uipc_socket.c revision 1.160.2.4 1 /* $NetBSD: uipc_socket.c,v 1.160.2.4 2010/03/11 15:04:20 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.160.2.4 2010/03/11 15:04:20 yamt Exp $");
67
68 #include "opt_compat_netbsd.h"
69 #include "opt_sock_counters.h"
70 #include "opt_sosend_loan.h"
71 #include "opt_mbuftrace.h"
72 #include "opt_somaxkva.h"
73 #include "opt_multiprocessor.h" /* XXX */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/file.h>
79 #include <sys/filedesc.h>
80 #include <sys/kmem.h>
81 #include <sys/mbuf.h>
82 #include <sys/domain.h>
83 #include <sys/kernel.h>
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/signalvar.h>
88 #include <sys/resourcevar.h>
89 #include <sys/uidinfo.h>
90 #include <sys/event.h>
91 #include <sys/poll.h>
92 #include <sys/kauth.h>
93 #include <sys/mutex.h>
94 #include <sys/condvar.h>
95
96 #ifdef COMPAT_50
97 #include <compat/sys/time.h>
98 #include <compat/sys/socket.h>
99 #endif
100
101 #include <uvm/uvm.h>
102
103 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
104 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
105
106 extern const struct fileops socketops;
107
108 extern int somaxconn; /* patchable (XXX sysctl) */
109 int somaxconn = SOMAXCONN;
110 kmutex_t *softnet_lock;
111
112 #ifdef SOSEND_COUNTERS
113 #include <sys/device.h>
114
115 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
116 NULL, "sosend", "loan big");
117 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
118 NULL, "sosend", "copy big");
119 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
120 NULL, "sosend", "copy small");
121 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
122 NULL, "sosend", "kva limit");
123
124 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
125
126 EVCNT_ATTACH_STATIC(sosend_loan_big);
127 EVCNT_ATTACH_STATIC(sosend_copy_big);
128 EVCNT_ATTACH_STATIC(sosend_copy_small);
129 EVCNT_ATTACH_STATIC(sosend_kvalimit);
130 #else
131
132 #define SOSEND_COUNTER_INCR(ev) /* nothing */
133
134 #endif /* SOSEND_COUNTERS */
135
136 static struct callback_entry sokva_reclaimerentry;
137
138 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
139 int sock_loan_thresh = -1;
140 #else
141 int sock_loan_thresh = 4096;
142 #endif
143
144 static kmutex_t so_pendfree_lock;
145 static struct mbuf *so_pendfree;
146
147 #ifndef SOMAXKVA
148 #define SOMAXKVA (16 * 1024 * 1024)
149 #endif
150 int somaxkva = SOMAXKVA;
151 static int socurkva;
152 static kcondvar_t socurkva_cv;
153
154 static kauth_listener_t socket_listener;
155
156 #define SOCK_LOAN_CHUNK 65536
157
158 static size_t sodopendfree(void);
159 static size_t sodopendfreel(void);
160
161 static void sysctl_kern_somaxkva_setup(void);
162 static struct sysctllog *socket_sysctllog;
163
164 static vsize_t
165 sokvareserve(struct socket *so, vsize_t len)
166 {
167 int error;
168
169 mutex_enter(&so_pendfree_lock);
170 while (socurkva + len > somaxkva) {
171 size_t freed;
172
173 /*
174 * try to do pendfree.
175 */
176
177 freed = sodopendfreel();
178
179 /*
180 * if some kva was freed, try again.
181 */
182
183 if (freed)
184 continue;
185
186 SOSEND_COUNTER_INCR(&sosend_kvalimit);
187 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
188 if (error) {
189 len = 0;
190 break;
191 }
192 }
193 socurkva += len;
194 mutex_exit(&so_pendfree_lock);
195 return len;
196 }
197
198 static void
199 sokvaunreserve(vsize_t len)
200 {
201
202 mutex_enter(&so_pendfree_lock);
203 socurkva -= len;
204 cv_broadcast(&socurkva_cv);
205 mutex_exit(&so_pendfree_lock);
206 }
207
208 /*
209 * sokvaalloc: allocate kva for loan.
210 */
211
212 vaddr_t
213 sokvaalloc(vsize_t len, struct socket *so)
214 {
215 vaddr_t lva;
216
217 /*
218 * reserve kva.
219 */
220
221 if (sokvareserve(so, len) == 0)
222 return 0;
223
224 /*
225 * allocate kva.
226 */
227
228 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
229 if (lva == 0) {
230 sokvaunreserve(len);
231 return (0);
232 }
233
234 return lva;
235 }
236
237 /*
238 * sokvafree: free kva for loan.
239 */
240
241 void
242 sokvafree(vaddr_t sva, vsize_t len)
243 {
244
245 /*
246 * free kva.
247 */
248
249 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
250
251 /*
252 * unreserve kva.
253 */
254
255 sokvaunreserve(len);
256 }
257
258 static void
259 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
260 {
261 vaddr_t sva, eva;
262 vsize_t len;
263 int npgs;
264
265 KASSERT(pgs != NULL);
266
267 eva = round_page((vaddr_t) buf + size);
268 sva = trunc_page((vaddr_t) buf);
269 len = eva - sva;
270 npgs = len >> PAGE_SHIFT;
271
272 pmap_kremove(sva, len);
273 pmap_update(pmap_kernel());
274 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
275 sokvafree(sva, len);
276 }
277
278 static size_t
279 sodopendfree(void)
280 {
281 size_t rv;
282
283 if (__predict_true(so_pendfree == NULL))
284 return 0;
285
286 mutex_enter(&so_pendfree_lock);
287 rv = sodopendfreel();
288 mutex_exit(&so_pendfree_lock);
289
290 return rv;
291 }
292
293 /*
294 * sodopendfreel: free mbufs on "pendfree" list.
295 * unlock and relock so_pendfree_lock when freeing mbufs.
296 *
297 * => called with so_pendfree_lock held.
298 */
299
300 static size_t
301 sodopendfreel(void)
302 {
303 struct mbuf *m, *next;
304 size_t rv = 0;
305
306 KASSERT(mutex_owned(&so_pendfree_lock));
307
308 while (so_pendfree != NULL) {
309 m = so_pendfree;
310 so_pendfree = NULL;
311 mutex_exit(&so_pendfree_lock);
312
313 for (; m != NULL; m = next) {
314 next = m->m_next;
315 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
316 KASSERT(m->m_ext.ext_refcnt == 0);
317
318 rv += m->m_ext.ext_size;
319 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
320 m->m_ext.ext_size);
321 pool_cache_put(mb_cache, m);
322 }
323
324 mutex_enter(&so_pendfree_lock);
325 }
326
327 return (rv);
328 }
329
330 void
331 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
332 {
333
334 KASSERT(m != NULL);
335
336 /*
337 * postpone freeing mbuf.
338 *
339 * we can't do it in interrupt context
340 * because we need to put kva back to kernel_map.
