uipc_socket.c revision 1.158 1 /* $NetBSD: uipc_socket.c,v 1.158 2008/03/28 12:12:20 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 1982, 1986, 1988, 1990, 1993
41 * The Regents of the University of California. All rights reserved.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 *
67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
68 */
69
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.158 2008/03/28 12:12:20 ad Exp $");
72
73 #include "opt_sock_counters.h"
74 #include "opt_sosend_loan.h"
75 #include "opt_mbuftrace.h"
76 #include "opt_somaxkva.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/file.h>
82 #include <sys/filedesc.h>
83 #include <sys/malloc.h>
84 #include <sys/mbuf.h>
85 #include <sys/domain.h>
86 #include <sys/kernel.h>
87 #include <sys/protosw.h>
88 #include <sys/socket.h>
89 #include <sys/socketvar.h>
90 #include <sys/signalvar.h>
91 #include <sys/resourcevar.h>
92 #include <sys/pool.h>
93 #include <sys/event.h>
94 #include <sys/poll.h>
95 #include <sys/kauth.h>
96 #include <sys/mutex.h>
97 #include <sys/condvar.h>
98
99 #include <uvm/uvm.h>
100
101 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL,
102 IPL_SOFTNET);
103
104 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
105 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
106
107 extern const struct fileops socketops;
108
109 extern int somaxconn; /* patchable (XXX sysctl) */
110 int somaxconn = SOMAXCONN;
111
112 #ifdef SOSEND_COUNTERS
113 #include <sys/device.h>
114
115 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
116 NULL, "sosend", "loan big");
117 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
118 NULL, "sosend", "copy big");
119 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
120 NULL, "sosend", "copy small");
121 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
122 NULL, "sosend", "kva limit");
123
124 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
125
126 EVCNT_ATTACH_STATIC(sosend_loan_big);
127 EVCNT_ATTACH_STATIC(sosend_copy_big);
128 EVCNT_ATTACH_STATIC(sosend_copy_small);
129 EVCNT_ATTACH_STATIC(sosend_kvalimit);
130 #else
131
132 #define SOSEND_COUNTER_INCR(ev) /* nothing */
133
134 #endif /* SOSEND_COUNTERS */
135
136 static struct callback_entry sokva_reclaimerentry;
137
138 #ifdef SOSEND_NO_LOAN
139 int sock_loan_thresh = -1;
140 #else
141 int sock_loan_thresh = 4096;
142 #endif
143
144 static kmutex_t so_pendfree_lock;
145 static struct mbuf *so_pendfree;
146
147 #ifndef SOMAXKVA
148 #define SOMAXKVA (16 * 1024 * 1024)
149 #endif
150 int somaxkva = SOMAXKVA;
151 static int socurkva;
152 static kcondvar_t socurkva_cv;
153
154 #define SOCK_LOAN_CHUNK 65536
155
156 static size_t sodopendfree(void);
157 static size_t sodopendfreel(void);
158
159 static vsize_t
160 sokvareserve(struct socket *so, vsize_t len)
161 {
162 int error;
163
164 mutex_enter(&so_pendfree_lock);
165 while (socurkva + len > somaxkva) {
166 size_t freed;
167
168 /*
169 * try to do pendfree.
170 */
171
172 freed = sodopendfreel();
173
174 /*
175 * if some kva was freed, try again.
176 */
177
178 if (freed)
179 continue;
180
181 SOSEND_COUNTER_INCR(&sosend_kvalimit);
182 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
183 if (error) {
184 len = 0;
185 break;
186 }
187 }
188 socurkva += len;
189 mutex_exit(&so_pendfree_lock);
190 return len;
191 }
192
193 static void
194 sokvaunreserve(vsize_t len)
195 {
196
197 mutex_enter(&so_pendfree_lock);
198 socurkva -= len;
199 cv_broadcast(&socurkva_cv);
200 mutex_exit(&so_pendfree_lock);
201 }
202
203 /*
204 * sokvaalloc: allocate kva for loan.
205 */
206
207 vaddr_t
208 sokvaalloc(vsize_t len, struct socket *so)
209 {
210 vaddr_t lva;
211
212 /*
213 * reserve kva.
214 */
215
216 if (sokvareserve(so, len) == 0)
217 return 0;
218
219 /*
220 * allocate kva.
221 */
222
223 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
224 if (lva == 0) {
225 sokvaunreserve(len);
226 return (0);
227 }
228
229 return lva;
230 }
231
232 /*
233 * sokvafree: free kva for loan.
234 */
235
236 void
237 sokvafree(vaddr_t sva, vsize_t len)
238 {
239
240 /*
241 * free kva.
242 */
243
244 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
245
246 /*
247 * unreserve kva.
248 */
249
250 sokvaunreserve(len);
251 }
252
253 static void
254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
255 {
256 vaddr_t sva, eva;
257 vsize_t len;
258 int npgs;
259
260 KASSERT(pgs != NULL);
261
262 eva = round_page((vaddr_t) buf + size);
263 sva = trunc_page((vaddr_t) buf);
264 len = eva - sva;
265 npgs = len >> PAGE_SHIFT;
266
267 pmap_kremove(sva, len);
268 pmap_update(pmap_kernel());
269 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
270 sokvafree(sva, len);
271 }
272
273 static size_t
274 sodopendfree(void)
275 {
276 size_t rv;
277
278 mutex_enter(&so_pendfree_lock);
279 rv = sodopendfreel();
280 mutex_exit(&so_pendfree_lock);
281
282 return rv;
283 }
284
285 /*
286 * sodopendfreel: free mbufs on "pendfree" list.
287 * unlock and relock so_pendfree_lock when freeing mbufs.
288 *
289 * => called with so_pendfree_lock held.
290 */
291
292 static size_t
293 sodopendfreel(void)
294 {
295 struct mbuf *m, *next;
296 size_t rv = 0;
297
298 KASSERT(mutex_owned(&so_pendfree_lock));
299
300 while (so_pendfree != NULL) {
301 m = so_pendfree;
302 so_pendfree = NULL;
303 mutex_exit(&so_pendfree_lock);
304
305 for (; m != NULL; m = next) {
306 next = m->m_next;
307 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
308 KASSERT(m->m_ext.ext_refcnt == 0);
309
310 rv += m->m_ext.ext_size;
311 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
312 m->m_ext.ext_size);
313 pool_cache_put(mb_cache, m);
314 }
315
316 mutex_enter(&so_pendfree_lock);
317 }
318
319 return (rv);
320 }
321
322 void
323 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
324 {
325
326 KASSERT(m != NULL);
327
328 /*
329 * postpone freeing mbuf.
330 *
331 * we can't do it in interrupt context
332 * because we need to put kva back to kernel_map.
