Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.155
      1 /*	$NetBSD: uipc_socket.c,v 1.155 2008/03/21 21:55:00 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     41  *	The Regents of the University of California.  All rights reserved.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. Neither the name of the University nor the names of its contributors
     52  *    may be used to endorse or promote products derived from this software
     53  *    without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     56  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  *
     67  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     68  */
     69 
     70 #include <sys/cdefs.h>
     71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.155 2008/03/21 21:55:00 ad Exp $");
     72 
     73 #include "opt_sock_counters.h"
     74 #include "opt_sosend_loan.h"
     75 #include "opt_mbuftrace.h"
     76 #include "opt_somaxkva.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/proc.h>
     81 #include <sys/file.h>
     82 #include <sys/filedesc.h>
     83 #include <sys/malloc.h>
     84 #include <sys/mbuf.h>
     85 #include <sys/domain.h>
     86 #include <sys/kernel.h>
     87 #include <sys/protosw.h>
     88 #include <sys/socket.h>
     89 #include <sys/socketvar.h>
     90 #include <sys/signalvar.h>
     91 #include <sys/resourcevar.h>
     92 #include <sys/pool.h>
     93 #include <sys/event.h>
     94 #include <sys/poll.h>
     95 #include <sys/kauth.h>
     96 #include <sys/mutex.h>
     97 #include <sys/condvar.h>
     98 
     99 #include <uvm/uvm.h>
    100 
    101 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL,
    102     IPL_SOFTNET);
    103 
    104 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
    105 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    106 
    107 extern const struct fileops socketops;
    108 
    109 extern int	somaxconn;			/* patchable (XXX sysctl) */
    110 int		somaxconn = SOMAXCONN;
    111 
    112 #ifdef SOSEND_COUNTERS
    113 #include <sys/device.h>
    114 
    115 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    116     NULL, "sosend", "loan big");
    117 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    118     NULL, "sosend", "copy big");
    119 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    120     NULL, "sosend", "copy small");
    121 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    122     NULL, "sosend", "kva limit");
    123 
    124 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    125 
    126 EVCNT_ATTACH_STATIC(sosend_loan_big);
    127 EVCNT_ATTACH_STATIC(sosend_copy_big);
    128 EVCNT_ATTACH_STATIC(sosend_copy_small);
    129 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    130 #else
    131 
    132 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    133 
    134 #endif /* SOSEND_COUNTERS */
    135 
    136 static struct callback_entry sokva_reclaimerentry;
    137 
    138 #ifdef SOSEND_NO_LOAN
    139 int sock_loan_thresh = -1;
    140 #else
    141 int sock_loan_thresh = 4096;
    142 #endif
    143 
    144 static kmutex_t so_pendfree_lock;
    145 static struct mbuf *so_pendfree;
    146 
    147 #ifndef SOMAXKVA
    148 #define	SOMAXKVA (16 * 1024 * 1024)
    149 #endif
    150 int somaxkva = SOMAXKVA;
    151 static int socurkva;
    152 static kcondvar_t socurkva_cv;
    153 
    154 #define	SOCK_LOAN_CHUNK		65536
    155 
    156 static size_t sodopendfree(void);
    157 static size_t sodopendfreel(void);
    158 
    159 static vsize_t
    160 sokvareserve(struct socket *so, vsize_t len)
    161 {
    162 	int error;
    163 
    164 	mutex_enter(&so_pendfree_lock);
    165 	while (socurkva + len > somaxkva) {
    166 		size_t freed;
    167 
    168 		/*
    169 		 * try to do pendfree.
    170 		 */
    171 
    172 		freed = sodopendfreel();
    173 
    174 		/*
    175 		 * if some kva was freed, try again.
    176 		 */
    177 
    178 		if (freed)
    179 			continue;
    180 
    181 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    182 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    183 		if (error) {
    184 			len = 0;
    185 			break;
    186 		}
    187 	}
    188 	socurkva += len;
    189 	mutex_exit(&so_pendfree_lock);
    190 	return len;
    191 }
    192 
    193 static void
    194 sokvaunreserve(vsize_t len)
    195 {
    196 
    197 	mutex_enter(&so_pendfree_lock);
    198 	socurkva -= len;
    199 	cv_broadcast(&socurkva_cv);
    200 	mutex_exit(&so_pendfree_lock);
    201 }
    202 
    203 /*
    204  * sokvaalloc: allocate kva for loan.
    205  */
    206 
    207 vaddr_t
    208 sokvaalloc(vsize_t len, struct socket *so)
    209 {
    210 	vaddr_t lva;
    211 
    212 	/*
    213 	 * reserve kva.
    214 	 */
    215 
    216 	if (sokvareserve(so, len) == 0)
    217 		return 0;
    218 
    219 	/*
    220 	 * allocate kva.
    221 	 */
    222 
    223 	lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    224 	if (lva == 0) {
    225 		sokvaunreserve(len);
    226 		return (0);
    227 	}
    228 
    229 	return lva;
    230 }
    231 
    232 /*
    233  * sokvafree: free kva for loan.
    234  */
    235 
    236 void
    237 sokvafree(vaddr_t sva, vsize_t len)
    238 {
    239 
    240 	/*
    241 	 * free kva.
    242 	 */
    243 
    244 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    245 
    246 	/*
    247 	 * unreserve kva.
    248 	 */
    249 
    250 	sokvaunreserve(len);
    251 }
    252 
    253 static void
    254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    255 {
    256 	vaddr_t va, sva, eva;
    257 	vsize_t len;
    258 	paddr_t pa;
    259 	int i, npgs;
    260 
    261 	eva = round_page((vaddr_t) buf + size);
    262 	sva = trunc_page((vaddr_t) buf);
    263 	len = eva - sva;
    264 	npgs = len >> PAGE_SHIFT;
    265 
    266 	if (__predict_false(pgs == NULL)) {
    267 		pgs = alloca(npgs * sizeof(*pgs));
    268 
    269 		for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
    270 			if (pmap_extract(pmap_kernel(), va, &pa) == false)
    271 				panic("sodoloanfree: va 0x%lx not mapped", va);
    272 			pgs[i] = PHYS_TO_VM_PAGE(pa);
    273 		}
    274 	}
    275 
    276 	pmap_kremove(sva, len);
    277 	pmap_update(pmap_kernel());
    278 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    279 	sokvafree(sva, len);
    280 }
    281 
    282 static size_t
    283 sodopendfree(void)
    284 {
    285 	size_t rv;
    286 
    287 	mutex_enter(&so_pendfree_lock);
    288 	rv = sodopendfreel();
    289 	mutex_exit(&so_pendfree_lock);
    290 
    291 	return rv;
    292 }
    293 
    294 /*
    295  * sodopendfreel: free mbufs on "pendfree" list.
    296  * unlock and relock so_pendfree_lock when freeing mbufs.
    297  *
    298  * => called with so_pendfree_lock held.
    299  */
    300 
    301 static size_t
    302 sodopendfreel(void)
    303 {
    304 	struct mbuf *m, *next;
    305 	size_t rv = 0;
    306 
    307 	KASSERT(mutex_owned(&so_pendfree_lock));
    308 
    309 	while (so_pendfree != NULL) {
    310 		m = so_pendfree;
    311 		so_pendfree = NULL;
    312 		mutex_exit(&so_pendfree_lock);
    313 
    314 		for (; m != NULL; m = next) {
    315 			next = m->m_next;
    316 
    317 			rv += m->m_ext.ext_size;
    318 			sodoloanfree((m->m_flags & M_EXT_PAGES) ?
    319 			    m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf,
    320 			    m->m_ext.ext_size);
    321 			pool_cache_put(mb_cache, m);
    322 		}
    323 
    324 		mutex_enter(&so_pendfree_lock);
    325 	}
    326 
    327 	return (rv);
    328 }
    329 
    330 void
    331 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    332 {
    333 
    334 	if (m == NULL) {
    335 
    336 		/*
    337 		 * called from MEXTREMOVE.
