uipc_socket.c revision 1.161 1 /* $NetBSD: uipc_socket.c,v 1.161 2008/04/27 14:26:58 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copyright (c) 2004 The FreeBSD Foundation
41 * Copyright (c) 2004 Robert Watson
42 * Copyright (c) 1982, 1986, 1988, 1990, 1993
43 * The Regents of the University of California. All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. Neither the name of the University nor the names of its contributors
54 * may be used to endorse or promote products derived from this software
55 * without specific prior written permission.
56 *
57 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
59 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
60 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
61 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
62 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
63 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
64 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
65 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
66 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * SUCH DAMAGE.
68 *
69 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.161 2008/04/27 14:26:58 ad Exp $");
74
75 #include "opt_sock_counters.h"
76 #include "opt_sosend_loan.h"
77 #include "opt_mbuftrace.h"
78 #include "opt_somaxkva.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/proc.h>
83 #include <sys/file.h>
84 #include <sys/filedesc.h>
85 #include <sys/malloc.h>
86 #include <sys/mbuf.h>
87 #include <sys/domain.h>
88 #include <sys/kernel.h>
89 #include <sys/protosw.h>
90 #include <sys/socket.h>
91 #include <sys/socketvar.h>
92 #include <sys/signalvar.h>
93 #include <sys/resourcevar.h>
94 #include <sys/event.h>
95 #include <sys/poll.h>
96 #include <sys/kauth.h>
97 #include <sys/mutex.h>
98 #include <sys/condvar.h>
99
100 #include <uvm/uvm.h>
101
102 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
103 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
104
105 extern const struct fileops socketops;
106
107 extern int somaxconn; /* patchable (XXX sysctl) */
108 int somaxconn = SOMAXCONN;
109 kmutex_t *softnet_lock;
110
111 #ifdef SOSEND_COUNTERS
112 #include <sys/device.h>
113
114 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
115 NULL, "sosend", "loan big");
116 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
117 NULL, "sosend", "copy big");
118 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
119 NULL, "sosend", "copy small");
120 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
121 NULL, "sosend", "kva limit");
122
123 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
124
125 EVCNT_ATTACH_STATIC(sosend_loan_big);
126 EVCNT_ATTACH_STATIC(sosend_copy_big);
127 EVCNT_ATTACH_STATIC(sosend_copy_small);
128 EVCNT_ATTACH_STATIC(sosend_kvalimit);
129 #else
130
131 #define SOSEND_COUNTER_INCR(ev) /* nothing */
132
133 #endif /* SOSEND_COUNTERS */
134
135 static struct callback_entry sokva_reclaimerentry;
136
137 #ifdef SOSEND_NO_LOAN
138 int sock_loan_thresh = -1;
139 #else
140 int sock_loan_thresh = 4096;
141 #endif
142
143 static kmutex_t so_pendfree_lock;
144 static struct mbuf *so_pendfree;
145
146 #ifndef SOMAXKVA
147 #define SOMAXKVA (16 * 1024 * 1024)
148 #endif
149 int somaxkva = SOMAXKVA;
150 static int socurkva;
151 static kcondvar_t socurkva_cv;
152
153 #define SOCK_LOAN_CHUNK 65536
154
155 static size_t sodopendfree(void);
156 static size_t sodopendfreel(void);
157
158 static vsize_t
159 sokvareserve(struct socket *so, vsize_t len)
160 {
161 int error;
162
163 mutex_enter(&so_pendfree_lock);
164 while (socurkva + len > somaxkva) {
165 size_t freed;
166
167 /*
168 * try to do pendfree.
169 */
170
171 freed = sodopendfreel();
172
173 /*
174 * if some kva was freed, try again.
175 */
176
177 if (freed)
178 continue;
179
180 SOSEND_COUNTER_INCR(&sosend_kvalimit);
181 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
182 if (error) {
183 len = 0;
184 break;
185 }
186 }
187 socurkva += len;
188 mutex_exit(&so_pendfree_lock);
189 return len;
190 }
191
192 static void
193 sokvaunreserve(vsize_t len)
194 {
195
196 mutex_enter(&so_pendfree_lock);
197 socurkva -= len;
198 cv_broadcast(&socurkva_cv);
199 mutex_exit(&so_pendfree_lock);
200 }
201
202 /*
203 * sokvaalloc: allocate kva for loan.
204 */
205
206 vaddr_t
207 sokvaalloc(vsize_t len, struct socket *so)
208 {
209 vaddr_t lva;
210
211 /*
212 * reserve kva.
213 */
214
215 if (sokvareserve(so, len) == 0)
216 return 0;
217
218 /*
219 * allocate kva.
220 */
221
222 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
223 if (lva == 0) {
224 sokvaunreserve(len);
225 return (0);
226 }
227
228 return lva;
229 }
230
231 /*
232 * sokvafree: free kva for loan.
233 */
234
235 void
236 sokvafree(vaddr_t sva, vsize_t len)
237 {
238
239 /*
240 * free kva.
241 */
242
243 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
244
245 /*
246 * unreserve kva.
247 */
248
249 sokvaunreserve(len);
250 }
251
252 static void
253 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
254 {
255 vaddr_t sva, eva;
256 vsize_t len;
257 int npgs;
258
259 KASSERT(pgs != NULL);
260
261 eva = round_page((vaddr_t) buf + size);
262 sva = trunc_page((vaddr_t) buf);
263 len = eva - sva;
264 npgs = len >> PAGE_SHIFT;
265
266 pmap_kremove(sva, len);
267 pmap_update(pmap_kernel());
268 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
269 sokvafree(sva, len);
270 }
271
272 static size_t
273 sodopendfree(void)
274 {
275 size_t rv;
276
277 if (__predict_true(so_pendfree == NULL))
278 return 0;
279
280 mutex_enter(&so_pendfree_lock);
281 rv = sodopendfreel();
282 mutex_exit(&so_pendfree_lock);
283
284 return rv;
285 }
286
287 /*
288 * sodopendfreel: free mbufs on "pendfree" list.
289 * unlock and relock so_pendfree_lock when freeing mbufs.
290 *
291 * => called with so_pendfree_lock held.
292 */
293
294 static size_t
295 sodopendfreel(void)
296 {
297 struct mbuf *m, *next;
298 size_t rv = 0;
299
300 KASSERT(mutex_owned(&so_pendfree_lock));
301
302 while (so_pendfree != NULL) {
303 m = so_pendfree;
304 so_pendfree = NULL;
305 mutex_exit(&so_pendfree_lock);
306
307 for (; m != NULL; m = next) {
308 next = m->m_next;
309 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
310 KASSERT(m->m_ext.ext_refcnt == 0);
311
312 rv += m->m_ext.ext_size;
313 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
314 m->m_ext.ext_size);
315 pool_cache_put(mb_cache, m);
316 }
317
318 mutex_enter(&so_pendfree_lock);
319 }
320
321 return (rv);
322 }
323
324 void
325 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
326 {
327
328 KASSERT(m != NULL);
329
330 /*
331 * postpone freeing mbuf.
332 *
333 * we can't do it in interrupt context
334 * because we need to put kva back to kernel_map.