333 */
334
335 mutex_enter(&so_pendfree_lock);
336 m->m_next = so_pendfree;
337 so_pendfree = m;
338 cv_broadcast(&socurkva_cv);
339 mutex_exit(&so_pendfree_lock);
340 }
341
342 static long
343 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
344 {
345 struct iovec *iov = uio->uio_iov;
346 vaddr_t sva, eva;
347 vsize_t len;
348 vaddr_t lva;
349 int npgs, error;
350 vaddr_t va;
351 int i;
352
353 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
354 return (0);
355
356 if (iov->iov_len < (size_t) space)
357 space = iov->iov_len;
358 if (space > SOCK_LOAN_CHUNK)
359 space = SOCK_LOAN_CHUNK;
360
361 eva = round_page((vaddr_t) iov->iov_base + space);
362 sva = trunc_page((vaddr_t) iov->iov_base);
363 len = eva - sva;
364 npgs = len >> PAGE_SHIFT;
365
366 /* XXX KDASSERT */
367 KASSERT(npgs <= M_EXT_MAXPAGES);
368
369 lva = sokvaalloc(len, so);
370 if (lva == 0)
371 return 0;
372
373 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
374 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
375 if (error) {
376 sokvafree(lva, len);
377 return (0);
378 }
379
380 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
381 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
382 VM_PROT_READ);
383 pmap_update(pmap_kernel());
384
385 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
386
387 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
388 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
389
390 uio->uio_resid -= space;
391 /* uio_offset not updated, not set/used for write(2) */
392 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
393 uio->uio_iov->iov_len -= space;
394 if (uio->uio_iov->iov_len == 0) {
395 uio->uio_iov++;
396 uio->uio_iovcnt--;
397 }
398
399 return (space);
400 }
401
402 static int
403 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
404 {
405
406 KASSERT(ce == &sokva_reclaimerentry);
407 KASSERT(obj == NULL);
408
409 sodopendfree();
410 if (!vm_map_starved_p(kernel_map)) {
411 return CALLBACK_CHAIN_ABORT;
412 }
413 return CALLBACK_CHAIN_CONTINUE;
414 }
415
416 struct mbuf *
417 getsombuf(struct socket *so, int type)
418 {
419 struct mbuf *m;
420
421 m = m_get(M_WAIT, type);
422 MCLAIM(m, so->so_mowner);
423 return m;
424 }
425
426 struct mbuf *
427 m_intopt(struct socket *so, int val)
428 {
429 struct mbuf *m;
430
431 m = getsombuf(so, MT_SOOPTS);
432 m->m_len = sizeof(int);
433 *mtod(m, int *) = val;
434 return m;
435 }
436
437 void
438 soinit(void)
439 {
440
441 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
442 cv_init(&socurkva_cv, "sokva");
443
444 /* Set the initial adjusted socket buffer size. */
445 if (sb_max_set(sb_max))
446 panic("bad initial sb_max value: %lu", sb_max);
447
448 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
449 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
450 }
451
452 /*
453 * Socket operation routines.
454 * These routines are called by the routines in
455 * sys_socket.c or from a system process, and
456 * implement the semantics of socket operations by
457 * switching out to the protocol specific routines.
458 */
459 /*ARGSUSED*/
460 int
461 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
462 {
463 const struct protosw *prp;
464 struct socket *so;
465 uid_t uid;
466 int error, s;
467
468 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
469 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
470 KAUTH_ARG(proto));
471 if (error != 0)
472 return error;
473
474 if (proto)
475 prp = pffindproto(dom, proto, type);
476 else
477 prp = pffindtype(dom, type);
478 if (prp == NULL) {
479 /* no support for domain */
480 if (pffinddomain(dom) == 0)
481 return EAFNOSUPPORT;
482 /* no support for socket type */
483 if (proto == 0 && type != 0)
484 return EPROTOTYPE;
485 return EPROTONOSUPPORT;
486 }
487 if (prp->pr_usrreq == NULL)
488 return EPROTONOSUPPORT;
489 if (prp->pr_type != type)
490 return EPROTOTYPE;
491 s = splsoftnet();
492 so = pool_get(&socket_pool, PR_WAITOK);
493 memset(so, 0, sizeof(*so));
494 TAILQ_INIT(&so->so_q0);
495 TAILQ_INIT(&so->so_q);
496 so->so_type = type;
497 so->so_proto = prp;
498 so->so_send = sosend;
499 so->so_receive = soreceive;
500 #ifdef MBUFTRACE
501 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
502 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
503 so->so_mowner = &prp->pr_domain->dom_mowner;
504 #endif
505 selinit(&so->so_rcv.sb_sel);
506 selinit(&so->so_snd.sb_sel);
507 uid = kauth_cred_geteuid(l->l_cred);
508 so->so_uidinfo = uid_find(uid);
509 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
510 (struct mbuf *)(long)proto, NULL, l);
511 if (error != 0) {
512 so->so_state |= SS_NOFDREF;
513 sofree(so);
514 splx(s);
515 return error;
516 }
517 splx(s);
518 *aso = so;
519 return 0;
520 }
521
522 /* On success, write file descriptor to fdout and return zero. On
523 * failure, return non-zero; *fdout will be undefined.
524 */
525 int
526 fsocreate(int domain, struct socket **sop, int type, int protocol,
527 struct lwp *l, int *fdout)
528 {
529 struct socket *so;
530 struct file *fp;
531 int fd, error;
532
533 if ((error = fd_allocfile(&fp, &fd)) != 0)
534 return (error);
535 fp->f_flag = FREAD|FWRITE;
536 fp->f_type = DTYPE_SOCKET;
537 fp->f_ops = &socketops;
538 error = socreate(domain, &so, type, protocol, l);
539 if (error != 0) {
540 fd_abort(curproc, fp, fd);
541 } else {
542 if (sop != NULL)
543 *sop = so;
544 fp->f_data = so;
545 fd_affix(curproc, fp, fd);
546 *fdout = fd;
547 }
548 return error;
549 }
550
551 int
552 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
553 {
554 int s, error;
555
556 s = splsoftnet();
557 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
558 splx(s);
559 return error;
560 }
561
562 int
563 solisten(struct socket *so, int backlog, struct lwp *l)
564 {
565 int s, error;
566
567 s = splsoftnet();
568 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
569 SS_ISDISCONNECTING)) != 0)
570 return (EOPNOTSUPP);
571 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
572 NULL, NULL, l);
573 if (error != 0) {
574 splx(s);
575 return error;
576 }
577 if (TAILQ_EMPTY(&so->so_q))
578 so->so_options |= SO_ACCEPTCONN;
579 if (backlog < 0)
580 backlog = 0;
581 so->so_qlimit = min(backlog, somaxconn);
582 splx(s);
583 return 0;
584 }
585
586 void
587 sofree(struct socket *so)
588 {
589
590 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
591 return;
592 if (so->so_head) {
593 /*
594 * We must not decommission a socket that's on the accept(2)
595 * queue. If we do, then accept(2) may hang after select(2)
596 * indicated that the listening socket was ready.
