Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.170
      1 /*	$NetBSD: uipc_socket.c,v 1.170 2008/08/04 03:55:47 tls Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.170 2008/08/04 03:55:47 tls Exp $");
     67 
     68 #include "opt_inet.h"
     69 #include "opt_sock_counters.h"
     70 #include "opt_sosend_loan.h"
     71 #include "opt_mbuftrace.h"
     72 #include "opt_somaxkva.h"
     73 #include "opt_multiprocessor.h"	/* XXX */
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/proc.h>
     78 #include <sys/file.h>
     79 #include <sys/filedesc.h>
     80 #include <sys/malloc.h>
     81 #include <sys/mbuf.h>
     82 #include <sys/domain.h>
     83 #include <sys/kernel.h>
     84 #include <sys/protosw.h>
     85 #include <sys/socket.h>
     86 #include <sys/socketvar.h>
     87 #include <sys/signalvar.h>
     88 #include <sys/resourcevar.h>
     89 #include <sys/event.h>
     90 #include <sys/poll.h>
     91 #include <sys/kauth.h>
     92 #include <sys/mutex.h>
     93 #include <sys/condvar.h>
     94 
     95 #include <uvm/uvm.h>
     96 
     97 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
     98 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
     99 
    100 extern const struct fileops socketops;
    101 
    102 extern int	somaxconn;			/* patchable (XXX sysctl) */
    103 int		somaxconn = SOMAXCONN;
    104 kmutex_t	*softnet_lock;
    105 
    106 #ifdef SOSEND_COUNTERS
    107 #include <sys/device.h>
    108 
    109 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    110     NULL, "sosend", "loan big");
    111 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    112     NULL, "sosend", "copy big");
    113 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    114     NULL, "sosend", "copy small");
    115 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    116     NULL, "sosend", "kva limit");
    117 
    118 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    119 
    120 EVCNT_ATTACH_STATIC(sosend_loan_big);
    121 EVCNT_ATTACH_STATIC(sosend_copy_big);
    122 EVCNT_ATTACH_STATIC(sosend_copy_small);
    123 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    124 #else
    125 
    126 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    127 
    128 #endif /* SOSEND_COUNTERS */
    129 
    130 static struct callback_entry sokva_reclaimerentry;
    131 
    132 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    133 int sock_loan_thresh = -1;
    134 #else
    135 int sock_loan_thresh = 4096;
    136 #endif
    137 
    138 static kmutex_t so_pendfree_lock;
    139 static struct mbuf *so_pendfree;
    140 
    141 #ifndef SOMAXKVA
    142 #define	SOMAXKVA (16 * 1024 * 1024)
    143 #endif
    144 int somaxkva = SOMAXKVA;
    145 static int socurkva;
    146 static kcondvar_t socurkva_cv;
    147 
    148 #define	SOCK_LOAN_CHUNK		65536
    149 
    150 static size_t sodopendfree(void);
    151 static size_t sodopendfreel(void);
    152 
    153 static vsize_t
    154 sokvareserve(struct socket *so, vsize_t len)
    155 {
    156 	int error;
    157 
    158 	mutex_enter(&so_pendfree_lock);
    159 	while (socurkva + len > somaxkva) {
    160 		size_t freed;
    161 
    162 		/*
    163 		 * try to do pendfree.
    164 		 */
    165 
    166 		freed = sodopendfreel();
    167 
    168 		/*
    169 		 * if some kva was freed, try again.
    170 		 */
    171 
    172 		if (freed)
    173 			continue;
    174 
    175 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    176 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    177 		if (error) {
    178 			len = 0;
    179 			break;
    180 		}
    181 	}
    182 	socurkva += len;
    183 	mutex_exit(&so_pendfree_lock);
    184 	return len;
    185 }
    186 
    187 static void
    188 sokvaunreserve(vsize_t len)
    189 {
    190 
    191 	mutex_enter(&so_pendfree_lock);
    192 	socurkva -= len;
    193 	cv_broadcast(&socurkva_cv);
    194 	mutex_exit(&so_pendfree_lock);
    195 }
    196 
    197 /*
    198  * sokvaalloc: allocate kva for loan.
    199  */
    200 
    201 vaddr_t
    202 sokvaalloc(vsize_t len, struct socket *so)
    203 {
    204 	vaddr_t lva;
    205 
    206 	/*
    207 	 * reserve kva.
    208 	 */
    209 
    210 	if (sokvareserve(so, len) == 0)
    211 		return 0;
    212 
    213 	/*
    214 	 * allocate kva.
    215 	 */
    216 
    217 	lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    218 	if (lva == 0) {
    219 		sokvaunreserve(len);
    220 		return (0);
    221 	}
    222 
    223 	return lva;
    224 }
    225 
    226 /*
    227  * sokvafree: free kva for loan.
    228  */
    229 
    230 void
    231 sokvafree(vaddr_t sva, vsize_t len)
    232 {
    233 
    234 	/*
    235 	 * free kva.
    236 	 */
    237 
    238 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    239 
    240 	/*
    241 	 * unreserve kva.
    242 	 */
    243 
    244 	sokvaunreserve(len);
    245 }
    246 
    247 static void
    248 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    249 {
    250 	vaddr_t sva, eva;
    251 	vsize_t len;
    252 	int npgs;
    253 
    254 	KASSERT(pgs != NULL);
    255 
    256 	eva = round_page((vaddr_t) buf + size);
    257 	sva = trunc_page((vaddr_t) buf);
    258 	len = eva - sva;
    259 	npgs = len >> PAGE_SHIFT;
    260 
    261 	pmap_kremove(sva, len);
    262 	pmap_update(pmap_kernel());
    263 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    264 	sokvafree(sva, len);
    265 }
    266 
    267 static size_t
    268 sodopendfree(void)
    269 {
    270 	size_t rv;
    271 
    272 	if (__predict_true(so_pendfree == NULL))
    273 		return 0;
    274 
    275 	mutex_enter(&so_pendfree_lock);
    276 	rv = sodopendfreel();
    277 	mutex_exit(&so_pendfree_lock);
    278 
    279 	return rv;
    280 }
    281 
    282 /*
    283  * sodopendfreel: free mbufs on "pendfree" list.
    284  * unlock and relock so_pendfree_lock when freeing mbufs.
    285  *
    286  * => called with so_pendfree_lock held.
    287  */
    288 
    289 static size_t
    290 sodopendfreel(void)
    291 {
    292 	struct mbuf *m, *next;
    293 	size_t rv = 0;
    294 
    295 	KASSERT(mutex_owned(&so_pendfree_lock));
    296 
    297 	while (so_pendfree != NULL) {
    298 		m = so_pendfree;
    299 		so_pendfree = NULL;
    300 		mutex_exit(&so_pendfree_lock);
    301 
    302 		for (; m != NULL; m = next) {
    303 			next = m->m_next;
    304 			KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
    305 			KASSERT(m->m_ext.ext_refcnt == 0);
    306 
    307 			rv += m->m_ext.ext_size;
    308 			sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    309 			    m->m_ext.ext_size);
    310 			pool_cache_put(mb_cache, m);
    311 		}
    312 
    313 		mutex_enter(&so_pendfree_lock);
    314 	}
    315 
    316 	return (rv);
    317 }
    318 
    319 void
    320 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    321 {
    322 
    323 	KASSERT(m != NULL);
    324 
    325 	/*
    326 	 * postpone freeing mbuf.
    327 	 *
    328 	 * we can't do it in interrupt context
    329 	 * because we need to put kva back to kernel_map.