335 */
336
337 mutex_enter(&so_pendfree_lock);
338 m->m_next = so_pendfree;
339 so_pendfree = m;
340 cv_broadcast(&socurkva_cv);
341 mutex_exit(&so_pendfree_lock);
342 }
343
344 static long
345 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
346 {
347 struct iovec *iov = uio->uio_iov;
348 vaddr_t sva, eva;
349 vsize_t len;
350 vaddr_t lva;
351 int npgs, error;
352 vaddr_t va;
353 int i;
354
355 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
356 return (0);
357
358 if (iov->iov_len < (size_t) space)
359 space = iov->iov_len;
360 if (space > SOCK_LOAN_CHUNK)
361 space = SOCK_LOAN_CHUNK;
362
363 eva = round_page((vaddr_t) iov->iov_base + space);
364 sva = trunc_page((vaddr_t) iov->iov_base);
365 len = eva - sva;
366 npgs = len >> PAGE_SHIFT;
367
368 KASSERT(npgs <= M_EXT_MAXPAGES);
369
370 lva = sokvaalloc(len, so);
371 if (lva == 0)
372 return 0;
373
374 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
375 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
376 if (error) {
377 sokvafree(lva, len);
378 return (0);
379 }
380
381 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
382 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
383 VM_PROT_READ);
384 pmap_update(pmap_kernel());
385
386 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
387
388 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
389 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
390
391 uio->uio_resid -= space;
392 /* uio_offset not updated, not set/used for write(2) */
393 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
394 uio->uio_iov->iov_len -= space;
395 if (uio->uio_iov->iov_len == 0) {
396 uio->uio_iov++;
397 uio->uio_iovcnt--;
398 }
399
400 return (space);
401 }
402
403 static int
404 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
405 {
406
407 KASSERT(ce == &sokva_reclaimerentry);
408 KASSERT(obj == NULL);
409
410 sodopendfree();
411 if (!vm_map_starved_p(kernel_map)) {
412 return CALLBACK_CHAIN_ABORT;
413 }
414 return CALLBACK_CHAIN_CONTINUE;
415 }
416
417 struct mbuf *
418 getsombuf(struct socket *so, int type)
419 {
420 struct mbuf *m;
421
422 m = m_get(M_WAIT, type);
423 MCLAIM(m, so->so_mowner);
424 return m;
425 }
426
427 struct mbuf *
428 m_intopt(struct socket *so, int val)
429 {
430 struct mbuf *m;
431
432 m = getsombuf(so, MT_SOOPTS);
433 m->m_len = sizeof(int);
434 *mtod(m, int *) = val;
435 return m;
436 }
437
438 void
439 soinit(void)
440 {
441
442 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
443 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
444 cv_init(&socurkva_cv, "sokva");
445
446 /* Set the initial adjusted socket buffer size. */
447 if (sb_max_set(sb_max))
448 panic("bad initial sb_max value: %lu", sb_max);
449
450 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
451 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
452 }
453
454 /*
455 * Socket operation routines.
456 * These routines are called by the routines in
457 * sys_socket.c or from a system process, and
458 * implement the semantics of socket operations by
459 * switching out to the protocol specific routines.
460 */
461 /*ARGSUSED*/
462 int
463 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
464 struct socket *lockso)
465 {
466 const struct protosw *prp;
467 struct socket *so;
468 uid_t uid;
469 int error;
470 kmutex_t *lock;
471
472 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
473 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
474 KAUTH_ARG(proto));
475 if (error != 0)
476 return error;
477
478 if (proto)
479 prp = pffindproto(dom, proto, type);
480 else
481 prp = pffindtype(dom, type);
482 if (prp == NULL) {
483 /* no support for domain */
484 if (pffinddomain(dom) == 0)
485 return EAFNOSUPPORT;
486 /* no support for socket type */
487 if (proto == 0 && type != 0)
488 return EPROTOTYPE;
489 return EPROTONOSUPPORT;
490 }
491 if (prp->pr_usrreq == NULL)
492 return EPROTONOSUPPORT;
493 if (prp->pr_type != type)
494 return EPROTOTYPE;
495
496 so = soget(true);
497 so->so_type = type;
498 so->so_proto = prp;
499 so->so_send = sosend;
500 so->so_receive = soreceive;
501 #ifdef MBUFTRACE
502 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
503 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
504 so->so_mowner = &prp->pr_domain->dom_mowner;
505 #endif
506 uid = kauth_cred_geteuid(l->l_cred);
507 so->so_uidinfo = uid_find(uid);
508 if (lockso != NULL) {
509 /* Caller wants us to share a lock. */
510 lock = lockso->so_lock;
511 so->so_lock = lock;
512 mutex_obj_hold(lock);
513 mutex_enter(lock);
514 } else {
515 /* Lock assigned and taken during PRU_ATTACH. */
516 }
517 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
518 (struct mbuf *)(long)proto, NULL, l);
519 KASSERT(solocked(so));
520 if (error != 0) {
521 so->so_state |= SS_NOFDREF;
522 sofree(so);
523 return error;
524 }
525 sounlock(so);
526 *aso = so;
527 return 0;
528 }
529
530 /* On success, write file descriptor to fdout and return zero. On
531 * failure, return non-zero; *fdout will be undefined.
532 */
533 int
534 fsocreate(int domain, struct socket **sop, int type, int protocol,
535 struct lwp *l, int *fdout)
536 {
537 struct socket *so;
538 struct file *fp;
539 int fd, error;
540
541 if ((error = fd_allocfile(&fp, &fd)) != 0)
542 return (error);
543 fp->f_flag = FREAD|FWRITE;
544 fp->f_type = DTYPE_SOCKET;
545 fp->f_ops = &socketops;
546 error = socreate(domain, &so, type, protocol, l, NULL);
547 if (error != 0) {
548 fd_abort(curproc, fp, fd);
549 } else {
550 if (sop != NULL)
551 *sop = so;
552 fp->f_data = so;
553 fd_affix(curproc, fp, fd);
554 *fdout = fd;
555 }
556 return error;
557 }
558
559 int
560 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
561 {
562 int error;
563
564 solock(so);
565 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
566 sounlock(so);
567 return error;
568 }
569
570 int
571 solisten(struct socket *so, int backlog, struct lwp *l)
572 {
573 int error;
574
575 solock(so);
576 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
577 SS_ISDISCONNECTING)) != 0)
578 return (EOPNOTSUPP);
579 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
580 NULL, NULL, l);
581 if (error != 0) {
582 sounlock(so);
583 return error;
584 }
585 if (TAILQ_EMPTY(&so->so_q))
586 so->so_options |= SO_ACCEPTCONN;
587 if (backlog < 0)
588 backlog = 0;
589 so->so_qlimit = min(backlog, somaxconn);
590 sounlock(so);
591 return 0;
592 }
593
594 void
595 sofree(struct socket *so)
596 {
597 u_int refs;
598
599 KASSERT(solocked(so));
600
601 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
602 sounlock(so);
603 return;
604 }
605 if (so->so_head) {
606 /*
607 * We must not decommission a socket that's on the accept(2)
608 * queue. If we do, then accept(2) may hang after select(2)
609 * indicated that the listening socket was ready.
610 */
611 if (!soqremque(so, 0)) {
612 sounlock(so);
613 return;
614 }
615 }
616 if (so->so_rcv.sb_hiwat)
617 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
618 RLIM_INFINITY);
619 if (so->so_snd.sb_hiwat)
620 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
621 RLIM_INFINITY);
622 sbrelease(&so->so_snd, so);
623 KASSERT(!cv_has_waiters(&so->so_cv));
624 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
625 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
626 sorflush(so);
627 refs = so->so_aborting; /* XXX */
628 sounlock(so);
629 if (refs == 0) /* XXX */
630 soput(so);
631 }
632
633 /*
634 * Close a socket on last file table reference removal.
