Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.160.2.1
      1 /*	$NetBSD: uipc_socket.c,v 1.160.2.1 2008/05/16 02:25:28 yamt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.160.2.1 2008/05/16 02:25:28 yamt Exp $");
     67 
     68 #include "opt_sock_counters.h"
     69 #include "opt_sosend_loan.h"
     70 #include "opt_mbuftrace.h"
     71 #include "opt_somaxkva.h"
     72 
     73 #include <sys/param.h>
     74 #include <sys/systm.h>
     75 #include <sys/proc.h>
     76 #include <sys/file.h>
     77 #include <sys/filedesc.h>
     78 #include <sys/malloc.h>
     79 #include <sys/mbuf.h>
     80 #include <sys/domain.h>
     81 #include <sys/kernel.h>
     82 #include <sys/protosw.h>
     83 #include <sys/socket.h>
     84 #include <sys/socketvar.h>
     85 #include <sys/signalvar.h>
     86 #include <sys/resourcevar.h>
     87 #include <sys/event.h>
     88 #include <sys/poll.h>
     89 #include <sys/kauth.h>
     90 #include <sys/mutex.h>
     91 #include <sys/condvar.h>
     92 
     93 #include <uvm/uvm.h>
     94 
     95 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
     96 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
     97 
     98 extern const struct fileops socketops;
     99 
    100 extern int	somaxconn;			/* patchable (XXX sysctl) */
    101 int		somaxconn = SOMAXCONN;
    102 kmutex_t	*softnet_lock;
    103 
    104 #ifdef SOSEND_COUNTERS
    105 #include <sys/device.h>
    106 
    107 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    108     NULL, "sosend", "loan big");
    109 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    110     NULL, "sosend", "copy big");
    111 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    112     NULL, "sosend", "copy small");
    113 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    114     NULL, "sosend", "kva limit");
    115 
    116 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    117 
    118 EVCNT_ATTACH_STATIC(sosend_loan_big);
    119 EVCNT_ATTACH_STATIC(sosend_copy_big);
    120 EVCNT_ATTACH_STATIC(sosend_copy_small);
    121 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    122 #else
    123 
    124 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    125 
    126 #endif /* SOSEND_COUNTERS */
    127 
    128 static struct callback_entry sokva_reclaimerentry;
    129 
    130 #ifdef SOSEND_NO_LOAN
    131 int sock_loan_thresh = -1;
    132 #else
    133 int sock_loan_thresh = 4096;
    134 #endif
    135 
    136 static kmutex_t so_pendfree_lock;
    137 static struct mbuf *so_pendfree;
    138 
    139 #ifndef SOMAXKVA
    140 #define	SOMAXKVA (16 * 1024 * 1024)
    141 #endif
    142 int somaxkva = SOMAXKVA;
    143 static int socurkva;
    144 static kcondvar_t socurkva_cv;
    145 
    146 #define	SOCK_LOAN_CHUNK		65536
    147 
    148 static size_t sodopendfree(void);
    149 static size_t sodopendfreel(void);
    150 
    151 static vsize_t
    152 sokvareserve(struct socket *so, vsize_t len)
    153 {
    154 	int error;
    155 
    156 	mutex_enter(&so_pendfree_lock);
    157 	while (socurkva + len > somaxkva) {
    158 		size_t freed;
    159 
    160 		/*
    161 		 * try to do pendfree.
    162 		 */
    163 
    164 		freed = sodopendfreel();
    165 
    166 		/*
    167 		 * if some kva was freed, try again.
    168 		 */
    169 
    170 		if (freed)
    171 			continue;
    172 
    173 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    174 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    175 		if (error) {
    176 			len = 0;
    177 			break;
    178 		}
    179 	}
    180 	socurkva += len;
    181 	mutex_exit(&so_pendfree_lock);
    182 	return len;
    183 }
    184 
    185 static void
    186 sokvaunreserve(vsize_t len)
    187 {
    188 
    189 	mutex_enter(&so_pendfree_lock);
    190 	socurkva -= len;
    191 	cv_broadcast(&socurkva_cv);
    192 	mutex_exit(&so_pendfree_lock);
    193 }
    194 
    195 /*
    196  * sokvaalloc: allocate kva for loan.
    197  */
    198 
    199 vaddr_t
    200 sokvaalloc(vsize_t len, struct socket *so)
    201 {
    202 	vaddr_t lva;
    203 
    204 	/*
    205 	 * reserve kva.
    206 	 */
    207 
    208 	if (sokvareserve(so, len) == 0)
    209 		return 0;
    210 
    211 	/*
    212 	 * allocate kva.
    213 	 */
    214 
    215 	lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    216 	if (lva == 0) {
    217 		sokvaunreserve(len);
    218 		return (0);
    219 	}
    220 
    221 	return lva;
    222 }
    223 
    224 /*
    225  * sokvafree: free kva for loan.
    226  */
    227 
    228 void
    229 sokvafree(vaddr_t sva, vsize_t len)
    230 {
    231 
    232 	/*
    233 	 * free kva.
    234 	 */
    235 
    236 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    237 
    238 	/*
    239 	 * unreserve kva.
    240 	 */
    241 
    242 	sokvaunreserve(len);
    243 }
    244 
    245 static void
    246 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    247 {
    248 	vaddr_t sva, eva;
    249 	vsize_t len;
    250 	int npgs;
    251 
    252 	KASSERT(pgs != NULL);
    253 
    254 	eva = round_page((vaddr_t) buf + size);
    255 	sva = trunc_page((vaddr_t) buf);
    256 	len = eva - sva;
    257 	npgs = len >> PAGE_SHIFT;
    258 
    259 	pmap_kremove(sva, len);
    260 	pmap_update(pmap_kernel());
    261 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    262 	sokvafree(sva, len);
    263 }
    264 
    265 static size_t
    266 sodopendfree(void)
    267 {
    268 	size_t rv;
    269 
    270 	if (__predict_true(so_pendfree == NULL))
    271 		return 0;
    272 
    273 	mutex_enter(&so_pendfree_lock);
    274 	rv = sodopendfreel();
    275 	mutex_exit(&so_pendfree_lock);
    276 
    277 	return rv;
    278 }
    279 
    280 /*
    281  * sodopendfreel: free mbufs on "pendfree" list.
    282  * unlock and relock so_pendfree_lock when freeing mbufs.
    283  *
    284  * => called with so_pendfree_lock held.
    285  */
    286 
    287 static size_t
    288 sodopendfreel(void)
    289 {
    290 	struct mbuf *m, *next;
    291 	size_t rv = 0;
    292 
    293 	KASSERT(mutex_owned(&so_pendfree_lock));
    294 
    295 	while (so_pendfree != NULL) {
    296 		m = so_pendfree;
    297 		so_pendfree = NULL;
    298 		mutex_exit(&so_pendfree_lock);
    299 
    300 		for (; m != NULL; m = next) {
    301 			next = m->m_next;
    302 			KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
    303 			KASSERT(m->m_ext.ext_refcnt == 0);
    304 
    305 			rv += m->m_ext.ext_size;
    306 			sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    307 			    m->m_ext.ext_size);
    308 			pool_cache_put(mb_cache, m);
    309 		}
    310 
    311 		mutex_enter(&so_pendfree_lock);
    312 	}
    313 
    314 	return (rv);
    315 }
    316 
    317 void
    318 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    319 {
    320 
    321 	KASSERT(m != NULL);
    322 
    323 	/*
    324 	 * postpone freeing mbuf.
    325 	 *
    326 	 * we can't do it in interrupt context
    327 	 * because we need to put kva back to kernel_map.