    330 	 */
    331 
    332 	mutex_enter(&so_pendfree_lock);
    333 	m->m_next = so_pendfree;
    334 	so_pendfree = m;
    335 	cv_broadcast(&socurkva_cv);
    336 	mutex_exit(&so_pendfree_lock);
    337 }
    338 
    339 static long
    340 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    341 {
    342 	struct iovec *iov = uio->uio_iov;
    343 	vaddr_t sva, eva;
    344 	vsize_t len;
    345 	vaddr_t lva;
    346 	int npgs, error;
    347 	vaddr_t va;
    348 	int i;
    349 
    350 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    351 		return (0);
    352 
    353 	if (iov->iov_len < (size_t) space)
    354 		space = iov->iov_len;
    355 	if (space > SOCK_LOAN_CHUNK)
    356 		space = SOCK_LOAN_CHUNK;
    357 
    358 	eva = round_page((vaddr_t) iov->iov_base + space);
    359 	sva = trunc_page((vaddr_t) iov->iov_base);
    360 	len = eva - sva;
    361 	npgs = len >> PAGE_SHIFT;
    362 
    363 	KASSERT(npgs <= M_EXT_MAXPAGES);
    364 
    365 	lva = sokvaalloc(len, so);
    366 	if (lva == 0)
    367 		return 0;
    368 
    369 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    370 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    371 	if (error) {
    372 		sokvafree(lva, len);
    373 		return (0);
    374 	}
    375 
    376 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    377 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    378 		    VM_PROT_READ);
    379 	pmap_update(pmap_kernel());
    380 
    381 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    382 
    383 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    384 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    385 
    386 	uio->uio_resid -= space;
    387 	/* uio_offset not updated, not set/used for write(2) */
    388 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    389 	uio->uio_iov->iov_len -= space;
    390 	if (uio->uio_iov->iov_len == 0) {
    391 		uio->uio_iov++;
    392 		uio->uio_iovcnt--;
    393 	}
    394 
    395 	return (space);
    396 }
    397 
    398 static int
    399 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    400 {
    401 
    402 	KASSERT(ce == &sokva_reclaimerentry);
    403 	KASSERT(obj == NULL);
    404 
    405 	sodopendfree();
    406 	if (!vm_map_starved_p(kernel_map)) {
    407 		return CALLBACK_CHAIN_ABORT;
    408 	}
    409 	return CALLBACK_CHAIN_CONTINUE;
    410 }
    411 
    412 struct mbuf *
    413 getsombuf(struct socket *so, int type)
    414 {
    415 	struct mbuf *m;
    416 
    417 	m = m_get(M_WAIT, type);
    418 	MCLAIM(m, so->so_mowner);
    419 	return m;
    420 }
    421 
    422 struct mbuf *
    423 m_intopt(struct socket *so, int val)
    424 {
    425 	struct mbuf *m;
    426 
    427 	m = getsombuf(so, MT_SOOPTS);
    428 	m->m_len = sizeof(int);
    429 	*mtod(m, int *) = val;
    430 	return m;
    431 }
    432 
    433 void
    434 soinit(void)
    435 {
    436 
    437 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    438 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    439 	cv_init(&socurkva_cv, "sokva");
    440 	soinit2();
    441 
    442 	/* Set the initial adjusted socket buffer size. */
    443 	if (sb_max_set(sb_max))
    444 		panic("bad initial sb_max value: %lu", sb_max);
    445 
    446 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    447 	    &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
    448 }
    449 
    450 /*
    451  * Socket operation routines.
    452  * These routines are called by the routines in
    453  * sys_socket.c or from a system process, and
    454  * implement the semantics of socket operations by
    455  * switching out to the protocol specific routines.
    456  */
    457 /*ARGSUSED*/
    458 int
    459 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    460 	 struct socket *lockso)
    461 {
    462 	const struct protosw	*prp;
    463 	struct socket	*so;
    464 	uid_t		uid;
    465 	int		error;
    466 	kmutex_t	*lock;
    467 
    468 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    469 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    470 	    KAUTH_ARG(proto));
    471 	if (error != 0)
    472 		return error;
    473 
    474 	if (proto)
    475 		prp = pffindproto(dom, proto, type);
    476 	else
    477 		prp = pffindtype(dom, type);
    478 	if (prp == NULL) {
    479 		/* no support for domain */
    480 		if (pffinddomain(dom) == 0)
    481 			return EAFNOSUPPORT;
    482 		/* no support for socket type */
    483 		if (proto == 0 && type != 0)
    484 			return EPROTOTYPE;
    485 		return EPROTONOSUPPORT;
    486 	}
    487 	if (prp->pr_usrreq == NULL)
    488 		return EPROTONOSUPPORT;
    489 	if (prp->pr_type != type)
    490 		return EPROTOTYPE;
    491 
    492 	so = soget(true);
    493 	so->so_type = type;
    494 	so->so_proto = prp;
    495 	so->so_send = sosend;
    496 	so->so_receive = soreceive;
    497 #ifdef MBUFTRACE
    498 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    499 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    500 	so->so_mowner = &prp->pr_domain->dom_mowner;
    501 #endif
    502 	uid = kauth_cred_geteuid(l->l_cred);
    503 	so->so_uidinfo = uid_find(uid);
    504 	so->so_egid = kauth_cred_getegid(l->l_cred);
    505 	so->so_cpid = l->l_proc->p_pid;
    506 	if (lockso != NULL) {
    507 		/* Caller wants us to share a lock. */
    508 		lock = lockso->so_lock;
    509 		so->so_lock = lock;
    510 		mutex_obj_hold(lock);
    511 		mutex_enter(lock);
    512 	} else {
    513 		/* Lock assigned and taken during PRU_ATTACH. */
    514 	}
    515 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
    516 	    (struct mbuf *)(long)proto, NULL, l);
    517 	KASSERT(solocked(so));
    518 	if (error != 0) {
    519 		so->so_state |= SS_NOFDREF;
    520 		sofree(so);
    521 		return error;
    522 	}
    523 	sounlock(so);
    524 	*aso = so;
    525 	return 0;
    526 }
    527 
    528 /* On success, write file descriptor to fdout and return zero.  On
    529  * failure, return non-zero; *fdout will be undefined.
    530  */
    531 int
    532 fsocreate(int domain, struct socket **sop, int type, int protocol,
    533     struct lwp *l, int *fdout)
    534 {
    535 	struct socket	*so;
    536 	struct file	*fp;
    537 	int		fd, error;
    538 
    539 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    540 		return (error);
    541 	fp->f_flag = FREAD|FWRITE;
    542 	fp->f_type = DTYPE_SOCKET;
    543 	fp->f_ops = &socketops;
    544 	error = socreate(domain, &so, type, protocol, l, NULL);
    545 	if (error != 0) {
    546 		fd_abort(curproc, fp, fd);
    547 	} else {
    548 		if (sop != NULL)
    549 			*sop = so;
    550 		fp->f_data = so;
    551 		fd_affix(curproc, fp, fd);
    552 		*fdout = fd;
    553 	}
    554 	return error;
    555 }
    556 
    557 int
    558 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    559 {
    560 	int	error;
    561 
    562 	solock(so);
    563 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
    564 	sounlock(so);
    565 	return error;
    566 }
    567 
    568 int
    569 solisten(struct socket *so, int backlog, struct lwp *l)
    570 {
    571 	int	error;
    572 
    573 	solock(so);
    574 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    575 	    SS_ISDISCONNECTING)) != 0) {
    576 	    	sounlock(so);
    577 		return (EOPNOTSUPP);
    578 	}
    579 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
    580 	    NULL, NULL, l);
    581 	if (error != 0) {
    582 		sounlock(so);
    583 		return error;
    584 	}
    585 	if (TAILQ_EMPTY(&so->so_q))
    586 		so->so_options |= SO_ACCEPTCONN;
    587 	if (backlog < 0)
    588 		backlog = 0;
    589 	so->so_qlimit = min(backlog, somaxconn);
    590 	sounlock(so);
    591 	return 0;
    592 }
    593 
    594 void
    595 sofree(struct socket *so)
    596 {
    597 	u_int refs;
    598 
    599 	KASSERT(solocked(so));
    600 
    601 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    602 		sounlock(so);
    603 		return;
    604 	}
    605 	if (so->so_head) {
    606 		/*
    607 		 * We must not decommission a socket that's on the accept(2)
    608 		 * queue.  If we do, then accept(2) may hang after select(2)
    609 		 * indicated that the listening socket was ready.
    610 		 */
    611 		if (!soqremque(so, 0)) {
    612 			sounlock(so);
    613 			return;
    614 		}
    615 	}
    616 	if (so->so_rcv.sb_hiwat)
    617 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    618 		    RLIM_INFINITY);
    619 	if (so->so_snd.sb_hiwat)
    620 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    621 		    RLIM_INFINITY);
    622 	sbrelease(&so->so_snd, so);
    623 	KASSERT(!cv_has_waiters(&so->so_cv));
    624 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    625 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    626 	sorflush(so);
    627 	refs = so->so_aborting;	/* XXX */
    628 #ifdef INET
    629 	/* remove acccept filter if one is present. */
    630 	if (so->so_accf != NULL)
    631 		do_setopt_accept_filter(so, NULL);
    632 #endif
    633 	sounlock(so);
    634 	if (refs == 0)		/* XXX */
    635 		soput(so);
    636 }
    637 
    638 /*
    639  * Close a socket on last file table reference removal.