597 */
598 if (!soqremque(so, 0))
599 return;
600 }
601 if (so->so_rcv.sb_hiwat)
602 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
603 RLIM_INFINITY);
604 if (so->so_snd.sb_hiwat)
605 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
606 RLIM_INFINITY);
607 sbrelease(&so->so_snd, so);
608 sorflush(so);
609 seldestroy(&so->so_rcv.sb_sel);
610 seldestroy(&so->so_snd.sb_sel);
611 pool_put(&socket_pool, so);
612 }
613
614 /*
615 * Close a socket on last file table reference removal.
616 * Initiate disconnect if connected.
617 * Free socket when disconnect complete.
618 */
619 int
620 soclose(struct socket *so)
621 {
622 struct socket *so2;
623 int s, error;
624
625 error = 0;
626 s = splsoftnet(); /* conservative */
627 if (so->so_options & SO_ACCEPTCONN) {
628 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
629 (void) soqremque(so2, 0);
630 (void) soabort(so2);
631 }
632 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
633 (void) soqremque(so2, 1);
634 (void) soabort(so2);
635 }
636 }
637 if (so->so_pcb == 0)
638 goto discard;
639 if (so->so_state & SS_ISCONNECTED) {
640 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
641 error = sodisconnect(so);
642 if (error)
643 goto drop;
644 }
645 if (so->so_options & SO_LINGER) {
646 if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
647 goto drop;
648 while (so->so_state & SS_ISCONNECTED) {
649 error = tsleep((void *)&so->so_timeo,
650 PSOCK | PCATCH, netcls,
651 so->so_linger * hz);
652 if (error)
653 break;
654 }
655 }
656 }
657 drop:
658 if (so->so_pcb) {
659 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
660 NULL, NULL, NULL, NULL);
661 if (error == 0)
662 error = error2;
663 }
664 discard:
665 if (so->so_state & SS_NOFDREF)
666 panic("soclose: NOFDREF");
667 so->so_state |= SS_NOFDREF;
668 sofree(so);
669 splx(s);
670 return (error);
671 }
672
673 /*
674 * Must be called at splsoftnet...
675 */
676 int
677 soabort(struct socket *so)
678 {
679 int error;
680
681 KASSERT(so->so_head == NULL);
682 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
683 NULL, NULL, NULL);
684 if (error) {
685 sofree(so);
686 }
687 return error;
688 }
689
690 int
691 soaccept(struct socket *so, struct mbuf *nam)
692 {
693 int s, error;
694
695 error = 0;
696 s = splsoftnet();
697 if ((so->so_state & SS_NOFDREF) == 0)
698 panic("soaccept: !NOFDREF");
699 so->so_state &= ~SS_NOFDREF;
700 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
701 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
702 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
703 NULL, nam, NULL, NULL);
704 else
705 error = ECONNABORTED;
706
707 splx(s);
708 return (error);
709 }
710
711 int
712 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
713 {
714 int s, error;
715
716 if (so->so_options & SO_ACCEPTCONN)
717 return (EOPNOTSUPP);
718 s = splsoftnet();
719 /*
720 * If protocol is connection-based, can only connect once.
721 * Otherwise, if connected, try to disconnect first.
722 * This allows user to disconnect by connecting to, e.g.,
723 * a null address.
724 */
725 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
726 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
727 (error = sodisconnect(so))))
728 error = EISCONN;
729 else
730 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
731 NULL, nam, NULL, l);
732 splx(s);
733 return (error);
734 }
735
736 int
737 soconnect2(struct socket *so1, struct socket *so2)
738 {
739 int s, error;
740
741 s = splsoftnet();
742 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
743 NULL, (struct mbuf *)so2, NULL, NULL);
744 splx(s);
745 return (error);
746 }
747
748 int
749 sodisconnect(struct socket *so)
750 {
751 int s, error;
752
753 s = splsoftnet();
754 if ((so->so_state & SS_ISCONNECTED) == 0) {
755 error = ENOTCONN;
756 goto bad;
757 }
758 if (so->so_state & SS_ISDISCONNECTING) {
759 error = EALREADY;
760 goto bad;
761 }
762 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
763 NULL, NULL, NULL, NULL);
764 bad:
765 splx(s);
766 sodopendfree();
767 return (error);
768 }
769
770 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
771 /*
772 * Send on a socket.
773 * If send must go all at once and message is larger than
774 * send buffering, then hard error.
775 * Lock against other senders.
776 * If must go all at once and not enough room now, then
777 * inform user that this would block and do nothing.
778 * Otherwise, if nonblocking, send as much as possible.
779 * The data to be sent is described by "uio" if nonzero,
780 * otherwise by the mbuf chain "top" (which must be null
781 * if uio is not). Data provided in mbuf chain must be small
782 * enough to send all at once.
783 *
784 * Returns nonzero on error, timeout or signal; callers
785 * must check for short counts if EINTR/ERESTART are returned.
786 * Data and control buffers are freed on return.
787 */
788 int
789 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
790 struct mbuf *control, int flags, struct lwp *l)
791 {
792 struct mbuf **mp, *m;
793 struct proc *p;
794 long space, len, resid, clen, mlen;
795 int error, s, dontroute, atomic;
796
797 p = l->l_proc;
798 sodopendfree();
799
800 clen = 0;
801 atomic = sosendallatonce(so) || top;
802 if (uio)
803 resid = uio->uio_resid;
804 else
805 resid = top->m_pkthdr.len;
806 /*
807 * In theory resid should be unsigned.
808 * However, space must be signed, as it might be less than 0
809 * if we over-committed, and we must use a signed comparison
810 * of space and resid. On the other hand, a negative resid
811 * causes us to loop sending 0-length segments to the protocol.
812 */
813 if (resid < 0) {
814 error = EINVAL;
815 goto out;
816 }
817 dontroute =
818 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
819 (so->so_proto->pr_flags & PR_ATOMIC);
820 if (l)
821 l->l_ru.ru_msgsnd++;
822 if (control)
823 clen = control->m_len;
824 #define snderr(errno) { error = errno; splx(s); goto release; }
825
826 restart:
827 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
828 goto out;
829 do {
830 s = splsoftnet();
831 if (so->so_state & SS_CANTSENDMORE)
832 snderr(EPIPE);
833 if (so->so_error) {
834 error = so->so_error;
835 so->so_error = 0;
836 splx(s);
837 goto release;
838 }
839 if ((so->so_state & SS_ISCONNECTED) == 0) {
840 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
841 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
842 !(resid == 0 && clen != 0))
843 snderr(ENOTCONN);
844 } else if (addr == 0)
845 snderr(EDESTADDRREQ);
846 }
847 space = sbspace(&so->so_snd);
848 if (flags & MSG_OOB)
849 space += 1024;
850 if ((atomic && resid > so->so_snd.sb_hiwat) ||
851 clen > so->so_snd.sb_hiwat)
852 snderr(EMSGSIZE);
853 if (space < resid + clen &&
854 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
855 if (so->so_nbio)
856 snderr(EWOULDBLOCK);
857 sbunlock(&so->so_snd);
858 error = sbwait(&so->so_snd);
859 splx(s);
860 if (error)
861 goto out;
862 goto restart;
863 }
864 splx(s);
865 mp = ⊤
866 space -= clen;
867 do {
868 if (uio == NULL) {
869 /*
870 * Data is prepackaged in "top".
