uipc_socket.c revision 1.170 1 /* $NetBSD: uipc_socket.c,v 1.170 2008/08/04 03:55:47 tls Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.170 2008/08/04 03:55:47 tls Exp $");
67
68 #include "opt_inet.h"
69 #include "opt_sock_counters.h"
70 #include "opt_sosend_loan.h"
71 #include "opt_mbuftrace.h"
72 #include "opt_somaxkva.h"
73 #include "opt_multiprocessor.h" /* XXX */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/file.h>
79 #include <sys/filedesc.h>
80 #include <sys/malloc.h>
81 #include <sys/mbuf.h>
82 #include <sys/domain.h>
83 #include <sys/kernel.h>
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/signalvar.h>
88 #include <sys/resourcevar.h>
89 #include <sys/event.h>
90 #include <sys/poll.h>
91 #include <sys/kauth.h>
92 #include <sys/mutex.h>
93 #include <sys/condvar.h>
94
95 #include <uvm/uvm.h>
96
97 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
98 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
99
100 extern const struct fileops socketops;
101
102 extern int somaxconn; /* patchable (XXX sysctl) */
103 int somaxconn = SOMAXCONN;
104 kmutex_t *softnet_lock;
105
106 #ifdef SOSEND_COUNTERS
107 #include <sys/device.h>
108
109 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
110 NULL, "sosend", "loan big");
111 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
112 NULL, "sosend", "copy big");
113 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
114 NULL, "sosend", "copy small");
115 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
116 NULL, "sosend", "kva limit");
117
118 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
119
120 EVCNT_ATTACH_STATIC(sosend_loan_big);
121 EVCNT_ATTACH_STATIC(sosend_copy_big);
122 EVCNT_ATTACH_STATIC(sosend_copy_small);
123 EVCNT_ATTACH_STATIC(sosend_kvalimit);
124 #else
125
126 #define SOSEND_COUNTER_INCR(ev) /* nothing */
127
128 #endif /* SOSEND_COUNTERS */
129
130 static struct callback_entry sokva_reclaimerentry;
131
132 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
133 int sock_loan_thresh = -1;
134 #else
135 int sock_loan_thresh = 4096;
136 #endif
137
138 static kmutex_t so_pendfree_lock;
139 static struct mbuf *so_pendfree;
140
141 #ifndef SOMAXKVA
142 #define SOMAXKVA (16 * 1024 * 1024)
143 #endif
144 int somaxkva = SOMAXKVA;
145 static int socurkva;
146 static kcondvar_t socurkva_cv;
147
148 #define SOCK_LOAN_CHUNK 65536
149
150 static size_t sodopendfree(void);
151 static size_t sodopendfreel(void);
152
153 static vsize_t
154 sokvareserve(struct socket *so, vsize_t len)
155 {
156 int error;
157
158 mutex_enter(&so_pendfree_lock);
159 while (socurkva + len > somaxkva) {
160 size_t freed;
161
162 /*
163 * try to do pendfree.
164 */
165
166 freed = sodopendfreel();
167
168 /*
169 * if some kva was freed, try again.
170 */
171
172 if (freed)
173 continue;
174
175 SOSEND_COUNTER_INCR(&sosend_kvalimit);
176 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
177 if (error) {
178 len = 0;
179 break;
180 }
181 }
182 socurkva += len;
183 mutex_exit(&so_pendfree_lock);
184 return len;
185 }
186
187 static void
188 sokvaunreserve(vsize_t len)
189 {
190
191 mutex_enter(&so_pendfree_lock);
192 socurkva -= len;
193 cv_broadcast(&socurkva_cv);
194 mutex_exit(&so_pendfree_lock);
195 }
196
197 /*
198 * sokvaalloc: allocate kva for loan.
199 */
200
201 vaddr_t
202 sokvaalloc(vsize_t len, struct socket *so)
203 {
204 vaddr_t lva;
205
206 /*
207 * reserve kva.
208 */
209
210 if (sokvareserve(so, len) == 0)
211 return 0;
212
213 /*
214 * allocate kva.
215 */
216
217 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
218 if (lva == 0) {
219 sokvaunreserve(len);
220 return (0);
221 }
222
223 return lva;
224 }
225
226 /*
227 * sokvafree: free kva for loan.
228 */
229
230 void
231 sokvafree(vaddr_t sva, vsize_t len)
232 {
233
234 /*
235 * free kva.
236 */
237
238 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
239
240 /*
241 * unreserve kva.
242 */
243
244 sokvaunreserve(len);
245 }
246
247 static void
248 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
249 {
250 vaddr_t sva, eva;
251 vsize_t len;
252 int npgs;
253
254 KASSERT(pgs != NULL);
255
256 eva = round_page((vaddr_t) buf + size);
257 sva = trunc_page((vaddr_t) buf);
258 len = eva - sva;
259 npgs = len >> PAGE_SHIFT;
260
261 pmap_kremove(sva, len);
262 pmap_update(pmap_kernel());
263 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
264 sokvafree(sva, len);
265 }
266
267 static size_t
268 sodopendfree(void)
269 {
270 size_t rv;
271
272 if (__predict_true(so_pendfree == NULL))
273 return 0;
274
275 mutex_enter(&so_pendfree_lock);
276 rv = sodopendfreel();
277 mutex_exit(&so_pendfree_lock);
278
279 return rv;
280 }
281
282 /*
283 * sodopendfreel: free mbufs on "pendfree" list.
284 * unlock and relock so_pendfree_lock when freeing mbufs.
285 *
286 * => called with so_pendfree_lock held.
287 */
288
289 static size_t
290 sodopendfreel(void)
291 {
292 struct mbuf *m, *next;
293 size_t rv = 0;
294
295 KASSERT(mutex_owned(&so_pendfree_lock));
296
297 while (so_pendfree != NULL) {
298 m = so_pendfree;
299 so_pendfree = NULL;
300 mutex_exit(&so_pendfree_lock);
301
302 for (; m != NULL; m = next) {
303 next = m->m_next;
304 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
305 KASSERT(m->m_ext.ext_refcnt == 0);
306
307 rv += m->m_ext.ext_size;
308 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
309 m->m_ext.ext_size);
310 pool_cache_put(mb_cache, m);
311 }
312
313 mutex_enter(&so_pendfree_lock);
314 }
315
316 return (rv);
317 }
318
319 void
320 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
321 {
322
323 KASSERT(m != NULL);
324
325 /*
326 * postpone freeing mbuf.
327 *
328 * we can't do it in interrupt context
329 * because we need to put kva back to kernel_map.