    640  * Initiate disconnect if connected.
    641  * Free socket when disconnect complete.
    642  */
    643 int
    644 soclose(struct socket *so)
    645 {
    646 	struct socket	*so2;
    647 	int		error;
    648 	int		error2;
    649 
    650 	error = 0;
    651 	solock(so);
    652 	if (so->so_options & SO_ACCEPTCONN) {
    653 		do {
    654 			while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    655 				KASSERT(solocked2(so, so2));
    656 				(void) soqremque(so2, 0);
    657 				/* soabort drops the lock. */
    658 				(void) soabort(so2);
    659 				solock(so);
    660 			}
    661 			while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    662 				KASSERT(solocked2(so, so2));
    663 				(void) soqremque(so2, 1);
    664 				/* soabort drops the lock. */
    665 				(void) soabort(so2);
    666 				solock(so);
    667 			}
    668 		} while (!TAILQ_EMPTY(&so->so_q0));
    669 	}
    670 	if (so->so_pcb == 0)
    671 		goto discard;
    672 	if (so->so_state & SS_ISCONNECTED) {
    673 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    674 			error = sodisconnect(so);
    675 			if (error)
    676 				goto drop;
    677 		}
    678 		if (so->so_options & SO_LINGER) {
    679 			if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
    680 				goto drop;
    681 			while (so->so_state & SS_ISCONNECTED) {
    682 				error = sowait(so, so->so_linger * hz);
    683 				if (error)
    684 					break;
    685 			}
    686 		}
    687 	}
    688  drop:
    689 	if (so->so_pcb) {
    690 		error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    691 		    NULL, NULL, NULL, NULL);
    692 		if (error == 0)
    693 			error = error2;
    694 	}
    695  discard:
    696 	if (so->so_state & SS_NOFDREF)
    697 		panic("soclose: NOFDREF");
    698 	so->so_state |= SS_NOFDREF;
    699 	sofree(so);
    700 	return (error);
    701 }
    702 
    703 /*
    704  * Must be called with the socket locked..  Will return with it unlocked.
    705  */
    706 int
    707 soabort(struct socket *so)
    708 {
    709 	u_int refs;
    710 	int error;
    711 
    712 	KASSERT(solocked(so));
    713 	KASSERT(so->so_head == NULL);
    714 
    715 	so->so_aborting++;		/* XXX */
    716 	error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
    717 	    NULL, NULL, NULL);
    718 	refs = --so->so_aborting;	/* XXX */
    719 	if (error || (refs == 0)) {
    720 		sofree(so);
    721 	} else {
    722 		sounlock(so);
    723 	}
    724 	return error;
    725 }
    726 
    727 int
    728 soaccept(struct socket *so, struct mbuf *nam)
    729 {
    730 	int	error;
    731 
    732 	KASSERT(solocked(so));
    733 
    734 	error = 0;
    735 	if ((so->so_state & SS_NOFDREF) == 0)
    736 		panic("soaccept: !NOFDREF");
    737 	so->so_state &= ~SS_NOFDREF;
    738 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    739 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    740 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    741 		    NULL, nam, NULL, NULL);
    742 	else
    743 		error = ECONNABORTED;
    744 
    745 	return (error);
    746 }
    747 
    748 int
    749 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    750 {
    751 	int		error;
    752 
    753 	KASSERT(solocked(so));
    754 
    755 	if (so->so_options & SO_ACCEPTCONN)
    756 		return (EOPNOTSUPP);
    757 	/*
    758 	 * If protocol is connection-based, can only connect once.
    759 	 * Otherwise, if connected, try to disconnect first.
    760 	 * This allows user to disconnect by connecting to, e.g.,
    761 	 * a null address.
    762 	 */
    763 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    764 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    765 	    (error = sodisconnect(so))))
    766 		error = EISCONN;
    767 	else
    768 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    769 		    NULL, nam, NULL, l);
    770 	return (error);
    771 }
    772 
    773 int
    774 soconnect2(struct socket *so1, struct socket *so2)
    775 {
    776 	int	error;
    777 
    778 	KASSERT(solocked2(so1, so2));
    779 
    780 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    781 	    NULL, (struct mbuf *)so2, NULL, NULL);
    782 	return (error);
    783 }
    784 
    785 int
    786 sodisconnect(struct socket *so)
    787 {
    788 	int	error;
    789 
    790 	KASSERT(solocked(so));
    791 
    792 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    793 		error = ENOTCONN;
    794 	} else if (so->so_state & SS_ISDISCONNECTING) {
    795 		error = EALREADY;
    796 	} else {
    797 		error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    798 		    NULL, NULL, NULL, NULL);
    799 	}
    800 	sodopendfree();
    801 	return (error);
    802 }
    803 
    804 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    805 /*
    806  * Send on a socket.
    807  * If send must go all at once and message is larger than
    808  * send buffering, then hard error.
    809  * Lock against other senders.
    810  * If must go all at once and not enough room now, then
    811  * inform user that this would block and do nothing.
    812  * Otherwise, if nonblocking, send as much as possible.
    813  * The data to be sent is described by "uio" if nonzero,
    814  * otherwise by the mbuf chain "top" (which must be null
    815  * if uio is not).  Data provided in mbuf chain must be small
    816  * enough to send all at once.
    817  *
    818  * Returns nonzero on error, timeout or signal; callers
    819  * must check for short counts if EINTR/ERESTART are returned.
    820  * Data and control buffers are freed on return.
    821  */
    822 int
    823 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    824 	struct mbuf *control, int flags, struct lwp *l)
    825 {
    826 	struct mbuf	**mp, *m;
    827 	struct proc	*p;
    828 	long		space, len, resid, clen, mlen;
    829 	int		error, s, dontroute, atomic;
    830 
    831 	p = l->l_proc;
    832 	sodopendfree();
    833 	clen = 0;
    834 
    835 	/*
    836 	 * solock() provides atomicity of access.  splsoftnet() prevents
    837 	 * protocol processing soft interrupts from interrupting us and
    838 	 * blocking (expensive).
    839 	 */
    840 	s = splsoftnet();
    841 	solock(so);
    842 	atomic = sosendallatonce(so) || top;
    843 	if (uio)
    844 		resid = uio->uio_resid;
    845 	else
    846 		resid = top->m_pkthdr.len;
    847 	/*
    848 	 * In theory resid should be unsigned.
    849 	 * However, space must be signed, as it might be less than 0
    850 	 * if we over-committed, and we must use a signed comparison
    851 	 * of space and resid.  On the other hand, a negative resid
    852 	 * causes us to loop sending 0-length segments to the protocol.
    853 	 */
    854 	if (resid < 0) {
    855 		error = EINVAL;
    856 		goto out;
    857 	}
    858 	dontroute =
    859 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    860 	    (so->so_proto->pr_flags & PR_ATOMIC);
    861 	l->l_ru.ru_msgsnd++;
    862 	if (control)
    863 		clen = control->m_len;
    864  restart:
    865 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    866 		goto out;
    867 	do {
    868 		if (so->so_state & SS_CANTSENDMORE) {
    869 			error = EPIPE;
    870 			goto release;
    871 		}
    872 		if (so->so_error) {
    873 			error = so->so_error;
    874 			so->so_error = 0;
    875 			goto release;
    876 		}
    877 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    878 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    879 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    880 				    !(resid == 0 && clen != 0)) {
    881 					error = ENOTCONN;
    882 					goto release;
    883 				}
    884 			} else if (addr == 0) {
    885 				error = EDESTADDRREQ;
    886 				goto release;
    887 			}
    888 		}
    889 		space = sbspace(&so->so_snd);
    890 		if (flags & MSG_OOB)
    891 			space += 1024;
    892 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    893 		    clen > so->so_snd.sb_hiwat) {
    894 			error = EMSGSIZE;
    895 			goto release;
    896 		}
    897 		if (space < resid + clen &&
    898 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    899 			if (so->so_nbio) {
    900 				error = EWOULDBLOCK;
    901 				goto release;
    902 			}
    903 			sbunlock(&so->so_snd);
    904 			error = sbwait(&so->so_snd);
    905 			if (error)
    906 				goto out;
    907 			goto restart;
    908 		}
    909 		mp = &top;
    910 		space -= clen;
    911 		do {
    912 			if (uio == NULL) {
    913 				/*
    914 				 * Data is prepackaged in "top".
