Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.168.2.2
      1 /*	$NetBSD: uipc_socket.c,v 1.168.2.2 2008/12/13 01:15:09 haad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.168.2.2 2008/12/13 01:15:09 haad Exp $");
     67 
     68 #include "opt_sock_counters.h"
     69 #include "opt_sosend_loan.h"
     70 #include "opt_mbuftrace.h"
     71 #include "opt_somaxkva.h"
     72 #include "opt_multiprocessor.h"	/* XXX */
     73 
     74 #include <sys/param.h>
     75 #include <sys/systm.h>
     76 #include <sys/proc.h>
     77 #include <sys/file.h>
     78 #include <sys/filedesc.h>
     79 #include <sys/kmem.h>
     80 #include <sys/mbuf.h>
     81 #include <sys/domain.h>
     82 #include <sys/kernel.h>
     83 #include <sys/protosw.h>
     84 #include <sys/socket.h>
     85 #include <sys/socketvar.h>
     86 #include <sys/signalvar.h>
     87 #include <sys/resourcevar.h>
     88 #include <sys/uidinfo.h>
     89 #include <sys/event.h>
     90 #include <sys/poll.h>
     91 #include <sys/kauth.h>
     92 #include <sys/mutex.h>
     93 #include <sys/condvar.h>
     94 
     95 #include <uvm/uvm.h>
     96 
     97 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
     98 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
     99 
    100 extern const struct fileops socketops;
    101 
    102 extern int	somaxconn;			/* patchable (XXX sysctl) */
    103 int		somaxconn = SOMAXCONN;
    104 kmutex_t	*softnet_lock;
    105 
    106 #ifdef SOSEND_COUNTERS
    107 #include <sys/device.h>
    108 
    109 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    110     NULL, "sosend", "loan big");
    111 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    112     NULL, "sosend", "copy big");
    113 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    114     NULL, "sosend", "copy small");
    115 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    116     NULL, "sosend", "kva limit");
    117 
    118 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    119 
    120 EVCNT_ATTACH_STATIC(sosend_loan_big);
    121 EVCNT_ATTACH_STATIC(sosend_copy_big);
    122 EVCNT_ATTACH_STATIC(sosend_copy_small);
    123 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    124 #else
    125 
    126 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    127 
    128 #endif /* SOSEND_COUNTERS */
    129 
    130 static struct callback_entry sokva_reclaimerentry;
    131 
    132 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    133 int sock_loan_thresh = -1;
    134 #else
    135 int sock_loan_thresh = 4096;
    136 #endif
    137 
    138 static kmutex_t so_pendfree_lock;
    139 static struct mbuf *so_pendfree;
    140 
    141 #ifndef SOMAXKVA
    142 #define	SOMAXKVA (16 * 1024 * 1024)
    143 #endif
    144 int somaxkva = SOMAXKVA;
    145 static int socurkva;
    146 static kcondvar_t socurkva_cv;
    147 
    148 #define	SOCK_LOAN_CHUNK		65536
    149 
    150 static size_t sodopendfree(void);
    151 static size_t sodopendfreel(void);
    152 
    153 static void sysctl_kern_somaxkva_setup(void);
    154 static struct sysctllog *socket_sysctllog;
    155 
    156 static vsize_t
    157 sokvareserve(struct socket *so, vsize_t len)
    158 {
    159 	int error;
    160 
    161 	mutex_enter(&so_pendfree_lock);
    162 	while (socurkva + len > somaxkva) {
    163 		size_t freed;
    164 
    165 		/*
    166 		 * try to do pendfree.
    167 		 */
    168 
    169 		freed = sodopendfreel();
    170 
    171 		/*
    172 		 * if some kva was freed, try again.
    173 		 */
    174 
    175 		if (freed)
    176 			continue;
    177 
    178 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    179 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    180 		if (error) {
    181 			len = 0;
    182 			break;
    183 		}
    184 	}
    185 	socurkva += len;
    186 	mutex_exit(&so_pendfree_lock);
    187 	return len;
    188 }
    189 
    190 static void
    191 sokvaunreserve(vsize_t len)
    192 {
    193 
    194 	mutex_enter(&so_pendfree_lock);
    195 	socurkva -= len;
    196 	cv_broadcast(&socurkva_cv);
    197 	mutex_exit(&so_pendfree_lock);
    198 }
    199 
    200 /*
    201  * sokvaalloc: allocate kva for loan.
    202  */
    203 
    204 vaddr_t
    205 sokvaalloc(vsize_t len, struct socket *so)
    206 {
    207 	vaddr_t lva;
    208 
    209 	/*
    210 	 * reserve kva.
    211 	 */
    212 
    213 	if (sokvareserve(so, len) == 0)
    214 		return 0;
    215 
    216 	/*
    217 	 * allocate kva.
    218 	 */
    219 
    220 	lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    221 	if (lva == 0) {
    222 		sokvaunreserve(len);
    223 		return (0);
    224 	}
    225 
    226 	return lva;
    227 }
    228 
    229 /*
    230  * sokvafree: free kva for loan.
    231  */
    232 
    233 void
    234 sokvafree(vaddr_t sva, vsize_t len)
    235 {
    236 
    237 	/*
    238 	 * free kva.
    239 	 */
    240 
    241 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    242 
    243 	/*
    244 	 * unreserve kva.
    245 	 */
    246 
    247 	sokvaunreserve(len);
    248 }
    249 
    250 static void
    251 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    252 {
    253 	vaddr_t sva, eva;
    254 	vsize_t len;
    255 	int npgs;
    256 
    257 	KASSERT(pgs != NULL);
    258 
    259 	eva = round_page((vaddr_t) buf + size);
    260 	sva = trunc_page((vaddr_t) buf);
    261 	len = eva - sva;
    262 	npgs = len >> PAGE_SHIFT;
    263 
    264 	pmap_kremove(sva, len);
    265 	pmap_update(pmap_kernel());
    266 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    267 	sokvafree(sva, len);
    268 }
    269 
    270 static size_t
    271 sodopendfree(void)
    272 {
    273 	size_t rv;
    274 
    275 	if (__predict_true(so_pendfree == NULL))
    276 		return 0;
    277 
    278 	mutex_enter(&so_pendfree_lock);
    279 	rv = sodopendfreel();
    280 	mutex_exit(&so_pendfree_lock);
    281 
    282 	return rv;
    283 }
    284 
    285 /*
    286  * sodopendfreel: free mbufs on "pendfree" list.
    287  * unlock and relock so_pendfree_lock when freeing mbufs.
    288  *
    289  * => called with so_pendfree_lock held.
    290  */
    291 
    292 static size_t
    293 sodopendfreel(void)
    294 {
    295 	struct mbuf *m, *next;
    296 	size_t rv = 0;
    297 
    298 	KASSERT(mutex_owned(&so_pendfree_lock));
    299 
    300 	while (so_pendfree != NULL) {
    301 		m = so_pendfree;
    302 		so_pendfree = NULL;
    303 		mutex_exit(&so_pendfree_lock);
    304 
    305 		for (; m != NULL; m = next) {
    306 			next = m->m_next;
    307 			KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
    308 			KASSERT(m->m_ext.ext_refcnt == 0);
    309 
    310 			rv += m->m_ext.ext_size;
    311 			sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    312 			    m->m_ext.ext_size);
    313 			pool_cache_put(mb_cache, m);
    314 		}
    315 
    316 		mutex_enter(&so_pendfree_lock);
    317 	}
    318 
    319 	return (rv);
    320 }
    321 
    322 void
    323 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    324 {
    325 
    326 	KASSERT(m != NULL);
    327 
    328 	/*
    329 	 * postpone freeing mbuf.
    330 	 *
    331 	 * we can't do it in interrupt context
    332 	 * because we need to put kva back to kernel_map.
