uipc_socket.c revision 1.167.2.2 1 /* $NetBSD: uipc_socket.c,v 1.167.2.2 2008/07/28 14:37:36 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.167.2.2 2008/07/28 14:37:36 simonb Exp $");
67
68 #include "opt_sock_counters.h"
69 #include "opt_sosend_loan.h"
70 #include "opt_mbuftrace.h"
71 #include "opt_somaxkva.h"
72 #include "opt_multiprocessor.h" /* XXX */
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/proc.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/malloc.h>
80 #include <sys/mbuf.h>
81 #include <sys/domain.h>
82 #include <sys/kernel.h>
83 #include <sys/protosw.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/signalvar.h>
87 #include <sys/resourcevar.h>
88 #include <sys/event.h>
89 #include <sys/poll.h>
90 #include <sys/kauth.h>
91 #include <sys/mutex.h>
92 #include <sys/condvar.h>
93
94 #include <uvm/uvm.h>
95
96 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
97 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
98
99 extern const struct fileops socketops;
100
101 extern int somaxconn; /* patchable (XXX sysctl) */
102 int somaxconn = SOMAXCONN;
103 kmutex_t *softnet_lock;
104
105 #ifdef SOSEND_COUNTERS
106 #include <sys/device.h>
107
108 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
109 NULL, "sosend", "loan big");
110 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
111 NULL, "sosend", "copy big");
112 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
113 NULL, "sosend", "copy small");
114 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
115 NULL, "sosend", "kva limit");
116
117 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
118
119 EVCNT_ATTACH_STATIC(sosend_loan_big);
120 EVCNT_ATTACH_STATIC(sosend_copy_big);
121 EVCNT_ATTACH_STATIC(sosend_copy_small);
122 EVCNT_ATTACH_STATIC(sosend_kvalimit);
123 #else
124
125 #define SOSEND_COUNTER_INCR(ev) /* nothing */
126
127 #endif /* SOSEND_COUNTERS */
128
129 static struct callback_entry sokva_reclaimerentry;
130
131 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
132 int sock_loan_thresh = -1;
133 #else
134 int sock_loan_thresh = 4096;
135 #endif
136
137 static kmutex_t so_pendfree_lock;
138 static struct mbuf *so_pendfree;
139
140 #ifndef SOMAXKVA
141 #define SOMAXKVA (16 * 1024 * 1024)
142 #endif
143 int somaxkva = SOMAXKVA;
144 static int socurkva;
145 static kcondvar_t socurkva_cv;
146
147 #define SOCK_LOAN_CHUNK 65536
148
149 static size_t sodopendfree(void);
150 static size_t sodopendfreel(void);
151
152 static vsize_t
153 sokvareserve(struct socket *so, vsize_t len)
154 {
155 int error;
156
157 mutex_enter(&so_pendfree_lock);
158 while (socurkva + len > somaxkva) {
159 size_t freed;
160
161 /*
162 * try to do pendfree.
163 */
164
165 freed = sodopendfreel();
166
167 /*
168 * if some kva was freed, try again.
169 */
170
171 if (freed)
172 continue;
173
174 SOSEND_COUNTER_INCR(&sosend_kvalimit);
175 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
176 if (error) {
177 len = 0;
178 break;
179 }
180 }
181 socurkva += len;
182 mutex_exit(&so_pendfree_lock);
183 return len;
184 }
185
186 static void
187 sokvaunreserve(vsize_t len)
188 {
189
190 mutex_enter(&so_pendfree_lock);
191 socurkva -= len;
192 cv_broadcast(&socurkva_cv);
193 mutex_exit(&so_pendfree_lock);
194 }
195
196 /*
197 * sokvaalloc: allocate kva for loan.
198 */
199
200 vaddr_t
201 sokvaalloc(vsize_t len, struct socket *so)
202 {
203 vaddr_t lva;
204
205 /*
206 * reserve kva.
207 */
208
209 if (sokvareserve(so, len) == 0)
210 return 0;
211
212 /*
213 * allocate kva.
214 */
215
216 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
217 if (lva == 0) {
218 sokvaunreserve(len);
219 return (0);
220 }
221
222 return lva;
223 }
224
225 /*
226 * sokvafree: free kva for loan.
227 */
228
229 void
230 sokvafree(vaddr_t sva, vsize_t len)
231 {
232
233 /*
234 * free kva.
235 */
236
237 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
238
239 /*
240 * unreserve kva.
241 */
242
243 sokvaunreserve(len);
244 }
245
246 static void
247 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
248 {
249 vaddr_t sva, eva;
250 vsize_t len;
251 int npgs;
252
253 KASSERT(pgs != NULL);
254
255 eva = round_page((vaddr_t) buf + size);
256 sva = trunc_page((vaddr_t) buf);
257 len = eva - sva;
258 npgs = len >> PAGE_SHIFT;
259
260 pmap_kremove(sva, len);
261 pmap_update(pmap_kernel());
262 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
263 sokvafree(sva, len);
264 }
265
266 static size_t
267 sodopendfree(void)
268 {
269 size_t rv;
270
271 if (__predict_true(so_pendfree == NULL))
272 return 0;
273
274 mutex_enter(&so_pendfree_lock);
275 rv = sodopendfreel();
276 mutex_exit(&so_pendfree_lock);
277
278 return rv;
279 }
280
281 /*
282 * sodopendfreel: free mbufs on "pendfree" list.
283 * unlock and relock so_pendfree_lock when freeing mbufs.
284 *
285 * => called with so_pendfree_lock held.
286 */
287
288 static size_t
289 sodopendfreel(void)
290 {
291 struct mbuf *m, *next;
292 size_t rv = 0;
293
294 KASSERT(mutex_owned(&so_pendfree_lock));
295
296 while (so_pendfree != NULL) {
297 m = so_pendfree;
298 so_pendfree = NULL;
299 mutex_exit(&so_pendfree_lock);
300
301 for (; m != NULL; m = next) {
302 next = m->m_next;
303 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
304 KASSERT(m->m_ext.ext_refcnt == 0);
305
306 rv += m->m_ext.ext_size;
307 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
308 m->m_ext.ext_size);
309 pool_cache_put(mb_cache, m);
310 }
311
312 mutex_enter(&so_pendfree_lock);
313 }
314
315 return (rv);
316 }
317
318 void
319 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
320 {
321
322 KASSERT(m != NULL);
323
324 /*
325 * postpone freeing mbuf.
326 *
327 * we can't do it in interrupt context
328 * because we need to put kva back to kernel_map.