635 * Initiate disconnect if connected.
636 * Free socket when disconnect complete.
637 */
638 int
639 soclose(struct socket *so)
640 {
641 struct socket *so2;
642 int error;
643 int error2;
644
645 error = 0;
646 solock(so);
647 if (so->so_options & SO_ACCEPTCONN) {
648 do {
649 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
650 KASSERT(solocked2(so, so2));
651 (void) soqremque(so2, 0);
652 /* soabort drops the lock. */
653 (void) soabort(so2);
654 solock(so);
655 continue;
656 }
657 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
658 KASSERT(solocked2(so, so2));
659 (void) soqremque(so2, 1);
660 /* soabort drops the lock. */
661 (void) soabort(so2);
662 solock(so);
663 continue;
664 }
665 } while (0);
666 }
667 if (so->so_pcb == 0)
668 goto discard;
669 if (so->so_state & SS_ISCONNECTED) {
670 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
671 error = sodisconnect(so);
672 if (error)
673 goto drop;
674 }
675 if (so->so_options & SO_LINGER) {
676 if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
677 goto drop;
678 while (so->so_state & SS_ISCONNECTED) {
679 error = sowait(so, so->so_linger * hz);
680 if (error)
681 break;
682 }
683 }
684 }
685 drop:
686 if (so->so_pcb) {
687 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
688 NULL, NULL, NULL, NULL);
689 if (error == 0)
690 error = error2;
691 }
692 discard:
693 if (so->so_state & SS_NOFDREF)
694 panic("soclose: NOFDREF");
695 so->so_state |= SS_NOFDREF;
696 sofree(so);
697 return (error);
698 }
699
700 /*
701 * Must be called with the socket locked.. Will return with it unlocked.
702 */
703 int
704 soabort(struct socket *so)
705 {
706 u_int refs;
707 int error;
708
709 KASSERT(solocked(so));
710 KASSERT(so->so_head == NULL);
711
712 so->so_aborting++; /* XXX */
713 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
714 NULL, NULL, NULL);
715 refs = --so->so_aborting; /* XXX */
716 if (error) {
717 sofree(so);
718 } else {
719 sounlock(so);
720 if (refs == 0)
721 sofree(so);
722 }
723 return error;
724 }
725
726 int
727 soaccept(struct socket *so, struct mbuf *nam)
728 {
729 int error;
730
731 KASSERT(solocked(so));
732
733 error = 0;
734 if ((so->so_state & SS_NOFDREF) == 0)
735 panic("soaccept: !NOFDREF");
736 so->so_state &= ~SS_NOFDREF;
737 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
738 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
739 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
740 NULL, nam, NULL, NULL);
741 else
742 error = ECONNABORTED;
743
744 return (error);
745 }
746
747 int
748 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
749 {
750 int error;
751
752 KASSERT(solocked(so));
753
754 if (so->so_options & SO_ACCEPTCONN)
755 return (EOPNOTSUPP);
756 /*
757 * If protocol is connection-based, can only connect once.
758 * Otherwise, if connected, try to disconnect first.
759 * This allows user to disconnect by connecting to, e.g.,
760 * a null address.
761 */
762 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
763 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
764 (error = sodisconnect(so))))
765 error = EISCONN;
766 else
767 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
768 NULL, nam, NULL, l);
769 return (error);
770 }
771
772 int
773 soconnect2(struct socket *so1, struct socket *so2)
774 {
775 int error;
776
777 KASSERT(solocked2(so1, so2));
778
779 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
780 NULL, (struct mbuf *)so2, NULL, NULL);
781 return (error);
782 }
783
784 int
785 sodisconnect(struct socket *so)
786 {
787 int error;
788
789 KASSERT(solocked(so));
790
791 if ((so->so_state & SS_ISCONNECTED) == 0) {
792 error = ENOTCONN;
793 } else if (so->so_state & SS_ISDISCONNECTING) {
794 error = EALREADY;
795 } else {
796 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
797 NULL, NULL, NULL, NULL);
798 }
799 sodopendfree();
800 return (error);
801 }
802
803 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
804 /*
805 * Send on a socket.
806 * If send must go all at once and message is larger than
807 * send buffering, then hard error.
808 * Lock against other senders.
809 * If must go all at once and not enough room now, then
810 * inform user that this would block and do nothing.
811 * Otherwise, if nonblocking, send as much as possible.
812 * The data to be sent is described by "uio" if nonzero,
813 * otherwise by the mbuf chain "top" (which must be null
814 * if uio is not). Data provided in mbuf chain must be small
815 * enough to send all at once.
816 *
817 * Returns nonzero on error, timeout or signal; callers
818 * must check for short counts if EINTR/ERESTART are returned.
819 * Data and control buffers are freed on return.
820 */
821 int
822 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
823 struct mbuf *control, int flags, struct lwp *l)
824 {
825 struct mbuf **mp, *m;
826 struct proc *p;
827 long space, len, resid, clen, mlen;
828 int error, s, dontroute, atomic;
829
830 p = l->l_proc;
831 sodopendfree();
832 clen = 0;
833
834 /*
835 * solock() provides atomicity of access. splsoftnet() prevents
836 * protocol processing soft interrupts from interrupting us and
837 * blocking (expensive).
838 */
839 s = splsoftnet();
840 solock(so);
841 atomic = sosendallatonce(so) || top;
842 if (uio)
843 resid = uio->uio_resid;
844 else
845 resid = top->m_pkthdr.len;
846 /*
847 * In theory resid should be unsigned.
848 * However, space must be signed, as it might be less than 0
849 * if we over-committed, and we must use a signed comparison
850 * of space and resid. On the other hand, a negative resid
851 * causes us to loop sending 0-length segments to the protocol.
852 */
853 if (resid < 0) {
854 error = EINVAL;
855 goto out;
856 }
857 dontroute =
858 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
859 (so->so_proto->pr_flags & PR_ATOMIC);
860 if (l)
861 l->l_ru.ru_msgsnd++;
862 if (control)
863 clen = control->m_len;
864 restart:
865 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
866 goto out;
867 do {
868 if (so->so_state & SS_CANTSENDMORE) {
869 error = EPIPE;
870 goto release;
871 }
872 if (so->so_error) {
873 error = so->so_error;
874 so->so_error = 0;
875 goto release;
876 }
877 if ((so->so_state & SS_ISCONNECTED) == 0) {
878 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
879 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
880 !(resid == 0 && clen != 0)) {
881 error = ENOTCONN;
882 goto release;
883 }
884 } else if (addr == 0) {
885 error = EDESTADDRREQ;
886 goto release;
887 }
888 }
889 space = sbspace(&so->so_snd);
890 if (flags & MSG_OOB)
891 space += 1024;
892 if ((atomic && resid > so->so_snd.sb_hiwat) ||
893 clen > so->so_snd.sb_hiwat) {
894 error = EMSGSIZE;
895 goto release;
896 }
897 if (space < resid + clen &&
898 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
899 if (so->so_nbio) {
900 error = EWOULDBLOCK;
901 goto release;
902 }
903 sbunlock(&so->so_snd);
904 error = sbwait(&so->so_snd);
905 if (error)
906 goto out;
907 goto restart;
908 }
909 mp = ⊤
910 space -= clen;
911 do {
912 if (uio == NULL) {
913 /*
914 * Data is prepackaged in "top".