871 */
872 resid = 0;
873 if (flags & MSG_EOR)
874 top->m_flags |= M_EOR;
875 } else do {
876 if (top == NULL) {
877 m = m_gethdr(M_WAIT, MT_DATA);
878 mlen = MHLEN;
879 m->m_pkthdr.len = 0;
880 m->m_pkthdr.rcvif = NULL;
881 } else {
882 m = m_get(M_WAIT, MT_DATA);
883 mlen = MLEN;
884 }
885 MCLAIM(m, so->so_snd.sb_mowner);
886 if (sock_loan_thresh >= 0 &&
887 uio->uio_iov->iov_len >= sock_loan_thresh &&
888 space >= sock_loan_thresh &&
889 (len = sosend_loan(so, uio, m,
890 space)) != 0) {
891 SOSEND_COUNTER_INCR(&sosend_loan_big);
892 space -= len;
893 goto have_data;
894 }
895 if (resid >= MINCLSIZE && space >= MCLBYTES) {
896 SOSEND_COUNTER_INCR(&sosend_copy_big);
897 m_clget(m, M_WAIT);
898 if ((m->m_flags & M_EXT) == 0)
899 goto nopages;
900 mlen = MCLBYTES;
901 if (atomic && top == 0) {
902 len = lmin(MCLBYTES - max_hdr,
903 resid);
904 m->m_data += max_hdr;
905 } else
906 len = lmin(MCLBYTES, resid);
907 space -= len;
908 } else {
909 nopages:
910 SOSEND_COUNTER_INCR(&sosend_copy_small);
911 len = lmin(lmin(mlen, resid), space);
912 space -= len;
913 /*
914 * For datagram protocols, leave room
915 * for protocol headers in first mbuf.
916 */
917 if (atomic && top == 0 && len < mlen)
918 MH_ALIGN(m, len);
919 }
920 error = uiomove(mtod(m, void *), (int)len, uio);
921 have_data:
922 resid = uio->uio_resid;
923 m->m_len = len;
924 *mp = m;
925 top->m_pkthdr.len += len;
926 if (error != 0)
927 goto release;
928 mp = &m->m_next;
929 if (resid <= 0) {
930 if (flags & MSG_EOR)
931 top->m_flags |= M_EOR;
932 break;
933 }
934 } while (space > 0 && atomic);
935
936 s = splsoftnet();
937
938 if (so->so_state & SS_CANTSENDMORE)
939 snderr(EPIPE);
940
941 if (dontroute)
942 so->so_options |= SO_DONTROUTE;
943 if (resid > 0)
944 so->so_state |= SS_MORETOCOME;
945 error = (*so->so_proto->pr_usrreq)(so,
946 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
947 top, addr, control, curlwp); /* XXX */
948 if (dontroute)
949 so->so_options &= ~SO_DONTROUTE;
950 if (resid > 0)
951 so->so_state &= ~SS_MORETOCOME;
952 splx(s);
953
954 clen = 0;
955 control = NULL;
956 top = NULL;
957 mp = ⊤
958 if (error != 0)
959 goto release;
960 } while (resid && space > 0);
961 } while (resid);
962
963 release:
964 sbunlock(&so->so_snd);
965 out:
966 if (top)
967 m_freem(top);
968 if (control)
969 m_freem(control);
970 return (error);
971 }
972
973 /*
974 * Implement receive operations on a socket.
975 * We depend on the way that records are added to the sockbuf
976 * by sbappend*. In particular, each record (mbufs linked through m_next)
977 * must begin with an address if the protocol so specifies,
978 * followed by an optional mbuf or mbufs containing ancillary data,
979 * and then zero or more mbufs of data.
980 * In order to avoid blocking network interrupts for the entire time here,
981 * we splx() while doing the actual copy to user space.
982 * Although the sockbuf is locked, new data may still be appended,
983 * and thus we must maintain consistency of the sockbuf during that time.
984 *
985 * The caller may receive the data as a single mbuf chain by supplying
986 * an mbuf **mp0 for use in returning the chain. The uio is then used
987 * only for the count in uio_resid.
988 */
989 int
990 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
991 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
992 {
993 struct lwp *l = curlwp;
994 struct mbuf *m, **mp;
995 int atomic, flags, len, error, s, offset, moff, type, orig_resid;
996 const struct protosw *pr;
997 struct mbuf *nextrecord;
998 int mbuf_removed = 0;
999 const struct domain *dom;
1000
1001 pr = so->so_proto;
1002 atomic = pr->pr_flags & PR_ATOMIC;
1003 dom = pr->pr_domain;
1004 mp = mp0;
1005 type = 0;
1006 orig_resid = uio->uio_resid;
1007
1008 if (paddr != NULL)
1009 *paddr = NULL;
1010 if (controlp != NULL)
1011 *controlp = NULL;
1012 if (flagsp != NULL)
1013 flags = *flagsp &~ MSG_EOR;
1014 else
1015 flags = 0;
1016
1017 if ((flags & MSG_DONTWAIT) == 0)
1018 sodopendfree();
1019
1020 if (flags & MSG_OOB) {
1021 m = m_get(M_WAIT, MT_DATA);
1022 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1023 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1024 if (error)
1025 goto bad;
1026 do {
1027 error = uiomove(mtod(m, void *),
1028 (int) min(uio->uio_resid, m->m_len), uio);
1029 m = m_free(m);
1030 } while (uio->uio_resid > 0 && error == 0 && m);
1031 bad:
1032 if (m != NULL)
1033 m_freem(m);
1034 return error;
1035 }
1036 if (mp != NULL)
1037 *mp = NULL;
1038 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1039 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1040
1041 restart:
1042 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
1043 return error;
1044 s = splsoftnet();
1045
1046 m = so->so_rcv.sb_mb;
1047 /*
1048 * If we have less data than requested, block awaiting more
1049 * (subject to any timeout) if:
1050 * 1. the current count is less than the low water mark,
1051 * 2. MSG_WAITALL is set, and it is possible to do the entire
1052 * receive operation at once if we block (resid <= hiwat), or
1053 * 3. MSG_DONTWAIT is not set.