329 */
330
331 mutex_enter(&so_pendfree_lock);
332 m->m_next = so_pendfree;
333 so_pendfree = m;
334 cv_broadcast(&socurkva_cv);
335 mutex_exit(&so_pendfree_lock);
336 }
337
338 static long
339 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
340 {
341 struct iovec *iov = uio->uio_iov;
342 vaddr_t sva, eva;
343 vsize_t len;
344 vaddr_t lva;
345 int npgs, error;
346 vaddr_t va;
347 int i;
348
349 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
350 return (0);
351
352 if (iov->iov_len < (size_t) space)
353 space = iov->iov_len;
354 if (space > SOCK_LOAN_CHUNK)
355 space = SOCK_LOAN_CHUNK;
356
357 eva = round_page((vaddr_t) iov->iov_base + space);
358 sva = trunc_page((vaddr_t) iov->iov_base);
359 len = eva - sva;
360 npgs = len >> PAGE_SHIFT;
361
362 KASSERT(npgs <= M_EXT_MAXPAGES);
363
364 lva = sokvaalloc(len, so);
365 if (lva == 0)
366 return 0;
367
368 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
369 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
370 if (error) {
371 sokvafree(lva, len);
372 return (0);
373 }
374
375 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
376 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
377 VM_PROT_READ);
378 pmap_update(pmap_kernel());
379
380 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
381
382 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
383 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
384
385 uio->uio_resid -= space;
386 /* uio_offset not updated, not set/used for write(2) */
387 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
388 uio->uio_iov->iov_len -= space;
389 if (uio->uio_iov->iov_len == 0) {
390 uio->uio_iov++;
391 uio->uio_iovcnt--;
392 }
393
394 return (space);
395 }
396
397 static int
398 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
399 {
400
401 KASSERT(ce == &sokva_reclaimerentry);
402 KASSERT(obj == NULL);
403
404 sodopendfree();
405 if (!vm_map_starved_p(kernel_map)) {
406 return CALLBACK_CHAIN_ABORT;
407 }
408 return CALLBACK_CHAIN_CONTINUE;
409 }
410
411 struct mbuf *
412 getsombuf(struct socket *so, int type)
413 {
414 struct mbuf *m;
415
416 m = m_get(M_WAIT, type);
417 MCLAIM(m, so->so_mowner);
418 return m;
419 }
420
421 struct mbuf *
422 m_intopt(struct socket *so, int val)
423 {
424 struct mbuf *m;
425
426 m = getsombuf(so, MT_SOOPTS);
427 m->m_len = sizeof(int);
428 *mtod(m, int *) = val;
429 return m;
430 }
431
432 void
433 soinit(void)
434 {
435
436 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
437 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
438 cv_init(&socurkva_cv, "sokva");
439 soinit2();
440
441 /* Set the initial adjusted socket buffer size. */
442 if (sb_max_set(sb_max))
443 panic("bad initial sb_max value: %lu", sb_max);
444
445 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
446 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
447 }
448
449 /*
450 * Socket operation routines.
451 * These routines are called by the routines in
452 * sys_socket.c or from a system process, and
453 * implement the semantics of socket operations by
454 * switching out to the protocol specific routines.
455 */
456 /*ARGSUSED*/
457 int
458 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
459 struct socket *lockso)
460 {
461 const struct protosw *prp;
462 struct socket *so;
463 uid_t uid;
464 int error;
465 kmutex_t *lock;
466
467 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
468 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
469 KAUTH_ARG(proto));
470 if (error != 0)
471 return error;
472
473 if (proto)
474 prp = pffindproto(dom, proto, type);
475 else
476 prp = pffindtype(dom, type);
477 if (prp == NULL) {
478 /* no support for domain */
479 if (pffinddomain(dom) == 0)
480 return EAFNOSUPPORT;
481 /* no support for socket type */
482 if (proto == 0 && type != 0)
483 return EPROTOTYPE;
484 return EPROTONOSUPPORT;
485 }
486 if (prp->pr_usrreq == NULL)
487 return EPROTONOSUPPORT;
488 if (prp->pr_type != type)
489 return EPROTOTYPE;
490
491 so = soget(true);
492 so->so_type = type;
493 so->so_proto = prp;
494 so->so_send = sosend;
495 so->so_receive = soreceive;
496 #ifdef MBUFTRACE
497 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
498 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
499 so->so_mowner = &prp->pr_domain->dom_mowner;
500 #endif
501 uid = kauth_cred_geteuid(l->l_cred);
502 so->so_uidinfo = uid_find(uid);
503 so->so_egid = kauth_cred_getegid(l->l_cred);
504 so->so_cpid = l->l_proc->p_pid;
505 if (lockso != NULL) {
506 /* Caller wants us to share a lock. */
507 lock = lockso->so_lock;
508 so->so_lock = lock;
509 mutex_obj_hold(lock);
510 mutex_enter(lock);
511 } else {
512 /* Lock assigned and taken during PRU_ATTACH. */
513 }
514 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
515 (struct mbuf *)(long)proto, NULL, l);
516 KASSERT(solocked(so));
517 if (error != 0) {
518 so->so_state |= SS_NOFDREF;
519 sofree(so);
520 return error;
521 }
522 sounlock(so);
523 *aso = so;
524 return 0;
525 }
526
527 /* On success, write file descriptor to fdout and return zero. On
528 * failure, return non-zero; *fdout will be undefined.
529 */
530 int
531 fsocreate(int domain, struct socket **sop, int type, int protocol,
532 struct lwp *l, int *fdout)
533 {
534 struct socket *so;
535 struct file *fp;
536 int fd, error;
537
538 if ((error = fd_allocfile(&fp, &fd)) != 0)
539 return (error);
540 fp->f_flag = FREAD|FWRITE;
541 fp->f_type = DTYPE_SOCKET;
542 fp->f_ops = &socketops;
543 error = socreate(domain, &so, type, protocol, l, NULL);
544 if (error != 0) {
545 fd_abort(curproc, fp, fd);
546 } else {
547 if (sop != NULL)
548 *sop = so;
549 fp->f_data = so;
550 fd_affix(curproc, fp, fd);
551 *fdout = fd;
552 }
553 return error;
554 }
555
556 int
557 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
558 {
559 int error;
560
561 solock(so);
562 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
563 sounlock(so);
564 return error;
565 }
566
567 int
568 solisten(struct socket *so, int backlog, struct lwp *l)
569 {
570 int error;
571
572 solock(so);
573 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
574 SS_ISDISCONNECTING)) != 0) {
575 sounlock(so);
576 return (EOPNOTSUPP);
577 }
578 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
579 NULL, NULL, l);
580 if (error != 0) {
581 sounlock(so);
582 return error;
583 }
584 if (TAILQ_EMPTY(&so->so_q))
585 so->so_options |= SO_ACCEPTCONN;
586 if (backlog < 0)
587 backlog = 0;
588 so->so_qlimit = min(backlog, somaxconn);
589 sounlock(so);
590 return 0;
591 }
592
593 void
594 sofree(struct socket *so)
595 {
596 u_int refs;
597
598 KASSERT(solocked(so));
599
600 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
601 sounlock(so);
602 return;
603 }
604 if (so->so_head) {
605 /*
606 * We must not decommission a socket that's on the accept(2)
607 * queue. If we do, then accept(2) may hang after select(2)
608 * indicated that the listening socket was ready.
609 */
610 if (!soqremque(so, 0)) {
611 sounlock(so);
612 return;
613 }
614 }
615 if (so->so_rcv.sb_hiwat)
616 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
617 RLIM_INFINITY);
618 if (so->so_snd.sb_hiwat)
619 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
620 RLIM_INFINITY);
621 sbrelease(&so->so_snd, so);
622 KASSERT(!cv_has_waiters(&so->so_cv));
623 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
624 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
625 sorflush(so);
626 refs = so->so_aborting; /* XXX */
627 sounlock(so);
628 if (refs == 0) /* XXX */
629 soput(so);
630 }
631
632 /*
633 * Close a socket on last file table reference removal.
634 * Initiate disconnect if connected.
635 * Free socket when disconnect complete.
