uipc_socket.c revision 1.163 1 /* $NetBSD: uipc_socket.c,v 1.163 2008/04/29 17:35:31 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.163 2008/04/29 17:35:31 ad Exp $");
67
68 #include "opt_sock_counters.h"
69 #include "opt_sosend_loan.h"
70 #include "opt_mbuftrace.h"
71 #include "opt_somaxkva.h"
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/proc.h>
76 #include <sys/file.h>
77 #include <sys/filedesc.h>
78 #include <sys/malloc.h>
79 #include <sys/mbuf.h>
80 #include <sys/domain.h>
81 #include <sys/kernel.h>
82 #include <sys/protosw.h>
83 #include <sys/socket.h>
84 #include <sys/socketvar.h>
85 #include <sys/signalvar.h>
86 #include <sys/resourcevar.h>
87 #include <sys/event.h>
88 #include <sys/poll.h>
89 #include <sys/kauth.h>
90 #include <sys/mutex.h>
91 #include <sys/condvar.h>
92
93 #include <uvm/uvm.h>
94
95 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
96 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
97
98 extern const struct fileops socketops;
99
100 extern int somaxconn; /* patchable (XXX sysctl) */
101 int somaxconn = SOMAXCONN;
102 kmutex_t *softnet_lock;
103
104 #ifdef SOSEND_COUNTERS
105 #include <sys/device.h>
106
107 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
108 NULL, "sosend", "loan big");
109 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
110 NULL, "sosend", "copy big");
111 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
112 NULL, "sosend", "copy small");
113 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
114 NULL, "sosend", "kva limit");
115
116 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
117
118 EVCNT_ATTACH_STATIC(sosend_loan_big);
119 EVCNT_ATTACH_STATIC(sosend_copy_big);
120 EVCNT_ATTACH_STATIC(sosend_copy_small);
121 EVCNT_ATTACH_STATIC(sosend_kvalimit);
122 #else
123
124 #define SOSEND_COUNTER_INCR(ev) /* nothing */
125
126 #endif /* SOSEND_COUNTERS */
127
128 static struct callback_entry sokva_reclaimerentry;
129
130 #ifdef SOSEND_NO_LOAN
131 int sock_loan_thresh = -1;
132 #else
133 int sock_loan_thresh = 4096;
134 #endif
135
136 static kmutex_t so_pendfree_lock;
137 static struct mbuf *so_pendfree;
138
139 #ifndef SOMAXKVA
140 #define SOMAXKVA (16 * 1024 * 1024)
141 #endif
142 int somaxkva = SOMAXKVA;
143 static int socurkva;
144 static kcondvar_t socurkva_cv;
145
146 #define SOCK_LOAN_CHUNK 65536
147
148 static size_t sodopendfree(void);
149 static size_t sodopendfreel(void);
150
151 static vsize_t
152 sokvareserve(struct socket *so, vsize_t len)
153 {
154 int error;
155
156 mutex_enter(&so_pendfree_lock);
157 while (socurkva + len > somaxkva) {
158 size_t freed;
159
160 /*
161 * try to do pendfree.
162 */
163
164 freed = sodopendfreel();
165
166 /*
167 * if some kva was freed, try again.
168 */
169
170 if (freed)
171 continue;
172
173 SOSEND_COUNTER_INCR(&sosend_kvalimit);
174 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
175 if (error) {
176 len = 0;
177 break;
178 }
179 }
180 socurkva += len;
181 mutex_exit(&so_pendfree_lock);
182 return len;
183 }
184
185 static void
186 sokvaunreserve(vsize_t len)
187 {
188
189 mutex_enter(&so_pendfree_lock);
190 socurkva -= len;
191 cv_broadcast(&socurkva_cv);
192 mutex_exit(&so_pendfree_lock);
193 }
194
195 /*
196 * sokvaalloc: allocate kva for loan.
197 */
198
199 vaddr_t
200 sokvaalloc(vsize_t len, struct socket *so)
201 {
202 vaddr_t lva;
203
204 /*
205 * reserve kva.
206 */
207
208 if (sokvareserve(so, len) == 0)
209 return 0;
210
211 /*
212 * allocate kva.
213 */
214
215 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
216 if (lva == 0) {
217 sokvaunreserve(len);
218 return (0);
219 }
220
221 return lva;
222 }
223
224 /*
225 * sokvafree: free kva for loan.
226 */
227
228 void
229 sokvafree(vaddr_t sva, vsize_t len)
230 {
231
232 /*
233 * free kva.
234 */
235
236 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
237
238 /*
239 * unreserve kva.
240 */
241
242 sokvaunreserve(len);
243 }
244
245 static void
246 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
247 {
248 vaddr_t sva, eva;
249 vsize_t len;
250 int npgs;
251
252 KASSERT(pgs != NULL);
253
254 eva = round_page((vaddr_t) buf + size);
255 sva = trunc_page((vaddr_t) buf);
256 len = eva - sva;
257 npgs = len >> PAGE_SHIFT;
258
259 pmap_kremove(sva, len);
260 pmap_update(pmap_kernel());
261 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
262 sokvafree(sva, len);
263 }
264
265 static size_t
266 sodopendfree(void)
267 {
268 size_t rv;
269
270 if (__predict_true(so_pendfree == NULL))
271 return 0;
272
273 mutex_enter(&so_pendfree_lock);
274 rv = sodopendfreel();
275 mutex_exit(&so_pendfree_lock);
276
277 return rv;
278 }
279
280 /*
281 * sodopendfreel: free mbufs on "pendfree" list.
282 * unlock and relock so_pendfree_lock when freeing mbufs.
283 *
284 * => called with so_pendfree_lock held.
285 */
286
287 static size_t
288 sodopendfreel(void)
289 {
290 struct mbuf *m, *next;
291 size_t rv = 0;
292
293 KASSERT(mutex_owned(&so_pendfree_lock));
294
295 while (so_pendfree != NULL) {
296 m = so_pendfree;
297 so_pendfree = NULL;
298 mutex_exit(&so_pendfree_lock);
299
300 for (; m != NULL; m = next) {
301 next = m->m_next;
302 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
303 KASSERT(m->m_ext.ext_refcnt == 0);
304
305 rv += m->m_ext.ext_size;
306 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
307 m->m_ext.ext_size);
308 pool_cache_put(mb_cache, m);
309 }
310
311 mutex_enter(&so_pendfree_lock);
312 }
313
314 return (rv);
315 }
316
317 void
318 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
319 {
320
321 KASSERT(m != NULL);
322
323 /*
324 * postpone freeing mbuf.
325 *
326 * we can't do it in interrupt context
327 * because we need to put kva back to kernel_map.
