SO_TYPE:
1632 *mtod(m, int *) = so->so_type;
1633 break;
1634
1635 case SO_ERROR:
1636 *mtod(m, int *) = so->so_error;
1637 so->so_error = 0;
1638 break;
1639
1640 case SO_SNDBUF:
1641 *mtod(m, int *) = so->so_snd.sb_hiwat;
1642 break;
1643
1644 case SO_RCVBUF:
1645 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1646 break;
1647
1648 case SO_SNDLOWAT:
1649 *mtod(m, int *) = so->so_snd.sb_lowat;
1650 break;
1651
1652 case SO_RCVLOWAT:
1653 *mtod(m, int *) = so->so_rcv.sb_lowat;
1654 break;
1655
1656 case SO_SNDTIMEO:
1657 case SO_RCVTIMEO:
1658 {
1659 int val = (optname == SO_SNDTIMEO ?
1660 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1661
1662 m->m_len = sizeof(struct timeval);
1663 mtod(m, struct timeval *)->tv_sec = val / hz;
1664 mtod(m, struct timeval *)->tv_usec =
1665 (val % hz) * tick;
1666 break;
1667 }
1668
1669 case SO_OVERFLOWED:
1670 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1671 break;
1672
1673 default:
1674 (void)m_free(m);
1675 return (ENOPROTOOPT);
1676 }
1677 *mp = m;
1678 return (0);
1679 }
1680 }
1681
1682 void
1683 sohasoutofband(struct socket *so)
1684 {
1685
1686 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1687 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, 0);
1688 }
1689
1690 static void
1691 filt_sordetach(struct knote *kn)
1692 {
1693 struct socket *so;
1694
1695 so = (struct socket *)kn->kn_fp->f_data;
1696 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1697 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1698 so->so_rcv.sb_flags &= ~SB_KNOTE;
1699 }
1700
1701 /*ARGSUSED*/
1702 static int
1703 filt_soread(struct knote *kn, long hint)
1704 {
1705 struct socket *so;
1706
1707 so = (struct socket *)kn->kn_fp->f_data;
1708 kn->kn_data = so->so_rcv.sb_cc;
1709 if (so->so_state & SS_CANTRCVMORE) {
1710 kn->kn_flags |= EV_EOF;
1711 kn->kn_fflags = so->so_error;
1712 return (1);
1713 }
1714 if (so->so_error) /* temporary udp error */
1715 return (1);
1716 if (kn->kn_sfflags & NOTE_LOWAT)
1717 return (kn->kn_data >= kn->kn_sdata);
1718 return (kn->kn_data >= so->so_rcv.sb_lowat);
1719 }
1720
1721 static void
1722 filt_sowdetach(struct knote *kn)
1723 {
1724 struct socket *so;
1725
1726 so = (struct socket *)kn->kn_fp->f_data;
1727 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1728 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1729 so->so_snd.sb_flags &= ~SB_KNOTE;
1730 }
1731
1732 /*ARGSUSED*/
1733 static int
1734 filt_sowrite(struct knote *kn, long hint)
1735 {
1736 struct socket *so;
1737
1738 so = (struct socket *)kn->kn_fp->f_data;
1739 kn->kn_data = sbspace(&so->so_snd);
1740 if (so->so_state & SS_CANTSENDMORE) {
1741 kn->kn_flags |= EV_EOF;
1742 kn->kn_fflags = so->so_error;
1743 return (1);
1744 }
1745 if (so->so_error) /* temporary udp error */
1746 return (1);
1747 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1748 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1749 return (0);
1750 if (kn->kn_sfflags & NOTE_LOWAT)
1751 return (kn->kn_data >= kn->kn_sdata);
1752 return (kn->kn_data >= so->so_snd.sb_lowat);
1753 }
1754
1755 /*ARGSUSED*/
1756 static int
1757 filt_solisten(struct knote *kn, long hint)
1758 {
1759 struct socket *so;
1760
1761 so = (struct socket *)kn->kn_fp->f_data;
1762
1763 /*
1764 * Set kn_data to number of incoming connections, not
1765 * counting partial (incomplete) connections.
