Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.159
      1 /*	$NetBSD: uipc_socket.c,v 1.159 2008/04/14 15:42:20 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Copyright (c) 2004 The FreeBSD Foundation
     41  * Copyright (c) 2004 Robert Watson
     42  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     43  *	The Regents of the University of California.  All rights reserved.
     44  *
     45  * Redistribution and use in source and binary forms, with or without
     46  * modification, are permitted provided that the following conditions
     47  * are met:
     48  * 1. Redistributions of source code must retain the above copyright
     49  *    notice, this list of conditions and the following disclaimer.
     50  * 2. Redistributions in binary form must reproduce the above copyright
     51  *    notice, this list of conditions and the following disclaimer in the
     52  *    documentation and/or other materials provided with the distribution.
     53  * 3. Neither the name of the University nor the names of its contributors
     54  *    may be used to endorse or promote products derived from this software
     55  *    without specific prior written permission.
     56  *
     57  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     59  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     60  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     61  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     62  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     63  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     64  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     65  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     66  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     67  * SUCH DAMAGE.
     68  *
     69  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.159 2008/04/14 15:42:20 ad Exp $");
     74 
     75 #include "opt_sock_counters.h"
     76 #include "opt_sosend_loan.h"
     77 #include "opt_mbuftrace.h"
     78 #include "opt_somaxkva.h"
     79 
     80 #include <sys/param.h>
     81 #include <sys/systm.h>
     82 #include <sys/proc.h>
     83 #include <sys/file.h>
     84 #include <sys/filedesc.h>
     85 #include <sys/malloc.h>
     86 #include <sys/mbuf.h>
     87 #include <sys/domain.h>
     88 #include <sys/kernel.h>
     89 #include <sys/protosw.h>
     90 #include <sys/socket.h>
     91 #include <sys/socketvar.h>
     92 #include <sys/signalvar.h>
     93 #include <sys/resourcevar.h>
     94 #include <sys/pool.h>
     95 #include <sys/event.h>
     96 #include <sys/poll.h>
     97 #include <sys/kauth.h>
     98 #include <sys/mutex.h>
     99 #include <sys/condvar.h>
    100 
    101 #include <uvm/uvm.h>
    102 
    103 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL,
    104     IPL_SOFTNET);
    105 
    106 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
    107 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    108 
    109 extern const struct fileops socketops;
    110 
    111 extern int	somaxconn;			/* patchable (XXX sysctl) */
    112 int		somaxconn = SOMAXCONN;
    113 
    114 #ifdef SOSEND_COUNTERS
    115 #include <sys/device.h>
    116 
    117 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    118     NULL, "sosend", "loan big");
    119 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    120     NULL, "sosend", "copy big");
    121 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    122     NULL, "sosend", "copy small");
    123 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    124     NULL, "sosend", "kva limit");
    125 
    126 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    127 
    128 EVCNT_ATTACH_STATIC(sosend_loan_big);
    129 EVCNT_ATTACH_STATIC(sosend_copy_big);
    130 EVCNT_ATTACH_STATIC(sosend_copy_small);
    131 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    132 #else
    133 
    134 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    135 
    136 #endif /* SOSEND_COUNTERS */
    137 
    138 static struct callback_entry sokva_reclaimerentry;
    139 
    140 #ifdef SOSEND_NO_LOAN
    141 int sock_loan_thresh = -1;
    142 #else
    143 int sock_loan_thresh = 4096;
    144 #endif
    145 
    146 static kmutex_t so_pendfree_lock;
    147 static struct mbuf *so_pendfree;
    148 
    149 #ifndef SOMAXKVA
    150 #define	SOMAXKVA (16 * 1024 * 1024)
    151 #endif
    152 int somaxkva = SOMAXKVA;
    153 static int socurkva;
    154 static kcondvar_t socurkva_cv;
    155 
    156 #define	SOCK_LOAN_CHUNK		65536
    157 
    158 static size_t sodopendfree(void);
    159 static size_t sodopendfreel(void);
    160 
    161 static vsize_t
    162 sokvareserve(struct socket *so, vsize_t len)
    163 {
    164 	int error;
    165 
    166 	mutex_enter(&so_pendfree_lock);
    167 	while (socurkva + len > somaxkva) {
    168 		size_t freed;
    169 
    170 		/*
    171 		 * try to do pendfree.
    172 		 */
    173 
    174 		freed = sodopendfreel();
    175 
    176 		/*
    177 		 * if some kva was freed, try again.
    178 		 */
    179 
    180 		if (freed)
    181 			continue;
    182 
    183 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    184 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    185 		if (error) {
    186 			len = 0;
    187 			break;
    188 		}
    189 	}
    190 	socurkva += len;
    191 	mutex_exit(&so_pendfree_lock);
    192 	return len;
    193 }
    194 
    195 static void
    196 sokvaunreserve(vsize_t len)
    197 {
    198 
    199 	mutex_enter(&so_pendfree_lock);
    200 	socurkva -= len;
    201 	cv_broadcast(&socurkva_cv);
    202 	mutex_exit(&so_pendfree_lock);
    203 }
    204 
    205 /*
    206  * sokvaalloc: allocate kva for loan.
    207  */
    208 
    209 vaddr_t
    210 sokvaalloc(vsize_t len, struct socket *so)
    211 {
    212 	vaddr_t lva;
    213 
    214 	/*
    215 	 * reserve kva.
    216 	 */
    217 
    218 	if (sokvareserve(so, len) == 0)
    219 		return 0;
    220 
    221 	/*
    222 	 * allocate kva.
    223 	 */
    224 
    225 	lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    226 	if (lva == 0) {
    227 		sokvaunreserve(len);
    228 		return (0);
    229 	}
    230 
    231 	return lva;
    232 }
    233 
    234 /*
    235  * sokvafree: free kva for loan.
    236  */
    237 
    238 void
    239 sokvafree(vaddr_t sva, vsize_t len)
    240 {
    241 
    242 	/*
    243 	 * free kva.
    244 	 */
    245 
    246 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    247 
    248 	/*
    249 	 * unreserve kva.
    250 	 */
    251 
    252 	sokvaunreserve(len);
    253 }
    254 
    255 static void
    256 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    257 {
    258 	vaddr_t sva, eva;
    259 	vsize_t len;
    260 	int npgs;
    261 
    262 	KASSERT(pgs != NULL);
    263 
    264 	eva = round_page((vaddr_t) buf + size);
    265 	sva = trunc_page((vaddr_t) buf);
    266 	len = eva - sva;
    267 	npgs = len >> PAGE_SHIFT;
    268 
    269 	pmap_kremove(sva, len);
    270 	pmap_update(pmap_kernel());
    271 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    272 	sokvafree(sva, len);
    273 }
    274 
    275 static size_t
    276 sodopendfree(void)
    277 {
    278 	size_t rv;
    279 
    280 	mutex_enter(&so_pendfree_lock);
    281 	rv = sodopendfreel();
    282 	mutex_exit(&so_pendfree_lock);
    283 
    284 	return rv;
    285 }
    286 
    287 /*
    288  * sodopendfreel: free mbufs on "pendfree" list.
    289  * unlock and relock so_pendfree_lock when freeing mbufs.
    290  *
    291  * => called with so_pendfree_lock held.
    292  */
    293 
    294 static size_t
    295 sodopendfreel(void)
    296 {
    297 	struct mbuf *m, *next;
    298 	size_t rv = 0;
    299 
    300 	KASSERT(mutex_owned(&so_pendfree_lock));
    301 
    302 	while (so_pendfree != NULL) {
    303 		m = so_pendfree;
    304 		so_pendfree = NULL;
    305 		mutex_exit(&so_pendfree_lock);
    306 
    307 		for (; m != NULL; m = next) {
    308 			next = m->m_next;
    309 			KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
    310 			KASSERT(m->m_ext.ext_refcnt == 0);
    311 
    312 			rv += m->m_ext.ext_size;
    313 			sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    314 			    m->m_ext.ext_size);
    315 			pool_cache_put(mb_cache, m);
    316 		}
    317 
    318 		mutex_enter(&so_pendfree_lock);
    319 	}
    320 
    321 	return (rv);
    322 }
    323 
    324 void
    325 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    326 {
    327 
    328 	KASSERT(m != NULL);
    329 
    330 	/*
    331 	 * postpone freeing mbuf.