    328 	 */
    329 
    330 	mutex_enter(&so_pendfree_lock);
    331 	m->m_next = so_pendfree;
    332 	so_pendfree = m;
    333 	cv_broadcast(&socurkva_cv);
    334 	mutex_exit(&so_pendfree_lock);
    335 }
    336 
    337 static long
    338 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    339 {
    340 	struct iovec *iov = uio->uio_iov;
    341 	vaddr_t sva, eva;
    342 	vsize_t len;
    343 	vaddr_t lva;
    344 	int npgs, error;
    345 	vaddr_t va;
    346 	int i;
    347 
    348 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    349 		return (0);
    350 
    351 	if (iov->iov_len < (size_t) space)
    352 		space = iov->iov_len;
    353 	if (space > SOCK_LOAN_CHUNK)
    354 		space = SOCK_LOAN_CHUNK;
    355 
    356 	eva = round_page((vaddr_t) iov->iov_base + space);
    357 	sva = trunc_page((vaddr_t) iov->iov_base);
    358 	len = eva - sva;
    359 	npgs = len >> PAGE_SHIFT;
    360 
    361 	KASSERT(npgs <= M_EXT_MAXPAGES);
    362 
    363 	lva = sokvaalloc(len, so);
    364 	if (lva == 0)
    365 		return 0;
    366 
    367 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    368 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    369 	if (error) {
    370 		sokvafree(lva, len);
    371 		return (0);
    372 	}
    373 
    374 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    375 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    376 		    VM_PROT_READ);
    377 	pmap_update(pmap_kernel());
    378 
    379 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    380 
    381 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    382 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    383 
    384 	uio->uio_resid -= space;
    385 	/* uio_offset not updated, not set/used for write(2) */
    386 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    387 	uio->uio_iov->iov_len -= space;
    388 	if (uio->uio_iov->iov_len == 0) {
    389 		uio->uio_iov++;
    390 		uio->uio_iovcnt--;
    391 	}
    392 
    393 	return (space);
    394 }
    395 
    396 static int
    397 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    398 {
    399 
    400 	KASSERT(ce == &sokva_reclaimerentry);
    401 	KASSERT(obj == NULL);
    402 
    403 	sodopendfree();
    404 	if (!vm_map_starved_p(kernel_map)) {
    405 		return CALLBACK_CHAIN_ABORT;
    406 	}
    407 	return CALLBACK_CHAIN_CONTINUE;
    408 }
    409 
    410 struct mbuf *
    411 getsombuf(struct socket *so, int type)
    412 {
    413 	struct mbuf *m;
    414 
    415 	m = m_get(M_WAIT, type);
    416 	MCLAIM(m, so->so_mowner);
    417 	return m;
    418 }
    419 
    420 struct mbuf *
    421 m_intopt(struct socket *so, int val)
    422 {
    423 	struct mbuf *m;
    424 
    425 	m = getsombuf(so, MT_SOOPTS);
    426 	m->m_len = sizeof(int);
    427 	*mtod(m, int *) = val;
    428 	return m;
    429 }
    430 
    431 void
    432 soinit(void)
    433 {
    434 
    435 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    436 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    437 	cv_init(&socurkva_cv, "sokva");
    438 
    439 	/* Set the initial adjusted socket buffer size. */
    440 	if (sb_max_set(sb_max))
    441 		panic("bad initial sb_max value: %lu", sb_max);
    442 
    443 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    444 	    &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
    445 }
    446 
    447 /*
    448  * Socket operation routines.
    449  * These routines are called by the routines in
    450  * sys_socket.c or from a system process, and
    451  * implement the semantics of socket operations by
    452  * switching out to the protocol specific routines.
    453  */
    454 /*ARGSUSED*/
    455 int
    456 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    457 	 struct socket *lockso)
    458 {
    459 	const struct protosw	*prp;
    460 	struct socket	*so;
    461 	uid_t		uid;
    462 	int		error;
    463 	kmutex_t	*lock;
    464 
    465 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    466 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    467 	    KAUTH_ARG(proto));
    468 	if (error != 0)
    469 		return error;
    470 
    471 	if (proto)
    472 		prp = pffindproto(dom, proto, type);
    473 	else
    474 		prp = pffindtype(dom, type);
    475 	if (prp == NULL) {
    476 		/* no support for domain */
    477 		if (pffinddomain(dom) == 0)
    478 			return EAFNOSUPPORT;
    479 		/* no support for socket type */
    480 		if (proto == 0 && type != 0)
    481 			return EPROTOTYPE;
    482 		return EPROTONOSUPPORT;
    483 	}
    484 	if (prp->pr_usrreq == NULL)
    485 		return EPROTONOSUPPORT;
    486 	if (prp->pr_type != type)
    487 		return EPROTOTYPE;
    488 
    489 	so = soget(true);
    490 	so->so_type = type;
    491 	so->so_proto = prp;
    492 	so->so_send = sosend;
    493 	so->so_receive = soreceive;
    494 #ifdef MBUFTRACE
    495 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    496 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    497 	so->so_mowner = &prp->pr_domain->dom_mowner;
    498 #endif
    499 	uid = kauth_cred_geteuid(l->l_cred);
    500 	so->so_uidinfo = uid_find(uid);
    501 	if (lockso != NULL) {
    502 		/* Caller wants us to share a lock. */
    503 		lock = lockso->so_lock;
    504 		so->so_lock = lock;
    505 		mutex_obj_hold(lock);
    506 		mutex_enter(lock);
    507 	} else {
    508 		/* Lock assigned and taken during PRU_ATTACH. */
    509 	}
    510 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
    511 	    (struct mbuf *)(long)proto, NULL, l);
    512 	KASSERT(solocked(so));
    513 	if (error != 0) {
    514 		so->so_state |= SS_NOFDREF;
    515 		sofree(so);
    516 		return error;
    517 	}
    518 	sounlock(so);
    519 	*aso = so;
    520 	return 0;
    521 }
    522 
    523 /* On success, write file descriptor to fdout and return zero.  On
    524  * failure, return non-zero; *fdout will be undefined.
    525  */
    526 int
    527 fsocreate(int domain, struct socket **sop, int type, int protocol,
    528     struct lwp *l, int *fdout)
    529 {
    530 	struct socket	*so;
    531 	struct file	*fp;
    532 	int		fd, error;
    533 
    534 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    535 		return (error);
    536 	fp->f_flag = FREAD|FWRITE;
    537 	fp->f_type = DTYPE_SOCKET;
    538 	fp->f_ops = &socketops;
    539 	error = socreate(domain, &so, type, protocol, l, NULL);
    540 	if (error != 0) {
    541 		fd_abort(curproc, fp, fd);
    542 	} else {
    543 		if (sop != NULL)
    544 			*sop = so;
    545 		fp->f_data = so;
    546 		fd_affix(curproc, fp, fd);
    547 		*fdout = fd;
    548 	}
    549 	return error;
    550 }
    551 
    552 int
    553 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    554 {
    555 	int	error;
    556 
    557 	solock(so);
    558 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
    559 	sounlock(so);
    560 	return error;
    561 }
    562 
    563 int
    564 solisten(struct socket *so, int backlog, struct lwp *l)
    565 {
    566 	int	error;
    567 
    568 	solock(so);
    569 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    570 	    SS_ISDISCONNECTING)) != 0) {
    571 	    	sounlock(so);
    572 		return (EOPNOTSUPP);
    573 	}
    574 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
    575 	    NULL, NULL, l);
    576 	if (error != 0) {
    577 		sounlock(so);
    578 		return error;
    579 	}
    580 	if (TAILQ_EMPTY(&so->so_q))
    581 		so->so_options |= SO_ACCEPTCONN;
    582 	if (backlog < 0)
    583 		backlog = 0;
    584 	so->so_qlimit = min(backlog, somaxconn);
    585 	sounlock(so);
    586 	return 0;
    587 }
    588 
    589 void
    590 sofree(struct socket *so)
    591 {
    592 	u_int refs;
    593 
    594 	KASSERT(solocked(so));
    595 
    596 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    597 		sounlock(so);
    598 		return;
    599 	}
    600 	if (so->so_head) {
    601 		/*
    602 		 * We must not decommission a socket that's on the accept(2)
    603 		 * queue.  If we do, then accept(2) may hang after select(2)
    604 		 * indicated that the listening socket was ready.
    605 		 */
    606 		if (!soqremque(so, 0)) {
    607 			sounlock(so);
    608 			return;
    609 		}
    610 	}
    611 	if (so->so_rcv.sb_hiwat)
    612 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    613 		    RLIM_INFINITY);
    614 	if (so->so_snd.sb_hiwat)
    615 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    616 		    RLIM_INFINITY);
    617 	sbrelease(&so->so_snd, so);
    618 	KASSERT(!cv_has_waiters(&so->so_cv));
    619 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    620 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    621 	sorflush(so);
    622 	refs = so->so_aborting;	/* XXX */
    623 	sounlock(so);
    624 	if (refs == 0)		/* XXX */
    625 		soput(so);
    626 }
    627 
    628 /*
    629  * Close a socket on last file table reference removal.