    338 		 */
    339 
    340 		sodoloanfree(NULL, buf, size);
    341 		return;
    342 	}
    343 
    344 	/*
    345 	 * postpone freeing mbuf.
    346 	 *
    347 	 * we can't do it in interrupt context
    348 	 * because we need to put kva back to kernel_map.
    349 	 */
    350 
    351 	mutex_enter(&so_pendfree_lock);
    352 	m->m_next = so_pendfree;
    353 	so_pendfree = m;
    354 	cv_broadcast(&socurkva_cv);
    355 	mutex_exit(&so_pendfree_lock);
    356 }
    357 
    358 static long
    359 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    360 {
    361 	struct iovec *iov = uio->uio_iov;
    362 	vaddr_t sva, eva;
    363 	vsize_t len;
    364 	vaddr_t lva, va;
    365 	int npgs, i, error;
    366 
    367 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    368 		return (0);
    369 
    370 	if (iov->iov_len < (size_t) space)
    371 		space = iov->iov_len;
    372 	if (space > SOCK_LOAN_CHUNK)
    373 		space = SOCK_LOAN_CHUNK;
    374 
    375 	eva = round_page((vaddr_t) iov->iov_base + space);
    376 	sva = trunc_page((vaddr_t) iov->iov_base);
    377 	len = eva - sva;
    378 	npgs = len >> PAGE_SHIFT;
    379 
    380 	/* XXX KDASSERT */
    381 	KASSERT(npgs <= M_EXT_MAXPAGES);
    382 
    383 	lva = sokvaalloc(len, so);
    384 	if (lva == 0)
    385 		return 0;
    386 
    387 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    388 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    389 	if (error) {
    390 		sokvafree(lva, len);
    391 		return (0);
    392 	}
    393 
    394 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    395 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    396 		    VM_PROT_READ);
    397 	pmap_update(pmap_kernel());
    398 
    399 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    400 
    401 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    402 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    403 
    404 	uio->uio_resid -= space;
    405 	/* uio_offset not updated, not set/used for write(2) */
    406 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    407 	uio->uio_iov->iov_len -= space;
    408 	if (uio->uio_iov->iov_len == 0) {
    409 		uio->uio_iov++;
    410 		uio->uio_iovcnt--;
    411 	}
    412 
    413 	return (space);
    414 }
    415 
    416 static int
    417 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    418 {
    419 
    420 	KASSERT(ce == &sokva_reclaimerentry);
    421 	KASSERT(obj == NULL);
    422 
    423 	sodopendfree();
    424 	if (!vm_map_starved_p(kernel_map)) {
    425 		return CALLBACK_CHAIN_ABORT;
    426 	}
    427 	return CALLBACK_CHAIN_CONTINUE;
    428 }
    429 
    430 struct mbuf *
    431 getsombuf(struct socket *so, int type)
    432 {
    433 	struct mbuf *m;
    434 
    435 	m = m_get(M_WAIT, type);
    436 	MCLAIM(m, so->so_mowner);
    437 	return m;
    438 }
    439 
    440 struct mbuf *
    441 m_intopt(struct socket *so, int val)
    442 {
    443 	struct mbuf *m;
    444 
    445 	m = getsombuf(so, MT_SOOPTS);
    446 	m->m_len = sizeof(int);
    447 	*mtod(m, int *) = val;
    448 	return m;
    449 }
    450 
    451 void
    452 soinit(void)
    453 {
    454 
    455 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    456 	cv_init(&socurkva_cv, "sokva");
    457 
    458 	/* Set the initial adjusted socket buffer size. */
    459 	if (sb_max_set(sb_max))
    460 		panic("bad initial sb_max value: %lu", sb_max);
    461 
    462 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    463 	    &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
    464 }
    465 
    466 /*
    467  * Socket operation routines.
    468  * These routines are called by the routines in
    469  * sys_socket.c or from a system process, and
    470  * implement the semantics of socket operations by
    471  * switching out to the protocol specific routines.
    472  */
    473 /*ARGSUSED*/
    474 int
    475 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
    476 {
    477 	const struct protosw	*prp;
    478 	struct socket	*so;
    479 	uid_t		uid;
    480 	int		error, s;
    481 
    482 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    483 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    484 	    KAUTH_ARG(proto));
    485 	if (error != 0)
    486 		return error;
    487 
    488 	if (proto)
    489 		prp = pffindproto(dom, proto, type);
    490 	else
    491 		prp = pffindtype(dom, type);
    492 	if (prp == NULL) {
    493 		/* no support for domain */
    494 		if (pffinddomain(dom) == 0)
    495 			return EAFNOSUPPORT;
    496 		/* no support for socket type */
    497 		if (proto == 0 && type != 0)
    498 			return EPROTOTYPE;
    499 		return EPROTONOSUPPORT;
    500 	}
    501 	if (prp->pr_usrreq == NULL)
    502 		return EPROTONOSUPPORT;
    503 	if (prp->pr_type != type)
    504 		return EPROTOTYPE;
    505 	s = splsoftnet();
    506 	so = pool_get(&socket_pool, PR_WAITOK);
    507 	memset(so, 0, sizeof(*so));
    508 	TAILQ_INIT(&so->so_q0);
    509 	TAILQ_INIT(&so->so_q);
    510 	so->so_type = type;
    511 	so->so_proto = prp;
    512 	so->so_send = sosend;
    513 	so->so_receive = soreceive;
    514 #ifdef MBUFTRACE
    515 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    516 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    517 	so->so_mowner = &prp->pr_domain->dom_mowner;
    518 #endif
    519 	selinit(&so->so_rcv.sb_sel);
    520 	selinit(&so->so_snd.sb_sel);
    521 	uid = kauth_cred_geteuid(l->l_cred);
    522 	so->so_uidinfo = uid_find(uid);
    523 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
    524 	    (struct mbuf *)(long)proto, NULL, l);
    525 	if (error != 0) {
    526 		so->so_state |= SS_NOFDREF;
    527 		sofree(so);
    528 		splx(s);
    529 		return error;
    530 	}
    531 	splx(s);
    532 	*aso = so;
    533 	return 0;
    534 }
    535 
    536 /* On success, write file descriptor to fdout and return zero.  On
    537  * failure, return non-zero; *fdout will be undefined.
    538  */
    539 int
    540 fsocreate(int domain, struct socket **sop, int type, int protocol,
    541     struct lwp *l, int *fdout)
    542 {
    543 	struct socket	*so;
    544 	struct file	*fp;
    545 	int		fd, error;
    546 
    547 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    548 		return (error);
    549 	fp->f_flag = FREAD|FWRITE;
    550 	fp->f_type = DTYPE_SOCKET;
    551 	fp->f_ops = &socketops;
    552 	error = socreate(domain, &so, type, protocol, l);
    553 	if (error != 0) {
    554 		fd_abort(curproc, fp, fd);
    555 	} else {
    556 		if (sop != NULL)
    557 			*sop = so;
    558 		fp->f_data = so;
    559 		fd_affix(curproc, fp, fd);
    560 		*fdout = fd;
    561 	}
    562 	return error;
    563 }
    564 
    565 int
    566 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    567 {
    568 	int	s, error;
    569 
    570 	s = splsoftnet();
    571 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
    572 	splx(s);
    573 	return error;
    574 }
    575 
    576 int
    577 solisten(struct socket *so, int backlog, struct lwp *l)
    578 {
    579 	int	s, error;
    580 
    581 	s = splsoftnet();
    582 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
    583 	    NULL, NULL, l);
    584 	if (error != 0) {
    585 		splx(s);
    586 		return error;
    587 	}
    588 	if (TAILQ_EMPTY(&so->so_q))
    589 		so->so_options |= SO_ACCEPTCONN;
    590 	if (backlog < 0)
    591 		backlog = 0;
    592 	so->so_qlimit = min(backlog, somaxconn);
    593 	splx(s);
    594 	return 0;
    595 }
    596 
    597 void
    598 sofree(struct socket *so)
    599 {
    600 
    601 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
    602 		return;
    603 	if (so->so_head) {
    604 		/*
    605 		 * We must not decommission a socket that's on the accept(2)
    606 		 * queue.  If we do, then accept(2) may hang after select(2)
    607 		 * indicated that the listening socket was ready.