636 */
637 int
638 soclose(struct socket *so)
639 {
640 struct socket *so2;
641 int error;
642 int error2;
643
644 error = 0;
645 solock(so);
646 if (so->so_options & SO_ACCEPTCONN) {
647 do {
648 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
649 KASSERT(solocked2(so, so2));
650 (void) soqremque(so2, 0);
651 /* soabort drops the lock. */
652 (void) soabort(so2);
653 solock(so);
654 }
655 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
656 KASSERT(solocked2(so, so2));
657 (void) soqremque(so2, 1);
658 /* soabort drops the lock. */
659 (void) soabort(so2);
660 solock(so);
661 }
662 } while (!TAILQ_EMPTY(&so->so_q0));
663 }
664 if (so->so_pcb == 0)
665 goto discard;
666 if (so->so_state & SS_ISCONNECTED) {
667 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
668 error = sodisconnect(so);
669 if (error)
670 goto drop;
671 }
672 if (so->so_options & SO_LINGER) {
673 if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
674 goto drop;
675 while (so->so_state & SS_ISCONNECTED) {
676 error = sowait(so, so->so_linger * hz);
677 if (error)
678 break;
679 }
680 }
681 }
682 drop:
683 if (so->so_pcb) {
684 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
685 NULL, NULL, NULL, NULL);
686 if (error == 0)
687 error = error2;
688 }
689 discard:
690 if (so->so_state & SS_NOFDREF)
691 panic("soclose: NOFDREF");
692 so->so_state |= SS_NOFDREF;
693 sofree(so);
694 return (error);
695 }
696
697 /*
698 * Must be called with the socket locked.. Will return with it unlocked.
699 */
700 int
701 soabort(struct socket *so)
702 {
703 u_int refs;
704 int error;
705
706 KASSERT(solocked(so));
707 KASSERT(so->so_head == NULL);
708
709 so->so_aborting++; /* XXX */
710 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
711 NULL, NULL, NULL);
712 refs = --so->so_aborting; /* XXX */
713 if (error || (refs == 0)) {
714 sofree(so);
715 } else {
716 sounlock(so);
717 }
718 return error;
719 }
720
721 int
722 soaccept(struct socket *so, struct mbuf *nam)
723 {
724 int error;
725
726 KASSERT(solocked(so));
727
728 error = 0;
729 if ((so->so_state & SS_NOFDREF) == 0)
730 panic("soaccept: !NOFDREF");
731 so->so_state &= ~SS_NOFDREF;
732 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
733 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
734 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
735 NULL, nam, NULL, NULL);
736 else
737 error = ECONNABORTED;
738
739 return (error);
740 }
741
742 int
743 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
744 {
745 int error;
746
747 KASSERT(solocked(so));
748
749 if (so->so_options & SO_ACCEPTCONN)
750 return (EOPNOTSUPP);
751 /*
752 * If protocol is connection-based, can only connect once.
753 * Otherwise, if connected, try to disconnect first.
754 * This allows user to disconnect by connecting to, e.g.,
755 * a null address.
756 */
757 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
758 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
759 (error = sodisconnect(so))))
760 error = EISCONN;
761 else
762 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
763 NULL, nam, NULL, l);
764 return (error);
765 }
766
767 int
768 soconnect2(struct socket *so1, struct socket *so2)
769 {
770 int error;
771
772 KASSERT(solocked2(so1, so2));
773
774 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
775 NULL, (struct mbuf *)so2, NULL, NULL);
776 return (error);
777 }
778
779 int
780 sodisconnect(struct socket *so)
781 {
782 int error;
783
784 KASSERT(solocked(so));
785
786 if ((so->so_state & SS_ISCONNECTED) == 0) {
787 error = ENOTCONN;
788 } else if (so->so_state & SS_ISDISCONNECTING) {
789 error = EALREADY;
790 } else {
791 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
792 NULL, NULL, NULL, NULL);
793 }
794 sodopendfree();
795 return (error);
796 }
797
798 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
799 /*
800 * Send on a socket.
801 * If send must go all at once and message is larger than
802 * send buffering, then hard error.
803 * Lock against other senders.
804 * If must go all at once and not enough room now, then
805 * inform user that this would block and do nothing.
806 * Otherwise, if nonblocking, send as much as possible.
807 * The data to be sent is described by "uio" if nonzero,
808 * otherwise by the mbuf chain "top" (which must be null
809 * if uio is not). Data provided in mbuf chain must be small
810 * enough to send all at once.
811 *
812 * Returns nonzero on error, timeout or signal; callers
813 * must check for short counts if EINTR/ERESTART are returned.
814 * Data and control buffers are freed on return.
815 */
816 int
817 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
818 struct mbuf *control, int flags, struct lwp *l)
819 {
820 struct mbuf **mp, *m;
821 struct proc *p;
822 long space, len, resid, clen, mlen;
823 int error, s, dontroute, atomic;
824
825 p = l->l_proc;
826 sodopendfree();
827 clen = 0;
828
829 /*
830 * solock() provides atomicity of access. splsoftnet() prevents
831 * protocol processing soft interrupts from interrupting us and
832 * blocking (expensive).
833 */
834 s = splsoftnet();
835 solock(so);
836 atomic = sosendallatonce(so) || top;
837 if (uio)
838 resid = uio->uio_resid;
839 else
840 resid = top->m_pkthdr.len;
841 /*
842 * In theory resid should be unsigned.
843 * However, space must be signed, as it might be less than 0
844 * if we over-committed, and we must use a signed comparison
845 * of space and resid. On the other hand, a negative resid
846 * causes us to loop sending 0-length segments to the protocol.
847 */
848 if (resid < 0) {
849 error = EINVAL;
850 goto out;
851 }
852 dontroute =
853 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
854 (so->so_proto->pr_flags & PR_ATOMIC);
855 l->l_ru.ru_msgsnd++;
856 if (control)
857 clen = control->m_len;
858 restart:
859 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
860 goto out;
861 do {
862 if (so->so_state & SS_CANTSENDMORE) {
863 error = EPIPE;
864 goto release;
865 }
866 if (so->so_error) {
867 error = so->so_error;
868 so->so_error = 0;
869 goto release;
870 }
871 if ((so->so_state & SS_ISCONNECTED) == 0) {
872 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
873 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
874 !(resid == 0 && clen != 0)) {
875 error = ENOTCONN;
876 goto release;
877 }
878 } else if (addr == 0) {
879 error = EDESTADDRREQ;
880 goto release;
881 }
882 }
883 space = sbspace(&so->so_snd);
884 if (flags & MSG_OOB)
885 space += 1024;
886 if ((atomic && resid > so->so_snd.sb_hiwat) ||
887 clen > so->so_snd.sb_hiwat) {
888 error = EMSGSIZE;
889 goto release;
890 }
891 if (space < resid + clen &&
892 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
893 if (so->so_nbio) {
894 error = EWOULDBLOCK;
895 goto release;
896 }
897 sbunlock(&so->so_snd);
898 error = sbwait(&so->so_snd);
899 if (error)
900 goto out;
901 goto restart;
902 }
903 mp = ⊤
904 space -= clen;
905 do {
906 if (uio == NULL) {
907 /*
908 * Data is prepackaged in "top".