341 */
342
343 mutex_enter(&so_pendfree_lock);
344 m->m_next = so_pendfree;
345 so_pendfree = m;
346 cv_broadcast(&socurkva_cv);
347 mutex_exit(&so_pendfree_lock);
348 }
349
350 static long
351 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
352 {
353 struct iovec *iov = uio->uio_iov;
354 vaddr_t sva, eva;
355 vsize_t len;
356 vaddr_t lva;
357 int npgs, error;
358 vaddr_t va;
359 int i;
360
361 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
362 return (0);
363
364 if (iov->iov_len < (size_t) space)
365 space = iov->iov_len;
366 if (space > SOCK_LOAN_CHUNK)
367 space = SOCK_LOAN_CHUNK;
368
369 eva = round_page((vaddr_t) iov->iov_base + space);
370 sva = trunc_page((vaddr_t) iov->iov_base);
371 len = eva - sva;
372 npgs = len >> PAGE_SHIFT;
373
374 KASSERT(npgs <= M_EXT_MAXPAGES);
375
376 lva = sokvaalloc(len, so);
377 if (lva == 0)
378 return 0;
379
380 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
381 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
382 if (error) {
383 sokvafree(lva, len);
384 return (0);
385 }
386
387 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
388 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
389 VM_PROT_READ, 0);
390 pmap_update(pmap_kernel());
391
392 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
393
394 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
395 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
396
397 uio->uio_resid -= space;
398 /* uio_offset not updated, not set/used for write(2) */
399 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
400 uio->uio_iov->iov_len -= space;
401 if (uio->uio_iov->iov_len == 0) {
402 uio->uio_iov++;
403 uio->uio_iovcnt--;
404 }
405
406 return (space);
407 }
408
409 static int
410 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
411 {
412
413 KASSERT(ce == &sokva_reclaimerentry);
414 KASSERT(obj == NULL);
415
416 sodopendfree();
417 if (!vm_map_starved_p(kernel_map)) {
418 return CALLBACK_CHAIN_ABORT;
419 }
420 return CALLBACK_CHAIN_CONTINUE;
421 }
422
423 struct mbuf *
424 getsombuf(struct socket *so, int type)
425 {
426 struct mbuf *m;
427
428 m = m_get(M_WAIT, type);
429 MCLAIM(m, so->so_mowner);
430 return m;
431 }
432
433 static int
434 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
435 void *arg0, void *arg1, void *arg2, void *arg3)
436 {
437 int result;
438 enum kauth_network_req req;
439
440 result = KAUTH_RESULT_DEFER;
441 req = (enum kauth_network_req)arg0;
442
443 if ((action != KAUTH_NETWORK_SOCKET) &&
444 (action != KAUTH_NETWORK_BIND))
445 return result;
446
447 switch (req) {
448 case KAUTH_REQ_NETWORK_BIND_PORT:
449 result = KAUTH_RESULT_ALLOW;
450 break;
451
452 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
453 /* Normal users can only drop their own connections. */
454 struct socket *so = (struct socket *)arg1;
455
456 if (proc_uidmatch(cred, so->so_cred))
457 result = KAUTH_RESULT_ALLOW;
458
459 break;
460 }
461
462 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
463 /* We allow "raw" routing/bluetooth sockets to anyone. */
464 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_BLUETOOTH)
465 result = KAUTH_RESULT_ALLOW;
466 else {
467 /* Privileged, let secmodel handle this. */
468 if ((u_long)arg2 == SOCK_RAW)
469 break;
470 }
471
472 result = KAUTH_RESULT_ALLOW;
473
474 break;
475
476 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
477 result = KAUTH_RESULT_ALLOW;
478
479 break;
480
481 default:
482 break;
483 }
484
485 return result;
486 }
487
488 void
489 soinit(void)
490 {
491
492 sysctl_kern_somaxkva_setup();
493
494 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
495 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
496 cv_init(&socurkva_cv, "sokva");
497 soinit2();
498
499 /* Set the initial adjusted socket buffer size. */
500 if (sb_max_set(sb_max))
501 panic("bad initial sb_max value: %lu", sb_max);
502
503 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
504 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
505
506 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
507 socket_listener_cb, NULL);
508 }
509
510 /*
511 * Socket operation routines.
512 * These routines are called by the routines in
513 * sys_socket.c or from a system process, and
514 * implement the semantics of socket operations by
515 * switching out to the protocol specific routines.
516 */
517 /*ARGSUSED*/
518 int
519 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
520 struct socket *lockso)
521 {
522 const struct protosw *prp;
523 struct socket *so;
524 uid_t uid;
525 int error;
526 kmutex_t *lock;
527
528 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
529 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
530 KAUTH_ARG(proto));
531 if (error != 0)
532 return error;
533
534 if (proto)
535 prp = pffindproto(dom, proto, type);
536 else
537 prp = pffindtype(dom, type);
538 if (prp == NULL) {
539 /* no support for domain */
540 if (pffinddomain(dom) == 0)
541 return EAFNOSUPPORT;
542 /* no support for socket type */
543 if (proto == 0 && type != 0)
544 return EPROTOTYPE;
545 return EPROTONOSUPPORT;
546 }
547 if (prp->pr_usrreq == NULL)
548 return EPROTONOSUPPORT;
549 if (prp->pr_type != type)
550 return EPROTOTYPE;
551
552 so = soget(true);
553 so->so_type = type;
554 so->so_proto = prp;
555 so->so_send = sosend;
556 so->so_receive = soreceive;
557 #ifdef MBUFTRACE
558 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
559 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
560 so->so_mowner = &prp->pr_domain->dom_mowner;
561 #endif
562 uid = kauth_cred_geteuid(l->l_cred);
563 so->so_uidinfo = uid_find(uid);
564 so->so_cpid = l->l_proc->p_pid;
565 if (lockso != NULL) {
566 /* Caller wants us to share a lock. */
567 lock = lockso->so_lock;
568 so->so_lock = lock;
569 mutex_obj_hold(lock);
570 mutex_enter(lock);
571 } else {
572 /* Lock assigned and taken during PRU_ATTACH. */
573 }
574 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
575 (struct mbuf *)(long)proto, NULL, l);
576 KASSERT(solocked(so));
577 if (error != 0) {
578 so->so_state |= SS_NOFDREF;
579 sofree(so);
580 return error;
581 }
582 so->so_cred = kauth_cred_dup(l->l_cred);
583 sounlock(so);
584 *aso = so;
585 return 0;
586 }
587
588 /* On success, write file descriptor to fdout and return zero. On
589 * failure, return non-zero; *fdout will be undefined.
590 */
591 int
592 fsocreate(int domain, struct socket **sop, int type, int protocol,
593 struct lwp *l, int *fdout)
594 {
595 struct socket *so;
596 struct file *fp;
597 int fd, error;
598
599 if ((error = fd_allocfile(&fp, &fd)) != 0)
600 return (error);
601 fp->f_flag = FREAD|FWRITE;
602 fp->f_type = DTYPE_SOCKET;
603 fp->f_ops = &socketops;
604 error = socreate(domain, &so, type, protocol, l, NULL);
605 if (error != 0) {
606 fd_abort(curproc, fp, fd);
607 } else {
608 if (sop != NULL)
609 *sop = so;
610 fp->f_data = so;
611 fd_affix(curproc, fp, fd);
612 *fdout = fd;
613 }
614 return error;
615 }
616
617 int
618 sofamily(const struct socket *so)
619 {
620 const struct protosw *pr;
621 const struct domain *dom;
622
623 if ((pr = so->so_proto) == NULL)
624 return AF_UNSPEC;
625 if ((dom = pr->pr_domain) == NULL)
626 return AF_UNSPEC;
627 return dom->dom_family;
628 }
629
630 int
631 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
632 {
633 int error;
634
635 solock(so);
636 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
637 sounlock(so);
638 return error;
639 }
640
641 int
642 solisten(struct socket *so, int backlog, struct lwp *l)
643 {
644 int error;
645
646 solock(so);
647 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
648 SS_ISDISCONNECTING)) != 0) {
649 sounlock(so);
650 return (EOPNOTSUPP);
651 }
652 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
653 NULL, NULL, l);
654 if (error != 0) {
655 sounlock(so);
656 return error;
657 }
658 if (TAILQ_EMPTY(&so->so_q))
659 so->so_options |= SO_ACCEPTCONN;
660 if (backlog < 0)
661 backlog = 0;
662 so->so_qlimit = min(backlog, somaxconn);
663 sounlock(so);
664 return 0;
665 }
666
667 void
668 sofree(struct socket *so)
669 {
670 u_int refs;
671
672 KASSERT(solocked(so));
673
674 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
675 sounlock(so);
676 return;
677 }
678 if (so->so_head) {
679 /*
680 * We must not decommission a socket that's on the accept(2)
681 * queue. If we do, then accept(2) may hang after select(2)
682 * indicated that the listening socket was ready.
683 */
684 if (!soqremque(so, 0)) {
685 sounlock(so);
686 return;
687 }
688 }
689 if (so->so_rcv.sb_hiwat)
690 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
691 RLIM_INFINITY);
692 if (so->so_snd.sb_hiwat)
693 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
694 RLIM_INFINITY);
695 sbrelease(&so->so_snd, so);
696 KASSERT(!cv_has_waiters(&so->so_cv));
697 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
698 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
699 sorflush(so);
700 refs = so->so_aborting; /* XXX */
701 /* Remove acccept filter if one is present. */
702 if (so->so_accf != NULL)
703 (void)accept_filt_clear(so);
704 sounlock(so);
705 if (refs == 0) /* XXX */
706 soput(so);
707 }
708
709 /*
710 * Close a socket on last file table reference removal.
711 * Initiate disconnect if connected.
712 * Free socket when disconnect complete.