    630  * Initiate disconnect if connected.
    631  * Free socket when disconnect complete.
    632  */
    633 int
    634 soclose(struct socket *so)
    635 {
    636 	struct socket	*so2;
    637 	int		error;
    638 	int		error2;
    639 
    640 	error = 0;
    641 	solock(so);
    642 	if (so->so_options & SO_ACCEPTCONN) {
    643 		do {
    644 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    645 				KASSERT(solocked2(so, so2));
    646 				(void) soqremque(so2, 0);
    647 				/* soabort drops the lock. */
    648 				(void) soabort(so2);
    649 				solock(so);
    650 				continue;
    651 			}
    652 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    653 				KASSERT(solocked2(so, so2));
    654 				(void) soqremque(so2, 1);
    655 				/* soabort drops the lock. */
    656 				(void) soabort(so2);
    657 				solock(so);
    658 				continue;
    659 			}
    660 		} while (0);
    661 	}
    662 	if (so->so_pcb == 0)
    663 		goto discard;
    664 	if (so->so_state & SS_ISCONNECTED) {
    665 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    666 			error = sodisconnect(so);
    667 			if (error)
    668 				goto drop;
    669 		}
    670 		if (so->so_options & SO_LINGER) {
    671 			if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
    672 				goto drop;
    673 			while (so->so_state & SS_ISCONNECTED) {
    674 				error = sowait(so, so->so_linger * hz);
    675 				if (error)
    676 					break;
    677 			}
    678 		}
    679 	}
    680  drop:
    681 	if (so->so_pcb) {
    682 		error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    683 		    NULL, NULL, NULL, NULL);
    684 		if (error == 0)
    685 			error = error2;
    686 	}
    687  discard:
    688 	if (so->so_state & SS_NOFDREF)
    689 		panic("soclose: NOFDREF");
    690 	so->so_state |= SS_NOFDREF;
    691 	sofree(so);
    692 	return (error);
    693 }
    694 
    695 /*
    696  * Must be called with the socket locked..  Will return with it unlocked.
    697  */
    698 int
    699 soabort(struct socket *so)
    700 {
    701 	u_int refs;
    702 	int error;
    703 
    704 	KASSERT(solocked(so));
    705 	KASSERT(so->so_head == NULL);
    706 
    707 	so->so_aborting++;		/* XXX */
    708 	error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
    709 	    NULL, NULL, NULL);
    710 	refs = --so->so_aborting;	/* XXX */
    711 	if (error || (refs == 0)) {
    712 		sofree(so);
    713 	} else {
    714 		sounlock(so);
    715 	}
    716 	return error;
    717 }
    718 
    719 int
    720 soaccept(struct socket *so, struct mbuf *nam)
    721 {
    722 	int	error;
    723 
    724 	KASSERT(solocked(so));
    725 
    726 	error = 0;
    727 	if ((so->so_state & SS_NOFDREF) == 0)
    728 		panic("soaccept: !NOFDREF");
    729 	so->so_state &= ~SS_NOFDREF;
    730 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    731 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    732 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    733 		    NULL, nam, NULL, NULL);
    734 	else
    735 		error = ECONNABORTED;
    736 
    737 	return (error);
    738 }
    739 
    740 int
    741 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    742 {
    743 	int		error;
    744 
    745 	KASSERT(solocked(so));
    746 
    747 	if (so->so_options & SO_ACCEPTCONN)
    748 		return (EOPNOTSUPP);
    749 	/*
    750 	 * If protocol is connection-based, can only connect once.
    751 	 * Otherwise, if connected, try to disconnect first.
    752 	 * This allows user to disconnect by connecting to, e.g.,
    753 	 * a null address.
    754 	 */
    755 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    756 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    757 	    (error = sodisconnect(so))))
    758 		error = EISCONN;
    759 	else
    760 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    761 		    NULL, nam, NULL, l);
    762 	return (error);
    763 }
    764 
    765 int
    766 soconnect2(struct socket *so1, struct socket *so2)
    767 {
    768 	int	error;
    769 
    770 	KASSERT(solocked2(so1, so2));
    771 
    772 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    773 	    NULL, (struct mbuf *)so2, NULL, NULL);
    774 	return (error);
    775 }
    776 
    777 int
    778 sodisconnect(struct socket *so)
    779 {
    780 	int	error;
    781 
    782 	KASSERT(solocked(so));
    783 
    784 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    785 		error = ENOTCONN;
    786 	} else if (so->so_state & SS_ISDISCONNECTING) {
    787 		error = EALREADY;
    788 	} else {
    789 		error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    790 		    NULL, NULL, NULL, NULL);
    791 	}
    792 	sodopendfree();
    793 	return (error);
    794 }
    795 
    796 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    797 /*
    798  * Send on a socket.
    799  * If send must go all at once and message is larger than
    800  * send buffering, then hard error.
    801  * Lock against other senders.
    802  * If must go all at once and not enough room now, then
    803  * inform user that this would block and do nothing.
    804  * Otherwise, if nonblocking, send as much as possible.
    805  * The data to be sent is described by "uio" if nonzero,
    806  * otherwise by the mbuf chain "top" (which must be null
    807  * if uio is not).  Data provided in mbuf chain must be small
    808  * enough to send all at once.
    809  *
    810  * Returns nonzero on error, timeout or signal; callers
    811  * must check for short counts if EINTR/ERESTART are returned.
    812  * Data and control buffers are freed on return.
    813  */
    814 int
    815 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    816 	struct mbuf *control, int flags, struct lwp *l)
    817 {
    818 	struct mbuf	**mp, *m;
    819 	struct proc	*p;
    820 	long		space, len, resid, clen, mlen;
    821 	int		error, s, dontroute, atomic;
    822 
    823 	p = l->l_proc;
    824 	sodopendfree();
    825 	clen = 0;
    826 
    827 	/*
    828 	 * solock() provides atomicity of access.  splsoftnet() prevents
    829 	 * protocol processing soft interrupts from interrupting us and
    830 	 * blocking (expensive).
    831 	 */
    832 	s = splsoftnet();
    833 	solock(so);
    834 	atomic = sosendallatonce(so) || top;
    835 	if (uio)
    836 		resid = uio->uio_resid;
    837 	else
    838 		resid = top->m_pkthdr.len;
    839 	/*
    840 	 * In theory resid should be unsigned.
    841 	 * However, space must be signed, as it might be less than 0
    842 	 * if we over-committed, and we must use a signed comparison
    843 	 * of space and resid.  On the other hand, a negative resid
    844 	 * causes us to loop sending 0-length segments to the protocol.
    845 	 */
    846 	if (resid < 0) {
    847 		error = EINVAL;
    848 		goto out;
    849 	}
    850 	dontroute =
    851 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    852 	    (so->so_proto->pr_flags & PR_ATOMIC);
    853 	if (l)
    854 		l->l_ru.ru_msgsnd++;
    855 	if (control)
    856 		clen = control->m_len;
    857  restart:
    858 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    859 		goto out;
    860 	do {
    861 		if (so->so_state & SS_CANTSENDMORE) {
    862 			error = EPIPE;
    863 			goto release;
    864 		}
    865 		if (so->so_error) {
    866 			error = so->so_error;
    867 			so->so_error = 0;
    868 			goto release;
    869 		}
    870 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    871 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    872 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    873 				    !(resid == 0 && clen != 0)) {
    874 					error = ENOTCONN;
    875 					goto release;
    876 				}
    877 			} else if (addr == 0) {
    878 				error = EDESTADDRREQ;
    879 				goto release;
    880 			}
    881 		}
    882 		space = sbspace(&so->so_snd);
    883 		if (flags & MSG_OOB)
    884 			space += 1024;
    885 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    886 		    clen > so->so_snd.sb_hiwat) {
    887 			error = EMSGSIZE;
    888 			goto release;
    889 		}
    890 		if (space < resid + clen &&
    891 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    892 			if (so->so_nbio) {
    893 				error = EWOULDBLOCK;
    894 				goto release;
    895 			}
    896 			sbunlock(&so->so_snd);
    897 			error = sbwait(&so->so_snd);
    898 			if (error)
    899 				goto out;
    900 			goto restart;
    901 		}
    902 		mp = &top;
    903 		space -= clen;
    904 		do {
    905 			if (uio == NULL) {
    906 				/*
    907 				 * Data is prepackaged in "top".