915 */
916 resid = 0;
917 if (flags & MSG_EOR)
918 top->m_flags |= M_EOR;
919 } else do {
920 sounlock(so);
921 splx(s);
922 if (top == NULL) {
923 m = m_gethdr(M_WAIT, MT_DATA);
924 mlen = MHLEN;
925 m->m_pkthdr.len = 0;
926 m->m_pkthdr.rcvif = NULL;
927 } else {
928 m = m_get(M_WAIT, MT_DATA);
929 mlen = MLEN;
930 }
931 MCLAIM(m, so->so_snd.sb_mowner);
932 if (sock_loan_thresh >= 0 &&
933 uio->uio_iov->iov_len >= sock_loan_thresh &&
934 space >= sock_loan_thresh &&
935 (len = sosend_loan(so, uio, m,
936 space)) != 0) {
937 SOSEND_COUNTER_INCR(&sosend_loan_big);
938 space -= len;
939 goto have_data;
940 }
941 if (resid >= MINCLSIZE && space >= MCLBYTES) {
942 SOSEND_COUNTER_INCR(&sosend_copy_big);
943 m_clget(m, M_WAIT);
944 if ((m->m_flags & M_EXT) == 0)
945 goto nopages;
946 mlen = MCLBYTES;
947 if (atomic && top == 0) {
948 len = lmin(MCLBYTES - max_hdr,
949 resid);
950 m->m_data += max_hdr;
951 } else
952 len = lmin(MCLBYTES, resid);
953 space -= len;
954 } else {
955 nopages:
956 SOSEND_COUNTER_INCR(&sosend_copy_small);
957 len = lmin(lmin(mlen, resid), space);
958 space -= len;
959 /*
960 * For datagram protocols, leave room
961 * for protocol headers in first mbuf.
962 */
963 if (atomic && top == 0 && len < mlen)
964 MH_ALIGN(m, len);
965 }
966 error = uiomove(mtod(m, void *), (int)len, uio);
967 have_data:
968 resid = uio->uio_resid;
969 m->m_len = len;
970 *mp = m;
971 top->m_pkthdr.len += len;
972 s = splsoftnet();
973 solock(so);
974 if (error != 0)
975 goto release;
976 mp = &m->m_next;
977 if (resid <= 0) {
978 if (flags & MSG_EOR)
979 top->m_flags |= M_EOR;
980 break;
981 }
982 } while (space > 0 && atomic);
983
984 if (so->so_state & SS_CANTSENDMORE) {
985 error = EPIPE;
986 goto release;
987 }
988 if (dontroute)
989 so->so_options |= SO_DONTROUTE;
990 if (resid > 0)
991 so->so_state |= SS_MORETOCOME;
992 error = (*so->so_proto->pr_usrreq)(so,
993 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
994 top, addr, control, curlwp);
995 if (dontroute)
996 so->so_options &= ~SO_DONTROUTE;
997 if (resid > 0)
998 so->so_state &= ~SS_MORETOCOME;
999 clen = 0;
1000 control = NULL;
1001 top = NULL;
1002 mp = ⊤
1003 if (error != 0)
1004 goto release;
1005 } while (resid && space > 0);
1006 } while (resid);
1007
1008 release:
1009 sbunlock(&so->so_snd);
1010 out:
1011 sounlock(so);
1012 splx(s);
1013 if (top)
1014 m_freem(top);
1015 if (control)
1016 m_freem(control);
1017 return (error);
1018 }
1019
1020 /*
1021 * Following replacement or removal of the first mbuf on the first
1022 * mbuf chain of a socket buffer, push necessary state changes back
1023 * into the socket buffer so that other consumers see the values
1024 * consistently. 'nextrecord' is the callers locally stored value of
1025 * the original value of sb->sb_mb->m_nextpkt which must be restored
1026 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1027 */
1028 static void
1029 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1030 {
1031
1032 KASSERT(solocked(sb->sb_so));
1033
1034 /*
1035 * First, update for the new value of nextrecord. If necessary,
1036 * make it the first record.
1037 */
1038 if (sb->sb_mb != NULL)
1039 sb->sb_mb->m_nextpkt = nextrecord;
1040 else
1041 sb->sb_mb = nextrecord;
1042
1043 /*
1044 * Now update any dependent socket buffer fields to reflect
1045 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1046 * the addition of a second clause that takes care of the
1047 * case where sb_mb has been updated, but remains the last
1048 * record.
1049 */
1050 if (sb->sb_mb == NULL) {
1051 sb->sb_mbtail = NULL;
1052 sb->sb_lastrecord = NULL;
1053 } else if (sb->sb_mb->m_nextpkt == NULL)
1054 sb->sb_lastrecord = sb->sb_mb;
1055 }
1056
1057 /*
1058 * Implement receive operations on a socket.
1059 * We depend on the way that records are added to the sockbuf
1060 * by sbappend*. In particular, each record (mbufs linked through m_next)
1061 * must begin with an address if the protocol so specifies,
1062 * followed by an optional mbuf or mbufs containing ancillary data,
1063 * and then zero or more mbufs of data.
1064 * In order to avoid blocking network interrupts for the entire time here,
1065 * we splx() while doing the actual copy to user space.
1066 * Although the sockbuf is locked, new data may still be appended,
1067 * and thus we must maintain consistency of the sockbuf during that time.
1068 *
1069 * The caller may receive the data as a single mbuf chain by supplying
1070 * an mbuf **mp0 for use in returning the chain. The uio is then used
1071 * only for the count in uio_resid.
1072 */
1073 int
1074 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1075 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1076 {
1077 struct lwp *l = curlwp;
1078 struct mbuf *m, **mp, *mt;
1079 int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1080 const struct protosw *pr;
1081 struct mbuf *nextrecord;
1082 int mbuf_removed = 0;
1083 const struct domain *dom;
1084
1085 pr = so->so_proto;
1086 atomic = pr->pr_flags & PR_ATOMIC;
1087 dom = pr->pr_domain;
1088 mp = mp0;
1089 type = 0;
1090 orig_resid = uio->uio_resid;
1091
1092 if (paddr != NULL)
1093 *paddr = NULL;
1094 if (controlp != NULL)
1095 *controlp = NULL;
1096 if (flagsp != NULL)
1097 flags = *flagsp &~ MSG_EOR;
1098 else
1099 flags = 0;
1100
1101 if ((flags & MSG_DONTWAIT) == 0)
1102 sodopendfree();
1103
1104 if (flags & MSG_OOB) {
1105 m = m_get(M_WAIT, MT_DATA);
1106 solock(so);
1107 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1108 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1109 sounlock(so);
1110 if (error)
1111 goto bad;
1112 do {
1113 error = uiomove(mtod(m, void *),
1114 (int) min(uio->uio_resid, m->m_len), uio);
1115 m = m_free(m);
1116 } while (uio->uio_resid > 0 && error == 0 && m);
1117 bad:
1118 if (m != NULL)
1119 m_freem(m);
1120 return error;
1121 }
1122 if (mp != NULL)
1123 *mp = NULL;
1124
1125 /*
1126 * solock() provides atomicity of access. splsoftnet() prevents
1127 * protocol processing soft interrupts from interrupting us and
1128 * blocking (expensive).