    332 	 *
    333 	 * we can't do it in interrupt context
    334 	 * because we need to put kva back to kernel_map.
    335 	 */
    336 
    337 	mutex_enter(&so_pendfree_lock);
    338 	m->m_next = so_pendfree;
    339 	so_pendfree = m;
    340 	cv_broadcast(&socurkva_cv);
    341 	mutex_exit(&so_pendfree_lock);
    342 }
    343 
    344 static long
    345 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    346 {
    347 	struct iovec *iov = uio->uio_iov;
    348 	vaddr_t sva, eva;
    349 	vsize_t len;
    350 	vaddr_t lva;
    351 	int npgs, error;
    352 	vaddr_t va;
    353 	int i;
    354 
    355 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    356 		return (0);
    357 
    358 	if (iov->iov_len < (size_t) space)
    359 		space = iov->iov_len;
    360 	if (space > SOCK_LOAN_CHUNK)
    361 		space = SOCK_LOAN_CHUNK;
    362 
    363 	eva = round_page((vaddr_t) iov->iov_base + space);
    364 	sva = trunc_page((vaddr_t) iov->iov_base);
    365 	len = eva - sva;
    366 	npgs = len >> PAGE_SHIFT;
    367 
    368 	/* XXX KDASSERT */
    369 	KASSERT(npgs <= M_EXT_MAXPAGES);
    370 
    371 	lva = sokvaalloc(len, so);
    372 	if (lva == 0)
    373 		return 0;
    374 
    375 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    376 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    377 	if (error) {
    378 		sokvafree(lva, len);
    379 		return (0);
    380 	}
    381 
    382 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    383 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    384 		    VM_PROT_READ);
    385 	pmap_update(pmap_kernel());
    386 
    387 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    388 
    389 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    390 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    391 
    392 	uio->uio_resid -= space;
    393 	/* uio_offset not updated, not set/used for write(2) */
    394 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    395 	uio->uio_iov->iov_len -= space;
    396 	if (uio->uio_iov->iov_len == 0) {
    397 		uio->uio_iov++;
    398 		uio->uio_iovcnt--;
    399 	}
    400 
    401 	return (space);
    402 }
    403 
    404 static int
    405 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    406 {
    407 
    408 	KASSERT(ce == &sokva_reclaimerentry);
    409 	KASSERT(obj == NULL);
    410 
    411 	sodopendfree();
    412 	if (!vm_map_starved_p(kernel_map)) {
    413 		return CALLBACK_CHAIN_ABORT;
    414 	}
    415 	return CALLBACK_CHAIN_CONTINUE;
    416 }
    417 
    418 struct mbuf *
    419 getsombuf(struct socket *so, int type)
    420 {
    421 	struct mbuf *m;
    422 
    423 	m = m_get(M_WAIT, type);
    424 	MCLAIM(m, so->so_mowner);
    425 	return m;
    426 }
    427 
    428 struct mbuf *
    429 m_intopt(struct socket *so, int val)
    430 {
    431 	struct mbuf *m;
    432 
    433 	m = getsombuf(so, MT_SOOPTS);
    434 	m->m_len = sizeof(int);
    435 	*mtod(m, int *) = val;
    436 	return m;
    437 }
    438 
    439 void
    440 soinit(void)
    441 {
    442 
    443 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    444 	cv_init(&socurkva_cv, "sokva");
    445 
    446 	/* Set the initial adjusted socket buffer size. */
    447 	if (sb_max_set(sb_max))
    448 		panic("bad initial sb_max value: %lu", sb_max);
    449 
    450 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    451 	    &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
    452 }
    453 
    454 /*
    455  * Socket operation routines.
    456  * These routines are called by the routines in
    457  * sys_socket.c or from a system process, and
    458  * implement the semantics of socket operations by
    459  * switching out to the protocol specific routines.
    460  */
    461 /*ARGSUSED*/
    462 int
    463 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
    464 {
    465 	const struct protosw	*prp;
    466 	struct socket	*so;
    467 	uid_t		uid;
    468 	int		error, s;
    469 
    470 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    471 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    472 	    KAUTH_ARG(proto));
    473 	if (error != 0)
    474 		return error;
    475 
    476 	if (proto)
    477 		prp = pffindproto(dom, proto, type);
    478 	else
    479 		prp = pffindtype(dom, type);
    480 	if (prp == NULL) {
    481 		/* no support for domain */
    482 		if (pffinddomain(dom) == 0)
    483 			return EAFNOSUPPORT;
    484 		/* no support for socket type */
    485 		if (proto == 0 && type != 0)
    486 			return EPROTOTYPE;
    487 		return EPROTONOSUPPORT;
    488 	}
    489 	if (prp->pr_usrreq == NULL)
    490 		return EPROTONOSUPPORT;
    491 	if (prp->pr_type != type)
    492 		return EPROTOTYPE;
    493 	s = splsoftnet();
    494 	so = pool_get(&socket_pool, PR_WAITOK);
    495 	memset(so, 0, sizeof(*so));
    496 	TAILQ_INIT(&so->so_q0);
    497 	TAILQ_INIT(&so->so_q);
    498 	so->so_type = type;
    499 	so->so_proto = prp;
    500 	so->so_send = sosend;
    501 	so->so_receive = soreceive;
    502 #ifdef MBUFTRACE
    503 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    504 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    505 	so->so_mowner = &prp->pr_domain->dom_mowner;
    506 #endif
    507 	selinit(&so->so_rcv.sb_sel);
    508 	selinit(&so->so_snd.sb_sel);
    509 	uid = kauth_cred_geteuid(l->l_cred);
    510 	so->so_uidinfo = uid_find(uid);
    511 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
    512 	    (struct mbuf *)(long)proto, NULL, l);
    513 	if (error != 0) {
    514 		so->so_state |= SS_NOFDREF;
    515 		sofree(so);
    516 		splx(s);
    517 		return error;
    518 	}
    519 	splx(s);
    520 	*aso = so;
    521 	return 0;
    522 }
    523 
    524 /* On success, write file descriptor to fdout and return zero.  On
    525  * failure, return non-zero; *fdout will be undefined.
    526  */
    527 int
    528 fsocreate(int domain, struct socket **sop, int type, int protocol,
    529     struct lwp *l, int *fdout)
    530 {
    531 	struct socket	*so;
    532 	struct file	*fp;
    533 	int		fd, error;
    534 
    535 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    536 		return (error);
    537 	fp->f_flag = FREAD|FWRITE;
    538 	fp->f_type = DTYPE_SOCKET;
    539 	fp->f_ops = &socketops;
    540 	error = socreate(domain, &so, type, protocol, l);
    541 	if (error != 0) {
    542 		fd_abort(curproc, fp, fd);
    543 	} else {
    544 		if (sop != NULL)
    545 			*sop = so;
    546 		fp->f_data = so;
    547 		fd_affix(curproc, fp, fd);
    548 		*fdout = fd;
    549 	}
    550 	return error;
    551 }
    552 
    553 int
    554 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    555 {
    556 	int	s, error;
    557 
    558 	s = splsoftnet();
    559 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
    560 	splx(s);
    561 	return error;
    562 }
    563 
    564 int
    565 solisten(struct socket *so, int backlog, struct lwp *l)
    566 {
    567 	int	s, error;
    568 
    569 	s = splsoftnet();
    570 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    571 	    SS_ISDISCONNECTING)) != 0)
    572 		return (EOPNOTSUPP);
    573 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
    574 	    NULL, NULL, l);
    575 	if (error != 0) {
    576 		splx(s);
    577 		return error;
    578 	}
    579 	if (TAILQ_EMPTY(&so->so_q))
    580 		so->so_options |= SO_ACCEPTCONN;
    581 	if (backlog < 0)
    582 		backlog = 0;
    583 	so->so_qlimit = min(backlog, somaxconn);
    584 	splx(s);
    585 	return 0;
    586 }
    587 
    588 void
    589 sofree(struct socket *so)
    590 {
    591 
    592 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
    593 		return;
    594 	if (so->so_head) {
    595 		/*
    596 		 * We must not decommission a socket that's on the accept(2)
    597 		 * queue.  If we do, then accept(2) may hang after select(2)
    598 		 * indicated that the listening socket was ready.