    333 	 */
    334 
    335 	mutex_enter(&so_pendfree_lock);
    336 	m->m_next = so_pendfree;
    337 	so_pendfree = m;
    338 	cv_broadcast(&socurkva_cv);
    339 	mutex_exit(&so_pendfree_lock);
    340 }
    341 
    342 static long
    343 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    344 {
    345 	struct iovec *iov = uio->uio_iov;
    346 	vaddr_t sva, eva;
    347 	vsize_t len;
    348 	vaddr_t lva;
    349 	int npgs, error;
    350 	vaddr_t va;
    351 	int i;
    352 
    353 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    354 		return (0);
    355 
    356 	if (iov->iov_len < (size_t) space)
    357 		space = iov->iov_len;
    358 	if (space > SOCK_LOAN_CHUNK)
    359 		space = SOCK_LOAN_CHUNK;
    360 
    361 	eva = round_page((vaddr_t) iov->iov_base + space);
    362 	sva = trunc_page((vaddr_t) iov->iov_base);
    363 	len = eva - sva;
    364 	npgs = len >> PAGE_SHIFT;
    365 
    366 	KASSERT(npgs <= M_EXT_MAXPAGES);
    367 
    368 	lva = sokvaalloc(len, so);
    369 	if (lva == 0)
    370 		return 0;
    371 
    372 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    373 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    374 	if (error) {
    375 		sokvafree(lva, len);
    376 		return (0);
    377 	}
    378 
    379 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    380 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    381 		    VM_PROT_READ);
    382 	pmap_update(pmap_kernel());
    383 
    384 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    385 
    386 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    387 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    388 
    389 	uio->uio_resid -= space;
    390 	/* uio_offset not updated, not set/used for write(2) */
    391 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    392 	uio->uio_iov->iov_len -= space;
    393 	if (uio->uio_iov->iov_len == 0) {
    394 		uio->uio_iov++;
    395 		uio->uio_iovcnt--;
    396 	}
    397 
    398 	return (space);
    399 }
    400 
    401 static int
    402 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    403 {
    404 
    405 	KASSERT(ce == &sokva_reclaimerentry);
    406 	KASSERT(obj == NULL);
    407 
    408 	sodopendfree();
    409 	if (!vm_map_starved_p(kernel_map)) {
    410 		return CALLBACK_CHAIN_ABORT;
    411 	}
    412 	return CALLBACK_CHAIN_CONTINUE;
    413 }
    414 
    415 struct mbuf *
    416 getsombuf(struct socket *so, int type)
    417 {
    418 	struct mbuf *m;
    419 
    420 	m = m_get(M_WAIT, type);
    421 	MCLAIM(m, so->so_mowner);
    422 	return m;
    423 }
    424 
    425 void
    426 soinit(void)
    427 {
    428 
    429 	sysctl_kern_somaxkva_setup();
    430 
    431 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    432 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    433 	cv_init(&socurkva_cv, "sokva");
    434 	soinit2();
    435 
    436 	/* Set the initial adjusted socket buffer size. */
    437 	if (sb_max_set(sb_max))
    438 		panic("bad initial sb_max value: %lu", sb_max);
    439 
    440 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    441 	    &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
    442 }
    443 
    444 /*
    445  * Socket operation routines.
    446  * These routines are called by the routines in
    447  * sys_socket.c or from a system process, and
    448  * implement the semantics of socket operations by
    449  * switching out to the protocol specific routines.
    450  */
    451 /*ARGSUSED*/
    452 int
    453 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    454 	 struct socket *lockso)
    455 {
    456 	const struct protosw	*prp;
    457 	struct socket	*so;
    458 	uid_t		uid;
    459 	int		error;
    460 	kmutex_t	*lock;
    461 
    462 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    463 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    464 	    KAUTH_ARG(proto));
    465 	if (error != 0)
    466 		return error;
    467 
    468 	if (proto)
    469 		prp = pffindproto(dom, proto, type);
    470 	else
    471 		prp = pffindtype(dom, type);
    472 	if (prp == NULL) {
    473 		/* no support for domain */
    474 		if (pffinddomain(dom) == 0)
    475 			return EAFNOSUPPORT;
    476 		/* no support for socket type */
    477 		if (proto == 0 && type != 0)
    478 			return EPROTOTYPE;
    479 		return EPROTONOSUPPORT;
    480 	}
    481 	if (prp->pr_usrreq == NULL)
    482 		return EPROTONOSUPPORT;
    483 	if (prp->pr_type != type)
    484 		return EPROTOTYPE;
    485 
    486 	so = soget(true);
    487 	so->so_type = type;
    488 	so->so_proto = prp;
    489 	so->so_send = sosend;
    490 	so->so_receive = soreceive;
    491 #ifdef MBUFTRACE
    492 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    493 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    494 	so->so_mowner = &prp->pr_domain->dom_mowner;
    495 #endif
    496 	uid = kauth_cred_geteuid(l->l_cred);
    497 	so->so_uidinfo = uid_find(uid);
    498 	so->so_egid = kauth_cred_getegid(l->l_cred);
    499 	so->so_cpid = l->l_proc->p_pid;
    500 	if (lockso != NULL) {
    501 		/* Caller wants us to share a lock. */
    502 		lock = lockso->so_lock;
    503 		so->so_lock = lock;
    504 		mutex_obj_hold(lock);
    505 		mutex_enter(lock);
    506 	} else {
    507 		/* Lock assigned and taken during PRU_ATTACH. */
    508 	}
    509 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
    510 	    (struct mbuf *)(long)proto, NULL, l);
    511 	KASSERT(solocked(so));
    512 	if (error != 0) {
    513 		so->so_state |= SS_NOFDREF;
    514 		sofree(so);
    515 		return error;
    516 	}
    517 	sounlock(so);
    518 	*aso = so;
    519 	return 0;
    520 }
    521 
    522 /* On success, write file descriptor to fdout and return zero.  On
    523  * failure, return non-zero; *fdout will be undefined.
    524  */
    525 int
    526 fsocreate(int domain, struct socket **sop, int type, int protocol,
    527     struct lwp *l, int *fdout)
    528 {
    529 	struct socket	*so;
    530 	struct file	*fp;
    531 	int		fd, error;
    532 
    533 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    534 		return (error);
    535 	fp->f_flag = FREAD|FWRITE;
    536 	fp->f_type = DTYPE_SOCKET;
    537 	fp->f_ops = &socketops;
    538 	error = socreate(domain, &so, type, protocol, l, NULL);
    539 	if (error != 0) {
    540 		fd_abort(curproc, fp, fd);
    541 	} else {
    542 		if (sop != NULL)
    543 			*sop = so;
    544 		fp->f_data = so;
    545 		fd_affix(curproc, fp, fd);
    546 		*fdout = fd;
    547 	}
    548 	return error;
    549 }
    550 
    551 int
    552 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    553 {
    554 	int	error;
    555 
    556 	solock(so);
    557 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
    558 	sounlock(so);
    559 	return error;
    560 }
    561 
    562 int
    563 solisten(struct socket *so, int backlog, struct lwp *l)
    564 {
    565 	int	error;
    566 
    567 	solock(so);
    568 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    569 	    SS_ISDISCONNECTING)) != 0) {
    570 	    	sounlock(so);
    571 		return (EOPNOTSUPP);
    572 	}
    573 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
    574 	    NULL, NULL, l);
    575 	if (error != 0) {
    576 		sounlock(so);
    577 		return error;
    578 	}
    579 	if (TAILQ_EMPTY(&so->so_q))
    580 		so->so_options |= SO_ACCEPTCONN;
    581 	if (backlog < 0)
    582 		backlog = 0;
    583 	so->so_qlimit = min(backlog, somaxconn);
    584 	sounlock(so);
    585 	return 0;
    586 }
    587 
    588 void
    589 sofree(struct socket *so)
    590 {
    591 	u_int refs;
    592 
    593 	KASSERT(solocked(so));
    594 
    595 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    596 		sounlock(so);
    597 		return;
    598 	}
    599 	if (so->so_head) {
    600 		/*
    601 		 * We must not decommission a socket that's on the accept(2)
    602 		 * queue.  If we do, then accept(2) may hang after select(2)
    603 		 * indicated that the listening socket was ready.
    604 		 */
    605 		if (!soqremque(so, 0)) {
    606 			sounlock(so);
    607 			return;
    608 		}
    609 	}
    610 	if (so->so_rcv.sb_hiwat)
    611 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    612 		    RLIM_INFINITY);
    613 	if (so->so_snd.sb_hiwat)
    614 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    615 		    RLIM_INFINITY);
    616 	sbrelease(&so->so_snd, so);
    617 	KASSERT(!cv_has_waiters(&so->so_cv));
    618 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    619 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    620 	sorflush(so);
    621 	refs = so->so_aborting;	/* XXX */
    622 	/* Remove acccept filter if one is present. */
    623 	if (so->so_accf != NULL)
    624 		(void)accept_filt_clear(so);
    625 	sounlock(so);
    626 	if (refs == 0)		/* XXX */
    627 		soput(so);
    628 }
    629 
    630 /*
    631  * Close a socket on last file table reference removal.
    632  * Initiate disconnect if connected.
    633  * Free socket when disconnect complete.