    915 				 */
    916 				resid = 0;
    917 				if (flags & MSG_EOR)
    918 					top->m_flags |= M_EOR;
    919 			} else do {
    920 				sounlock(so);
    921 				splx(s);
    922 				if (top == NULL) {
    923 					m = m_gethdr(M_WAIT, MT_DATA);
    924 					mlen = MHLEN;
    925 					m->m_pkthdr.len = 0;
    926 					m->m_pkthdr.rcvif = NULL;
    927 				} else {
    928 					m = m_get(M_WAIT, MT_DATA);
    929 					mlen = MLEN;
    930 				}
    931 				MCLAIM(m, so->so_snd.sb_mowner);
    932 				if (sock_loan_thresh >= 0 &&
    933 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
    934 				    space >= sock_loan_thresh &&
    935 				    (len = sosend_loan(so, uio, m,
    936 						       space)) != 0) {
    937 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    938 					space -= len;
    939 					goto have_data;
    940 				}
    941 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
    942 					SOSEND_COUNTER_INCR(&sosend_copy_big);
    943 					m_clget(m, M_WAIT);
    944 					if ((m->m_flags & M_EXT) == 0)
    945 						goto nopages;
    946 					mlen = MCLBYTES;
    947 					if (atomic && top == 0) {
    948 						len = lmin(MCLBYTES - max_hdr,
    949 						    resid);
    950 						m->m_data += max_hdr;
    951 					} else
    952 						len = lmin(MCLBYTES, resid);
    953 					space -= len;
    954 				} else {
    955  nopages:
    956 					SOSEND_COUNTER_INCR(&sosend_copy_small);
    957 					len = lmin(lmin(mlen, resid), space);
    958 					space -= len;
    959 					/*
    960 					 * For datagram protocols, leave room
    961 					 * for protocol headers in first mbuf.
    962 					 */
    963 					if (atomic && top == 0 && len < mlen)
    964 						MH_ALIGN(m, len);
    965 				}
    966 				error = uiomove(mtod(m, void *), (int)len, uio);
    967  have_data:
    968 				resid = uio->uio_resid;
    969 				m->m_len = len;
    970 				*mp = m;
    971 				top->m_pkthdr.len += len;
    972 				s = splsoftnet();
    973 				solock(so);
    974 				if (error != 0)
    975 					goto release;
    976 				mp = &m->m_next;
    977 				if (resid <= 0) {
    978 					if (flags & MSG_EOR)
    979 						top->m_flags |= M_EOR;
    980 					break;
    981 				}
    982 			} while (space > 0 && atomic);
    983 
    984 			if (so->so_state & SS_CANTSENDMORE) {
    985 				error = EPIPE;
    986 				goto release;
    987 			}
    988 			if (dontroute)
    989 				so->so_options |= SO_DONTROUTE;
    990 			if (resid > 0)
    991 				so->so_state |= SS_MORETOCOME;
    992 			error = (*so->so_proto->pr_usrreq)(so,
    993 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
    994 			    top, addr, control, curlwp);
    995 			if (dontroute)
    996 				so->so_options &= ~SO_DONTROUTE;
    997 			if (resid > 0)
    998 				so->so_state &= ~SS_MORETOCOME;
    999 			clen = 0;
   1000 			control = NULL;
   1001 			top = NULL;
   1002 			mp = &top;
   1003 			if (error != 0)
   1004 				goto release;
   1005 		} while (resid && space > 0);
   1006 	} while (resid);
   1007 
   1008  release:
   1009 	sbunlock(&so->so_snd);
   1010  out:
   1011 	sounlock(so);
   1012 	splx(s);
   1013 	if (top)
   1014 		m_freem(top);
   1015 	if (control)
   1016 		m_freem(control);
   1017 	return (error);
   1018 }
   1019 
   1020 /*
   1021  * Following replacement or removal of the first mbuf on the first
   1022  * mbuf chain of a socket buffer, push necessary state changes back
   1023  * into the socket buffer so that other consumers see the values
   1024  * consistently.  'nextrecord' is the callers locally stored value of
   1025  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1026  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1027  */
   1028 static void
   1029 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1030 {
   1031 
   1032 	KASSERT(solocked(sb->sb_so));
   1033 
   1034 	/*
   1035 	 * First, update for the new value of nextrecord.  If necessary,
   1036 	 * make it the first record.
   1037 	 */
   1038 	if (sb->sb_mb != NULL)
   1039 		sb->sb_mb->m_nextpkt = nextrecord;
   1040 	else
   1041 		sb->sb_mb = nextrecord;
   1042 
   1043         /*
   1044          * Now update any dependent socket buffer fields to reflect
   1045          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1046          * the addition of a second clause that takes care of the
   1047          * case where sb_mb has been updated, but remains the last
   1048          * record.
   1049          */
   1050         if (sb->sb_mb == NULL) {
   1051                 sb->sb_mbtail = NULL;
   1052                 sb->sb_lastrecord = NULL;
   1053         } else if (sb->sb_mb->m_nextpkt == NULL)
   1054                 sb->sb_lastrecord = sb->sb_mb;
   1055 }
   1056 
   1057 /*
   1058  * Implement receive operations on a socket.
   1059  * We depend on the way that records are added to the sockbuf
   1060  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1061  * must begin with an address if the protocol so specifies,
   1062  * followed by an optional mbuf or mbufs containing ancillary data,
   1063  * and then zero or more mbufs of data.
   1064  * In order to avoid blocking network interrupts for the entire time here,
   1065  * we splx() while doing the actual copy to user space.
   1066  * Although the sockbuf is locked, new data may still be appended,
   1067  * and thus we must maintain consistency of the sockbuf during that time.
   1068  *
   1069  * The caller may receive the data as a single mbuf chain by supplying
   1070  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1071  * only for the count in uio_resid.
   1072  */
   1073 int
   1074 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1075 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1076 {
   1077 	struct lwp *l = curlwp;
   1078 	struct mbuf	*m, **mp, *mt;
   1079 	int atomic, flags, len, error, s, offset, moff, type, orig_resid;
   1080 	const struct protosw	*pr;
   1081 	struct mbuf	*nextrecord;
   1082 	int		mbuf_removed = 0;
   1083 	const struct domain *dom;
   1084 
   1085 	pr = so->so_proto;
   1086 	atomic = pr->pr_flags & PR_ATOMIC;
   1087 	dom = pr->pr_domain;
   1088 	mp = mp0;
   1089 	type = 0;
   1090 	orig_resid = uio->uio_resid;
   1091 
   1092 	if (paddr != NULL)
   1093 		*paddr = NULL;
   1094 	if (controlp != NULL)
   1095 		*controlp = NULL;
   1096 	if (flagsp != NULL)
   1097 		flags = *flagsp &~ MSG_EOR;
   1098 	else
   1099 		flags = 0;
   1100 
   1101 	if ((flags & MSG_DONTWAIT) == 0)
   1102 		sodopendfree();
   1103 
   1104 	if (flags & MSG_OOB) {
   1105 		m = m_get(M_WAIT, MT_DATA);
   1106 		solock(so);
   1107 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
   1108 		    (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
   1109 		sounlock(so);
   1110 		if (error)
   1111 			goto bad;
   1112 		do {
   1113 			error = uiomove(mtod(m, void *),
   1114 			    (int) min(uio->uio_resid, m->m_len), uio);
   1115 			m = m_free(m);
   1116 		} while (uio->uio_resid > 0 && error == 0 && m);
   1117  bad:
   1118 		if (m != NULL)
   1119 			m_freem(m);
   1120 		return error;
   1121 	}
   1122 	if (mp != NULL)
   1123 		*mp = NULL;
   1124 
   1125 	/*
   1126 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1127 	 * protocol processing soft interrupts from interrupting us and
   1128 	 * blocking (expensive).