328 */
329
330 mutex_enter(&so_pendfree_lock);
331 m->m_next = so_pendfree;
332 so_pendfree = m;
333 cv_broadcast(&socurkva_cv);
334 mutex_exit(&so_pendfree_lock);
335 }
336
337 static long
338 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
339 {
340 struct iovec *iov = uio->uio_iov;
341 vaddr_t sva, eva;
342 vsize_t len;
343 vaddr_t lva;
344 int npgs, error;
345 vaddr_t va;
346 int i;
347
348 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
349 return (0);
350
351 if (iov->iov_len < (size_t) space)
352 space = iov->iov_len;
353 if (space > SOCK_LOAN_CHUNK)
354 space = SOCK_LOAN_CHUNK;
355
356 eva = round_page((vaddr_t) iov->iov_base + space);
357 sva = trunc_page((vaddr_t) iov->iov_base);
358 len = eva - sva;
359 npgs = len >> PAGE_SHIFT;
360
361 KASSERT(npgs <= M_EXT_MAXPAGES);
362
363 lva = sokvaalloc(len, so);
364 if (lva == 0)
365 return 0;
366
367 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
368 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
369 if (error) {
370 sokvafree(lva, len);
371 return (0);
372 }
373
374 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
375 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
376 VM_PROT_READ);
377 pmap_update(pmap_kernel());
378
379 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
380
381 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
382 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
383
384 uio->uio_resid -= space;
385 /* uio_offset not updated, not set/used for write(2) */
386 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
387 uio->uio_iov->iov_len -= space;
388 if (uio->uio_iov->iov_len == 0) {
389 uio->uio_iov++;
390 uio->uio_iovcnt--;
391 }
392
393 return (space);
394 }
395
396 static int
397 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
398 {
399
400 KASSERT(ce == &sokva_reclaimerentry);
401 KASSERT(obj == NULL);
402
403 sodopendfree();
404 if (!vm_map_starved_p(kernel_map)) {
405 return CALLBACK_CHAIN_ABORT;
406 }
407 return CALLBACK_CHAIN_CONTINUE;
408 }
409
410 struct mbuf *
411 getsombuf(struct socket *so, int type)
412 {
413 struct mbuf *m;
414
415 m = m_get(M_WAIT, type);
416 MCLAIM(m, so->so_mowner);
417 return m;
418 }
419
420 struct mbuf *
421 m_intopt(struct socket *so, int val)
422 {
423 struct mbuf *m;
424
425 m = getsombuf(so, MT_SOOPTS);
426 m->m_len = sizeof(int);
427 *mtod(m, int *) = val;
428 return m;
429 }
430
431 void
432 soinit(void)
433 {
434
435 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
436 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
437 cv_init(&socurkva_cv, "sokva");
438
439 /* Set the initial adjusted socket buffer size. */
440 if (sb_max_set(sb_max))
441 panic("bad initial sb_max value: %lu", sb_max);
442
443 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
444 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
445 }
446
447 /*
448 * Socket operation routines.
449 * These routines are called by the routines in
450 * sys_socket.c or from a system process, and
451 * implement the semantics of socket operations by
452 * switching out to the protocol specific routines.
453 */
454 /*ARGSUSED*/
455 int
456 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
457 struct socket *lockso)
458 {
459 const struct protosw *prp;
460 struct socket *so;
461 uid_t uid;
462 int error;
463 kmutex_t *lock;
464
465 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
466 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
467 KAUTH_ARG(proto));
468 if (error != 0)
469 return error;
470
471 if (proto)
472 prp = pffindproto(dom, proto, type);
473 else
474 prp = pffindtype(dom, type);
475 if (prp == NULL) {
476 /* no support for domain */
477 if (pffinddomain(dom) == 0)
478 return EAFNOSUPPORT;
479 /* no support for socket type */
480 if (proto == 0 && type != 0)
481 return EPROTOTYPE;
482 return EPROTONOSUPPORT;
483 }
484 if (prp->pr_usrreq == NULL)
485 return EPROTONOSUPPORT;
486 if (prp->pr_type != type)
487 return EPROTOTYPE;
488
489 so = soget(true);
490 so->so_type = type;
491 so->so_proto = prp;
492 so->so_send = sosend;
493 so->so_receive = soreceive;
494 #ifdef MBUFTRACE
495 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
496 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
497 so->so_mowner = &prp->pr_domain->dom_mowner;
498 #endif
499 uid = kauth_cred_geteuid(l->l_cred);
500 so->so_uidinfo = uid_find(uid);
501 if (lockso != NULL) {
502 /* Caller wants us to share a lock. */
503 lock = lockso->so_lock;
504 so->so_lock = lock;
505 mutex_obj_hold(lock);
506 mutex_enter(lock);
507 } else {
508 /* Lock assigned and taken during PRU_ATTACH. */
509 }
510 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
511 (struct mbuf *)(long)proto, NULL, l);
512 KASSERT(solocked(so));
513 if (error != 0) {
514 so->so_state |= SS_NOFDREF;
515 sofree(so);
516 return error;
517 }
518 sounlock(so);
519 *aso = so;
520 return 0;
521 }
522
523 /* On success, write file descriptor to fdout and return zero. On
524 * failure, return non-zero; *fdout will be undefined.
525 */
526 int
527 fsocreate(int domain, struct socket **sop, int type, int protocol,
528 struct lwp *l, int *fdout)
529 {
530 struct socket *so;
531 struct file *fp;
532 int fd, error;
533
534 if ((error = fd_allocfile(&fp, &fd)) != 0)
535 return (error);
536 fp->f_flag = FREAD|FWRITE;
537 fp->f_type = DTYPE_SOCKET;
538 fp->f_ops = &socketops;
539 error = socreate(domain, &so, type, protocol, l, NULL);
540 if (error != 0) {
541 fd_abort(curproc, fp, fd);
542 } else {
543 if (sop != NULL)
544 *sop = so;
545 fp->f_data = so;
546 fd_affix(curproc, fp, fd);
547 *fdout = fd;
548 }
549 return error;
550 }
551
552 int
553 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
554 {
555 int error;
556
557 solock(so);
558 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
559 sounlock(so);
560 return error;
561 }
562
563 int
564 solisten(struct socket *so, int backlog, struct lwp *l)
565 {
566 int error;
567
568 solock(so);
569 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
570 SS_ISDISCONNECTING)) != 0) {
571 sounlock(so);
572 return (EOPNOTSUPP);
573 }
574 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
575 NULL, NULL, l);
576 if (error != 0) {
577 sounlock(so);
578 return error;
579 }
580 if (TAILQ_EMPTY(&so->so_q))
581 so->so_options |= SO_ACCEPTCONN;
582 if (backlog < 0)
583 backlog = 0;
584 so->so_qlimit = min(backlog, somaxconn);
585 sounlock(so);
586 return 0;
587 }
588
589 void
590 sofree(struct socket *so)
591 {
592 u_int refs;
593
594 KASSERT(solocked(so));
595
596 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
597 sounlock(so);
598 return;
599 }
600 if (so->so_head) {
601 /*
602 * We must not decommission a socket that's on the accept(2)
603 * queue. If we do, then accept(2) may hang after select(2)
604 * indicated that the listening socket was ready.
605 */
606 if (!soqremque(so, 0)) {
607 sounlock(so);
608 return;
609 }
610 }
611 if (so->so_rcv.sb_hiwat)
612 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
613 RLIM_INFINITY);
614 if (so->so_snd.sb_hiwat)
615 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
616 RLIM_INFINITY);
617 sbrelease(&so->so_snd, so);
618 KASSERT(!cv_has_waiters(&so->so_cv));
619 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
620 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
621 sorflush(so);
622 refs = so->so_aborting; /* XXX */
623 sounlock(so);
624 if (refs == 0) /* XXX */
625 soput(so);
626 }
627
628 /*
629 * Close a socket on last file table reference removal.
630 * Initiate disconnect if connected.
631 * Free socket when disconnect complete.