330 */
331
332 mutex_enter(&so_pendfree_lock);
333 m->m_next = so_pendfree;
334 so_pendfree = m;
335 cv_broadcast(&socurkva_cv);
336 mutex_exit(&so_pendfree_lock);
337 }
338
339 static long
340 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
341 {
342 struct iovec *iov = uio->uio_iov;
343 vaddr_t sva, eva;
344 vsize_t len;
345 vaddr_t lva;
346 int npgs, error;
347 vaddr_t va;
348 int i;
349
350 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
351 return (0);
352
353 if (iov->iov_len < (size_t) space)
354 space = iov->iov_len;
355 if (space > SOCK_LOAN_CHUNK)
356 space = SOCK_LOAN_CHUNK;
357
358 eva = round_page((vaddr_t) iov->iov_base + space);
359 sva = trunc_page((vaddr_t) iov->iov_base);
360 len = eva - sva;
361 npgs = len >> PAGE_SHIFT;
362
363 KASSERT(npgs <= M_EXT_MAXPAGES);
364
365 lva = sokvaalloc(len, so);
366 if (lva == 0)
367 return 0;
368
369 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
370 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
371 if (error) {
372 sokvafree(lva, len);
373 return (0);
374 }
375
376 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
377 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
378 VM_PROT_READ);
379 pmap_update(pmap_kernel());
380
381 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
382
383 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
384 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
385
386 uio->uio_resid -= space;
387 /* uio_offset not updated, not set/used for write(2) */
388 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
389 uio->uio_iov->iov_len -= space;
390 if (uio->uio_iov->iov_len == 0) {
391 uio->uio_iov++;
392 uio->uio_iovcnt--;
393 }
394
395 return (space);
396 }
397
398 static int
399 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
400 {
401
402 KASSERT(ce == &sokva_reclaimerentry);
403 KASSERT(obj == NULL);
404
405 sodopendfree();
406 if (!vm_map_starved_p(kernel_map)) {
407 return CALLBACK_CHAIN_ABORT;
408 }
409 return CALLBACK_CHAIN_CONTINUE;
410 }
411
412 struct mbuf *
413 getsombuf(struct socket *so, int type)
414 {
415 struct mbuf *m;
416
417 m = m_get(M_WAIT, type);
418 MCLAIM(m, so->so_mowner);
419 return m;
420 }
421
422 struct mbuf *
423 m_intopt(struct socket *so, int val)
424 {
425 struct mbuf *m;
426
427 m = getsombuf(so, MT_SOOPTS);
428 m->m_len = sizeof(int);
429 *mtod(m, int *) = val;
430 return m;
431 }
432
433 void
434 soinit(void)
435 {
436
437 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
438 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
439 cv_init(&socurkva_cv, "sokva");
440 soinit2();
441
442 /* Set the initial adjusted socket buffer size. */
443 if (sb_max_set(sb_max))
444 panic("bad initial sb_max value: %lu", sb_max);
445
446 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
447 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
448 }
449
450 /*
451 * Socket operation routines.
452 * These routines are called by the routines in
453 * sys_socket.c or from a system process, and
454 * implement the semantics of socket operations by
455 * switching out to the protocol specific routines.
456 */
457 /*ARGSUSED*/
458 int
459 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
460 struct socket *lockso)
461 {
462 const struct protosw *prp;
463 struct socket *so;
464 uid_t uid;
465 int error;
466 kmutex_t *lock;
467
468 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
469 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
470 KAUTH_ARG(proto));
471 if (error != 0)
472 return error;
473
474 if (proto)
475 prp = pffindproto(dom, proto, type);
476 else
477 prp = pffindtype(dom, type);
478 if (prp == NULL) {
479 /* no support for domain */
480 if (pffinddomain(dom) == 0)
481 return EAFNOSUPPORT;
482 /* no support for socket type */
483 if (proto == 0 && type != 0)
484 return EPROTOTYPE;
485 return EPROTONOSUPPORT;
486 }
487 if (prp->pr_usrreq == NULL)
488 return EPROTONOSUPPORT;
489 if (prp->pr_type != type)
490 return EPROTOTYPE;
491
492 so = soget(true);
493 so->so_type = type;
494 so->so_proto = prp;
495 so->so_send = sosend;
496 so->so_receive = soreceive;
497 #ifdef MBUFTRACE
498 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
499 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
500 so->so_mowner = &prp->pr_domain->dom_mowner;
501 #endif
502 uid = kauth_cred_geteuid(l->l_cred);
503 so->so_uidinfo = uid_find(uid);
504 so->so_egid = kauth_cred_getegid(l->l_cred);
505 so->so_cpid = l->l_proc->p_pid;
506 if (lockso != NULL) {
507 /* Caller wants us to share a lock. */
508 lock = lockso->so_lock;
509 so->so_lock = lock;
510 mutex_obj_hold(lock);
511 mutex_enter(lock);
512 } else {
513 /* Lock assigned and taken during PRU_ATTACH. */
514 }
515 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
516 (struct mbuf *)(long)proto, NULL, l);
517 KASSERT(solocked(so));
518 if (error != 0) {
519 so->so_state |= SS_NOFDREF;
520 sofree(so);
521 return error;
522 }
523 sounlock(so);
524 *aso = so;
525 return 0;
526 }
527
528 /* On success, write file descriptor to fdout and return zero. On
529 * failure, return non-zero; *fdout will be undefined.
530 */
531 int
532 fsocreate(int domain, struct socket **sop, int type, int protocol,
533 struct lwp *l, int *fdout)
534 {
535 struct socket *so;
536 struct file *fp;
537 int fd, error;
538
539 if ((error = fd_allocfile(&fp, &fd)) != 0)
540 return (error);
541 fp->f_flag = FREAD|FWRITE;
542 fp->f_type = DTYPE_SOCKET;
543 fp->f_ops = &socketops;
544 error = socreate(domain, &so, type, protocol, l, NULL);
545 if (error != 0) {
546 fd_abort(curproc, fp, fd);
547 } else {
548 if (sop != NULL)
549 *sop = so;
550 fp->f_data = so;
551 fd_affix(curproc, fp, fd);
552 *fdout = fd;
553 }
554 return error;
555 }
556
557 int
558 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
559 {
560 int error;
561
562 solock(so);
563 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
564 sounlock(so);
565 return error;
566 }
567
568 int
569 solisten(struct socket *so, int backlog, struct lwp *l)
570 {
571 int error;
572
573 solock(so);
574 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
575 SS_ISDISCONNECTING)) != 0) {
576 sounlock(so);
577 return (EOPNOTSUPP);
578 }
579 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
580 NULL, NULL, l);
581 if (error != 0) {
582 sounlock(so);
583 return error;
584 }
585 if (TAILQ_EMPTY(&so->so_q))
586 so->so_options |= SO_ACCEPTCONN;
587 if (backlog < 0)
588 backlog = 0;
589 so->so_qlimit = min(backlog, somaxconn);
590 sounlock(so);
591 return 0;
592 }
593
594 void
595 sofree(struct socket *so)
596 {
597 u_int refs;
598
599 KASSERT(solocked(so));
600
601 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
602 sounlock(so);
603 return;
604 }
605 if (so->so_head) {
606 /*
607 * We must not decommission a socket that's on the accept(2)
608 * queue. If we do, then accept(2) may hang after select(2)
609 * indicated that the listening socket was ready.
610 */
611 if (!soqremque(so, 0)) {
612 sounlock(so);
613 return;
614 }
615 }
616 if (so->so_rcv.sb_hiwat)
617 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
618 RLIM_INFINITY);
619 if (so->so_snd.sb_hiwat)
620 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
621 RLIM_INFINITY);
622 sbrelease(&so->so_snd, so);
623 KASSERT(!cv_has_waiters(&so->so_cv));
624 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
625 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
626 sorflush(so);
627 refs = so->so_aborting; /* XXX */
628 #ifdef INET
629 /* remove acccept filter if one is present. */
630 if (so->so_accf != NULL)
631 do_setopt_accept_filter(so, NULL);
632 #endif
633 sounlock(so);
634 if (refs == 0) /* XXX */
635 soput(so);
636 }
637
638 /*
639 * Close a socket on last file table reference removal.
640 * Initiate disconnect if connected.
641 * Free socket when disconnect complete.