   1129 	 */
   1130 	s = splsoftnet();
   1131 	solock(so);
   1132 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
   1133 		(*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
   1134 
   1135  restart:
   1136 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1137 		sounlock(so);
   1138 		splx(s);
   1139 		return error;
   1140 	}
   1141 
   1142 	m = so->so_rcv.sb_mb;
   1143 	/*
   1144 	 * If we have less data than requested, block awaiting more
   1145 	 * (subject to any timeout) if:
   1146 	 *   1. the current count is less than the low water mark,
   1147 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1148 	 *	receive operation at once if we block (resid <= hiwat), or
   1149 	 *   3. MSG_DONTWAIT is not set.
   1150 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1151 	 * we have to do the receive in sections, and thus risk returning
   1152 	 * a short count if a timeout or signal occurs after we start.
   1153 	 */
   1154 	if (m == NULL ||
   1155 	    ((flags & MSG_DONTWAIT) == 0 &&
   1156 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1157 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1158 	      ((flags & MSG_WAITALL) &&
   1159 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1160 	     m->m_nextpkt == NULL && !atomic)) {
   1161 #ifdef DIAGNOSTIC
   1162 		if (m == NULL && so->so_rcv.sb_cc)
   1163 			panic("receive 1");
   1164 #endif
   1165 		if (so->so_error) {
   1166 			if (m != NULL)
   1167 				goto dontblock;
   1168 			error = so->so_error;
   1169 			if ((flags & MSG_PEEK) == 0)
   1170 				so->so_error = 0;
   1171 			goto release;
   1172 		}
   1173 		if (so->so_state & SS_CANTRCVMORE) {
   1174 			if (m != NULL)
   1175 				goto dontblock;
   1176 			else
   1177 				goto release;
   1178 		}
   1179 		for (; m != NULL; m = m->m_next)
   1180 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1181 				m = so->so_rcv.sb_mb;
   1182 				goto dontblock;
   1183 			}
   1184 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1185 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1186 			error = ENOTCONN;
   1187 			goto release;
   1188 		}
   1189 		if (uio->uio_resid == 0)
   1190 			goto release;
   1191 		if (so->so_nbio || (flags & MSG_DONTWAIT)) {
   1192 			error = EWOULDBLOCK;
   1193 			goto release;
   1194 		}
   1195 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1196 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1197 		sbunlock(&so->so_rcv);
   1198 		error = sbwait(&so->so_rcv);
   1199 		if (error != 0) {
   1200 			sounlock(so);
   1201 			splx(s);
   1202 			return error;
   1203 		}
   1204 		goto restart;
   1205 	}
   1206  dontblock:
   1207 	/*
   1208 	 * On entry here, m points to the first record of the socket buffer.
   1209 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1210 	 * pointer to the next record in the socket buffer.  We must keep the
   1211 	 * various socket buffer pointers and local stack versions of the
   1212 	 * pointers in sync, pushing out modifications before dropping the
   1213 	 * socket lock, and re-reading them when picking it up.
   1214 	 *
   1215 	 * Otherwise, we will race with the network stack appending new data
   1216 	 * or records onto the socket buffer by using inconsistent/stale
   1217 	 * versions of the field, possibly resulting in socket buffer
   1218 	 * corruption.
   1219 	 *
   1220 	 * By holding the high-level sblock(), we prevent simultaneous
   1221 	 * readers from pulling off the front of the socket buffer.
   1222 	 */
   1223 	if (l != NULL)
   1224 		l->l_ru.ru_msgrcv++;
   1225 	KASSERT(m == so->so_rcv.sb_mb);
   1226 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1227 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1228 	nextrecord = m->m_nextpkt;
   1229 	if (pr->pr_flags & PR_ADDR) {
   1230 #ifdef DIAGNOSTIC
   1231 		if (m->m_type != MT_SONAME)
   1232 			panic("receive 1a");
   1233 #endif
   1234 		orig_resid = 0;
   1235 		if (flags & MSG_PEEK) {
   1236 			if (paddr)
   1237 				*paddr = m_copy(m, 0, m->m_len);
   1238 			m = m->m_next;
   1239 		} else {
   1240 			sbfree(&so->so_rcv, m);
   1241 			mbuf_removed = 1;
   1242 			if (paddr != NULL) {
   1243 				*paddr = m;
   1244 				so->so_rcv.sb_mb = m->m_next;
   1245 				m->m_next = NULL;
   1246 				m = so->so_rcv.sb_mb;
   1247 			} else {
   1248 				MFREE(m, so->so_rcv.sb_mb);
   1249 				m = so->so_rcv.sb_mb;
   1250 			}
   1251 			sbsync(&so->so_rcv, nextrecord);
   1252 		}
   1253 	}
   1254 
   1255 	/*
   1256 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1257 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1258 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1259 	 * perform externalization (or freeing if controlp == NULL).
   1260 	 */
   1261 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1262 		struct mbuf *cm = NULL, *cmn;
   1263 		struct mbuf **cme = &cm;
   1264 
   1265 		do {
   1266 			if (flags & MSG_PEEK) {
   1267 				if (controlp != NULL) {
   1268 					*controlp = m_copy(m, 0, m->m_len);
   1269 					controlp = &(*controlp)->m_next;
   1270 				}
   1271 				m = m->m_next;
   1272 			} else {
   1273 				sbfree(&so->so_rcv, m);
   1274 				so->so_rcv.sb_mb = m->m_next;
   1275 				m->m_next = NULL;
   1276 				*cme = m;
   1277 				cme = &(*cme)->m_next;
   1278 				m = so->so_rcv.sb_mb;
   1279 			}
   1280 		} while (m != NULL && m->m_type == MT_CONTROL);
   1281 		if ((flags & MSG_PEEK) == 0)
   1282 			sbsync(&so->so_rcv, nextrecord);
   1283 		for (; cm != NULL; cm = cmn) {
   1284 			cmn = cm->m_next;
   1285 			cm->m_next = NULL;
   1286 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1287 			if (controlp != NULL) {
   1288 				if (dom->dom_externalize != NULL &&
   1289 				    type == SCM_RIGHTS) {
   1290 					sounlock(so);
   1291 					splx(s);
   1292 					error = (*dom->dom_externalize)(cm, l);
   1293 					s = splsoftnet();
   1294 					solock(so);
   1295 				}
   1296 				*controlp = cm;
   1297 				while (*controlp != NULL)
   1298 					controlp = &(*controlp)->m_next;
   1299 			} else {
   1300 				/*
   1301 				 * Dispose of any SCM_RIGHTS message that went
   1302 				 * through the read path rather than recv.
   1303 				 */
   1304 				if (dom->dom_dispose != NULL &&
   1305 				    type == SCM_RIGHTS) {
   1306 				    	sounlock(so);
   1307 					(*dom->dom_dispose)(cm);
   1308 					solock(so);
   1309 				}
   1310 				m_freem(cm);
   1311 			}
   1312 		}
   1313 		if (m != NULL)
   1314 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1315 		else
   1316 			nextrecord = so->so_rcv.sb_mb;
   1317 		orig_resid = 0;
   1318 	}
   1319 
   1320 	/* If m is non-NULL, we have some data to read. */
   1321 	if (__predict_true(m != NULL)) {
   1322 		type = m->m_type;
   1323 		if (type == MT_OOBDATA)
   1324 			flags |= MSG_OOB;
   1325 	}
   1326 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1327 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1328 
   1329 	moff = 0;
   1330 	offset = 0;
   1331 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1332 		if (m->m_type == MT_OOBDATA) {
   1333 			if (type != MT_OOBDATA)
   1334 				break;
   1335 		} else if (type == MT_OOBDATA)
   1336 			break;
   1337 #ifdef DIAGNOSTIC
   1338 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1339 			panic("receive 3");
   1340 #endif
   1341 		so->so_state &= ~SS_RCVATMARK;
   1342 		len = uio->uio_resid;
   1343 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1344 			len = so->so_oobmark - offset;
   1345 		if (len > m->m_len - moff)
   1346 			len = m->m_len - moff;
   1347 		/*
   1348 		 * If mp is set, just pass back the mbufs.
   1349 		 * Otherwise copy them out via the uio, then free.
   1350 		 * Sockbuf must be consistent here (points to current mbuf,
   1351 		 * it points to next record) when we drop priority;
   1352 		 * we must note any additions to the sockbuf when we
   1353 		 * block interrupts again.