713 */
714 int
715 soclose(struct socket *so)
716 {
717 struct socket *so2;
718 int error;
719 int error2;
720
721 error = 0;
722 solock(so);
723 if (so->so_options & SO_ACCEPTCONN) {
724 for (;;) {
725 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
726 KASSERT(solocked2(so, so2));
727 (void) soqremque(so2, 0);
728 /* soabort drops the lock. */
729 (void) soabort(so2);
730 solock(so);
731 continue;
732 }
733 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
734 KASSERT(solocked2(so, so2));
735 (void) soqremque(so2, 1);
736 /* soabort drops the lock. */
737 (void) soabort(so2);
738 solock(so);
739 continue;
740 }
741 break;
742 }
743 }
744 if (so->so_pcb == 0)
745 goto discard;
746 if (so->so_state & SS_ISCONNECTED) {
747 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
748 error = sodisconnect(so);
749 if (error)
750 goto drop;
751 }
752 if (so->so_options & SO_LINGER) {
753 if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
754 goto drop;
755 while (so->so_state & SS_ISCONNECTED) {
756 error = sowait(so, true, so->so_linger * hz);
757 if (error)
758 break;
759 }
760 }
761 }
762 drop:
763 if (so->so_pcb) {
764 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
765 NULL, NULL, NULL, NULL);
766 if (error == 0)
767 error = error2;
768 }
769 discard:
770 if (so->so_state & SS_NOFDREF)
771 panic("soclose: NOFDREF");
772 kauth_cred_free(so->so_cred);
773 so->so_state |= SS_NOFDREF;
774 sofree(so);
775 return (error);
776 }
777
778 /*
779 * Must be called with the socket locked.. Will return with it unlocked.
780 */
781 int
782 soabort(struct socket *so)
783 {
784 u_int refs;
785 int error;
786
787 KASSERT(solocked(so));
788 KASSERT(so->so_head == NULL);
789
790 so->so_aborting++; /* XXX */
791 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
792 NULL, NULL, NULL);
793 refs = --so->so_aborting; /* XXX */
794 if (error || (refs == 0)) {
795 sofree(so);
796 } else {
797 sounlock(so);
798 }
799 return error;
800 }
801
802 int
803 soaccept(struct socket *so, struct mbuf *nam)
804 {
805 int error;
806
807 KASSERT(solocked(so));
808
809 error = 0;
810 if ((so->so_state & SS_NOFDREF) == 0)
811 panic("soaccept: !NOFDREF");
812 so->so_state &= ~SS_NOFDREF;
813 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
814 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
815 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
816 NULL, nam, NULL, NULL);
817 else
818 error = ECONNABORTED;
819
820 return (error);
821 }
822
823 int
824 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
825 {
826 int error;
827
828 KASSERT(solocked(so));
829
830 if (so->so_options & SO_ACCEPTCONN)
831 return (EOPNOTSUPP);
832 /*
833 * If protocol is connection-based, can only connect once.
834 * Otherwise, if connected, try to disconnect first.
835 * This allows user to disconnect by connecting to, e.g.,
836 * a null address.
837 */
838 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
839 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
840 (error = sodisconnect(so))))
841 error = EISCONN;
842 else
843 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
844 NULL, nam, NULL, l);
845 return (error);
846 }
847
848 int
849 soconnect2(struct socket *so1, struct socket *so2)
850 {
851 int error;
852
853 KASSERT(solocked2(so1, so2));
854
855 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
856 NULL, (struct mbuf *)so2, NULL, NULL);
857 return (error);
858 }
859
860 int
861 sodisconnect(struct socket *so)
862 {
863 int error;
864
865 KASSERT(solocked(so));
866
867 if ((so->so_state & SS_ISCONNECTED) == 0) {
868 error = ENOTCONN;
869 } else if (so->so_state & SS_ISDISCONNECTING) {
870 error = EALREADY;
871 } else {
872 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
873 NULL, NULL, NULL, NULL);
874 }
875 sodopendfree();
876 return (error);
877 }
878
879 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
880 /*
881 * Send on a socket.
882 * If send must go all at once and message is larger than
883 * send buffering, then hard error.
884 * Lock against other senders.
885 * If must go all at once and not enough room now, then
886 * inform user that this would block and do nothing.
887 * Otherwise, if nonblocking, send as much as possible.
888 * The data to be sent is described by "uio" if nonzero,
889 * otherwise by the mbuf chain "top" (which must be null
890 * if uio is not). Data provided in mbuf chain must be small
891 * enough to send all at once.
892 *
893 * Returns nonzero on error, timeout or signal; callers
894 * must check for short counts if EINTR/ERESTART are returned.
895 * Data and control buffers are freed on return.
896 */
897 int
898 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
899 struct mbuf *control, int flags, struct lwp *l)
900 {
901 struct mbuf **mp, *m;
902 struct proc *p;
903 long space, len, resid, clen, mlen;
904 int error, s, dontroute, atomic;
905 short wakeup_state = 0;
906
907 p = l->l_proc;
908 sodopendfree();
909 clen = 0;
910
911 /*
912 * solock() provides atomicity of access. splsoftnet() prevents
913 * protocol processing soft interrupts from interrupting us and
914 * blocking (expensive).
915 */
916 s = splsoftnet();
917 solock(so);
918 atomic = sosendallatonce(so) || top;
919 if (uio)
920 resid = uio->uio_resid;
921 else
922 resid = top->m_pkthdr.len;
923 /*
924 * In theory resid should be unsigned.
925 * However, space must be signed, as it might be less than 0
926 * if we over-committed, and we must use a signed comparison
927 * of space and resid. On the other hand, a negative resid
928 * causes us to loop sending 0-length segments to the protocol.
929 */
930 if (resid < 0) {
931 error = EINVAL;
932 goto out;
933 }
934 dontroute =
935 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
936 (so->so_proto->pr_flags & PR_ATOMIC);
937 l->l_ru.ru_msgsnd++;
938 if (control)
939 clen = control->m_len;
940 restart:
941 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
942 goto out;
943 do {
944 if (so->so_state & SS_CANTSENDMORE) {
945 error = EPIPE;
946 goto release;
947 }
948 if (so->so_error) {
949 error = so->so_error;
950 so->so_error = 0;
951 goto release;
952 }
953 if ((so->so_state & SS_ISCONNECTED) == 0) {
954 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
955 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
956 !(resid == 0 && clen != 0)) {
957 error = ENOTCONN;
958 goto release;
959 }
960 } else if (addr == 0) {
961 error = EDESTADDRREQ;
962 goto release;
963 }
964 }
965 space = sbspace(&so->so_snd);
966 if (flags & MSG_OOB)
967 space += 1024;
968 if ((atomic && resid > so->so_snd.sb_hiwat) ||
969 clen > so->so_snd.sb_hiwat) {
970 error = EMSGSIZE;
971 goto release;
972 }
973 if (space < resid + clen &&
974 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
975 if (so->so_nbio) {
976 error = EWOULDBLOCK;
977 goto release;
978 }
979 sbunlock(&so->so_snd);
980 if (wakeup_state & SS_RESTARTSYS) {
981 error = ERESTART;
982 goto out;
983 }
984 error = sbwait(&so->so_snd);
985 if (error)
986 goto out;
987 wakeup_state = so->so_state;
988 goto restart;
989 }
990 wakeup_state = 0;
991 mp = ⊤
992 space -= clen;
993 do {
994 if (uio == NULL) {
995 /*
996 * Data is prepackaged in "top".
997 */
998 resid = 0;
999 if (flags & MSG_EOR)
1000 top->m_flags |= M_EOR;
1001 } else do {
1002 sounlock(so);
1003 splx(s);
1004 if (top == NULL) {
1005 m = m_gethdr(M_WAIT, MT_DATA);
1006 mlen = MHLEN;
1007 m->m_pkthdr.len = 0;
1008 m->m_pkthdr.rcvif = NULL;
1009 } else {
1010 m = m_get(M_WAIT, MT_DATA);
1011 mlen = MLEN;
1012 }
1013 MCLAIM(m, so->so_snd.sb_mowner);
1014 if (sock_loan_thresh >= 0 &&
1015 uio->uio_iov->iov_len >= sock_loan_thresh &&
1016 space >= sock_loan_thresh &&
1017 (len = sosend_loan(so, uio, m,
1018 space)) != 0) {
1019 SOSEND_COUNTER_INCR(&sosend_loan_big);
1020 space -= len;
1021 goto have_data;
1022 }
1023 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1024 SOSEND_COUNTER_INCR(&sosend_copy_big);
1025 m_clget(m, M_WAIT);
1026 if ((m->m_flags & M_EXT) == 0)
1027 goto nopages;
1028 mlen = MCLBYTES;
1029 if (atomic && top == 0) {
1030 len = lmin(MCLBYTES - max_hdr,
1031 resid);
1032 m->m_data += max_hdr;
1033 } else
1034 len = lmin(MCLBYTES, resid);
1035 space -= len;
1036 } else {
1037 nopages:
1038 SOSEND_COUNTER_INCR(&sosend_copy_small);
1039 len = lmin(lmin(mlen, resid), space);
1040 space -= len;
1041 /*
1042 * For datagram protocols, leave room
1043 * for protocol headers in first mbuf.
