uipc_socket.c revision 1.159 1 /* $NetBSD: uipc_socket.c,v 1.159 2008/04/14 15:42:20 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 2004 The FreeBSD Foundation
41 * Copyright (c) 2004 Robert Watson
42 * Copyright (c) 1982, 1986, 1988, 1990, 1993
43 * The Regents of the University of California. All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. Neither the name of the University nor the names of its contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
68 *
69 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.159 2008/04/14 15:42:20 ad Exp $");
74
75 #include "opt_sock_counters.h"
76 #include "opt_sosend_loan.h"
77 #include "opt_mbuftrace.h"
78 #include "opt_somaxkva.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/proc.h>
83 #include <sys/file.h>
84 #include <sys/filedesc.h>
85 #include <sys/malloc.h>
86 #include <sys/mbuf.h>
87 #include <sys/domain.h>
88 #include <sys/kernel.h>
89 #include <sys/protosw.h>
90 #include <sys/socket.h>
91 #include <sys/socketvar.h>
92 #include <sys/signalvar.h>
93 #include <sys/resourcevar.h>
94 #include <sys/pool.h>
95 #include <sys/event.h>
96 #include <sys/poll.h>
97 #include <sys/kauth.h>
98 #include <sys/mutex.h>
99 #include <sys/condvar.h>
100
101 #include <uvm/uvm.h>
102
103 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL,
104 IPL_SOFTNET);
105
106 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
107 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
108
109 extern const struct fileops socketops;
110
111 extern int somaxconn; /* patchable (XXX sysctl) */
112 int somaxconn = SOMAXCONN;
113
114 #ifdef SOSEND_COUNTERS
115 #include <sys/device.h>
116
117 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
118 NULL, "sosend", "loan big");
119 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
120 NULL, "sosend", "copy big");
121 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
122 NULL, "sosend", "copy small");
123 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
124 NULL, "sosend", "kva limit");
125
126 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
127
128 EVCNT_ATTACH_STATIC(sosend_loan_big);
129 EVCNT_ATTACH_STATIC(sosend_copy_big);
130 EVCNT_ATTACH_STATIC(sosend_copy_small);
131 EVCNT_ATTACH_STATIC(sosend_kvalimit);
132 #else
133
134 #define SOSEND_COUNTER_INCR(ev) /* nothing */
135
136 #endif /* SOSEND_COUNTERS */
137
138 static struct callback_entry sokva_reclaimerentry;
139
140 #ifdef SOSEND_NO_LOAN
141 int sock_loan_thresh = -1;
142 #else
143 int sock_loan_thresh = 4096;
144 #endif
145
146 static kmutex_t so_pendfree_lock;
147 static struct mbuf *so_pendfree;
148
149 #ifndef SOMAXKVA
150 #define SOMAXKVA (16 * 1024 * 1024)
151 #endif
152 int somaxkva = SOMAXKVA;
153 static int socurkva;
154 static kcondvar_t socurkva_cv;
155
156 #define SOCK_LOAN_CHUNK 65536
157
158 static size_t sodopendfree(void);
159 static size_t sodopendfreel(void);
160
161 static vsize_t
162 sokvareserve(struct socket *so, vsize_t len)
163 {
164 int error;
165
166 mutex_enter(&so_pendfree_lock);
167 while (socurkva + len > somaxkva) {
168 size_t freed;
169
170 /*
171 * try to do pendfree.
172 */
173
174 freed = sodopendfreel();
175
176 /*
177 * if some kva was freed, try again.
178 */
179
180 if (freed)
181 continue;
182
183 SOSEND_COUNTER_INCR(&sosend_kvalimit);
184 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
185 if (error) {
186 len = 0;
187 break;
188 }
189 }
190 socurkva += len;
191 mutex_exit(&so_pendfree_lock);
192 return len;
193 }
194
195 static void
196 sokvaunreserve(vsize_t len)
197 {
198
199 mutex_enter(&so_pendfree_lock);
200 socurkva -= len;
201 cv_broadcast(&socurkva_cv);
202 mutex_exit(&so_pendfree_lock);
203 }
204
205 /*
206 * sokvaalloc: allocate kva for loan.
207 */
208
209 vaddr_t
210 sokvaalloc(vsize_t len, struct socket *so)
211 {
212 vaddr_t lva;
213
214 /*
215 * reserve kva.
216 */
217
218 if (sokvareserve(so, len) == 0)
219 return 0;
220
221 /*
222 * allocate kva.
223 */
224
225 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
226 if (lva == 0) {
227 sokvaunreserve(len);
228 return (0);
229 }
230
231 return lva;
232 }
233
234 /*
235 * sokvafree: free kva for loan.
236 */
237
238 void
239 sokvafree(vaddr_t sva, vsize_t len)
240 {
241
242 /*
243 * free kva.
244 */
245
246 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
247
248 /*
249 * unreserve kva.
250 */
251
252 sokvaunreserve(len);
253 }
254
255 static void
256 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
257 {
258 vaddr_t sva, eva;
259 vsize_t len;
260 int npgs;
261
262 KASSERT(pgs != NULL);
263
264 eva = round_page((vaddr_t) buf + size);
265 sva = trunc_page((vaddr_t) buf);
266 len = eva - sva;
267 npgs = len >> PAGE_SHIFT;
268
269 pmap_kremove(sva, len);
270 pmap_update(pmap_kernel());
271 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
272 sokvafree(sva, len);
273 }
274
275 static size_t
276 sodopendfree(void)
277 {
278 size_t rv;
279
280 mutex_enter(&so_pendfree_lock);
281 rv = sodopendfreel();
282 mutex_exit(&so_pendfree_lock);
283
284 return rv;
285 }
286
287 /*
288 * sodopendfreel: free mbufs on "pendfree" list.
289 * unlock and relock so_pendfree_lock when freeing mbufs.
290 *
291 * => called with so_pendfree_lock held.
292 */
293
294 static size_t
295 sodopendfreel(void)
296 {
297 struct mbuf *m, *next;
298 size_t rv = 0;
299
300 KASSERT(mutex_owned(&so_pendfree_lock));
301
302 while (so_pendfree != NULL) {
303 m = so_pendfree;
304 so_pendfree = NULL;
305 mutex_exit(&so_pendfree_lock);
306
307 for (; m != NULL; m = next) {
308 next = m->m_next;
309 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
310 KASSERT(m->m_ext.ext_refcnt == 0);
311
312 rv += m->m_ext.ext_size;
313 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
314 m->m_ext.ext_size);
315 pool_cache_put(mb_cache, m);
316 }
317
318 mutex_enter(&so_pendfree_lock);
319 }
320
321 return (rv);
322 }
323
324 void
325 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
326 {
327
328 KASSERT(m != NULL);
329
330 /*
331 * postpone freeing mbuf.
332 *
333 * we can't do it in interrupt context
334 * because we need to put kva back to kernel_map.