909 */
910 resid = 0;
911 if (flags & MSG_EOR)
912 top->m_flags |= M_EOR;
913 } else do {
914 sounlock(so);
915 splx(s);
916 if (top == NULL) {
917 m = m_gethdr(M_WAIT, MT_DATA);
918 mlen = MHLEN;
919 m->m_pkthdr.len = 0;
920 m->m_pkthdr.rcvif = NULL;
921 } else {
922 m = m_get(M_WAIT, MT_DATA);
923 mlen = MLEN;
924 }
925 MCLAIM(m, so->so_snd.sb_mowner);
926 if (sock_loan_thresh >= 0 &&
927 uio->uio_iov->iov_len >= sock_loan_thresh &&
928 space >= sock_loan_thresh &&
929 (len = sosend_loan(so, uio, m,
930 space)) != 0) {
931 SOSEND_COUNTER_INCR(&sosend_loan_big);
932 space -= len;
933 goto have_data;
934 }
935 if (resid >= MINCLSIZE && space >= MCLBYTES) {
936 SOSEND_COUNTER_INCR(&sosend_copy_big);
937 m_clget(m, M_WAIT);
938 if ((m->m_flags & M_EXT) == 0)
939 goto nopages;
940 mlen = MCLBYTES;
941 if (atomic && top == 0) {
942 len = lmin(MCLBYTES - max_hdr,
943 resid);
944 m->m_data += max_hdr;
945 } else
946 len = lmin(MCLBYTES, resid);
947 space -= len;
948 } else {
949 nopages:
950 SOSEND_COUNTER_INCR(&sosend_copy_small);
951 len = lmin(lmin(mlen, resid), space);
952 space -= len;
953 /*
954 * For datagram protocols, leave room
955 * for protocol headers in first mbuf.
956 */
957 if (atomic && top == 0 && len < mlen)
958 MH_ALIGN(m, len);
959 }
960 error = uiomove(mtod(m, void *), (int)len, uio);
961 have_data:
962 resid = uio->uio_resid;
963 m->m_len = len;
964 *mp = m;
965 top->m_pkthdr.len += len;
966 s = splsoftnet();
967 solock(so);
968 if (error != 0)
969 goto release;
970 mp = &m->m_next;
971 if (resid <= 0) {
972 if (flags & MSG_EOR)
973 top->m_flags |= M_EOR;
974 break;
975 }
976 } while (space > 0 && atomic);
977
978 if (so->so_state & SS_CANTSENDMORE) {
979 error = EPIPE;
980 goto release;
981 }
982 if (dontroute)
983 so->so_options |= SO_DONTROUTE;
984 if (resid > 0)
985 so->so_state |= SS_MORETOCOME;
986 error = (*so->so_proto->pr_usrreq)(so,
987 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
988 top, addr, control, curlwp);
989 if (dontroute)
990 so->so_options &= ~SO_DONTROUTE;
991 if (resid > 0)
992 so->so_state &= ~SS_MORETOCOME;
993 clen = 0;
994 control = NULL;
995 top = NULL;
996 mp = ⊤
997 if (error != 0)
998 goto release;
999 } while (resid && space > 0);
1000 } while (resid);
1001
1002 release:
1003 sbunlock(&so->so_snd);
1004 out:
1005 sounlock(so);
1006 splx(s);
1007 if (top)
1008 m_freem(top);
1009 if (control)
1010 m_freem(control);
1011 return (error);
1012 }
1013
1014 /*
1015 * Following replacement or removal of the first mbuf on the first
1016 * mbuf chain of a socket buffer, push necessary state changes back
1017 * into the socket buffer so that other consumers see the values
1018 * consistently. 'nextrecord' is the callers locally stored value of
1019 * the original value of sb->sb_mb->m_nextpkt which must be restored
1020 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1021 */
1022 static void
1023 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1024 {
1025
1026 KASSERT(solocked(sb->sb_so));
1027
1028 /*
1029 * First, update for the new value of nextrecord. If necessary,
1030 * make it the first record.
1031 */
1032 if (sb->sb_mb != NULL)
1033 sb->sb_mb->m_nextpkt = nextrecord;
1034 else
1035 sb->sb_mb = nextrecord;
1036
1037 /*
1038 * Now update any dependent socket buffer fields to reflect
1039 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1040 * the addition of a second clause that takes care of the
1041 * case where sb_mb has been updated, but remains the last
1042 * record.
1043 */
1044 if (sb->sb_mb == NULL) {
1045 sb->sb_mbtail = NULL;
1046 sb->sb_lastrecord = NULL;
1047 } else if (sb->sb_mb->m_nextpkt == NULL)
1048 sb->sb_lastrecord = sb->sb_mb;
1049 }
1050
1051 /*
1052 * Implement receive operations on a socket.
1053 * We depend on the way that records are added to the sockbuf
1054 * by sbappend*. In particular, each record (mbufs linked through m_next)
1055 * must begin with an address if the protocol so specifies,
1056 * followed by an optional mbuf or mbufs containing ancillary data,
1057 * and then zero or more mbufs of data.
1058 * In order to avoid blocking network interrupts for the entire time here,
1059 * we splx() while doing the actual copy to user space.
1060 * Although the sockbuf is locked, new data may still be appended,
1061 * and thus we must maintain consistency of the sockbuf during that time.
1062 *
1063 * The caller may receive the data as a single mbuf chain by supplying
1064 * an mbuf **mp0 for use in returning the chain. The uio is then used
1065 * only for the count in uio_resid.
1066 */
1067 int
1068 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1069 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1070 {
1071 struct lwp *l = curlwp;
1072 struct mbuf *m, **mp, *mt;
1073 int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1074 const struct protosw *pr;
1075 struct mbuf *nextrecord;
1076 int mbuf_removed = 0;
1077 const struct domain *dom;
1078
1079 pr = so->so_proto;
1080 atomic = pr->pr_flags & PR_ATOMIC;
1081 dom = pr->pr_domain;
1082 mp = mp0;
1083 type = 0;
1084 orig_resid = uio->uio_resid;
1085
1086 if (paddr != NULL)
1087 *paddr = NULL;
1088 if (controlp != NULL)
1089 *controlp = NULL;
1090 if (flagsp != NULL)
1091 flags = *flagsp &~ MSG_EOR;
1092 else
1093 flags = 0;
1094
1095 if ((flags & MSG_DONTWAIT) == 0)
1096 sodopendfree();
1097
1098 if (flags & MSG_OOB) {
1099 m = m_get(M_WAIT, MT_DATA);
1100 solock(so);
1101 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1102 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1103 sounlock(so);
1104 if (error)
1105 goto bad;
1106 do {
1107 error = uiomove(mtod(m, void *),
1108 (int) min(uio->uio_resid, m->m_len), uio);
1109 m = m_free(m);
1110 } while (uio->uio_resid > 0 && error == 0 && m);
1111 bad:
1112 if (m != NULL)
1113 m_freem(m);
1114 return error;
1115 }
1116 if (mp != NULL)
1117 *mp = NULL;
1118
1119 /*
1120 * solock() provides atomicity of access. splsoftnet() prevents
1121 * protocol processing soft interrupts from interrupting us and
1122 * blocking (expensive).
1123 */
1124 s = splsoftnet();
1125 solock(so);
1126 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1127 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1128
1129 restart:
1130 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1131 sounlock(so);
1132 splx(s);
1133 return error;
1134 }
1135
1136 m = so->so_rcv.sb_mb;
1137 /*
1138 * If we have less data than requested, block awaiting more
1139 * (subject to any timeout) if:
1140 * 1. the current count is less than the low water mark,
1141 * 2. MSG_WAITALL is set, and it is possible to do the entire
1142 * receive operation at once if we block (resid <= hiwat), or
1143 * 3. MSG_DONTWAIT is not set.