    634  */
    635 int
    636 soclose(struct socket *so)
    637 {
    638 	struct socket	*so2;
    639 	int		error;
    640 	int		error2;
    641 
    642 	error = 0;
    643 	solock(so);
    644 	if (so->so_options & SO_ACCEPTCONN) {
    645 		for (;;) {
    646 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    647 				KASSERT(solocked2(so, so2));
    648 				(void) soqremque(so2, 0);
    649 				/* soabort drops the lock. */
    650 				(void) soabort(so2);
    651 				solock(so);
    652 				continue;
    653 			}
    654 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    655 				KASSERT(solocked2(so, so2));
    656 				(void) soqremque(so2, 1);
    657 				/* soabort drops the lock. */
    658 				(void) soabort(so2);
    659 				solock(so);
    660 				continue;
    661 			}
    662 			break;
    663 		}
    664 	}
    665 	if (so->so_pcb == 0)
    666 		goto discard;
    667 	if (so->so_state & SS_ISCONNECTED) {
    668 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    669 			error = sodisconnect(so);
    670 			if (error)
    671 				goto drop;
    672 		}
    673 		if (so->so_options & SO_LINGER) {
    674 			if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
    675 				goto drop;
    676 			while (so->so_state & SS_ISCONNECTED) {
    677 				error = sowait(so, so->so_linger * hz);
    678 				if (error)
    679 					break;
    680 			}
    681 		}
    682 	}
    683  drop:
    684 	if (so->so_pcb) {
    685 		error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    686 		    NULL, NULL, NULL, NULL);
    687 		if (error == 0)
    688 			error = error2;
    689 	}
    690  discard:
    691 	if (so->so_state & SS_NOFDREF)
    692 		panic("soclose: NOFDREF");
    693 	so->so_state |= SS_NOFDREF;
    694 	sofree(so);
    695 	return (error);
    696 }
    697 
    698 /*
    699  * Must be called with the socket locked..  Will return with it unlocked.
    700  */
    701 int
    702 soabort(struct socket *so)
    703 {
    704 	u_int refs;
    705 	int error;
    706 
    707 	KASSERT(solocked(so));
    708 	KASSERT(so->so_head == NULL);
    709 
    710 	so->so_aborting++;		/* XXX */
    711 	error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
    712 	    NULL, NULL, NULL);
    713 	refs = --so->so_aborting;	/* XXX */
    714 	if (error || (refs == 0)) {
    715 		sofree(so);
    716 	} else {
    717 		sounlock(so);
    718 	}
    719 	return error;
    720 }
    721 
    722 int
    723 soaccept(struct socket *so, struct mbuf *nam)
    724 {
    725 	int	error;
    726 
    727 	KASSERT(solocked(so));
    728 
    729 	error = 0;
    730 	if ((so->so_state & SS_NOFDREF) == 0)
    731 		panic("soaccept: !NOFDREF");
    732 	so->so_state &= ~SS_NOFDREF;
    733 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    734 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    735 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    736 		    NULL, nam, NULL, NULL);
    737 	else
    738 		error = ECONNABORTED;
    739 
    740 	return (error);
    741 }
    742 
    743 int
    744 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    745 {
    746 	int		error;
    747 
    748 	KASSERT(solocked(so));
    749 
    750 	if (so->so_options & SO_ACCEPTCONN)
    751 		return (EOPNOTSUPP);
    752 	/*
    753 	 * If protocol is connection-based, can only connect once.
    754 	 * Otherwise, if connected, try to disconnect first.
    755 	 * This allows user to disconnect by connecting to, e.g.,
    756 	 * a null address.
    757 	 */
    758 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    759 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    760 	    (error = sodisconnect(so))))
    761 		error = EISCONN;
    762 	else
    763 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    764 		    NULL, nam, NULL, l);
    765 	return (error);
    766 }
    767 
    768 int
    769 soconnect2(struct socket *so1, struct socket *so2)
    770 {
    771 	int	error;
    772 
    773 	KASSERT(solocked2(so1, so2));
    774 
    775 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    776 	    NULL, (struct mbuf *)so2, NULL, NULL);
    777 	return (error);
    778 }
    779 
    780 int
    781 sodisconnect(struct socket *so)
    782 {
    783 	int	error;
    784 
    785 	KASSERT(solocked(so));
    786 
    787 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    788 		error = ENOTCONN;
    789 	} else if (so->so_state & SS_ISDISCONNECTING) {
    790 		error = EALREADY;
    791 	} else {
    792 		error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    793 		    NULL, NULL, NULL, NULL);
    794 	}
    795 	sodopendfree();
    796 	return (error);
    797 }
    798 
    799 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    800 /*
    801  * Send on a socket.
    802  * If send must go all at once and message is larger than
    803  * send buffering, then hard error.
    804  * Lock against other senders.
    805  * If must go all at once and not enough room now, then
    806  * inform user that this would block and do nothing.
    807  * Otherwise, if nonblocking, send as much as possible.
    808  * The data to be sent is described by "uio" if nonzero,
    809  * otherwise by the mbuf chain "top" (which must be null
    810  * if uio is not).  Data provided in mbuf chain must be small
    811  * enough to send all at once.
    812  *
    813  * Returns nonzero on error, timeout or signal; callers
    814  * must check for short counts if EINTR/ERESTART are returned.
    815  * Data and control buffers are freed on return.
    816  */
    817 int
    818 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    819 	struct mbuf *control, int flags, struct lwp *l)
    820 {
    821 	struct mbuf	**mp, *m;
    822 	struct proc	*p;
    823 	long		space, len, resid, clen, mlen;
    824 	int		error, s, dontroute, atomic;
    825 
    826 	p = l->l_proc;
    827 	sodopendfree();
    828 	clen = 0;
    829 
    830 	/*
    831 	 * solock() provides atomicity of access.  splsoftnet() prevents
    832 	 * protocol processing soft interrupts from interrupting us and
    833 	 * blocking (expensive).
    834 	 */
    835 	s = splsoftnet();
    836 	solock(so);
    837 	atomic = sosendallatonce(so) || top;
    838 	if (uio)
    839 		resid = uio->uio_resid;
    840 	else
    841 		resid = top->m_pkthdr.len;
    842 	/*
    843 	 * In theory resid should be unsigned.
    844 	 * However, space must be signed, as it might be less than 0
    845 	 * if we over-committed, and we must use a signed comparison
    846 	 * of space and resid.  On the other hand, a negative resid
    847 	 * causes us to loop sending 0-length segments to the protocol.
    848 	 */
    849 	if (resid < 0) {
    850 		error = EINVAL;
    851 		goto out;
    852 	}
    853 	dontroute =
    854 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    855 	    (so->so_proto->pr_flags & PR_ATOMIC);
    856 	l->l_ru.ru_msgsnd++;
    857 	if (control)
    858 		clen = control->m_len;
    859  restart:
    860 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    861 		goto out;
    862 	do {
    863 		if (so->so_state & SS_CANTSENDMORE) {
    864 			error = EPIPE;
    865 			goto release;
    866 		}
    867 		if (so->so_error) {
    868 			error = so->so_error;
    869 			so->so_error = 0;
    870 			goto release;
    871 		}
    872 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    873 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    874 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    875 				    !(resid == 0 && clen != 0)) {
    876 					error = ENOTCONN;
    877 					goto release;
    878 				}
    879 			} else if (addr == 0) {
    880 				error = EDESTADDRREQ;
    881 				goto release;
    882 			}
    883 		}
    884 		space = sbspace(&so->so_snd);
    885 		if (flags & MSG_OOB)
    886 			space += 1024;
    887 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    888 		    clen > so->so_snd.sb_hiwat) {
    889 			error = EMSGSIZE;
    890 			goto release;
    891 		}
    892 		if (space < resid + clen &&
    893 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    894 			if (so->so_nbio) {
    895 				error = EWOULDBLOCK;
    896 				goto release;
    897 			}
    898 			sbunlock(&so->so_snd);
    899 			error = sbwait(&so->so_snd);
    900 			if (error)
    901 				goto out;
    902 			goto restart;
    903 		}
    904 		mp = &top;
    905 		space -= clen;
    906 		do {
    907 			if (uio == NULL) {
    908 				/*
    909 				 * Data is prepackaged in "top".
    910 				 */
    911 				resid = 0;
    912 				if (flags & MSG_EOR)
    913 					top->m_flags |= M_EOR;
    914 			} else do {
    915 				sounlock(so);
    916 				splx(s);
    917 				if (top == NULL) {
    918 					m = m_gethdr(M_WAIT, MT_DATA);
    919 					mlen = MHLEN;
    920 					m->m_pkthdr.len = 0;
    921 					m->m_pkthdr.rcvif = NULL;
    922 				} else {
    923 					m = m_get(M_WAIT, MT_DATA);
    924 					mlen = MLEN;
    925 				}
    926 				MCLAIM(m, so->so_snd.sb_mowner);
    927 				if (sock_loan_thresh >= 0 &&
    928 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
    929 				    space >= sock_loan_thresh &&
    930 				    (len = sosend_loan(so, uio, m,
    931 						       space)) != 0) {
    932 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    933 					space -= len;
    934 					goto have_data;
    935 				}
    936 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
    937 					SOSEND_COUNTER_INCR(&sosend_copy_big);
    938 					m_clget(m, M_WAIT);
    939 					if ((m->m_flags & M_EXT) == 0)
    940 						goto nopages;
    941 					mlen = MCLBYTES;
    942 					if (atomic && top == 0) {
    943 						len = lmin(MCLBYTES - max_hdr,
    944 						    resid);
    945 						m->m_data += max_hdr;
    946 					} else
    947 						len = lmin(MCLBYTES, resid);
    948 					space -= len;
    949 				} else {
    950  nopages:
    951 					SOSEND_COUNTER_INCR(&sosend_copy_small);
    952 					len = lmin(lmin(mlen, resid), space);
    953 					space -= len;
    954 					/*
    955 					 * For datagram protocols, leave room
    956 					 * for protocol headers in first mbuf.