335 */
336
337 mutex_enter(&so_pendfree_lock);
338 m->m_next = so_pendfree;
339 so_pendfree = m;
340 cv_broadcast(&socurkva_cv);
341 mutex_exit(&so_pendfree_lock);
342 }
343
344 static long
345 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
346 {
347 struct iovec *iov = uio->uio_iov;
348 vaddr_t sva, eva;
349 vsize_t len;
350 vaddr_t lva;
351 int npgs, error;
352 vaddr_t va;
353 int i;
354
355 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
356 return (0);
357
358 if (iov->iov_len < (size_t) space)
359 space = iov->iov_len;
360 if (space > SOCK_LOAN_CHUNK)
361 space = SOCK_LOAN_CHUNK;
362
363 eva = round_page((vaddr_t) iov->iov_base + space);
364 sva = trunc_page((vaddr_t) iov->iov_base);
365 len = eva - sva;
366 npgs = len >> PAGE_SHIFT;
367
368 /* XXX KDASSERT */
369 KASSERT(npgs <= M_EXT_MAXPAGES);
370
371 lva = sokvaalloc(len, so);
372 if (lva == 0)
373 return 0;
374
375 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
376 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
377 if (error) {
378 sokvafree(lva, len);
379 return (0);
380 }
381
382 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
383 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
384 VM_PROT_READ);
385 pmap_update(pmap_kernel());
386
387 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
388
389 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
390 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
391
392 uio->uio_resid -= space;
393 /* uio_offset not updated, not set/used for write(2) */
394 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
395 uio->uio_iov->iov_len -= space;
396 if (uio->uio_iov->iov_len == 0) {
397 uio->uio_iov++;
398 uio->uio_iovcnt--;
399 }
400
401 return (space);
402 }
403
404 static int
405 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
406 {
407
408 KASSERT(ce == &sokva_reclaimerentry);
409 KASSERT(obj == NULL);
410
411 sodopendfree();
412 if (!vm_map_starved_p(kernel_map)) {
413 return CALLBACK_CHAIN_ABORT;
414 }
415 return CALLBACK_CHAIN_CONTINUE;
416 }
417
418 struct mbuf *
419 getsombuf(struct socket *so, int type)
420 {
421 struct mbuf *m;
422
423 m = m_get(M_WAIT, type);
424 MCLAIM(m, so->so_mowner);
425 return m;
426 }
427
428 struct mbuf *
429 m_intopt(struct socket *so, int val)
430 {
431 struct mbuf *m;
432
433 m = getsombuf(so, MT_SOOPTS);
434 m->m_len = sizeof(int);
435 *mtod(m, int *) = val;
436 return m;
437 }
438
439 void
440 soinit(void)
441 {
442
443 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
444 cv_init(&socurkva_cv, "sokva");
445
446 /* Set the initial adjusted socket buffer size. */
447 if (sb_max_set(sb_max))
448 panic("bad initial sb_max value: %lu", sb_max);
449
450 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
451 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
452 }
453
454 /*
455 * Socket operation routines.
456 * These routines are called by the routines in
457 * sys_socket.c or from a system process, and
458 * implement the semantics of socket operations by
459 * switching out to the protocol specific routines.
460 */
461 /*ARGSUSED*/
462 int
463 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l)
464 {
465 const struct protosw *prp;
466 struct socket *so;
467 uid_t uid;
468 int error, s;
469
470 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
471 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
472 KAUTH_ARG(proto));
473 if (error != 0)
474 return error;
475
476 if (proto)
477 prp = pffindproto(dom, proto, type);
478 else
479 prp = pffindtype(dom, type);
480 if (prp == NULL) {
481 /* no support for domain */
482 if (pffinddomain(dom) == 0)
483 return EAFNOSUPPORT;
484 /* no support for socket type */
485 if (proto == 0 && type != 0)
486 return EPROTOTYPE;
487 return EPROTONOSUPPORT;
488 }
489 if (prp->pr_usrreq == NULL)
490 return EPROTONOSUPPORT;
491 if (prp->pr_type != type)
492 return EPROTOTYPE;
493 s = splsoftnet();
494 so = pool_get(&socket_pool, PR_WAITOK);
495 memset(so, 0, sizeof(*so));
496 TAILQ_INIT(&so->so_q0);
497 TAILQ_INIT(&so->so_q);
498 so->so_type = type;
499 so->so_proto = prp;
500 so->so_send = sosend;
501 so->so_receive = soreceive;
502 #ifdef MBUFTRACE
503 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
504 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
505 so->so_mowner = &prp->pr_domain->dom_mowner;
506 #endif
507 selinit(&so->so_rcv.sb_sel);
508 selinit(&so->so_snd.sb_sel);
509 uid = kauth_cred_geteuid(l->l_cred);
510 so->so_uidinfo = uid_find(uid);
511 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
512 (struct mbuf *)(long)proto, NULL, l);
513 if (error != 0) {
514 so->so_state |= SS_NOFDREF;
515 sofree(so);
516 splx(s);
517 return error;
518 }
519 splx(s);
520 *aso = so;
521 return 0;
522 }
523
524 /* On success, write file descriptor to fdout and return zero. On
525 * failure, return non-zero; *fdout will be undefined.
526 */
527 int
528 fsocreate(int domain, struct socket **sop, int type, int protocol,
529 struct lwp *l, int *fdout)
530 {
531 struct socket *so;
532 struct file *fp;
533 int fd, error;
534
535 if ((error = fd_allocfile(&fp, &fd)) != 0)
536 return (error);
537 fp->f_flag = FREAD|FWRITE;
538 fp->f_type = DTYPE_SOCKET;
539 fp->f_ops = &socketops;
540 error = socreate(domain, &so, type, protocol, l);
541 if (error != 0) {
542 fd_abort(curproc, fp, fd);
543 } else {
544 if (sop != NULL)
545 *sop = so;
546 fp->f_data = so;
547 fd_affix(curproc, fp, fd);
548 *fdout = fd;
549 }
550 return error;
551 }
552
553 int
554 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
555 {
556 int s, error;
557
558 s = splsoftnet();
559 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
560 splx(s);
561 return error;
562 }
563
564 int
565 solisten(struct socket *so, int backlog, struct lwp *l)
566 {
567 int s, error;
568
569 s = splsoftnet();
570 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
571 SS_ISDISCONNECTING)) != 0)
572 return (EOPNOTSUPP);
573 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
574 NULL, NULL, l);
575 if (error != 0) {
576 splx(s);
577 return error;
578 }
579 if (TAILQ_EMPTY(&so->so_q))
580 so->so_options |= SO_ACCEPTCONN;
581 if (backlog < 0)
582 backlog = 0;
583 so->so_qlimit = min(backlog, somaxconn);
584 splx(s);
585 return 0;
586 }
587
588 void
589 sofree(struct socket *so)
590 {
591
592 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
593 return;
594 if (so->so_head) {
595 /*
596 * We must not decommission a socket that's on the accept(2)
597 * queue. If we do, then accept(2) may hang after select(2)
598 * indicated that the listening socket was ready.