    599 		 */
    600 		if (!soqremque(so, 0))
    601 			return;
    602 	}
    603 	if (so->so_rcv.sb_hiwat)
    604 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    605 		    RLIM_INFINITY);
    606 	if (so->so_snd.sb_hiwat)
    607 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    608 		    RLIM_INFINITY);
    609 	sbrelease(&so->so_snd, so);
    610 	sorflush(so);
    611 	seldestroy(&so->so_rcv.sb_sel);
    612 	seldestroy(&so->so_snd.sb_sel);
    613 	pool_put(&socket_pool, so);
    614 }
    615 
    616 /*
    617  * Close a socket on last file table reference removal.
    618  * Initiate disconnect if connected.
    619  * Free socket when disconnect complete.
    620  */
    621 int
    622 soclose(struct socket *so)
    623 {
    624 	struct socket	*so2;
    625 	int		s, error;
    626 
    627 	error = 0;
    628 	s = splsoftnet();		/* conservative */
    629 	if (so->so_options & SO_ACCEPTCONN) {
    630 		while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    631 			(void) soqremque(so2, 0);
    632 			(void) soabort(so2);
    633 		}
    634 		while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    635 			(void) soqremque(so2, 1);
    636 			(void) soabort(so2);
    637 		}
    638 	}
    639 	if (so->so_pcb == 0)
    640 		goto discard;
    641 	if (so->so_state & SS_ISCONNECTED) {
    642 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    643 			error = sodisconnect(so);
    644 			if (error)
    645 				goto drop;
    646 		}
    647 		if (so->so_options & SO_LINGER) {
    648 			if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
    649 				goto drop;
    650 			while (so->so_state & SS_ISCONNECTED) {
    651 				error = tsleep((void *)&so->so_timeo,
    652 					       PSOCK | PCATCH, netcls,
    653 					       so->so_linger * hz);
    654 				if (error)
    655 					break;
    656 			}
    657 		}
    658 	}
    659  drop:
    660 	if (so->so_pcb) {
    661 		int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    662 		    NULL, NULL, NULL, NULL);
    663 		if (error == 0)
    664 			error = error2;
    665 	}
    666  discard:
    667 	if (so->so_state & SS_NOFDREF)
    668 		panic("soclose: NOFDREF");
    669 	so->so_state |= SS_NOFDREF;
    670 	sofree(so);
    671 	splx(s);
    672 	return (error);
    673 }
    674 
    675 /*
    676  * Must be called at splsoftnet...
    677  */
    678 int
    679 soabort(struct socket *so)
    680 {
    681 	int error;
    682 
    683 	KASSERT(so->so_head == NULL);
    684 	error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
    685 	    NULL, NULL, NULL);
    686 	if (error) {
    687 		sofree(so);
    688 	}
    689 	return error;
    690 }
    691 
    692 int
    693 soaccept(struct socket *so, struct mbuf *nam)
    694 {
    695 	int	s, error;
    696 
    697 	error = 0;
    698 	s = splsoftnet();
    699 	if ((so->so_state & SS_NOFDREF) == 0)
    700 		panic("soaccept: !NOFDREF");
    701 	so->so_state &= ~SS_NOFDREF;
    702 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    703 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    704 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    705 		    NULL, nam, NULL, NULL);
    706 	else
    707 		error = ECONNABORTED;
    708 
    709 	splx(s);
    710 	return (error);
    711 }
    712 
    713 int
    714 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    715 {
    716 	int		s, error;
    717 
    718 	if (so->so_options & SO_ACCEPTCONN)
    719 		return (EOPNOTSUPP);
    720 	s = splsoftnet();
    721 	/*
    722 	 * If protocol is connection-based, can only connect once.
    723 	 * Otherwise, if connected, try to disconnect first.
    724 	 * This allows user to disconnect by connecting to, e.g.,
    725 	 * a null address.
    726 	 */
    727 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    728 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    729 	    (error = sodisconnect(so))))
    730 		error = EISCONN;
    731 	else
    732 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    733 		    NULL, nam, NULL, l);
    734 	splx(s);
    735 	return (error);
    736 }
    737 
    738 int
    739 soconnect2(struct socket *so1, struct socket *so2)
    740 {
    741 	int	s, error;
    742 
    743 	s = splsoftnet();
    744 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    745 	    NULL, (struct mbuf *)so2, NULL, NULL);
    746 	splx(s);
    747 	return (error);
    748 }
    749 
    750 int
    751 sodisconnect(struct socket *so)
    752 {
    753 	int	s, error;
    754 
    755 	s = splsoftnet();
    756 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    757 		error = ENOTCONN;
    758 		goto bad;
    759 	}
    760 	if (so->so_state & SS_ISDISCONNECTING) {
    761 		error = EALREADY;
    762 		goto bad;
    763 	}
    764 	error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    765 	    NULL, NULL, NULL, NULL);
    766  bad:
    767 	splx(s);
    768 	sodopendfree();
    769 	return (error);
    770 }
    771 
    772 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    773 /*
    774  * Send on a socket.
    775  * If send must go all at once and message is larger than
    776  * send buffering, then hard error.
    777  * Lock against other senders.
    778  * If must go all at once and not enough room now, then
    779  * inform user that this would block and do nothing.
    780  * Otherwise, if nonblocking, send as much as possible.
    781  * The data to be sent is described by "uio" if nonzero,
    782  * otherwise by the mbuf chain "top" (which must be null
    783  * if uio is not).  Data provided in mbuf chain must be small
    784  * enough to send all at once.
    785  *
    786  * Returns nonzero on error, timeout or signal; callers
    787  * must check for short counts if EINTR/ERESTART are returned.
    788  * Data and control buffers are freed on return.
    789  */
    790 int
    791 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    792 	struct mbuf *control, int flags, struct lwp *l)
    793 {
    794 	struct mbuf	**mp, *m;
    795 	struct proc	*p;
    796 	long		space, len, resid, clen, mlen;
    797 	int		error, s, dontroute, atomic;
    798 
    799 	p = l->l_proc;
    800 	sodopendfree();
    801 
    802 	clen = 0;
    803 	atomic = sosendallatonce(so) || top;
    804 	if (uio)
    805 		resid = uio->uio_resid;
    806 	else
    807 		resid = top->m_pkthdr.len;
    808 	/*
    809 	 * In theory resid should be unsigned.
    810 	 * However, space must be signed, as it might be less than 0
    811 	 * if we over-committed, and we must use a signed comparison
    812 	 * of space and resid.  On the other hand, a negative resid
    813 	 * causes us to loop sending 0-length segments to the protocol.