    957 					 */
    958 					if (atomic && top == 0 && len < mlen)
    959 						MH_ALIGN(m, len);
    960 				}
    961 				error = uiomove(mtod(m, void *), (int)len, uio);
    962  have_data:
    963 				resid = uio->uio_resid;
    964 				m->m_len = len;
    965 				*mp = m;
    966 				top->m_pkthdr.len += len;
    967 				s = splsoftnet();
    968 				solock(so);
    969 				if (error != 0)
    970 					goto release;
    971 				mp = &m->m_next;
    972 				if (resid <= 0) {
    973 					if (flags & MSG_EOR)
    974 						top->m_flags |= M_EOR;
    975 					break;
    976 				}
    977 			} while (space > 0 && atomic);
    978 
    979 			if (so->so_state & SS_CANTSENDMORE) {
    980 				error = EPIPE;
    981 				goto release;
    982 			}
    983 			if (dontroute)
    984 				so->so_options |= SO_DONTROUTE;
    985 			if (resid > 0)
    986 				so->so_state |= SS_MORETOCOME;
    987 			error = (*so->so_proto->pr_usrreq)(so,
    988 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
    989 			    top, addr, control, curlwp);
    990 			if (dontroute)
    991 				so->so_options &= ~SO_DONTROUTE;
    992 			if (resid > 0)
    993 				so->so_state &= ~SS_MORETOCOME;
    994 			clen = 0;
    995 			control = NULL;
    996 			top = NULL;
    997 			mp = &top;
    998 			if (error != 0)
    999 				goto release;
   1000 		} while (resid && space > 0);
   1001 	} while (resid);
   1002 
   1003  release:
   1004 	sbunlock(&so->so_snd);
   1005  out:
   1006 	sounlock(so);
   1007 	splx(s);
   1008 	if (top)
   1009 		m_freem(top);
   1010 	if (control)
   1011 		m_freem(control);
   1012 	return (error);
   1013 }
   1014 
   1015 /*
   1016  * Following replacement or removal of the first mbuf on the first
   1017  * mbuf chain of a socket buffer, push necessary state changes back
   1018  * into the socket buffer so that other consumers see the values
   1019  * consistently.  'nextrecord' is the callers locally stored value of
   1020  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1021  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1022  */
   1023 static void
   1024 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1025 {
   1026 
   1027 	KASSERT(solocked(sb->sb_so));
   1028 
   1029 	/*
   1030 	 * First, update for the new value of nextrecord.  If necessary,
   1031 	 * make it the first record.
   1032 	 */
   1033 	if (sb->sb_mb != NULL)
   1034 		sb->sb_mb->m_nextpkt = nextrecord;
   1035 	else
   1036 		sb->sb_mb = nextrecord;
   1037 
   1038         /*
   1039          * Now update any dependent socket buffer fields to reflect
   1040          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1041          * the addition of a second clause that takes care of the
   1042          * case where sb_mb has been updated, but remains the last
   1043          * record.
   1044          */
   1045         if (sb->sb_mb == NULL) {
   1046                 sb->sb_mbtail = NULL;
   1047                 sb->sb_lastrecord = NULL;
   1048         } else if (sb->sb_mb->m_nextpkt == NULL)
   1049                 sb->sb_lastrecord = sb->sb_mb;
   1050 }
   1051 
   1052 /*
   1053  * Implement receive operations on a socket.
   1054  * We depend on the way that records are added to the sockbuf
   1055  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1056  * must begin with an address if the protocol so specifies,
   1057  * followed by an optional mbuf or mbufs containing ancillary data,
   1058  * and then zero or more mbufs of data.
   1059  * In order to avoid blocking network interrupts for the entire time here,
   1060  * we splx() while doing the actual copy to user space.
   1061  * Although the sockbuf is locked, new data may still be appended,
   1062  * and thus we must maintain consistency of the sockbuf during that time.
   1063  *
   1064  * The caller may receive the data as a single mbuf chain by supplying
   1065  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1066  * only for the count in uio_resid.
   1067  */
   1068 int
   1069 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1070 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1071 {
   1072 	struct lwp *l = curlwp;
   1073 	struct mbuf	*m, **mp, *mt;
   1074 	int atomic, flags, len, error, s, offset, moff, type, orig_resid;
   1075 	const struct protosw	*pr;
   1076 	struct mbuf	*nextrecord;
   1077 	int		mbuf_removed = 0;
   1078 	const struct domain *dom;
   1079 
   1080 	pr = so->so_proto;
   1081 	atomic = pr->pr_flags & PR_ATOMIC;
   1082 	dom = pr->pr_domain;
   1083 	mp = mp0;
   1084 	type = 0;
   1085 	orig_resid = uio->uio_resid;
   1086 
   1087 	if (paddr != NULL)
   1088 		*paddr = NULL;
   1089 	if (controlp != NULL)
   1090 		*controlp = NULL;
   1091 	if (flagsp != NULL)
   1092 		flags = *flagsp &~ MSG_EOR;
   1093 	else
   1094 		flags = 0;
   1095 
   1096 	if ((flags & MSG_DONTWAIT) == 0)
   1097 		sodopendfree();
   1098 
   1099 	if (flags & MSG_OOB) {
   1100 		m = m_get(M_WAIT, MT_DATA);
   1101 		solock(so);
   1102 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
   1103 		    (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
   1104 		sounlock(so);
   1105 		if (error)
   1106 			goto bad;
   1107 		do {
   1108 			error = uiomove(mtod(m, void *),
   1109 			    (int) min(uio->uio_resid, m->m_len), uio);
   1110 			m = m_free(m);
   1111 		} while (uio->uio_resid > 0 && error == 0 && m);
   1112  bad:
   1113 		if (m != NULL)
   1114 			m_freem(m);
   1115 		return error;
   1116 	}
   1117 	if (mp != NULL)
   1118 		*mp = NULL;
   1119 
   1120 	/*
   1121 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1122 	 * protocol processing soft interrupts from interrupting us and
   1123 	 * blocking (expensive).
   1124 	 */
   1125 	s = splsoftnet();
   1126 	solock(so);
   1127 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
   1128 		(*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
   1129 
   1130  restart:
   1131 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1132 		sounlock(so);
   1133 		splx(s);
   1134 		return error;
   1135 	}
   1136 
   1137 	m = so->so_rcv.sb_mb;
   1138 	/*
   1139 	 * If we have less data than requested, block awaiting more
   1140 	 * (subject to any timeout) if:
   1141 	 *   1. the current count is less than the low water mark,
   1142 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1143 	 *	receive operation at once if we block (resid <= hiwat), or
   1144 	 *   3. MSG_DONTWAIT is not set.
   1145 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1146 	 * we have to do the receive in sections, and thus risk returning
   1147 	 * a short count if a timeout or signal occurs after we start.
   1148 	 */
   1149 	if (m == NULL ||
   1150 	    ((flags & MSG_DONTWAIT) == 0 &&
   1151 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1152 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1153 	      ((flags & MSG_WAITALL) &&
   1154 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1155 	     m->m_nextpkt == NULL && !atomic)) {
   1156 #ifdef DIAGNOSTIC
   1157 		if (m == NULL && so->so_rcv.sb_cc)
   1158 			panic("receive 1");
   1159 #endif
   1160 		if (so->so_error) {
   1161 			if (m != NULL)
   1162 				goto dontblock;
   1163 			error = so->so_error;
   1164 			if ((flags & MSG_PEEK) == 0)
   1165 				so->so_error = 0;
   1166 			goto release;
   1167 		}
   1168 		if (so->so_state & SS_CANTRCVMORE) {
   1169 			if (m != NULL)
   1170 				goto dontblock;
   1171 			else
   1172 				goto release;
   1173 		}
   1174 		for (; m != NULL; m = m->m_next)
   1175 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1176 				m = so->so_rcv.sb_mb;
   1177 				goto dontblock;
   1178 			}
   1179 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1180 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1181 			error = ENOTCONN;
   1182 			goto release;
   1183 		}
   1184 		if (uio->uio_resid == 0)
   1185 			goto release;
   1186 		if (so->so_nbio || (flags & MSG_DONTWAIT)) {
   1187 			error = EWOULDBLOCK;
   1188 			goto release;
   1189 		}
   1190 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1191 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1192 		sbunlock(&so->so_rcv);
   1193 		error = sbwait(&so->so_rcv);
   1194 		if (error != 0) {
   1195 			sounlock(so);
   1196 			splx(s);
   1197 			return error;
   1198 		}
   1199 		goto restart;
   1200 	}
   1201  dontblock:
   1202 	/*
   1203 	 * On entry here, m points to the first record of the socket buffer.