599 */
600 if (!soqremque(so, 0))
601 return;
602 }
603 if (so->so_rcv.sb_hiwat)
604 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
605 RLIM_INFINITY);
606 if (so->so_snd.sb_hiwat)
607 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
608 RLIM_INFINITY);
609 sbrelease(&so->so_snd, so);
610 sorflush(so);
611 seldestroy(&so->so_rcv.sb_sel);
612 seldestroy(&so->so_snd.sb_sel);
613 pool_put(&socket_pool, so);
614 }
615
616 /*
617 * Close a socket on last file table reference removal.
618 * Initiate disconnect if connected.
619 * Free socket when disconnect complete.
620 */
621 int
622 soclose(struct socket *so)
623 {
624 struct socket *so2;
625 int s, error;
626
627 error = 0;
628 s = splsoftnet(); /* conservative */
629 if (so->so_options & SO_ACCEPTCONN) {
630 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
631 (void) soqremque(so2, 0);
632 (void) soabort(so2);
633 }
634 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
635 (void) soqremque(so2, 1);
636 (void) soabort(so2);
637 }
638 }
639 if (so->so_pcb == 0)
640 goto discard;
641 if (so->so_state & SS_ISCONNECTED) {
642 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
643 error = sodisconnect(so);
644 if (error)
645 goto drop;
646 }
647 if (so->so_options & SO_LINGER) {
648 if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
649 goto drop;
650 while (so->so_state & SS_ISCONNECTED) {
651 error = tsleep((void *)&so->so_timeo,
652 PSOCK | PCATCH, netcls,
653 so->so_linger * hz);
654 if (error)
655 break;
656 }
657 }
658 }
659 drop:
660 if (so->so_pcb) {
661 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
662 NULL, NULL, NULL, NULL);
663 if (error == 0)
664 error = error2;
665 }
666 discard:
667 if (so->so_state & SS_NOFDREF)
668 panic("soclose: NOFDREF");
669 so->so_state |= SS_NOFDREF;
670 sofree(so);
671 splx(s);
672 return (error);
673 }
674
675 /*
676 * Must be called at splsoftnet...
677 */
678 int
679 soabort(struct socket *so)
680 {
681 int error;
682
683 KASSERT(so->so_head == NULL);
684 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
685 NULL, NULL, NULL);
686 if (error) {
687 sofree(so);
688 }
689 return error;
690 }
691
692 int
693 soaccept(struct socket *so, struct mbuf *nam)
694 {
695 int s, error;
696
697 error = 0;
698 s = splsoftnet();
699 if ((so->so_state & SS_NOFDREF) == 0)
700 panic("soaccept: !NOFDREF");
701 so->so_state &= ~SS_NOFDREF;
702 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
703 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
704 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
705 NULL, nam, NULL, NULL);
706 else
707 error = ECONNABORTED;
708
709 splx(s);
710 return (error);
711 }
712
713 int
714 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
715 {
716 int s, error;
717
718 if (so->so_options & SO_ACCEPTCONN)
719 return (EOPNOTSUPP);
720 s = splsoftnet();
721 /*
722 * If protocol is connection-based, can only connect once.
723 * Otherwise, if connected, try to disconnect first.
724 * This allows user to disconnect by connecting to, e.g.,
725 * a null address.
726 */
727 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
728 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
729 (error = sodisconnect(so))))
730 error = EISCONN;
731 else
732 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
733 NULL, nam, NULL, l);
734 splx(s);
735 return (error);
736 }
737
738 int
739 soconnect2(struct socket *so1, struct socket *so2)
740 {
741 int s, error;
742
743 s = splsoftnet();
744 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
745 NULL, (struct mbuf *)so2, NULL, NULL);
746 splx(s);
747 return (error);
748 }
749
750 int
751 sodisconnect(struct socket *so)
752 {
753 int s, error;
754
755 s = splsoftnet();
756 if ((so->so_state & SS_ISCONNECTED) == 0) {
757 error = ENOTCONN;
758 goto bad;
759 }
760 if (so->so_state & SS_ISDISCONNECTING) {
761 error = EALREADY;
762 goto bad;
763 }
764 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
765 NULL, NULL, NULL, NULL);
766 bad:
767 splx(s);
768 sodopendfree();
769 return (error);
770 }
771
772 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
773 /*
774 * Send on a socket.
775 * If send must go all at once and message is larger than
776 * send buffering, then hard error.
777 * Lock against other senders.
778 * If must go all at once and not enough room now, then
779 * inform user that this would block and do nothing.
780 * Otherwise, if nonblocking, send as much as possible.
781 * The data to be sent is described by "uio" if nonzero,
782 * otherwise by the mbuf chain "top" (which must be null
783 * if uio is not). Data provided in mbuf chain must be small
784 * enough to send all at once.
785 *
786 * Returns nonzero on error, timeout or signal; callers
787 * must check for short counts if EINTR/ERESTART are returned.
788 * Data and control buffers are freed on return.
789 */
790 int
791 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
792 struct mbuf *control, int flags, struct lwp *l)
793 {
794 struct mbuf **mp, *m;
795 struct proc *p;
796 long space, len, resid, clen, mlen;
797 int error, s, dontroute, atomic;
798
799 p = l->l_proc;
800 sodopendfree();
801
802 clen = 0;
803 atomic = sosendallatonce(so) || top;
804 if (uio)
805 resid = uio->uio_resid;
806 else
807 resid = top->m_pkthdr.len;
808 /*
809 * In theory resid should be unsigned.
810 * However, space must be signed, as it might be less than 0
811 * if we over-committed, and we must use a signed comparison
812 * of space and resid. On the other hand, a negative resid
813 * causes us to loop sending 0-length segments to the protocol.
814 */
815 if (resid < 0) {
816 error = EINVAL;
817 goto out;
818 }
819 dontroute =
820 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
821 (so->so_proto->pr_flags & PR_ATOMIC);
822 if (l)
823 l->l_ru.ru_msgsnd++;
824 if (control)
825 clen = control->m_len;
826 #define snderr(errno) { error = errno; splx(s); goto release; }
827
828 restart:
829 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
830 goto out;
831 do {
832 s = splsoftnet();
833 if (so->so_state & SS_CANTSENDMORE)
834 snderr(EPIPE);
835 if (so->so_error) {
836 error = so->so_error;
837 so->so_error = 0;
838 splx(s);
839 goto release;
840 }
841 if ((so->so_state & SS_ISCONNECTED) == 0) {
842 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
843 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
844 !(resid == 0 && clen != 0))
845 snderr(ENOTCONN);
846 } else if (addr == 0)
847 snderr(EDESTADDRREQ);
848 }
849 space = sbspace(&so->so_snd);
850 if (flags & MSG_OOB)
851 space += 1024;
852 if ((atomic && resid > so->so_snd.sb_hiwat) ||
853 clen > so->so_snd.sb_hiwat)
854 snderr(EMSGSIZE);
855 if (space < resid + clen &&
856 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
857 if (so->so_nbio)
858 snderr(EWOULDBLOCK);
859 sbunlock(&so->so_snd);
860 error = sbwait(&so->so_snd);
861 splx(s);
862 if (error)
863 goto out;
864 goto restart;
865 }
866 splx(s);
867 mp = ⊤
868 space -= clen;
869 do {
870 if (uio == NULL) {
871 /*
872 * Data is prepackaged in "top".