632 */
633 int
634 soclose(struct socket *so)
635 {
636 struct socket *so2;
637 int error;
638 int error2;
639
640 error = 0;
641 solock(so);
642 if (so->so_options & SO_ACCEPTCONN) {
643 do {
644 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
645 KASSERT(solocked2(so, so2));
646 (void) soqremque(so2, 0);
647 /* soabort drops the lock. */
648 (void) soabort(so2);
649 solock(so);
650 continue;
651 }
652 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
653 KASSERT(solocked2(so, so2));
654 (void) soqremque(so2, 1);
655 /* soabort drops the lock. */
656 (void) soabort(so2);
657 solock(so);
658 continue;
659 }
660 } while (0);
661 }
662 if (so->so_pcb == 0)
663 goto discard;
664 if (so->so_state & SS_ISCONNECTED) {
665 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
666 error = sodisconnect(so);
667 if (error)
668 goto drop;
669 }
670 if (so->so_options & SO_LINGER) {
671 if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
672 goto drop;
673 while (so->so_state & SS_ISCONNECTED) {
674 error = sowait(so, so->so_linger * hz);
675 if (error)
676 break;
677 }
678 }
679 }
680 drop:
681 if (so->so_pcb) {
682 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
683 NULL, NULL, NULL, NULL);
684 if (error == 0)
685 error = error2;
686 }
687 discard:
688 if (so->so_state & SS_NOFDREF)
689 panic("soclose: NOFDREF");
690 so->so_state |= SS_NOFDREF;
691 sofree(so);
692 return (error);
693 }
694
695 /*
696 * Must be called with the socket locked.. Will return with it unlocked.
697 */
698 int
699 soabort(struct socket *so)
700 {
701 u_int refs;
702 int error;
703
704 KASSERT(solocked(so));
705 KASSERT(so->so_head == NULL);
706
707 so->so_aborting++; /* XXX */
708 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
709 NULL, NULL, NULL);
710 refs = --so->so_aborting; /* XXX */
711 if (error) {
712 sofree(so);
713 } else {
714 sounlock(so);
715 if (refs == 0)
716 sofree(so);
717 }
718 return error;
719 }
720
721 int
722 soaccept(struct socket *so, struct mbuf *nam)
723 {
724 int error;
725
726 KASSERT(solocked(so));
727
728 error = 0;
729 if ((so->so_state & SS_NOFDREF) == 0)
730 panic("soaccept: !NOFDREF");
731 so->so_state &= ~SS_NOFDREF;
732 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
733 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
734 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
735 NULL, nam, NULL, NULL);
736 else
737 error = ECONNABORTED;
738
739 return (error);
740 }
741
742 int
743 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
744 {
745 int error;
746
747 KASSERT(solocked(so));
748
749 if (so->so_options & SO_ACCEPTCONN)
750 return (EOPNOTSUPP);
751 /*
752 * If protocol is connection-based, can only connect once.
753 * Otherwise, if connected, try to disconnect first.
754 * This allows user to disconnect by connecting to, e.g.,
755 * a null address.
756 */
757 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
758 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
759 (error = sodisconnect(so))))
760 error = EISCONN;
761 else
762 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
763 NULL, nam, NULL, l);
764 return (error);
765 }
766
767 int
768 soconnect2(struct socket *so1, struct socket *so2)
769 {
770 int error;
771
772 KASSERT(solocked2(so1, so2));
773
774 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
775 NULL, (struct mbuf *)so2, NULL, NULL);
776 return (error);
777 }
778
779 int
780 sodisconnect(struct socket *so)
781 {
782 int error;
783
784 KASSERT(solocked(so));
785
786 if ((so->so_state & SS_ISCONNECTED) == 0) {
787 error = ENOTCONN;
788 } else if (so->so_state & SS_ISDISCONNECTING) {
789 error = EALREADY;
790 } else {
791 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
792 NULL, NULL, NULL, NULL);
793 }
794 sodopendfree();
795 return (error);
796 }
797
798 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
799 /*
800 * Send on a socket.
801 * If send must go all at once and message is larger than
802 * send buffering, then hard error.
803 * Lock against other senders.
804 * If must go all at once and not enough room now, then
805 * inform user that this would block and do nothing.
806 * Otherwise, if nonblocking, send as much as possible.
807 * The data to be sent is described by "uio" if nonzero,
808 * otherwise by the mbuf chain "top" (which must be null
809 * if uio is not). Data provided in mbuf chain must be small
810 * enough to send all at once.
811 *
812 * Returns nonzero on error, timeout or signal; callers
813 * must check for short counts if EINTR/ERESTART are returned.
814 * Data and control buffers are freed on return.
815 */
816 int
817 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
818 struct mbuf *control, int flags, struct lwp *l)
819 {
820 struct mbuf **mp, *m;
821 struct proc *p;
822 long space, len, resid, clen, mlen;
823 int error, s, dontroute, atomic;
824
825 p = l->l_proc;
826 sodopendfree();
827 clen = 0;
828
829 /*
830 * solock() provides atomicity of access. splsoftnet() prevents
831 * protocol processing soft interrupts from interrupting us and
832 * blocking (expensive).
833 */
834 s = splsoftnet();
835 solock(so);
836 atomic = sosendallatonce(so) || top;
837 if (uio)
838 resid = uio->uio_resid;
839 else
840 resid = top->m_pkthdr.len;
841 /*
842 * In theory resid should be unsigned.
843 * However, space must be signed, as it might be less than 0
844 * if we over-committed, and we must use a signed comparison
845 * of space and resid. On the other hand, a negative resid
846 * causes us to loop sending 0-length segments to the protocol.
847 */
848 if (resid < 0) {
849 error = EINVAL;
850 goto out;
851 }
852 dontroute =
853 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
854 (so->so_proto->pr_flags & PR_ATOMIC);
855 if (l)
856 l->l_ru.ru_msgsnd++;
857 if (control)
858 clen = control->m_len;
859 restart:
860 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
861 goto out;
862 do {
863 if (so->so_state & SS_CANTSENDMORE) {
864 error = EPIPE;
865 goto release;
866 }
867 if (so->so_error) {
868 error = so->so_error;
869 so->so_error = 0;
870 goto release;
871 }
872 if ((so->so_state & SS_ISCONNECTED) == 0) {
873 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
874 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
875 !(resid == 0 && clen != 0)) {
876 error = ENOTCONN;
877 goto release;
878 }
879 } else if (addr == 0) {
880 error = EDESTADDRREQ;
881 goto release;
882 }
883 }
884 space = sbspace(&so->so_snd);
885 if (flags & MSG_OOB)
886 space += 1024;
887 if ((atomic && resid > so->so_snd.sb_hiwat) ||
888 clen > so->so_snd.sb_hiwat) {
889 error = EMSGSIZE;
890 goto release;
891 }
892 if (space < resid + clen &&
893 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
894 if (so->so_nbio) {
895 error = EWOULDBLOCK;
896 goto release;
897 }
898 sbunlock(&so->so_snd);
899 error = sbwait(&so->so_snd);
900 if (error)
901 goto out;
902 goto restart;
903 }
904 mp = ⊤
905 space -= clen;
906 do {
907 if (uio == NULL) {
908 /*
909 * Data is prepackaged in "top".