1144 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1145 * we have to do the receive in sections, and thus risk returning
1146 * a short count if a timeout or signal occurs after we start.
1147 */
1148 if (m == NULL ||
1149 ((flags & MSG_DONTWAIT) == 0 &&
1150 so->so_rcv.sb_cc < uio->uio_resid &&
1151 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1152 ((flags & MSG_WAITALL) &&
1153 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1154 m->m_nextpkt == NULL && !atomic)) {
1155 #ifdef DIAGNOSTIC
1156 if (m == NULL && so->so_rcv.sb_cc)
1157 panic("receive 1");
1158 #endif
1159 if (so->so_error) {
1160 if (m != NULL)
1161 goto dontblock;
1162 error = so->so_error;
1163 if ((flags & MSG_PEEK) == 0)
1164 so->so_error = 0;
1165 goto release;
1166 }
1167 if (so->so_state & SS_CANTRCVMORE) {
1168 if (m != NULL)
1169 goto dontblock;
1170 else
1171 goto release;
1172 }
1173 for (; m != NULL; m = m->m_next)
1174 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1175 m = so->so_rcv.sb_mb;
1176 goto dontblock;
1177 }
1178 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1179 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1180 error = ENOTCONN;
1181 goto release;
1182 }
1183 if (uio->uio_resid == 0)
1184 goto release;
1185 if (so->so_nbio || (flags & MSG_DONTWAIT)) {
1186 error = EWOULDBLOCK;
1187 goto release;
1188 }
1189 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1190 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1191 sbunlock(&so->so_rcv);
1192 error = sbwait(&so->so_rcv);
1193 if (error != 0) {
1194 sounlock(so);
1195 splx(s);
1196 return error;
1197 }
1198 goto restart;
1199 }
1200 dontblock:
1201 /*
1202 * On entry here, m points to the first record of the socket buffer.
1203 * From this point onward, we maintain 'nextrecord' as a cache of the
1204 * pointer to the next record in the socket buffer. We must keep the
1205 * various socket buffer pointers and local stack versions of the
1206 * pointers in sync, pushing out modifications before dropping the
1207 * socket lock, and re-reading them when picking it up.
1208 *
1209 * Otherwise, we will race with the network stack appending new data
1210 * or records onto the socket buffer by using inconsistent/stale
1211 * versions of the field, possibly resulting in socket buffer
1212 * corruption.
1213 *
1214 * By holding the high-level sblock(), we prevent simultaneous
1215 * readers from pulling off the front of the socket buffer.
1216 */
1217 if (l != NULL)
1218 l->l_ru.ru_msgrcv++;
1219 KASSERT(m == so->so_rcv.sb_mb);
1220 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1221 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1222 nextrecord = m->m_nextpkt;
1223 if (pr->pr_flags & PR_ADDR) {
1224 #ifdef DIAGNOSTIC
1225 if (m->m_type != MT_SONAME)
1226 panic("receive 1a");
1227 #endif
1228 orig_resid = 0;
1229 if (flags & MSG_PEEK) {
1230 if (paddr)
1231 *paddr = m_copy(m, 0, m->m_len);
1232 m = m->m_next;
1233 } else {
1234 sbfree(&so->so_rcv, m);
1235 mbuf_removed = 1;
1236 if (paddr != NULL) {
1237 *paddr = m;
1238 so->so_rcv.sb_mb = m->m_next;
1239 m->m_next = NULL;
1240 m = so->so_rcv.sb_mb;
1241 } else {
1242 MFREE(m, so->so_rcv.sb_mb);
1243 m = so->so_rcv.sb_mb;
1244 }
1245 sbsync(&so->so_rcv, nextrecord);
1246 }
1247 }
1248
1249 /*
1250 * Process one or more MT_CONTROL mbufs present before any data mbufs
1251 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1252 * just copy the data; if !MSG_PEEK, we call into the protocol to
1253 * perform externalization (or freeing if controlp == NULL).
1254 */
1255 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1256 struct mbuf *cm = NULL, *cmn;
1257 struct mbuf **cme = &cm;
1258
1259 do {
1260 if (flags & MSG_PEEK) {
1261 if (controlp != NULL) {
1262 *controlp = m_copy(m, 0, m->m_len);
1263 controlp = &(*controlp)->m_next;
1264 }
1265 m = m->m_next;
1266 } else {
1267 sbfree(&so->so_rcv, m);
1268 so->so_rcv.sb_mb = m->m_next;
1269 m->m_next = NULL;
1270 *cme = m;
1271 cme = &(*cme)->m_next;
1272 m = so->so_rcv.sb_mb;
1273 }
1274 } while (m != NULL && m->m_type == MT_CONTROL);
1275 if ((flags & MSG_PEEK) == 0)
1276 sbsync(&so->so_rcv, nextrecord);
1277 for (; cm != NULL; cm = cmn) {
1278 cmn = cm->m_next;
1279 cm->m_next = NULL;
1280 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1281 if (controlp != NULL) {
1282 if (dom->dom_externalize != NULL &&
1283 type == SCM_RIGHTS) {
1284 sounlock(so);
1285 splx(s);
1286 error = (*dom->dom_externalize)(cm, l);
1287 s = splsoftnet();
1288 solock(so);
1289 }
1290 *controlp = cm;
1291 while (*controlp != NULL)
1292 controlp = &(*controlp)->m_next;
1293 } else {
1294 /*
1295 * Dispose of any SCM_RIGHTS message that went
1296 * through the read path rather than recv.
1297 */
1298 if (dom->dom_dispose != NULL &&
1299 type == SCM_RIGHTS) {
1300 sounlock(so);
1301 (*dom->dom_dispose)(cm);
1302 solock(so);
1303 }
1304 m_freem(cm);
1305 }
1306 }
1307 if (m != NULL)
1308 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1309 else
1310 nextrecord = so->so_rcv.sb_mb;
1311 orig_resid = 0;
1312 }
1313
1314 /* If m is non-NULL, we have some data to read. */
1315 if (__predict_true(m != NULL)) {
1316 type = m->m_type;
1317 if (type == MT_OOBDATA)
1318 flags |= MSG_OOB;
1319 }
1320 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1321 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1322
1323 moff = 0;
1324 offset = 0;
1325 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1326 if (m->m_type == MT_OOBDATA) {
1327 if (type != MT_OOBDATA)
1328 break;
1329 } else if (type == MT_OOBDATA)
1330 break;
1331 #ifdef DIAGNOSTIC
1332 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1333 panic("receive 3");
1334 #endif
1335 so->so_state &= ~SS_RCVATMARK;
1336 len = uio->uio_resid;
1337 if (so->so_oobmark && len > so->so_oobmark - offset)
1338 len = so->so_oobmark - offset;
1339 if (len > m->m_len - moff)
1340 len = m->m_len - moff;
1341 /*
1342 * If mp is set, just pass back the mbufs.
1343 * Otherwise copy them out via the uio, then free.
1344 * Sockbuf must be consistent here (points to current mbuf,
1345 * it points to next record) when we drop priority;
1346 * we must note any additions to the sockbuf when we
1347 * block interrupts again.