   1204 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1205 	 * pointer to the next record in the socket buffer.  We must keep the
   1206 	 * various socket buffer pointers and local stack versions of the
   1207 	 * pointers in sync, pushing out modifications before dropping the
   1208 	 * socket lock, and re-reading them when picking it up.
   1209 	 *
   1210 	 * Otherwise, we will race with the network stack appending new data
   1211 	 * or records onto the socket buffer by using inconsistent/stale
   1212 	 * versions of the field, possibly resulting in socket buffer
   1213 	 * corruption.
   1214 	 *
   1215 	 * By holding the high-level sblock(), we prevent simultaneous
   1216 	 * readers from pulling off the front of the socket buffer.
   1217 	 */
   1218 	if (l != NULL)
   1219 		l->l_ru.ru_msgrcv++;
   1220 	KASSERT(m == so->so_rcv.sb_mb);
   1221 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1222 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1223 	nextrecord = m->m_nextpkt;
   1224 	if (pr->pr_flags & PR_ADDR) {
   1225 #ifdef DIAGNOSTIC
   1226 		if (m->m_type != MT_SONAME)
   1227 			panic("receive 1a");
   1228 #endif
   1229 		orig_resid = 0;
   1230 		if (flags & MSG_PEEK) {
   1231 			if (paddr)
   1232 				*paddr = m_copy(m, 0, m->m_len);
   1233 			m = m->m_next;
   1234 		} else {
   1235 			sbfree(&so->so_rcv, m);
   1236 			mbuf_removed = 1;
   1237 			if (paddr != NULL) {
   1238 				*paddr = m;
   1239 				so->so_rcv.sb_mb = m->m_next;
   1240 				m->m_next = NULL;
   1241 				m = so->so_rcv.sb_mb;
   1242 			} else {
   1243 				MFREE(m, so->so_rcv.sb_mb);
   1244 				m = so->so_rcv.sb_mb;
   1245 			}
   1246 			sbsync(&so->so_rcv, nextrecord);
   1247 		}
   1248 	}
   1249 
   1250 	/*
   1251 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1252 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1253 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1254 	 * perform externalization (or freeing if controlp == NULL).
   1255 	 */
   1256 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1257 		struct mbuf *cm = NULL, *cmn;
   1258 		struct mbuf **cme = &cm;
   1259 
   1260 		do {
   1261 			if (flags & MSG_PEEK) {
   1262 				if (controlp != NULL) {
   1263 					*controlp = m_copy(m, 0, m->m_len);
   1264 					controlp = &(*controlp)->m_next;
   1265 				}
   1266 				m = m->m_next;
   1267 			} else {
   1268 				sbfree(&so->so_rcv, m);
   1269 				so->so_rcv.sb_mb = m->m_next;
   1270 				m->m_next = NULL;
   1271 				*cme = m;
   1272 				cme = &(*cme)->m_next;
   1273 				m = so->so_rcv.sb_mb;
   1274 			}
   1275 		} while (m != NULL && m->m_type == MT_CONTROL);
   1276 		if ((flags & MSG_PEEK) == 0)
   1277 			sbsync(&so->so_rcv, nextrecord);
   1278 		for (; cm != NULL; cm = cmn) {
   1279 			cmn = cm->m_next;
   1280 			cm->m_next = NULL;
   1281 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1282 			if (controlp != NULL) {
   1283 				if (dom->dom_externalize != NULL &&
   1284 				    type == SCM_RIGHTS) {
   1285 					sounlock(so);
   1286 					splx(s);
   1287 					error = (*dom->dom_externalize)(cm, l);
   1288 					s = splsoftnet();
   1289 					solock(so);
   1290 				}
   1291 				*controlp = cm;
   1292 				while (*controlp != NULL)
   1293 					controlp = &(*controlp)->m_next;
   1294 			} else {
   1295 				/*
   1296 				 * Dispose of any SCM_RIGHTS message that went
   1297 				 * through the read path rather than recv.
   1298 				 */
   1299 				if (dom->dom_dispose != NULL &&
   1300 				    type == SCM_RIGHTS) {
   1301 				    	sounlock(so);
   1302 					(*dom->dom_dispose)(cm);
   1303 					solock(so);
   1304 				}
   1305 				m_freem(cm);
   1306 			}
   1307 		}
   1308 		if (m != NULL)
   1309 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1310 		else
   1311 			nextrecord = so->so_rcv.sb_mb;
   1312 		orig_resid = 0;
   1313 	}
   1314 
   1315 	/* If m is non-NULL, we have some data to read. */
   1316 	if (__predict_true(m != NULL)) {
   1317 		type = m->m_type;
   1318 		if (type == MT_OOBDATA)
   1319 			flags |= MSG_OOB;
   1320 	}
   1321 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1322 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1323 
   1324 	moff = 0;
   1325 	offset = 0;
   1326 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1327 		if (m->m_type == MT_OOBDATA) {
   1328 			if (type != MT_OOBDATA)
   1329 				break;
   1330 		} else if (type == MT_OOBDATA)
   1331 			break;
   1332 #ifdef DIAGNOSTIC
   1333 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1334 			panic("receive 3");
   1335 #endif
   1336 		so->so_state &= ~SS_RCVATMARK;
   1337 		len = uio->uio_resid;
   1338 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1339 			len = so->so_oobmark - offset;
   1340 		if (len > m->m_len - moff)
   1341 			len = m->m_len - moff;
   1342 		/*
   1343 		 * If mp is set, just pass back the mbufs.
   1344 		 * Otherwise copy them out via the uio, then free.
   1345 		 * Sockbuf must be consistent here (points to current mbuf,
   1346 		 * it points to next record) when we drop priority;
   1347 		 * we must note any additions to the sockbuf when we
   1348 		 * block interrupts again.
   1349 		 */
   1350 		if (mp == NULL) {
   1351 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1352 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1353 			sounlock(so);
   1354 			splx(s);
   1355 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
   1356 			s = splsoftnet();
   1357 			solock(so);
   1358 			if (error != 0) {
   1359 				/*
   1360 				 * If any part of the record has been removed
   1361 				 * (such as the MT_SONAME mbuf, which will
   1362 				 * happen when PR_ADDR, and thus also
   1363 				 * PR_ATOMIC, is set), then drop the entire
   1364 				 * record to maintain the atomicity of the
   1365 				 * receive operation.
   1366 				 *
   1367 				 * This avoids a later panic("receive 1a")
   1368 				 * when compiled with DIAGNOSTIC.
   1369 				 */
   1370 				if (m && mbuf_removed && atomic)
   1371 					(void) sbdroprecord(&so->so_rcv);
   1372 
   1373 				goto release;
   1374 			}
   1375 		} else
   1376 			uio->uio_resid -= len;
   1377 		if (len == m->m_len - moff) {
   1378 			if (m->m_flags & M_EOR)
   1379 				flags |= MSG_EOR;
   1380 			if (flags & MSG_PEEK) {
   1381 				m = m->m_next;
   1382 				moff = 0;
   1383 			} else {
   1384 				nextrecord = m->m_nextpkt;
   1385 				sbfree(&so->so_rcv, m);
   1386 				if (mp) {
   1387 					*mp = m;
   1388 					mp = &m->m_next;
   1389 					so->so_rcv.sb_mb = m = m->m_next;
   1390 					*mp = NULL;
   1391 				} else {
   1392 					MFREE(m, so->so_rcv.sb_mb);
   1393 					m = so->so_rcv.sb_mb;
   1394 				}
   1395 				/*
   1396 				 * If m != NULL, we also know that
   1397 				 * so->so_rcv.sb_mb != NULL.
   1398 				 */
   1399 				KASSERT(so->so_rcv.sb_mb == m);
   1400 				if (m) {
   1401 					m->m_nextpkt = nextrecord;
   1402 					if (nextrecord == NULL)
   1403 						so->so_rcv.sb_lastrecord = m;
   1404 				} else {
   1405 					so->so_rcv.sb_mb = nextrecord;
   1406 					SB_EMPTY_FIXUP(&so->so_rcv);
   1407 				}
   1408 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1409 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1410 			}
   1411 		} else if (flags & MSG_PEEK)
   1412 			moff += len;
   1413 		else {
   1414 			if (mp != NULL) {
   1415 				mt = m_copym(m, 0, len, M_NOWAIT);
   1416 				if (__predict_false(mt == NULL)) {
   1417 					sounlock(so);
   1418 					mt = m_copym(m, 0, len, M_WAIT);
   1419 					solock(so);
   1420 				}
   1421 				*mp = mt;
   1422 			}
   1423 			m->m_data += len;
   1424 			m->m_len -= len;
   1425 			so->so_rcv.sb_cc -= len;
   1426 		}
   1427 		if (so->so_oobmark) {
   1428 			if ((flags & MSG_PEEK) == 0) {
   1429 				so->so_oobmark -= len;
   1430 				if (so->so_oobmark == 0) {
   1431 					so->so_state |= SS_RCVATMARK;
   1432 					break;
   1433 				}
   1434 			} else {
   1435 				offset += len;
   1436 				if (offset == so->so_oobmark)
   1437 					break;
   1438 			}
   1439 		}
   1440 		if (flags & MSG_EOR)
   1441 			break;
   1442 		/*
   1443 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1444 		 * we must not quit until "uio->uio_resid == 0" or an error
   1445 		 * termination.  If a signal/timeout occurs, return
   1446 		 * with a short count but without error.