642 */
643 int
644 soclose(struct socket *so)
645 {
646 struct socket *so2;
647 int error;
648 int error2;
649
650 error = 0;
651 solock(so);
652 if (so->so_options & SO_ACCEPTCONN) {
653 do {
654 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
655 KASSERT(solocked2(so, so2));
656 (void) soqremque(so2, 0);
657 /* soabort drops the lock. */
658 (void) soabort(so2);
659 solock(so);
660 }
661 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
662 KASSERT(solocked2(so, so2));
663 (void) soqremque(so2, 1);
664 /* soabort drops the lock. */
665 (void) soabort(so2);
666 solock(so);
667 }
668 } while (!TAILQ_EMPTY(&so->so_q0));
669 }
670 if (so->so_pcb == 0)
671 goto discard;
672 if (so->so_state & SS_ISCONNECTED) {
673 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
674 error = sodisconnect(so);
675 if (error)
676 goto drop;
677 }
678 if (so->so_options & SO_LINGER) {
679 if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
680 goto drop;
681 while (so->so_state & SS_ISCONNECTED) {
682 error = sowait(so, so->so_linger * hz);
683 if (error)
684 break;
685 }
686 }
687 }
688 drop:
689 if (so->so_pcb) {
690 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
691 NULL, NULL, NULL, NULL);
692 if (error == 0)
693 error = error2;
694 }
695 discard:
696 if (so->so_state & SS_NOFDREF)
697 panic("soclose: NOFDREF");
698 so->so_state |= SS_NOFDREF;
699 sofree(so);
700 return (error);
701 }
702
703 /*
704 * Must be called with the socket locked.. Will return with it unlocked.
705 */
706 int
707 soabort(struct socket *so)
708 {
709 u_int refs;
710 int error;
711
712 KASSERT(solocked(so));
713 KASSERT(so->so_head == NULL);
714
715 so->so_aborting++; /* XXX */
716 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
717 NULL, NULL, NULL);
718 refs = --so->so_aborting; /* XXX */
719 if (error || (refs == 0)) {
720 sofree(so);
721 } else {
722 sounlock(so);
723 }
724 return error;
725 }
726
727 int
728 soaccept(struct socket *so, struct mbuf *nam)
729 {
730 int error;
731
732 KASSERT(solocked(so));
733
734 error = 0;
735 if ((so->so_state & SS_NOFDREF) == 0)
736 panic("soaccept: !NOFDREF");
737 so->so_state &= ~SS_NOFDREF;
738 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
739 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
740 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
741 NULL, nam, NULL, NULL);
742 else
743 error = ECONNABORTED;
744
745 return (error);
746 }
747
748 int
749 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
750 {
751 int error;
752
753 KASSERT(solocked(so));
754
755 if (so->so_options & SO_ACCEPTCONN)
756 return (EOPNOTSUPP);
757 /*
758 * If protocol is connection-based, can only connect once.
759 * Otherwise, if connected, try to disconnect first.
760 * This allows user to disconnect by connecting to, e.g.,
761 * a null address.
762 */
763 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
764 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
765 (error = sodisconnect(so))))
766 error = EISCONN;
767 else
768 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
769 NULL, nam, NULL, l);
770 return (error);
771 }
772
773 int
774 soconnect2(struct socket *so1, struct socket *so2)
775 {
776 int error;
777
778 KASSERT(solocked2(so1, so2));
779
780 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
781 NULL, (struct mbuf *)so2, NULL, NULL);
782 return (error);
783 }
784
785 int
786 sodisconnect(struct socket *so)
787 {
788 int error;
789
790 KASSERT(solocked(so));
791
792 if ((so->so_state & SS_ISCONNECTED) == 0) {
793 error = ENOTCONN;
794 } else if (so->so_state & SS_ISDISCONNECTING) {
795 error = EALREADY;
796 } else {
797 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
798 NULL, NULL, NULL, NULL);
799 }
800 sodopendfree();
801 return (error);
802 }
803
804 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
805 /*
806 * Send on a socket.
807 * If send must go all at once and message is larger than
808 * send buffering, then hard error.
809 * Lock against other senders.
810 * If must go all at once and not enough room now, then
811 * inform user that this would block and do nothing.
812 * Otherwise, if nonblocking, send as much as possible.
813 * The data to be sent is described by "uio" if nonzero,
814 * otherwise by the mbuf chain "top" (which must be null
815 * if uio is not). Data provided in mbuf chain must be small
816 * enough to send all at once.
817 *
818 * Returns nonzero on error, timeout or signal; callers
819 * must check for short counts if EINTR/ERESTART are returned.
820 * Data and control buffers are freed on return.
821 */
822 int
823 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
824 struct mbuf *control, int flags, struct lwp *l)
825 {
826 struct mbuf **mp, *m;
827 struct proc *p;
828 long space, len, resid, clen, mlen;
829 int error, s, dontroute, atomic;
830
831 p = l->l_proc;
832 sodopendfree();
833 clen = 0;
834
835 /*
836 * solock() provides atomicity of access. splsoftnet() prevents
837 * protocol processing soft interrupts from interrupting us and
838 * blocking (expensive).
839 */
840 s = splsoftnet();
841 solock(so);
842 atomic = sosendallatonce(so) || top;
843 if (uio)
844 resid = uio->uio_resid;
845 else
846 resid = top->m_pkthdr.len;
847 /*
848 * In theory resid should be unsigned.
849 * However, space must be signed, as it might be less than 0
850 * if we over-committed, and we must use a signed comparison
851 * of space and resid. On the other hand, a negative resid
852 * causes us to loop sending 0-length segments to the protocol.
853 */
854 if (resid < 0) {
855 error = EINVAL;
856 goto out;
857 }
858 dontroute =
859 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
860 (so->so_proto->pr_flags & PR_ATOMIC);
861 l->l_ru.ru_msgsnd++;
862 if (control)
863 clen = control->m_len;
864 restart:
865 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
866 goto out;
867 do {
868 if (so->so_state & SS_CANTSENDMORE) {
869 error = EPIPE;
870 goto release;
871 }
872 if (so->so_error) {
873 error = so->so_error;
874 so->so_error = 0;
875 goto release;
876 }
877 if ((so->so_state & SS_ISCONNECTED) == 0) {
878 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
879 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
880 !(resid == 0 && clen != 0)) {
881 error = ENOTCONN;
882 goto release;
883 }
884 } else if (addr == 0) {
885 error = EDESTADDRREQ;
886 goto release;
887 }
888 }
889 space = sbspace(&so->so_snd);
890 if (flags & MSG_OOB)
891 space += 1024;
892 if ((atomic && resid > so->so_snd.sb_hiwat) ||
893 clen > so->so_snd.sb_hiwat) {
894 error = EMSGSIZE;
895 goto release;
896 }
897 if (space < resid + clen &&
898 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
899 if (so->so_nbio) {
900 error = EWOULDBLOCK;
901 goto release;
902 }
903 sbunlock(&so->so_snd);
904 error = sbwait(&so->so_snd);
905 if (error)
906 goto out;
907 goto restart;
908 }
909 mp = ⊤
910 space -= clen;
911 do {
912 if (uio == NULL) {
913 /*
914 * Data is prepackaged in "top".