    608 		 */
    609 		if (!soqremque(so, 0))
    610 			return;
    611 	}
    612 	if (so->so_rcv.sb_hiwat)
    613 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    614 		    RLIM_INFINITY);
    615 	if (so->so_snd.sb_hiwat)
    616 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    617 		    RLIM_INFINITY);
    618 	sbrelease(&so->so_snd, so);
    619 	sorflush(so);
    620 	seldestroy(&so->so_rcv.sb_sel);
    621 	seldestroy(&so->so_snd.sb_sel);
    622 	pool_put(&socket_pool, so);
    623 }
    624 
    625 /*
    626  * Close a socket on last file table reference removal.
    627  * Initiate disconnect if connected.
    628  * Free socket when disconnect complete.
    629  */
    630 int
    631 soclose(struct socket *so)
    632 {
    633 	struct socket	*so2;
    634 	int		s, error;
    635 
    636 	error = 0;
    637 	s = splsoftnet();		/* conservative */
    638 	if (so->so_options & SO_ACCEPTCONN) {
    639 		while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    640 			(void) soqremque(so2, 0);
    641 			(void) soabort(so2);
    642 		}
    643 		while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    644 			(void) soqremque(so2, 1);
    645 			(void) soabort(so2);
    646 		}
    647 	}
    648 	if (so->so_pcb == 0)
    649 		goto discard;
    650 	if (so->so_state & SS_ISCONNECTED) {
    651 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    652 			error = sodisconnect(so);
    653 			if (error)
    654 				goto drop;
    655 		}
    656 		if (so->so_options & SO_LINGER) {
    657 			if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
    658 				goto drop;
    659 			while (so->so_state & SS_ISCONNECTED) {
    660 				error = tsleep((void *)&so->so_timeo,
    661 					       PSOCK | PCATCH, netcls,
    662 					       so->so_linger * hz);
    663 				if (error)
    664 					break;
    665 			}
    666 		}
    667 	}
    668  drop:
    669 	if (so->so_pcb) {
    670 		int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    671 		    NULL, NULL, NULL, NULL);
    672 		if (error == 0)
    673 			error = error2;
    674 	}
    675  discard:
    676 	if (so->so_state & SS_NOFDREF)
    677 		panic("soclose: NOFDREF");
    678 	so->so_state |= SS_NOFDREF;
    679 	sofree(so);
    680 	splx(s);
    681 	return (error);
    682 }
    683 
    684 /*
    685  * Must be called at splsoftnet...
    686  */
    687 int
    688 soabort(struct socket *so)
    689 {
    690 	int error;
    691 
    692 	KASSERT(so->so_head == NULL);
    693 	error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
    694 	    NULL, NULL, NULL);
    695 	if (error) {
    696 		sofree(so);
    697 	}
    698 	return error;
    699 }
    700 
    701 int
    702 soaccept(struct socket *so, struct mbuf *nam)
    703 {
    704 	int	s, error;
    705 
    706 	error = 0;
    707 	s = splsoftnet();
    708 	if ((so->so_state & SS_NOFDREF) == 0)
    709 		panic("soaccept: !NOFDREF");
    710 	so->so_state &= ~SS_NOFDREF;
    711 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    712 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    713 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    714 		    NULL, nam, NULL, NULL);
    715 	else
    716 		error = ECONNABORTED;
    717 
    718 	splx(s);
    719 	return (error);
    720 }
    721 
    722 int
    723 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    724 {
    725 	int		s, error;
    726 
    727 	if (so->so_options & SO_ACCEPTCONN)
    728 		return (EOPNOTSUPP);
    729 	s = splsoftnet();
    730 	/*
    731 	 * If protocol is connection-based, can only connect once.
    732 	 * Otherwise, if connected, try to disconnect first.
    733 	 * This allows user to disconnect by connecting to, e.g.,
    734 	 * a null address.
    735 	 */
    736 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    737 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    738 	    (error = sodisconnect(so))))
    739 		error = EISCONN;
    740 	else
    741 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    742 		    NULL, nam, NULL, l);
    743 	splx(s);
    744 	return (error);
    745 }
    746 
    747 int
    748 soconnect2(struct socket *so1, struct socket *so2)
    749 {
    750 	int	s, error;
    751 
    752 	s = splsoftnet();
    753 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    754 	    NULL, (struct mbuf *)so2, NULL, NULL);
    755 	splx(s);
    756 	return (error);
    757 }
    758 
    759 int
    760 sodisconnect(struct socket *so)
    761 {
    762 	int	s, error;
    763 
    764 	s = splsoftnet();
    765 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    766 		error = ENOTCONN;
    767 		goto bad;
    768 	}
    769 	if (so->so_state & SS_ISDISCONNECTING) {
    770 		error = EALREADY;
    771 		goto bad;
    772 	}
    773 	error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    774 	    NULL, NULL, NULL, NULL);
    775  bad:
    776 	splx(s);
    777 	sodopendfree();
    778 	return (error);
    779 }
    780 
    781 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    782 /*
    783  * Send on a socket.
    784  * If send must go all at once and message is larger than
    785  * send buffering, then hard error.
    786  * Lock against other senders.
    787  * If must go all at once and not enough room now, then
    788  * inform user that this would block and do nothing.
    789  * Otherwise, if nonblocking, send as much as possible.
    790  * The data to be sent is described by "uio" if nonzero,
    791  * otherwise by the mbuf chain "top" (which must be null
    792  * if uio is not).  Data provided in mbuf chain must be small
    793  * enough to send all at once.
    794  *
    795  * Returns nonzero on error, timeout or signal; callers
    796  * must check for short counts if EINTR/ERESTART are returned.
    797  * Data and control buffers are freed on return.
    798  */
    799 int
    800 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    801 	struct mbuf *control, int flags, struct lwp *l)
    802 {
    803 	struct mbuf	**mp, *m;
    804 	struct proc	*p;
    805 	long		space, len, resid, clen, mlen;
    806 	int		error, s, dontroute, atomic;
    807 
    808 	p = l->l_proc;
    809 	sodopendfree();
    810 
    811 	clen = 0;
    812 	atomic = sosendallatonce(so) || top;
    813 	if (uio)
    814 		resid = uio->uio_resid;
    815 	else
    816 		resid = top->m_pkthdr.len;
    817 	/*
    818 	 * In theory resid should be unsigned.
    819 	 * However, space must be signed, as it might be less than 0
    820 	 * if we over-committed, and we must use a signed comparison
    821 	 * of space and resid.  On the other hand, a negative resid
    822 	 * causes us to loop sending 0-length segments to the protocol.