1054 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1055 * we have to do the receive in sections, and thus risk returning
1056 * a short count if a timeout or signal occurs after we start.
1057 */
1058 if (m == NULL ||
1059 ((flags & MSG_DONTWAIT) == 0 &&
1060 so->so_rcv.sb_cc < uio->uio_resid &&
1061 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1062 ((flags & MSG_WAITALL) &&
1063 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1064 m->m_nextpkt == NULL && !atomic)) {
1065 #ifdef DIAGNOSTIC
1066 if (m == NULL && so->so_rcv.sb_cc)
1067 panic("receive 1");
1068 #endif
1069 if (so->so_error) {
1070 if (m != NULL)
1071 goto dontblock;
1072 error = so->so_error;
1073 if ((flags & MSG_PEEK) == 0)
1074 so->so_error = 0;
1075 goto release;
1076 }
1077 if (so->so_state & SS_CANTRCVMORE) {
1078 if (m != NULL)
1079 goto dontblock;
1080 else
1081 goto release;
1082 }
1083 for (; m != NULL; m = m->m_next)
1084 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1085 m = so->so_rcv.sb_mb;
1086 goto dontblock;
1087 }
1088 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1089 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1090 error = ENOTCONN;
1091 goto release;
1092 }
1093 if (uio->uio_resid == 0)
1094 goto release;
1095 if (so->so_nbio || (flags & MSG_DONTWAIT)) {
1096 error = EWOULDBLOCK;
1097 goto release;
1098 }
1099 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1100 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1101 sbunlock(&so->so_rcv);
1102 error = sbwait(&so->so_rcv);
1103 splx(s);
1104 if (error != 0)
1105 return error;
1106 goto restart;
1107 }
1108 dontblock:
1109 /*
1110 * On entry here, m points to the first record of the socket buffer.
1111 * While we process the initial mbufs containing address and control
1112 * info, we save a copy of m->m_nextpkt into nextrecord.
1113 */
1114 if (l != NULL)
1115 l->l_ru.ru_msgrcv++;
1116 KASSERT(m == so->so_rcv.sb_mb);
1117 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1118 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1119 nextrecord = m->m_nextpkt;
1120 if (pr->pr_flags & PR_ADDR) {
1121 #ifdef DIAGNOSTIC
1122 if (m->m_type != MT_SONAME)
1123 panic("receive 1a");
1124 #endif
1125 orig_resid = 0;
1126 if (flags & MSG_PEEK) {
1127 if (paddr)
1128 *paddr = m_copy(m, 0, m->m_len);
1129 m = m->m_next;
1130 } else {
1131 sbfree(&so->so_rcv, m);
1132 mbuf_removed = 1;
1133 if (paddr != NULL) {
1134 *paddr = m;
1135 so->so_rcv.sb_mb = m->m_next;
1136 m->m_next = NULL;
1137 m = so->so_rcv.sb_mb;
1138 } else {
1139 MFREE(m, so->so_rcv.sb_mb);
1140 m = so->so_rcv.sb_mb;
1141 }
1142 }
1143 }
1144 while (m != NULL && m->m_type == MT_CONTROL && error == 0) {
1145 if (flags & MSG_PEEK) {
1146 if (controlp != NULL)
1147 *controlp = m_copy(m, 0, m->m_len);
1148 m = m->m_next;
1149 } else {
1150 sbfree(&so->so_rcv, m);
1151 mbuf_removed = 1;
1152 if (controlp != NULL) {
1153 if (dom->dom_externalize && l &&
1154 mtod(m, struct cmsghdr *)->cmsg_type ==
1155 SCM_RIGHTS)
1156 error = (*dom->dom_externalize)(m, l);
1157 *controlp = m;
1158 so->so_rcv.sb_mb = m->m_next;
1159 m->m_next = NULL;
1160 m = so->so_rcv.sb_mb;
1161 } else {
1162 /*
1163 * Dispose of any SCM_RIGHTS message that went
1164 * through the read path rather than recv.
1165 */
1166 if (dom->dom_dispose &&
1167 mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS)
1168 (*dom->dom_dispose)(m);
1169 MFREE(m, so->so_rcv.sb_mb);
1170 m = so->so_rcv.sb_mb;
1171 }
1172 }
1173 if (controlp != NULL) {
1174 orig_resid = 0;
1175 controlp = &(*controlp)->m_next;
1176 }
1177 }
1178
1179 /*
1180 * If m is non-NULL, we have some data to read. From now on,
1181 * make sure to keep sb_lastrecord consistent when working on
1182 * the last packet on the chain (nextrecord == NULL) and we
1183 * change m->m_nextpkt.
1184 */
1185 if (m != NULL) {
1186 if ((flags & MSG_PEEK) == 0) {
1187 m->m_nextpkt = nextrecord;
1188 /*
1189 * If nextrecord == NULL (this is a single chain),
1190 * then sb_lastrecord may not be valid here if m
1191 * was changed earlier.
1192 */
1193 if (nextrecord == NULL) {
1194 KASSERT(so->so_rcv.sb_mb == m);
1195 so->so_rcv.sb_lastrecord = m;
1196 }
1197 }
1198 type = m->m_type;
1199 if (type == MT_OOBDATA)
1200 flags |= MSG_OOB;
1201 } else {
1202 if ((flags & MSG_PEEK) == 0) {
1203 KASSERT(so->so_rcv.sb_mb == m);
1204 so->so_rcv.sb_mb = nextrecord;
1205 SB_EMPTY_FIXUP(&so->so_rcv);
1206 }
1207 }
1208 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1209 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1210
1211 moff = 0;
1212 offset = 0;
1213 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1214 if (m->m_type == MT_OOBDATA) {
1215 if (type != MT_OOBDATA)
1216 break;
1217 } else if (type == MT_OOBDATA)
1218 break;
1219 #ifdef DIAGNOSTIC
1220 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1221 panic("receive 3");
1222 #endif
1223 so->so_state &= ~SS_RCVATMARK;
1224 len = uio->uio_resid;
1225 if (so->so_oobmark && len > so->so_oobmark - offset)
1226 len = so->so_oobmark - offset;
1227 if (len > m->m_len - moff)
1228 len = m->m_len - moff;
1229 /*
1230 * If mp is set, just pass back the mbufs.
1231 * Otherwise copy them out via the uio, then free.
1232 * Sockbuf must be consistent here (points to current mbuf,
1233 * it points to next record) when we drop priority;
1234 * we must note any additions to the sockbuf when we
1235 * block interrupts again.
1236 */
1237 if (mp == NULL) {
1238 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1239 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1240 splx(s);
1241 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1242 s = splsoftnet();
1243 if (error != 0) {
1244 /*
1245 * If any part of the record has been removed
1246 * (such as the MT_SONAME mbuf, which will
1247 * happen when PR_ADDR, and thus also
1248 * PR_ATOMIC, is set), then drop the entire
1249 * record to maintain the atomicity of the
1250 * receive operation.