1044 */
1045 if (atomic && top == 0 && len < mlen)
1046 MH_ALIGN(m, len);
1047 }
1048 error = uiomove(mtod(m, void *), (int)len, uio);
1049 have_data:
1050 resid = uio->uio_resid;
1051 m->m_len = len;
1052 *mp = m;
1053 top->m_pkthdr.len += len;
1054 s = splsoftnet();
1055 solock(so);
1056 if (error != 0)
1057 goto release;
1058 mp = &m->m_next;
1059 if (resid <= 0) {
1060 if (flags & MSG_EOR)
1061 top->m_flags |= M_EOR;
1062 break;
1063 }
1064 } while (space > 0 && atomic);
1065
1066 if (so->so_state & SS_CANTSENDMORE) {
1067 error = EPIPE;
1068 goto release;
1069 }
1070 if (dontroute)
1071 so->so_options |= SO_DONTROUTE;
1072 if (resid > 0)
1073 so->so_state |= SS_MORETOCOME;
1074 error = (*so->so_proto->pr_usrreq)(so,
1075 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
1076 top, addr, control, curlwp);
1077 if (dontroute)
1078 so->so_options &= ~SO_DONTROUTE;
1079 if (resid > 0)
1080 so->so_state &= ~SS_MORETOCOME;
1081 clen = 0;
1082 control = NULL;
1083 top = NULL;
1084 mp = ⊤
1085 if (error != 0)
1086 goto release;
1087 } while (resid && space > 0);
1088 } while (resid);
1089
1090 release:
1091 sbunlock(&so->so_snd);
1092 out:
1093 sounlock(so);
1094 splx(s);
1095 if (top)
1096 m_freem(top);
1097 if (control)
1098 m_freem(control);
1099 return (error);
1100 }
1101
1102 /*
1103 * Following replacement or removal of the first mbuf on the first
1104 * mbuf chain of a socket buffer, push necessary state changes back
1105 * into the socket buffer so that other consumers see the values
1106 * consistently. 'nextrecord' is the callers locally stored value of
1107 * the original value of sb->sb_mb->m_nextpkt which must be restored
1108 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1109 */
1110 static void
1111 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1112 {
1113
1114 KASSERT(solocked(sb->sb_so));
1115
1116 /*
1117 * First, update for the new value of nextrecord. If necessary,
1118 * make it the first record.
1119 */
1120 if (sb->sb_mb != NULL)
1121 sb->sb_mb->m_nextpkt = nextrecord;
1122 else
1123 sb->sb_mb = nextrecord;
1124
1125 /*
1126 * Now update any dependent socket buffer fields to reflect
1127 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1128 * the addition of a second clause that takes care of the
1129 * case where sb_mb has been updated, but remains the last
1130 * record.
1131 */
1132 if (sb->sb_mb == NULL) {
1133 sb->sb_mbtail = NULL;
1134 sb->sb_lastrecord = NULL;
1135 } else if (sb->sb_mb->m_nextpkt == NULL)
1136 sb->sb_lastrecord = sb->sb_mb;
1137 }
1138
1139 /*
1140 * Implement receive operations on a socket.
1141 * We depend on the way that records are added to the sockbuf
1142 * by sbappend*. In particular, each record (mbufs linked through m_next)
1143 * must begin with an address if the protocol so specifies,
1144 * followed by an optional mbuf or mbufs containing ancillary data,
1145 * and then zero or more mbufs of data.
1146 * In order to avoid blocking network interrupts for the entire time here,
1147 * we splx() while doing the actual copy to user space.
1148 * Although the sockbuf is locked, new data may still be appended,
1149 * and thus we must maintain consistency of the sockbuf during that time.
1150 *
1151 * The caller may receive the data as a single mbuf chain by supplying
1152 * an mbuf **mp0 for use in returning the chain. The uio is then used
1153 * only for the count in uio_resid.
1154 */
1155 int
1156 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1157 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1158 {
1159 struct lwp *l = curlwp;
1160 struct mbuf *m, **mp, *mt;
1161 int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1162 const struct protosw *pr;
1163 struct mbuf *nextrecord;
1164 int mbuf_removed = 0;
1165 const struct domain *dom;
1166 short wakeup_state = 0;
1167
1168 pr = so->so_proto;
1169 atomic = pr->pr_flags & PR_ATOMIC;
1170 dom = pr->pr_domain;
1171 mp = mp0;
1172 type = 0;
1173 orig_resid = uio->uio_resid;
1174
1175 if (paddr != NULL)
1176 *paddr = NULL;
1177 if (controlp != NULL)
1178 *controlp = NULL;
1179 if (flagsp != NULL)
1180 flags = *flagsp &~ MSG_EOR;
1181 else
1182 flags = 0;
1183
1184 if ((flags & MSG_DONTWAIT) == 0)
1185 sodopendfree();
1186
1187 if (flags & MSG_OOB) {
1188 m = m_get(M_WAIT, MT_DATA);
1189 solock(so);
1190 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1191 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1192 sounlock(so);
1193 if (error)
1194 goto bad;
1195 do {
1196 error = uiomove(mtod(m, void *),
1197 (int) min(uio->uio_resid, m->m_len), uio);
1198 m = m_free(m);
1199 } while (uio->uio_resid > 0 && error == 0 && m);
1200 bad:
1201 if (m != NULL)
1202 m_freem(m);
1203 return error;
1204 }
1205 if (mp != NULL)
1206 *mp = NULL;
1207
1208 /*
1209 * solock() provides atomicity of access. splsoftnet() prevents
1210 * protocol processing soft interrupts from interrupting us and
1211 * blocking (expensive).
1212 */
1213 s = splsoftnet();
1214 solock(so);
1215 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1216 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1217
1218 restart:
1219 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1220 sounlock(so);
1221 splx(s);
1222 return error;
1223 }
1224
1225 m = so->so_rcv.sb_mb;
1226 /*
1227 * If we have less data than requested, block awaiting more
1228 * (subject to any timeout) if:
1229 * 1. the current count is less than the low water mark,
1230 * 2. MSG_WAITALL is set, and it is possible to do the entire
1231 * receive operation at once if we block (resid <= hiwat), or
1232 * 3. MSG_DONTWAIT is not set.
1233 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1234 * we have to do the receive in sections, and thus risk returning
1235 * a short count if a timeout or signal occurs after we start.
1236 */
1237 if (m == NULL ||
1238 ((flags & MSG_DONTWAIT) == 0 &&
1239 so->so_rcv.sb_cc < uio->uio_resid &&
1240 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1241 ((flags & MSG_WAITALL) &&
1242 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1243 m->m_nextpkt == NULL && !atomic)) {
1244 #ifdef DIAGNOSTIC
1245 if (m == NULL && so->so_rcv.sb_cc)
1246 panic("receive 1");
1247 #endif
1248 if (so->so_error) {
1249 if (m != NULL)
1250 goto dontblock;
1251 error = so->so_error;
1252 if ((flags & MSG_PEEK) == 0)
1253 so->so_error = 0;
1254 goto release;
1255 }
1256 if (so->so_state & SS_CANTRCVMORE) {
1257 if (m != NULL)
1258 goto dontblock;
1259 else
1260 goto release;
1261 }
1262 for (; m != NULL; m = m->m_next)
1263 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1264 m = so->so_rcv.sb_mb;
1265 goto dontblock;
1266 }
1267 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1268 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1269 error = ENOTCONN;
1270 goto release;
1271 }
1272 if (uio->uio_resid == 0)
1273 goto release;
1274 if (so->so_nbio || (flags & MSG_DONTWAIT)) {
1275 error = EWOULDBLOCK;
1276 goto release;
1277 }
1278 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1279 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1280 sbunlock(&so->so_rcv);
1281 if (wakeup_state & SS_RESTARTSYS)
1282 error = ERESTART;
1283 else
1284 error = sbwait(&so->so_rcv);
1285 if (error != 0) {
1286 sounlock(so);
1287 splx(s);
1288 return error;
1289 }
1290 wakeup_state = so->so_state;
1291 goto restart;
1292 }
1293 dontblock:
1294 /*
1295 * On entry here, m points to the first record of the socket buffer.