1348 */
1349 if (mp == NULL) {
1350 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1351 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1352 sounlock(so);
1353 splx(s);
1354 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1355 s = splsoftnet();
1356 solock(so);
1357 if (error != 0) {
1358 /*
1359 * If any part of the record has been removed
1360 * (such as the MT_SONAME mbuf, which will
1361 * happen when PR_ADDR, and thus also
1362 * PR_ATOMIC, is set), then drop the entire
1363 * record to maintain the atomicity of the
1364 * receive operation.
1365 *
1366 * This avoids a later panic("receive 1a")
1367 * when compiled with DIAGNOSTIC.
1368 */
1369 if (m && mbuf_removed && atomic)
1370 (void) sbdroprecord(&so->so_rcv);
1371
1372 goto release;
1373 }
1374 } else
1375 uio->uio_resid -= len;
1376 if (len == m->m_len - moff) {
1377 if (m->m_flags & M_EOR)
1378 flags |= MSG_EOR;
1379 if (flags & MSG_PEEK) {
1380 m = m->m_next;
1381 moff = 0;
1382 } else {
1383 nextrecord = m->m_nextpkt;
1384 sbfree(&so->so_rcv, m);
1385 if (mp) {
1386 *mp = m;
1387 mp = &m->m_next;
1388 so->so_rcv.sb_mb = m = m->m_next;
1389 *mp = NULL;
1390 } else {
1391 MFREE(m, so->so_rcv.sb_mb);
1392 m = so->so_rcv.sb_mb;
1393 }
1394 /*
1395 * If m != NULL, we also know that
1396 * so->so_rcv.sb_mb != NULL.
1397 */
1398 KASSERT(so->so_rcv.sb_mb == m);
1399 if (m) {
1400 m->m_nextpkt = nextrecord;
1401 if (nextrecord == NULL)
1402 so->so_rcv.sb_lastrecord = m;
1403 } else {
1404 so->so_rcv.sb_mb = nextrecord;
1405 SB_EMPTY_FIXUP(&so->so_rcv);
1406 }
1407 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1408 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1409 }
1410 } else if (flags & MSG_PEEK)
1411 moff += len;
1412 else {
1413 if (mp != NULL) {
1414 mt = m_copym(m, 0, len, M_NOWAIT);
1415 if (__predict_false(mt == NULL)) {
1416 sounlock(so);
1417 mt = m_copym(m, 0, len, M_WAIT);
1418 solock(so);
1419 }
1420 *mp = mt;
1421 }
1422 m->m_data += len;
1423 m->m_len -= len;
1424 so->so_rcv.sb_cc -= len;
1425 }
1426 if (so->so_oobmark) {
1427 if ((flags & MSG_PEEK) == 0) {
1428 so->so_oobmark -= len;
1429 if (so->so_oobmark == 0) {
1430 so->so_state |= SS_RCVATMARK;
1431 break;
1432 }
1433 } else {
1434 offset += len;
1435 if (offset == so->so_oobmark)
1436 break;
1437 }
1438 }
1439 if (flags & MSG_EOR)
1440 break;
1441 /*
1442 * If the MSG_WAITALL flag is set (for non-atomic socket),
1443 * we must not quit until "uio->uio_resid == 0" or an error
1444 * termination. If a signal/timeout occurs, return
1445 * with a short count but without error.
1446 * Keep sockbuf locked against other readers.
1447 */
1448 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1449 !sosendallatonce(so) && !nextrecord) {
1450 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1451 break;
1452 /*
1453 * If we are peeking and the socket receive buffer is
1454 * full, stop since we can't get more data to peek at.
1455 */
1456 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1457 break;
1458 /*
1459 * If we've drained the socket buffer, tell the
1460 * protocol in case it needs to do something to
1461 * get it filled again.
1462 */
1463 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1464 (*pr->pr_usrreq)(so, PRU_RCVD,
1465 NULL, (struct mbuf *)(long)flags, NULL, l);
1466 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1467 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1468 error = sbwait(&so->so_rcv);
1469 if (error != 0) {
1470 sbunlock(&so->so_rcv);
1471 sounlock(so);
1472 splx(s);
1473 return 0;
1474 }
1475 if ((m = so->so_rcv.sb_mb) != NULL)
1476 nextrecord = m->m_nextpkt;
1477 }
1478 }
1479
1480 if (m && atomic) {
1481 flags |= MSG_TRUNC;
1482 if ((flags & MSG_PEEK) == 0)
1483 (void) sbdroprecord(&so->so_rcv);
1484 }
1485 if ((flags & MSG_PEEK) == 0) {
1486 if (m == NULL) {
1487 /*
1488 * First part is an inline SB_EMPTY_FIXUP(). Second
1489 * part makes sure sb_lastrecord is up-to-date if
1490 * there is still data in the socket buffer.
1491 */
1492 so->so_rcv.sb_mb = nextrecord;
1493 if (so->so_rcv.sb_mb == NULL) {
1494 so->so_rcv.sb_mbtail = NULL;
1495 so->so_rcv.sb_lastrecord = NULL;
1496 } else if (nextrecord->m_nextpkt == NULL)
1497 so->so_rcv.sb_lastrecord = nextrecord;
1498 }
1499 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1500 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1501 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1502 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1503 (struct mbuf *)(long)flags, NULL, l);
1504 }
1505 if (orig_resid == uio->uio_resid && orig_resid &&
1506 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1507 sbunlock(&so->so_rcv);
1508 goto restart;
1509 }
1510
1511 if (flagsp != NULL)
1512 *flagsp |= flags;
1513 release:
1514 sbunlock(&so->so_rcv);
1515 sounlock(so);
1516 splx(s);
1517 return error;
1518 }
1519
1520 int
1521 soshutdown(struct socket *so, int how)
1522 {
1523 const struct protosw *pr;
1524 int error;
1525
1526 KASSERT(solocked(so));
1527
1528 pr = so->so_proto;
1529 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1530 return (EINVAL);
1531
1532 if (how == SHUT_RD || how == SHUT_RDWR) {
1533 sorflush(so);
1534 error = 0;
1535 }
1536 if (how == SHUT_WR || how == SHUT_RDWR)
1537 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1538 NULL, NULL, NULL);
1539
1540 return error;
1541 }
1542
1543 void
1544 sorflush(struct socket *so)
1545 {
1546 struct sockbuf *sb, asb;
1547 const struct protosw *pr;
1548
1549 KASSERT(solocked(so));
1550
1551 sb = &so->so_rcv;
1552 pr = so->so_proto;
1553 socantrcvmore(so);
1554 sb->sb_flags |= SB_NOINTR;
1555 (void )sblock(sb, M_WAITOK);
1556 sbunlock(sb);
1557 asb = *sb;
1558 /*
1559 * Clear most of the sockbuf structure, but leave some of the
1560 * fields valid.