1251 *
1252 * This avoids a later panic("receive 1a")
1253 * when compiled with DIAGNOSTIC.
1254 */
1255 if (m && mbuf_removed && atomic)
1256 (void) sbdroprecord(&so->so_rcv);
1257
1258 goto release;
1259 }
1260 } else
1261 uio->uio_resid -= len;
1262 if (len == m->m_len - moff) {
1263 if (m->m_flags & M_EOR)
1264 flags |= MSG_EOR;
1265 if (flags & MSG_PEEK) {
1266 m = m->m_next;
1267 moff = 0;
1268 } else {
1269 nextrecord = m->m_nextpkt;
1270 sbfree(&so->so_rcv, m);
1271 if (mp) {
1272 *mp = m;
1273 mp = &m->m_next;
1274 so->so_rcv.sb_mb = m = m->m_next;
1275 *mp = NULL;
1276 } else {
1277 MFREE(m, so->so_rcv.sb_mb);
1278 m = so->so_rcv.sb_mb;
1279 }
1280 /*
1281 * If m != NULL, we also know that
1282 * so->so_rcv.sb_mb != NULL.
1283 */
1284 KASSERT(so->so_rcv.sb_mb == m);
1285 if (m) {
1286 m->m_nextpkt = nextrecord;
1287 if (nextrecord == NULL)
1288 so->so_rcv.sb_lastrecord = m;
1289 } else {
1290 so->so_rcv.sb_mb = nextrecord;
1291 SB_EMPTY_FIXUP(&so->so_rcv);
1292 }
1293 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1294 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1295 }
1296 } else if (flags & MSG_PEEK)
1297 moff += len;
1298 else {
1299 if (mp != NULL)
1300 *mp = m_copym(m, 0, len, M_WAIT);
1301 m->m_data += len;
1302 m->m_len -= len;
1303 so->so_rcv.sb_cc -= len;
1304 }
1305 if (so->so_oobmark) {
1306 if ((flags & MSG_PEEK) == 0) {
1307 so->so_oobmark -= len;
1308 if (so->so_oobmark == 0) {
1309 so->so_state |= SS_RCVATMARK;
1310 break;
1311 }
1312 } else {
1313 offset += len;
1314 if (offset == so->so_oobmark)
1315 break;
1316 }
1317 }
1318 if (flags & MSG_EOR)
1319 break;
1320 /*
1321 * If the MSG_WAITALL flag is set (for non-atomic socket),
1322 * we must not quit until "uio->uio_resid == 0" or an error
1323 * termination. If a signal/timeout occurs, return
1324 * with a short count but without error.
1325 * Keep sockbuf locked against other readers.
1326 */
1327 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1328 !sosendallatonce(so) && !nextrecord) {
1329 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1330 break;
1331 /*
1332 * If we are peeking and the socket receive buffer is
1333 * full, stop since we can't get more data to peek at.
1334 */
1335 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1336 break;
1337 /*
1338 * If we've drained the socket buffer, tell the
1339 * protocol in case it needs to do something to
1340 * get it filled again.
1341 */
1342 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1343 (*pr->pr_usrreq)(so, PRU_RCVD,
1344 NULL, (struct mbuf *)(long)flags, NULL, l);
1345 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1346 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1347 error = sbwait(&so->so_rcv);
1348 if (error != 0) {
1349 sbunlock(&so->so_rcv);
1350 splx(s);
1351 return 0;
1352 }
1353 if ((m = so->so_rcv.sb_mb) != NULL)
1354 nextrecord = m->m_nextpkt;
1355 }
1356 }
1357
1358 if (m && atomic) {
1359 flags |= MSG_TRUNC;
1360 if ((flags & MSG_PEEK) == 0)
1361 (void) sbdroprecord(&so->so_rcv);
1362 }
1363 if ((flags & MSG_PEEK) == 0) {
1364 if (m == NULL) {
1365 /*
1366 * First part is an inline SB_EMPTY_FIXUP(). Second
1367 * part makes sure sb_lastrecord is up-to-date if
1368 * there is still data in the socket buffer.
1369 */
1370 so->so_rcv.sb_mb = nextrecord;
1371 if (so->so_rcv.sb_mb == NULL) {
1372 so->so_rcv.sb_mbtail = NULL;
1373 so->so_rcv.sb_lastrecord = NULL;
1374 } else if (nextrecord->m_nextpkt == NULL)
1375 so->so_rcv.sb_lastrecord = nextrecord;
1376 }
1377 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1378 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1379 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1380 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1381 (struct mbuf *)(long)flags, NULL, l);
1382 }
1383 if (orig_resid == uio->uio_resid && orig_resid &&
1384 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1385 sbunlock(&so->so_rcv);
1386 splx(s);
1387 goto restart;
1388 }
1389
1390 if (flagsp != NULL)
1391 *flagsp |= flags;
1392 release:
1393 sbunlock(&so->so_rcv);
1394 splx(s);
1395 return error;
1396 }
1397
1398 int
1399 soshutdown(struct socket *so, int how)
1400 {
1401 const struct protosw *pr;
1402
1403 pr = so->so_proto;
1404 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1405 return (EINVAL);
1406
1407 if (how == SHUT_RD || how == SHUT_RDWR)
1408 sorflush(so);
1409 if (how == SHUT_WR || how == SHUT_RDWR)
1410 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1411 NULL, NULL, NULL);
1412 return 0;
1413 }
1414
1415 void
1416 sorflush(struct socket *so)
1417 {
1418 struct sockbuf *sb, asb;
1419 const struct protosw *pr;
1420 int s;
1421
1422 sb = &so->so_rcv;
1423 pr = so->so_proto;
1424 sb->sb_flags |= SB_NOINTR;
1425 (void) sblock(sb, M_WAITOK);
1426 s = splnet();
1427 socantrcvmore(so);
1428 sbunlock(sb);
1429 asb = *sb;
1430 /*
1431 * Clear most of the sockbuf structure, but leave some of the
1432 * fields valid.