   1447 		 * Keep sockbuf locked against other readers.
   1448 		 */
   1449 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1450 		    !sosendallatonce(so) && !nextrecord) {
   1451 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1452 				break;
   1453 			/*
   1454 			 * If we are peeking and the socket receive buffer is
   1455 			 * full, stop since we can't get more data to peek at.
   1456 			 */
   1457 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1458 				break;
   1459 			/*
   1460 			 * If we've drained the socket buffer, tell the
   1461 			 * protocol in case it needs to do something to
   1462 			 * get it filled again.
   1463 			 */
   1464 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1465 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1466 				    NULL, (struct mbuf *)(long)flags, NULL, l);
   1467 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1468 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1469 			error = sbwait(&so->so_rcv);
   1470 			if (error != 0) {
   1471 				sbunlock(&so->so_rcv);
   1472 				sounlock(so);
   1473 				splx(s);
   1474 				return 0;
   1475 			}
   1476 			if ((m = so->so_rcv.sb_mb) != NULL)
   1477 				nextrecord = m->m_nextpkt;
   1478 		}
   1479 	}
   1480 
   1481 	if (m && atomic) {
   1482 		flags |= MSG_TRUNC;
   1483 		if ((flags & MSG_PEEK) == 0)
   1484 			(void) sbdroprecord(&so->so_rcv);
   1485 	}
   1486 	if ((flags & MSG_PEEK) == 0) {
   1487 		if (m == NULL) {
   1488 			/*
   1489 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1490 			 * part makes sure sb_lastrecord is up-to-date if
   1491 			 * there is still data in the socket buffer.
   1492 			 */
   1493 			so->so_rcv.sb_mb = nextrecord;
   1494 			if (so->so_rcv.sb_mb == NULL) {
   1495 				so->so_rcv.sb_mbtail = NULL;
   1496 				so->so_rcv.sb_lastrecord = NULL;
   1497 			} else if (nextrecord->m_nextpkt == NULL)
   1498 				so->so_rcv.sb_lastrecord = nextrecord;
   1499 		}
   1500 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1501 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1502 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1503 			(*pr->pr_usrreq)(so, PRU_RCVD, NULL,
   1504 			    (struct mbuf *)(long)flags, NULL, l);
   1505 	}
   1506 	if (orig_resid == uio->uio_resid && orig_resid &&
   1507 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1508 		sbunlock(&so->so_rcv);
   1509 		goto restart;
   1510 	}
   1511 
   1512 	if (flagsp != NULL)
   1513 		*flagsp |= flags;
   1514  release:
   1515 	sbunlock(&so->so_rcv);
   1516 	sounlock(so);
   1517 	splx(s);
   1518 	return error;
   1519 }
   1520 
   1521 int
   1522 soshutdown(struct socket *so, int how)
   1523 {
   1524 	const struct protosw	*pr;
   1525 	int	error;
   1526 
   1527 	KASSERT(solocked(so));
   1528 
   1529 	pr = so->so_proto;
   1530 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1531 		return (EINVAL);
   1532 
   1533 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1534 		sorflush(so);
   1535 		error = 0;
   1536 	}
   1537 	if (how == SHUT_WR || how == SHUT_RDWR)
   1538 		error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
   1539 		    NULL, NULL, NULL);
   1540 
   1541 	return error;
   1542 }
   1543 
   1544 void
   1545 sorflush(struct socket *so)
   1546 {
   1547 	struct sockbuf	*sb, asb;
   1548 	const struct protosw	*pr;
   1549 
   1550 	KASSERT(solocked(so));
   1551 
   1552 	sb = &so->so_rcv;
   1553 	pr = so->so_proto;
   1554 	socantrcvmore(so);
   1555 	sb->sb_flags |= SB_NOINTR;
   1556 	(void )sblock(sb, M_WAITOK);
   1557 	sbunlock(sb);
   1558 	asb = *sb;
   1559 	/*
   1560 	 * Clear most of the sockbuf structure, but leave some of the
   1561 	 * fields valid.
   1562 	 */
   1563 	memset(&sb->sb_startzero, 0,
   1564 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1565 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1566 		sounlock(so);
   1567 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1568 		solock(so);
   1569 	}
   1570 	sbrelease(&asb, so);
   1571 }
   1572 
   1573 /*
   1574  * internal set SOL_SOCKET options
   1575  */
   1576 static int
   1577 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1578 {
   1579 	int error, optval;
   1580 	struct linger l;
   1581 	struct timeval tv;
   1582 
   1583 	switch (sopt->sopt_name) {
   1584 
   1585 	case SO_ACCEPTFILTER:
   1586 		error = accept_filt_setopt(so, sopt);
   1587 		KASSERT(solocked(so));
   1588 		break;
   1589 
   1590   	case SO_LINGER:
   1591  		error = sockopt_get(sopt, &l, sizeof(l));
   1592 		solock(so);
   1593  		if (error)
   1594  			break;
   1595  		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1596  		    l.l_linger > (INT_MAX / hz)) {
   1597 			error = EDOM;
   1598 			break;
   1599 		}
   1600  		so->so_linger = l.l_linger;
   1601  		if (l.l_onoff)
   1602  			so->so_options |= SO_LINGER;
   1603  		else
   1604  			so->so_options &= ~SO_LINGER;
   1605    		break;
   1606 
   1607 	case SO_DEBUG:
   1608 	case SO_KEEPALIVE:
   1609 	case SO_DONTROUTE:
   1610 	case SO_USELOOPBACK:
   1611 	case SO_BROADCAST:
   1612 	case SO_REUSEADDR:
   1613 	case SO_REUSEPORT:
   1614 	case SO_OOBINLINE:
   1615 	case SO_TIMESTAMP:
   1616 		error = sockopt_getint(sopt, &optval);
   1617 		solock(so);
   1618 		if (error)
   1619 			break;
   1620 		if (optval)
   1621 			so->so_options |= sopt->sopt_name;
   1622 		else
   1623 			so->so_options &= ~sopt->sopt_name;
   1624 		break;
   1625 
   1626 	case SO_SNDBUF:
   1627 	case SO_RCVBUF:
   1628 	case SO_SNDLOWAT:
   1629 	case SO_RCVLOWAT:
   1630 		error = sockopt_getint(sopt, &optval);
   1631 		solock(so);
   1632 		if (error)
   1633 			break;
   1634 
   1635 		/*
   1636 		 * Values < 1 make no sense for any of these
   1637 		 * options, so disallow them.
   1638 		 */
   1639 		if (optval < 1) {
   1640 			error = EINVAL;
   1641 			break;
   1642 		}
   1643 
   1644 		switch (sopt->sopt_name) {
   1645 		case SO_SNDBUF:
   1646 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
   1647 				error = ENOBUFS;
   1648 				break;
   1649 			}
   1650 			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1651 			break;
   1652 
   1653 		case SO_RCVBUF:
   1654 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
   1655 				error = ENOBUFS;
   1656 				break;
   1657 			}
   1658 			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1659 			break;
   1660 
   1661 		/*
   1662 		 * Make sure the low-water is never greater than
   1663 		 * the high-water.