    823 	 */
    824 	if (resid < 0) {
    825 		error = EINVAL;
    826 		goto out;
    827 	}
    828 	dontroute =
    829 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    830 	    (so->so_proto->pr_flags & PR_ATOMIC);
    831 	if (p)
    832 		p->p_stats->p_ru.ru_msgsnd++;
    833 	if (control)
    834 		clen = control->m_len;
    835 #define	snderr(errno)	{ error = errno; splx(s); goto release; }
    836 
    837  restart:
    838 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    839 		goto out;
    840 	do {
    841 		s = splsoftnet();
    842 		if (so->so_state & SS_CANTSENDMORE)
    843 			snderr(EPIPE);
    844 		if (so->so_error) {
    845 			error = so->so_error;
    846 			so->so_error = 0;
    847 			splx(s);
    848 			goto release;
    849 		}
    850 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    851 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    852 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    853 				    !(resid == 0 && clen != 0))
    854 					snderr(ENOTCONN);
    855 			} else if (addr == 0)
    856 				snderr(EDESTADDRREQ);
    857 		}
    858 		space = sbspace(&so->so_snd);
    859 		if (flags & MSG_OOB)
    860 			space += 1024;
    861 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    862 		    clen > so->so_snd.sb_hiwat)
    863 			snderr(EMSGSIZE);
    864 		if (space < resid + clen &&
    865 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    866 			if (so->so_nbio)
    867 				snderr(EWOULDBLOCK);
    868 			sbunlock(&so->so_snd);
    869 			error = sbwait(&so->so_snd);
    870 			splx(s);
    871 			if (error)
    872 				goto out;
    873 			goto restart;
    874 		}
    875 		splx(s);
    876 		mp = &top;
    877 		space -= clen;
    878 		do {
    879 			if (uio == NULL) {
    880 				/*
    881 				 * Data is prepackaged in "top".
    882 				 */
    883 				resid = 0;
    884 				if (flags & MSG_EOR)
    885 					top->m_flags |= M_EOR;
    886 			} else do {
    887 				if (top == NULL) {
    888 					m = m_gethdr(M_WAIT, MT_DATA);
    889 					mlen = MHLEN;
    890 					m->m_pkthdr.len = 0;
    891 					m->m_pkthdr.rcvif = NULL;
    892 				} else {
    893 					m = m_get(M_WAIT, MT_DATA);
    894 					mlen = MLEN;
    895 				}
    896 				MCLAIM(m, so->so_snd.sb_mowner);
    897 				if (sock_loan_thresh >= 0 &&
    898 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
    899 				    space >= sock_loan_thresh &&
    900 				    (len = sosend_loan(so, uio, m,
    901 						       space)) != 0) {
    902 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    903 					space -= len;
    904 					goto have_data;
    905 				}
    906 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
    907 					SOSEND_COUNTER_INCR(&sosend_copy_big);
    908 					m_clget(m, M_WAIT);
    909 					if ((m->m_flags & M_EXT) == 0)
    910 						goto nopages;
    911 					mlen = MCLBYTES;
    912 					if (atomic && top == 0) {
    913 						len = lmin(MCLBYTES - max_hdr,
    914 						    resid);
    915 						m->m_data += max_hdr;
    916 					} else
    917 						len = lmin(MCLBYTES, resid);
    918 					space -= len;
    919 				} else {
    920  nopages:
    921 					SOSEND_COUNTER_INCR(&sosend_copy_small);
    922 					len = lmin(lmin(mlen, resid), space);
    923 					space -= len;
    924 					/*
    925 					 * For datagram protocols, leave room
    926 					 * for protocol headers in first mbuf.
    927 					 */
    928 					if (atomic && top == 0 && len < mlen)
    929 						MH_ALIGN(m, len);
    930 				}
    931 				error = uiomove(mtod(m, void *), (int)len, uio);
    932  have_data:
    933 				resid = uio->uio_resid;
    934 				m->m_len = len;
    935 				*mp = m;
    936 				top->m_pkthdr.len += len;
    937 				if (error != 0)
    938 					goto release;
    939 				mp = &m->m_next;
    940 				if (resid <= 0) {
    941 					if (flags & MSG_EOR)
    942 						top->m_flags |= M_EOR;
    943 					break;
    944 				}
    945 			} while (space > 0 && atomic);
    946 
    947 			s = splsoftnet();
    948 
    949 			if (so->so_state & SS_CANTSENDMORE)
    950 				snderr(EPIPE);
    951 
    952 			if (dontroute)
    953 				so->so_options |= SO_DONTROUTE;
    954 			if (resid > 0)
    955 				so->so_state |= SS_MORETOCOME;
    956 			error = (*so->so_proto->pr_usrreq)(so,
    957 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
    958 			    top, addr, control, curlwp);	/* XXX */
    959 			if (dontroute)
    960 				so->so_options &= ~SO_DONTROUTE;
    961 			if (resid > 0)
    962 				so->so_state &= ~SS_MORETOCOME;
    963 			splx(s);
    964 
    965 			clen = 0;
    966 			control = NULL;
    967 			top = NULL;
    968 			mp = &top;
    969 			if (error != 0)
    970 				goto release;
    971 		} while (resid && space > 0);
    972 	} while (resid);
    973 
    974  release:
    975 	sbunlock(&so->so_snd);
    976  out:
    977 	if (top)
    978 		m_freem(top);
    979 	if (control)
    980 		m_freem(control);
    981 	return (error);
    982 }
    983 
    984 /*
    985  * Implement receive operations on a socket.
    986  * We depend on the way that records are added to the sockbuf
    987  * by sbappend*.  In particular, each record (mbufs linked through m_next)
    988  * must begin with an address if the protocol so specifies,
    989  * followed by an optional mbuf or mbufs containing ancillary data,
    990  * and then zero or more mbufs of data.
    991  * In order to avoid blocking network interrupts for the entire time here,
    992  * we splx() while doing the actual copy to user space.
    993  * Although the sockbuf is locked, new data may still be appended,
    994  * and thus we must maintain consistency of the sockbuf during that time.
    995  *
    996  * The caller may receive the data as a single mbuf chain by supplying
    997  * an mbuf **mp0 for use in returning the chain.  The uio is then used
    998  * only for the count in uio_resid.
    999  */
   1000 int
   1001 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1002 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1003 {
   1004 	struct lwp *l = curlwp;
   1005 	struct mbuf	*m, **mp;
   1006 	int atomic, flags, len, error, s, offset, moff, type, orig_resid;
   1007 	const struct protosw	*pr;
   1008 	struct mbuf	*nextrecord;
   1009 	int		mbuf_removed = 0;
   1010 	const struct domain *dom;
   1011 
   1012 	pr = so->so_proto;
   1013 	atomic = pr->pr_flags & PR_ATOMIC;
   1014 	dom = pr->pr_domain;
   1015 	mp = mp0;
   1016 	type = 0;
   1017 	orig_resid = uio->uio_resid;
   1018 
   1019 	if (paddr != NULL)
   1020 		*paddr = NULL;
   1021 	if (controlp != NULL)
   1022 		*controlp = NULL;
   1023 	if (flagsp != NULL)
   1024 		flags = *flagsp &~ MSG_EOR;
   1025 	else
   1026 		flags = 0;
   1027 
   1028 	if ((flags & MSG_DONTWAIT) == 0)
   1029 		sodopendfree();
   1030 
   1031 	if (flags & MSG_OOB) {
   1032 		m = m_get(M_WAIT, MT_DATA);
   1033 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
   1034 		    (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
   1035 		if (error)
   1036 			goto bad;
   1037 		do {
   1038 			error = uiomove(mtod(m, void *),
   1039 			    (int) min(uio->uio_resid, m->m_len), uio);
   1040 			m = m_free(m);
   1041 		} while (uio->uio_resid > 0 && error == 0 && m);
   1042  bad:
   1043 		if (m != NULL)
   1044 			m_freem(m);
   1045 		return error;
   1046 	}
   1047 	if (mp != NULL)
   1048 		*mp = NULL;
   1049 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
   1050 		(*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
   1051 
   1052  restart:
   1053 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
   1054 		return error;
   1055 	s = splsoftnet();
   1056 
   1057 	m = so->so_rcv.sb_mb;
   1058 	/*
   1059 	 * If we have less data than requested, block awaiting more
   1060 	 * (subject to any timeout) if:
   1061 	 *   1. the current count is less than the low water mark,
   1062 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1063 	 *	receive operation at once if we block (resid <= hiwat), or
   1064 	 *   3. MSG_DONTWAIT is not set.