1296 * From this point onward, we maintain 'nextrecord' as a cache of the
1297 * pointer to the next record in the socket buffer. We must keep the
1298 * various socket buffer pointers and local stack versions of the
1299 * pointers in sync, pushing out modifications before dropping the
1300 * socket lock, and re-reading them when picking it up.
1301 *
1302 * Otherwise, we will race with the network stack appending new data
1303 * or records onto the socket buffer by using inconsistent/stale
1304 * versions of the field, possibly resulting in socket buffer
1305 * corruption.
1306 *
1307 * By holding the high-level sblock(), we prevent simultaneous
1308 * readers from pulling off the front of the socket buffer.
1309 */
1310 if (l != NULL)
1311 l->l_ru.ru_msgrcv++;
1312 KASSERT(m == so->so_rcv.sb_mb);
1313 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1314 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1315 nextrecord = m->m_nextpkt;
1316 if (pr->pr_flags & PR_ADDR) {
1317 #ifdef DIAGNOSTIC
1318 if (m->m_type != MT_SONAME)
1319 panic("receive 1a");
1320 #endif
1321 orig_resid = 0;
1322 if (flags & MSG_PEEK) {
1323 if (paddr)
1324 *paddr = m_copy(m, 0, m->m_len);
1325 m = m->m_next;
1326 } else {
1327 sbfree(&so->so_rcv, m);
1328 mbuf_removed = 1;
1329 if (paddr != NULL) {
1330 *paddr = m;
1331 so->so_rcv.sb_mb = m->m_next;
1332 m->m_next = NULL;
1333 m = so->so_rcv.sb_mb;
1334 } else {
1335 MFREE(m, so->so_rcv.sb_mb);
1336 m = so->so_rcv.sb_mb;
1337 }
1338 sbsync(&so->so_rcv, nextrecord);
1339 }
1340 }
1341
1342 /*
1343 * Process one or more MT_CONTROL mbufs present before any data mbufs
1344 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1345 * just copy the data; if !MSG_PEEK, we call into the protocol to
1346 * perform externalization (or freeing if controlp == NULL).
1347 */
1348 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1349 struct mbuf *cm = NULL, *cmn;
1350 struct mbuf **cme = &cm;
1351
1352 do {
1353 if (flags & MSG_PEEK) {
1354 if (controlp != NULL) {
1355 *controlp = m_copy(m, 0, m->m_len);
1356 controlp = &(*controlp)->m_next;
1357 }
1358 m = m->m_next;
1359 } else {
1360 sbfree(&so->so_rcv, m);
1361 so->so_rcv.sb_mb = m->m_next;
1362 m->m_next = NULL;
1363 *cme = m;
1364 cme = &(*cme)->m_next;
1365 m = so->so_rcv.sb_mb;
1366 }
1367 } while (m != NULL && m->m_type == MT_CONTROL);
1368 if ((flags & MSG_PEEK) == 0)
1369 sbsync(&so->so_rcv, nextrecord);
1370 for (; cm != NULL; cm = cmn) {
1371 cmn = cm->m_next;
1372 cm->m_next = NULL;
1373 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1374 if (controlp != NULL) {
1375 if (dom->dom_externalize != NULL &&
1376 type == SCM_RIGHTS) {
1377 sounlock(so);
1378 splx(s);
1379 error = (*dom->dom_externalize)(cm, l);
1380 s = splsoftnet();
1381 solock(so);
1382 }
1383 *controlp = cm;
1384 while (*controlp != NULL)
1385 controlp = &(*controlp)->m_next;
1386 } else {
1387 /*
1388 * Dispose of any SCM_RIGHTS message that went
1389 * through the read path rather than recv.
1390 */
1391 if (dom->dom_dispose != NULL &&
1392 type == SCM_RIGHTS) {
1393 sounlock(so);
1394 (*dom->dom_dispose)(cm);
1395 solock(so);
1396 }
1397 m_freem(cm);
1398 }
1399 }
1400 if (m != NULL)
1401 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1402 else
1403 nextrecord = so->so_rcv.sb_mb;
1404 orig_resid = 0;
1405 }
1406
1407 /* If m is non-NULL, we have some data to read. */
1408 if (__predict_true(m != NULL)) {
1409 type = m->m_type;
1410 if (type == MT_OOBDATA)
1411 flags |= MSG_OOB;
1412 }
1413 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1414 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1415
1416 moff = 0;
1417 offset = 0;
1418 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1419 if (m->m_type == MT_OOBDATA) {
1420 if (type != MT_OOBDATA)
1421 break;
1422 } else if (type == MT_OOBDATA)
1423 break;
1424 #ifdef DIAGNOSTIC
1425 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1426 panic("receive 3");
1427 #endif
1428 so->so_state &= ~SS_RCVATMARK;
1429 wakeup_state = 0;
1430 len = uio->uio_resid;
1431 if (so->so_oobmark && len > so->so_oobmark - offset)
1432 len = so->so_oobmark - offset;
1433 if (len > m->m_len - moff)
1434 len = m->m_len - moff;
1435 /*
1436 * If mp is set, just pass back the mbufs.
1437 * Otherwise copy them out via the uio, then free.
1438 * Sockbuf must be consistent here (points to current mbuf,
1439 * it points to next record) when we drop priority;
1440 * we must note any additions to the sockbuf when we
1441 * block interrupts again.
1442 */
1443 if (mp == NULL) {
1444 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1445 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1446 sounlock(so);
1447 splx(s);
1448 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1449 s = splsoftnet();
1450 solock(so);
1451 if (error != 0) {
1452 /*
1453 * If any part of the record has been removed
1454 * (such as the MT_SONAME mbuf, which will
1455 * happen when PR_ADDR, and thus also
1456 * PR_ATOMIC, is set), then drop the entire
1457 * record to maintain the atomicity of the
1458 * receive operation.
1459 *
1460 * This avoids a later panic("receive 1a")
1461 * when compiled with DIAGNOSTIC.
1462 */
1463 if (m && mbuf_removed && atomic)
1464 (void) sbdroprecord(&so->so_rcv);
1465
1466 goto release;
1467 }
1468 } else
1469 uio->uio_resid -= len;
1470 if (len == m->m_len - moff) {
1471 if (m->m_flags & M_EOR)
1472 flags |= MSG_EOR;
1473 if (flags & MSG_PEEK) {
1474 m = m->m_next;
1475 moff = 0;
1476 } else {
1477 nextrecord = m->m_nextpkt;
1478 sbfree(&so->so_rcv, m);
1479 if (mp) {
1480 *mp = m;
1481 mp = &m->m_next;
1482 so->so_rcv.sb_mb = m = m->m_next;
1483 *mp = NULL;
1484 } else {
1485 MFREE(m, so->so_rcv.sb_mb);
1486 m = so->so_rcv.sb_mb;
1487 }
1488 /*
1489 * If m != NULL, we also know that
1490 * so->so_rcv.sb_mb != NULL.
1491 */
1492 KASSERT(so->so_rcv.sb_mb == m);
1493 if (m) {
1494 m->m_nextpkt = nextrecord;
1495 if (nextrecord == NULL)
1496 so->so_rcv.sb_lastrecord = m;
1497 } else {
1498 so->so_rcv.sb_mb = nextrecord;
1499 SB_EMPTY_FIXUP(&so->so_rcv);
1500 }
1501 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1502 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1503 }
1504 } else if (flags & MSG_PEEK)
1505 moff += len;
1506 else {
1507 if (mp != NULL) {
1508 mt = m_copym(m, 0, len, M_NOWAIT);
1509 if (__predict_false(mt == NULL)) {
1510 sounlock(so);
1511 mt = m_copym(m, 0, len, M_WAIT);
1512 solock(so);
1513 }
1514 *mp = mt;
1515 }
1516 m->m_data += len;
1517 m->m_len -= len;
1518 so->so_rcv.sb_cc -= len;
1519 }
1520 if (so->so_oobmark) {
1521 if ((flags & MSG_PEEK) == 0) {
1522 so->so_oobmark -= len;
1523 if (so->so_oobmark == 0) {
1524 so->so_state |= SS_RCVATMARK;
1525 break;
1526 }
1527 } else {
1528 offset += len;
1529 if (offset == so->so_oobmark)
1530 break;
1531 }
1532 }
1533 if (flags & MSG_EOR)
1534 break;
1535 /*
1536 * If the MSG_WAITALL flag is set (for non-atomic socket),
1537 * we must not quit until "uio->uio_resid == 0" or an error
1538 * termination. If a signal/timeout occurs, return
1539 * with a short count but without error.