873 */
874 resid = 0;
875 if (flags & MSG_EOR)
876 top->m_flags |= M_EOR;
877 } else do {
878 if (top == NULL) {
879 m = m_gethdr(M_WAIT, MT_DATA);
880 mlen = MHLEN;
881 m->m_pkthdr.len = 0;
882 m->m_pkthdr.rcvif = NULL;
883 } else {
884 m = m_get(M_WAIT, MT_DATA);
885 mlen = MLEN;
886 }
887 MCLAIM(m, so->so_snd.sb_mowner);
888 if (sock_loan_thresh >= 0 &&
889 uio->uio_iov->iov_len >= sock_loan_thresh &&
890 space >= sock_loan_thresh &&
891 (len = sosend_loan(so, uio, m,
892 space)) != 0) {
893 SOSEND_COUNTER_INCR(&sosend_loan_big);
894 space -= len;
895 goto have_data;
896 }
897 if (resid >= MINCLSIZE && space >= MCLBYTES) {
898 SOSEND_COUNTER_INCR(&sosend_copy_big);
899 m_clget(m, M_WAIT);
900 if ((m->m_flags & M_EXT) == 0)
901 goto nopages;
902 mlen = MCLBYTES;
903 if (atomic && top == 0) {
904 len = lmin(MCLBYTES - max_hdr,
905 resid);
906 m->m_data += max_hdr;
907 } else
908 len = lmin(MCLBYTES, resid);
909 space -= len;
910 } else {
911 nopages:
912 SOSEND_COUNTER_INCR(&sosend_copy_small);
913 len = lmin(lmin(mlen, resid), space);
914 space -= len;
915 /*
916 * For datagram protocols, leave room
917 * for protocol headers in first mbuf.
918 */
919 if (atomic && top == 0 && len < mlen)
920 MH_ALIGN(m, len);
921 }
922 error = uiomove(mtod(m, void *), (int)len, uio);
923 have_data:
924 resid = uio->uio_resid;
925 m->m_len = len;
926 *mp = m;
927 top->m_pkthdr.len += len;
928 if (error != 0)
929 goto release;
930 mp = &m->m_next;
931 if (resid <= 0) {
932 if (flags & MSG_EOR)
933 top->m_flags |= M_EOR;
934 break;
935 }
936 } while (space > 0 && atomic);
937
938 s = splsoftnet();
939
940 if (so->so_state & SS_CANTSENDMORE)
941 snderr(EPIPE);
942
943 if (dontroute)
944 so->so_options |= SO_DONTROUTE;
945 if (resid > 0)
946 so->so_state |= SS_MORETOCOME;
947 error = (*so->so_proto->pr_usrreq)(so,
948 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
949 top, addr, control, curlwp); /* XXX */
950 if (dontroute)
951 so->so_options &= ~SO_DONTROUTE;
952 if (resid > 0)
953 so->so_state &= ~SS_MORETOCOME;
954 splx(s);
955
956 clen = 0;
957 control = NULL;
958 top = NULL;
959 mp = ⊤
960 if (error != 0)
961 goto release;
962 } while (resid && space > 0);
963 } while (resid);
964
965 release:
966 sbunlock(&so->so_snd);
967 out:
968 if (top)
969 m_freem(top);
970 if (control)
971 m_freem(control);
972 return (error);
973 }
974
975 /*
976 * Following replacement or removal of the first mbuf on the first
977 * mbuf chain of a socket buffer, push necessary state changes back
978 * into the socket buffer so that other consumers see the values
979 * consistently. 'nextrecord' is the callers locally stored value of
980 * the original value of sb->sb_mb->m_nextpkt which must be restored
981 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
982 */
983 static void
984 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
985 {
986
987 /*
988 * First, update for the new value of nextrecord. If necessary,
989 * make it the first record.
990 */
991 if (sb->sb_mb != NULL)
992 sb->sb_mb->m_nextpkt = nextrecord;
993 else
994 sb->sb_mb = nextrecord;
995
996 /*
997 * Now update any dependent socket buffer fields to reflect
998 * the new state. This is an inline of SB_EMPTY_FIXUP, with
999 * the addition of a second clause that takes care of the
1000 * case where sb_mb has been updated, but remains the last
1001 * record.
1002 */
1003 if (sb->sb_mb == NULL) {
1004 sb->sb_mbtail = NULL;
1005 sb->sb_lastrecord = NULL;
1006 } else if (sb->sb_mb->m_nextpkt == NULL)
1007 sb->sb_lastrecord = sb->sb_mb;
1008 }
1009
1010 /*
1011 * Implement receive operations on a socket.
1012 * We depend on the way that records are added to the sockbuf
1013 * by sbappend*. In particular, each record (mbufs linked through m_next)
1014 * must begin with an address if the protocol so specifies,
1015 * followed by an optional mbuf or mbufs containing ancillary data,
1016 * and then zero or more mbufs of data.
1017 * In order to avoid blocking network interrupts for the entire time here,
1018 * we splx() while doing the actual copy to user space.
1019 * Although the sockbuf is locked, new data may still be appended,
1020 * and thus we must maintain consistency of the sockbuf during that time.
1021 *
1022 * The caller may receive the data as a single mbuf chain by supplying
1023 * an mbuf **mp0 for use in returning the chain. The uio is then used
1024 * only for the count in uio_resid.
1025 */
1026 int
1027 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1028 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1029 {
1030 struct lwp *l = curlwp;
1031 struct mbuf *m, **mp;
1032 int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1033 const struct protosw *pr;
1034 struct mbuf *nextrecord;
1035 int mbuf_removed = 0;
1036 const struct domain *dom;
1037
1038 pr = so->so_proto;
1039 atomic = pr->pr_flags & PR_ATOMIC;
1040 dom = pr->pr_domain;
1041 mp = mp0;
1042 type = 0;
1043 orig_resid = uio->uio_resid;
1044
1045 if (paddr != NULL)
1046 *paddr = NULL;
1047 if (controlp != NULL)
1048 *controlp = NULL;
1049 if (flagsp != NULL)
1050 flags = *flagsp &~ MSG_EOR;
1051 else
1052 flags = 0;
1053
1054 if ((flags & MSG_DONTWAIT) == 0)
1055 sodopendfree();
1056
1057 if (flags & MSG_OOB) {
1058 m = m_get(M_WAIT, MT_DATA);
1059 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1060 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1061 if (error)
1062 goto bad;
1063 do {
1064 error = uiomove(mtod(m, void *),
1065 (int) min(uio->uio_resid, m->m_len), uio);
1066 m = m_free(m);
1067 } while (uio->uio_resid > 0 && error == 0 && m);
1068 bad:
1069 if (m != NULL)
1070 m_freem(m);
1071 return error;
1072 }
1073 if (mp != NULL)
1074 *mp = NULL;
1075 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1076 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1077
1078 restart:
1079 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
1080 return error;
1081 s = splsoftnet();
1082
1083 m = so->so_rcv.sb_mb;
1084 /*
1085 * If we have less data than requested, block awaiting more
1086 * (subject to any timeout) if:
1087 * 1. the current count is less than the low water mark,
1088 * 2. MSG_WAITALL is set, and it is possible to do the entire
1089 * receive operation at once if we block (resid <= hiwat), or
1090 * 3. MSG_DONTWAIT is not set.