    814 	 */
    815 	if (resid < 0) {
    816 		error = EINVAL;
    817 		goto out;
    818 	}
    819 	dontroute =
    820 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    821 	    (so->so_proto->pr_flags & PR_ATOMIC);
    822 	if (l)
    823 		l->l_ru.ru_msgsnd++;
    824 	if (control)
    825 		clen = control->m_len;
    826 #define	snderr(errno)	{ error = errno; splx(s); goto release; }
    827 
    828  restart:
    829 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    830 		goto out;
    831 	do {
    832 		s = splsoftnet();
    833 		if (so->so_state & SS_CANTSENDMORE)
    834 			snderr(EPIPE);
    835 		if (so->so_error) {
    836 			error = so->so_error;
    837 			so->so_error = 0;
    838 			splx(s);
    839 			goto release;
    840 		}
    841 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    842 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    843 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    844 				    !(resid == 0 && clen != 0))
    845 					snderr(ENOTCONN);
    846 			} else if (addr == 0)
    847 				snderr(EDESTADDRREQ);
    848 		}
    849 		space = sbspace(&so->so_snd);
    850 		if (flags & MSG_OOB)
    851 			space += 1024;
    852 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    853 		    clen > so->so_snd.sb_hiwat)
    854 			snderr(EMSGSIZE);
    855 		if (space < resid + clen &&
    856 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    857 			if (so->so_nbio)
    858 				snderr(EWOULDBLOCK);
    859 			sbunlock(&so->so_snd);
    860 			error = sbwait(&so->so_snd);
    861 			splx(s);
    862 			if (error)
    863 				goto out;
    864 			goto restart;
    865 		}
    866 		splx(s);
    867 		mp = &top;
    868 		space -= clen;
    869 		do {
    870 			if (uio == NULL) {
    871 				/*
    872 				 * Data is prepackaged in "top".
    873 				 */
    874 				resid = 0;
    875 				if (flags & MSG_EOR)
    876 					top->m_flags |= M_EOR;
    877 			} else do {
    878 				if (top == NULL) {
    879 					m = m_gethdr(M_WAIT, MT_DATA);
    880 					mlen = MHLEN;
    881 					m->m_pkthdr.len = 0;
    882 					m->m_pkthdr.rcvif = NULL;
    883 				} else {
    884 					m = m_get(M_WAIT, MT_DATA);
    885 					mlen = MLEN;
    886 				}
    887 				MCLAIM(m, so->so_snd.sb_mowner);
    888 				if (sock_loan_thresh >= 0 &&
    889 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
    890 				    space >= sock_loan_thresh &&
    891 				    (len = sosend_loan(so, uio, m,
    892 						       space)) != 0) {
    893 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    894 					space -= len;
    895 					goto have_data;
    896 				}
    897 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
    898 					SOSEND_COUNTER_INCR(&sosend_copy_big);
    899 					m_clget(m, M_WAIT);
    900 					if ((m->m_flags & M_EXT) == 0)
    901 						goto nopages;
    902 					mlen = MCLBYTES;
    903 					if (atomic && top == 0) {
    904 						len = lmin(MCLBYTES - max_hdr,
    905 						    resid);
    906 						m->m_data += max_hdr;
    907 					} else
    908 						len = lmin(MCLBYTES, resid);
    909 					space -= len;
    910 				} else {
    911  nopages:
    912 					SOSEND_COUNTER_INCR(&sosend_copy_small);
    913 					len = lmin(lmin(mlen, resid), space);
    914 					space -= len;
    915 					/*
    916 					 * For datagram protocols, leave room
    917 					 * for protocol headers in first mbuf.
    918 					 */
    919 					if (atomic && top == 0 && len < mlen)
    920 						MH_ALIGN(m, len);
    921 				}
    922 				error = uiomove(mtod(m, void *), (int)len, uio);
    923  have_data:
    924 				resid = uio->uio_resid;
    925 				m->m_len = len;
    926 				*mp = m;
    927 				top->m_pkthdr.len += len;
    928 				if (error != 0)
    929 					goto release;
    930 				mp = &m->m_next;
    931 				if (resid <= 0) {
    932 					if (flags & MSG_EOR)
    933 						top->m_flags |= M_EOR;
    934 					break;
    935 				}
    936 			} while (space > 0 && atomic);
    937 
    938 			s = splsoftnet();
    939 
    940 			if (so->so_state & SS_CANTSENDMORE)
    941 				snderr(EPIPE);
    942 
    943 			if (dontroute)
    944 				so->so_options |= SO_DONTROUTE;
    945 			if (resid > 0)
    946 				so->so_state |= SS_MORETOCOME;
    947 			error = (*so->so_proto->pr_usrreq)(so,
    948 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
    949 			    top, addr, control, curlwp);	/* XXX */
    950 			if (dontroute)
    951 				so->so_options &= ~SO_DONTROUTE;
    952 			if (resid > 0)
    953 				so->so_state &= ~SS_MORETOCOME;
    954 			splx(s);
    955 
    956 			clen = 0;
    957 			control = NULL;
    958 			top = NULL;
    959 			mp = &top;
    960 			if (error != 0)
    961 				goto release;
    962 		} while (resid && space > 0);
    963 	} while (resid);
    964 
    965  release:
    966 	sbunlock(&so->so_snd);
    967  out:
    968 	if (top)
    969 		m_freem(top);
    970 	if (control)
    971 		m_freem(control);
    972 	return (error);
    973 }
    974 
    975 /*
    976  * Following replacement or removal of the first mbuf on the first
    977  * mbuf chain of a socket buffer, push necessary state changes back
    978  * into the socket buffer so that other consumers see the values
    979  * consistently.  'nextrecord' is the callers locally stored value of
    980  * the original value of sb->sb_mb->m_nextpkt which must be restored
    981  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
    982  */
    983 static void
    984 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
    985 {
    986 
    987 	/*
    988 	 * First, update for the new value of nextrecord.  If necessary,
    989 	 * make it the first record.
    990 	 */
    991 	if (sb->sb_mb != NULL)
    992 		sb->sb_mb->m_nextpkt = nextrecord;
    993 	else
    994 		sb->sb_mb = nextrecord;
    995 
    996         /*
    997          * Now update any dependent socket buffer fields to reflect
    998          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
    999          * the addition of a second clause that takes care of the
   1000          * case where sb_mb has been updated, but remains the last
   1001          * record.
   1002          */
   1003         if (sb->sb_mb == NULL) {
   1004                 sb->sb_mbtail = NULL;
   1005                 sb->sb_lastrecord = NULL;
   1006         } else if (sb->sb_mb->m_nextpkt == NULL)
   1007                 sb->sb_lastrecord = sb->sb_mb;
   1008 }
   1009 
   1010 /*
   1011  * Implement receive operations on a socket.
   1012  * We depend on the way that records are added to the sockbuf
   1013  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1014  * must begin with an address if the protocol so specifies,
   1015  * followed by an optional mbuf or mbufs containing ancillary data,
   1016  * and then zero or more mbufs of data.
   1017  * In order to avoid blocking network interrupts for the entire time here,
   1018  * we splx() while doing the actual copy to user space.
   1019  * Although the sockbuf is locked, new data may still be appended,
   1020  * and thus we must maintain consistency of the sockbuf during that time.
   1021  *
   1022  * The caller may receive the data as a single mbuf chain by supplying
   1023  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1024  * only for the count in uio_resid.
   1025  */
   1026 int
   1027 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1028 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1029 {
   1030 	struct lwp *l = curlwp;
   1031 	struct mbuf	*m, **mp;
   1032 	int atomic, flags, len, error, s, offset, moff, type, orig_resid;
   1033 	const struct protosw	*pr;
   1034 	struct mbuf	*nextrecord;
   1035 	int		mbuf_removed = 0;
   1036 	const struct domain *dom;
   1037 
   1038 	pr = so->so_proto;
   1039 	atomic = pr->pr_flags & PR_ATOMIC;
   1040 	dom = pr->pr_domain;
   1041 	mp = mp0;
   1042 	type = 0;
   1043 	orig_resid = uio->uio_resid;
   1044 
   1045 	if (paddr != NULL)
   1046 		*paddr = NULL;
   1047 	if (controlp != NULL)
   1048 		*controlp = NULL;
   1049 	if (flagsp != NULL)
   1050 		flags = *flagsp &~ MSG_EOR;
   1051 	else
   1052 		flags = 0;
   1053 
   1054 	if ((flags & MSG_DONTWAIT) == 0)
   1055 		sodopendfree();
   1056 
   1057 	if (flags & MSG_OOB) {
   1058 		m = m_get(M_WAIT, MT_DATA);
   1059 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
   1060 		    (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
   1061 		if (error)
   1062 			goto bad;
   1063 		do {
   1064 			error = uiomove(mtod(m, void *),
   1065 			    (int) min(uio->uio_resid, m->m_len), uio);
   1066 			m = m_free(m);
   1067 		} while (uio->uio_resid > 0 && error == 0 && m);
   1068  bad:
   1069 		if (m != NULL)
   1070 			m_freem(m);
   1071 		return error;
   1072 	}
   1073 	if (mp != NULL)
   1074 		*mp = NULL;
   1075 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
   1076 		(*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
   1077 
   1078  restart:
   1079 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
   1080 		return error;
   1081 	s = splsoftnet();
   1082 
   1083 	m = so->so_rcv.sb_mb;
   1084 	/*
   1085 	 * If we have less data than requested, block awaiting more
   1086 	 * (subject to any timeout) if:
   1087 	 *   1. the current count is less than the low water mark,
   1088 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1089 	 *	receive operation at once if we block (resid <= hiwat), or
   1090 	 *   3. MSG_DONTWAIT is not set.