910 */
911 resid = 0;
912 if (flags & MSG_EOR)
913 top->m_flags |= M_EOR;
914 } else do {
915 sounlock(so);
916 splx(s);
917 if (top == NULL) {
918 m = m_gethdr(M_WAIT, MT_DATA);
919 mlen = MHLEN;
920 m->m_pkthdr.len = 0;
921 m->m_pkthdr.rcvif = NULL;
922 } else {
923 m = m_get(M_WAIT, MT_DATA);
924 mlen = MLEN;
925 }
926 MCLAIM(m, so->so_snd.sb_mowner);
927 if (sock_loan_thresh >= 0 &&
928 uio->uio_iov->iov_len >= sock_loan_thresh &&
929 space >= sock_loan_thresh &&
930 (len = sosend_loan(so, uio, m,
931 space)) != 0) {
932 SOSEND_COUNTER_INCR(&sosend_loan_big);
933 space -= len;
934 goto have_data;
935 }
936 if (resid >= MINCLSIZE && space >= MCLBYTES) {
937 SOSEND_COUNTER_INCR(&sosend_copy_big);
938 m_clget(m, M_WAIT);
939 if ((m->m_flags & M_EXT) == 0)
940 goto nopages;
941 mlen = MCLBYTES;
942 if (atomic && top == 0) {
943 len = lmin(MCLBYTES - max_hdr,
944 resid);
945 m->m_data += max_hdr;
946 } else
947 len = lmin(MCLBYTES, resid);
948 space -= len;
949 } else {
950 nopages:
951 SOSEND_COUNTER_INCR(&sosend_copy_small);
952 len = lmin(lmin(mlen, resid), space);
953 space -= len;
954 /*
955 * For datagram protocols, leave room
956 * for protocol headers in first mbuf.
957 */
958 if (atomic && top == 0 && len < mlen)
959 MH_ALIGN(m, len);
960 }
961 error = uiomove(mtod(m, void *), (int)len, uio);
962 have_data:
963 resid = uio->uio_resid;
964 m->m_len = len;
965 *mp = m;
966 top->m_pkthdr.len += len;
967 s = splsoftnet();
968 solock(so);
969 if (error != 0)
970 goto release;
971 mp = &m->m_next;
972 if (resid <= 0) {
973 if (flags & MSG_EOR)
974 top->m_flags |= M_EOR;
975 break;
976 }
977 } while (space > 0 && atomic);
978
979 if (so->so_state & SS_CANTSENDMORE) {
980 error = EPIPE;
981 goto release;
982 }
983 if (dontroute)
984 so->so_options |= SO_DONTROUTE;
985 if (resid > 0)
986 so->so_state |= SS_MORETOCOME;
987 error = (*so->so_proto->pr_usrreq)(so,
988 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
989 top, addr, control, curlwp);
990 if (dontroute)
991 so->so_options &= ~SO_DONTROUTE;
992 if (resid > 0)
993 so->so_state &= ~SS_MORETOCOME;
994 clen = 0;
995 control = NULL;
996 top = NULL;
997 mp = ⊤
998 if (error != 0)
999 goto release;
1000 } while (resid && space > 0);
1001 } while (resid);
1002
1003 release:
1004 sbunlock(&so->so_snd);
1005 out:
1006 sounlock(so);
1007 splx(s);
1008 if (top)
1009 m_freem(top);
1010 if (control)
1011 m_freem(control);
1012 return (error);
1013 }
1014
1015 /*
1016 * Following replacement or removal of the first mbuf on the first
1017 * mbuf chain of a socket buffer, push necessary state changes back
1018 * into the socket buffer so that other consumers see the values
1019 * consistently. 'nextrecord' is the callers locally stored value of
1020 * the original value of sb->sb_mb->m_nextpkt which must be restored
1021 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1022 */
1023 static void
1024 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1025 {
1026
1027 KASSERT(solocked(sb->sb_so));
1028
1029 /*
1030 * First, update for the new value of nextrecord. If necessary,
1031 * make it the first record.
1032 */
1033 if (sb->sb_mb != NULL)
1034 sb->sb_mb->m_nextpkt = nextrecord;
1035 else
1036 sb->sb_mb = nextrecord;
1037
1038 /*
1039 * Now update any dependent socket buffer fields to reflect
1040 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1041 * the addition of a second clause that takes care of the
1042 * case where sb_mb has been updated, but remains the last
1043 * record.
1044 */
1045 if (sb->sb_mb == NULL) {
1046 sb->sb_mbtail = NULL;
1047 sb->sb_lastrecord = NULL;
1048 } else if (sb->sb_mb->m_nextpkt == NULL)
1049 sb->sb_lastrecord = sb->sb_mb;
1050 }
1051
1052 /*
1053 * Implement receive operations on a socket.
1054 * We depend on the way that records are added to the sockbuf
1055 * by sbappend*. In particular, each record (mbufs linked through m_next)
1056 * must begin with an address if the protocol so specifies,
1057 * followed by an optional mbuf or mbufs containing ancillary data,
1058 * and then zero or more mbufs of data.
1059 * In order to avoid blocking network interrupts for the entire time here,
1060 * we splx() while doing the actual copy to user space.
1061 * Although the sockbuf is locked, new data may still be appended,
1062 * and thus we must maintain consistency of the sockbuf during that time.
1063 *
1064 * The caller may receive the data as a single mbuf chain by supplying
1065 * an mbuf **mp0 for use in returning the chain. The uio is then used
1066 * only for the count in uio_resid.
1067 */
1068 int
1069 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1070 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1071 {
1072 struct lwp *l = curlwp;
1073 struct mbuf *m, **mp, *mt;
1074 int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1075 const struct protosw *pr;
1076 struct mbuf *nextrecord;
1077 int mbuf_removed = 0;
1078 const struct domain *dom;
1079
1080 pr = so->so_proto;
1081 atomic = pr->pr_flags & PR_ATOMIC;
1082 dom = pr->pr_domain;
1083 mp = mp0;
1084 type = 0;
1085 orig_resid = uio->uio_resid;
1086
1087 if (paddr != NULL)
1088 *paddr = NULL;
1089 if (controlp != NULL)
1090 *controlp = NULL;
1091 if (flagsp != NULL)
1092 flags = *flagsp &~ MSG_EOR;
1093 else
1094 flags = 0;
1095
1096 if ((flags & MSG_DONTWAIT) == 0)
1097 sodopendfree();
1098
1099 if (flags & MSG_OOB) {
1100 m = m_get(M_WAIT, MT_DATA);
1101 solock(so);
1102 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1103 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1104 sounlock(so);
1105 if (error)
1106 goto bad;
1107 do {
1108 error = uiomove(mtod(m, void *),
1109 (int) min(uio->uio_resid, m->m_len), uio);
1110 m = m_free(m);
1111 } while (uio->uio_resid > 0 && error == 0 && m);
1112 bad:
1113 if (m != NULL)
1114 m_freem(m);
1115 return error;
1116 }
1117 if (mp != NULL)
1118 *mp = NULL;
1119
1120 /*
1121 * solock() provides atomicity of access. splsoftnet() prevents
1122 * protocol processing soft interrupts from interrupting us and
1123 * blocking (expensive).
1124 */
1125 s = splsoftnet();
1126 solock(so);
1127 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1128 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1129
1130 restart:
1131 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1132 sounlock(so);
1133 splx(s);
1134 return error;
1135 }
1136
1137 m = so->so_rcv.sb_mb;
1138 /*
1139 * If we have less data than requested, block awaiting more
1140 * (subject to any timeout) if:
1141 * 1. the current count is less than the low water mark,
1142 * 2. MSG_WAITALL is set, and it is possible to do the entire
1143 * receive operation at once if we block (resid <= hiwat), or
1144 * 3. MSG_DONTWAIT is not set.