1091 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1092 * we have to do the receive in sections, and thus risk returning
1093 * a short count if a timeout or signal occurs after we start.
1094 */
1095 if (m == NULL ||
1096 ((flags & MSG_DONTWAIT) == 0 &&
1097 so->so_rcv.sb_cc < uio->uio_resid &&
1098 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1099 ((flags & MSG_WAITALL) &&
1100 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1101 m->m_nextpkt == NULL && !atomic)) {
1102 #ifdef DIAGNOSTIC
1103 if (m == NULL && so->so_rcv.sb_cc)
1104 panic("receive 1");
1105 #endif
1106 if (so->so_error) {
1107 if (m != NULL)
1108 goto dontblock;
1109 error = so->so_error;
1110 if ((flags & MSG_PEEK) == 0)
1111 so->so_error = 0;
1112 goto release;
1113 }
1114 if (so->so_state & SS_CANTRCVMORE) {
1115 if (m != NULL)
1116 goto dontblock;
1117 else
1118 goto release;
1119 }
1120 for (; m != NULL; m = m->m_next)
1121 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1122 m = so->so_rcv.sb_mb;
1123 goto dontblock;
1124 }
1125 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1126 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1127 error = ENOTCONN;
1128 goto release;
1129 }
1130 if (uio->uio_resid == 0)
1131 goto release;
1132 if (so->so_nbio || (flags & MSG_DONTWAIT)) {
1133 error = EWOULDBLOCK;
1134 goto release;
1135 }
1136 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1137 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1138 sbunlock(&so->so_rcv);
1139 error = sbwait(&so->so_rcv);
1140 splx(s);
1141 if (error != 0)
1142 return error;
1143 goto restart;
1144 }
1145 dontblock:
1146 /*
1147 * On entry here, m points to the first record of the socket buffer.
1148 * From this point onward, we maintain 'nextrecord' as a cache of the
1149 * pointer to the next record in the socket buffer. We must keep the
1150 * various socket buffer pointers and local stack versions of the
1151 * pointers in sync, pushing out modifications before dropping the
1152 * IPL, and re-reading them when picking it up.
1153 *
1154 * Otherwise, we will race with the network stack appending new data
1155 * or records onto the socket buffer by using inconsistent/stale
1156 * versions of the field, possibly resulting in socket buffer
1157 * corruption.
1158 *
1159 * By holding the high-level sblock(), we prevent simultaneous
1160 * readers from pulling off the front of the socket buffer.
1161 */
1162 if (l != NULL)
1163 l->l_ru.ru_msgrcv++;
1164 KASSERT(m == so->so_rcv.sb_mb);
1165 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1166 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1167 nextrecord = m->m_nextpkt;
1168 if (pr->pr_flags & PR_ADDR) {
1169 #ifdef DIAGNOSTIC
1170 if (m->m_type != MT_SONAME)
1171 panic("receive 1a");
1172 #endif
1173 orig_resid = 0;
1174 if (flags & MSG_PEEK) {
1175 if (paddr)
1176 *paddr = m_copy(m, 0, m->m_len);
1177 m = m->m_next;
1178 } else {
1179 sbfree(&so->so_rcv, m);
1180 mbuf_removed = 1;
1181 if (paddr != NULL) {
1182 *paddr = m;
1183 so->so_rcv.sb_mb = m->m_next;
1184 m->m_next = NULL;
1185 m = so->so_rcv.sb_mb;
1186 } else {
1187 MFREE(m, so->so_rcv.sb_mb);
1188 m = so->so_rcv.sb_mb;
1189 }
1190 sbsync(&so->so_rcv, nextrecord);
1191 }
1192 }
1193
1194 /*
1195 * Process one or more MT_CONTROL mbufs present before any data mbufs
1196 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1197 * just copy the data; if !MSG_PEEK, we call into the protocol to
1198 * perform externalization (or freeing if controlp == NULL).
1199 */
1200 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1201 struct mbuf *cm = NULL, *cmn;
1202 struct mbuf **cme = &cm;
1203
1204 do {
1205 if (flags & MSG_PEEK) {
1206 if (controlp != NULL) {
1207 *controlp = m_copy(m, 0, m->m_len);
1208 controlp = &(*controlp)->m_next;
1209 }
1210 m = m->m_next;
1211 } else {
1212 sbfree(&so->so_rcv, m);
1213 so->so_rcv.sb_mb = m->m_next;
1214 m->m_next = NULL;
1215 *cme = m;
1216 cme = &(*cme)->m_next;
1217 m = so->so_rcv.sb_mb;
1218 }
1219 } while (m != NULL && m->m_type == MT_CONTROL);
1220 if ((flags & MSG_PEEK) == 0)
1221 sbsync(&so->so_rcv, nextrecord);
1222 for (; cm != NULL; cm = cmn) {
1223 cmn = cm->m_next;
1224 cm->m_next = NULL;
1225 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1226 if (controlp != NULL) {
1227 if (dom->dom_externalize != NULL &&
1228 type == SCM_RIGHTS) {
1229 splx(s);
1230 error = (*dom->dom_externalize)(cm, l);
1231 s = splsoftnet();
1232 }
1233 *controlp = cm;
1234 while (*controlp != NULL)
1235 controlp = &(*controlp)->m_next;
1236 } else {
1237 /*
1238 * Dispose of any SCM_RIGHTS message that went
1239 * through the read path rather than recv.
1240 */
1241 if (dom->dom_dispose != NULL &&
1242 type == SCM_RIGHTS) {
1243 splx(s);
1244 (*dom->dom_dispose)(cm);
1245 s = splsoftnet();
1246 }
1247 m_freem(cm);
1248 }
1249 }
1250 if (m != NULL)
1251 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1252 else
1253 nextrecord = so->so_rcv.sb_mb;
1254 orig_resid = 0;
1255 }
1256
1257 /* If m is non-NULL, we have some data to read. */
1258 if (__predict_true(m != NULL)) {
1259 type = m->m_type;
1260 if (type == MT_OOBDATA)
1261 flags |= MSG_OOB;
1262 }
1263 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1264 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1265
1266 moff = 0;
1267 offset = 0;
1268 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1269 if (m->m_type == MT_OOBDATA) {
1270 if (type != MT_OOBDATA)
1271 break;
1272 } else if (type == MT_OOBDATA)
1273 break;
1274 #ifdef DIAGNOSTIC
1275 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1276 panic("receive 3");
1277 #endif
1278 so->so_state &= ~SS_RCVATMARK;
1279 len = uio->uio_resid;
1280 if (so->so_oobmark && len > so->so_oobmark - offset)
1281 len = so->so_oobmark - offset;
1282 if (len > m->m_len - moff)
1283 len = m->m_len - moff;
1284 /*
1285 * If mp is set, just pass back the mbufs.