    908 				 */
    909 				resid = 0;
    910 				if (flags & MSG_EOR)
    911 					top->m_flags |= M_EOR;
    912 			} else do {
    913 				sounlock(so);
    914 				splx(s);
    915 				if (top == NULL) {
    916 					m = m_gethdr(M_WAIT, MT_DATA);
    917 					mlen = MHLEN;
    918 					m->m_pkthdr.len = 0;
    919 					m->m_pkthdr.rcvif = NULL;
    920 				} else {
    921 					m = m_get(M_WAIT, MT_DATA);
    922 					mlen = MLEN;
    923 				}
    924 				MCLAIM(m, so->so_snd.sb_mowner);
    925 				if (sock_loan_thresh >= 0 &&
    926 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
    927 				    space >= sock_loan_thresh &&
    928 				    (len = sosend_loan(so, uio, m,
    929 						       space)) != 0) {
    930 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    931 					space -= len;
    932 					goto have_data;
    933 				}
    934 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
    935 					SOSEND_COUNTER_INCR(&sosend_copy_big);
    936 					m_clget(m, M_WAIT);
    937 					if ((m->m_flags & M_EXT) == 0)
    938 						goto nopages;
    939 					mlen = MCLBYTES;
    940 					if (atomic && top == 0) {
    941 						len = lmin(MCLBYTES - max_hdr,
    942 						    resid);
    943 						m->m_data += max_hdr;
    944 					} else
    945 						len = lmin(MCLBYTES, resid);
    946 					space -= len;
    947 				} else {
    948  nopages:
    949 					SOSEND_COUNTER_INCR(&sosend_copy_small);
    950 					len = lmin(lmin(mlen, resid), space);
    951 					space -= len;
    952 					/*
    953 					 * For datagram protocols, leave room
    954 					 * for protocol headers in first mbuf.
    955 					 */
    956 					if (atomic && top == 0 && len < mlen)
    957 						MH_ALIGN(m, len);
    958 				}
    959 				error = uiomove(mtod(m, void *), (int)len, uio);
    960  have_data:
    961 				resid = uio->uio_resid;
    962 				m->m_len = len;
    963 				*mp = m;
    964 				top->m_pkthdr.len += len;
    965 				s = splsoftnet();
    966 				solock(so);
    967 				if (error != 0)
    968 					goto release;
    969 				mp = &m->m_next;
    970 				if (resid <= 0) {
    971 					if (flags & MSG_EOR)
    972 						top->m_flags |= M_EOR;
    973 					break;
    974 				}
    975 			} while (space > 0 && atomic);
    976 
    977 			if (so->so_state & SS_CANTSENDMORE) {
    978 				error = EPIPE;
    979 				goto release;
    980 			}
    981 			if (dontroute)
    982 				so->so_options |= SO_DONTROUTE;
    983 			if (resid > 0)
    984 				so->so_state |= SS_MORETOCOME;
    985 			error = (*so->so_proto->pr_usrreq)(so,
    986 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
    987 			    top, addr, control, curlwp);
    988 			if (dontroute)
    989 				so->so_options &= ~SO_DONTROUTE;
    990 			if (resid > 0)
    991 				so->so_state &= ~SS_MORETOCOME;
    992 			clen = 0;
    993 			control = NULL;
    994 			top = NULL;
    995 			mp = &top;
    996 			if (error != 0)
    997 				goto release;
    998 		} while (resid && space > 0);
    999 	} while (resid);
   1000 
   1001  release:
   1002 	sbunlock(&so->so_snd);
   1003  out:
   1004 	sounlock(so);
   1005 	splx(s);
   1006 	if (top)
   1007 		m_freem(top);
   1008 	if (control)
   1009 		m_freem(control);
   1010 	return (error);
   1011 }
   1012 
   1013 /*
   1014  * Following replacement or removal of the first mbuf on the first
   1015  * mbuf chain of a socket buffer, push necessary state changes back
   1016  * into the socket buffer so that other consumers see the values
   1017  * consistently.  'nextrecord' is the callers locally stored value of
   1018  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1019  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1020  */
   1021 static void
   1022 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1023 {
   1024 
   1025 	KASSERT(solocked(sb->sb_so));
   1026 
   1027 	/*
   1028 	 * First, update for the new value of nextrecord.  If necessary,
   1029 	 * make it the first record.
   1030 	 */
   1031 	if (sb->sb_mb != NULL)
   1032 		sb->sb_mb->m_nextpkt = nextrecord;
   1033 	else
   1034 		sb->sb_mb = nextrecord;
   1035 
   1036         /*
   1037          * Now update any dependent socket buffer fields to reflect
   1038          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1039          * the addition of a second clause that takes care of the
   1040          * case where sb_mb has been updated, but remains the last
   1041          * record.
   1042          */
   1043         if (sb->sb_mb == NULL) {
   1044                 sb->sb_mbtail = NULL;
   1045                 sb->sb_lastrecord = NULL;
   1046         } else if (sb->sb_mb->m_nextpkt == NULL)
   1047                 sb->sb_lastrecord = sb->sb_mb;
   1048 }
   1049 
   1050 /*
   1051  * Implement receive operations on a socket.
   1052  * We depend on the way that records are added to the sockbuf
   1053  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1054  * must begin with an address if the protocol so specifies,
   1055  * followed by an optional mbuf or mbufs containing ancillary data,
   1056  * and then zero or more mbufs of data.
   1057  * In order to avoid blocking network interrupts for the entire time here,
   1058  * we splx() while doing the actual copy to user space.
   1059  * Although the sockbuf is locked, new data may still be appended,
   1060  * and thus we must maintain consistency of the sockbuf during that time.
   1061  *
   1062  * The caller may receive the data as a single mbuf chain by supplying
   1063  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1064  * only for the count in uio_resid.
   1065  */
   1066 int
   1067 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1068 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1069 {
   1070 	struct lwp *l = curlwp;
   1071 	struct mbuf	*m, **mp, *mt;
   1072 	int atomic, flags, len, error, s, offset, moff, type, orig_resid;
   1073 	const struct protosw	*pr;
   1074 	struct mbuf	*nextrecord;
   1075 	int		mbuf_removed = 0;
   1076 	const struct domain *dom;
   1077 
   1078 	pr = so->so_proto;
   1079 	atomic = pr->pr_flags & PR_ATOMIC;
   1080 	dom = pr->pr_domain;
   1081 	mp = mp0;
   1082 	type = 0;
   1083 	orig_resid = uio->uio_resid;
   1084 
   1085 	if (paddr != NULL)
   1086 		*paddr = NULL;
   1087 	if (controlp != NULL)
   1088 		*controlp = NULL;
   1089 	if (flagsp != NULL)
   1090 		flags = *flagsp &~ MSG_EOR;
   1091 	else
   1092 		flags = 0;
   1093 
   1094 	if ((flags & MSG_DONTWAIT) == 0)
   1095 		sodopendfree();
   1096 
   1097 	if (flags & MSG_OOB) {
   1098 		m = m_get(M_WAIT, MT_DATA);
   1099 		solock(so);
   1100 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
   1101 		    (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
   1102 		sounlock(so);
   1103 		if (error)
   1104 			goto bad;
   1105 		do {
   1106 			error = uiomove(mtod(m, void *),
   1107 			    (int) min(uio->uio_resid, m->m_len), uio);
   1108 			m = m_free(m);
   1109 		} while (uio->uio_resid > 0 && error == 0 && m);
   1110  bad:
   1111 		if (m != NULL)
   1112 			m_freem(m);
   1113 		return error;
   1114 	}
   1115 	if (mp != NULL)
   1116 		*mp = NULL;
   1117 
   1118 	/*
   1119 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1120 	 * protocol processing soft interrupts from interrupting us and
   1121 	 * blocking (expensive).