1145 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1146 * we have to do the receive in sections, and thus risk returning
1147 * a short count if a timeout or signal occurs after we start.
1148 */
1149 if (m == NULL ||
1150 ((flags & MSG_DONTWAIT) == 0 &&
1151 so->so_rcv.sb_cc < uio->uio_resid &&
1152 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1153 ((flags & MSG_WAITALL) &&
1154 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1155 m->m_nextpkt == NULL && !atomic)) {
1156 #ifdef DIAGNOSTIC
1157 if (m == NULL && so->so_rcv.sb_cc)
1158 panic("receive 1");
1159 #endif
1160 if (so->so_error) {
1161 if (m != NULL)
1162 goto dontblock;
1163 error = so->so_error;
1164 if ((flags & MSG_PEEK) == 0)
1165 so->so_error = 0;
1166 goto release;
1167 }
1168 if (so->so_state & SS_CANTRCVMORE) {
1169 if (m != NULL)
1170 goto dontblock;
1171 else
1172 goto release;
1173 }
1174 for (; m != NULL; m = m->m_next)
1175 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1176 m = so->so_rcv.sb_mb;
1177 goto dontblock;
1178 }
1179 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1180 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1181 error = ENOTCONN;
1182 goto release;
1183 }
1184 if (uio->uio_resid == 0)
1185 goto release;
1186 if (so->so_nbio || (flags & MSG_DONTWAIT)) {
1187 error = EWOULDBLOCK;
1188 goto release;
1189 }
1190 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1191 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1192 sbunlock(&so->so_rcv);
1193 error = sbwait(&so->so_rcv);
1194 if (error != 0) {
1195 sounlock(so);
1196 splx(s);
1197 return error;
1198 }
1199 goto restart;
1200 }
1201 dontblock:
1202 /*
1203 * On entry here, m points to the first record of the socket buffer.
1204 * From this point onward, we maintain 'nextrecord' as a cache of the
1205 * pointer to the next record in the socket buffer. We must keep the
1206 * various socket buffer pointers and local stack versions of the
1207 * pointers in sync, pushing out modifications before dropping the
1208 * socket lock, and re-reading them when picking it up.
1209 *
1210 * Otherwise, we will race with the network stack appending new data
1211 * or records onto the socket buffer by using inconsistent/stale
1212 * versions of the field, possibly resulting in socket buffer
1213 * corruption.
1214 *
1215 * By holding the high-level sblock(), we prevent simultaneous
1216 * readers from pulling off the front of the socket buffer.
1217 */
1218 if (l != NULL)
1219 l->l_ru.ru_msgrcv++;
1220 KASSERT(m == so->so_rcv.sb_mb);
1221 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1222 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1223 nextrecord = m->m_nextpkt;
1224 if (pr->pr_flags & PR_ADDR) {
1225 #ifdef DIAGNOSTIC
1226 if (m->m_type != MT_SONAME)
1227 panic("receive 1a");
1228 #endif
1229 orig_resid = 0;
1230 if (flags & MSG_PEEK) {
1231 if (paddr)
1232 *paddr = m_copy(m, 0, m->m_len);
1233 m = m->m_next;
1234 } else {
1235 sbfree(&so->so_rcv, m);
1236 mbuf_removed = 1;
1237 if (paddr != NULL) {
1238 *paddr = m;
1239 so->so_rcv.sb_mb = m->m_next;
1240 m->m_next = NULL;
1241 m = so->so_rcv.sb_mb;
1242 } else {
1243 MFREE(m, so->so_rcv.sb_mb);
1244 m = so->so_rcv.sb_mb;
1245 }
1246 sbsync(&so->so_rcv, nextrecord);
1247 }
1248 }
1249
1250 /*
1251 * Process one or more MT_CONTROL mbufs present before any data mbufs
1252 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1253 * just copy the data; if !MSG_PEEK, we call into the protocol to
1254 * perform externalization (or freeing if controlp == NULL).
1255 */
1256 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1257 struct mbuf *cm = NULL, *cmn;
1258 struct mbuf **cme = &cm;
1259
1260 do {
1261 if (flags & MSG_PEEK) {
1262 if (controlp != NULL) {
1263 *controlp = m_copy(m, 0, m->m_len);
1264 controlp = &(*controlp)->m_next;
1265 }
1266 m = m->m_next;
1267 } else {
1268 sbfree(&so->so_rcv, m);
1269 so->so_rcv.sb_mb = m->m_next;
1270 m->m_next = NULL;
1271 *cme = m;
1272 cme = &(*cme)->m_next;
1273 m = so->so_rcv.sb_mb;
1274 }
1275 } while (m != NULL && m->m_type == MT_CONTROL);
1276 if ((flags & MSG_PEEK) == 0)
1277 sbsync(&so->so_rcv, nextrecord);
1278 for (; cm != NULL; cm = cmn) {
1279 cmn = cm->m_next;
1280 cm->m_next = NULL;
1281 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1282 if (controlp != NULL) {
1283 if (dom->dom_externalize != NULL &&
1284 type == SCM_RIGHTS) {
1285 sounlock(so);
1286 splx(s);
1287 error = (*dom->dom_externalize)(cm, l);
1288 s = splsoftnet();
1289 solock(so);
1290 }
1291 *controlp = cm;
1292 while (*controlp != NULL)
1293 controlp = &(*controlp)->m_next;
1294 } else {
1295 /*
1296 * Dispose of any SCM_RIGHTS message that went
1297 * through the read path rather than recv.
1298 */
1299 if (dom->dom_dispose != NULL &&
1300 type == SCM_RIGHTS) {
1301 sounlock(so);
1302 (*dom->dom_dispose)(cm);
1303 solock(so);
1304 }
1305 m_freem(cm);
1306 }
1307 }
1308 if (m != NULL)
1309 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1310 else
1311 nextrecord = so->so_rcv.sb_mb;
1312 orig_resid = 0;
1313 }
1314
1315 /* If m is non-NULL, we have some data to read. */
1316 if (__predict_true(m != NULL)) {
1317 type = m->m_type;
1318 if (type == MT_OOBDATA)
1319 flags |= MSG_OOB;
1320 }
1321 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1322 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1323
1324 moff = 0;
1325 offset = 0;
1326 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1327 if (m->m_type == MT_OOBDATA) {
1328 if (type != MT_OOBDATA)
1329 break;
1330 } else if (type == MT_OOBDATA)
1331 break;
1332 #ifdef DIAGNOSTIC
1333 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1334 panic("receive 3");
1335 #endif
1336 so->so_state &= ~SS_RCVATMARK;
1337 len = uio->uio_resid;
1338 if (so->so_oobmark && len > so->so_oobmark - offset)
1339 len = so->so_oobmark - offset;
1340 if (len > m->m_len - moff)
1341 len = m->m_len - moff;
1342 /*
1343 * If mp is set, just pass back the mbufs.
1344 * Otherwise copy them out via the uio, then free.
1345 * Sockbuf must be consistent here (points to current mbuf,
1346 * it points to next record) when we drop priority;
1347 * we must note any additions to the sockbuf when we
1348 * block interrupts again.