915 */
916 resid = 0;
917 if (flags & MSG_EOR)
918 top->m_flags |= M_EOR;
919 } else do {
920 sounlock(so);
921 splx(s);
922 if (top == NULL) {
923 m = m_gethdr(M_WAIT, MT_DATA);
924 mlen = MHLEN;
925 m->m_pkthdr.len = 0;
926 m->m_pkthdr.rcvif = NULL;
927 } else {
928 m = m_get(M_WAIT, MT_DATA);
929 mlen = MLEN;
930 }
931 MCLAIM(m, so->so_snd.sb_mowner);
932 if (sock_loan_thresh >= 0 &&
933 uio->uio_iov->iov_len >= sock_loan_thresh &&
934 space >= sock_loan_thresh &&
935 (len = sosend_loan(so, uio, m,
936 space)) != 0) {
937 SOSEND_COUNTER_INCR(&sosend_loan_big);
938 space -= len;
939 goto have_data;
940 }
941 if (resid >= MINCLSIZE && space >= MCLBYTES) {
942 SOSEND_COUNTER_INCR(&sosend_copy_big);
943 m_clget(m, M_WAIT);
944 if ((m->m_flags & M_EXT) == 0)
945 goto nopages;
946 mlen = MCLBYTES;
947 if (atomic && top == 0) {
948 len = lmin(MCLBYTES - max_hdr,
949 resid);
950 m->m_data += max_hdr;
951 } else
952 len = lmin(MCLBYTES, resid);
953 space -= len;
954 } else {
955 nopages:
956 SOSEND_COUNTER_INCR(&sosend_copy_small);
957 len = lmin(lmin(mlen, resid), space);
958 space -= len;
959 /*
960 * For datagram protocols, leave room
961 * for protocol headers in first mbuf.
962 */
963 if (atomic && top == 0 && len < mlen)
964 MH_ALIGN(m, len);
965 }
966 error = uiomove(mtod(m, void *), (int)len, uio);
967 have_data:
968 resid = uio->uio_resid;
969 m->m_len = len;
970 *mp = m;
971 top->m_pkthdr.len += len;
972 s = splsoftnet();
973 solock(so);
974 if (error != 0)
975 goto release;
976 mp = &m->m_next;
977 if (resid <= 0) {
978 if (flags & MSG_EOR)
979 top->m_flags |= M_EOR;
980 break;
981 }
982 } while (space > 0 && atomic);
983
984 if (so->so_state & SS_CANTSENDMORE) {
985 error = EPIPE;
986 goto release;
987 }
988 if (dontroute)
989 so->so_options |= SO_DONTROUTE;
990 if (resid > 0)
991 so->so_state |= SS_MORETOCOME;
992 error = (*so->so_proto->pr_usrreq)(so,
993 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
994 top, addr, control, curlwp);
995 if (dontroute)
996 so->so_options &= ~SO_DONTROUTE;
997 if (resid > 0)
998 so->so_state &= ~SS_MORETOCOME;
999 clen = 0;
1000 control = NULL;
1001 top = NULL;
1002 mp = ⊤
1003 if (error != 0)
1004 goto release;
1005 } while (resid && space > 0);
1006 } while (resid);
1007
1008 release:
1009 sbunlock(&so->so_snd);
1010 out:
1011 sounlock(so);
1012 splx(s);
1013 if (top)
1014 m_freem(top);
1015 if (control)
1016 m_freem(control);
1017 return (error);
1018 }
1019
1020 /*
1021 * Following replacement or removal of the first mbuf on the first
1022 * mbuf chain of a socket buffer, push necessary state changes back
1023 * into the socket buffer so that other consumers see the values
1024 * consistently. 'nextrecord' is the callers locally stored value of
1025 * the original value of sb->sb_mb->m_nextpkt which must be restored
1026 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1027 */
1028 static void
1029 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1030 {
1031
1032 KASSERT(solocked(sb->sb_so));
1033
1034 /*
1035 * First, update for the new value of nextrecord. If necessary,
1036 * make it the first record.
1037 */
1038 if (sb->sb_mb != NULL)
1039 sb->sb_mb->m_nextpkt = nextrecord;
1040 else
1041 sb->sb_mb = nextrecord;
1042
1043 /*
1044 * Now update any dependent socket buffer fields to reflect
1045 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1046 * the addition of a second clause that takes care of the
1047 * case where sb_mb has been updated, but remains the last
1048 * record.
1049 */
1050 if (sb->sb_mb == NULL) {
1051 sb->sb_mbtail = NULL;
1052 sb->sb_lastrecord = NULL;
1053 } else if (sb->sb_mb->m_nextpkt == NULL)
1054 sb->sb_lastrecord = sb->sb_mb;
1055 }
1056
1057 /*
1058 * Implement receive operations on a socket.
1059 * We depend on the way that records are added to the sockbuf
1060 * by sbappend*. In particular, each record (mbufs linked through m_next)
1061 * must begin with an address if the protocol so specifies,
1062 * followed by an optional mbuf or mbufs containing ancillary data,
1063 * and then zero or more mbufs of data.
1064 * In order to avoid blocking network interrupts for the entire time here,
1065 * we splx() while doing the actual copy to user space.
1066 * Although the sockbuf is locked, new data may still be appended,
1067 * and thus we must maintain consistency of the sockbuf during that time.
1068 *
1069 * The caller may receive the data as a single mbuf chain by supplying
1070 * an mbuf **mp0 for use in returning the chain. The uio is then used
1071 * only for the count in uio_resid.
1072 */
1073 int
1074 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1075 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1076 {
1077 struct lwp *l = curlwp;
1078 struct mbuf *m, **mp, *mt;
1079 int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1080 const struct protosw *pr;
1081 struct mbuf *nextrecord;
1082 int mbuf_removed = 0;
1083 const struct domain *dom;
1084
1085 pr = so->so_proto;
1086 atomic = pr->pr_flags & PR_ATOMIC;
1087 dom = pr->pr_domain;
1088 mp = mp0;
1089 type = 0;
1090 orig_resid = uio->uio_resid;
1091
1092 if (paddr != NULL)
1093 *paddr = NULL;
1094 if (controlp != NULL)
1095 *controlp = NULL;
1096 if (flagsp != NULL)
1097 flags = *flagsp &~ MSG_EOR;
1098 else
1099 flags = 0;
1100
1101 if ((flags & MSG_DONTWAIT) == 0)
1102 sodopendfree();
1103
1104 if (flags & MSG_OOB) {
1105 m = m_get(M_WAIT, MT_DATA);
1106 solock(so);
1107 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1108 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1109 sounlock(so);
1110 if (error)
1111 goto bad;
1112 do {
1113 error = uiomove(mtod(m, void *),
1114 (int) min(uio->uio_resid, m->m_len), uio);
1115 m = m_free(m);
1116 } while (uio->uio_resid > 0 && error == 0 && m);
1117 bad:
1118 if (m != NULL)
1119 m_freem(m);
1120 return error;
1121 }
1122 if (mp != NULL)
1123 *mp = NULL;
1124
1125 /*
1126 * solock() provides atomicity of access. splsoftnet() prevents
1127 * protocol processing soft interrupts from interrupting us and
1128 * blocking (expensive).
1129 */
1130 s = splsoftnet();
1131 solock(so);
1132 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1133 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1134
1135 restart:
1136 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1137 sounlock(so);
1138 splx(s);
1139 return error;
1140 }
1141
1142 m = so->so_rcv.sb_mb;
1143 /*
1144 * If we have less data than requested, block awaiting more
1145 * (subject to any timeout) if:
1146 * 1. the current count is less than the low water mark,
1147 * 2. MSG_WAITALL is set, and it is possible to do the entire
1148 * receive operation at once if we block (resid <= hiwat), or
1149 * 3. MSG_DONTWAIT is not set.
1150 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1151 * we have to do the receive in sections, and thus risk returning
1152 * a short count if a timeout or signal occurs after we start.