   1091 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1092 	 * we have to do the receive in sections, and thus risk returning
   1093 	 * a short count if a timeout or signal occurs after we start.
   1094 	 */
   1095 	if (m == NULL ||
   1096 	    ((flags & MSG_DONTWAIT) == 0 &&
   1097 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1098 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1099 	      ((flags & MSG_WAITALL) &&
   1100 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1101 	     m->m_nextpkt == NULL && !atomic)) {
   1102 #ifdef DIAGNOSTIC
   1103 		if (m == NULL && so->so_rcv.sb_cc)
   1104 			panic("receive 1");
   1105 #endif
   1106 		if (so->so_error) {
   1107 			if (m != NULL)
   1108 				goto dontblock;
   1109 			error = so->so_error;
   1110 			if ((flags & MSG_PEEK) == 0)
   1111 				so->so_error = 0;
   1112 			goto release;
   1113 		}
   1114 		if (so->so_state & SS_CANTRCVMORE) {
   1115 			if (m != NULL)
   1116 				goto dontblock;
   1117 			else
   1118 				goto release;
   1119 		}
   1120 		for (; m != NULL; m = m->m_next)
   1121 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1122 				m = so->so_rcv.sb_mb;
   1123 				goto dontblock;
   1124 			}
   1125 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1126 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1127 			error = ENOTCONN;
   1128 			goto release;
   1129 		}
   1130 		if (uio->uio_resid == 0)
   1131 			goto release;
   1132 		if (so->so_nbio || (flags & MSG_DONTWAIT)) {
   1133 			error = EWOULDBLOCK;
   1134 			goto release;
   1135 		}
   1136 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1137 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1138 		sbunlock(&so->so_rcv);
   1139 		error = sbwait(&so->so_rcv);
   1140 		splx(s);
   1141 		if (error != 0)
   1142 			return error;
   1143 		goto restart;
   1144 	}
   1145  dontblock:
   1146 	/*
   1147 	 * On entry here, m points to the first record of the socket buffer.
   1148 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1149 	 * pointer to the next record in the socket buffer.  We must keep the
   1150 	 * various socket buffer pointers and local stack versions of the
   1151 	 * pointers in sync, pushing out modifications before dropping the
   1152 	 * IPL, and re-reading them when picking it up.
   1153 	 *
   1154 	 * Otherwise, we will race with the network stack appending new data
   1155 	 * or records onto the socket buffer by using inconsistent/stale
   1156 	 * versions of the field, possibly resulting in socket buffer
   1157 	 * corruption.
   1158 	 *
   1159 	 * By holding the high-level sblock(), we prevent simultaneous
   1160 	 * readers from pulling off the front of the socket buffer.
   1161 	 */
   1162 	if (l != NULL)
   1163 		l->l_ru.ru_msgrcv++;
   1164 	KASSERT(m == so->so_rcv.sb_mb);
   1165 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1166 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1167 	nextrecord = m->m_nextpkt;
   1168 	if (pr->pr_flags & PR_ADDR) {
   1169 #ifdef DIAGNOSTIC
   1170 		if (m->m_type != MT_SONAME)
   1171 			panic("receive 1a");
   1172 #endif
   1173 		orig_resid = 0;
   1174 		if (flags & MSG_PEEK) {
   1175 			if (paddr)
   1176 				*paddr = m_copy(m, 0, m->m_len);
   1177 			m = m->m_next;
   1178 		} else {
   1179 			sbfree(&so->so_rcv, m);
   1180 			mbuf_removed = 1;
   1181 			if (paddr != NULL) {
   1182 				*paddr = m;
   1183 				so->so_rcv.sb_mb = m->m_next;
   1184 				m->m_next = NULL;
   1185 				m = so->so_rcv.sb_mb;
   1186 			} else {
   1187 				MFREE(m, so->so_rcv.sb_mb);
   1188 				m = so->so_rcv.sb_mb;
   1189 			}
   1190 			sbsync(&so->so_rcv, nextrecord);
   1191 		}
   1192 	}
   1193 
   1194 	/*
   1195 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1196 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1197 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1198 	 * perform externalization (or freeing if controlp == NULL).
   1199 	 */
   1200 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1201 		struct mbuf *cm = NULL, *cmn;
   1202 		struct mbuf **cme = &cm;
   1203 
   1204 		do {
   1205 			if (flags & MSG_PEEK) {
   1206 				if (controlp != NULL) {
   1207 					*controlp = m_copy(m, 0, m->m_len);
   1208 					controlp = &(*controlp)->m_next;
   1209 				}
   1210 				m = m->m_next;
   1211 			} else {
   1212 				sbfree(&so->so_rcv, m);
   1213 				so->so_rcv.sb_mb = m->m_next;
   1214 				m->m_next = NULL;
   1215 				*cme = m;
   1216 				cme = &(*cme)->m_next;
   1217 				m = so->so_rcv.sb_mb;
   1218 			}
   1219 		} while (m != NULL && m->m_type == MT_CONTROL);
   1220 		if ((flags & MSG_PEEK) == 0)
   1221 			sbsync(&so->so_rcv, nextrecord);
   1222 		for (; cm != NULL; cm = cmn) {
   1223 			cmn = cm->m_next;
   1224 			cm->m_next = NULL;
   1225 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1226 			if (controlp != NULL) {
   1227 				if (dom->dom_externalize != NULL &&
   1228 				    type == SCM_RIGHTS) {
   1229 					splx(s);
   1230 					error = (*dom->dom_externalize)(cm, l);
   1231 					s = splsoftnet();
   1232 				}
   1233 				*controlp = cm;
   1234 				while (*controlp != NULL)
   1235 					controlp = &(*controlp)->m_next;
   1236 			} else {
   1237 				/*
   1238 				 * Dispose of any SCM_RIGHTS message that went
   1239 				 * through the read path rather than recv.
   1240 				 */
   1241 				if (dom->dom_dispose != NULL &&
   1242 				    type == SCM_RIGHTS) {
   1243 				    	splx(s);
   1244 					(*dom->dom_dispose)(cm);
   1245 					s = splsoftnet();
   1246 				}
   1247 				m_freem(cm);
   1248 			}
   1249 		}
   1250 		if (m != NULL)
   1251 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1252 		else
   1253 			nextrecord = so->so_rcv.sb_mb;
   1254 		orig_resid = 0;
   1255 	}
   1256 
   1257 	/* If m is non-NULL, we have some data to read. */
   1258 	if (__predict_true(m != NULL)) {
   1259 		type = m->m_type;
   1260 		if (type == MT_OOBDATA)
   1261 			flags |= MSG_OOB;
   1262 	}
   1263 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1264 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1265 
   1266 	moff = 0;
   1267 	offset = 0;
   1268 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1269 		if (m->m_type == MT_OOBDATA) {
   1270 			if (type != MT_OOBDATA)
   1271 				break;
   1272 		} else if (type == MT_OOBDATA)
   1273 			break;
   1274 #ifdef DIAGNOSTIC
   1275 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1276 			panic("receive 3");
   1277 #endif
   1278 		so->so_state &= ~SS_RCVATMARK;
   1279 		len = uio->uio_resid;
   1280 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1281 			len = so->so_oobmark - offset;
   1282 		if (len > m->m_len - moff)
   1283 			len = m->m_len - moff;
   1284 		/*
   1285 		 * If mp is set, just pass back the mbufs.