1286 * Otherwise copy them out via the uio, then free.
1287 * Sockbuf must be consistent here (points to current mbuf,
1288 * it points to next record) when we drop priority;
1289 * we must note any additions to the sockbuf when we
1290 * block interrupts again.
1291 */
1292 if (mp == NULL) {
1293 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1294 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1295 splx(s);
1296 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1297 s = splsoftnet();
1298 if (error != 0) {
1299 /*
1300 * If any part of the record has been removed
1301 * (such as the MT_SONAME mbuf, which will
1302 * happen when PR_ADDR, and thus also
1303 * PR_ATOMIC, is set), then drop the entire
1304 * record to maintain the atomicity of the
1305 * receive operation.
1306 *
1307 * This avoids a later panic("receive 1a")
1308 * when compiled with DIAGNOSTIC.
1309 */
1310 if (m && mbuf_removed && atomic)
1311 (void) sbdroprecord(&so->so_rcv);
1312
1313 goto release;
1314 }
1315 } else
1316 uio->uio_resid -= len;
1317 if (len == m->m_len - moff) {
1318 if (m->m_flags & M_EOR)
1319 flags |= MSG_EOR;
1320 if (flags & MSG_PEEK) {
1321 m = m->m_next;
1322 moff = 0;
1323 } else {
1324 nextrecord = m->m_nextpkt;
1325 sbfree(&so->so_rcv, m);
1326 if (mp) {
1327 *mp = m;
1328 mp = &m->m_next;
1329 so->so_rcv.sb_mb = m = m->m_next;
1330 *mp = NULL;
1331 } else {
1332 MFREE(m, so->so_rcv.sb_mb);
1333 m = so->so_rcv.sb_mb;
1334 }
1335 /*
1336 * If m != NULL, we also know that
1337 * so->so_rcv.sb_mb != NULL.
1338 */
1339 KASSERT(so->so_rcv.sb_mb == m);
1340 if (m) {
1341 m->m_nextpkt = nextrecord;
1342 if (nextrecord == NULL)
1343 so->so_rcv.sb_lastrecord = m;
1344 } else {
1345 so->so_rcv.sb_mb = nextrecord;
1346 SB_EMPTY_FIXUP(&so->so_rcv);
1347 }
1348 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1349 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1350 }
1351 } else if (flags & MSG_PEEK)
1352 moff += len;
1353 else {
1354 if (mp != NULL)
1355 *mp = m_copym(m, 0, len, M_WAIT);
1356 m->m_data += len;
1357 m->m_len -= len;
1358 so->so_rcv.sb_cc -= len;
1359 }
1360 if (so->so_oobmark) {
1361 if ((flags & MSG_PEEK) == 0) {
1362 so->so_oobmark -= len;
1363 if (so->so_oobmark == 0) {
1364 so->so_state |= SS_RCVATMARK;
1365 break;
1366 }
1367 } else {
1368 offset += len;
1369 if (offset == so->so_oobmark)
1370 break;
1371 }
1372 }
1373 if (flags & MSG_EOR)
1374 break;
1375 /*
1376 * If the MSG_WAITALL flag is set (for non-atomic socket),
1377 * we must not quit until "uio->uio_resid == 0" or an error
1378 * termination. If a signal/timeout occurs, return
1379 * with a short count but without error.
1380 * Keep sockbuf locked against other readers.
1381 */
1382 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1383 !sosendallatonce(so) && !nextrecord) {
1384 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1385 break;
1386 /*
1387 * If we are peeking and the socket receive buffer is
1388 * full, stop since we can't get more data to peek at.
1389 */
1390 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1391 break;
1392 /*
1393 * If we've drained the socket buffer, tell the
1394 * protocol in case it needs to do something to
1395 * get it filled again.
1396 */
1397 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1398 (*pr->pr_usrreq)(so, PRU_RCVD,
1399 NULL, (struct mbuf *)(long)flags, NULL, l);
1400 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1401 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1402 error = sbwait(&so->so_rcv);
1403 if (error != 0) {
1404 sbunlock(&so->so_rcv);
1405 splx(s);
1406 return 0;
1407 }
1408 if ((m = so->so_rcv.sb_mb) != NULL)
1409 nextrecord = m->m_nextpkt;
1410 }
1411 }
1412
1413 if (m && atomic) {
1414 flags |= MSG_TRUNC;
1415 if ((flags & MSG_PEEK) == 0)
1416 (void) sbdroprecord(&so->so_rcv);
1417 }
1418 if ((flags & MSG_PEEK) == 0) {
1419 if (m == NULL) {
1420 /*
1421 * First part is an inline SB_EMPTY_FIXUP(). Second
1422 * part makes sure sb_lastrecord is up-to-date if
1423 * there is still data in the socket buffer.
1424 */
1425 so->so_rcv.sb_mb = nextrecord;
1426 if (so->so_rcv.sb_mb == NULL) {
1427 so->so_rcv.sb_mbtail = NULL;
1428 so->so_rcv.sb_lastrecord = NULL;
1429 } else if (nextrecord->m_nextpkt == NULL)
1430 so->so_rcv.sb_lastrecord = nextrecord;
1431 }
1432 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1433 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1434 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1435 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1436 (struct mbuf *)(long)flags, NULL, l);
1437 }
1438 if (orig_resid == uio->uio_resid && orig_resid &&
1439 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1440 sbunlock(&so->so_rcv);
1441 splx(s);
1442 goto restart;
1443 }
1444
1445 if (flagsp != NULL)
1446 *flagsp |= flags;
1447 release:
1448 sbunlock(&so->so_rcv);
1449 splx(s);
1450 return error;
1451 }
1452
1453 int
1454 soshutdown(struct socket *so, int how)
1455 {
1456 const struct protosw *pr;
1457
1458 pr = so->so_proto;
1459 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1460 return (EINVAL);
1461
1462 if (how == SHUT_RD || how == SHUT_RDWR)
1463 sorflush(so);
1464 if (how == SHUT_WR || how == SHUT_RDWR)
1465 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1466 NULL, NULL, NULL);
1467 return 0;
1468 }
1469
1470 void
1471 sorflush(struct socket *so)
1472 {
1473 struct sockbuf *sb, asb;
1474 const struct protosw *pr;
1475 int s;
1476
1477 sb = &so->so_rcv;
1478 pr = so->so_proto;
1479 sb->sb_flags |= SB_NOINTR;
1480 (void) sblock(sb, M_WAITOK);
1481 s = splnet();
1482 socantrcvmore(so);
1483 sbunlock(sb);
1484 asb = *sb;
1485 /*
1486 * Clear most of the sockbuf structure, but leave some of the
1487 * fields valid.