   1354 		 */
   1355 		if (mp == NULL) {
   1356 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1357 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1358 			sounlock(so);
   1359 			splx(s);
   1360 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
   1361 			s = splsoftnet();
   1362 			solock(so);
   1363 			if (error != 0) {
   1364 				/*
   1365 				 * If any part of the record has been removed
   1366 				 * (such as the MT_SONAME mbuf, which will
   1367 				 * happen when PR_ADDR, and thus also
   1368 				 * PR_ATOMIC, is set), then drop the entire
   1369 				 * record to maintain the atomicity of the
   1370 				 * receive operation.
   1371 				 *
   1372 				 * This avoids a later panic("receive 1a")
   1373 				 * when compiled with DIAGNOSTIC.
   1374 				 */
   1375 				if (m && mbuf_removed && atomic)
   1376 					(void) sbdroprecord(&so->so_rcv);
   1377 
   1378 				goto release;
   1379 			}
   1380 		} else
   1381 			uio->uio_resid -= len;
   1382 		if (len == m->m_len - moff) {
   1383 			if (m->m_flags & M_EOR)
   1384 				flags |= MSG_EOR;
   1385 			if (flags & MSG_PEEK) {
   1386 				m = m->m_next;
   1387 				moff = 0;
   1388 			} else {
   1389 				nextrecord = m->m_nextpkt;
   1390 				sbfree(&so->so_rcv, m);
   1391 				if (mp) {
   1392 					*mp = m;
   1393 					mp = &m->m_next;
   1394 					so->so_rcv.sb_mb = m = m->m_next;
   1395 					*mp = NULL;
   1396 				} else {
   1397 					MFREE(m, so->so_rcv.sb_mb);
   1398 					m = so->so_rcv.sb_mb;
   1399 				}
   1400 				/*
   1401 				 * If m != NULL, we also know that
   1402 				 * so->so_rcv.sb_mb != NULL.
   1403 				 */
   1404 				KASSERT(so->so_rcv.sb_mb == m);
   1405 				if (m) {
   1406 					m->m_nextpkt = nextrecord;
   1407 					if (nextrecord == NULL)
   1408 						so->so_rcv.sb_lastrecord = m;
   1409 				} else {
   1410 					so->so_rcv.sb_mb = nextrecord;
   1411 					SB_EMPTY_FIXUP(&so->so_rcv);
   1412 				}
   1413 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1414 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1415 			}
   1416 		} else if (flags & MSG_PEEK)
   1417 			moff += len;
   1418 		else {
   1419 			if (mp != NULL) {
   1420 				mt = m_copym(m, 0, len, M_NOWAIT);
   1421 				if (__predict_false(mt == NULL)) {
   1422 					sounlock(so);
   1423 					mt = m_copym(m, 0, len, M_WAIT);
   1424 					solock(so);
   1425 				}
   1426 				*mp = mt;
   1427 			}
   1428 			m->m_data += len;
   1429 			m->m_len -= len;
   1430 			so->so_rcv.sb_cc -= len;
   1431 		}
   1432 		if (so->so_oobmark) {
   1433 			if ((flags & MSG_PEEK) == 0) {
   1434 				so->so_oobmark -= len;
   1435 				if (so->so_oobmark == 0) {
   1436 					so->so_state |= SS_RCVATMARK;
   1437 					break;
   1438 				}
   1439 			} else {
   1440 				offset += len;
   1441 				if (offset == so->so_oobmark)
   1442 					break;
   1443 			}
   1444 		}
   1445 		if (flags & MSG_EOR)
   1446 			break;
   1447 		/*
   1448 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1449 		 * we must not quit until "uio->uio_resid == 0" or an error
   1450 		 * termination.  If a signal/timeout occurs, return
   1451 		 * with a short count but without error.
   1452 		 * Keep sockbuf locked against other readers.
   1453 		 */
   1454 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1455 		    !sosendallatonce(so) && !nextrecord) {
   1456 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1457 				break;
   1458 			/*
   1459 			 * If we are peeking and the socket receive buffer is
   1460 			 * full, stop since we can't get more data to peek at.
   1461 			 */
   1462 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1463 				break;
   1464 			/*
   1465 			 * If we've drained the socket buffer, tell the
   1466 			 * protocol in case it needs to do something to
   1467 			 * get it filled again.
   1468 			 */
   1469 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1470 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1471 				    NULL, (struct mbuf *)(long)flags, NULL, l);
   1472 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1473 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1474 			error = sbwait(&so->so_rcv);
   1475 			if (error != 0) {
   1476 				sbunlock(&so->so_rcv);
   1477 				sounlock(so);
   1478 				splx(s);
   1479 				return 0;
   1480 			}
   1481 			if ((m = so->so_rcv.sb_mb) != NULL)
   1482 				nextrecord = m->m_nextpkt;
   1483 		}
   1484 	}
   1485 
   1486 	if (m && atomic) {
   1487 		flags |= MSG_TRUNC;
   1488 		if ((flags & MSG_PEEK) == 0)
   1489 			(void) sbdroprecord(&so->so_rcv);
   1490 	}
   1491 	if ((flags & MSG_PEEK) == 0) {
   1492 		if (m == NULL) {
   1493 			/*
   1494 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1495 			 * part makes sure sb_lastrecord is up-to-date if
   1496 			 * there is still data in the socket buffer.
   1497 			 */
   1498 			so->so_rcv.sb_mb = nextrecord;
   1499 			if (so->so_rcv.sb_mb == NULL) {
   1500 				so->so_rcv.sb_mbtail = NULL;
   1501 				so->so_rcv.sb_lastrecord = NULL;
   1502 			} else if (nextrecord->m_nextpkt == NULL)
   1503 				so->so_rcv.sb_lastrecord = nextrecord;
   1504 		}
   1505 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1506 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1507 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1508 			(*pr->pr_usrreq)(so, PRU_RCVD, NULL,
   1509 			    (struct mbuf *)(long)flags, NULL, l);
   1510 	}
   1511 	if (orig_resid == uio->uio_resid && orig_resid &&
   1512 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1513 		sbunlock(&so->so_rcv);
   1514 		goto restart;
   1515 	}
   1516 
   1517 	if (flagsp != NULL)
   1518 		*flagsp |= flags;
   1519  release:
   1520 	sbunlock(&so->so_rcv);
   1521 	sounlock(so);
   1522 	splx(s);
   1523 	return error;
   1524 }
   1525 
   1526 int
   1527 soshutdown(struct socket *so, int how)
   1528 {
   1529 	const struct protosw	*pr;
   1530 	int	error;
   1531 
   1532 	KASSERT(solocked(so));
   1533 
   1534 	pr = so->so_proto;
   1535 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1536 		return (EINVAL);
   1537 
   1538 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1539 		sorflush(so);
   1540 		error = 0;
   1541 	}
   1542 	if (how == SHUT_WR || how == SHUT_RDWR)
   1543 		error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
   1544 		    NULL, NULL, NULL);
   1545 
   1546 	return error;
   1547 }
   1548 
   1549 void
   1550 sorflush(struct socket *so)
   1551 {
   1552 	struct sockbuf	*sb, asb;
   1553 	const struct protosw	*pr;
   1554 
   1555 	KASSERT(solocked(so));
   1556 
   1557 	sb = &so->so_rcv;
   1558 	pr = so->so_proto;
   1559 	socantrcvmore(so);
   1560 	sb->sb_flags |= SB_NOINTR;
   1561 	(void )sblock(sb, M_WAITOK);
   1562 	sbunlock(sb);
   1563 	asb = *sb;
   1564 	/*
   1565 	 * Clear most of the sockbuf structure, but leave some of the
   1566 	 * fields valid.