1561 */
1562 memset(&sb->sb_startzero, 0,
1563 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1564 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1565 sounlock(so);
1566 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1567 solock(so);
1568 }
1569 sbrelease(&asb, so);
1570 }
1571
1572 static int
1573 sosetopt1(struct socket *so, int level, int optname, struct mbuf *m)
1574 {
1575 int optval, val;
1576 struct linger *l;
1577 struct sockbuf *sb;
1578 struct timeval *tv;
1579
1580 switch (optname) {
1581
1582 case SO_LINGER:
1583 if (m == NULL || m->m_len != sizeof(struct linger))
1584 return EINVAL;
1585 l = mtod(m, struct linger *);
1586 if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
1587 l->l_linger > (INT_MAX / hz))
1588 return EDOM;
1589 so->so_linger = l->l_linger;
1590 if (l->l_onoff)
1591 so->so_options |= SO_LINGER;
1592 else
1593 so->so_options &= ~SO_LINGER;
1594 break;
1595
1596 case SO_DEBUG:
1597 case SO_KEEPALIVE:
1598 case SO_DONTROUTE:
1599 case SO_USELOOPBACK:
1600 case SO_BROADCAST:
1601 case SO_REUSEADDR:
1602 case SO_REUSEPORT:
1603 case SO_OOBINLINE:
1604 case SO_TIMESTAMP:
1605 if (m == NULL || m->m_len < sizeof(int))
1606 return EINVAL;
1607 if (*mtod(m, int *))
1608 so->so_options |= optname;
1609 else
1610 so->so_options &= ~optname;
1611 break;
1612
1613 case SO_SNDBUF:
1614 case SO_RCVBUF:
1615 case SO_SNDLOWAT:
1616 case SO_RCVLOWAT:
1617 if (m == NULL || m->m_len < sizeof(int))
1618 return EINVAL;
1619
1620 /*
1621 * Values < 1 make no sense for any of these
1622 * options, so disallow them.
1623 */
1624 optval = *mtod(m, int *);
1625 if (optval < 1)
1626 return EINVAL;
1627
1628 switch (optname) {
1629
1630 case SO_SNDBUF:
1631 case SO_RCVBUF:
1632 sb = (optname == SO_SNDBUF) ?
1633 &so->so_snd : &so->so_rcv;
1634 if (sbreserve(sb, (u_long)optval, so) == 0)
1635 return ENOBUFS;
1636 sb->sb_flags &= ~SB_AUTOSIZE;
1637 break;
1638
1639 /*
1640 * Make sure the low-water is never greater than
1641 * the high-water.
1642 */
1643 case SO_SNDLOWAT:
1644 so->so_snd.sb_lowat =
1645 (optval > so->so_snd.sb_hiwat) ?
1646 so->so_snd.sb_hiwat : optval;
1647 break;
1648 case SO_RCVLOWAT:
1649 so->so_rcv.sb_lowat =
1650 (optval > so->so_rcv.sb_hiwat) ?
1651 so->so_rcv.sb_hiwat : optval;
1652 break;
1653 }
1654 break;
1655
1656 case SO_SNDTIMEO:
1657 case SO_RCVTIMEO:
1658 if (m == NULL || m->m_len < sizeof(*tv))
1659 return EINVAL;
1660 tv = mtod(m, struct timeval *);
1661 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz)
1662 return EDOM;
1663 val = tv->tv_sec * hz + tv->tv_usec / tick;
1664 if (val == 0 && tv->tv_usec != 0)
1665 val = 1;
1666
1667 switch (optname) {
1668
1669 case SO_SNDTIMEO:
1670 so->so_snd.sb_timeo = val;
1671 break;
1672 case SO_RCVTIMEO:
1673 so->so_rcv.sb_timeo = val;
1674 break;
1675 }
1676 break;
1677
1678 default:
1679 return ENOPROTOOPT;
1680 }
1681 return 0;
1682 }
1683
1684 int
1685 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
1686 {
1687 int error, prerr;
1688
1689 solock(so);
1690 if (level == SOL_SOCKET)
1691 error = sosetopt1(so, level, optname, m);
1692 else
1693 error = ENOPROTOOPT;
1694
1695 if ((error == 0 || error == ENOPROTOOPT) &&
1696 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1697 /* give the protocol stack a shot */
1698 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, level,
1699 optname, &m);
1700 if (prerr == 0)
1701 error = 0;
1702 else if (prerr != ENOPROTOOPT)
1703 error = prerr;
1704 } else if (m != NULL)
1705 (void)m_free(m);
1706 sounlock(so);
1707 return error;
1708 }
1709
1710 int
1711 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1712 {
1713 struct mbuf *m;
1714 int error;
1715
1716 solock(so);
1717 if (level != SOL_SOCKET) {
1718 if (so->so_proto && so->so_proto->pr_ctloutput) {
1719 error = ((*so->so_proto->pr_ctloutput)
1720 (PRCO_GETOPT, so, level, optname, mp));
1721 } else
1722 error = (ENOPROTOOPT);
1723 } else {
1724 m = m_get(M_WAIT, MT_SOOPTS);
1725 m->m_len = sizeof(int);
1726
1727 switch (optname) {
1728
1729 case SO_LINGER:
1730 m->m_len = sizeof(struct linger);
1731 mtod(m, struct linger *)->l_onoff =
1732 (so->so_options & SO_LINGER) ? 1 : 0;
1733 mtod(m, struct linger *)->l_linger = so->so_linger;
1734 break;
1735
1736 case SO_USELOOPBACK:
1737 case SO_DONTROUTE:
1738 case SO_DEBUG:
1739 case SO_KEEPALIVE:
1740 case SO_REUSEADDR:
1741 case SO_REUSEPORT:
1742 case SO_BROADCAST:
1743 case SO_OOBINLINE:
1744 case SO_TIMESTAMP:
1745 *mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
1746 break;
1747
1748 case SO_TYPE:
1749 *mtod(m, int *) = so->so_type;
1750 break;
1751
1752 case SO_ERROR:
1753 *mtod(m, int *) = so->so_error;
1754 so->so_error = 0;
1755 break;
1756
1757 case SO_SNDBUF:
1758 *mtod(m, int *) = so->so_snd.sb_hiwat;
1759 break;
1760
1761 case SO_RCVBUF:
1762 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1763 break;
1764
1765 case SO_SNDLOWAT:
1766 *mtod(m, int *) = so->so_snd.sb_lowat;
1767 break;
1768
1769 case SO_RCVLOWAT:
1770 *mtod(m, int *) = so->so_rcv.sb_lowat;
1771 break;
1772
1773 case SO_SNDTIMEO:
1774 case SO_RCVTIMEO:
1775 {
1776 int val = (optname == SO_SNDTIMEO ?