1349 */
1350 if (mp == NULL) {
1351 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1352 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1353 sounlock(so);
1354 splx(s);
1355 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1356 s = splsoftnet();
1357 solock(so);
1358 if (error != 0) {
1359 /*
1360 * If any part of the record has been removed
1361 * (such as the MT_SONAME mbuf, which will
1362 * happen when PR_ADDR, and thus also
1363 * PR_ATOMIC, is set), then drop the entire
1364 * record to maintain the atomicity of the
1365 * receive operation.
1366 *
1367 * This avoids a later panic("receive 1a")
1368 * when compiled with DIAGNOSTIC.
1369 */
1370 if (m && mbuf_removed && atomic)
1371 (void) sbdroprecord(&so->so_rcv);
1372
1373 goto release;
1374 }
1375 } else
1376 uio->uio_resid -= len;
1377 if (len == m->m_len - moff) {
1378 if (m->m_flags & M_EOR)
1379 flags |= MSG_EOR;
1380 if (flags & MSG_PEEK) {
1381 m = m->m_next;
1382 moff = 0;
1383 } else {
1384 nextrecord = m->m_nextpkt;
1385 sbfree(&so->so_rcv, m);
1386 if (mp) {
1387 *mp = m;
1388 mp = &m->m_next;
1389 so->so_rcv.sb_mb = m = m->m_next;
1390 *mp = NULL;
1391 } else {
1392 MFREE(m, so->so_rcv.sb_mb);
1393 m = so->so_rcv.sb_mb;
1394 }
1395 /*
1396 * If m != NULL, we also know that
1397 * so->so_rcv.sb_mb != NULL.
1398 */
1399 KASSERT(so->so_rcv.sb_mb == m);
1400 if (m) {
1401 m->m_nextpkt = nextrecord;
1402 if (nextrecord == NULL)
1403 so->so_rcv.sb_lastrecord = m;
1404 } else {
1405 so->so_rcv.sb_mb = nextrecord;
1406 SB_EMPTY_FIXUP(&so->so_rcv);
1407 }
1408 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1409 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1410 }
1411 } else if (flags & MSG_PEEK)
1412 moff += len;
1413 else {
1414 if (mp != NULL) {
1415 mt = m_copym(m, 0, len, M_NOWAIT);
1416 if (__predict_false(mt == NULL)) {
1417 sounlock(so);
1418 mt = m_copym(m, 0, len, M_WAIT);
1419 solock(so);
1420 }
1421 *mp = mt;
1422 }
1423 m->m_data += len;
1424 m->m_len -= len;
1425 so->so_rcv.sb_cc -= len;
1426 }
1427 if (so->so_oobmark) {
1428 if ((flags & MSG_PEEK) == 0) {
1429 so->so_oobmark -= len;
1430 if (so->so_oobmark == 0) {
1431 so->so_state |= SS_RCVATMARK;
1432 break;
1433 }
1434 } else {
1435 offset += len;
1436 if (offset == so->so_oobmark)
1437 break;
1438 }
1439 }
1440 if (flags & MSG_EOR)
1441 break;
1442 /*
1443 * If the MSG_WAITALL flag is set (for non-atomic socket),
1444 * we must not quit until "uio->uio_resid == 0" or an error
1445 * termination. If a signal/timeout occurs, return
1446 * with a short count but without error.
1447 * Keep sockbuf locked against other readers.
1448 */
1449 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1450 !sosendallatonce(so) && !nextrecord) {
1451 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1452 break;
1453 /*
1454 * If we are peeking and the socket receive buffer is
1455 * full, stop since we can't get more data to peek at.
1456 */
1457 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1458 break;
1459 /*
1460 * If we've drained the socket buffer, tell the
1461 * protocol in case it needs to do something to
1462 * get it filled again.
1463 */
1464 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1465 (*pr->pr_usrreq)(so, PRU_RCVD,
1466 NULL, (struct mbuf *)(long)flags, NULL, l);
1467 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1468 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1469 error = sbwait(&so->so_rcv);
1470 if (error != 0) {
1471 sbunlock(&so->so_rcv);
1472 sounlock(so);
1473 splx(s);
1474 return 0;
1475 }
1476 if ((m = so->so_rcv.sb_mb) != NULL)
1477 nextrecord = m->m_nextpkt;
1478 }
1479 }
1480
1481 if (m && atomic) {
1482 flags |= MSG_TRUNC;
1483 if ((flags & MSG_PEEK) == 0)
1484 (void) sbdroprecord(&so->so_rcv);
1485 }
1486 if ((flags & MSG_PEEK) == 0) {
1487 if (m == NULL) {
1488 /*
1489 * First part is an inline SB_EMPTY_FIXUP(). Second
1490 * part makes sure sb_lastrecord is up-to-date if
1491 * there is still data in the socket buffer.
1492 */
1493 so->so_rcv.sb_mb = nextrecord;
1494 if (so->so_rcv.sb_mb == NULL) {
1495 so->so_rcv.sb_mbtail = NULL;
1496 so->so_rcv.sb_lastrecord = NULL;
1497 } else if (nextrecord->m_nextpkt == NULL)
1498 so->so_rcv.sb_lastrecord = nextrecord;
1499 }
1500 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1501 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1502 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1503 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1504 (struct mbuf *)(long)flags, NULL, l);
1505 }
1506 if (orig_resid == uio->uio_resid && orig_resid &&
1507 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1508 sbunlock(&so->so_rcv);
1509 goto restart;
1510 }
1511
1512 if (flagsp != NULL)
1513 *flagsp |= flags;
1514 release:
1515 sbunlock(&so->so_rcv);
1516 sounlock(so);
1517 splx(s);
1518 return error;
1519 }
1520
1521 int
1522 soshutdown(struct socket *so, int how)
1523 {
1524 const struct protosw *pr;
1525 int error;
1526
1527 KASSERT(solocked(so));
1528
1529 pr = so->so_proto;
1530 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1531 return (EINVAL);
1532
1533 if (how == SHUT_RD || how == SHUT_RDWR) {
1534 sorflush(so);
1535 error = 0;
1536 }
1537 if (how == SHUT_WR || how == SHUT_RDWR)
1538 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1539 NULL, NULL, NULL);
1540
1541 return error;
1542 }
1543
1544 void
1545 sorflush(struct socket *so)
1546 {
1547 struct sockbuf *sb, asb;
1548 const struct protosw *pr;
1549
1550 KASSERT(solocked(so));
1551
1552 sb = &so->so_rcv;
1553 pr = so->so_proto;
1554 socantrcvmore(so);
1555 sb->sb_flags |= SB_NOINTR;
1556 (void )sblock(sb, M_WAITOK);
1557 sbunlock(sb);
1558 asb = *sb;
1559 /*
1560 * Clear most of the sockbuf structure, but leave some of the
1561 * fields valid.