   1567 	 */
   1568 	memset(&sb->sb_startzero, 0,
   1569 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1570 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1571 		sounlock(so);
   1572 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1573 		solock(so);
   1574 	}
   1575 	sbrelease(&asb, so);
   1576 }
   1577 
   1578 static int
   1579 sosetopt1(struct socket *so, int level, int optname, struct mbuf *m)
   1580 {
   1581 #ifdef INET
   1582 	int error, optval, val;
   1583 #else
   1584 	int optval, val;
   1585 #endif
   1586 	struct linger	*l;
   1587 	struct sockbuf	*sb;
   1588 	struct timeval *tv;
   1589 
   1590 	switch (optname) {
   1591 
   1592 #ifdef INET
   1593 	case SO_ACCEPTFILTER:
   1594 		error = do_setopt_accept_filter(so, m);
   1595 		if (error)
   1596 			return error;
   1597 		break;
   1598 #endif
   1599 
   1600 	case SO_LINGER:
   1601 		if (m == NULL || m->m_len != sizeof(struct linger))
   1602 			return EINVAL;
   1603 		l = mtod(m, struct linger *);
   1604 		if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
   1605 		    l->l_linger > (INT_MAX / hz))
   1606 			return EDOM;
   1607 		so->so_linger = l->l_linger;
   1608 		if (l->l_onoff)
   1609 			so->so_options |= SO_LINGER;
   1610 		else
   1611 			so->so_options &= ~SO_LINGER;
   1612 		break;
   1613 
   1614 	case SO_DEBUG:
   1615 	case SO_KEEPALIVE:
   1616 	case SO_DONTROUTE:
   1617 	case SO_USELOOPBACK:
   1618 	case SO_BROADCAST:
   1619 	case SO_REUSEADDR:
   1620 	case SO_REUSEPORT:
   1621 	case SO_OOBINLINE:
   1622 	case SO_TIMESTAMP:
   1623 		if (m == NULL || m->m_len < sizeof(int))
   1624 			return EINVAL;
   1625 		if (*mtod(m, int *))
   1626 			so->so_options |= optname;
   1627 		else
   1628 			so->so_options &= ~optname;
   1629 		break;
   1630 
   1631 	case SO_SNDBUF:
   1632 	case SO_RCVBUF:
   1633 	case SO_SNDLOWAT:
   1634 	case SO_RCVLOWAT:
   1635 		if (m == NULL || m->m_len < sizeof(int))
   1636 			return EINVAL;
   1637 
   1638 		/*
   1639 		 * Values < 1 make no sense for any of these
   1640 		 * options, so disallow them.
   1641 		 */
   1642 		optval = *mtod(m, int *);
   1643 		if (optval < 1)
   1644 			return EINVAL;
   1645 
   1646 		switch (optname) {
   1647 
   1648 		case SO_SNDBUF:
   1649 		case SO_RCVBUF:
   1650 			sb = (optname == SO_SNDBUF) ?
   1651 			    &so->so_snd : &so->so_rcv;
   1652 			if (sbreserve(sb, (u_long)optval, so) == 0)
   1653 				return ENOBUFS;
   1654 			sb->sb_flags &= ~SB_AUTOSIZE;
   1655 			break;
   1656 
   1657 		/*
   1658 		 * Make sure the low-water is never greater than
   1659 		 * the high-water.
   1660 		 */
   1661 		case SO_SNDLOWAT:
   1662 			so->so_snd.sb_lowat =
   1663 			    (optval > so->so_snd.sb_hiwat) ?
   1664 			    so->so_snd.sb_hiwat : optval;
   1665 			break;
   1666 		case SO_RCVLOWAT:
   1667 			so->so_rcv.sb_lowat =
   1668 			    (optval > so->so_rcv.sb_hiwat) ?
   1669 			    so->so_rcv.sb_hiwat : optval;
   1670 			break;
   1671 		}
   1672 		break;
   1673 
   1674 	case SO_SNDTIMEO:
   1675 	case SO_RCVTIMEO:
   1676 		if (m == NULL || m->m_len < sizeof(*tv))
   1677 			return EINVAL;
   1678 		tv = mtod(m, struct timeval *);
   1679 		if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz)
   1680 			return EDOM;
   1681 		val = tv->tv_sec * hz + tv->tv_usec / tick;
   1682 		if (val == 0 && tv->tv_usec != 0)
   1683 			val = 1;
   1684 
   1685 		switch (optname) {
   1686 
   1687 		case SO_SNDTIMEO:
   1688 			so->so_snd.sb_timeo = val;
   1689 			break;
   1690 		case SO_RCVTIMEO:
   1691 			so->so_rcv.sb_timeo = val;
   1692 			break;
   1693 		}
   1694 		break;
   1695 
   1696 	default:
   1697 		return ENOPROTOOPT;
   1698 	}
   1699 	return 0;
   1700 }
   1701 
   1702 int
   1703 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
   1704 {
   1705 	int error, prerr;
   1706 
   1707 	solock(so);
   1708 	if (level == SOL_SOCKET)
   1709 		error = sosetopt1(so, level, optname, m);
   1710 	else
   1711 		error = ENOPROTOOPT;
   1712 
   1713 	if ((error == 0 || error == ENOPROTOOPT) &&
   1714 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1715 		/* give the protocol stack a shot */
   1716 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, level,
   1717 		    optname, &m);
   1718 		if (prerr == 0)
   1719 			error = 0;
   1720 		else if (prerr != ENOPROTOOPT)
   1721 			error = prerr;
   1722 	} else if (m != NULL)
   1723 		(void)m_free(m);
   1724 	sounlock(so);
   1725 	return error;
   1726 }
   1727 
   1728 int
   1729 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
   1730 {
   1731 	struct mbuf	*m;
   1732 	int		error;
   1733 
   1734 	solock(so);
   1735 	if (level != SOL_SOCKET) {
   1736 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1737 			error = ((*so->so_proto->pr_ctloutput)
   1738 				  (PRCO_GETOPT, so, level, optname, mp));
   1739 		} else
   1740 			error = (ENOPROTOOPT);
   1741 	} else {
   1742 		m = m_get(M_WAIT, MT_SOOPTS);
   1743 		m->m_len = sizeof(int);
   1744 
   1745 		switch (optname) {
   1746 
   1747 #ifdef INET
   1748 		case SO_ACCEPTFILTER:
   1749 			error = do_getopt_accept_filter(so, m);
   1750 			break;
   1751 #endif
   1752 
   1753 		case SO_LINGER:
   1754 			m->m_len = sizeof(struct linger);
   1755 			mtod(m, struct linger *)->l_onoff =
   1756 			    (so->so_options & SO_LINGER) ? 1 : 0;
   1757 			mtod(m, struct linger *)->l_linger = so->so_linger;
   1758 			break;
   1759 
   1760 		case SO_USELOOPBACK:
   1761 		case SO_DONTROUTE:
   1762 		case SO_DEBUG:
   1763 		case SO_KEEPALIVE:
   1764 		case SO_REUSEADDR:
   1765 		case SO_REUSEPORT:
   1766 		case SO_BROADCAST:
   1767 		case SO_OOBINLINE:
   1768 		case SO_TIMESTAMP:
   1769 			*mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
   1770 			break;
   1771 
   1772 		case SO_TYPE:
   1773 			*mtod(m, int *) = so->so_type;
   1774 			break;
   1775 
   1776 		case SO_ERROR:
   1777 			*mtod(m, int *) = so->so_error;
   1778 			so->so_error = 0;
   1779 			break;
   1780 
   1781 		case SO_SNDBUF:
   1782 			*mtod(m, int *) = so->so_snd.sb_hiwat;
   1783 			break;
   1784 
   1785 		case SO_RCVBUF:
   1786 			*mtod(m, int *) = so->so_rcv.sb_hiwat;
   1787 			break;
   1788 
   1789 		case SO_SNDLOWAT:
   1790 			*mtod(m, int *) = so->so_snd.sb_lowat;
   1791 			break;
   1792 
   1793 		case SO_RCVLOWAT:
   1794 			*mtod(m, int *) = so->so_rcv.sb_lowat;
   1795 			break;
   1796 
   1797 		case SO_SNDTIMEO:
   1798 		case SO_RCVTIMEO:
   1799 		    {
   1800 			int val = (optname == SO_SNDTIMEO ?