1129 */
1130 s = splsoftnet();
1131 solock(so);
1132 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1133 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1134
1135 restart:
1136 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1137 sounlock(so);
1138 splx(s);
1139 return error;
1140 }
1141
1142 m = so->so_rcv.sb_mb;
1143 /*
1144 * If we have less data than requested, block awaiting more
1145 * (subject to any timeout) if:
1146 * 1. the current count is less than the low water mark,
1147 * 2. MSG_WAITALL is set, and it is possible to do the entire
1148 * receive operation at once if we block (resid <= hiwat), or
1149 * 3. MSG_DONTWAIT is not set.
1150 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1151 * we have to do the receive in sections, and thus risk returning
1152 * a short count if a timeout or signal occurs after we start.
1153 */
1154 if (m == NULL ||
1155 ((flags & MSG_DONTWAIT) == 0 &&
1156 so->so_rcv.sb_cc < uio->uio_resid &&
1157 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1158 ((flags & MSG_WAITALL) &&
1159 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1160 m->m_nextpkt == NULL && !atomic)) {
1161 #ifdef DIAGNOSTIC
1162 if (m == NULL && so->so_rcv.sb_cc)
1163 panic("receive 1");
1164 #endif
1165 if (so->so_error) {
1166 if (m != NULL)
1167 goto dontblock;
1168 error = so->so_error;
1169 if ((flags & MSG_PEEK) == 0)
1170 so->so_error = 0;
1171 goto release;
1172 }
1173 if (so->so_state & SS_CANTRCVMORE) {
1174 if (m != NULL)
1175 goto dontblock;
1176 else
1177 goto release;
1178 }
1179 for (; m != NULL; m = m->m_next)
1180 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1181 m = so->so_rcv.sb_mb;
1182 goto dontblock;
1183 }
1184 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1185 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1186 error = ENOTCONN;
1187 goto release;
1188 }
1189 if (uio->uio_resid == 0)
1190 goto release;
1191 if (so->so_nbio || (flags & MSG_DONTWAIT)) {
1192 error = EWOULDBLOCK;
1193 goto release;
1194 }
1195 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1196 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1197 sbunlock(&so->so_rcv);
1198 error = sbwait(&so->so_rcv);
1199 if (error != 0) {
1200 sounlock(so);
1201 splx(s);
1202 return error;
1203 }
1204 goto restart;
1205 }
1206 dontblock:
1207 /*
1208 * On entry here, m points to the first record of the socket buffer.
1209 * From this point onward, we maintain 'nextrecord' as a cache of the
1210 * pointer to the next record in the socket buffer. We must keep the
1211 * various socket buffer pointers and local stack versions of the
1212 * pointers in sync, pushing out modifications before dropping the
1213 * socket lock, and re-reading them when picking it up.
1214 *
1215 * Otherwise, we will race with the network stack appending new data
1216 * or records onto the socket buffer by using inconsistent/stale
1217 * versions of the field, possibly resulting in socket buffer
1218 * corruption.
1219 *
1220 * By holding the high-level sblock(), we prevent simultaneous
1221 * readers from pulling off the front of the socket buffer.
1222 */
1223 if (l != NULL)
1224 l->l_ru.ru_msgrcv++;
1225 KASSERT(m == so->so_rcv.sb_mb);
1226 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1227 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1228 nextrecord = m->m_nextpkt;
1229 if (pr->pr_flags & PR_ADDR) {
1230 #ifdef DIAGNOSTIC
1231 if (m->m_type != MT_SONAME)
1232 panic("receive 1a");
1233 #endif
1234 orig_resid = 0;
1235 if (flags & MSG_PEEK) {
1236 if (paddr)
1237 *paddr = m_copy(m, 0, m->m_len);
1238 m = m->m_next;
1239 } else {
1240 sbfree(&so->so_rcv, m);
1241 mbuf_removed = 1;
1242 if (paddr != NULL) {
1243 *paddr = m;
1244 so->so_rcv.sb_mb = m->m_next;
1245 m->m_next = NULL;
1246 m = so->so_rcv.sb_mb;
1247 } else {
1248 MFREE(m, so->so_rcv.sb_mb);
1249 m = so->so_rcv.sb_mb;
1250 }
1251 sbsync(&so->so_rcv, nextrecord);
1252 }
1253 }
1254
1255 /*
1256 * Process one or more MT_CONTROL mbufs present before any data mbufs
1257 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1258 * just copy the data; if !MSG_PEEK, we call into the protocol to
1259 * perform externalization (or freeing if controlp == NULL).
1260 */
1261 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1262 struct mbuf *cm = NULL, *cmn;
1263 struct mbuf **cme = &cm;
1264
1265 do {
1266 if (flags & MSG_PEEK) {
1267 if (controlp != NULL) {
1268 *controlp = m_copy(m, 0, m->m_len);
1269 controlp = &(*controlp)->m_next;
1270 }
1271 m = m->m_next;
1272 } else {
1273 sbfree(&so->so_rcv, m);
1274 so->so_rcv.sb_mb = m->m_next;
1275 m->m_next = NULL;
1276 *cme = m;
1277 cme = &(*cme)->m_next;
1278 m = so->so_rcv.sb_mb;
1279 }
1280 } while (m != NULL && m->m_type == MT_CONTROL);
1281 if ((flags & MSG_PEEK) == 0)
1282 sbsync(&so->so_rcv, nextrecord);
1283 for (; cm != NULL; cm = cmn) {
1284 cmn = cm->m_next;
1285 cm->m_next = NULL;
1286 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1287 if (controlp != NULL) {
1288 if (dom->dom_externalize != NULL &&
1289 type == SCM_RIGHTS) {
1290 sounlock(so);
1291 splx(s);
1292 error = (*dom->dom_externalize)(cm, l);
1293 s = splsoftnet();
1294 solock(so);
1295 }
1296 *controlp = cm;
1297 while (*controlp != NULL)
1298 controlp = &(*controlp)->m_next;
1299 } else {
1300 /*
1301 * Dispose of any SCM_RIGHTS message that went
1302 * through the read path rather than recv.
1303 */
1304 if (dom->dom_dispose != NULL &&
1305 type == SCM_RIGHTS) {
1306 sounlock(so);
1307 (*dom->dom_dispose)(cm);
1308 solock(so);
1309 }
1310 m_freem(cm);
1311 }
1312 }
1313 if (m != NULL)
1314 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1315 else
1316 nextrecord = so->so_rcv.sb_mb;
1317 orig_resid = 0;
1318 }
1319
1320 /* If m is non-NULL, we have some data to read. */
1321 if (__predict_true(m != NULL)) {
1322 type = m->m_type;
1323 if (type == MT_OOBDATA)
1324 flags |= MSG_OOB;
1325 }
1326 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1327 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1328
1329 moff = 0;
1330 offset = 0;
1331 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1332 if (m->m_type == MT_OOBDATA) {
1333 if (type != MT_OOBDATA)
1334 break;
1335 } else if (type == MT_OOBDATA)
1336 break;
1337 #ifdef DIAGNOSTIC
1338 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1339 panic("receive 3");
1340 #endif
1341 so->so_state &= ~SS_RCVATMARK;
1342 len = uio->uio_resid;
1343 if (so->so_oobmark && len > so->so_oobmark - offset)
1344 len = so->so_oobmark - offset;
1345 if (len > m->m_len - moff)
1346 len = m->m_len - moff;
1347 /*
1348 * If mp is set, just pass back the mbufs.
1349 * Otherwise copy them out via the uio, then free.