   1122 	 */
   1123 	s = splsoftnet();
   1124 	solock(so);
   1125 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
   1126 		(*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
   1127 
   1128  restart:
   1129 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1130 		sounlock(so);
   1131 		splx(s);
   1132 		return error;
   1133 	}
   1134 
   1135 	m = so->so_rcv.sb_mb;
   1136 	/*
   1137 	 * If we have less data than requested, block awaiting more
   1138 	 * (subject to any timeout) if:
   1139 	 *   1. the current count is less than the low water mark,
   1140 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1141 	 *	receive operation at once if we block (resid <= hiwat), or
   1142 	 *   3. MSG_DONTWAIT is not set.
   1143 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1144 	 * we have to do the receive in sections, and thus risk returning
   1145 	 * a short count if a timeout or signal occurs after we start.
   1146 	 */
   1147 	if (m == NULL ||
   1148 	    ((flags & MSG_DONTWAIT) == 0 &&
   1149 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1150 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1151 	      ((flags & MSG_WAITALL) &&
   1152 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1153 	     m->m_nextpkt == NULL && !atomic)) {
   1154 #ifdef DIAGNOSTIC
   1155 		if (m == NULL && so->so_rcv.sb_cc)
   1156 			panic("receive 1");
   1157 #endif
   1158 		if (so->so_error) {
   1159 			if (m != NULL)
   1160 				goto dontblock;
   1161 			error = so->so_error;
   1162 			if ((flags & MSG_PEEK) == 0)
   1163 				so->so_error = 0;
   1164 			goto release;
   1165 		}
   1166 		if (so->so_state & SS_CANTRCVMORE) {
   1167 			if (m != NULL)
   1168 				goto dontblock;
   1169 			else
   1170 				goto release;
   1171 		}
   1172 		for (; m != NULL; m = m->m_next)
   1173 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1174 				m = so->so_rcv.sb_mb;
   1175 				goto dontblock;
   1176 			}
   1177 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1178 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1179 			error = ENOTCONN;
   1180 			goto release;
   1181 		}
   1182 		if (uio->uio_resid == 0)
   1183 			goto release;
   1184 		if (so->so_nbio || (flags & MSG_DONTWAIT)) {
   1185 			error = EWOULDBLOCK;
   1186 			goto release;
   1187 		}
   1188 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1189 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1190 		sbunlock(&so->so_rcv);
   1191 		error = sbwait(&so->so_rcv);
   1192 		if (error != 0) {
   1193 			sounlock(so);
   1194 			splx(s);
   1195 			return error;
   1196 		}
   1197 		goto restart;
   1198 	}
   1199  dontblock:
   1200 	/*
   1201 	 * On entry here, m points to the first record of the socket buffer.
   1202 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1203 	 * pointer to the next record in the socket buffer.  We must keep the
   1204 	 * various socket buffer pointers and local stack versions of the
   1205 	 * pointers in sync, pushing out modifications before dropping the
   1206 	 * socket lock, and re-reading them when picking it up.
   1207 	 *
   1208 	 * Otherwise, we will race with the network stack appending new data
   1209 	 * or records onto the socket buffer by using inconsistent/stale
   1210 	 * versions of the field, possibly resulting in socket buffer
   1211 	 * corruption.
   1212 	 *
   1213 	 * By holding the high-level sblock(), we prevent simultaneous
   1214 	 * readers from pulling off the front of the socket buffer.
   1215 	 */
   1216 	if (l != NULL)
   1217 		l->l_ru.ru_msgrcv++;
   1218 	KASSERT(m == so->so_rcv.sb_mb);
   1219 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1220 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1221 	nextrecord = m->m_nextpkt;
   1222 	if (pr->pr_flags & PR_ADDR) {
   1223 #ifdef DIAGNOSTIC
   1224 		if (m->m_type != MT_SONAME)
   1225 			panic("receive 1a");
   1226 #endif
   1227 		orig_resid = 0;
   1228 		if (flags & MSG_PEEK) {
   1229 			if (paddr)
   1230 				*paddr = m_copy(m, 0, m->m_len);
   1231 			m = m->m_next;
   1232 		} else {
   1233 			sbfree(&so->so_rcv, m);
   1234 			mbuf_removed = 1;
   1235 			if (paddr != NULL) {
   1236 				*paddr = m;
   1237 				so->so_rcv.sb_mb = m->m_next;
   1238 				m->m_next = NULL;
   1239 				m = so->so_rcv.sb_mb;
   1240 			} else {
   1241 				MFREE(m, so->so_rcv.sb_mb);
   1242 				m = so->so_rcv.sb_mb;
   1243 			}
   1244 			sbsync(&so->so_rcv, nextrecord);
   1245 		}
   1246 	}
   1247 
   1248 	/*
   1249 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1250 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1251 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1252 	 * perform externalization (or freeing if controlp == NULL).
   1253 	 */
   1254 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1255 		struct mbuf *cm = NULL, *cmn;
   1256 		struct mbuf **cme = &cm;
   1257 
   1258 		do {
   1259 			if (flags & MSG_PEEK) {
   1260 				if (controlp != NULL) {
   1261 					*controlp = m_copy(m, 0, m->m_len);
   1262 					controlp = &(*controlp)->m_next;
   1263 				}
   1264 				m = m->m_next;
   1265 			} else {
   1266 				sbfree(&so->so_rcv, m);
   1267 				so->so_rcv.sb_mb = m->m_next;
   1268 				m->m_next = NULL;
   1269 				*cme = m;
   1270 				cme = &(*cme)->m_next;
   1271 				m = so->so_rcv.sb_mb;
   1272 			}
   1273 		} while (m != NULL && m->m_type == MT_CONTROL);
   1274 		if ((flags & MSG_PEEK) == 0)
   1275 			sbsync(&so->so_rcv, nextrecord);
   1276 		for (; cm != NULL; cm = cmn) {
   1277 			cmn = cm->m_next;
   1278 			cm->m_next = NULL;
   1279 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1280 			if (controlp != NULL) {
   1281 				if (dom->dom_externalize != NULL &&
   1282 				    type == SCM_RIGHTS) {
   1283 					sounlock(so);
   1284 					splx(s);
   1285 					error = (*dom->dom_externalize)(cm, l);
   1286 					s = splsoftnet();
   1287 					solock(so);
   1288 				}
   1289 				*controlp = cm;
   1290 				while (*controlp != NULL)
   1291 					controlp = &(*controlp)->m_next;
   1292 			} else {
   1293 				/*
   1294 				 * Dispose of any SCM_RIGHTS message that went
   1295 				 * through the read path rather than recv.
   1296 				 */
   1297 				if (dom->dom_dispose != NULL &&
   1298 				    type == SCM_RIGHTS) {
   1299 				    	sounlock(so);
   1300 					(*dom->dom_dispose)(cm);
   1301 					solock(so);
   1302 				}
   1303 				m_freem(cm);
   1304 			}
   1305 		}
   1306 		if (m != NULL)
   1307 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1308 		else
   1309 			nextrecord = so->so_rcv.sb_mb;
   1310 		orig_resid = 0;
   1311 	}
   1312 
   1313 	/* If m is non-NULL, we have some data to read. */
   1314 	if (__predict_true(m != NULL)) {
   1315 		type = m->m_type;
   1316 		if (type == MT_OOBDATA)
   1317 			flags |= MSG_OOB;
   1318 	}
   1319 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1320 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1321 
   1322 	moff = 0;
   1323 	offset = 0;
   1324 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1325 		if (m->m_type == MT_OOBDATA) {
   1326 			if (type != MT_OOBDATA)
   1327 				break;
   1328 		} else if (type == MT_OOBDATA)
   1329 			break;
   1330 #ifdef DIAGNOSTIC
   1331 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1332 			panic("receive 3");
   1333 #endif
   1334 		so->so_state &= ~SS_RCVATMARK;
   1335 		len = uio->uio_resid;
   1336 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1337 			len = so->so_oobmark - offset;
   1338 		if (len > m->m_len - moff)
   1339 			len = m->m_len - moff;
   1340 		/*
   1341 		 * If mp is set, just pass back the mbufs.
   1342 		 * Otherwise copy them out via the uio, then free.
   1343 		 * Sockbuf must be consistent here (points to current mbuf,
   1344 		 * it points to next record) when we drop priority;
   1345 		 * we must note any additions to the sockbuf when we
   1346 		 * block interrupts again.