   1801 			     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1802 
   1803 			m->m_len = sizeof(struct timeval);
   1804 			mtod(m, struct timeval *)->tv_sec = val / hz;
   1805 			mtod(m, struct timeval *)->tv_usec =
   1806 			    (val % hz) * tick;
   1807 			break;
   1808 		    }
   1809 
   1810 		case SO_OVERFLOWED:
   1811 			*mtod(m, int *) = so->so_rcv.sb_overflowed;
   1812 			break;
   1813 
   1814 		default:
   1815 			sounlock(so);
   1816 			(void)m_free(m);
   1817 			return (ENOPROTOOPT);
   1818 		}
   1819 		*mp = m;
   1820 		error = 0;
   1821 	}
   1822 
   1823 	sounlock(so);
   1824 	return (error);
   1825 }
   1826 
   1827 void
   1828 sohasoutofband(struct socket *so)
   1829 {
   1830 
   1831 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   1832 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, 0);
   1833 }
   1834 
   1835 static void
   1836 filt_sordetach(struct knote *kn)
   1837 {
   1838 	struct socket	*so;
   1839 
   1840 	so = ((file_t *)kn->kn_obj)->f_data;
   1841 	solock(so);
   1842 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   1843 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   1844 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   1845 	sounlock(so);
   1846 }
   1847 
   1848 /*ARGSUSED*/
   1849 static int
   1850 filt_soread(struct knote *kn, long hint)
   1851 {
   1852 	struct socket	*so;
   1853 	int rv;
   1854 
   1855 	so = ((file_t *)kn->kn_obj)->f_data;
   1856 	if (hint != NOTE_SUBMIT)
   1857 		solock(so);
   1858 	kn->kn_data = so->so_rcv.sb_cc;
   1859 	if (so->so_state & SS_CANTRCVMORE) {
   1860 		kn->kn_flags |= EV_EOF;
   1861 		kn->kn_fflags = so->so_error;
   1862 		rv = 1;
   1863 	} else if (so->so_error)	/* temporary udp error */
   1864 		rv = 1;
   1865 	else if (kn->kn_sfflags & NOTE_LOWAT)
   1866 		rv = (kn->kn_data >= kn->kn_sdata);
   1867 	else
   1868 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   1869 	if (hint != NOTE_SUBMIT)
   1870 		sounlock(so);
   1871 	return rv;
   1872 }
   1873 
   1874 static void
   1875 filt_sowdetach(struct knote *kn)
   1876 {
   1877 	struct socket	*so;
   1878 
   1879 	so = ((file_t *)kn->kn_obj)->f_data;
   1880 	solock(so);
   1881 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   1882 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   1883 		so->so_snd.sb_flags &= ~SB_KNOTE;
   1884 	sounlock(so);
   1885 }
   1886 
   1887 /*ARGSUSED*/
   1888 static int
   1889 filt_sowrite(struct knote *kn, long hint)
   1890 {
   1891 	struct socket	*so;
   1892 	int rv;
   1893 
   1894 	so = ((file_t *)kn->kn_obj)->f_data;
   1895 	if (hint != NOTE_SUBMIT)
   1896 		solock(so);
   1897 	kn->kn_data = sbspace(&so->so_snd);
   1898 	if (so->so_state & SS_CANTSENDMORE) {
   1899 		kn->kn_flags |= EV_EOF;
   1900 		kn->kn_fflags = so->so_error;
   1901 		rv = 1;
   1902 	} else if (so->so_error)	/* temporary udp error */
   1903 		rv = 1;
   1904 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   1905 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   1906 		rv = 0;
   1907 	else if (kn->kn_sfflags & NOTE_LOWAT)
   1908 		rv = (kn->kn_data >= kn->kn_sdata);
   1909 	else
   1910 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   1911 	if (hint != NOTE_SUBMIT)
   1912 		sounlock(so);
   1913 	return rv;
   1914 }
   1915 
   1916 /*ARGSUSED*/
   1917 static int
   1918 filt_solisten(struct knote *kn, long hint)
   1919 {
   1920 	struct socket	*so;
   1921 	int rv;
   1922 
   1923 	so = ((file_t *)kn->kn_obj)->f_data;
   1924 
   1925 	/*
   1926 	 * Set kn_data to number of incoming connections, not
   1927 	 * counting partial (incomplete) connections.
   1928 	 */
   1929 	if (hint != NOTE_SUBMIT)
   1930 		solock(so);
   1931 	kn->kn_data = so->so_qlen;
   1932 	rv = (kn->kn_data > 0);
   1933 	if (hint != NOTE_SUBMIT)
   1934 		sounlock(so);
   1935 	return rv;
   1936 }
   1937 
   1938 static const struct filterops solisten_filtops =
   1939 	{ 1, NULL, filt_sordetach, filt_solisten };
   1940 static const struct filterops soread_filtops =
   1941 	{ 1, NULL, filt_sordetach, filt_soread };
   1942 static const struct filterops sowrite_filtops =
   1943 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   1944 
   1945 int
   1946 soo_kqfilter(struct file *fp, struct knote *kn)
   1947 {
   1948 	struct socket	*so;
   1949 	struct sockbuf	*sb;
   1950 
   1951 	so = ((file_t *)kn->kn_obj)->f_data;
   1952 	solock(so);
   1953 	switch (kn->kn_filter) {
   1954 	case EVFILT_READ:
   1955 		if (so->so_options & SO_ACCEPTCONN)
   1956 			kn->kn_fop = &solisten_filtops;
   1957 		else
   1958 			kn->kn_fop = &soread_filtops;
   1959 		sb = &so->so_rcv;
   1960 		break;
   1961 	case EVFILT_WRITE:
   1962 		kn->kn_fop = &sowrite_filtops;
   1963 		sb = &so->so_snd;
   1964 		break;
   1965 	default:
   1966 		sounlock(so);
   1967 		return (EINVAL);
   1968 	}
   1969 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   1970 	sb->sb_flags |= SB_KNOTE;
   1971 	sounlock(so);
   1972 	return (0);
   1973 }
   1974 
   1975 static int
   1976 sodopoll(struct socket *so, int events)
   1977 {
   1978 	int revents;
   1979 
   1980 	revents = 0;
   1981 
   1982 	if (events & (POLLIN | POLLRDNORM))
   1983 		if (soreadable(so))
   1984 			revents |= events & (POLLIN | POLLRDNORM);
   1985 
   1986 	if (events & (POLLOUT | POLLWRNORM))
   1987 		if (sowritable(so))
   1988 			revents |= events & (POLLOUT | POLLWRNORM);
   1989 
   1990 	if (events & (POLLPRI | POLLRDBAND))
   1991 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   1992 			revents |= events & (POLLPRI | POLLRDBAND);
   1993 
   1994 	return revents;
   1995 }
   1996 
   1997 int
   1998 sopoll(struct socket *so, int events)
   1999 {
   2000 	int revents = 0;
   2001 
   2002 #ifndef DIAGNOSTIC
   2003 	/*
   2004 	 * Do a quick, unlocked check in expectation that the socket
   2005 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2006 	 * as the solocked() assertions will fail.
   2007 	 */
   2008 	if ((revents = sodopoll(so, events)) != 0)
   2009 		return revents;
   2010 #endif
   2011 
   2012 	solock(so);
   2013 	if ((revents = sodopoll(so, events)) == 0) {
   2014 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2015 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2016 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2017 		}
   2018 
   2019 		if (events & (POLLOUT | POLLWRNORM)) {
   2020 			selrecord(curlwp, &so->so_snd.sb_sel);
   2021 			so->so_snd.sb_flags |= SB_NOTIFY;
   2022 		}
   2023 	}
   2024 	sounlock(so);
   2025 
   2026 	return revents;
   2027 }
   2028 
   2029 
   2030 #include <sys/sysctl.h>
   2031 
   2032 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2033 
   2034 /*
   2035  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2036  * value is not too small.
   2037  * (XXX should we maybe make sure it's not too large as well?)
   2038  */
   2039 static int
   2040 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2041 {
   2042 	int error, new_somaxkva;
   2043 	struct sysctlnode node;
   2044 
   2045 	new_somaxkva = somaxkva;
   2046 	node = *rnode;
   2047 	node.sysctl_data = &new_somaxkva;
   2048 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2049 	if (error || newp == NULL)
   2050 		return (error);
   2051 
   2052 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2053 		return (EINVAL);
   2054 
   2055 	mutex_enter(&so_pendfree_lock);
   2056 	somaxkva = new_somaxkva;
   2057 	cv_broadcast(&socurkva_cv);
   2058 	mutex_exit(&so_pendfree_lock);
   2059 
   2060 	return (error);
   2061 }
   2062 
   2063 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
   2064 {
   2065 
   2066 	sysctl_createv(clog, 0, NULL, NULL,
   2067 		       CTLFLAG_PERMANENT,
   2068 		       CTLTYPE_NODE, "kern", NULL,
   2069 		       NULL, 0, NULL, 0,
   2070 		       CTL_KERN, CTL_EOL);
   2071 
   2072 	sysctl_createv(clog, 0, NULL, NULL,
   2073 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2074 		       CTLTYPE_INT, "somaxkva",
   2075 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2076 				    "used for socket buffers"),
   2077 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2078 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2079 }
   2080