   1065 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1066 	 * we have to do the receive in sections, and thus risk returning
   1067 	 * a short count if a timeout or signal occurs after we start.
   1068 	 */
   1069 	if (m == NULL ||
   1070 	    ((flags & MSG_DONTWAIT) == 0 &&
   1071 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1072 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1073 	      ((flags & MSG_WAITALL) &&
   1074 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1075 	     m->m_nextpkt == NULL && !atomic)) {
   1076 #ifdef DIAGNOSTIC
   1077 		if (m == NULL && so->so_rcv.sb_cc)
   1078 			panic("receive 1");
   1079 #endif
   1080 		if (so->so_error) {
   1081 			if (m != NULL)
   1082 				goto dontblock;
   1083 			error = so->so_error;
   1084 			if ((flags & MSG_PEEK) == 0)
   1085 				so->so_error = 0;
   1086 			goto release;
   1087 		}
   1088 		if (so->so_state & SS_CANTRCVMORE) {
   1089 			if (m != NULL)
   1090 				goto dontblock;
   1091 			else
   1092 				goto release;
   1093 		}
   1094 		for (; m != NULL; m = m->m_next)
   1095 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1096 				m = so->so_rcv.sb_mb;
   1097 				goto dontblock;
   1098 			}
   1099 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1100 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1101 			error = ENOTCONN;
   1102 			goto release;
   1103 		}
   1104 		if (uio->uio_resid == 0)
   1105 			goto release;
   1106 		if (so->so_nbio || (flags & MSG_DONTWAIT)) {
   1107 			error = EWOULDBLOCK;
   1108 			goto release;
   1109 		}
   1110 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1111 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1112 		sbunlock(&so->so_rcv);
   1113 		error = sbwait(&so->so_rcv);
   1114 		splx(s);
   1115 		if (error != 0)
   1116 			return error;
   1117 		goto restart;
   1118 	}
   1119  dontblock:
   1120 	/*
   1121 	 * On entry here, m points to the first record of the socket buffer.
   1122 	 * While we process the initial mbufs containing address and control
   1123 	 * info, we save a copy of m->m_nextpkt into nextrecord.
   1124 	 */
   1125 	if (l != NULL)
   1126 		l->l_proc->p_stats->p_ru.ru_msgrcv++;
   1127 	KASSERT(m == so->so_rcv.sb_mb);
   1128 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1129 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1130 	nextrecord = m->m_nextpkt;
   1131 	if (pr->pr_flags & PR_ADDR) {
   1132 #ifdef DIAGNOSTIC
   1133 		if (m->m_type != MT_SONAME)
   1134 			panic("receive 1a");
   1135 #endif
   1136 		orig_resid = 0;
   1137 		if (flags & MSG_PEEK) {
   1138 			if (paddr)
   1139 				*paddr = m_copy(m, 0, m->m_len);
   1140 			m = m->m_next;
   1141 		} else {
   1142 			sbfree(&so->so_rcv, m);
   1143 			mbuf_removed = 1;
   1144 			if (paddr != NULL) {
   1145 				*paddr = m;
   1146 				so->so_rcv.sb_mb = m->m_next;
   1147 				m->m_next = NULL;
   1148 				m = so->so_rcv.sb_mb;
   1149 			} else {
   1150 				MFREE(m, so->so_rcv.sb_mb);
   1151 				m = so->so_rcv.sb_mb;
   1152 			}
   1153 		}
   1154 	}
   1155 	while (m != NULL && m->m_type == MT_CONTROL && error == 0) {
   1156 		if (flags & MSG_PEEK) {
   1157 			if (controlp != NULL)
   1158 				*controlp = m_copy(m, 0, m->m_len);
   1159 			m = m->m_next;
   1160 		} else {
   1161 			sbfree(&so->so_rcv, m);
   1162 			mbuf_removed = 1;
   1163 			if (controlp != NULL) {
   1164 				if (dom->dom_externalize && l &&
   1165 				    mtod(m, struct cmsghdr *)->cmsg_type ==
   1166 				    SCM_RIGHTS)
   1167 					error = (*dom->dom_externalize)(m, l);
   1168 				*controlp = m;
   1169 				so->so_rcv.sb_mb = m->m_next;
   1170 				m->m_next = NULL;
   1171 				m = so->so_rcv.sb_mb;
   1172 			} else {
   1173 				/*
   1174 				 * Dispose of any SCM_RIGHTS message that went
   1175 				 * through the read path rather than recv.
   1176 				 */
   1177 				if (dom->dom_dispose &&
   1178 				    mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
   1179 					(*dom->dom_dispose)(m);
   1180 				MFREE(m, so->so_rcv.sb_mb);
   1181 				m = so->so_rcv.sb_mb;
   1182 			}
   1183 		}
   1184 		if (controlp != NULL) {
   1185 			orig_resid = 0;
   1186 			controlp = &(*controlp)->m_next;
   1187 		}
   1188 	}
   1189 
   1190 	/*
   1191 	 * If m is non-NULL, we have some data to read.  From now on,
   1192 	 * make sure to keep sb_lastrecord consistent when working on
   1193 	 * the last packet on the chain (nextrecord == NULL) and we
   1194 	 * change m->m_nextpkt.
   1195 	 */
   1196 	if (m != NULL) {
   1197 		if ((flags & MSG_PEEK) == 0) {
   1198 			m->m_nextpkt = nextrecord;
   1199 			/*
   1200 			 * If nextrecord == NULL (this is a single chain),
   1201 			 * then sb_lastrecord may not be valid here if m
   1202 			 * was changed earlier.
   1203 			 */
   1204 			if (nextrecord == NULL) {
   1205 				KASSERT(so->so_rcv.sb_mb == m);
   1206 				so->so_rcv.sb_lastrecord = m;
   1207 			}
   1208 		}
   1209 		type = m->m_type;
   1210 		if (type == MT_OOBDATA)
   1211 			flags |= MSG_OOB;
   1212 	} else {
   1213 		if ((flags & MSG_PEEK) == 0) {
   1214 			KASSERT(so->so_rcv.sb_mb == m);
   1215 			so->so_rcv.sb_mb = nextrecord;
   1216 			SB_EMPTY_FIXUP(&so->so_rcv);
   1217 		}
   1218 	}
   1219 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1220 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1221 
   1222 	moff = 0;
   1223 	offset = 0;
   1224 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1225 		if (m->m_type == MT_OOBDATA) {
   1226 			if (type != MT_OOBDATA)
   1227 				break;
   1228 		} else if (type == MT_OOBDATA)
   1229 			break;
   1230 #ifdef DIAGNOSTIC
   1231 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1232 			panic("receive 3");
   1233 #endif
   1234 		so->so_state &= ~SS_RCVATMARK;
   1235 		len = uio->uio_resid;
   1236 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1237 			len = so->so_oobmark - offset;
   1238 		if (len > m->m_len - moff)
   1239 			len = m->m_len - moff;
   1240 		/*
   1241 		 * If mp is set, just pass back the mbufs.
   1242 		 * Otherwise copy them out via the uio, then free.
   1243 		 * Sockbuf must be consistent here (points to current mbuf,
   1244 		 * it points to next record) when we drop priority;
   1245 		 * we must note any additions to the sockbuf when we
   1246 		 * block interrupts again.