1153 */
1154 if (m == NULL ||
1155 ((flags & MSG_DONTWAIT) == 0 &&
1156 so->so_rcv.sb_cc < uio->uio_resid &&
1157 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1158 ((flags & MSG_WAITALL) &&
1159 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1160 m->m_nextpkt == NULL && !atomic)) {
1161 #ifdef DIAGNOSTIC
1162 if (m == NULL && so->so_rcv.sb_cc)
1163 panic("receive 1");
1164 #endif
1165 if (so->so_error) {
1166 if (m != NULL)
1167 goto dontblock;
1168 error = so->so_error;
1169 if ((flags & MSG_PEEK) == 0)
1170 so->so_error = 0;
1171 goto release;
1172 }
1173 if (so->so_state & SS_CANTRCVMORE) {
1174 if (m != NULL)
1175 goto dontblock;
1176 else
1177 goto release;
1178 }
1179 for (; m != NULL; m = m->m_next)
1180 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1181 m = so->so_rcv.sb_mb;
1182 goto dontblock;
1183 }
1184 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1185 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1186 error = ENOTCONN;
1187 goto release;
1188 }
1189 if (uio->uio_resid == 0)
1190 goto release;
1191 if (so->so_nbio || (flags & MSG_DONTWAIT)) {
1192 error = EWOULDBLOCK;
1193 goto release;
1194 }
1195 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1196 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1197 sbunlock(&so->so_rcv);
1198 error = sbwait(&so->so_rcv);
1199 if (error != 0) {
1200 sounlock(so);
1201 splx(s);
1202 return error;
1203 }
1204 goto restart;
1205 }
1206 dontblock:
1207 /*
1208 * On entry here, m points to the first record of the socket buffer.
1209 * From this point onward, we maintain 'nextrecord' as a cache of the
1210 * pointer to the next record in the socket buffer. We must keep the
1211 * various socket buffer pointers and local stack versions of the
1212 * pointers in sync, pushing out modifications before dropping the
1213 * socket lock, and re-reading them when picking it up.
1214 *
1215 * Otherwise, we will race with the network stack appending new data
1216 * or records onto the socket buffer by using inconsistent/stale
1217 * versions of the field, possibly resulting in socket buffer
1218 * corruption.
1219 *
1220 * By holding the high-level sblock(), we prevent simultaneous
1221 * readers from pulling off the front of the socket buffer.
1222 */
1223 if (l != NULL)
1224 l->l_ru.ru_msgrcv++;
1225 KASSERT(m == so->so_rcv.sb_mb);
1226 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1227 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1228 nextrecord = m->m_nextpkt;
1229 if (pr->pr_flags & PR_ADDR) {
1230 #ifdef DIAGNOSTIC
1231 if (m->m_type != MT_SONAME)
1232 panic("receive 1a");
1233 #endif
1234 orig_resid = 0;
1235 if (flags & MSG_PEEK) {
1236 if (paddr)
1237 *paddr = m_copy(m, 0, m->m_len);
1238 m = m->m_next;
1239 } else {
1240 sbfree(&so->so_rcv, m);
1241 mbuf_removed = 1;
1242 if (paddr != NULL) {
1243 *paddr = m;
1244 so->so_rcv.sb_mb = m->m_next;
1245 m->m_next = NULL;
1246 m = so->so_rcv.sb_mb;
1247 } else {
1248 MFREE(m, so->so_rcv.sb_mb);
1249 m = so->so_rcv.sb_mb;
1250 }
1251 sbsync(&so->so_rcv, nextrecord);
1252 }
1253 }
1254
1255 /*
1256 * Process one or more MT_CONTROL mbufs present before any data mbufs
1257 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1258 * just copy the data; if !MSG_PEEK, we call into the protocol to
1259 * perform externalization (or freeing if controlp == NULL).
1260 */
1261 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1262 struct mbuf *cm = NULL, *cmn;
1263 struct mbuf **cme = &cm;
1264
1265 do {
1266 if (flags & MSG_PEEK) {
1267 if (controlp != NULL) {
1268 *controlp = m_copy(m, 0, m->m_len);
1269 controlp = &(*controlp)->m_next;
1270 }
1271 m = m->m_next;
1272 } else {
1273 sbfree(&so->so_rcv, m);
1274 so->so_rcv.sb_mb = m->m_next;
1275 m->m_next = NULL;
1276 *cme = m;
1277 cme = &(*cme)->m_next;
1278 m = so->so_rcv.sb_mb;
1279 }
1280 } while (m != NULL && m->m_type == MT_CONTROL);
1281 if ((flags & MSG_PEEK) == 0)
1282 sbsync(&so->so_rcv, nextrecord);
1283 for (; cm != NULL; cm = cmn) {
1284 cmn = cm->m_next;
1285 cm->m_next = NULL;
1286 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1287 if (controlp != NULL) {
1288 if (dom->dom_externalize != NULL &&
1289 type == SCM_RIGHTS) {
1290 sounlock(so);
1291 splx(s);
1292 error = (*dom->dom_externalize)(cm, l);
1293 s = splsoftnet();
1294 solock(so);
1295 }
1296 *controlp = cm;
1297 while (*controlp != NULL)
1298 controlp = &(*controlp)->m_next;
1299 } else {
1300 /*
1301 * Dispose of any SCM_RIGHTS message that went
1302 * through the read path rather than recv.
1303 */
1304 if (dom->dom_dispose != NULL &&
1305 type == SCM_RIGHTS) {
1306 sounlock(so);
1307 (*dom->dom_dispose)(cm);
1308 solock(so);
1309 }
1310 m_freem(cm);
1311 }
1312 }
1313 if (m != NULL)
1314 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1315 else
1316 nextrecord = so->so_rcv.sb_mb;
1317 orig_resid = 0;
1318 }
1319
1320 /* If m is non-NULL, we have some data to read. */
1321 if (__predict_true(m != NULL)) {
1322 type = m->m_type;
1323 if (type == MT_OOBDATA)
1324 flags |= MSG_OOB;
1325 }
1326 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1327 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1328
1329 moff = 0;
1330 offset = 0;
1331 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1332 if (m->m_type == MT_OOBDATA) {
1333 if (type != MT_OOBDATA)
1334 break;
1335 } else if (type == MT_OOBDATA)
1336 break;
1337 #ifdef DIAGNOSTIC
1338 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1339 panic("receive 3");
1340 #endif
1341 so->so_state &= ~SS_RCVATMARK;
1342 len = uio->uio_resid;
1343 if (so->so_oobmark && len > so->so_oobmark - offset)
1344 len = so->so_oobmark - offset;
1345 if (len > m->m_len - moff)
1346 len = m->m_len - moff;
1347 /*
1348 * If mp is set, just pass back the mbufs.
1349 * Otherwise copy them out via the uio, then free.
1350 * Sockbuf must be consistent here (points to current mbuf,
1351 * it points to next record) when we drop priority;
1352 * we must note any additions to the sockbuf when we
1353 * block interrupts again.
1354 */
1355 if (mp == NULL) {
1356 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1357 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1358 sounlock(so);
1359 splx(s);
1360 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1361 s = splsoftnet();
1362 solock(so);
1363 if (error != 0) {
1364 /*
1365 * If any part of the record has been removed
1366 * (such as the MT_SONAME mbuf, which will
1367 * happen when PR_ADDR, and thus also
1368 * PR_ATOMIC, is set), then drop the entire
1369 * record to maintain the atomicity of the
1370 * receive operation.