1433 */
1434 memset(&sb->sb_startzero, 0,
1435 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1436 splx(s);
1437 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1438 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1439 sbrelease(&asb, so);
1440 }
1441
1442 static int
1443 sosetopt1(struct socket *so, int level, int optname, struct mbuf *m)
1444 {
1445 int optval, val;
1446 struct linger *l;
1447 struct sockbuf *sb;
1448 struct timeval *tv;
1449
1450 switch (optname) {
1451
1452 case SO_LINGER:
1453 if (m == NULL || m->m_len != sizeof(struct linger))
1454 return EINVAL;
1455 l = mtod(m, struct linger *);
1456 if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
1457 l->l_linger > (INT_MAX / hz))
1458 return EDOM;
1459 so->so_linger = l->l_linger;
1460 if (l->l_onoff)
1461 so->so_options |= SO_LINGER;
1462 else
1463 so->so_options &= ~SO_LINGER;
1464 break;
1465
1466 case SO_DEBUG:
1467 case SO_KEEPALIVE:
1468 case SO_DONTROUTE:
1469 case SO_USELOOPBACK:
1470 case SO_BROADCAST:
1471 case SO_REUSEADDR:
1472 case SO_REUSEPORT:
1473 case SO_OOBINLINE:
1474 case SO_TIMESTAMP:
1475 if (m == NULL || m->m_len < sizeof(int))
1476 return EINVAL;
1477 if (*mtod(m, int *))
1478 so->so_options |= optname;
1479 else
1480 so->so_options &= ~optname;
1481 break;
1482
1483 case SO_SNDBUF:
1484 case SO_RCVBUF:
1485 case SO_SNDLOWAT:
1486 case SO_RCVLOWAT:
1487 if (m == NULL || m->m_len < sizeof(int))
1488 return EINVAL;
1489
1490 /*
1491 * Values < 1 make no sense for any of these
1492 * options, so disallow them.
1493 */
1494 optval = *mtod(m, int *);
1495 if (optval < 1)
1496 return EINVAL;
1497
1498 switch (optname) {
1499
1500 case SO_SNDBUF:
1501 case SO_RCVBUF:
1502 sb = (optname == SO_SNDBUF) ?
1503 &so->so_snd : &so->so_rcv;
1504 if (sbreserve(sb, (u_long)optval, so) == 0)
1505 return ENOBUFS;
1506 sb->sb_flags &= ~SB_AUTOSIZE;
1507 break;
1508
1509 /*
1510 * Make sure the low-water is never greater than
1511 * the high-water.
1512 */
1513 case SO_SNDLOWAT:
1514 so->so_snd.sb_lowat =
1515 (optval > so->so_snd.sb_hiwat) ?
1516 so->so_snd.sb_hiwat : optval;
1517 break;
1518 case SO_RCVLOWAT:
1519 so->so_rcv.sb_lowat =
1520 (optval > so->so_rcv.sb_hiwat) ?
1521 so->so_rcv.sb_hiwat : optval;
1522 break;
1523 }
1524 break;
1525
1526 case SO_SNDTIMEO:
1527 case SO_RCVTIMEO:
1528 if (m == NULL || m->m_len < sizeof(*tv))
1529 return EINVAL;
1530 tv = mtod(m, struct timeval *);
1531 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz)
1532 return EDOM;
1533 val = tv->tv_sec * hz + tv->tv_usec / tick;
1534 if (val == 0 && tv->tv_usec != 0)
1535 val = 1;
1536
1537 switch (optname) {
1538
1539 case SO_SNDTIMEO:
1540 so->so_snd.sb_timeo = val;
1541 break;
1542 case SO_RCVTIMEO:
1543 so->so_rcv.sb_timeo = val;
1544 break;
1545 }
1546 break;
1547
1548 default:
1549 return ENOPROTOOPT;
1550 }
1551 return 0;
1552 }
1553
1554 int
1555 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
1556 {
1557 int error, prerr;
1558
1559 if (level == SOL_SOCKET)
1560 error = sosetopt1(so, level, optname, m);
1561 else
1562 error = ENOPROTOOPT;
1563
1564 if ((error == 0 || error == ENOPROTOOPT) &&
1565 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1566 /* give the protocol stack a shot */
1567 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, level,
1568 optname, &m);
1569 if (prerr == 0)
1570 error = 0;
1571 else if (prerr != ENOPROTOOPT)
1572 error = prerr;
1573 } else if (m != NULL)
1574 (void)m_free(m);
1575 return error;
1576 }
1577
1578 int
1579 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1580 {
1581 struct mbuf *m;
1582
1583 if (level != SOL_SOCKET) {
1584 if (so->so_proto && so->so_proto->pr_ctloutput) {
1585 return ((*so->so_proto->pr_ctloutput)
1586 (PRCO_GETOPT, so, level, optname, mp));
1587 } else
1588 return (ENOPROTOOPT);
1589 } else {
1590 m = m_get(M_WAIT, MT_SOOPTS);
1591 m->m_len = sizeof(int);
1592
1593 switch (optname) {
1594
1595 case SO_LINGER:
1596 m->m_len = sizeof(struct linger);
1597 mtod(m, struct linger *)->l_onoff =
1598 (so->so_options & SO_LINGER) ? 1 : 0;
1599 mtod(m, struct linger *)->l_linger = so->so_linger;
1600 break;
1601
1602 case SO_USELOOPBACK:
1603 case SO_DONTROUTE:
1604 case SO_DEBUG:
1605 case SO_KEEPALIVE:
1606 case SO_REUSEADDR:
1607 case SO_REUSEPORT:
1608 case SO_BROADCAST:
1609 case SO_OOBINLINE:
1610 case SO_TIMESTAMP:
1611 *mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
1612 break;
1613
1614 case SO_TYPE:
1615 *mtod(m, int *) = so->so_type;
1616 break;
1617
1618 case SO_ERROR:
1619 *mtod(m, int *) = so->so_error;
1620 so->so_error = 0;
1621 break;
1622
1623 case SO_SNDBUF:
1624 *mtod(m, int *) = so->so_snd.sb_hiwat;
1625 break;
1626
1627 case SO_RCVBUF:
1628 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1629 break;
1630
1631 case SO_SNDLOWAT:
1632 *mtod(m, int *) = so->so_snd.sb_lowat;
1633 break;
1634
1635 case SO_RCVLOWAT:
1636 *mtod(m, int *) = so->so_rcv.sb_lowat;
1637 break;
1638
1639 case SO_SNDTIMEO:
1640 case SO_RCVTIMEO:
1641 {
1642 int val = (optname == SO_SNDTIMEO ?