   1247 		 */
   1248 		if (mp == NULL) {
   1249 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1250 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1251 			splx(s);
   1252 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
   1253 			s = splsoftnet();
   1254 			if (error != 0) {
   1255 				/*
   1256 				 * If any part of the record has been removed
   1257 				 * (such as the MT_SONAME mbuf, which will
   1258 				 * happen when PR_ADDR, and thus also
   1259 				 * PR_ATOMIC, is set), then drop the entire
   1260 				 * record to maintain the atomicity of the
   1261 				 * receive operation.
   1262 				 *
   1263 				 * This avoids a later panic("receive 1a")
   1264 				 * when compiled with DIAGNOSTIC.
   1265 				 */
   1266 				if (m && mbuf_removed && atomic)
   1267 					(void) sbdroprecord(&so->so_rcv);
   1268 
   1269 				goto release;
   1270 			}
   1271 		} else
   1272 			uio->uio_resid -= len;
   1273 		if (len == m->m_len - moff) {
   1274 			if (m->m_flags & M_EOR)
   1275 				flags |= MSG_EOR;
   1276 			if (flags & MSG_PEEK) {
   1277 				m = m->m_next;
   1278 				moff = 0;
   1279 			} else {
   1280 				nextrecord = m->m_nextpkt;
   1281 				sbfree(&so->so_rcv, m);
   1282 				if (mp) {
   1283 					*mp = m;
   1284 					mp = &m->m_next;
   1285 					so->so_rcv.sb_mb = m = m->m_next;
   1286 					*mp = NULL;
   1287 				} else {
   1288 					MFREE(m, so->so_rcv.sb_mb);
   1289 					m = so->so_rcv.sb_mb;
   1290 				}
   1291 				/*
   1292 				 * If m != NULL, we also know that
   1293 				 * so->so_rcv.sb_mb != NULL.
   1294 				 */
   1295 				KASSERT(so->so_rcv.sb_mb == m);
   1296 				if (m) {
   1297 					m->m_nextpkt = nextrecord;
   1298 					if (nextrecord == NULL)
   1299 						so->so_rcv.sb_lastrecord = m;
   1300 				} else {
   1301 					so->so_rcv.sb_mb = nextrecord;
   1302 					SB_EMPTY_FIXUP(&so->so_rcv);
   1303 				}
   1304 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1305 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1306 			}
   1307 		} else if (flags & MSG_PEEK)
   1308 			moff += len;
   1309 		else {
   1310 			if (mp != NULL)
   1311 				*mp = m_copym(m, 0, len, M_WAIT);
   1312 			m->m_data += len;
   1313 			m->m_len -= len;
   1314 			so->so_rcv.sb_cc -= len;
   1315 		}
   1316 		if (so->so_oobmark) {
   1317 			if ((flags & MSG_PEEK) == 0) {
   1318 				so->so_oobmark -= len;
   1319 				if (so->so_oobmark == 0) {
   1320 					so->so_state |= SS_RCVATMARK;
   1321 					break;
   1322 				}
   1323 			} else {
   1324 				offset += len;
   1325 				if (offset == so->so_oobmark)
   1326 					break;
   1327 			}
   1328 		}
   1329 		if (flags & MSG_EOR)
   1330 			break;
   1331 		/*
   1332 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1333 		 * we must not quit until "uio->uio_resid == 0" or an error
   1334 		 * termination.  If a signal/timeout occurs, return
   1335 		 * with a short count but without error.
   1336 		 * Keep sockbuf locked against other readers.
   1337 		 */
   1338 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1339 		    !sosendallatonce(so) && !nextrecord) {
   1340 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1341 				break;
   1342 			/*
   1343 			 * If we are peeking and the socket receive buffer is
   1344 			 * full, stop since we can't get more data to peek at.
   1345 			 */
   1346 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1347 				break;
   1348 			/*
   1349 			 * If we've drained the socket buffer, tell the
   1350 			 * protocol in case it needs to do something to
   1351 			 * get it filled again.
   1352 			 */
   1353 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1354 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1355 				    NULL, (struct mbuf *)(long)flags, NULL, l);
   1356 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1357 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1358 			error = sbwait(&so->so_rcv);
   1359 			if (error != 0) {
   1360 				sbunlock(&so->so_rcv);
   1361 				splx(s);
   1362 				return 0;
   1363 			}
   1364 			if ((m = so->so_rcv.sb_mb) != NULL)
   1365 				nextrecord = m->m_nextpkt;
   1366 		}
   1367 	}
   1368 
   1369 	if (m && atomic) {
   1370 		flags |= MSG_TRUNC;
   1371 		if ((flags & MSG_PEEK) == 0)
   1372 			(void) sbdroprecord(&so->so_rcv);
   1373 	}
   1374 	if ((flags & MSG_PEEK) == 0) {
   1375 		if (m == NULL) {
   1376 			/*
   1377 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1378 			 * part makes sure sb_lastrecord is up-to-date if
   1379 			 * there is still data in the socket buffer.
   1380 			 */
   1381 			so->so_rcv.sb_mb = nextrecord;
   1382 			if (so->so_rcv.sb_mb == NULL) {
   1383 				so->so_rcv.sb_mbtail = NULL;
   1384 				so->so_rcv.sb_lastrecord = NULL;
   1385 			} else if (nextrecord->m_nextpkt == NULL)
   1386 				so->so_rcv.sb_lastrecord = nextrecord;
   1387 		}
   1388 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1389 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1390 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1391 			(*pr->pr_usrreq)(so, PRU_RCVD, NULL,
   1392 			    (struct mbuf *)(long)flags, NULL, l);
   1393 	}
   1394 	if (orig_resid == uio->uio_resid && orig_resid &&
   1395 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1396 		sbunlock(&so->so_rcv);
   1397 		splx(s);
   1398 		goto restart;
   1399 	}
   1400 
   1401 	if (flagsp != NULL)
   1402 		*flagsp |= flags;
   1403  release:
   1404 	sbunlock(&so->so_rcv);
   1405 	splx(s);
   1406 	return error;
   1407 }
   1408 
   1409 int
   1410 soshutdown(struct socket *so, int how)
   1411 {
   1412 	const struct protosw	*pr;
   1413 
   1414 	pr = so->so_proto;
   1415 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1416 		return (EINVAL);
   1417 
   1418 	if (how == SHUT_RD || how == SHUT_RDWR)
   1419 		sorflush(so);
   1420 	if (how == SHUT_WR || how == SHUT_RDWR)
   1421 		return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
   1422 		    NULL, NULL, NULL);
   1423 	return 0;
   1424 }
   1425 
   1426 void
   1427 sorflush(struct socket *so)
   1428 {
   1429 	struct sockbuf	*sb, asb;
   1430 	const struct protosw	*pr;
   1431 	int		s;
   1432 
   1433 	sb = &so->so_rcv;
   1434 	pr = so->so_proto;
   1435 	sb->sb_flags |= SB_NOINTR;
   1436 	(void) sblock(sb, M_WAITOK);
   1437 	s = splnet();
   1438 	socantrcvmore(so);
   1439 	sbunlock(sb);
   1440 	asb = *sb;
   1441 	/*
   1442 	 * Clear most of the sockbuf structure, but leave some of the
   1443 	 * fields valid.