   1347 		 */
   1348 		if (mp == NULL) {
   1349 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1350 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1351 			sounlock(so);
   1352 			splx(s);
   1353 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
   1354 			s = splsoftnet();
   1355 			solock(so);
   1356 			if (error != 0) {
   1357 				/*
   1358 				 * If any part of the record has been removed
   1359 				 * (such as the MT_SONAME mbuf, which will
   1360 				 * happen when PR_ADDR, and thus also
   1361 				 * PR_ATOMIC, is set), then drop the entire
   1362 				 * record to maintain the atomicity of the
   1363 				 * receive operation.
   1364 				 *
   1365 				 * This avoids a later panic("receive 1a")
   1366 				 * when compiled with DIAGNOSTIC.
   1367 				 */
   1368 				if (m && mbuf_removed && atomic)
   1369 					(void) sbdroprecord(&so->so_rcv);
   1370 
   1371 				goto release;
   1372 			}
   1373 		} else
   1374 			uio->uio_resid -= len;
   1375 		if (len == m->m_len - moff) {
   1376 			if (m->m_flags & M_EOR)
   1377 				flags |= MSG_EOR;
   1378 			if (flags & MSG_PEEK) {
   1379 				m = m->m_next;
   1380 				moff = 0;
   1381 			} else {
   1382 				nextrecord = m->m_nextpkt;
   1383 				sbfree(&so->so_rcv, m);
   1384 				if (mp) {
   1385 					*mp = m;
   1386 					mp = &m->m_next;
   1387 					so->so_rcv.sb_mb = m = m->m_next;
   1388 					*mp = NULL;
   1389 				} else {
   1390 					MFREE(m, so->so_rcv.sb_mb);
   1391 					m = so->so_rcv.sb_mb;
   1392 				}
   1393 				/*
   1394 				 * If m != NULL, we also know that
   1395 				 * so->so_rcv.sb_mb != NULL.
   1396 				 */
   1397 				KASSERT(so->so_rcv.sb_mb == m);
   1398 				if (m) {
   1399 					m->m_nextpkt = nextrecord;
   1400 					if (nextrecord == NULL)
   1401 						so->so_rcv.sb_lastrecord = m;
   1402 				} else {
   1403 					so->so_rcv.sb_mb = nextrecord;
   1404 					SB_EMPTY_FIXUP(&so->so_rcv);
   1405 				}
   1406 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1407 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1408 			}
   1409 		} else if (flags & MSG_PEEK)
   1410 			moff += len;
   1411 		else {
   1412 			if (mp != NULL) {
   1413 				mt = m_copym(m, 0, len, M_NOWAIT);
   1414 				if (__predict_false(mt == NULL)) {
   1415 					sounlock(so);
   1416 					mt = m_copym(m, 0, len, M_WAIT);
   1417 					solock(so);
   1418 				}
   1419 				*mp = mt;
   1420 			}
   1421 			m->m_data += len;
   1422 			m->m_len -= len;
   1423 			so->so_rcv.sb_cc -= len;
   1424 		}
   1425 		if (so->so_oobmark) {
   1426 			if ((flags & MSG_PEEK) == 0) {
   1427 				so->so_oobmark -= len;
   1428 				if (so->so_oobmark == 0) {
   1429 					so->so_state |= SS_RCVATMARK;
   1430 					break;
   1431 				}
   1432 			} else {
   1433 				offset += len;
   1434 				if (offset == so->so_oobmark)
   1435 					break;
   1436 			}
   1437 		}
   1438 		if (flags & MSG_EOR)
   1439 			break;
   1440 		/*
   1441 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1442 		 * we must not quit until "uio->uio_resid == 0" or an error
   1443 		 * termination.  If a signal/timeout occurs, return
   1444 		 * with a short count but without error.
   1445 		 * Keep sockbuf locked against other readers.
   1446 		 */
   1447 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1448 		    !sosendallatonce(so) && !nextrecord) {
   1449 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1450 				break;
   1451 			/*
   1452 			 * If we are peeking and the socket receive buffer is
   1453 			 * full, stop since we can't get more data to peek at.
   1454 			 */
   1455 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1456 				break;
   1457 			/*
   1458 			 * If we've drained the socket buffer, tell the
   1459 			 * protocol in case it needs to do something to
   1460 			 * get it filled again.
   1461 			 */
   1462 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1463 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1464 				    NULL, (struct mbuf *)(long)flags, NULL, l);
   1465 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1466 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1467 			error = sbwait(&so->so_rcv);
   1468 			if (error != 0) {
   1469 				sbunlock(&so->so_rcv);
   1470 				sounlock(so);
   1471 				splx(s);
   1472 				return 0;
   1473 			}
   1474 			if ((m = so->so_rcv.sb_mb) != NULL)
   1475 				nextrecord = m->m_nextpkt;
   1476 		}
   1477 	}
   1478 
   1479 	if (m && atomic) {
   1480 		flags |= MSG_TRUNC;
   1481 		if ((flags & MSG_PEEK) == 0)
   1482 			(void) sbdroprecord(&so->so_rcv);
   1483 	}
   1484 	if ((flags & MSG_PEEK) == 0) {
   1485 		if (m == NULL) {
   1486 			/*
   1487 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1488 			 * part makes sure sb_lastrecord is up-to-date if
   1489 			 * there is still data in the socket buffer.
   1490 			 */
   1491 			so->so_rcv.sb_mb = nextrecord;
   1492 			if (so->so_rcv.sb_mb == NULL) {
   1493 				so->so_rcv.sb_mbtail = NULL;
   1494 				so->so_rcv.sb_lastrecord = NULL;
   1495 			} else if (nextrecord->m_nextpkt == NULL)
   1496 				so->so_rcv.sb_lastrecord = nextrecord;
   1497 		}
   1498 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1499 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1500 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1501 			(*pr->pr_usrreq)(so, PRU_RCVD, NULL,
   1502 			    (struct mbuf *)(long)flags, NULL, l);
   1503 	}
   1504 	if (orig_resid == uio->uio_resid && orig_resid &&
   1505 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1506 		sbunlock(&so->so_rcv);
   1507 		goto restart;
   1508 	}
   1509 
   1510 	if (flagsp != NULL)
   1511 		*flagsp |= flags;
   1512  release:
   1513 	sbunlock(&so->so_rcv);
   1514 	sounlock(so);
   1515 	splx(s);
   1516 	return error;
   1517 }
   1518 
   1519 int
   1520 soshutdown(struct socket *so, int how)
   1521 {
   1522 	const struct protosw	*pr;
   1523 	int	error;
   1524 
   1525 	KASSERT(solocked(so));
   1526 
   1527 	pr = so->so_proto;
   1528 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1529 		return (EINVAL);
   1530 
   1531 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1532 		sorflush(so);
   1533 		error = 0;
   1534 	}
   1535 	if (how == SHUT_WR || how == SHUT_RDWR)
   1536 		error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
   1537 		    NULL, NULL, NULL);
   1538 
   1539 	return error;
   1540 }
   1541 
   1542 void
   1543 sorflush(struct socket *so)
   1544 {
   1545 	struct sockbuf	*sb, asb;
   1546 	const struct protosw	*pr;
   1547 
   1548 	KASSERT(solocked(so));
   1549 
   1550 	sb = &so->so_rcv;
   1551 	pr = so->so_proto;
   1552 	socantrcvmore(so);
   1553 	sb->sb_flags |= SB_NOINTR;
   1554 	(void )sblock(sb, M_WAITOK);
   1555 	sbunlock(sb);
   1556 	asb = *sb;
   1557 	/*
   1558 	 * Clear most of the sockbuf structure, but leave some of the
   1559 	 * fields valid.