1766 */
1767 kn->kn_data = so->so_qlen;
1768 return (kn->kn_data > 0);
1769 }
1770
1771 static const struct filterops solisten_filtops =
1772 { 1, NULL, filt_sordetach, filt_solisten };
1773 static const struct filterops soread_filtops =
1774 { 1, NULL, filt_sordetach, filt_soread };
1775 static const struct filterops sowrite_filtops =
1776 { 1, NULL, filt_sowdetach, filt_sowrite };
1777
1778 int
1779 soo_kqfilter(struct file *fp, struct knote *kn)
1780 {
1781 struct socket *so;
1782 struct sockbuf *sb;
1783
1784 so = (struct socket *)kn->kn_fp->f_data;
1785 switch (kn->kn_filter) {
1786 case EVFILT_READ:
1787 if (so->so_options & SO_ACCEPTCONN)
1788 kn->kn_fop = &solisten_filtops;
1789 else
1790 kn->kn_fop = &soread_filtops;
1791 sb = &so->so_rcv;
1792 break;
1793 case EVFILT_WRITE:
1794 kn->kn_fop = &sowrite_filtops;
1795 sb = &so->so_snd;
1796 break;
1797 default:
1798 return (EINVAL);
1799 }
1800 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1801 sb->sb_flags |= SB_KNOTE;
1802 return (0);
1803 }
1804
1805 static int
1806 sodopoll(struct socket *so, int events)
1807 {
1808 int revents;
1809
1810 revents = 0;
1811
1812 if (events & (POLLIN | POLLRDNORM))
1813 if (soreadable(so))
1814 revents |= events & (POLLIN | POLLRDNORM);
1815
1816 if (events & (POLLOUT | POLLWRNORM))
1817 if (sowritable(so))
1818 revents |= events & (POLLOUT | POLLWRNORM);
1819
1820 if (events & (POLLPRI | POLLRDBAND))
1821 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
1822 revents |= events & (POLLPRI | POLLRDBAND);
1823
1824 return revents;
1825 }
1826
1827 int
1828 sopoll(struct socket *so, int events)
1829 {
1830 int revents = 0;
1831 int s;
1832
1833 if ((revents = sodopoll(so, events)) != 0)
1834 return revents;
1835
1836 KERNEL_LOCK(1, curlwp);
1837 s = splsoftnet();
1838
1839 if ((revents = sodopoll(so, events)) == 0) {
1840 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
1841 selrecord(curlwp, &so->so_rcv.sb_sel);
1842 so->so_rcv.sb_flags |= SB_SEL;
1843 }
1844
1845 if (events & (POLLOUT | POLLWRNORM)) {
1846 selrecord(curlwp, &so->so_snd.sb_sel);
1847 so->so_snd.sb_flags |= SB_SEL;
1848 }
1849 }
1850
1851 splx(s);
1852 KERNEL_UNLOCK_ONE(curlwp);
1853
1854 return revents;
1855 }
1856
1857
1858 #include <sys/sysctl.h>
1859
1860 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
1861
1862 /*
1863 * sysctl helper routine for kern.somaxkva. ensures that the given
1864 * value is not too small.
1865 * (XXX should we maybe make sure it's not too large as well?)
1866 */
1867 static int
1868 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1869 {
1870 int error, new_somaxkva;
1871 struct sysctlnode node;
1872
1873 new_somaxkva = somaxkva;
1874 node = *rnode;
1875 node.sysctl_data = &new_somaxkva;
1876 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1877 if (error || newp == NULL)
1878 return (error);
1879
1880 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1881 return (EINVAL);
1882
1883 mutex_enter(&so_pendfree_lock);
1884 somaxkva = new_somaxkva;
1885 cv_broadcast(&socurkva_cv);
1886 mutex_exit(&so_pendfree_lock);
1887
1888 return (error);
1889 }
1890
1891 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
1892 {
1893
1894 sysctl_createv(clog, 0, NULL, NULL,
1895 CTLFLAG_PERMANENT,
1896 CTLTYPE_NODE, "kern", NULL,
1897 NULL, 0, NULL, 0,
1898 CTL_KERN, CTL_EOL);
1899
1900 sysctl_createv(clog, 0, NULL, NULL,
1901 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1902 CTLTYPE_INT, "somaxkva",
1903 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1904 "used for socket buffers"),
1905 sysctl_kern_somaxkva, 0, NULL, 0,
1906 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
1907 }
1908