   1444 	 */
   1445 	memset(&sb->sb_startzero, 0,
   1446 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1447 	splx(s);
   1448 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
   1449 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1450 	sbrelease(&asb, so);
   1451 }
   1452 
   1453 static int
   1454 sosetopt1(struct socket *so, int level, int optname, struct mbuf *m)
   1455 {
   1456 	int optval, val;
   1457 	struct linger	*l;
   1458 	struct sockbuf	*sb;
   1459 	struct timeval *tv;
   1460 
   1461 	switch (optname) {
   1462 
   1463 	case SO_LINGER:
   1464 		if (m == NULL || m->m_len != sizeof(struct linger))
   1465 			return EINVAL;
   1466 		l = mtod(m, struct linger *);
   1467 		if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
   1468 		    l->l_linger > (INT_MAX / hz))
   1469 			return EDOM;
   1470 		so->so_linger = l->l_linger;
   1471 		if (l->l_onoff)
   1472 			so->so_options |= SO_LINGER;
   1473 		else
   1474 			so->so_options &= ~SO_LINGER;
   1475 		break;
   1476 
   1477 	case SO_DEBUG:
   1478 	case SO_KEEPALIVE:
   1479 	case SO_DONTROUTE:
   1480 	case SO_USELOOPBACK:
   1481 	case SO_BROADCAST:
   1482 	case SO_REUSEADDR:
   1483 	case SO_REUSEPORT:
   1484 	case SO_OOBINLINE:
   1485 	case SO_TIMESTAMP:
   1486 		if (m == NULL || m->m_len < sizeof(int))
   1487 			return EINVAL;
   1488 		if (*mtod(m, int *))
   1489 			so->so_options |= optname;
   1490 		else
   1491 			so->so_options &= ~optname;
   1492 		break;
   1493 
   1494 	case SO_SNDBUF:
   1495 	case SO_RCVBUF:
   1496 	case SO_SNDLOWAT:
   1497 	case SO_RCVLOWAT:
   1498 		if (m == NULL || m->m_len < sizeof(int))
   1499 			return EINVAL;
   1500 
   1501 		/*
   1502 		 * Values < 1 make no sense for any of these
   1503 		 * options, so disallow them.
   1504 		 */
   1505 		optval = *mtod(m, int *);
   1506 		if (optval < 1)
   1507 			return EINVAL;
   1508 
   1509 		switch (optname) {
   1510 
   1511 		case SO_SNDBUF:
   1512 		case SO_RCVBUF:
   1513 			sb = (optname == SO_SNDBUF) ?
   1514 			    &so->so_snd : &so->so_rcv;
   1515 			if (sbreserve(sb, (u_long)optval, so) == 0)
   1516 				return ENOBUFS;
   1517 			sb->sb_flags &= ~SB_AUTOSIZE;
   1518 			break;
   1519 
   1520 		/*
   1521 		 * Make sure the low-water is never greater than
   1522 		 * the high-water.
   1523 		 */
   1524 		case SO_SNDLOWAT:
   1525 			so->so_snd.sb_lowat =
   1526 			    (optval > so->so_snd.sb_hiwat) ?
   1527 			    so->so_snd.sb_hiwat : optval;
   1528 			break;
   1529 		case SO_RCVLOWAT:
   1530 			so->so_rcv.sb_lowat =
   1531 			    (optval > so->so_rcv.sb_hiwat) ?
   1532 			    so->so_rcv.sb_hiwat : optval;
   1533 			break;
   1534 		}
   1535 		break;
   1536 
   1537 	case SO_SNDTIMEO:
   1538 	case SO_RCVTIMEO:
   1539 		if (m == NULL || m->m_len < sizeof(*tv))
   1540 			return EINVAL;
   1541 		tv = mtod(m, struct timeval *);
   1542 		if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz)
   1543 			return EDOM;
   1544 		val = tv->tv_sec * hz + tv->tv_usec / tick;
   1545 		if (val == 0 && tv->tv_usec != 0)
   1546 			val = 1;
   1547 
   1548 		switch (optname) {
   1549 
   1550 		case SO_SNDTIMEO:
   1551 			so->so_snd.sb_timeo = val;
   1552 			break;
   1553 		case SO_RCVTIMEO:
   1554 			so->so_rcv.sb_timeo = val;
   1555 			break;
   1556 		}
   1557 		break;
   1558 
   1559 	default:
   1560 		return ENOPROTOOPT;
   1561 	}
   1562 	return 0;
   1563 }
   1564 
   1565 int
   1566 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
   1567 {
   1568 	int error, prerr;
   1569 
   1570 	if (level == SOL_SOCKET)
   1571 		error = sosetopt1(so, level, optname, m);
   1572 	else
   1573 		error = ENOPROTOOPT;
   1574 
   1575 	if ((error == 0 || error == ENOPROTOOPT) &&
   1576 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1577 		/* give the protocol stack a shot */
   1578 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, level,
   1579 		    optname, &m);
   1580 		if (prerr == 0)
   1581 			error = 0;
   1582 		else if (prerr != ENOPROTOOPT)
   1583 			error = prerr;
   1584 	} else if (m != NULL)
   1585 		(void)m_free(m);
   1586 	return error;
   1587 }
   1588 
   1589 int
   1590 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
   1591 {
   1592 	struct mbuf	*m;
   1593 
   1594 	if (level != SOL_SOCKET) {
   1595 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1596 			return ((*so->so_proto->pr_ctloutput)
   1597 				  (PRCO_GETOPT, so, level, optname, mp));
   1598 		} else
   1599 			return (ENOPROTOOPT);
   1600 	} else {
   1601 		m = m_get(M_WAIT, MT_SOOPTS);
   1602 		m->m_len = sizeof(int);
   1603 
   1604 		switch (optname) {
   1605 
   1606 		case SO_LINGER:
   1607 			m->m_len = sizeof(struct linger);
   1608 			mtod(m, struct linger *)->l_onoff =
   1609 			    (so->so_options & SO_LINGER) ? 1 : 0;
   1610 			mtod(m, struct linger *)->l_linger = so->so_linger;
   1611 			break;
   1612 
   1613 		case SO_USELOOPBACK:
   1614 		case SO_DONTROUTE:
   1615 		case SO_DEBUG:
   1616 		case SO_KEEPALIVE:
   1617 		case SO_REUSEADDR:
   1618 		case SO_REUSEPORT:
   1619 		case SO_BROADCAST:
   1620 		case SO_OOBINLINE:
   1621 		case SO_TIMESTAMP:
   1622 			*mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
   1623 			break;
   1624 
   1625 		case SO_TYPE:
   1626 			*mtod(m, int *) = so->so_type;
   1627 			break;
   1628 
   1629 		case SO_ERROR:
   1630 			*mtod(m, int *) = so->so_error;
   1631 			so->so_error = 0;
   1632 			break;
   1633 
   1634 		case SO_SNDBUF:
   1635 			*mtod(m, int *) = so->so_snd.sb_hiwat;
   1636 			break;
   1637 
   1638 		case SO_RCVBUF:
   1639 			*mtod(m, int *) = so->so_rcv.sb_hiwat;
   1640 			break;
   1641 
   1642 		case SO_SNDLOWAT:
   1643 			*mtod(m, int *) = so->so_snd.sb_lowat;
   1644 			break;
   1645 
   1646 		case SO_RCVLOWAT:
   1647 			*mtod(m, int *) = so->so_rcv.sb_lowat;
   1648 			break;
   1649 
   1650 		case SO_SNDTIMEO:
   1651 		case SO_RCVTIMEO:
   1652 		    {
   1653 			int val = (optname == SO_SNDTIMEO ?