   1286 		 * Otherwise copy them out via the uio, then free.
   1287 		 * Sockbuf must be consistent here (points to current mbuf,
   1288 		 * it points to next record) when we drop priority;
   1289 		 * we must note any additions to the sockbuf when we
   1290 		 * block interrupts again.
   1291 		 */
   1292 		if (mp == NULL) {
   1293 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1294 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1295 			splx(s);
   1296 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
   1297 			s = splsoftnet();
   1298 			if (error != 0) {
   1299 				/*
   1300 				 * If any part of the record has been removed
   1301 				 * (such as the MT_SONAME mbuf, which will
   1302 				 * happen when PR_ADDR, and thus also
   1303 				 * PR_ATOMIC, is set), then drop the entire
   1304 				 * record to maintain the atomicity of the
   1305 				 * receive operation.
   1306 				 *
   1307 				 * This avoids a later panic("receive 1a")
   1308 				 * when compiled with DIAGNOSTIC.
   1309 				 */
   1310 				if (m && mbuf_removed && atomic)
   1311 					(void) sbdroprecord(&so->so_rcv);
   1312 
   1313 				goto release;
   1314 			}
   1315 		} else
   1316 			uio->uio_resid -= len;
   1317 		if (len == m->m_len - moff) {
   1318 			if (m->m_flags & M_EOR)
   1319 				flags |= MSG_EOR;
   1320 			if (flags & MSG_PEEK) {
   1321 				m = m->m_next;
   1322 				moff = 0;
   1323 			} else {
   1324 				nextrecord = m->m_nextpkt;
   1325 				sbfree(&so->so_rcv, m);
   1326 				if (mp) {
   1327 					*mp = m;
   1328 					mp = &m->m_next;
   1329 					so->so_rcv.sb_mb = m = m->m_next;
   1330 					*mp = NULL;
   1331 				} else {
   1332 					MFREE(m, so->so_rcv.sb_mb);
   1333 					m = so->so_rcv.sb_mb;
   1334 				}
   1335 				/*
   1336 				 * If m != NULL, we also know that
   1337 				 * so->so_rcv.sb_mb != NULL.
   1338 				 */
   1339 				KASSERT(so->so_rcv.sb_mb == m);
   1340 				if (m) {
   1341 					m->m_nextpkt = nextrecord;
   1342 					if (nextrecord == NULL)
   1343 						so->so_rcv.sb_lastrecord = m;
   1344 				} else {
   1345 					so->so_rcv.sb_mb = nextrecord;
   1346 					SB_EMPTY_FIXUP(&so->so_rcv);
   1347 				}
   1348 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1349 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1350 			}
   1351 		} else if (flags & MSG_PEEK)
   1352 			moff += len;
   1353 		else {
   1354 			if (mp != NULL)
   1355 				*mp = m_copym(m, 0, len, M_WAIT);
   1356 			m->m_data += len;
   1357 			m->m_len -= len;
   1358 			so->so_rcv.sb_cc -= len;
   1359 		}
   1360 		if (so->so_oobmark) {
   1361 			if ((flags & MSG_PEEK) == 0) {
   1362 				so->so_oobmark -= len;
   1363 				if (so->so_oobmark == 0) {
   1364 					so->so_state |= SS_RCVATMARK;
   1365 					break;
   1366 				}
   1367 			} else {
   1368 				offset += len;
   1369 				if (offset == so->so_oobmark)
   1370 					break;
   1371 			}
   1372 		}
   1373 		if (flags & MSG_EOR)
   1374 			break;
   1375 		/*
   1376 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1377 		 * we must not quit until "uio->uio_resid == 0" or an error
   1378 		 * termination.  If a signal/timeout occurs, return
   1379 		 * with a short count but without error.
   1380 		 * Keep sockbuf locked against other readers.
   1381 		 */
   1382 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1383 		    !sosendallatonce(so) && !nextrecord) {
   1384 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1385 				break;
   1386 			/*
   1387 			 * If we are peeking and the socket receive buffer is
   1388 			 * full, stop since we can't get more data to peek at.
   1389 			 */
   1390 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1391 				break;
   1392 			/*
   1393 			 * If we've drained the socket buffer, tell the
   1394 			 * protocol in case it needs to do something to
   1395 			 * get it filled again.
   1396 			 */
   1397 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1398 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1399 				    NULL, (struct mbuf *)(long)flags, NULL, l);
   1400 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1401 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1402 			error = sbwait(&so->so_rcv);
   1403 			if (error != 0) {
   1404 				sbunlock(&so->so_rcv);
   1405 				splx(s);
   1406 				return 0;
   1407 			}
   1408 			if ((m = so->so_rcv.sb_mb) != NULL)
   1409 				nextrecord = m->m_nextpkt;
   1410 		}
   1411 	}
   1412 
   1413 	if (m && atomic) {
   1414 		flags |= MSG_TRUNC;
   1415 		if ((flags & MSG_PEEK) == 0)
   1416 			(void) sbdroprecord(&so->so_rcv);
   1417 	}
   1418 	if ((flags & MSG_PEEK) == 0) {
   1419 		if (m == NULL) {
   1420 			/*
   1421 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1422 			 * part makes sure sb_lastrecord is up-to-date if
   1423 			 * there is still data in the socket buffer.
   1424 			 */
   1425 			so->so_rcv.sb_mb = nextrecord;
   1426 			if (so->so_rcv.sb_mb == NULL) {
   1427 				so->so_rcv.sb_mbtail = NULL;
   1428 				so->so_rcv.sb_lastrecord = NULL;
   1429 			} else if (nextrecord->m_nextpkt == NULL)
   1430 				so->so_rcv.sb_lastrecord = nextrecord;
   1431 		}
   1432 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1433 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1434 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1435 			(*pr->pr_usrreq)(so, PRU_RCVD, NULL,
   1436 			    (struct mbuf *)(long)flags, NULL, l);
   1437 	}
   1438 	if (orig_resid == uio->uio_resid && orig_resid &&
   1439 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1440 		sbunlock(&so->so_rcv);
   1441 		splx(s);
   1442 		goto restart;
   1443 	}
   1444 
   1445 	if (flagsp != NULL)
   1446 		*flagsp |= flags;
   1447  release:
   1448 	sbunlock(&so->so_rcv);
   1449 	splx(s);
   1450 	return error;
   1451 }
   1452 
   1453 int
   1454 soshutdown(struct socket *so, int how)
   1455 {
   1456 	const struct protosw	*pr;
   1457 
   1458 	pr = so->so_proto;
   1459 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1460 		return (EINVAL);
   1461 
   1462 	if (how == SHUT_RD || how == SHUT_RDWR)
   1463 		sorflush(so);
   1464 	if (how == SHUT_WR || how == SHUT_RDWR)
   1465 		return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
   1466 		    NULL, NULL, NULL);
   1467 	return 0;
   1468 }
   1469 
   1470 void
   1471 sorflush(struct socket *so)
   1472 {
   1473 	struct sockbuf	*sb, asb;
   1474 	const struct protosw	*pr;
   1475 	int		s;
   1476 
   1477 	sb = &so->so_rcv;
   1478 	pr = so->so_proto;
   1479 	sb->sb_flags |= SB_NOINTR;
   1480 	(void) sblock(sb, M_WAITOK);
   1481 	s = splnet();
   1482 	socantrcvmore(so);
   1483 	sbunlock(sb);
   1484 	asb = *sb;
   1485 	/*
   1486 	 * Clear most of the sockbuf structure, but leave some of the
   1487 	 * fields valid.