   1560 	 */
   1561 	memset(&sb->sb_startzero, 0,
   1562 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1563 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1564 		sounlock(so);
   1565 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1566 		solock(so);
   1567 	}
   1568 	sbrelease(&asb, so);
   1569 }
   1570 
   1571 static int
   1572 sosetopt1(struct socket *so, int level, int optname, struct mbuf *m)
   1573 {
   1574 	int optval, val;
   1575 	struct linger	*l;
   1576 	struct sockbuf	*sb;
   1577 	struct timeval *tv;
   1578 
   1579 	switch (optname) {
   1580 
   1581 	case SO_LINGER:
   1582 		if (m == NULL || m->m_len != sizeof(struct linger))
   1583 			return EINVAL;
   1584 		l = mtod(m, struct linger *);
   1585 		if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
   1586 		    l->l_linger > (INT_MAX / hz))
   1587 			return EDOM;
   1588 		so->so_linger = l->l_linger;
   1589 		if (l->l_onoff)
   1590 			so->so_options |= SO_LINGER;
   1591 		else
   1592 			so->so_options &= ~SO_LINGER;
   1593 		break;
   1594 
   1595 	case SO_DEBUG:
   1596 	case SO_KEEPALIVE:
   1597 	case SO_DONTROUTE:
   1598 	case SO_USELOOPBACK:
   1599 	case SO_BROADCAST:
   1600 	case SO_REUSEADDR:
   1601 	case SO_REUSEPORT:
   1602 	case SO_OOBINLINE:
   1603 	case SO_TIMESTAMP:
   1604 		if (m == NULL || m->m_len < sizeof(int))
   1605 			return EINVAL;
   1606 		if (*mtod(m, int *))
   1607 			so->so_options |= optname;
   1608 		else
   1609 			so->so_options &= ~optname;
   1610 		break;
   1611 
   1612 	case SO_SNDBUF:
   1613 	case SO_RCVBUF:
   1614 	case SO_SNDLOWAT:
   1615 	case SO_RCVLOWAT:
   1616 		if (m == NULL || m->m_len < sizeof(int))
   1617 			return EINVAL;
   1618 
   1619 		/*
   1620 		 * Values < 1 make no sense for any of these
   1621 		 * options, so disallow them.
   1622 		 */
   1623 		optval = *mtod(m, int *);
   1624 		if (optval < 1)
   1625 			return EINVAL;
   1626 
   1627 		switch (optname) {
   1628 
   1629 		case SO_SNDBUF:
   1630 		case SO_RCVBUF:
   1631 			sb = (optname == SO_SNDBUF) ?
   1632 			    &so->so_snd : &so->so_rcv;
   1633 			if (sbreserve(sb, (u_long)optval, so) == 0)
   1634 				return ENOBUFS;
   1635 			sb->sb_flags &= ~SB_AUTOSIZE;
   1636 			break;
   1637 
   1638 		/*
   1639 		 * Make sure the low-water is never greater than
   1640 		 * the high-water.
   1641 		 */
   1642 		case SO_SNDLOWAT:
   1643 			so->so_snd.sb_lowat =
   1644 			    (optval > so->so_snd.sb_hiwat) ?
   1645 			    so->so_snd.sb_hiwat : optval;
   1646 			break;
   1647 		case SO_RCVLOWAT:
   1648 			so->so_rcv.sb_lowat =
   1649 			    (optval > so->so_rcv.sb_hiwat) ?
   1650 			    so->so_rcv.sb_hiwat : optval;
   1651 			break;
   1652 		}
   1653 		break;
   1654 
   1655 	case SO_SNDTIMEO:
   1656 	case SO_RCVTIMEO:
   1657 		if (m == NULL || m->m_len < sizeof(*tv))
   1658 			return EINVAL;
   1659 		tv = mtod(m, struct timeval *);
   1660 		if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz)
   1661 			return EDOM;
   1662 		val = tv->tv_sec * hz + tv->tv_usec / tick;
   1663 		if (val == 0 && tv->tv_usec != 0)
   1664 			val = 1;
   1665 
   1666 		switch (optname) {
   1667 
   1668 		case SO_SNDTIMEO:
   1669 			so->so_snd.sb_timeo = val;
   1670 			break;
   1671 		case SO_RCVTIMEO:
   1672 			so->so_rcv.sb_timeo = val;
   1673 			break;
   1674 		}
   1675 		break;
   1676 
   1677 	default:
   1678 		return ENOPROTOOPT;
   1679 	}
   1680 	return 0;
   1681 }
   1682 
   1683 int
   1684 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
   1685 {
   1686 	int error, prerr;
   1687 
   1688 	solock(so);
   1689 	if (level == SOL_SOCKET)
   1690 		error = sosetopt1(so, level, optname, m);
   1691 	else
   1692 		error = ENOPROTOOPT;
   1693 
   1694 	if ((error == 0 || error == ENOPROTOOPT) &&
   1695 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1696 		/* give the protocol stack a shot */
   1697 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, level,
   1698 		    optname, &m);
   1699 		if (prerr == 0)
   1700 			error = 0;
   1701 		else if (prerr != ENOPROTOOPT)
   1702 			error = prerr;
   1703 	} else if (m != NULL)
   1704 		(void)m_free(m);
   1705 	sounlock(so);
   1706 	return error;
   1707 }
   1708 
   1709 int
   1710 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
   1711 {
   1712 	struct mbuf	*m;
   1713 	int		error;
   1714 
   1715 	solock(so);
   1716 	if (level != SOL_SOCKET) {
   1717 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1718 			error = ((*so->so_proto->pr_ctloutput)
   1719 				  (PRCO_GETOPT, so, level, optname, mp));
   1720 		} else
   1721 			error = (ENOPROTOOPT);
   1722 	} else {
   1723 		m = m_get(M_WAIT, MT_SOOPTS);
   1724 		m->m_len = sizeof(int);
   1725 
   1726 		switch (optname) {
   1727 
   1728 		case SO_LINGER:
   1729 			m->m_len = sizeof(struct linger);
   1730 			mtod(m, struct linger *)->l_onoff =
   1731 			    (so->so_options & SO_LINGER) ? 1 : 0;
   1732 			mtod(m, struct linger *)->l_linger = so->so_linger;
   1733 			break;
   1734 
   1735 		case SO_USELOOPBACK:
   1736 		case SO_DONTROUTE:
   1737 		case SO_DEBUG:
   1738 		case SO_KEEPALIVE:
   1739 		case SO_REUSEADDR:
   1740 		case SO_REUSEPORT:
   1741 		case SO_BROADCAST:
   1742 		case SO_OOBINLINE:
   1743 		case SO_TIMESTAMP:
   1744 			*mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
   1745 			break;
   1746 
   1747 		case SO_TYPE:
   1748 			*mtod(m, int *) = so->so_type;
   1749 			break;
   1750 
   1751 		case SO_ERROR:
   1752 			*mtod(m, int *) = so->so_error;
   1753 			so->so_error = 0;
   1754 			break;
   1755 
   1756 		case SO_SNDBUF:
   1757 			*mtod(m, int *) = so->so_snd.sb_hiwat;
   1758 			break;
   1759 
   1760 		case SO_RCVBUF:
   1761 			*mtod(m, int *) = so->so_rcv.sb_hiwat;
   1762 			break;
   1763 
   1764 		case SO_SNDLOWAT:
   1765 			*mtod(m, int *) = so->so_snd.sb_lowat;
   1766 			break;
   1767 
   1768 		case SO_RCVLOWAT:
   1769 			*mtod(m, int *) = so->so_rcv.sb_lowat;
   1770 			break;
   1771 
   1772 		case SO_SNDTIMEO:
   1773 		case SO_RCVTIMEO:
   1774 		    {
   1775 			int val = (optname == SO_SNDTIMEO ?