1540 * Keep sockbuf locked against other readers.
1541 */
1542 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1543 !sosendallatonce(so) && !nextrecord) {
1544 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1545 break;
1546 /*
1547 * If we are peeking and the socket receive buffer is
1548 * full, stop since we can't get more data to peek at.
1549 */
1550 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1551 break;
1552 /*
1553 * If we've drained the socket buffer, tell the
1554 * protocol in case it needs to do something to
1555 * get it filled again.
1556 */
1557 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1558 (*pr->pr_usrreq)(so, PRU_RCVD,
1559 NULL, (struct mbuf *)(long)flags, NULL, l);
1560 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1561 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1562 if (wakeup_state & SS_RESTARTSYS)
1563 error = ERESTART;
1564 else
1565 error = sbwait(&so->so_rcv);
1566 if (error != 0) {
1567 sbunlock(&so->so_rcv);
1568 sounlock(so);
1569 splx(s);
1570 return 0;
1571 }
1572 if ((m = so->so_rcv.sb_mb) != NULL)
1573 nextrecord = m->m_nextpkt;
1574 wakeup_state = so->so_state;
1575 }
1576 }
1577
1578 if (m && atomic) {
1579 flags |= MSG_TRUNC;
1580 if ((flags & MSG_PEEK) == 0)
1581 (void) sbdroprecord(&so->so_rcv);
1582 }
1583 if ((flags & MSG_PEEK) == 0) {
1584 if (m == NULL) {
1585 /*
1586 * First part is an inline SB_EMPTY_FIXUP(). Second
1587 * part makes sure sb_lastrecord is up-to-date if
1588 * there is still data in the socket buffer.
1589 */
1590 so->so_rcv.sb_mb = nextrecord;
1591 if (so->so_rcv.sb_mb == NULL) {
1592 so->so_rcv.sb_mbtail = NULL;
1593 so->so_rcv.sb_lastrecord = NULL;
1594 } else if (nextrecord->m_nextpkt == NULL)
1595 so->so_rcv.sb_lastrecord = nextrecord;
1596 }
1597 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1598 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1599 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1600 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1601 (struct mbuf *)(long)flags, NULL, l);
1602 }
1603 if (orig_resid == uio->uio_resid && orig_resid &&
1604 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1605 sbunlock(&so->so_rcv);
1606 goto restart;
1607 }
1608
1609 if (flagsp != NULL)
1610 *flagsp |= flags;
1611 release:
1612 sbunlock(&so->so_rcv);
1613 sounlock(so);
1614 splx(s);
1615 return error;
1616 }
1617
1618 int
1619 soshutdown(struct socket *so, int how)
1620 {
1621 const struct protosw *pr;
1622 int error;
1623
1624 KASSERT(solocked(so));
1625
1626 pr = so->so_proto;
1627 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1628 return (EINVAL);
1629
1630 if (how == SHUT_RD || how == SHUT_RDWR) {
1631 sorflush(so);
1632 error = 0;
1633 }
1634 if (how == SHUT_WR || how == SHUT_RDWR)
1635 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1636 NULL, NULL, NULL);
1637
1638 return error;
1639 }
1640
1641 void
1642 sorestart(struct socket *so)
1643 {
1644 /*
1645 * An application has called close() on an fd on which another
1646 * of its threads has called a socket system call.
1647 * Mark this and wake everyone up, and code that would block again
1648 * instead returns ERESTART.
1649 * On system call re-entry the fd is validated and EBADF returned.
1650 * Any other fd will block again on the 2nd syscall.
1651 */
1652 solock(so);
1653 so->so_state |= SS_RESTARTSYS;
1654 cv_broadcast(&so->so_cv);
1655 cv_broadcast(&so->so_snd.sb_cv);
1656 cv_broadcast(&so->so_rcv.sb_cv);
1657 sounlock(so);
1658 }
1659
1660 void
1661 sorflush(struct socket *so)
1662 {
1663 struct sockbuf *sb, asb;
1664 const struct protosw *pr;
1665
1666 KASSERT(solocked(so));
1667
1668 sb = &so->so_rcv;
1669 pr = so->so_proto;
1670 socantrcvmore(so);
1671 sb->sb_flags |= SB_NOINTR;
1672 (void )sblock(sb, M_WAITOK);
1673 sbunlock(sb);
1674 asb = *sb;
1675 /*
1676 * Clear most of the sockbuf structure, but leave some of the
1677 * fields valid.
1678 */
1679 memset(&sb->sb_startzero, 0,
1680 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1681 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1682 sounlock(so);
1683 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1684 solock(so);
1685 }
1686 sbrelease(&asb, so);
1687 }
1688
1689 /*
1690 * internal set SOL_SOCKET options
1691 */
1692 static int
1693 sosetopt1(struct socket *so, const struct sockopt *sopt)
1694 {
1695 int error = EINVAL, optval, opt;
1696 struct linger l;
1697 struct timeval tv;
1698
1699 switch ((opt = sopt->sopt_name)) {
1700
1701 case SO_ACCEPTFILTER:
1702 error = accept_filt_setopt(so, sopt);
1703 KASSERT(solocked(so));
1704 break;
1705
1706 case SO_LINGER:
1707 error = sockopt_get(sopt, &l, sizeof(l));
1708 solock(so);
1709 if (error)
1710 break;
1711 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1712 l.l_linger > (INT_MAX / hz)) {
1713 error = EDOM;
1714 break;
1715 }
1716 so->so_linger = l.l_linger;
1717 if (l.l_onoff)
1718 so->so_options |= SO_LINGER;
1719 else
1720 so->so_options &= ~SO_LINGER;
1721 break;
1722
1723 case SO_DEBUG:
1724 case SO_KEEPALIVE:
1725 case SO_DONTROUTE:
1726 case SO_USELOOPBACK:
1727 case SO_BROADCAST:
1728 case SO_REUSEADDR:
1729 case SO_REUSEPORT:
1730 case SO_OOBINLINE:
1731 case SO_TIMESTAMP:
1732 #ifdef SO_OTIMESTAMP
1733 case SO_OTIMESTAMP:
1734 #endif
1735 error = sockopt_getint(sopt, &optval);
1736 solock(so);
1737 if (error)
1738 break;
1739 if (optval)
1740 so->so_options |= opt;
1741 else
1742 so->so_options &= ~opt;
1743 break;
1744
1745 case SO_SNDBUF:
1746 case SO_RCVBUF:
1747 case SO_SNDLOWAT:
1748 case SO_RCVLOWAT:
1749 error = sockopt_getint(sopt, &optval);
1750 solock(so);
1751 if (error)
1752 break;
1753
1754 /*
1755 * Values < 1 make no sense for any of these
1756 * options, so disallow them.
1757 */
1758 if (optval < 1) {
1759 error = EINVAL;
1760 break;
1761 }
1762
1763 switch (opt) {
1764 case SO_SNDBUF:
1765 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1766 error = ENOBUFS;
1767 break;
1768 }
1769 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1770 break;
1771
1772 case SO_RCVBUF:
1773 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1774 error = ENOBUFS;
1775 break;
1776 }
1777 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1778 break;
1779
1780 /*
1781 * Make sure the low-water is never greater than
1782 * the high-water.