   1488 	 */
   1489 	memset(&sb->sb_startzero, 0,
   1490 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1491 	splx(s);
   1492 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
   1493 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1494 	sbrelease(&asb, so);
   1495 }
   1496 
   1497 static int
   1498 sosetopt1(struct socket *so, int level, int optname, struct mbuf *m)
   1499 {
   1500 	int optval, val;
   1501 	struct linger	*l;
   1502 	struct sockbuf	*sb;
   1503 	struct timeval *tv;
   1504 
   1505 	switch (optname) {
   1506 
   1507 	case SO_LINGER:
   1508 		if (m == NULL || m->m_len != sizeof(struct linger))
   1509 			return EINVAL;
   1510 		l = mtod(m, struct linger *);
   1511 		if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
   1512 		    l->l_linger > (INT_MAX / hz))
   1513 			return EDOM;
   1514 		so->so_linger = l->l_linger;
   1515 		if (l->l_onoff)
   1516 			so->so_options |= SO_LINGER;
   1517 		else
   1518 			so->so_options &= ~SO_LINGER;
   1519 		break;
   1520 
   1521 	case SO_DEBUG:
   1522 	case SO_KEEPALIVE:
   1523 	case SO_DONTROUTE:
   1524 	case SO_USELOOPBACK:
   1525 	case SO_BROADCAST:
   1526 	case SO_REUSEADDR:
   1527 	case SO_REUSEPORT:
   1528 	case SO_OOBINLINE:
   1529 	case SO_TIMESTAMP:
   1530 		if (m == NULL || m->m_len < sizeof(int))
   1531 			return EINVAL;
   1532 		if (*mtod(m, int *))
   1533 			so->so_options |= optname;
   1534 		else
   1535 			so->so_options &= ~optname;
   1536 		break;
   1537 
   1538 	case SO_SNDBUF:
   1539 	case SO_RCVBUF:
   1540 	case SO_SNDLOWAT:
   1541 	case SO_RCVLOWAT:
   1542 		if (m == NULL || m->m_len < sizeof(int))
   1543 			return EINVAL;
   1544 
   1545 		/*
   1546 		 * Values < 1 make no sense for any of these
   1547 		 * options, so disallow them.
   1548 		 */
   1549 		optval = *mtod(m, int *);
   1550 		if (optval < 1)
   1551 			return EINVAL;
   1552 
   1553 		switch (optname) {
   1554 
   1555 		case SO_SNDBUF:
   1556 		case SO_RCVBUF:
   1557 			sb = (optname == SO_SNDBUF) ?
   1558 			    &so->so_snd : &so->so_rcv;
   1559 			if (sbreserve(sb, (u_long)optval, so) == 0)
   1560 				return ENOBUFS;
   1561 			sb->sb_flags &= ~SB_AUTOSIZE;
   1562 			break;
   1563 
   1564 		/*
   1565 		 * Make sure the low-water is never greater than
   1566 		 * the high-water.
   1567 		 */
   1568 		case SO_SNDLOWAT:
   1569 			so->so_snd.sb_lowat =
   1570 			    (optval > so->so_snd.sb_hiwat) ?
   1571 			    so->so_snd.sb_hiwat : optval;
   1572 			break;
   1573 		case SO_RCVLOWAT:
   1574 			so->so_rcv.sb_lowat =
   1575 			    (optval > so->so_rcv.sb_hiwat) ?
   1576 			    so->so_rcv.sb_hiwat : optval;
   1577 			break;
   1578 		}
   1579 		break;
   1580 
   1581 	case SO_SNDTIMEO:
   1582 	case SO_RCVTIMEO:
   1583 		if (m == NULL || m->m_len < sizeof(*tv))
   1584 			return EINVAL;
   1585 		tv = mtod(m, struct timeval *);
   1586 		if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz)
   1587 			return EDOM;
   1588 		val = tv->tv_sec * hz + tv->tv_usec / tick;
   1589 		if (val == 0 && tv->tv_usec != 0)
   1590 			val = 1;
   1591 
   1592 		switch (optname) {
   1593 
   1594 		case SO_SNDTIMEO:
   1595 			so->so_snd.sb_timeo = val;
   1596 			break;
   1597 		case SO_RCVTIMEO:
   1598 			so->so_rcv.sb_timeo = val;
   1599 			break;
   1600 		}
   1601 		break;
   1602 
   1603 	default:
   1604 		return ENOPROTOOPT;
   1605 	}
   1606 	return 0;
   1607 }
   1608 
   1609 int
   1610 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
   1611 {
   1612 	int error, prerr;
   1613 
   1614 	if (level == SOL_SOCKET)
   1615 		error = sosetopt1(so, level, optname, m);
   1616 	else
   1617 		error = ENOPROTOOPT;
   1618 
   1619 	if ((error == 0 || error == ENOPROTOOPT) &&
   1620 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1621 		/* give the protocol stack a shot */
   1622 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, level,
   1623 		    optname, &m);
   1624 		if (prerr == 0)
   1625 			error = 0;
   1626 		else if (prerr != ENOPROTOOPT)
   1627 			error = prerr;
   1628 	} else if (m != NULL)
   1629 		(void)m_free(m);
   1630 	return error;
   1631 }
   1632 
   1633 int
   1634 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
   1635 {
   1636 	struct mbuf	*m;
   1637 
   1638 	if (level != SOL_SOCKET) {
   1639 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1640 			return ((*so->so_proto->pr_ctloutput)
   1641 				  (PRCO_GETOPT, so, level, optname, mp));
   1642 		} else
   1643 			return (ENOPROTOOPT);
   1644 	} else {
   1645 		m = m_get(M_WAIT, MT_SOOPTS);
   1646 		m->m_len = sizeof(int);
   1647 
   1648 		switch (optname) {
   1649 
   1650 		case SO_LINGER:
   1651 			m->m_len = sizeof(struct linger);
   1652 			mtod(m, struct linger *)->l_onoff =
   1653 			    (so->so_options & SO_LINGER) ? 1 : 0;
   1654 			mtod(m, struct linger *)->l_linger = so->so_linger;
   1655 			break;
   1656 
   1657 		case SO_USELOOPBACK:
   1658 		case SO_DONTROUTE:
   1659 		case SO_DEBUG:
   1660 		case SO_KEEPALIVE:
   1661 		case SO_REUSEADDR:
   1662 		case SO_REUSEPORT:
   1663 		case SO_BROADCAST:
   1664 		case SO_OOBINLINE:
   1665 		case SO_TIMESTAMP:
   1666 			*mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
   1667 			break;
   1668 
   1669 		case SO_TYPE:
   1670 			*mtod(m, int *) = so->so_type;
   1671 			break;
   1672 
   1673 		case SO_ERROR:
   1674 			*mtod(m, int *) = so->so_error;
   1675 			so->so_error = 0;
   1676 			break;
   1677 
   1678 		case SO_SNDBUF:
   1679 			*mtod(m, int *) = so->so_snd.sb_hiwat;
   1680 			break;
   1681 
   1682 		case SO_RCVBUF:
   1683 			*mtod(m, int *) = so->so_rcv.sb_hiwat;
   1684 			break;
   1685 
   1686 		case SO_SNDLOWAT:
   1687 			*mtod(m, int *) = so->so_snd.sb_lowat;
   1688 			break;
   1689 
   1690 		case SO_RCVLOWAT:
   1691 			*mtod(m, int *) = so->so_rcv.sb_lowat;
   1692 			break;
   1693 
   1694 		case SO_SNDTIMEO:
   1695 		case SO_RCVTIMEO:
   1696 		    {
   1697 			int val = (optname == SO_SNDTIMEO ?