1488 */
1489 memset(&sb->sb_startzero, 0,
1490 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1491 splx(s);
1492 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1493 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1494 sbrelease(&asb, so);
1495 }
1496
1497 static int
1498 sosetopt1(struct socket *so, int level, int optname, struct mbuf *m)
1499 {
1500 int optval, val;
1501 struct linger *l;
1502 struct sockbuf *sb;
1503 struct timeval *tv;
1504
1505 switch (optname) {
1506
1507 case SO_LINGER:
1508 if (m == NULL || m->m_len != sizeof(struct linger))
1509 return EINVAL;
1510 l = mtod(m, struct linger *);
1511 if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
1512 l->l_linger > (INT_MAX / hz))
1513 return EDOM;
1514 so->so_linger = l->l_linger;
1515 if (l->l_onoff)
1516 so->so_options |= SO_LINGER;
1517 else
1518 so->so_options &= ~SO_LINGER;
1519 break;
1520
1521 case SO_DEBUG:
1522 case SO_KEEPALIVE:
1523 case SO_DONTROUTE:
1524 case SO_USELOOPBACK:
1525 case SO_BROADCAST:
1526 case SO_REUSEADDR:
1527 case SO_REUSEPORT:
1528 case SO_OOBINLINE:
1529 case SO_TIMESTAMP:
1530 if (m == NULL || m->m_len < sizeof(int))
1531 return EINVAL;
1532 if (*mtod(m, int *))
1533 so->so_options |= optname;
1534 else
1535 so->so_options &= ~optname;
1536 break;
1537
1538 case SO_SNDBUF:
1539 case SO_RCVBUF:
1540 case SO_SNDLOWAT:
1541 case SO_RCVLOWAT:
1542 if (m == NULL || m->m_len < sizeof(int))
1543 return EINVAL;
1544
1545 /*
1546 * Values < 1 make no sense for any of these
1547 * options, so disallow them.
1548 */
1549 optval = *mtod(m, int *);
1550 if (optval < 1)
1551 return EINVAL;
1552
1553 switch (optname) {
1554
1555 case SO_SNDBUF:
1556 case SO_RCVBUF:
1557 sb = (optname == SO_SNDBUF) ?
1558 &so->so_snd : &so->so_rcv;
1559 if (sbreserve(sb, (u_long)optval, so) == 0)
1560 return ENOBUFS;
1561 sb->sb_flags &= ~SB_AUTOSIZE;
1562 break;
1563
1564 /*
1565 * Make sure the low-water is never greater than
1566 * the high-water.
1567 */
1568 case SO_SNDLOWAT:
1569 so->so_snd.sb_lowat =
1570 (optval > so->so_snd.sb_hiwat) ?
1571 so->so_snd.sb_hiwat : optval;
1572 break;
1573 case SO_RCVLOWAT:
1574 so->so_rcv.sb_lowat =
1575 (optval > so->so_rcv.sb_hiwat) ?
1576 so->so_rcv.sb_hiwat : optval;
1577 break;
1578 }
1579 break;
1580
1581 case SO_SNDTIMEO:
1582 case SO_RCVTIMEO:
1583 if (m == NULL || m->m_len < sizeof(*tv))
1584 return EINVAL;
1585 tv = mtod(m, struct timeval *);
1586 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz)
1587 return EDOM;
1588 val = tv->tv_sec * hz + tv->tv_usec / tick;
1589 if (val == 0 && tv->tv_usec != 0)
1590 val = 1;
1591
1592 switch (optname) {
1593
1594 case SO_SNDTIMEO:
1595 so->so_snd.sb_timeo = val;
1596 break;
1597 case SO_RCVTIMEO:
1598 so->so_rcv.sb_timeo = val;
1599 break;
1600 }
1601 break;
1602
1603 default:
1604 return ENOPROTOOPT;
1605 }
1606 return 0;
1607 }
1608
1609 int
1610 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
1611 {
1612 int error, prerr;
1613
1614 if (level == SOL_SOCKET)
1615 error = sosetopt1(so, level, optname, m);
1616 else
1617 error = ENOPROTOOPT;
1618
1619 if ((error == 0 || error == ENOPROTOOPT) &&
1620 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1621 /* give the protocol stack a shot */
1622 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, level,
1623 optname, &m);
1624 if (prerr == 0)
1625 error = 0;
1626 else if (prerr != ENOPROTOOPT)
1627 error = prerr;
1628 } else if (m != NULL)
1629 (void)m_free(m);
1630 return error;
1631 }
1632
1633 int
1634 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1635 {
1636 struct mbuf *m;
1637
1638 if (level != SOL_SOCKET) {
1639 if (so->so_proto && so->so_proto->pr_ctloutput) {
1640 return ((*so->so_proto->pr_ctloutput)
1641 (PRCO_GETOPT, so, level, optname, mp));
1642 } else
1643 return (ENOPROTOOPT);
1644 } else {
1645 m = m_get(M_WAIT, MT_SOOPTS);
1646 m->m_len = sizeof(int);
1647
1648 switch (optname) {
1649
1650 case SO_LINGER:
1651 m->m_len = sizeof(struct linger);
1652 mtod(m, struct linger *)->l_onoff =
1653 (so->so_options & SO_LINGER) ? 1 : 0;
1654 mtod(m, struct linger *)->l_linger = so->so_linger;
1655 break;
1656
1657 case SO_USELOOPBACK:
1658 case SO_DONTROUTE:
1659 case SO_DEBUG:
1660 case SO_KEEPALIVE:
1661 case SO_REUSEADDR:
1662 case SO_REUSEPORT:
1663 case SO_BROADCAST:
1664 case SO_OOBINLINE:
1665 case SO_TIMESTAMP:
1666 *mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
1667 break;
1668
1669 case SO_TYPE:
1670 *mtod(m, int *) = so->so_type;
1671 break;
1672
1673 case SO_ERROR:
1674 *mtod(m, int *) = so->so_error;
1675 so->so_error = 0;
1676 break;
1677
1678 case SO_SNDBUF:
1679 *mtod(m, int *) = so->so_snd.sb_hiwat;
1680 break;
1681
1682 case SO_RCVBUF:
1683 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1684 break;
1685
1686 case SO_SNDLOWAT:
1687 *mtod(m, int *) = so->so_snd.sb_lowat;
1688 break;
1689
1690 case SO_RCVLOWAT:
1691 *mtod(m, int *) = so->so_rcv.sb_lowat;
1692 break;
1693
1694 case SO_SNDTIMEO:
1695 case SO_RCVTIMEO:
1696 {
1697 int val = (optname == SO_SNDTIMEO ?