1643 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1644
1645 m->m_len = sizeof(struct timeval);
1646 mtod(m, struct timeval *)->tv_sec = val / hz;
1647 mtod(m, struct timeval *)->tv_usec =
1648 (val % hz) * tick;
1649 break;
1650 }
1651
1652 case SO_OVERFLOWED:
1653 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1654 break;
1655
1656 default:
1657 (void)m_free(m);
1658 return (ENOPROTOOPT);
1659 }
1660 *mp = m;
1661 return (0);
1662 }
1663 }
1664
1665 void
1666 sohasoutofband(struct socket *so)
1667 {
1668
1669 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1670 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, 0);
1671 }
1672
1673 static void
1674 filt_sordetach(struct knote *kn)
1675 {
1676 struct socket *so;
1677
1678 so = ((file_t *)kn->kn_obj)->f_data;
1679 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1680 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1681 so->so_rcv.sb_flags &= ~SB_KNOTE;
1682 }
1683
1684 /*ARGSUSED*/
1685 static int
1686 filt_soread(struct knote *kn, long hint)
1687 {
1688 struct socket *so;
1689
1690 so = ((file_t *)kn->kn_obj)->f_data;
1691 kn->kn_data = so->so_rcv.sb_cc;
1692 if (so->so_state & SS_CANTRCVMORE) {
1693 kn->kn_flags |= EV_EOF;
1694 kn->kn_fflags = so->so_error;
1695 return (1);
1696 }
1697 if (so->so_error) /* temporary udp error */
1698 return (1);
1699 if (kn->kn_sfflags & NOTE_LOWAT)
1700 return (kn->kn_data >= kn->kn_sdata);
1701 return (kn->kn_data >= so->so_rcv.sb_lowat);
1702 }
1703
1704 static void
1705 filt_sowdetach(struct knote *kn)
1706 {
1707 struct socket *so;
1708
1709 so = ((file_t *)kn->kn_obj)->f_data;
1710 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1711 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1712 so->so_snd.sb_flags &= ~SB_KNOTE;
1713 }
1714
1715 /*ARGSUSED*/
1716 static int
1717 filt_sowrite(struct knote *kn, long hint)
1718 {
1719 struct socket *so;
1720
1721 so = ((file_t *)kn->kn_obj)->f_data;
1722 kn->kn_data = sbspace(&so->so_snd);
1723 if (so->so_state & SS_CANTSENDMORE) {
1724 kn->kn_flags |= EV_EOF;
1725 kn->kn_fflags = so->so_error;
1726 return (1);
1727 }
1728 if (so->so_error) /* temporary udp error */
1729 return (1);
1730 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1731 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1732 return (0);
1733 if (kn->kn_sfflags & NOTE_LOWAT)
1734 return (kn->kn_data >= kn->kn_sdata);
1735 return (kn->kn_data >= so->so_snd.sb_lowat);
1736 }
1737
1738 /*ARGSUSED*/
1739 static int
1740 filt_solisten(struct knote *kn, long hint)
1741 {
1742 struct socket *so;
1743
1744 so = ((file_t *)kn->kn_obj)->f_data;
1745
1746 /*
1747 * Set kn_data to number of incoming connections, not
1748 * counting partial (incomplete) connections.
1749 */
1750 kn->kn_data = so->so_qlen;
1751 return (kn->kn_data > 0);
1752 }
1753
1754 static const struct filterops solisten_filtops =
1755 { 1, NULL, filt_sordetach, filt_solisten };
1756 static const struct filterops soread_filtops =
1757 { 1, NULL, filt_sordetach, filt_soread };
1758 static const struct filterops sowrite_filtops =
1759 { 1, NULL, filt_sowdetach, filt_sowrite };
1760
1761 int
1762 soo_kqfilter(struct file *fp, struct knote *kn)
1763 {
1764 struct socket *so;
1765 struct sockbuf *sb;
1766
1767 so = ((file_t *)kn->kn_obj)->f_data;
1768 switch (kn->kn_filter) {
1769 case EVFILT_READ:
1770 if (so->so_options & SO_ACCEPTCONN)
1771 kn->kn_fop = &solisten_filtops;
1772 else
1773 kn->kn_fop = &soread_filtops;
1774 sb = &so->so_rcv;
1775 break;
1776 case EVFILT_WRITE:
1777 kn->kn_fop = &sowrite_filtops;
1778 sb = &so->so_snd;
1779 break;
1780 default:
1781 return (EINVAL);
1782 }
1783 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1784 sb->sb_flags |= SB_KNOTE;
1785 return (0);
1786 }
1787
1788 static int
1789 sodopoll(struct socket *so, int events)
1790 {
1791 int revents;
1792
1793 revents = 0;
1794
1795 if (events & (POLLIN | POLLRDNORM))
1796 if (soreadable(so))
1797 revents |= events & (POLLIN | POLLRDNORM);
1798
1799 if (events & (POLLOUT | POLLWRNORM))
1800 if (sowritable(so))
1801 revents |= events & (POLLOUT | POLLWRNORM);
1802
1803 if (events & (POLLPRI | POLLRDBAND))
1804 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
1805 revents |= events & (POLLPRI | POLLRDBAND);
1806
1807 return revents;
1808 }
1809
1810 int
1811 sopoll(struct socket *so, int events)
1812 {
1813 int revents = 0;
1814 int s;
1815
1816 if ((revents = sodopoll(so, events)) != 0)
1817 return revents;
1818
1819 KERNEL_LOCK(1, curlwp);
1820 s = splsoftnet();
1821
1822 if ((revents = sodopoll(so, events)) == 0) {
1823 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
1824 selrecord(curlwp, &so->so_rcv.sb_sel);
1825 so->so_rcv.sb_flags |= SB_SEL;
1826 }
1827
1828 if (events & (POLLOUT | POLLWRNORM)) {
1829 selrecord(curlwp, &so->so_snd.sb_sel);
1830 so->so_snd.sb_flags |= SB_SEL;
1831 }
1832 }
1833
1834 splx(s);
1835 KERNEL_UNLOCK_ONE(curlwp);
1836
1837 return revents;
1838 }
1839
1840
1841 #include <sys/sysctl.h>
1842
1843 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
1844
1845 /*
1846 * sysctl helper routine for kern.somaxkva. ensures that the given
1847 * value is not too small.
1848 * (XXX should we maybe make sure it's not too large as well?)
1849 */
1850 static int
1851 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1852 {
1853 int error, new_somaxkva;
1854 struct sysctlnode node;
1855
1856 new_somaxkva = somaxkva;
1857 node = *rnode;
1858 node.sysctl_data = &new_somaxkva;
1859 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1860 if (error || newp == NULL)
1861 return (error);
1862
1863 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1864 return (EINVAL);
1865
1866 mutex_enter(&so_pendfree_lock);
1867 somaxkva = new_somaxkva;
1868 cv_broadcast(&socurkva_cv);
1869 mutex_exit(&so_pendfree_lock);
1870
1871 return (error);
1872 }
1873
1874 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
1875 {
1876
1877 sysctl_createv(clog, 0, NULL, NULL,
1878 CTLFLAG_PERMANENT,
1879 CTLTYPE_NODE, "kern", NULL,
1880 NULL, 0, NULL, 0,
1881 CTL_KERN, CTL_EOL);
1882
1883 sysctl_createv(clog, 0, NULL, NULL,
1884 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1885 CTLTYPE_INT, "somaxkva",
1886 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1887 "used for socket buffers"),
1888 sysctl_kern_somaxkva, 0, NULL, 0,
1889 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
1890 }
1891