1371 *
1372 * This avoids a later panic("receive 1a")
1373 * when compiled with DIAGNOSTIC.
1374 */
1375 if (m && mbuf_removed && atomic)
1376 (void) sbdroprecord(&so->so_rcv);
1377
1378 goto release;
1379 }
1380 } else
1381 uio->uio_resid -= len;
1382 if (len == m->m_len - moff) {
1383 if (m->m_flags & M_EOR)
1384 flags |= MSG_EOR;
1385 if (flags & MSG_PEEK) {
1386 m = m->m_next;
1387 moff = 0;
1388 } else {
1389 nextrecord = m->m_nextpkt;
1390 sbfree(&so->so_rcv, m);
1391 if (mp) {
1392 *mp = m;
1393 mp = &m->m_next;
1394 so->so_rcv.sb_mb = m = m->m_next;
1395 *mp = NULL;
1396 } else {
1397 MFREE(m, so->so_rcv.sb_mb);
1398 m = so->so_rcv.sb_mb;
1399 }
1400 /*
1401 * If m != NULL, we also know that
1402 * so->so_rcv.sb_mb != NULL.
1403 */
1404 KASSERT(so->so_rcv.sb_mb == m);
1405 if (m) {
1406 m->m_nextpkt = nextrecord;
1407 if (nextrecord == NULL)
1408 so->so_rcv.sb_lastrecord = m;
1409 } else {
1410 so->so_rcv.sb_mb = nextrecord;
1411 SB_EMPTY_FIXUP(&so->so_rcv);
1412 }
1413 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1414 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1415 }
1416 } else if (flags & MSG_PEEK)
1417 moff += len;
1418 else {
1419 if (mp != NULL) {
1420 mt = m_copym(m, 0, len, M_NOWAIT);
1421 if (__predict_false(mt == NULL)) {
1422 sounlock(so);
1423 mt = m_copym(m, 0, len, M_WAIT);
1424 solock(so);
1425 }
1426 *mp = mt;
1427 }
1428 m->m_data += len;
1429 m->m_len -= len;
1430 so->so_rcv.sb_cc -= len;
1431 }
1432 if (so->so_oobmark) {
1433 if ((flags & MSG_PEEK) == 0) {
1434 so->so_oobmark -= len;
1435 if (so->so_oobmark == 0) {
1436 so->so_state |= SS_RCVATMARK;
1437 break;
1438 }
1439 } else {
1440 offset += len;
1441 if (offset == so->so_oobmark)
1442 break;
1443 }
1444 }
1445 if (flags & MSG_EOR)
1446 break;
1447 /*
1448 * If the MSG_WAITALL flag is set (for non-atomic socket),
1449 * we must not quit until "uio->uio_resid == 0" or an error
1450 * termination. If a signal/timeout occurs, return
1451 * with a short count but without error.
1452 * Keep sockbuf locked against other readers.
1453 */
1454 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1455 !sosendallatonce(so) && !nextrecord) {
1456 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1457 break;
1458 /*
1459 * If we are peeking and the socket receive buffer is
1460 * full, stop since we can't get more data to peek at.
1461 */
1462 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1463 break;
1464 /*
1465 * If we've drained the socket buffer, tell the
1466 * protocol in case it needs to do something to
1467 * get it filled again.
1468 */
1469 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1470 (*pr->pr_usrreq)(so, PRU_RCVD,
1471 NULL, (struct mbuf *)(long)flags, NULL, l);
1472 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1473 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1474 error = sbwait(&so->so_rcv);
1475 if (error != 0) {
1476 sbunlock(&so->so_rcv);
1477 sounlock(so);
1478 splx(s);
1479 return 0;
1480 }
1481 if ((m = so->so_rcv.sb_mb) != NULL)
1482 nextrecord = m->m_nextpkt;
1483 }
1484 }
1485
1486 if (m && atomic) {
1487 flags |= MSG_TRUNC;
1488 if ((flags & MSG_PEEK) == 0)
1489 (void) sbdroprecord(&so->so_rcv);
1490 }
1491 if ((flags & MSG_PEEK) == 0) {
1492 if (m == NULL) {
1493 /*
1494 * First part is an inline SB_EMPTY_FIXUP(). Second
1495 * part makes sure sb_lastrecord is up-to-date if
1496 * there is still data in the socket buffer.
1497 */
1498 so->so_rcv.sb_mb = nextrecord;
1499 if (so->so_rcv.sb_mb == NULL) {
1500 so->so_rcv.sb_mbtail = NULL;
1501 so->so_rcv.sb_lastrecord = NULL;
1502 } else if (nextrecord->m_nextpkt == NULL)
1503 so->so_rcv.sb_lastrecord = nextrecord;
1504 }
1505 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1506 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1507 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1508 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1509 (struct mbuf *)(long)flags, NULL, l);
1510 }
1511 if (orig_resid == uio->uio_resid && orig_resid &&
1512 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1513 sbunlock(&so->so_rcv);
1514 goto restart;
1515 }
1516
1517 if (flagsp != NULL)
1518 *flagsp |= flags;
1519 release:
1520 sbunlock(&so->so_rcv);
1521 sounlock(so);
1522 splx(s);
1523 return error;
1524 }
1525
1526 int
1527 soshutdown(struct socket *so, int how)
1528 {
1529 const struct protosw *pr;
1530 int error;
1531
1532 KASSERT(solocked(so));
1533
1534 pr = so->so_proto;
1535 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1536 return (EINVAL);
1537
1538 if (how == SHUT_RD || how == SHUT_RDWR) {
1539 sorflush(so);
1540 error = 0;
1541 }
1542 if (how == SHUT_WR || how == SHUT_RDWR)
1543 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1544 NULL, NULL, NULL);
1545
1546 return error;
1547 }
1548
1549 void
1550 sorflush(struct socket *so)
1551 {
1552 struct sockbuf *sb, asb;
1553 const struct protosw *pr;
1554
1555 KASSERT(solocked(so));
1556
1557 sb = &so->so_rcv;
1558 pr = so->so_proto;
1559 socantrcvmore(so);
1560 sb->sb_flags |= SB_NOINTR;
1561 (void )sblock(sb, M_WAITOK);
1562 sbunlock(sb);
1563 asb = *sb;
1564 /*
1565 * Clear most of the sockbuf structure, but leave some of the
1566 * fields valid.