1350 * Sockbuf must be consistent here (points to current mbuf,
1351 * it points to next record) when we drop priority;
1352 * we must note any additions to the sockbuf when we
1353 * block interrupts again.
1354 */
1355 if (mp == NULL) {
1356 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1357 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1358 sounlock(so);
1359 splx(s);
1360 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1361 s = splsoftnet();
1362 solock(so);
1363 if (error != 0) {
1364 /*
1365 * If any part of the record has been removed
1366 * (such as the MT_SONAME mbuf, which will
1367 * happen when PR_ADDR, and thus also
1368 * PR_ATOMIC, is set), then drop the entire
1369 * record to maintain the atomicity of the
1370 * receive operation.
1371 *
1372 * This avoids a later panic("receive 1a")
1373 * when compiled with DIAGNOSTIC.
1374 */
1375 if (m && mbuf_removed && atomic)
1376 (void) sbdroprecord(&so->so_rcv);
1377
1378 goto release;
1379 }
1380 } else
1381 uio->uio_resid -= len;
1382 if (len == m->m_len - moff) {
1383 if (m->m_flags & M_EOR)
1384 flags |= MSG_EOR;
1385 if (flags & MSG_PEEK) {
1386 m = m->m_next;
1387 moff = 0;
1388 } else {
1389 nextrecord = m->m_nextpkt;
1390 sbfree(&so->so_rcv, m);
1391 if (mp) {
1392 *mp = m;
1393 mp = &m->m_next;
1394 so->so_rcv.sb_mb = m = m->m_next;
1395 *mp = NULL;
1396 } else {
1397 MFREE(m, so->so_rcv.sb_mb);
1398 m = so->so_rcv.sb_mb;
1399 }
1400 /*
1401 * If m != NULL, we also know that
1402 * so->so_rcv.sb_mb != NULL.
1403 */
1404 KASSERT(so->so_rcv.sb_mb == m);
1405 if (m) {
1406 m->m_nextpkt = nextrecord;
1407 if (nextrecord == NULL)
1408 so->so_rcv.sb_lastrecord = m;
1409 } else {
1410 so->so_rcv.sb_mb = nextrecord;
1411 SB_EMPTY_FIXUP(&so->so_rcv);
1412 }
1413 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1414 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1415 }
1416 } else if (flags & MSG_PEEK)
1417 moff += len;
1418 else {
1419 if (mp != NULL) {
1420 mt = m_copym(m, 0, len, M_NOWAIT);
1421 if (__predict_false(mt == NULL)) {
1422 sounlock(so);
1423 mt = m_copym(m, 0, len, M_WAIT);
1424 solock(so);
1425 }
1426 *mp = mt;
1427 }
1428 m->m_data += len;
1429 m->m_len -= len;
1430 so->so_rcv.sb_cc -= len;
1431 }
1432 if (so->so_oobmark) {
1433 if ((flags & MSG_PEEK) == 0) {
1434 so->so_oobmark -= len;
1435 if (so->so_oobmark == 0) {
1436 so->so_state |= SS_RCVATMARK;
1437 break;
1438 }
1439 } else {
1440 offset += len;
1441 if (offset == so->so_oobmark)
1442 break;
1443 }
1444 }
1445 if (flags & MSG_EOR)
1446 break;
1447 /*
1448 * If the MSG_WAITALL flag is set (for non-atomic socket),
1449 * we must not quit until "uio->uio_resid == 0" or an error
1450 * termination. If a signal/timeout occurs, return
1451 * with a short count but without error.
1452 * Keep sockbuf locked against other readers.
1453 */
1454 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1455 !sosendallatonce(so) && !nextrecord) {
1456 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1457 break;
1458 /*
1459 * If we are peeking and the socket receive buffer is
1460 * full, stop since we can't get more data to peek at.
1461 */
1462 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1463 break;
1464 /*
1465 * If we've drained the socket buffer, tell the
1466 * protocol in case it needs to do something to
1467 * get it filled again.
1468 */
1469 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1470 (*pr->pr_usrreq)(so, PRU_RCVD,
1471 NULL, (struct mbuf *)(long)flags, NULL, l);
1472 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1473 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1474 error = sbwait(&so->so_rcv);
1475 if (error != 0) {
1476 sbunlock(&so->so_rcv);
1477 sounlock(so);
1478 splx(s);
1479 return 0;
1480 }
1481 if ((m = so->so_rcv.sb_mb) != NULL)
1482 nextrecord = m->m_nextpkt;
1483 }
1484 }
1485
1486 if (m && atomic) {
1487 flags |= MSG_TRUNC;
1488 if ((flags & MSG_PEEK) == 0)
1489 (void) sbdroprecord(&so->so_rcv);
1490 }
1491 if ((flags & MSG_PEEK) == 0) {
1492 if (m == NULL) {
1493 /*
1494 * First part is an inline SB_EMPTY_FIXUP(). Second
1495 * part makes sure sb_lastrecord is up-to-date if
1496 * there is still data in the socket buffer.
1497 */
1498 so->so_rcv.sb_mb = nextrecord;
1499 if (so->so_rcv.sb_mb == NULL) {
1500 so->so_rcv.sb_mbtail = NULL;
1501 so->so_rcv.sb_lastrecord = NULL;
1502 } else if (nextrecord->m_nextpkt == NULL)
1503 so->so_rcv.sb_lastrecord = nextrecord;
1504 }
1505 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1506 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1507 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1508 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1509 (struct mbuf *)(long)flags, NULL, l);
1510 }
1511 if (orig_resid == uio->uio_resid && orig_resid &&
1512 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1513 sbunlock(&so->so_rcv);
1514 goto restart;
1515 }
1516
1517 if (flagsp != NULL)
1518 *flagsp |= flags;
1519 release:
1520 sbunlock(&so->so_rcv);
1521 sounlock(so);
1522 splx(s);
1523 return error;
1524 }
1525
1526 int
1527 soshutdown(struct socket *so, int how)
1528 {
1529 const struct protosw *pr;
1530 int error;
1531
1532 KASSERT(solocked(so));
1533
1534 pr = so->so_proto;
1535 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1536 return (EINVAL);
1537
1538 if (how == SHUT_RD || how == SHUT_RDWR) {
1539 sorflush(so);
1540 error = 0;
1541 }
1542 if (how == SHUT_WR || how == SHUT_RDWR)
1543 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1544 NULL, NULL, NULL);
1545
1546 return error;
1547 }
1548
1549 void
1550 sorflush(struct socket *so)
1551 {
1552 struct sockbuf *sb, asb;
1553 const struct protosw *pr;
1554
1555 KASSERT(solocked(so));
1556
1557 sb = &so->so_rcv;
1558 pr = so->so_proto;
1559 socantrcvmore(so);
1560 sb->sb_flags |= SB_NOINTR;
1561 (void )sblock(sb, M_WAITOK);
1562 sbunlock(sb);
1563 asb = *sb;
1564 /*
1565 * Clear most of the sockbuf structure, but leave some of the
1566 * fields valid.