1777 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1778
1779 m->m_len = sizeof(struct timeval);
1780 mtod(m, struct timeval *)->tv_sec = val / hz;
1781 mtod(m, struct timeval *)->tv_usec =
1782 (val % hz) * tick;
1783 break;
1784 }
1785
1786 case SO_OVERFLOWED:
1787 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1788 break;
1789
1790 default:
1791 sounlock(so);
1792 (void)m_free(m);
1793 return (ENOPROTOOPT);
1794 }
1795 *mp = m;
1796 error = 0;
1797 }
1798
1799 sounlock(so);
1800 return (error);
1801 }
1802
1803 void
1804 sohasoutofband(struct socket *so)
1805 {
1806
1807 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1808 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, 0);
1809 }
1810
1811 static void
1812 filt_sordetach(struct knote *kn)
1813 {
1814 struct socket *so;
1815
1816 so = ((file_t *)kn->kn_obj)->f_data;
1817 solock(so);
1818 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1819 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1820 so->so_rcv.sb_flags &= ~SB_KNOTE;
1821 sounlock(so);
1822 }
1823
1824 /*ARGSUSED*/
1825 static int
1826 filt_soread(struct knote *kn, long hint)
1827 {
1828 struct socket *so;
1829 int rv;
1830
1831 so = ((file_t *)kn->kn_obj)->f_data;
1832 if (hint != NOTE_SUBMIT)
1833 solock(so);
1834 kn->kn_data = so->so_rcv.sb_cc;
1835 if (so->so_state & SS_CANTRCVMORE) {
1836 kn->kn_flags |= EV_EOF;
1837 kn->kn_fflags = so->so_error;
1838 rv = 1;
1839 } else if (so->so_error) /* temporary udp error */
1840 rv = 1;
1841 else if (kn->kn_sfflags & NOTE_LOWAT)
1842 rv = (kn->kn_data >= kn->kn_sdata);
1843 else
1844 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
1845 if (hint != NOTE_SUBMIT)
1846 sounlock(so);
1847 return rv;
1848 }
1849
1850 static void
1851 filt_sowdetach(struct knote *kn)
1852 {
1853 struct socket *so;
1854
1855 so = ((file_t *)kn->kn_obj)->f_data;
1856 solock(so);
1857 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1858 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1859 so->so_snd.sb_flags &= ~SB_KNOTE;
1860 sounlock(so);
1861 }
1862
1863 /*ARGSUSED*/
1864 static int
1865 filt_sowrite(struct knote *kn, long hint)
1866 {
1867 struct socket *so;
1868 int rv;
1869
1870 so = ((file_t *)kn->kn_obj)->f_data;
1871 if (hint != NOTE_SUBMIT)
1872 solock(so);
1873 kn->kn_data = sbspace(&so->so_snd);
1874 if (so->so_state & SS_CANTSENDMORE) {
1875 kn->kn_flags |= EV_EOF;
1876 kn->kn_fflags = so->so_error;
1877 rv = 1;
1878 } else if (so->so_error) /* temporary udp error */
1879 rv = 1;
1880 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
1881 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1882 rv = 0;
1883 else if (kn->kn_sfflags & NOTE_LOWAT)
1884 rv = (kn->kn_data >= kn->kn_sdata);
1885 else
1886 rv = (kn->kn_data >= so->so_snd.sb_lowat);
1887 if (hint != NOTE_SUBMIT)
1888 sounlock(so);
1889 return rv;
1890 }
1891
1892 /*ARGSUSED*/
1893 static int
1894 filt_solisten(struct knote *kn, long hint)
1895 {
1896 struct socket *so;
1897 int rv;
1898
1899 so = ((file_t *)kn->kn_obj)->f_data;
1900
1901 /*
1902 * Set kn_data to number of incoming connections, not
1903 * counting partial (incomplete) connections.
1904 */
1905 if (hint != NOTE_SUBMIT)
1906 solock(so);
1907 kn->kn_data = so->so_qlen;
1908 rv = (kn->kn_data > 0);
1909 if (hint != NOTE_SUBMIT)
1910 sounlock(so);
1911 return rv;
1912 }
1913
1914 static const struct filterops solisten_filtops =
1915 { 1, NULL, filt_sordetach, filt_solisten };
1916 static const struct filterops soread_filtops =
1917 { 1, NULL, filt_sordetach, filt_soread };
1918 static const struct filterops sowrite_filtops =
1919 { 1, NULL, filt_sowdetach, filt_sowrite };
1920
1921 int
1922 soo_kqfilter(struct file *fp, struct knote *kn)
1923 {
1924 struct socket *so;
1925 struct sockbuf *sb;
1926
1927 so = ((file_t *)kn->kn_obj)->f_data;
1928 solock(so);
1929 switch (kn->kn_filter) {
1930 case EVFILT_READ:
1931 if (so->so_options & SO_ACCEPTCONN)
1932 kn->kn_fop = &solisten_filtops;
1933 else
1934 kn->kn_fop = &soread_filtops;
1935 sb = &so->so_rcv;
1936 break;
1937 case EVFILT_WRITE:
1938 kn->kn_fop = &sowrite_filtops;
1939 sb = &so->so_snd;
1940 break;
1941 default:
1942 sounlock(so);
1943 return (EINVAL);
1944 }
1945 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1946 sb->sb_flags |= SB_KNOTE;
1947 sounlock(so);
1948 return (0);
1949 }
1950
1951 static int
1952 sodopoll(struct socket *so, int events)
1953 {
1954 int revents;
1955
1956 revents = 0;
1957
1958 if (events & (POLLIN | POLLRDNORM))
1959 if (soreadable(so))
1960 revents |= events & (POLLIN | POLLRDNORM);
1961
1962 if (events & (POLLOUT | POLLWRNORM))
1963 if (sowritable(so))
1964 revents |= events & (POLLOUT | POLLWRNORM);
1965
1966 if (events & (POLLPRI | POLLRDBAND))
1967 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
1968 revents |= events & (POLLPRI | POLLRDBAND);
1969
1970 return revents;
1971 }
1972
1973 int
1974 sopoll(struct socket *so, int events)
1975 {
1976 int revents = 0;
1977
1978 #ifndef DIAGNOSTIC
1979 /*
1980 * Do a quick, unlocked check in expectation that the socket
1981 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
1982 * as the solocked() assertions will fail.
1983 */
1984 if ((revents = sodopoll(so, events)) != 0)
1985 return revents;
1986 #endif
1987
1988 solock(so);
1989 if ((revents = sodopoll(so, events)) == 0) {
1990 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
1991 selrecord(curlwp, &so->so_rcv.sb_sel);
1992 so->so_rcv.sb_flags |= SB_NOTIFY;
1993 }
1994
1995 if (events & (POLLOUT | POLLWRNORM)) {
1996 selrecord(curlwp, &so->so_snd.sb_sel);
1997 so->so_snd.sb_flags |= SB_NOTIFY;
1998 }
1999 }
2000 sounlock(so);
2001
2002 return revents;
2003 }
2004
2005
2006 #include <sys/sysctl.h>
2007
2008 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2009
2010 /*
2011 * sysctl helper routine for kern.somaxkva. ensures that the given
2012 * value is not too small.
2013 * (XXX should we maybe make sure it's not too large as well?)
2014 */
2015 static int
2016 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2017 {
2018 int error, new_somaxkva;
2019 struct sysctlnode node;
2020
2021 new_somaxkva = somaxkva;
2022 node = *rnode;
2023 node.sysctl_data = &new_somaxkva;
2024 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2025 if (error || newp == NULL)
2026 return (error);
2027
2028 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2029 return (EINVAL);
2030
2031 mutex_enter(&so_pendfree_lock);
2032 somaxkva = new_somaxkva;
2033 cv_broadcast(&socurkva_cv);
2034 mutex_exit(&so_pendfree_lock);
2035
2036 return (error);
2037 }
2038
2039 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
2040 {
2041
2042 sysctl_createv(clog, 0, NULL, NULL,
2043 CTLFLAG_PERMANENT,
2044 CTLTYPE_NODE, "kern", NULL,
2045 NULL, 0, NULL, 0,
2046 CTL_KERN, CTL_EOL);
2047
2048 sysctl_createv(clog, 0, NULL, NULL,
2049 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2050 CTLTYPE_INT, "somaxkva",
2051 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2052 "used for socket buffers"),
2053 sysctl_kern_somaxkva, 0, NULL, 0,
2054 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2055 }
2056