1567 */
1568 memset(&sb->sb_startzero, 0,
1569 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1570 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1571 sounlock(so);
1572 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1573 solock(so);
1574 }
1575 sbrelease(&asb, so);
1576 }
1577
1578 static int
1579 sosetopt1(struct socket *so, int level, int optname, struct mbuf *m)
1580 {
1581 #ifdef INET
1582 int error, optval, val;
1583 #else
1584 int optval, val;
1585 #endif
1586 struct linger *l;
1587 struct sockbuf *sb;
1588 struct timeval *tv;
1589
1590 switch (optname) {
1591
1592 #ifdef INET
1593 case SO_ACCEPTFILTER:
1594 error = do_setopt_accept_filter(so, m);
1595 if (error)
1596 return error;
1597 break;
1598 #endif
1599
1600 case SO_LINGER:
1601 if (m == NULL || m->m_len != sizeof(struct linger))
1602 return EINVAL;
1603 l = mtod(m, struct linger *);
1604 if (l->l_linger < 0 || l->l_linger > USHRT_MAX ||
1605 l->l_linger > (INT_MAX / hz))
1606 return EDOM;
1607 so->so_linger = l->l_linger;
1608 if (l->l_onoff)
1609 so->so_options |= SO_LINGER;
1610 else
1611 so->so_options &= ~SO_LINGER;
1612 break;
1613
1614 case SO_DEBUG:
1615 case SO_KEEPALIVE:
1616 case SO_DONTROUTE:
1617 case SO_USELOOPBACK:
1618 case SO_BROADCAST:
1619 case SO_REUSEADDR:
1620 case SO_REUSEPORT:
1621 case SO_OOBINLINE:
1622 case SO_TIMESTAMP:
1623 if (m == NULL || m->m_len < sizeof(int))
1624 return EINVAL;
1625 if (*mtod(m, int *))
1626 so->so_options |= optname;
1627 else
1628 so->so_options &= ~optname;
1629 break;
1630
1631 case SO_SNDBUF:
1632 case SO_RCVBUF:
1633 case SO_SNDLOWAT:
1634 case SO_RCVLOWAT:
1635 if (m == NULL || m->m_len < sizeof(int))
1636 return EINVAL;
1637
1638 /*
1639 * Values < 1 make no sense for any of these
1640 * options, so disallow them.
1641 */
1642 optval = *mtod(m, int *);
1643 if (optval < 1)
1644 return EINVAL;
1645
1646 switch (optname) {
1647
1648 case SO_SNDBUF:
1649 case SO_RCVBUF:
1650 sb = (optname == SO_SNDBUF) ?
1651 &so->so_snd : &so->so_rcv;
1652 if (sbreserve(sb, (u_long)optval, so) == 0)
1653 return ENOBUFS;
1654 sb->sb_flags &= ~SB_AUTOSIZE;
1655 break;
1656
1657 /*
1658 * Make sure the low-water is never greater than
1659 * the high-water.
1660 */
1661 case SO_SNDLOWAT:
1662 so->so_snd.sb_lowat =
1663 (optval > so->so_snd.sb_hiwat) ?
1664 so->so_snd.sb_hiwat : optval;
1665 break;
1666 case SO_RCVLOWAT:
1667 so->so_rcv.sb_lowat =
1668 (optval > so->so_rcv.sb_hiwat) ?
1669 so->so_rcv.sb_hiwat : optval;
1670 break;
1671 }
1672 break;
1673
1674 case SO_SNDTIMEO:
1675 case SO_RCVTIMEO:
1676 if (m == NULL || m->m_len < sizeof(*tv))
1677 return EINVAL;
1678 tv = mtod(m, struct timeval *);
1679 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz)
1680 return EDOM;
1681 val = tv->tv_sec * hz + tv->tv_usec / tick;
1682 if (val == 0 && tv->tv_usec != 0)
1683 val = 1;
1684
1685 switch (optname) {
1686
1687 case SO_SNDTIMEO:
1688 so->so_snd.sb_timeo = val;
1689 break;
1690 case SO_RCVTIMEO:
1691 so->so_rcv.sb_timeo = val;
1692 break;
1693 }
1694 break;
1695
1696 default:
1697 return ENOPROTOOPT;
1698 }
1699 return 0;
1700 }
1701
1702 int
1703 sosetopt(struct socket *so, int level, int optname, struct mbuf *m)
1704 {
1705 int error, prerr;
1706
1707 solock(so);
1708 if (level == SOL_SOCKET)
1709 error = sosetopt1(so, level, optname, m);
1710 else
1711 error = ENOPROTOOPT;
1712
1713 if ((error == 0 || error == ENOPROTOOPT) &&
1714 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1715 /* give the protocol stack a shot */
1716 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, level,
1717 optname, &m);
1718 if (prerr == 0)
1719 error = 0;
1720 else if (prerr != ENOPROTOOPT)
1721 error = prerr;
1722 } else if (m != NULL)
1723 (void)m_free(m);
1724 sounlock(so);
1725 return error;
1726 }
1727
1728 int
1729 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1730 {
1731 struct mbuf *m;
1732 int error;
1733
1734 solock(so);
1735 if (level != SOL_SOCKET) {
1736 if (so->so_proto && so->so_proto->pr_ctloutput) {
1737 error = ((*so->so_proto->pr_ctloutput)
1738 (PRCO_GETOPT, so, level, optname, mp));
1739 } else
1740 error = (ENOPROTOOPT);
1741 } else {
1742 m = m_get(M_WAIT, MT_SOOPTS);
1743 m->m_len = sizeof(int);
1744
1745 switch (optname) {
1746
1747 #ifdef INET
1748 case SO_ACCEPTFILTER:
1749 error = do_getopt_accept_filter(so, m);
1750 break;
1751 #endif
1752
1753 case SO_LINGER:
1754 m->m_len = sizeof(struct linger);
1755 mtod(m, struct linger *)->l_onoff =
1756 (so->so_options & SO_LINGER) ? 1 : 0;
1757 mtod(m, struct linger *)->l_linger = so->so_linger;
1758 break;
1759
1760 case SO_USELOOPBACK:
1761 case SO_DONTROUTE:
1762 case SO_DEBUG:
1763 case SO_KEEPALIVE:
1764 case SO_REUSEADDR:
1765 case SO_REUSEPORT:
1766 case SO_BROADCAST:
1767 case SO_OOBINLINE:
1768 case SO_TIMESTAMP:
1769 *mtod(m, int *) = (so->so_options & optname) ? 1 : 0;
1770 break;
1771
1772 case SO_TYPE:
1773 *mtod(m, int *) = so->so_type;
1774 break;
1775
1776 case SO_ERROR:
1777 *mtod(m, int *) = so->so_error;
1778 so->so_error = 0;
1779 break;
1780
1781 case SO_SNDBUF:
1782 *mtod(m, int *) = so->so_snd.sb_hiwat;
1783 break;
1784
1785 case SO_RCVBUF:
1786 *mtod(m, int *) = so->so_rcv.sb_hiwat;
1787 break;
1788
1789 case SO_SNDLOWAT:
1790 *mtod(m, int *) = so->so_snd.sb_lowat;
1791 break;
1792
1793 case SO_RCVLOWAT:
1794 *mtod(m, int *) = so->so_rcv.sb_lowat;
1795 break;
1796
1797 case SO_SNDTIMEO:
1798 case SO_RCVTIMEO:
1799 {
1800 int val = (optname == SO_SNDTIMEO ?