   1776 			     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1777 
   1778 			m->m_len = sizeof(struct timeval);
   1779 			mtod(m, struct timeval *)->tv_sec = val / hz;
   1780 			mtod(m, struct timeval *)->tv_usec =
   1781 			    (val % hz) * tick;
   1782 			break;
   1783 		    }
   1784 
   1785 		case SO_OVERFLOWED:
   1786 			*mtod(m, int *) = so->so_rcv.sb_overflowed;
   1787 			break;
   1788 
   1789 		default:
   1790 			sounlock(so);
   1791 			(void)m_free(m);
   1792 			return (ENOPROTOOPT);
   1793 		}
   1794 		*mp = m;
   1795 		error = 0;
   1796 	}
   1797 
   1798 	sounlock(so);
   1799 	return (error);
   1800 }
   1801 
   1802 void
   1803 sohasoutofband(struct socket *so)
   1804 {
   1805 
   1806 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   1807 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, 0);
   1808 }
   1809 
   1810 static void
   1811 filt_sordetach(struct knote *kn)
   1812 {
   1813 	struct socket	*so;
   1814 
   1815 	so = ((file_t *)kn->kn_obj)->f_data;
   1816 	solock(so);
   1817 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   1818 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   1819 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   1820 	sounlock(so);
   1821 }
   1822 
   1823 /*ARGSUSED*/
   1824 static int
   1825 filt_soread(struct knote *kn, long hint)
   1826 {
   1827 	struct socket	*so;
   1828 	int rv;
   1829 
   1830 	so = ((file_t *)kn->kn_obj)->f_data;
   1831 	if (hint != NOTE_SUBMIT)
   1832 		solock(so);
   1833 	kn->kn_data = so->so_rcv.sb_cc;
   1834 	if (so->so_state & SS_CANTRCVMORE) {
   1835 		kn->kn_flags |= EV_EOF;
   1836 		kn->kn_fflags = so->so_error;
   1837 		rv = 1;
   1838 	} else if (so->so_error)	/* temporary udp error */
   1839 		rv = 1;
   1840 	else if (kn->kn_sfflags & NOTE_LOWAT)
   1841 		rv = (kn->kn_data >= kn->kn_sdata);
   1842 	else
   1843 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   1844 	if (hint != NOTE_SUBMIT)
   1845 		sounlock(so);
   1846 	return rv;
   1847 }
   1848 
   1849 static void
   1850 filt_sowdetach(struct knote *kn)
   1851 {
   1852 	struct socket	*so;
   1853 
   1854 	so = ((file_t *)kn->kn_obj)->f_data;
   1855 	solock(so);
   1856 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   1857 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   1858 		so->so_snd.sb_flags &= ~SB_KNOTE;
   1859 	sounlock(so);
   1860 }
   1861 
   1862 /*ARGSUSED*/
   1863 static int
   1864 filt_sowrite(struct knote *kn, long hint)
   1865 {
   1866 	struct socket	*so;
   1867 	int rv;
   1868 
   1869 	so = ((file_t *)kn->kn_obj)->f_data;
   1870 	if (hint != NOTE_SUBMIT)
   1871 		solock(so);
   1872 	kn->kn_data = sbspace(&so->so_snd);
   1873 	if (so->so_state & SS_CANTSENDMORE) {
   1874 		kn->kn_flags |= EV_EOF;
   1875 		kn->kn_fflags = so->so_error;
   1876 		rv = 1;
   1877 	} else if (so->so_error)	/* temporary udp error */
   1878 		rv = 1;
   1879 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   1880 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   1881 		rv = 0;
   1882 	else if (kn->kn_sfflags & NOTE_LOWAT)
   1883 		rv = (kn->kn_data >= kn->kn_sdata);
   1884 	else
   1885 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   1886 	if (hint != NOTE_SUBMIT)
   1887 		sounlock(so);
   1888 	return rv;
   1889 }
   1890 
   1891 /*ARGSUSED*/
   1892 static int
   1893 filt_solisten(struct knote *kn, long hint)
   1894 {
   1895 	struct socket	*so;
   1896 	int rv;
   1897 
   1898 	so = ((file_t *)kn->kn_obj)->f_data;
   1899 
   1900 	/*
   1901 	 * Set kn_data to number of incoming connections, not
   1902 	 * counting partial (incomplete) connections.
   1903 	 */
   1904 	if (hint != NOTE_SUBMIT)
   1905 		solock(so);
   1906 	kn->kn_data = so->so_qlen;
   1907 	rv = (kn->kn_data > 0);
   1908 	if (hint != NOTE_SUBMIT)
   1909 		sounlock(so);
   1910 	return rv;
   1911 }
   1912 
   1913 static const struct filterops solisten_filtops =
   1914 	{ 1, NULL, filt_sordetach, filt_solisten };
   1915 static const struct filterops soread_filtops =
   1916 	{ 1, NULL, filt_sordetach, filt_soread };
   1917 static const struct filterops sowrite_filtops =
   1918 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   1919 
   1920 int
   1921 soo_kqfilter(struct file *fp, struct knote *kn)
   1922 {
   1923 	struct socket	*so;
   1924 	struct sockbuf	*sb;
   1925 
   1926 	so = ((file_t *)kn->kn_obj)->f_data;
   1927 	solock(so);
   1928 	switch (kn->kn_filter) {
   1929 	case EVFILT_READ:
   1930 		if (so->so_options & SO_ACCEPTCONN)
   1931 			kn->kn_fop = &solisten_filtops;
   1932 		else
   1933 			kn->kn_fop = &soread_filtops;
   1934 		sb = &so->so_rcv;
   1935 		break;
   1936 	case EVFILT_WRITE:
   1937 		kn->kn_fop = &sowrite_filtops;
   1938 		sb = &so->so_snd;
   1939 		break;
   1940 	default:
   1941 		sounlock(so);
   1942 		return (EINVAL);
   1943 	}
   1944 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   1945 	sb->sb_flags |= SB_KNOTE;
   1946 	sounlock(so);
   1947 	return (0);
   1948 }
   1949 
   1950 static int
   1951 sodopoll(struct socket *so, int events)
   1952 {
   1953 	int revents;
   1954 
   1955 	revents = 0;
   1956 
   1957 	if (events & (POLLIN | POLLRDNORM))
   1958 		if (soreadable(so))
   1959 			revents |= events & (POLLIN | POLLRDNORM);
   1960 
   1961 	if (events & (POLLOUT | POLLWRNORM))
   1962 		if (sowritable(so))
   1963 			revents |= events & (POLLOUT | POLLWRNORM);
   1964 
   1965 	if (events & (POLLPRI | POLLRDBAND))
   1966 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   1967 			revents |= events & (POLLPRI | POLLRDBAND);
   1968 
   1969 	return revents;
   1970 }
   1971 
   1972 int
   1973 sopoll(struct socket *so, int events)
   1974 {
   1975 	int revents = 0;
   1976 
   1977 #ifndef DIAGNOSTIC
   1978 	/*
   1979 	 * Do a quick, unlocked check in expectation that the socket
   1980 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   1981 	 * as the solocked() assertions will fail.
   1982 	 */
   1983 	if ((revents = sodopoll(so, events)) != 0)
   1984 		return revents;
   1985 #endif
   1986 
   1987 	solock(so);
   1988 	if ((revents = sodopoll(so, events)) == 0) {
   1989 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   1990 			selrecord(curlwp, &so->so_rcv.sb_sel);
   1991 			so->so_rcv.sb_flags |= SB_NOTIFY;
   1992 		}
   1993 
   1994 		if (events & (POLLOUT | POLLWRNORM)) {
   1995 			selrecord(curlwp, &so->so_snd.sb_sel);
   1996 			so->so_snd.sb_flags |= SB_NOTIFY;
   1997 		}
   1998 	}
   1999 	sounlock(so);
   2000 
   2001 	return revents;
   2002 }
   2003 
   2004 
   2005 #include <sys/sysctl.h>
   2006 
   2007 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2008 
   2009 /*
   2010  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2011  * value is not too small.
   2012  * (XXX should we maybe make sure it's not too large as well?)
   2013  */
   2014 static int
   2015 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2016 {
   2017 	int error, new_somaxkva;
   2018 	struct sysctlnode node;
   2019 
   2020 	new_somaxkva = somaxkva;
   2021 	node = *rnode;
   2022 	node.sysctl_data = &new_somaxkva;
   2023 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2024 	if (error || newp == NULL)
   2025 		return (error);
   2026 
   2027 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2028 		return (EINVAL);
   2029 
   2030 	mutex_enter(&so_pendfree_lock);
   2031 	somaxkva = new_somaxkva;
   2032 	cv_broadcast(&socurkva_cv);
   2033 	mutex_exit(&so_pendfree_lock);
   2034 
   2035 	return (error);
   2036 }
   2037 
   2038 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
   2039 {
   2040 
   2041 	sysctl_createv(clog, 0, NULL, NULL,
   2042 		       CTLFLAG_PERMANENT,
   2043 		       CTLTYPE_NODE, "kern", NULL,
   2044 		       NULL, 0, NULL, 0,
   2045 		       CTL_KERN, CTL_EOL);
   2046 
   2047 	sysctl_createv(clog, 0, NULL, NULL,
   2048 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2049 		       CTLTYPE_INT, "somaxkva",
   2050 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2051 				    "used for socket buffers"),
   2052 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2053 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2054 }
   2055