   1698 			     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1699 
   1700 			m->m_len = sizeof(struct timeval);
   1701 			mtod(m, struct timeval *)->tv_sec = val / hz;
   1702 			mtod(m, struct timeval *)->tv_usec =
   1703 			    (val % hz) * tick;
   1704 			break;
   1705 		    }
   1706 
   1707 		case SO_OVERFLOWED:
   1708 			*mtod(m, int *) = so->so_rcv.sb_overflowed;
   1709 			break;
   1710 
   1711 		default:
   1712 			(void)m_free(m);
   1713 			return (ENOPROTOOPT);
   1714 		}
   1715 		*mp = m;
   1716 		return (0);
   1717 	}
   1718 }
   1719 
   1720 void
   1721 sohasoutofband(struct socket *so)
   1722 {
   1723 
   1724 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   1725 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, 0);
   1726 }
   1727 
   1728 static void
   1729 filt_sordetach(struct knote *kn)
   1730 {
   1731 	struct socket	*so;
   1732 
   1733 	so = ((file_t *)kn->kn_obj)->f_data;
   1734 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   1735 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   1736 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   1737 }
   1738 
   1739 /*ARGSUSED*/
   1740 static int
   1741 filt_soread(struct knote *kn, long hint)
   1742 {
   1743 	struct socket	*so;
   1744 
   1745 	so = ((file_t *)kn->kn_obj)->f_data;
   1746 	kn->kn_data = so->so_rcv.sb_cc;
   1747 	if (so->so_state & SS_CANTRCVMORE) {
   1748 		kn->kn_flags |= EV_EOF;
   1749 		kn->kn_fflags = so->so_error;
   1750 		return (1);
   1751 	}
   1752 	if (so->so_error)	/* temporary udp error */
   1753 		return (1);
   1754 	if (kn->kn_sfflags & NOTE_LOWAT)
   1755 		return (kn->kn_data >= kn->kn_sdata);
   1756 	return (kn->kn_data >= so->so_rcv.sb_lowat);
   1757 }
   1758 
   1759 static void
   1760 filt_sowdetach(struct knote *kn)
   1761 {
   1762 	struct socket	*so;
   1763 
   1764 	so = ((file_t *)kn->kn_obj)->f_data;
   1765 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   1766 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   1767 		so->so_snd.sb_flags &= ~SB_KNOTE;
   1768 }
   1769 
   1770 /*ARGSUSED*/
   1771 static int
   1772 filt_sowrite(struct knote *kn, long hint)
   1773 {
   1774 	struct socket	*so;
   1775 
   1776 	so = ((file_t *)kn->kn_obj)->f_data;
   1777 	kn->kn_data = sbspace(&so->so_snd);
   1778 	if (so->so_state & SS_CANTSENDMORE) {
   1779 		kn->kn_flags |= EV_EOF;
   1780 		kn->kn_fflags = so->so_error;
   1781 		return (1);
   1782 	}
   1783 	if (so->so_error)	/* temporary udp error */
   1784 		return (1);
   1785 	if (((so->so_state & SS_ISCONNECTED) == 0) &&
   1786 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   1787 		return (0);
   1788 	if (kn->kn_sfflags & NOTE_LOWAT)
   1789 		return (kn->kn_data >= kn->kn_sdata);
   1790 	return (kn->kn_data >= so->so_snd.sb_lowat);
   1791 }
   1792 
   1793 /*ARGSUSED*/
   1794 static int
   1795 filt_solisten(struct knote *kn, long hint)
   1796 {
   1797 	struct socket	*so;
   1798 
   1799 	so = ((file_t *)kn->kn_obj)->f_data;
   1800 
   1801 	/*
   1802 	 * Set kn_data to number of incoming connections, not
   1803 	 * counting partial (incomplete) connections.
   1804 	 */
   1805 	kn->kn_data = so->so_qlen;
   1806 	return (kn->kn_data > 0);
   1807 }
   1808 
   1809 static const struct filterops solisten_filtops =
   1810 	{ 1, NULL, filt_sordetach, filt_solisten };
   1811 static const struct filterops soread_filtops =
   1812 	{ 1, NULL, filt_sordetach, filt_soread };
   1813 static const struct filterops sowrite_filtops =
   1814 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   1815 
   1816 int
   1817 soo_kqfilter(struct file *fp, struct knote *kn)
   1818 {
   1819 	struct socket	*so;
   1820 	struct sockbuf	*sb;
   1821 
   1822 	so = ((file_t *)kn->kn_obj)->f_data;
   1823 	switch (kn->kn_filter) {
   1824 	case EVFILT_READ:
   1825 		if (so->so_options & SO_ACCEPTCONN)
   1826 			kn->kn_fop = &solisten_filtops;
   1827 		else
   1828 			kn->kn_fop = &soread_filtops;
   1829 		sb = &so->so_rcv;
   1830 		break;
   1831 	case EVFILT_WRITE:
   1832 		kn->kn_fop = &sowrite_filtops;
   1833 		sb = &so->so_snd;
   1834 		break;
   1835 	default:
   1836 		return (EINVAL);
   1837 	}
   1838 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   1839 	sb->sb_flags |= SB_KNOTE;
   1840 	return (0);
   1841 }
   1842 
   1843 static int
   1844 sodopoll(struct socket *so, int events)
   1845 {
   1846 	int revents;
   1847 
   1848 	revents = 0;
   1849 
   1850 	if (events & (POLLIN | POLLRDNORM))
   1851 		if (soreadable(so))
   1852 			revents |= events & (POLLIN | POLLRDNORM);
   1853 
   1854 	if (events & (POLLOUT | POLLWRNORM))
   1855 		if (sowritable(so))
   1856 			revents |= events & (POLLOUT | POLLWRNORM);
   1857 
   1858 	if (events & (POLLPRI | POLLRDBAND))
   1859 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   1860 			revents |= events & (POLLPRI | POLLRDBAND);
   1861 
   1862 	return revents;
   1863 }
   1864 
   1865 int
   1866 sopoll(struct socket *so, int events)
   1867 {
   1868 	int revents = 0;
   1869 	int s;
   1870 
   1871 	if ((revents = sodopoll(so, events)) != 0)
   1872 		return revents;
   1873 
   1874 	KERNEL_LOCK(1, curlwp);
   1875 	s = splsoftnet();
   1876 
   1877 	if ((revents = sodopoll(so, events)) == 0) {
   1878 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   1879 			selrecord(curlwp, &so->so_rcv.sb_sel);
   1880 			so->so_rcv.sb_flags |= SB_SEL;
   1881 		}
   1882 
   1883 		if (events & (POLLOUT | POLLWRNORM)) {
   1884 			selrecord(curlwp, &so->so_snd.sb_sel);
   1885 			so->so_snd.sb_flags |= SB_SEL;
   1886 		}
   1887 	}
   1888 
   1889 	splx(s);
   1890 	KERNEL_UNLOCK_ONE(curlwp);
   1891 
   1892 	return revents;
   1893 }
   1894 
   1895 
   1896 #include <sys/sysctl.h>
   1897 
   1898 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   1899 
   1900 /*
   1901  * sysctl helper routine for kern.somaxkva.  ensures that the given
   1902  * value is not too small.
   1903  * (XXX should we maybe make sure it's not too large as well?)
   1904  */
   1905 static int
   1906 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   1907 {
   1908 	int error, new_somaxkva;
   1909 	struct sysctlnode node;
   1910 
   1911 	new_somaxkva = somaxkva;
   1912 	node = *rnode;
   1913 	node.sysctl_data = &new_somaxkva;
   1914 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1915 	if (error || newp == NULL)
   1916 		return (error);
   1917 
   1918 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   1919 		return (EINVAL);
   1920 
   1921 	mutex_enter(&so_pendfree_lock);
   1922 	somaxkva = new_somaxkva;
   1923 	cv_broadcast(&socurkva_cv);
   1924 	mutex_exit(&so_pendfree_lock);
   1925 
   1926 	return (error);
   1927 }
   1928 
   1929 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
   1930 {
   1931 
   1932 	sysctl_createv(clog, 0, NULL, NULL,
   1933 		       CTLFLAG_PERMANENT,
   1934 		       CTLTYPE_NODE, "kern", NULL,
   1935 		       NULL, 0, NULL, 0,
   1936 		       CTL_KERN, CTL_EOL);
   1937 
   1938 	sysctl_createv(clog, 0, NULL, NULL,
   1939 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   1940 		       CTLTYPE_INT, "somaxkva",
   1941 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   1942 				    "used for socket buffers"),
   1943 		       sysctl_kern_somaxkva, 0, NULL, 0,
   1944 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   1945 }
   1946