1567 */
1568 memset(&sb->sb_startzero, 0,
1569 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1570 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1571 sounlock(so);
1572 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1573 solock(so);
1574 }
1575 sbrelease(&asb, so);
1576 }
1577
1578 static int
1579 sosetopt1(struct socket *so, int level, int optname, struct mbuf *m)
1580 {
1581 int optval, val;
1582 struct linger *l;
1583 struct sockbuf *sb;
1584 struct timeval *tv;
1585
1586 switch (optname) {
1587
1588 case SO_LINGER:
1589 if (m == NULL || m->m_len != sizeof(struct linger))
1590 return EINVAL;
1591 l = mtod(m, struct linger *);
1592 if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
1593 l->l_linger > (INT_MAX / hz))
1594 return EDOM;
1595 so->so_linger = l->l_linger;
1596 if (l->l_onoff)
1597 so->so_options |= SO_LINGER;
1598 else
1599 so->so_options &= ~SO_LINGER;
1600 break;
1601
1602 case SO_DEBUG:
1603 case SO_KEEPALIVE:
1604 case SO_DONTROUTE:
1605 case SO_USELOOPBACK:
1606 case SO_BROADCAST:
1607 case SO_REUSEADDR:
1608 case SO_REUSEPORT:
1609 case SO_OOBINLINE:
1610 case SO_TIMESTAMP:
1611 if (m == NULL || m->m_len < sizeof(int))
1612 return EINVAL;
1613 if (*mtod(m, int *))
1614 so->so_options |= optname;
1615 else
1616 so->so_options &= ~optname;
1617 break;
1618
1619 case SO_SNDBUF:
1620 case SO_RCVBUF:
1621 case SO_SNDLOWAT:
1622 case SO_RCVLOWAT:
1623 if (m == NULL || m->m_len < sizeof(int))
1624 return EINVAL;
1625
1626 /*
1627 * Values < 1 make no sense for any of these
1628 * options, so disallow them.
1629 */
1630 optval = *mtod(m, int *);
1631 if (optval < 1)
1632 return EINVAL;
1633
1634 switch (optname) {
1635
1636 case SO_SNDBUF:
1637 case SO_RCVBUF:
1638 sb = (optname == SO_SNDBUF) ?
1639 &so->so_snd : &so->so_rcv;
1640 if (sbreserve(sb, (u_long)optval, so) == 0)
1641 return ENOBUFS;
1642 sb->sb_flags &= ~SB_AUTOSIZE;
1643 break;
1644
1645 /*
1646 * Make sure the low-water is never greater than
1647 * the high-water.
1648 */
1649 case SO_SNDLOWAT:
1650 so->so_snd.sb_lowat =
1651 (optval > so->so_snd.sb_hiwat) ?
1652 so->so_snd.sb_hiwat : optval;
1653 break;
1654 case SO_RCVLOWAT:
1655 so->so_rcv.sb_lowat =
1656 (optval > so->so_rcv.sb_hiwat) ?
1657 so->so_rcv.sb_hiwat : optval;
1658 break;
1659 }
1660 break;
1661
1662 case SO_SNDTIMEO:
1663 case SO_RCVTIMEO:
1664 if (m == NULL || m->m_len < sizeof(*tv))
1665 return EINVAL;
1666 tv = mtod(m, struct timeval *);
1667 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz)
1668 return EDOM;
1669 val = tv->tv_sec * hz + tv->tv_usec / tick;
1670 if (val == 0 && tv->tv_usec != 0)
1671 val = 1;
1672
1673 switch (optname) {
1674
1675 case SO_SNDTIMEO:
1676 so->so_snd.sb_timeo = val;
1677 break;
1678 case SO_RCVTIMEO:
1679 so->so_rcv.sb_timeo = val;
1680 break;
1681 }
1682 break;
1683
1684 default:
1685 return ENOPROTOOPT;
1686 }
1687 return 0;
1688 }
1689
1690 int
1691 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
1692 {
1693 int error, prerr;
1694
1695 solock(so);
1696 if (level == SOL_SOCKET)
1697 error = sosetopt1(so, level, optname, m);
1698 else
1699 error = ENOPROTOOPT;
1700
1701 if ((error == 0 || error == ENOPROTOOPT) &&
1702 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1703 /* give the protocol stack a shot */
1704 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, level,
1705 optname, &m);
1706 if (prerr == 0)
1707 error = 0;
1708 else if (prerr != ENOPROTOOPT)
1709 error = prerr;
1710 } else if (m != NULL)
1711 (void)m_free(m);
1712 sounlock(so);
1713 return error;
1714 }
1715
1716 int
1717 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1718 {
1719 struct mbuf *m;
1720 int error;
1721
1722 solock(so);
1723 if (level != SOL_SOCKET) {
1724 if (so->so_proto && so->so_proto->pr_ctloutput) {
1725 error = ((*so->so_proto->pr_ctloutput)
1726 (PRCO_GETOPT, so, level, optname, mp));
1727 } else
1728 error = (ENOPROTOOPT);
1729 } else {
1730 m = m_get(M_WAIT, MT_SOOPTS);
1731 m->m_len = sizeof(int);
1732
1733 switch (optname) {
1734
1735 case SO_LINGER:
1736 m->m_len = sizeof(struct linger);
1737 mtod(m, struct linger *)->l_onoff =
1738 (so->so_options & SO_LINGER) ? 1 : 0;
1739 mtod(m, struct linger *)->l_linger = so->so_linger;
1740 break;
1741
1742 case SO_USELOOPBACK:
1743 case SO_DONTROUTE:
1744 case SO_DEBUG:
1745 case SO_KEEPALIVE:
1746 case SO_REUSEADDR:
1747 case SO_REUSEPORT:
1748 case SO_BROADCAST:
1749 case SO_OOBINLINE:
1750 case SO_TIMESTAMP:
1751 *mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
1752 break;
1753
1754 case SO_TYPE:
1755 *mtod(m, int *) = so->so_type;
1756 break;
1757
1758 case SO_ERROR:
1759 *mtod(m, int *) = so->so_error;
1760 so->so_error = 0;
1761 break;
1762
1763 case SO_SNDBUF:
1764 *mtod(m, int *) = so->so_snd.sb_hiwat;
1765 break;
1766
1767 case SO_RCVBUF:
1768 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1769 break;
1770
1771 case SO_SNDLOWAT:
1772 *mtod(m, int *) = so->so_snd.sb_lowat;
1773 break;
1774
1775 case SO_RCVLOWAT:
1776 *mtod(m, int *) = so->so_rcv.sb_lowat;
1777 break;
1778
1779 case SO_SNDTIMEO:
1780 case SO_RCVTIMEO:
1781 {
1782 int val = (optname == SO_SNDTIMEO ?