1562 */
1563 memset(&sb->sb_startzero, 0,
1564 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1565 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1566 sounlock(so);
1567 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1568 solock(so);
1569 }
1570 sbrelease(&asb, so);
1571 }
1572
1573 static int
1574 sosetopt1(struct socket *so, int level, int optname, struct mbuf *m)
1575 {
1576 int optval, val;
1577 struct linger *l;
1578 struct sockbuf *sb;
1579 struct timeval *tv;
1580
1581 switch (optname) {
1582
1583 case SO_LINGER:
1584 if (m == NULL || m->m_len != sizeof(struct linger))
1585 return EINVAL;
1586 l = mtod(m, struct linger *);
1587 if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
1588 l->l_linger > (INT_MAX / hz))
1589 return EDOM;
1590 so->so_linger = l->l_linger;
1591 if (l->l_onoff)
1592 so->so_options |= SO_LINGER;
1593 else
1594 so->so_options &= ~SO_LINGER;
1595 break;
1596
1597 case SO_DEBUG:
1598 case SO_KEEPALIVE:
1599 case SO_DONTROUTE:
1600 case SO_USELOOPBACK:
1601 case SO_BROADCAST:
1602 case SO_REUSEADDR:
1603 case SO_REUSEPORT:
1604 case SO_OOBINLINE:
1605 case SO_TIMESTAMP:
1606 if (m == NULL || m->m_len < sizeof(int))
1607 return EINVAL;
1608 if (*mtod(m, int *))
1609 so->so_options |= optname;
1610 else
1611 so->so_options &= ~optname;
1612 break;
1613
1614 case SO_SNDBUF:
1615 case SO_RCVBUF:
1616 case SO_SNDLOWAT:
1617 case SO_RCVLOWAT:
1618 if (m == NULL || m->m_len < sizeof(int))
1619 return EINVAL;
1620
1621 /*
1622 * Values < 1 make no sense for any of these
1623 * options, so disallow them.
1624 */
1625 optval = *mtod(m, int *);
1626 if (optval < 1)
1627 return EINVAL;
1628
1629 switch (optname) {
1630
1631 case SO_SNDBUF:
1632 case SO_RCVBUF:
1633 sb = (optname == SO_SNDBUF) ?
1634 &so->so_snd : &so->so_rcv;
1635 if (sbreserve(sb, (u_long)optval, so) == 0)
1636 return ENOBUFS;
1637 sb->sb_flags &= ~SB_AUTOSIZE;
1638 break;
1639
1640 /*
1641 * Make sure the low-water is never greater than
1642 * the high-water.
1643 */
1644 case SO_SNDLOWAT:
1645 so->so_snd.sb_lowat =
1646 (optval > so->so_snd.sb_hiwat) ?
1647 so->so_snd.sb_hiwat : optval;
1648 break;
1649 case SO_RCVLOWAT:
1650 so->so_rcv.sb_lowat =
1651 (optval > so->so_rcv.sb_hiwat) ?
1652 so->so_rcv.sb_hiwat : optval;
1653 break;
1654 }
1655 break;
1656
1657 case SO_SNDTIMEO:
1658 case SO_RCVTIMEO:
1659 if (m == NULL || m->m_len < sizeof(*tv))
1660 return EINVAL;
1661 tv = mtod(m, struct timeval *);
1662 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz)
1663 return EDOM;
1664 val = tv->tv_sec * hz + tv->tv_usec / tick;
1665 if (val == 0 && tv->tv_usec != 0)
1666 val = 1;
1667
1668 switch (optname) {
1669
1670 case SO_SNDTIMEO:
1671 so->so_snd.sb_timeo = val;
1672 break;
1673 case SO_RCVTIMEO:
1674 so->so_rcv.sb_timeo = val;
1675 break;
1676 }
1677 break;
1678
1679 default:
1680 return ENOPROTOOPT;
1681 }
1682 return 0;
1683 }
1684
1685 int
1686 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
1687 {
1688 int error, prerr;
1689
1690 solock(so);
1691 if (level == SOL_SOCKET)
1692 error = sosetopt1(so, level, optname, m);
1693 else
1694 error = ENOPROTOOPT;
1695
1696 if ((error == 0 || error == ENOPROTOOPT) &&
1697 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1698 /* give the protocol stack a shot */
1699 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, level,
1700 optname, &m);
1701 if (prerr == 0)
1702 error = 0;
1703 else if (prerr != ENOPROTOOPT)
1704 error = prerr;
1705 } else if (m != NULL)
1706 (void)m_free(m);
1707 sounlock(so);
1708 return error;
1709 }
1710
1711 int
1712 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1713 {
1714 struct mbuf *m;
1715 int error;
1716
1717 solock(so);
1718 if (level != SOL_SOCKET) {
1719 if (so->so_proto && so->so_proto->pr_ctloutput) {
1720 error = ((*so->so_proto->pr_ctloutput)
1721 (PRCO_GETOPT, so, level, optname, mp));
1722 } else
1723 error = (ENOPROTOOPT);
1724 } else {
1725 m = m_get(M_WAIT, MT_SOOPTS);
1726 m->m_len = sizeof(int);
1727
1728 switch (optname) {
1729
1730 case SO_LINGER:
1731 m->m_len = sizeof(struct linger);
1732 mtod(m, struct linger *)->l_onoff =
1733 (so->so_options & SO_LINGER) ? 1 : 0;
1734 mtod(m, struct linger *)->l_linger = so->so_linger;
1735 break;
1736
1737 case SO_USELOOPBACK:
1738 case SO_DONTROUTE:
1739 case SO_DEBUG:
1740 case SO_KEEPALIVE:
1741 case SO_REUSEADDR:
1742 case SO_REUSEPORT:
1743 case SO_BROADCAST:
1744 case SO_OOBINLINE:
1745 case SO_TIMESTAMP:
1746 *mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
1747 break;
1748
1749 case SO_TYPE:
1750 *mtod(m, int *) = so->so_type;
1751 break;
1752
1753 case SO_ERROR:
1754 *mtod(m, int *) = so->so_error;
1755 so->so_error = 0;
1756 break;
1757
1758 case SO_SNDBUF:
1759 *mtod(m, int *) = so->so_snd.sb_hiwat;
1760 break;
1761
1762 case SO_RCVBUF:
1763 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1764 break;
1765
1766 case SO_SNDLOWAT:
1767 *mtod(m, int *) = so->so_snd.sb_lowat;
1768 break;
1769
1770 case SO_RCVLOWAT:
1771 *mtod(m, int *) = so->so_rcv.sb_lowat;
1772 break;
1773
1774 case SO_SNDTIMEO:
1775 case SO_RCVTIMEO:
1776 {
1777 int val = (optname == SO_SNDTIMEO ?