1698 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1699
1700 m->m_len = sizeof(struct timeval);
1701 mtod(m, struct timeval *)->tv_sec = val / hz;
1702 mtod(m, struct timeval *)->tv_usec =
1703 (val % hz) * tick;
1704 break;
1705 }
1706
1707 case SO_OVERFLOWED:
1708 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1709 break;
1710
1711 default:
1712 (void)m_free(m);
1713 return (ENOPROTOOPT);
1714 }
1715 *mp = m;
1716 return (0);
1717 }
1718 }
1719
1720 void
1721 sohasoutofband(struct socket *so)
1722 {
1723
1724 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1725 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, 0);
1726 }
1727
1728 static void
1729 filt_sordetach(struct knote *kn)
1730 {
1731 struct socket *so;
1732
1733 so = ((file_t *)kn->kn_obj)->f_data;
1734 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1735 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1736 so->so_rcv.sb_flags &= ~SB_KNOTE;
1737 }
1738
1739 /*ARGSUSED*/
1740 static int
1741 filt_soread(struct knote *kn, long hint)
1742 {
1743 struct socket *so;
1744
1745 so = ((file_t *)kn->kn_obj)->f_data;
1746 kn->kn_data = so->so_rcv.sb_cc;
1747 if (so->so_state & SS_CANTRCVMORE) {
1748 kn->kn_flags |= EV_EOF;
1749 kn->kn_fflags = so->so_error;
1750 return (1);
1751 }
1752 if (so->so_error) /* temporary udp error */
1753 return (1);
1754 if (kn->kn_sfflags & NOTE_LOWAT)
1755 return (kn->kn_data >= kn->kn_sdata);
1756 return (kn->kn_data >= so->so_rcv.sb_lowat);
1757 }
1758
1759 static void
1760 filt_sowdetach(struct knote *kn)
1761 {
1762 struct socket *so;
1763
1764 so = ((file_t *)kn->kn_obj)->f_data;
1765 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1766 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1767 so->so_snd.sb_flags &= ~SB_KNOTE;
1768 }
1769
1770 /*ARGSUSED*/
1771 static int
1772 filt_sowrite(struct knote *kn, long hint)
1773 {
1774 struct socket *so;
1775
1776 so = ((file_t *)kn->kn_obj)->f_data;
1777 kn->kn_data = sbspace(&so->so_snd);
1778 if (so->so_state & SS_CANTSENDMORE) {
1779 kn->kn_flags |= EV_EOF;
1780 kn->kn_fflags = so->so_error;
1781 return (1);
1782 }
1783 if (so->so_error) /* temporary udp error */
1784 return (1);
1785 if (((so->so_state & SS_ISCONNECTED) == 0) &&
1786 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1787 return (0);
1788 if (kn->kn_sfflags & NOTE_LOWAT)
1789 return (kn->kn_data >= kn->kn_sdata);
1790 return (kn->kn_data >= so->so_snd.sb_lowat);
1791 }
1792
1793 /*ARGSUSED*/
1794 static int
1795 filt_solisten(struct knote *kn, long hint)
1796 {
1797 struct socket *so;
1798
1799 so = ((file_t *)kn->kn_obj)->f_data;
1800
1801 /*
1802 * Set kn_data to number of incoming connections, not
1803 * counting partial (incomplete) connections.
1804 */
1805 kn->kn_data = so->so_qlen;
1806 return (kn->kn_data > 0);
1807 }
1808
1809 static const struct filterops solisten_filtops =
1810 { 1, NULL, filt_sordetach, filt_solisten };
1811 static const struct filterops soread_filtops =
1812 { 1, NULL, filt_sordetach, filt_soread };
1813 static const struct filterops sowrite_filtops =
1814 { 1, NULL, filt_sowdetach, filt_sowrite };
1815
1816 int
1817 soo_kqfilter(struct file *fp, struct knote *kn)
1818 {
1819 struct socket *so;
1820 struct sockbuf *sb;
1821
1822 so = ((file_t *)kn->kn_obj)->f_data;
1823 switch (kn->kn_filter) {
1824 case EVFILT_READ:
1825 if (so->so_options & SO_ACCEPTCONN)
1826 kn->kn_fop = &solisten_filtops;
1827 else
1828 kn->kn_fop = &soread_filtops;
1829 sb = &so->so_rcv;
1830 break;
1831 case EVFILT_WRITE:
1832 kn->kn_fop = &sowrite_filtops;
1833 sb = &so->so_snd;
1834 break;
1835 default:
1836 return (EINVAL);
1837 }
1838 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1839 sb->sb_flags |= SB_KNOTE;
1840 return (0);
1841 }
1842
1843 static int
1844 sodopoll(struct socket *so, int events)
1845 {
1846 int revents;
1847
1848 revents = 0;
1849
1850 if (events & (POLLIN | POLLRDNORM))
1851 if (soreadable(so))
1852 revents |= events & (POLLIN | POLLRDNORM);
1853
1854 if (events & (POLLOUT | POLLWRNORM))
1855 if (sowritable(so))
1856 revents |= events & (POLLOUT | POLLWRNORM);
1857
1858 if (events & (POLLPRI | POLLRDBAND))
1859 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
1860 revents |= events & (POLLPRI | POLLRDBAND);
1861
1862 return revents;
1863 }
1864
1865 int
1866 sopoll(struct socket *so, int events)
1867 {
1868 int revents = 0;
1869 int s;
1870
1871 if ((revents = sodopoll(so, events)) != 0)
1872 return revents;
1873
1874 KERNEL_LOCK(1, curlwp);
1875 s = splsoftnet();
1876
1877 if ((revents = sodopoll(so, events)) == 0) {
1878 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
1879 selrecord(curlwp, &so->so_rcv.sb_sel);
1880 so->so_rcv.sb_flags |= SB_SEL;
1881 }
1882
1883 if (events & (POLLOUT | POLLWRNORM)) {
1884 selrecord(curlwp, &so->so_snd.sb_sel);
1885 so->so_snd.sb_flags |= SB_SEL;
1886 }
1887 }
1888
1889 splx(s);
1890 KERNEL_UNLOCK_ONE(curlwp);
1891
1892 return revents;
1893 }
1894
1895
1896 #include <sys/sysctl.h>
1897
1898 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
1899
1900 /*
1901 * sysctl helper routine for kern.somaxkva. ensures that the given
1902 * value is not too small.
1903 * (XXX should we maybe make sure it's not too large as well?)
1904 */
1905 static int
1906 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
1907 {
1908 int error, new_somaxkva;
1909 struct sysctlnode node;
1910
1911 new_somaxkva = somaxkva;
1912 node = *rnode;
1913 node.sysctl_data = &new_somaxkva;
1914 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1915 if (error || newp == NULL)
1916 return (error);
1917
1918 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
1919 return (EINVAL);
1920
1921 mutex_enter(&so_pendfree_lock);
1922 somaxkva = new_somaxkva;
1923 cv_broadcast(&socurkva_cv);
1924 mutex_exit(&so_pendfree_lock);
1925
1926 return (error);
1927 }
1928
1929 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
1930 {
1931
1932 sysctl_createv(clog, 0, NULL, NULL,
1933 CTLFLAG_PERMANENT,
1934 CTLTYPE_NODE, "kern", NULL,
1935 NULL, 0, NULL, 0,
1936 CTL_KERN, CTL_EOL);
1937
1938 sysctl_createv(clog, 0, NULL, NULL,
1939 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1940 CTLTYPE_INT, "somaxkva",
1941 SYSCTL_DESCR("Maximum amount of kernel memory to be "
1942 "used for socket buffers"),
1943 sysctl_kern_somaxkva, 0, NULL, 0,
1944 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
1945 }
1946