1783 */
1784 case SO_SNDLOWAT:
1785 if (optval > so->so_snd.sb_hiwat)
1786 optval = so->so_snd.sb_hiwat;
1787
1788 so->so_snd.sb_lowat = optval;
1789 break;
1790
1791 case SO_RCVLOWAT:
1792 if (optval > so->so_rcv.sb_hiwat)
1793 optval = so->so_rcv.sb_hiwat;
1794
1795 so->so_rcv.sb_lowat = optval;
1796 break;
1797 }
1798 break;
1799
1800 #ifdef COMPAT_50
1801 case SO_OSNDTIMEO:
1802 case SO_ORCVTIMEO: {
1803 struct timeval50 otv;
1804 error = sockopt_get(sopt, &otv, sizeof(otv));
1805 if (error) {
1806 solock(so);
1807 break;
1808 }
1809 timeval50_to_timeval(&otv, &tv);
1810 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1811 error = 0;
1812 /*FALLTHROUGH*/
1813 }
1814 #endif /* COMPAT_50 */
1815
1816 case SO_SNDTIMEO:
1817 case SO_RCVTIMEO:
1818 if (error)
1819 error = sockopt_get(sopt, &tv, sizeof(tv));
1820 solock(so);
1821 if (error)
1822 break;
1823
1824 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1825 error = EDOM;
1826 break;
1827 }
1828
1829 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1830 if (optval == 0 && tv.tv_usec != 0)
1831 optval = 1;
1832
1833 switch (opt) {
1834 case SO_SNDTIMEO:
1835 so->so_snd.sb_timeo = optval;
1836 break;
1837 case SO_RCVTIMEO:
1838 so->so_rcv.sb_timeo = optval;
1839 break;
1840 }
1841 break;
1842
1843 default:
1844 solock(so);
1845 error = ENOPROTOOPT;
1846 break;
1847 }
1848 KASSERT(solocked(so));
1849 return error;
1850 }
1851
1852 int
1853 sosetopt(struct socket *so, struct sockopt *sopt)
1854 {
1855 int error, prerr;
1856
1857 if (sopt->sopt_level == SOL_SOCKET) {
1858 error = sosetopt1(so, sopt);
1859 KASSERT(solocked(so));
1860 } else {
1861 error = ENOPROTOOPT;
1862 solock(so);
1863 }
1864
1865 if ((error == 0 || error == ENOPROTOOPT) &&
1866 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1867 /* give the protocol stack a shot */
1868 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1869 if (prerr == 0)
1870 error = 0;
1871 else if (prerr != ENOPROTOOPT)
1872 error = prerr;
1873 }
1874 sounlock(so);
1875 return error;
1876 }
1877
1878 /*
1879 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1880 */
1881 int
1882 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1883 const void *val, size_t valsize)
1884 {
1885 struct sockopt sopt;
1886 int error;
1887
1888 KASSERT(valsize == 0 || val != NULL);
1889
1890 sockopt_init(&sopt, level, name, valsize);
1891 sockopt_set(&sopt, val, valsize);
1892
1893 error = sosetopt(so, &sopt);
1894
1895 sockopt_destroy(&sopt);
1896
1897 return error;
1898 }
1899
1900 /*
1901 * internal get SOL_SOCKET options
1902 */
1903 static int
1904 sogetopt1(struct socket *so, struct sockopt *sopt)
1905 {
1906 int error, optval, opt;
1907 struct linger l;
1908 struct timeval tv;
1909
1910 switch ((opt = sopt->sopt_name)) {
1911
1912 case SO_ACCEPTFILTER:
1913 error = accept_filt_getopt(so, sopt);
1914 break;
1915
1916 case SO_LINGER:
1917 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1918 l.l_linger = so->so_linger;
1919
1920 error = sockopt_set(sopt, &l, sizeof(l));
1921 break;
1922
1923 case SO_USELOOPBACK:
1924 case SO_DONTROUTE:
1925 case SO_DEBUG:
1926 case SO_KEEPALIVE:
1927 case SO_REUSEADDR:
1928 case SO_REUSEPORT:
1929 case SO_BROADCAST:
1930 case SO_OOBINLINE:
1931 case SO_TIMESTAMP:
1932 #ifdef SO_OTIMESTAMP
1933 case SO_OTIMESTAMP:
1934 #endif
1935 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1936 break;
1937
1938 case SO_TYPE:
1939 error = sockopt_setint(sopt, so->so_type);
1940 break;
1941
1942 case SO_ERROR:
1943 error = sockopt_setint(sopt, so->so_error);
1944 so->so_error = 0;
1945 break;
1946
1947 case SO_SNDBUF:
1948 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1949 break;
1950
1951 case SO_RCVBUF:
1952 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1953 break;
1954
1955 case SO_SNDLOWAT:
1956 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1957 break;
1958
1959 case SO_RCVLOWAT:
1960 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1961 break;
1962
1963 #ifdef COMPAT_50
1964 case SO_OSNDTIMEO:
1965 case SO_ORCVTIMEO: {
1966 struct timeval50 otv;
1967
1968 optval = (opt == SO_OSNDTIMEO ?
1969 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1970
1971 otv.tv_sec = optval / hz;
1972 otv.tv_usec = (optval % hz) * tick;
1973
1974 error = sockopt_set(sopt, &otv, sizeof(otv));
1975 break;
1976 }
1977 #endif /* COMPAT_50 */
1978
1979 case SO_SNDTIMEO:
1980 case SO_RCVTIMEO:
1981 optval = (opt == SO_SNDTIMEO ?
1982 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1983
1984 tv.tv_sec = optval / hz;
1985 tv.tv_usec = (optval % hz) * tick;
1986
1987 error = sockopt_set(sopt, &tv, sizeof(tv));
1988 break;
1989
1990 case SO_OVERFLOWED:
1991 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1992 break;
1993
1994 default:
1995 error = ENOPROTOOPT;
1996 break;
1997 }
1998
1999 return (error);
2000 }
2001
2002 int
2003 sogetopt(struct socket *so, struct sockopt *sopt)
2004 {
2005 int error;
2006
2007 solock(so);
2008 if (sopt->sopt_level != SOL_SOCKET) {
2009 if (so->so_proto && so->so_proto->pr_ctloutput) {
2010 error = ((*so->so_proto->pr_ctloutput)
2011 (PRCO_GETOPT, so, sopt));
2012 } else
2013 error = (ENOPROTOOPT);
2014 } else {
2015 error = sogetopt1(so, sopt);
2016 }
2017 sounlock(so);
2018 return (error);
2019 }
2020
2021 /*
2022 * alloc sockopt data buffer buffer
2023 * - will be released at destroy
2024 */
2025 static int
2026 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2027 {
2028
2029 KASSERT(sopt->sopt_size == 0);
2030
2031 if (len > sizeof(sopt->sopt_buf)) {
2032 sopt->sopt_data = kmem_zalloc(len, kmflag);
2033 if (sopt->sopt_data == NULL)
2034 return ENOMEM;
2035 } else
2036 sopt->sopt_data = sopt->sopt_buf;
2037
2038 sopt->sopt_size = len;
2039 return 0;
2040 }
2041
2042 /*
2043 * initialise sockopt storage
2044 * - MAY sleep during allocation
2045 */
2046 void
2047 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2048 {
2049
2050 memset(sopt, 0, sizeof(*sopt));
2051
2052 sopt->sopt_level = level;
2053 sopt->sopt_name = name;
2054 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2055 }
2056
2057 /*
2058 * destroy sockopt storage
2059 * - will release any held memory references
2060 */
2061 void
2062 sockopt_destroy(struct sockopt *sopt)
2063 {
2064
2065 if (sopt->sopt_data != sopt->sopt_buf)
2066 kmem_free(sopt->sopt_data, sopt->sopt_size);
2067
2068 memset(sopt, 0, sizeof(*sopt));
2069 }
2070
2071 /*
2072 * set sockopt value
2073 * - value is copied into sockopt
2074 * - memory is allocated when necessary, will not sleep
2075 */
2076 int
2077 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2078 {
2079 int error;
2080
2081 if (sopt->sopt_size == 0) {
2082 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2083 if (error)
2084 return error;
2085 }
2086
2087 KASSERT(sopt->sopt_size == len);
2088 memcpy(sopt->sopt_data, buf, len);
2089 return 0;
2090 }
2091
2092 /*
2093 * common case of set sockopt integer value
2094 */
2095 int
2096 sockopt_setint(struct sockopt *sopt, int val)
2097 {
2098
2099 return sockopt_set(sopt, &val, sizeof(int));
2100 }
2101
2102 /*
2103 * get sockopt value
2104 * - correct size must be given
2105 */
2106 int
2107 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2108 {
2109
2110 if (sopt->sopt_size != len)
2111 return EINVAL;
2112
2113 memcpy(buf, sopt->sopt_data, len);
2114 return 0;
2115 }
2116
2117 /*
2118 * common case of get sockopt integer value
2119 */
2120 int
2121 sockopt_getint(const struct sockopt *sopt, int *valp)
2122 {
2123
2124 return sockopt_get(sopt, valp, sizeof(int));
2125 }
2126
2127 /*
2128 * set sockopt value from mbuf
2129 * - ONLY for legacy code
2130 * - mbuf is released by sockopt
2131 * - will not sleep
2132 */
2133 int