   1664 		 */
   1665 		case SO_SNDLOWAT:
   1666 			if (optval > so->so_snd.sb_hiwat)
   1667 				optval = so->so_snd.sb_hiwat;
   1668 
   1669 			so->so_snd.sb_lowat = optval;
   1670 			break;
   1671 
   1672 		case SO_RCVLOWAT:
   1673 			if (optval > so->so_rcv.sb_hiwat)
   1674 				optval = so->so_rcv.sb_hiwat;
   1675 
   1676 			so->so_rcv.sb_lowat = optval;
   1677 			break;
   1678 		}
   1679 		break;
   1680 
   1681 	case SO_SNDTIMEO:
   1682 	case SO_RCVTIMEO:
   1683 		error = sockopt_get(sopt, &tv, sizeof(tv));
   1684 		solock(so);
   1685 		if (error)
   1686 			break;
   1687 
   1688 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
   1689 			error = EDOM;
   1690 			break;
   1691 		}
   1692 
   1693 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1694 		if (optval == 0 && tv.tv_usec != 0)
   1695 			optval = 1;
   1696 
   1697 		switch (sopt->sopt_name) {
   1698 		case SO_SNDTIMEO:
   1699 			so->so_snd.sb_timeo = optval;
   1700 			break;
   1701 		case SO_RCVTIMEO:
   1702 			so->so_rcv.sb_timeo = optval;
   1703 			break;
   1704 		}
   1705 		break;
   1706 
   1707 	default:
   1708 		solock(so);
   1709 		error = ENOPROTOOPT;
   1710 		break;
   1711 	}
   1712 	KASSERT(solocked(so));
   1713 	return error;
   1714 }
   1715 
   1716 int
   1717 sosetopt(struct socket *so, struct sockopt *sopt)
   1718 {
   1719 	int error, prerr;
   1720 
   1721 	if (sopt->sopt_level == SOL_SOCKET) {
   1722 		error = sosetopt1(so, sopt);
   1723 		KASSERT(solocked(so));
   1724 	} else {
   1725 		error = ENOPROTOOPT;
   1726 		solock(so);
   1727 	}
   1728 
   1729 	if ((error == 0 || error == ENOPROTOOPT) &&
   1730 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1731 		/* give the protocol stack a shot */
   1732 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1733 		if (prerr == 0)
   1734 			error = 0;
   1735 		else if (prerr != ENOPROTOOPT)
   1736 			error = prerr;
   1737 	}
   1738 	sounlock(so);
   1739 	return error;
   1740 }
   1741 
   1742 /*
   1743  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1744  */
   1745 int
   1746 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1747     const void *val, size_t valsize)
   1748 {
   1749 	struct sockopt sopt;
   1750 	int error;
   1751 
   1752 	KASSERT(valsize == 0 || val != NULL);
   1753 
   1754 	sockopt_init(&sopt, level, name, valsize);
   1755 	sockopt_set(&sopt, val, valsize);
   1756 
   1757 	error = sosetopt(so, &sopt);
   1758 
   1759 	sockopt_destroy(&sopt);
   1760 
   1761 	return error;
   1762 }
   1763 
   1764 /*
   1765  * internal get SOL_SOCKET options
   1766  */
   1767 static int
   1768 sogetopt1(struct socket *so, struct sockopt *sopt)
   1769 {
   1770 	int error, optval;
   1771 	struct linger l;
   1772 	struct timeval tv;
   1773 
   1774 	switch (sopt->sopt_name) {
   1775 
   1776 	case SO_ACCEPTFILTER:
   1777 		error = accept_filt_getopt(so, sopt);
   1778 		break;
   1779 
   1780 	case SO_LINGER:
   1781 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1782 		l.l_linger = so->so_linger;
   1783 
   1784 		error = sockopt_set(sopt, &l, sizeof(l));
   1785 		break;
   1786 
   1787 	case SO_USELOOPBACK:
   1788 	case SO_DONTROUTE:
   1789 	case SO_DEBUG:
   1790 	case SO_KEEPALIVE:
   1791 	case SO_REUSEADDR:
   1792 	case SO_REUSEPORT:
   1793 	case SO_BROADCAST:
   1794 	case SO_OOBINLINE:
   1795 	case SO_TIMESTAMP:
   1796 		error = sockopt_setint(sopt,
   1797 		    (so->so_options & sopt->sopt_name) ? 1 : 0);
   1798 		break;
   1799 
   1800 	case SO_TYPE:
   1801 		error = sockopt_setint(sopt, so->so_type);
   1802 		break;
   1803 
   1804 	case SO_ERROR:
   1805 		error = sockopt_setint(sopt, so->so_error);
   1806 		so->so_error = 0;
   1807 		break;
   1808 
   1809 	case SO_SNDBUF:
   1810 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1811 		break;
   1812 
   1813 	case SO_RCVBUF:
   1814 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1815 		break;
   1816 
   1817 	case SO_SNDLOWAT:
   1818 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1819 		break;
   1820 
   1821 	case SO_RCVLOWAT:
   1822 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1823 		break;
   1824 
   1825 	case SO_SNDTIMEO:
   1826 	case SO_RCVTIMEO:
   1827 		optval = (sopt->sopt_name == SO_SNDTIMEO ?
   1828 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1829 
   1830 		tv.tv_sec = optval / hz;
   1831 		tv.tv_usec = (optval % hz) * tick;
   1832 
   1833 		error = sockopt_set(sopt, &tv, sizeof(tv));
   1834 		break;
   1835 
   1836 	case SO_OVERFLOWED:
   1837 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   1838 		break;
   1839 
   1840 	default:
   1841 		error = ENOPROTOOPT;
   1842 		break;
   1843 	}
   1844 
   1845 	return (error);
   1846 }
   1847 
   1848 int
   1849 sogetopt(struct socket *so, struct sockopt *sopt)
   1850 {
   1851 	int		error;
   1852 
   1853 	solock(so);
   1854 	if (sopt->sopt_level != SOL_SOCKET) {
   1855 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1856 			error = ((*so->so_proto->pr_ctloutput)
   1857 			    (PRCO_GETOPT, so, sopt));
   1858 		} else
   1859 			error = (ENOPROTOOPT);
   1860 	} else {
   1861 		error = sogetopt1(so, sopt);
   1862 	}
   1863 	sounlock(so);
   1864 	return (error);
   1865 }
   1866 
   1867 /*
   1868  * alloc sockopt data buffer buffer
   1869  *	- will be released at destroy
   1870  */
   1871 static int
   1872 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
   1873 {
   1874 
   1875 	KASSERT(sopt->sopt_size == 0);
   1876 
   1877 	if (len > sizeof(sopt->sopt_buf)) {
   1878 		sopt->sopt_data = kmem_zalloc(len, kmflag);
   1879 		if (sopt->sopt_data == NULL)
   1880 			return ENOMEM;
   1881 	} else
   1882 		sopt->sopt_data = sopt->sopt_buf;
   1883 
   1884 	sopt->sopt_size = len;
   1885 	return 0;
   1886 }
   1887 
   1888 /*
   1889  * initialise sockopt storage
   1890  *	- MAY sleep during allocation
   1891  */
   1892 void
   1893 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   1894 {
   1895 
   1896 	memset(sopt, 0, sizeof(*sopt));
   1897 
   1898 	sopt->sopt_level = level;
   1899 	sopt->sopt_name = name;
   1900 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
   1901 }
   1902 
   1903 /*
   1904  * destroy sockopt storage
   1905  *	- will release any held memory references
   1906  */
   1907 void
   1908 sockopt_destroy(struct sockopt *sopt)
   1909 {
   1910 
   1911 	if (sopt->sopt_data != sopt->sopt_buf)
   1912 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   1913 
   1914 	memset(sopt, 0, sizeof(*sopt));
   1915 }
   1916 
   1917 /*
   1918  * set sockopt value
   1919  *	- value is copied into sockopt
   1920  * 	- memory is allocated when necessary, will not sleep
   1921  */
   1922 int
   1923 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   1924 {
   1925 	int error;
   1926 
   1927 	if (sopt->sopt_size == 0) {
   1928 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   1929 		if (error)
   1930 			return error;
   1931 	}
   1932 
   1933 	KASSERT(sopt->sopt_size == len);
   1934 	memcpy(sopt->sopt_data, buf, len);
   1935 	return 0;
   1936 }
   1937 
   1938 /*
   1939  * common case of set sockopt integer value
   1940  */
   1941 int
   1942 sockopt_setint(struct sockopt *sopt, int val)
   1943 {
   1944 
   1945 	return sockopt_set(sopt, &val, sizeof(int));
   1946 }
   1947 
   1948 /*
   1949  * get sockopt value
   1950  *	- correct size must be given
   1951  */
   1952 int
   1953 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   1954 {
   1955 
   1956 	if (sopt->sopt_size != len)
   1957 		return EINVAL;
   1958 
   1959 	memcpy(buf, sopt->sopt_data, len);
   1960 	return 0;
   1961 }
   1962 
   1963 /*
   1964  * common case of get sockopt integer value
   1965  */
   1966 int
   1967 sockopt_getint(const struct sockopt *sopt, int *valp)
   1968 {
   1969 
   1970 	return sockopt_get(sopt, valp, sizeof(int));
   1971 }
   1972 
   1973 /*
   1974  * set sockopt value from mbuf
   1975  *	- ONLY for legacy code
   1976  *	- mbuf is released by sockopt
   1977  *	- will not sleep
   1978  */
   1979 int
   1980 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   1981 {
   1982 	size_t len;
   1983 	int error;
   1984 
   1985 	len = m_length(m);
   1986 
   1987 	if (sopt->sopt_size == 0) {
   1988 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   1989 		if (error)
   1990 			return error;
   1991 	}
   1992 
   1993 	KASSERT(sopt->sopt_size == len);
   1994 	m_copydata(m, 0, len, sopt->sopt_data);
   1995 	m_freem(m);