   1654 			     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1655 
   1656 			m->m_len = sizeof(struct timeval);
   1657 			mtod(m, struct timeval *)->tv_sec = val / hz;
   1658 			mtod(m, struct timeval *)->tv_usec =
   1659 			    (val % hz) * tick;
   1660 			break;
   1661 		    }
   1662 
   1663 		case SO_OVERFLOWED:
   1664 			*mtod(m, int *) = so->so_rcv.sb_overflowed;
   1665 			break;
   1666 
   1667 		default:
   1668 			(void)m_free(m);
   1669 			return (ENOPROTOOPT);
   1670 		}
   1671 		*mp = m;
   1672 		return (0);
   1673 	}
   1674 }
   1675 
   1676 void
   1677 sohasoutofband(struct socket *so)
   1678 {
   1679 
   1680 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   1681 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, 0);
   1682 }
   1683 
   1684 static void
   1685 filt_sordetach(struct knote *kn)
   1686 {
   1687 	struct socket	*so;
   1688 
   1689 	so = ((file_t *)kn->kn_obj)->f_data;
   1690 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   1691 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   1692 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   1693 }
   1694 
   1695 /*ARGSUSED*/
   1696 static int
   1697 filt_soread(struct knote *kn, long hint)
   1698 {
   1699 	struct socket	*so;
   1700 
   1701 	so = ((file_t *)kn->kn_obj)->f_data;
   1702 	kn->kn_data = so->so_rcv.sb_cc;
   1703 	if (so->so_state & SS_CANTRCVMORE) {
   1704 		kn->kn_flags |= EV_EOF;
   1705 		kn->kn_fflags = so->so_error;
   1706 		return (1);
   1707 	}
   1708 	if (so->so_error)	/* temporary udp error */
   1709 		return (1);
   1710 	if (kn->kn_sfflags & NOTE_LOWAT)
   1711 		return (kn->kn_data >= kn->kn_sdata);
   1712 	return (kn->kn_data >= so->so_rcv.sb_lowat);
   1713 }
   1714 
   1715 static void
   1716 filt_sowdetach(struct knote *kn)
   1717 {
   1718 	struct socket	*so;
   1719 
   1720 	so = ((file_t *)kn->kn_obj)->f_data;
   1721 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   1722 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   1723 		so->so_snd.sb_flags &= ~SB_KNOTE;
   1724 }
   1725 
   1726 /*ARGSUSED*/
   1727 static int
   1728 filt_sowrite(struct knote *kn, long hint)
   1729 {
   1730 	struct socket	*so;
   1731 
   1732 	so = ((file_t *)kn->kn_obj)->f_data;
   1733 	kn->kn_data = sbspace(&so->so_snd);
   1734 	if (so->so_state & SS_CANTSENDMORE) {
   1735 		kn->kn_flags |= EV_EOF;
   1736 		kn->kn_fflags = so->so_error;
   1737 		return (1);
   1738 	}
   1739 	if (so->so_error)	/* temporary udp error */
   1740 		return (1);
   1741 	if (((so->so_state & SS_ISCONNECTED) == 0) &&
   1742 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   1743 		return (0);
   1744 	if (kn->kn_sfflags & NOTE_LOWAT)
   1745 		return (kn->kn_data >= kn->kn_sdata);
   1746 	return (kn->kn_data >= so->so_snd.sb_lowat);
   1747 }
   1748 
   1749 /*ARGSUSED*/
   1750 static int
   1751 filt_solisten(struct knote *kn, long hint)
   1752 {
   1753 	struct socket	*so;
   1754 
   1755 	so = ((file_t *)kn->kn_obj)->f_data;
   1756 
   1757 	/*
   1758 	 * Set kn_data to number of incoming connections, not
   1759 	 * counting partial (incomplete) connections.
   1760 	 */
   1761 	kn->kn_data = so->so_qlen;
   1762 	return (kn->kn_data > 0);
   1763 }
   1764 
   1765 static const struct filterops solisten_filtops =
   1766 	{ 1, NULL, filt_sordetach, filt_solisten };
   1767 static const struct filterops soread_filtops =
   1768 	{ 1, NULL, filt_sordetach, filt_soread };
   1769 static const struct filterops sowrite_filtops =
   1770 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   1771 
   1772 int
   1773 soo_kqfilter(struct file *fp, struct knote *kn)
   1774 {
   1775 	struct socket	*so;
   1776 	struct sockbuf	*sb;
   1777 
   1778 	so = ((file_t *)kn->kn_obj)->f_data;
   1779 	switch (kn->kn_filter) {
   1780 	case EVFILT_READ:
   1781 		if (so->so_options & SO_ACCEPTCONN)
   1782 			kn->kn_fop = &solisten_filtops;
   1783 		else
   1784 			kn->kn_fop = &soread_filtops;
   1785 		sb = &so->so_rcv;
   1786 		break;
   1787 	case EVFILT_WRITE:
   1788 		kn->kn_fop = &sowrite_filtops;
   1789 		sb = &so->so_snd;
   1790 		break;
   1791 	default:
   1792 		return (EINVAL);
   1793 	}
   1794 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   1795 	sb->sb_flags |= SB_KNOTE;
   1796 	return (0);
   1797 }
   1798 
   1799 static int
   1800 sodopoll(struct socket *so, int events)
   1801 {
   1802 	int revents;
   1803 
   1804 	revents = 0;
   1805 
   1806 	if (events & (POLLIN | POLLRDNORM))
   1807 		if (soreadable(so))
   1808 			revents |= events & (POLLIN | POLLRDNORM);
   1809 
   1810 	if (events & (POLLOUT | POLLWRNORM))
   1811 		if (sowritable(so))
   1812 			revents |= events & (POLLOUT | POLLWRNORM);
   1813 
   1814 	if (events & (POLLPRI | POLLRDBAND))
   1815 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   1816 			revents |= events & (POLLPRI | POLLRDBAND);
   1817 
   1818 	return revents;
   1819 }
   1820 
   1821 int
   1822 sopoll(struct socket *so, int events)
   1823 {
   1824 	int revents = 0;
   1825 	int s;
   1826 
   1827 	if ((revents = sodopoll(so, events)) != 0)
   1828 		return revents;
   1829 
   1830 	KERNEL_LOCK(1, curlwp);
   1831 	s = splsoftnet();
   1832 
   1833 	if ((revents = sodopoll(so, events)) == 0) {
   1834 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   1835 			selrecord(curlwp, &so->so_rcv.sb_sel);
   1836 			so->so_rcv.sb_flags |= SB_SEL;
   1837 		}
   1838 
   1839 		if (events & (POLLOUT | POLLWRNORM)) {
   1840 			selrecord(curlwp, &so->so_snd.sb_sel);
   1841 			so->so_snd.sb_flags |= SB_SEL;
   1842 		}
   1843 	}
   1844 
   1845 	splx(s);
   1846 	KERNEL_UNLOCK_ONE(curlwp);
   1847 
   1848 	return revents;
   1849 }
   1850 
   1851 
   1852 #include <sys/sysctl.h>
   1853 
   1854 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   1855 
   1856 /*
   1857  * sysctl helper routine for kern.somaxkva.  ensures that the given
   1858  * value is not too small.
   1859  * (XXX should we maybe make sure it's not too large as well?)
   1860  */
   1861 static int
   1862 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   1863 {
   1864 	int error, new_somaxkva;
   1865 	struct sysctlnode node;
   1866 
   1867 	new_somaxkva = somaxkva;
   1868 	node = *rnode;
   1869 	node.sysctl_data = &new_somaxkva;
   1870 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1871 	if (error || newp == NULL)
   1872 		return (error);
   1873 
   1874 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   1875 		return (EINVAL);
   1876 
   1877 	mutex_enter(&so_pendfree_lock);
   1878 	somaxkva = new_somaxkva;
   1879 	cv_broadcast(&socurkva_cv);
   1880 	mutex_exit(&so_pendfree_lock);
   1881 
   1882 	return (error);
   1883 }
   1884 
   1885 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
   1886 {
   1887 
   1888 	sysctl_createv(clog, 0, NULL, NULL,
   1889 		       CTLFLAG_PERMANENT,
   1890 		       CTLTYPE_NODE, "kern", NULL,
   1891 		       NULL, 0, NULL, 0,
   1892 		       CTL_KERN, CTL_EOL);
   1893 
   1894 	sysctl_createv(clog, 0, NULL, NULL,
   1895 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1896 		       CTLTYPE_INT, "somaxkva",
   1897 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   1898 				    "used for socket buffers"),
   1899 		       sysctl_kern_somaxkva, 0, NULL, 0,
   1900 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   1901 }
   1902