2134 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2135 {
2136 size_t len;
2137 int error;
2138
2139 len = m_length(m);
2140
2141 if (sopt->sopt_size == 0) {
2142 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2143 if (error)
2144 return error;
2145 }
2146
2147 KASSERT(sopt->sopt_size == len);
2148 m_copydata(m, 0, len, sopt->sopt_data);
2149 m_freem(m);
2150
2151 return 0;
2152 }
2153
2154 /*
2155 * get sockopt value into mbuf
2156 * - ONLY for legacy code
2157 * - mbuf to be released by the caller
2158 * - will not sleep
2159 */
2160 struct mbuf *
2161 sockopt_getmbuf(const struct sockopt *sopt)
2162 {
2163 struct mbuf *m;
2164
2165 if (sopt->sopt_size > MCLBYTES)
2166 return NULL;
2167
2168 m = m_get(M_DONTWAIT, MT_SOOPTS);
2169 if (m == NULL)
2170 return NULL;
2171
2172 if (sopt->sopt_size > MLEN) {
2173 MCLGET(m, M_DONTWAIT);
2174 if ((m->m_flags & M_EXT) == 0) {
2175 m_free(m);
2176 return NULL;
2177 }
2178 }
2179
2180 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2181 m->m_len = sopt->sopt_size;
2182
2183 return m;
2184 }
2185
2186 void
2187 sohasoutofband(struct socket *so)
2188 {
2189
2190 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2191 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2192 }
2193
2194 static void
2195 filt_sordetach(struct knote *kn)
2196 {
2197 struct socket *so;
2198
2199 so = ((file_t *)kn->kn_obj)->f_data;
2200 solock(so);
2201 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2202 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2203 so->so_rcv.sb_flags &= ~SB_KNOTE;
2204 sounlock(so);
2205 }
2206
2207 /*ARGSUSED*/
2208 static int
2209 filt_soread(struct knote *kn, long hint)
2210 {
2211 struct socket *so;
2212 int rv;
2213
2214 so = ((file_t *)kn->kn_obj)->f_data;
2215 if (hint != NOTE_SUBMIT)
2216 solock(so);
2217 kn->kn_data = so->so_rcv.sb_cc;
2218 if (so->so_state & SS_CANTRCVMORE) {
2219 kn->kn_flags |= EV_EOF;
2220 kn->kn_fflags = so->so_error;
2221 rv = 1;
2222 } else if (so->so_error) /* temporary udp error */
2223 rv = 1;
2224 else if (kn->kn_sfflags & NOTE_LOWAT)
2225 rv = (kn->kn_data >= kn->kn_sdata);
2226 else
2227 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2228 if (hint != NOTE_SUBMIT)
2229 sounlock(so);
2230 return rv;
2231 }
2232
2233 static void
2234 filt_sowdetach(struct knote *kn)
2235 {
2236 struct socket *so;
2237
2238 so = ((file_t *)kn->kn_obj)->f_data;
2239 solock(so);
2240 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2241 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2242 so->so_snd.sb_flags &= ~SB_KNOTE;
2243 sounlock(so);
2244 }
2245
2246 /*ARGSUSED*/
2247 static int
2248 filt_sowrite(struct knote *kn, long hint)
2249 {
2250 struct socket *so;
2251 int rv;
2252
2253 so = ((file_t *)kn->kn_obj)->f_data;
2254 if (hint != NOTE_SUBMIT)
2255 solock(so);
2256 kn->kn_data = sbspace(&so->so_snd);
2257 if (so->so_state & SS_CANTSENDMORE) {
2258 kn->kn_flags |= EV_EOF;
2259 kn->kn_fflags = so->so_error;
2260 rv = 1;
2261 } else if (so->so_error) /* temporary udp error */
2262 rv = 1;
2263 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2264 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2265 rv = 0;
2266 else if (kn->kn_sfflags & NOTE_LOWAT)
2267 rv = (kn->kn_data >= kn->kn_sdata);
2268 else
2269 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2270 if (hint != NOTE_SUBMIT)
2271 sounlock(so);
2272 return rv;
2273 }
2274
2275 /*ARGSUSED*/
2276 static int
2277 filt_solisten(struct knote *kn, long hint)
2278 {
2279 struct socket *so;
2280 int rv;
2281
2282 so = ((file_t *)kn->kn_obj)->f_data;
2283
2284 /*
2285 * Set kn_data to number of incoming connections, not
2286 * counting partial (incomplete) connections.
2287 */
2288 if (hint != NOTE_SUBMIT)
2289 solock(so);
2290 kn->kn_data = so->so_qlen;
2291 rv = (kn->kn_data > 0);
2292 if (hint != NOTE_SUBMIT)
2293 sounlock(so);
2294 return rv;
2295 }
2296
2297 static const struct filterops solisten_filtops =
2298 { 1, NULL, filt_sordetach, filt_solisten };
2299 static const struct filterops soread_filtops =
2300 { 1, NULL, filt_sordetach, filt_soread };
2301 static const struct filterops sowrite_filtops =
2302 { 1, NULL, filt_sowdetach, filt_sowrite };
2303
2304 int
2305 soo_kqfilter(struct file *fp, struct knote *kn)
2306 {
2307 struct socket *so;
2308 struct sockbuf *sb;
2309
2310 so = ((file_t *)kn->kn_obj)->f_data;
2311 solock(so);
2312 switch (kn->kn_filter) {
2313 case EVFILT_READ:
2314 if (so->so_options & SO_ACCEPTCONN)
2315 kn->kn_fop = &solisten_filtops;
2316 else
2317 kn->kn_fop = &soread_filtops;
2318 sb = &so->so_rcv;
2319 break;
2320 case EVFILT_WRITE:
2321 kn->kn_fop = &sowrite_filtops;
2322 sb = &so->so_snd;
2323 break;
2324 default:
2325 sounlock(so);
2326 return (EINVAL);
2327 }
2328 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2329 sb->sb_flags |= SB_KNOTE;
2330 sounlock(so);
2331 return (0);
2332 }
2333
2334 static int
2335 sodopoll(struct socket *so, int events)
2336 {
2337 int revents;
2338
2339 revents = 0;
2340
2341 if (events & (POLLIN | POLLRDNORM))
2342 if (soreadable(so))
2343 revents |= events & (POLLIN | POLLRDNORM);
2344
2345 if (events & (POLLOUT | POLLWRNORM))
2346 if (sowritable(so))
2347 revents |= events & (POLLOUT | POLLWRNORM);
2348
2349 if (events & (POLLPRI | POLLRDBAND))
2350 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2351 revents |= events & (POLLPRI | POLLRDBAND);
2352
2353 return revents;
2354 }
2355
2356 int
2357 sopoll(struct socket *so, int events)
2358 {
2359 int revents = 0;
2360
2361 #ifndef DIAGNOSTIC
2362 /*
2363 * Do a quick, unlocked check in expectation that the socket
2364 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2365 * as the solocked() assertions will fail.
2366 */
2367 if ((revents = sodopoll(so, events)) != 0)
2368 return revents;
2369 #endif
2370
2371 solock(so);
2372 if ((revents = sodopoll(so, events)) == 0) {
2373 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2374 selrecord(curlwp, &so->so_rcv.sb_sel);
2375 so->so_rcv.sb_flags |= SB_NOTIFY;
2376 }
2377
2378 if (events & (POLLOUT | POLLWRNORM)) {
2379 selrecord(curlwp, &so->so_snd.sb_sel);
2380 so->so_snd.sb_flags |= SB_NOTIFY;
2381 }
2382 }
2383 sounlock(so);
2384
2385 return revents;
2386 }
2387
2388
2389 #include <sys/sysctl.h>
2390
2391 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2392
2393 /*
2394 * sysctl helper routine for kern.somaxkva. ensures that the given
2395 * value is not too small.
2396 * (XXX should we maybe make sure it's not too large as well?)
2397 */
2398 static int
2399 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2400 {
2401 int error, new_somaxkva;
2402 struct sysctlnode node;
2403
2404 new_somaxkva = somaxkva;
2405 node = *rnode;
2406 node.sysctl_data = &new_somaxkva;
2407 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2408 if (error || newp == NULL)
2409 return (error);
2410
2411 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2412 return (EINVAL);
2413
2414 mutex_enter(&so_pendfree_lock);
2415 somaxkva = new_somaxkva;
2416 cv_broadcast(&socurkva_cv);
2417 mutex_exit(&so_pendfree_lock);
2418
2419 return (error);
2420 }
2421
2422 static void
2423 sysctl_kern_somaxkva_setup(void)
2424 {
2425
2426 KASSERT(socket_sysctllog == NULL);
2427 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2428 CTLFLAG_PERMANENT,
2429 CTLTYPE_NODE, "kern", NULL,
2430 NULL, 0, NULL, 0,
2431 CTL_KERN, CTL_EOL);
2432
2433 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2434 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2435 CTLTYPE_INT, "somaxkva",
2436 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2437 "used for socket buffers"),
2438 sysctl_kern_somaxkva, 0, NULL, 0,
2439 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2440 }
2441