1778 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1779
1780 m->m_len = sizeof(struct timeval);
1781 mtod(m, struct timeval *)->tv_sec = val / hz;
1782 mtod(m, struct timeval *)->tv_usec =
1783 (val % hz) * tick;
1784 break;
1785 }
1786
1787 case SO_OVERFLOWED:
1788 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1789 break;
1790
1791 default:
1792 sounlock(so);
1793 (void)m_free(m);
1794 return (ENOPROTOOPT);
1795 }
1796 *mp = m;
1797 error = 0;
1798 }
1799
1800 sounlock(so);
1801 return (error);
1802 }
1803
1804 void
1805 sohasoutofband(struct socket *so)
1806 {
1807
1808 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1809 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, 0);
1810 }
1811
1812 static void
1813 filt_sordetach(struct knote *kn)
1814 {
1815 struct socket *so;
1816
1817 so = ((file_t *)kn->kn_obj)->f_data;
1818 solock(so);
1819 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1820 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1821 so->so_rcv.sb_flags &= ~SB_KNOTE;
1822 sounlock(so);
1823 }
1824
1825 /*ARGSUSED*/
1826 static int
1827 filt_soread(struct knote *kn, long hint)
1828 {
1829 struct socket *so;
1830 int rv;
1831
1832 so = ((file_t *)kn->kn_obj)->f_data;
1833 if (hint != NOTE_SUBMIT)
1834 solock(so);
1835 kn->kn_data = so->so_rcv.sb_cc;
1836 if (so->so_state & SS_CANTRCVMORE) {
1837 kn->kn_flags |= EV_EOF;
1838 kn->kn_fflags = so->so_error;
1839 rv = 1;
1840 } else if (so->so_error) /* temporary udp error */
1841 rv = 1;
1842 else if (kn->kn_sfflags & NOTE_LOWAT)
1843 rv = (kn->kn_data >= kn->kn_sdata);
1844 else
1845 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
1846 if (hint != NOTE_SUBMIT)
1847 sounlock(so);
1848 return rv;
1849 }
1850
1851 static void
1852 filt_sowdetach(struct knote *kn)
1853 {
1854 struct socket *so;
1855
1856 so = ((file_t *)kn->kn_obj)->f_data;
1857 solock(so);
1858 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1859 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1860 so->so_snd.sb_flags &= ~SB_KNOTE;
1861 sounlock(so);
1862 }
1863
1864 /*ARGSUSED*/
1865 static int
1866 filt_sowrite(struct knote *kn, long hint)
1867 {
1868 struct socket *so;
1869 int rv;
1870
1871 so = ((file_t *)kn->kn_obj)->f_data;
1872 if (hint != NOTE_SUBMIT)
1873 solock(so);
1874 kn->kn_data = sbspace(&so->so_snd);
1875 if (so->so_state & SS_CANTSENDMORE) {
1876 kn->kn_flags |= EV_EOF;
1877 kn->kn_fflags = so->so_error;
1878 rv = 1;
1879 } else if (so->so_error) /* temporary udp error */
1880 rv = 1;
1881 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
1882 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1883 rv = 0;
1884 else if (kn->kn_sfflags & NOTE_LOWAT)
1885 rv = (kn->kn_data >= kn->kn_sdata);
1886 else
1887 rv = (kn->kn_data >= so->so_snd.sb_lowat);
1888 if (hint != NOTE_SUBMIT)
1889 sounlock(so);
1890 return rv;
1891 }
1892
1893 /*ARGSUSED*/
1894 static int
1895 filt_solisten(struct knote *kn, long hint)
1896 {
1897 struct socket *so;
1898 int rv;
1899
1900 so = ((file_t *)kn->kn_obj)->f_data;
1901
1902 /*
1903 * Set kn_data to number of incoming connections, not
1904 * counting partial (incomplete) connections.
1905 */
1906 if (hint != NOTE_SUBMIT)
1907 solock(so);
1908 kn->kn_data = so->so_qlen;
1909 rv = (kn->kn_data > 0);
1910 if (hint != NOTE_SUBMIT)
1911 sounlock(so);
1912 return rv;
1913 }
1914
1915 static const struct filterops solisten_filtops =
1916 { 1, NULL, filt_sordetach, filt_solisten };
1917 static const struct filterops soread_filtops =
1918 { 1, NULL, filt_sordetach, filt_soread };
1919 static const struct filterops sowrite_filtops =
1920 { 1, NULL, filt_sowdetach, filt_sowrite };
1921
1922 int
1923 soo_kqfilter(struct file *fp, struct knote *kn)
1924 {
1925 struct socket *so;
1926 struct sockbuf *sb;
1927
1928 so = ((file_t *)kn->kn_obj)->f_data;
1929 solock(so);
1930 switch (kn->kn_filter) {
1931 case EVFILT_READ:
1932 if (so->so_options & SO_ACCEPTCONN)
1933 kn->kn_fop = &solisten_filtops;
1934 else
1935 kn->kn_fop = &soread_filtops;
1936 sb = &so->so_rcv;
1937 break;
1938 case EVFILT_WRITE:
1939 kn->kn_fop = &sowrite_filtops;
1940 sb = &so->so_snd;
1941 break;
1942 default:
1943 sounlock(so);
1944 return (EINVAL);
1945 }
1946 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1947 sb->sb_flags |= SB_KNOTE;
1948 sounlock(so);
1949 return (0);
1950 }
1951
1952 static int
1953 sodopoll(struct socket *so, int events)
1954 {
1955 int revents;
1956
1957 revents = 0;
1958
1959 if (events & (POLLIN | POLLRDNORM))
1960 if (soreadable(so))
1961 revents |= events & (POLLIN | POLLRDNORM);
1962
1963 if (events & (POLLOUT | POLLWRNORM))
1964 if (sowritable(so))
1965 revents |= events & (POLLOUT | POLLWRNORM);
1966
1967 if (events & (POLLPRI | POLLRDBAND))
1968 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
1969 revents |= events & (POLLPRI | POLLRDBAND);
1970
1971 return revents;
1972 }
1973
1974 int
1975 sopoll(struct socket *so, int events)
1976 {
1977 int revents = 0;
1978
1979 #ifndef DIAGNOSTIC
1980 /*
1981 * Do a quick, unlocked check in expectation that the socket
1982 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
1983 * as the solocked() assertions will fail.
1984 */
1985 if ((revents = sodopoll(so, events)) != 0)
1986 return revents;
1987 #endif
1988
1989 solock(so);
1990 if ((revents = sodopoll(so, events)) == 0) {
1991 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
1992 selrecord(curlwp, &so->so_rcv.sb_sel);
1993 so->so_rcv.sb_flags |= SB_NOTIFY;
1994 }
1995
1996 if (events & (POLLOUT | POLLWRNORM)) {
1997 selrecord(curlwp, &so->so_snd.sb_sel);
1998 so->so_snd.sb_flags |= SB_NOTIFY;
1999 }
2000 }
2001 sounlock(so);
2002
2003 return revents;
2004 }
2005
2006
2007 #include <sys/sysctl.h>
2008
2009 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2010
2011 /*
2012 * sysctl helper routine for kern.somaxkva. ensures that the given
2013 * value is not too small.
2014 * (XXX should we maybe make sure it's not too large as well?)
2015 */
2016 static int
2017 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2018 {
2019 int error, new_somaxkva;
2020 struct sysctlnode node;
2021
2022 new_somaxkva = somaxkva;
2023 node = *rnode;
2024 node.sysctl_data = &new_somaxkva;
2025 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2026 if (error || newp == NULL)
2027 return (error);
2028
2029 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2030 return (EINVAL);
2031
2032 mutex_enter(&so_pendfree_lock);
2033 somaxkva = new_somaxkva;
2034 cv_broadcast(&socurkva_cv);
2035 mutex_exit(&so_pendfree_lock);
2036
2037 return (error);
2038 }
2039
2040 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
2041 {
2042
2043 sysctl_createv(clog, 0, NULL, NULL,
2044 CTLFLAG_PERMANENT,
2045 CTLTYPE_NODE, "kern", NULL,
2046 NULL, 0, NULL, 0,
2047 CTL_KERN, CTL_EOL);
2048
2049 sysctl_createv(clog, 0, NULL, NULL,
2050 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2051 CTLTYPE_INT, "somaxkva",
2052 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2053 "used for socket buffers"),
2054 sysctl_kern_somaxkva, 0, NULL, 0,
2055 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2056 }
2057