   1996 
   1997 	return 0;
   1998 }
   1999 
   2000 /*
   2001  * get sockopt value into mbuf
   2002  *	- ONLY for legacy code
   2003  *	- mbuf to be released by the caller
   2004  *	- will not sleep
   2005  */
   2006 struct mbuf *
   2007 sockopt_getmbuf(const struct sockopt *sopt)
   2008 {
   2009 	struct mbuf *m;
   2010 
   2011 	if (sopt->sopt_size > MCLBYTES)
   2012 		return NULL;
   2013 
   2014 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   2015 	if (m == NULL)
   2016 		return NULL;
   2017 
   2018 	if (sopt->sopt_size > MLEN) {
   2019 		MCLGET(m, M_DONTWAIT);
   2020 		if ((m->m_flags & M_EXT) == 0) {
   2021 			m_free(m);
   2022 			return NULL;
   2023 		}
   2024 	}
   2025 
   2026 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
   2027 	m->m_len = sopt->sopt_size;
   2028 
   2029 	return m;
   2030 }
   2031 
   2032 void
   2033 sohasoutofband(struct socket *so)
   2034 {
   2035 
   2036 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2037 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, 0);
   2038 }
   2039 
   2040 static void
   2041 filt_sordetach(struct knote *kn)
   2042 {
   2043 	struct socket	*so;
   2044 
   2045 	so = ((file_t *)kn->kn_obj)->f_data;
   2046 	solock(so);
   2047 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   2048 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   2049 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2050 	sounlock(so);
   2051 }
   2052 
   2053 /*ARGSUSED*/
   2054 static int
   2055 filt_soread(struct knote *kn, long hint)
   2056 {
   2057 	struct socket	*so;
   2058 	int rv;
   2059 
   2060 	so = ((file_t *)kn->kn_obj)->f_data;
   2061 	if (hint != NOTE_SUBMIT)
   2062 		solock(so);
   2063 	kn->kn_data = so->so_rcv.sb_cc;
   2064 	if (so->so_state & SS_CANTRCVMORE) {
   2065 		kn->kn_flags |= EV_EOF;
   2066 		kn->kn_fflags = so->so_error;
   2067 		rv = 1;
   2068 	} else if (so->so_error)	/* temporary udp error */
   2069 		rv = 1;
   2070 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2071 		rv = (kn->kn_data >= kn->kn_sdata);
   2072 	else
   2073 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2074 	if (hint != NOTE_SUBMIT)
   2075 		sounlock(so);
   2076 	return rv;
   2077 }
   2078 
   2079 static void
   2080 filt_sowdetach(struct knote *kn)
   2081 {
   2082 	struct socket	*so;
   2083 
   2084 	so = ((file_t *)kn->kn_obj)->f_data;
   2085 	solock(so);
   2086 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   2087 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   2088 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2089 	sounlock(so);
   2090 }
   2091 
   2092 /*ARGSUSED*/
   2093 static int
   2094 filt_sowrite(struct knote *kn, long hint)
   2095 {
   2096 	struct socket	*so;
   2097 	int rv;
   2098 
   2099 	so = ((file_t *)kn->kn_obj)->f_data;
   2100 	if (hint != NOTE_SUBMIT)
   2101 		solock(so);
   2102 	kn->kn_data = sbspace(&so->so_snd);
   2103 	if (so->so_state & SS_CANTSENDMORE) {
   2104 		kn->kn_flags |= EV_EOF;
   2105 		kn->kn_fflags = so->so_error;
   2106 		rv = 1;
   2107 	} else if (so->so_error)	/* temporary udp error */
   2108 		rv = 1;
   2109 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2110 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2111 		rv = 0;
   2112 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2113 		rv = (kn->kn_data >= kn->kn_sdata);
   2114 	else
   2115 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2116 	if (hint != NOTE_SUBMIT)
   2117 		sounlock(so);
   2118 	return rv;
   2119 }
   2120 
   2121 /*ARGSUSED*/
   2122 static int
   2123 filt_solisten(struct knote *kn, long hint)
   2124 {
   2125 	struct socket	*so;
   2126 	int rv;
   2127 
   2128 	so = ((file_t *)kn->kn_obj)->f_data;
   2129 
   2130 	/*
   2131 	 * Set kn_data to number of incoming connections, not
   2132 	 * counting partial (incomplete) connections.
   2133 	 */
   2134 	if (hint != NOTE_SUBMIT)
   2135 		solock(so);
   2136 	kn->kn_data = so->so_qlen;
   2137 	rv = (kn->kn_data > 0);
   2138 	if (hint != NOTE_SUBMIT)
   2139 		sounlock(so);
   2140 	return rv;
   2141 }
   2142 
   2143 static const struct filterops solisten_filtops =
   2144 	{ 1, NULL, filt_sordetach, filt_solisten };
   2145 static const struct filterops soread_filtops =
   2146 	{ 1, NULL, filt_sordetach, filt_soread };
   2147 static const struct filterops sowrite_filtops =
   2148 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   2149 
   2150 int
   2151 soo_kqfilter(struct file *fp, struct knote *kn)
   2152 {
   2153 	struct socket	*so;
   2154 	struct sockbuf	*sb;
   2155 
   2156 	so = ((file_t *)kn->kn_obj)->f_data;
   2157 	solock(so);
   2158 	switch (kn->kn_filter) {
   2159 	case EVFILT_READ:
   2160 		if (so->so_options & SO_ACCEPTCONN)
   2161 			kn->kn_fop = &solisten_filtops;
   2162 		else
   2163 			kn->kn_fop = &soread_filtops;
   2164 		sb = &so->so_rcv;
   2165 		break;
   2166 	case EVFILT_WRITE:
   2167 		kn->kn_fop = &sowrite_filtops;
   2168 		sb = &so->so_snd;
   2169 		break;
   2170 	default:
   2171 		sounlock(so);
   2172 		return (EINVAL);
   2173 	}
   2174 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   2175 	sb->sb_flags |= SB_KNOTE;
   2176 	sounlock(so);
   2177 	return (0);
   2178 }
   2179 
   2180 static int
   2181 sodopoll(struct socket *so, int events)
   2182 {
   2183 	int revents;
   2184 
   2185 	revents = 0;
   2186 
   2187 	if (events & (POLLIN | POLLRDNORM))
   2188 		if (soreadable(so))
   2189 			revents |= events & (POLLIN | POLLRDNORM);
   2190 
   2191 	if (events & (POLLOUT | POLLWRNORM))
   2192 		if (sowritable(so))
   2193 			revents |= events & (POLLOUT | POLLWRNORM);
   2194 
   2195 	if (events & (POLLPRI | POLLRDBAND))
   2196 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   2197 			revents |= events & (POLLPRI | POLLRDBAND);
   2198 
   2199 	return revents;
   2200 }
   2201 
   2202 int
   2203 sopoll(struct socket *so, int events)
   2204 {
   2205 	int revents = 0;
   2206 
   2207 #ifndef DIAGNOSTIC
   2208 	/*
   2209 	 * Do a quick, unlocked check in expectation that the socket
   2210 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2211 	 * as the solocked() assertions will fail.
   2212 	 */
   2213 	if ((revents = sodopoll(so, events)) != 0)
   2214 		return revents;
   2215 #endif
   2216 
   2217 	solock(so);
   2218 	if ((revents = sodopoll(so, events)) == 0) {
   2219 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2220 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2221 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2222 		}
   2223 
   2224 		if (events & (POLLOUT | POLLWRNORM)) {
   2225 			selrecord(curlwp, &so->so_snd.sb_sel);
   2226 			so->so_snd.sb_flags |= SB_NOTIFY;
   2227 		}
   2228 	}
   2229 	sounlock(so);
   2230 
   2231 	return revents;
   2232 }
   2233 
   2234 
   2235 #include <sys/sysctl.h>
   2236 
   2237 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2238 
   2239 /*
   2240  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2241  * value is not too small.
   2242  * (XXX should we maybe make sure it's not too large as well?)
   2243  */
   2244 static int
   2245 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2246 {
   2247 	int error, new_somaxkva;
   2248 	struct sysctlnode node;
   2249 
   2250 	new_somaxkva = somaxkva;
   2251 	node = *rnode;
   2252 	node.sysctl_data = &new_somaxkva;
   2253 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2254 	if (error || newp == NULL)
   2255 		return (error);
   2256 
   2257 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2258 		return (EINVAL);
   2259 
   2260 	mutex_enter(&so_pendfree_lock);
   2261 	somaxkva = new_somaxkva;
   2262 	cv_broadcast(&socurkva_cv);
   2263 	mutex_exit(&so_pendfree_lock);
   2264 
   2265 	return (error);
   2266 }
   2267 
   2268 static void
   2269 sysctl_kern_somaxkva_setup()
   2270 {
   2271 
   2272 	KASSERT(socket_sysctllog == NULL);
   2273 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2274 		       CTLFLAG_PERMANENT,
   2275 		       CTLTYPE_NODE, "kern", NULL,
   2276 		       NULL, 0, NULL, 0,
   2277 		       CTL_KERN, CTL_EOL);
   2278 
   2279 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2280 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2281 		       CTLTYPE_INT, "somaxkva",
   2282 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2283 				    "used for socket buffers"),
   2284 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2285 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2286 }
   2287