1801 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1802
1803 m->m_len = sizeof(struct timeval);
1804 mtod(m, struct timeval *)->tv_sec = val / hz;
1805 mtod(m, struct timeval *)->tv_usec =
1806 (val % hz) * tick;
1807 break;
1808 }
1809
1810 case SO_OVERFLOWED:
1811 *mtod(m, int *) = so->so_rcv.sb_overflowed;
1812 break;
1813
1814 default:
1815 sounlock(so);
1816 (void)m_free(m);
1817 return (ENOPROTOOPT);
1818 }
1819 *mp = m;
1820 error = 0;
1821 }
1822
1823 sounlock(so);
1824 return (error);
1825 }
1826
1827 void
1828 sohasoutofband(struct socket *so)
1829 {
1830
1831 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
1832 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, 0);
1833 }
1834
1835 static void
1836 filt_sordetach(struct knote *kn)
1837 {
1838 struct socket *so;
1839
1840 so = ((file_t *)kn->kn_obj)->f_data;
1841 solock(so);
1842 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
1843 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
1844 so->so_rcv.sb_flags &= ~SB_KNOTE;
1845 sounlock(so);
1846 }
1847
1848 /*ARGSUSED*/
1849 static int
1850 filt_soread(struct knote *kn, long hint)
1851 {
1852 struct socket *so;
1853 int rv;
1854
1855 so = ((file_t *)kn->kn_obj)->f_data;
1856 if (hint != NOTE_SUBMIT)
1857 solock(so);
1858 kn->kn_data = so->so_rcv.sb_cc;
1859 if (so->so_state & SS_CANTRCVMORE) {
1860 kn->kn_flags |= EV_EOF;
1861 kn->kn_fflags = so->so_error;
1862 rv = 1;
1863 } else if (so->so_error) /* temporary udp error */
1864 rv = 1;
1865 else if (kn->kn_sfflags & NOTE_LOWAT)
1866 rv = (kn->kn_data >= kn->kn_sdata);
1867 else
1868 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
1869 if (hint != NOTE_SUBMIT)
1870 sounlock(so);
1871 return rv;
1872 }
1873
1874 static void
1875 filt_sowdetach(struct knote *kn)
1876 {
1877 struct socket *so;
1878
1879 so = ((file_t *)kn->kn_obj)->f_data;
1880 solock(so);
1881 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
1882 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
1883 so->so_snd.sb_flags &= ~SB_KNOTE;
1884 sounlock(so);
1885 }
1886
1887 /*ARGSUSED*/
1888 static int
1889 filt_sowrite(struct knote *kn, long hint)
1890 {
1891 struct socket *so;
1892 int rv;
1893
1894 so = ((file_t *)kn->kn_obj)->f_data;
1895 if (hint != NOTE_SUBMIT)
1896 solock(so);
1897 kn->kn_data = sbspace(&so->so_snd);
1898 if (so->so_state & SS_CANTSENDMORE) {
1899 kn->kn_flags |= EV_EOF;
1900 kn->kn_fflags = so->so_error;
1901 rv = 1;
1902 } else if (so->so_error) /* temporary udp error */
1903 rv = 1;
1904 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
1905 (so->so_proto->pr_flags & PR_CONNREQUIRED))
1906 rv = 0;
1907 else if (kn->kn_sfflags & NOTE_LOWAT)
1908 rv = (kn->kn_data >= kn->kn_sdata);
1909 else
1910 rv = (kn->kn_data >= so->so_snd.sb_lowat);
1911 if (hint != NOTE_SUBMIT)
1912 sounlock(so);
1913 return rv;
1914 }
1915
1916 /*ARGSUSED*/
1917 static int
1918 filt_solisten(struct knote *kn, long hint)
1919 {
1920 struct socket *so;
1921 int rv;
1922
1923 so = ((file_t *)kn->kn_obj)->f_data;
1924
1925 /*
1926 * Set kn_data to number of incoming connections, not
1927 * counting partial (incomplete) connections.
1928 */
1929 if (hint != NOTE_SUBMIT)
1930 solock(so);
1931 kn->kn_data = so->so_qlen;
1932 rv = (kn->kn_data > 0);
1933 if (hint != NOTE_SUBMIT)
1934 sounlock(so);
1935 return rv;
1936 }
1937
1938 static const struct filterops solisten_filtops =
1939 { 1, NULL, filt_sordetach, filt_solisten };
1940 static const struct filterops soread_filtops =
1941 { 1, NULL, filt_sordetach, filt_soread };
1942 static const struct filterops sowrite_filtops =
1943 { 1, NULL, filt_sowdetach, filt_sowrite };
1944
1945 int
1946 soo_kqfilter(struct file *fp, struct knote *kn)
1947 {
1948 struct socket *so;
1949 struct sockbuf *sb;
1950
1951 so = ((file_t *)kn->kn_obj)->f_data;
1952 solock(so);
1953 switch (kn->kn_filter) {
1954 case EVFILT_READ:
1955 if (so->so_options & SO_ACCEPTCONN)
1956 kn->kn_fop = &solisten_filtops;
1957 else
1958 kn->kn_fop = &soread_filtops;
1959 sb = &so->so_rcv;
1960 break;
1961 case EVFILT_WRITE:
1962 kn->kn_fop = &sowrite_filtops;
1963 sb = &so->so_snd;
1964 break;
1965 default:
1966 sounlock(so);
1967 return (EINVAL);
1968 }
1969 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
1970 sb->sb_flags |= SB_KNOTE;
1971 sounlock(so);
1972 return (0);
1973 }
1974
1975 static int
1976 sodopoll(struct socket *so, int events)
1977 {
1978 int revents;
1979
1980 revents = 0;
1981
1982 if (events & (POLLIN | POLLRDNORM))
1983 if (soreadable(so))
1984 revents |= events & (POLLIN | POLLRDNORM);
1985
1986 if (events & (POLLOUT | POLLWRNORM))
1987 if (sowritable(so))
1988 revents |= events & (POLLOUT | POLLWRNORM);
1989
1990 if (events & (POLLPRI | POLLRDBAND))
1991 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
1992 revents |= events & (POLLPRI | POLLRDBAND);
1993
1994 return revents;
1995 }
1996
1997 int
1998 sopoll(struct socket *so, int events)
1999 {
2000 int revents = 0;
2001
2002 #ifndef DIAGNOSTIC
2003 /*
2004 * Do a quick, unlocked check in expectation that the socket
2005 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2006 * as the solocked() assertions will fail.
2007 */
2008 if ((revents = sodopoll(so, events)) != 0)
2009 return revents;
2010 #endif
2011
2012 solock(so);
2013 if ((revents = sodopoll(so, events)) == 0) {
2014 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2015 selrecord(curlwp, &so->so_rcv.sb_sel);
2016 so->so_rcv.sb_flags |= SB_NOTIFY;
2017 }
2018
2019 if (events & (POLLOUT | POLLWRNORM)) {
2020 selrecord(curlwp, &so->so_snd.sb_sel);
2021 so->so_snd.sb_flags |= SB_NOTIFY;
2022 }
2023 }
2024 sounlock(so);
2025
2026 return revents;
2027 }
2028
2029
2030 #include <sys/sysctl.h>
2031
2032 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2033
2034 /*
2035 * sysctl helper routine for kern.somaxkva. ensures that the given
2036 * value is not too small.
2037 * (XXX should we maybe make sure it's not too large as well?)
2038 */
2039 static int
2040 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2041 {
2042 int error, new_somaxkva;
2043 struct sysctlnode node;
2044
2045 new_somaxkva = somaxkva;
2046 node = *rnode;
2047 node.sysctl_data = &new_somaxkva;
2048 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2049 if (error || newp == NULL)
2050 return (error);
2051
2052 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2053 return (EINVAL);
2054
2055 mutex_enter(&so_pendfree_lock);
2056 somaxkva = new_somaxkva;
2057 cv_broadcast(&socurkva_cv);
2058 mutex_exit(&so_pendfree_lock);
2059
2060 return (error);
2061 }
2062
2063 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
2064 {
2065
2066 sysctl_createv(clog, 0, NULL, NULL,
2067 CTLFLAG_PERMANENT,
2068 CTLTYPE_NODE, "kern", NULL,
2069 NULL, 0, NULL, 0,
2070 CTL_KERN, CTL_EOL);
2071
2072 sysctl_createv(clog, 0, NULL, NULL,
2073 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2074 CTLTYPE_INT, "somaxkva",
2075 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2076 "used for socket buffers"),
2077 sysctl_kern_somaxkva, 0, NULL, 0,
2078 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2079 }
2080