1783 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1784
1785 m->m_len = sizeof(struct timeval);
1786 mtod(m, struct timeval *)->tv_sec = val / hz;
1787 mtod(m, struct timeval *)->tv_usec =
1788 (val % hz) * tick;
1789 break;
1790 }
1791
1792 case SO_OVERFLOWED:
1793 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1794 break;
1795
1796 default:
1797 sounlock(so);
1798 (void)m_free(m);
1799 return (ENOPROTOOPT);
1800 }
1801 *mp = m;
1802 error = 0;
1803 }
1804
1805 sounlock(so);
1806 return (error);
1807 }
1808
1809 void
1810 sohasoutofband(struct socket *so)
1811 {
1812
1813 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1814 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, 0);
1815 }
1816
1817 static void
1818 filt_sordetach(struct knote *kn)
1819 {
1820 struct socket *so;
1821
1822 so = ((file_t *)kn->kn_obj)->f_data;
1823 solock(so);
1824 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1825 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1826 so->so_rcv.sb_flags &= ~SB_KNOTE;
1827 sounlock(so);
1828 }
1829
1830 /*ARGSUSED*/
1831 static int
1832 filt_soread(struct knote *kn, long hint)
1833 {
1834 struct socket *so;
1835 int rv;
1836
1837 so = ((file_t *)kn->kn_obj)->f_data;
1838 if (hint != NOTE_SUBMIT)
1839 solock(so);
1840 kn->kn_data = so->so_rcv.sb_cc;
1841 if (so->so_state & SS_CANTRCVMORE) {
1842 kn->kn_flags |= EV_EOF;
1843 kn->kn_fflags = so->so_error;
1844 rv = 1;
1845 } else if (so->so_error) /* temporary udp error */
1846 rv = 1;
1847 else if (kn->kn_sfflags & NOTE_LOWAT)
1848 rv = (kn->kn_data >= kn->kn_sdata);
1849 else
1850 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
1851 if (hint != NOTE_SUBMIT)
1852 sounlock(so);
1853 return rv;
1854 }
1855
1856 static void
1857 filt_sowdetach(struct knote *kn)
1858 {
1859 struct socket *so;
1860
1861 so = ((file_t *)kn->kn_obj)->f_data;
1862 solock(so);
1863 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1864 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1865 so->so_snd.sb_flags &= ~SB_KNOTE;
1866 sounlock(so);
1867 }
1868
1869 /*ARGSUSED*/
1870 static int
1871 filt_sowrite(struct knote *kn, long hint)
1872 {
1873 struct socket *so;
1874 int rv;
1875
1876 so = ((file_t *)kn->kn_obj)->f_data;
1877 if (hint != NOTE_SUBMIT)
1878 solock(so);
1879 kn->kn_data = sbspace(&so->so_snd);
1880 if (so->so_state & SS_CANTSENDMORE) {
1881 kn->kn_flags |= EV_EOF;
1882 kn->kn_fflags = so->so_error;
1883 rv = 1;
1884 } else if (so->so_error) /* temporary udp error */
1885 rv = 1;
1886 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
1887 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1888 rv = 0;
1889 else if (kn->kn_sfflags & NOTE_LOWAT)
1890 rv = (kn->kn_data >= kn->kn_sdata);
1891 else
1892 rv = (kn->kn_data >= so->so_snd.sb_lowat);
1893 if (hint != NOTE_SUBMIT)
1894 sounlock(so);
1895 return rv;
1896 }
1897
1898 /*ARGSUSED*/
1899 static int
1900 filt_solisten(struct knote *kn, long hint)
1901 {
1902 struct socket *so;
1903 int rv;
1904
1905 so = ((file_t *)kn->kn_obj)->f_data;
1906
1907 /*
1908 * Set kn_data to number of incoming connections, not
1909 * counting partial (incomplete) connections.
1910 */
1911 if (hint != NOTE_SUBMIT)
1912 solock(so);
1913 kn->kn_data = so->so_qlen;
1914 rv = (kn->kn_data > 0);
1915 if (hint != NOTE_SUBMIT)
1916 sounlock(so);
1917 return rv;
1918 }
1919
1920 static const struct filterops solisten_filtops =
1921 { 1, NULL, filt_sordetach, filt_solisten };
1922 static const struct filterops soread_filtops =
1923 { 1, NULL, filt_sordetach, filt_soread };
1924 static const struct filterops sowrite_filtops =
1925 { 1, NULL, filt_sowdetach, filt_sowrite };
1926
1927 int
1928 soo_kqfilter(struct file *fp, struct knote *kn)
1929 {
1930 struct socket *so;
1931 struct sockbuf *sb;
1932
1933 so = ((file_t *)kn->kn_obj)->f_data;
1934 solock(so);
1935 switch (kn->kn_filter) {
1936 case EVFILT_READ:
1937 if (so->so_options & SO_ACCEPTCONN)
1938 kn->kn_fop = &solisten_filtops;
1939 else
1940 kn->kn_fop = &soread_filtops;
1941 sb = &so->so_rcv;
1942 break;
1943 case EVFILT_WRITE:
1944 kn->kn_fop = &sowrite_filtops;
1945 sb = &so->so_snd;
1946 break;
1947 default:
1948 sounlock(so);
1949 return (EINVAL);
1950 }
1951 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1952 sb->sb_flags |= SB_KNOTE;
1953 sounlock(so);
1954 return (0);
1955 }
1956
1957 static int
1958 sodopoll(struct socket *so, int events)
1959 {
1960 int revents;
1961
1962 revents = 0;
1963
1964 if (events & (POLLIN | POLLRDNORM))
1965 if (soreadable(so))
1966 revents |= events & (POLLIN | POLLRDNORM);
1967
1968 if (events & (POLLOUT | POLLWRNORM))
1969 if (sowritable(so))
1970 revents |= events & (POLLOUT | POLLWRNORM);
1971
1972 if (events & (POLLPRI | POLLRDBAND))
1973 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
1974 revents |= events & (POLLPRI | POLLRDBAND);
1975
1976 return revents;
1977 }
1978
1979 int
1980 sopoll(struct socket *so, int events)
1981 {
1982 int revents = 0;
1983
1984 #ifndef DIAGNOSTIC
1985 /*
1986 * Do a quick, unlocked check in expectation that the socket
1987 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
1988 * as the solocked() assertions will fail.
1989 */
1990 if ((revents = sodopoll(so, events)) != 0)
1991 return revents;
1992 #endif
1993
1994 solock(so);
1995 if ((revents = sodopoll(so, events)) == 0) {
1996 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
1997 selrecord(curlwp, &so->so_rcv.sb_sel);
1998 so->so_rcv.sb_flags |= SB_NOTIFY;
1999 }
2000
2001 if (events & (POLLOUT | POLLWRNORM)) {
2002 selrecord(curlwp, &so->so_snd.sb_sel);
2003 so->so_snd.sb_flags |= SB_NOTIFY;
2004 }
2005 }
2006 sounlock(so);
2007
2008 return revents;
2009 }
2010
2011
2012 #include <sys/sysctl.h>
2013
2014 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2015
2016 /*
2017 * sysctl helper routine for kern.somaxkva. ensures that the given
2018 * value is not too small.
2019 * (XXX should we maybe make sure it's not too large as well?)
2020 */
2021 static int
2022 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2023 {
2024 int error, new_somaxkva;
2025 struct sysctlnode node;
2026
2027 new_somaxkva = somaxkva;
2028 node = *rnode;
2029 node.sysctl_data = &new_somaxkva;
2030 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2031 if (error || newp == NULL)
2032 return (error);
2033
2034 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2035 return (EINVAL);
2036
2037 mutex_enter(&so_pendfree_lock);
2038 somaxkva = new_somaxkva;
2039 cv_broadcast(&socurkva_cv);
2040 mutex_exit(&so_pendfree_lock);
2041
2042 return (error);
2043 }
2044
2045 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
2046 {
2047
2048 sysctl_createv(clog, 0, NULL, NULL,
2049 CTLFLAG_PERMANENT,
2050 CTLTYPE_NODE, "kern", NULL,
2051 NULL, 0, NULL, 0,
2052 CTL_KERN, CTL_EOL);
2053
2054 sysctl_createv(clog, 0, NULL, NULL,
2055 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2056 CTLTYPE_INT, "somaxkva",
2057 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2058 "used for socket buffers"),
2059 sysctl_kern_somaxkva, 0, NULL, 0,
2060 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2061 }
2062