Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.171
      1 /*	$NetBSD: uipc_socket.c,v 1.171 2008/08/06 15:01:23 plunky Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.171 2008/08/06 15:01:23 plunky Exp $");
     67 
     68 #include "opt_inet.h"
     69 #include "opt_sock_counters.h"
     70 #include "opt_sosend_loan.h"
     71 #include "opt_mbuftrace.h"
     72 #include "opt_somaxkva.h"
     73 #include "opt_multiprocessor.h"	/* XXX */
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/proc.h>
     78 #include <sys/file.h>
     79 #include <sys/filedesc.h>
     80 #include <sys/malloc.h>
     81 #include <sys/mbuf.h>
     82 #include <sys/domain.h>
     83 #include <sys/kernel.h>
     84 #include <sys/protosw.h>
     85 #include <sys/socket.h>
     86 #include <sys/socketvar.h>
     87 #include <sys/signalvar.h>
     88 #include <sys/resourcevar.h>
     89 #include <sys/event.h>
     90 #include <sys/poll.h>
     91 #include <sys/kauth.h>
     92 #include <sys/mutex.h>
     93 #include <sys/condvar.h>
     94 
     95 #include <uvm/uvm.h>
     96 
     97 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
     98 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
     99 
    100 extern const struct fileops socketops;
    101 
    102 extern int	somaxconn;			/* patchable (XXX sysctl) */
    103 int		somaxconn = SOMAXCONN;
    104 kmutex_t	*softnet_lock;
    105 
    106 #ifdef SOSEND_COUNTERS
    107 #include <sys/device.h>
    108 
    109 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    110     NULL, "sosend", "loan big");
    111 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    112     NULL, "sosend", "copy big");
    113 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    114     NULL, "sosend", "copy small");
    115 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    116     NULL, "sosend", "kva limit");
    117 
    118 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    119 
    120 EVCNT_ATTACH_STATIC(sosend_loan_big);
    121 EVCNT_ATTACH_STATIC(sosend_copy_big);
    122 EVCNT_ATTACH_STATIC(sosend_copy_small);
    123 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    124 #else
    125 
    126 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    127 
    128 #endif /* SOSEND_COUNTERS */
    129 
    130 static struct callback_entry sokva_reclaimerentry;
    131 
    132 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    133 int sock_loan_thresh = -1;
    134 #else
    135 int sock_loan_thresh = 4096;
    136 #endif
    137 
    138 static kmutex_t so_pendfree_lock;
    139 static struct mbuf *so_pendfree;
    140 
    141 #ifndef SOMAXKVA
    142 #define	SOMAXKVA (16 * 1024 * 1024)
    143 #endif
    144 int somaxkva = SOMAXKVA;
    145 static int socurkva;
    146 static kcondvar_t socurkva_cv;
    147 
    148 #define	SOCK_LOAN_CHUNK		65536
    149 
    150 static size_t sodopendfree(void);
    151 static size_t sodopendfreel(void);
    152 
    153 static vsize_t
    154 sokvareserve(struct socket *so, vsize_t len)
    155 {
    156 	int error;
    157 
    158 	mutex_enter(&so_pendfree_lock);
    159 	while (socurkva + len > somaxkva) {
    160 		size_t freed;
    161 
    162 		/*
    163 		 * try to do pendfree.
    164 		 */
    165 
    166 		freed = sodopendfreel();
    167 
    168 		/*
    169 		 * if some kva was freed, try again.
    170 		 */
    171 
    172 		if (freed)
    173 			continue;
    174 
    175 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    176 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    177 		if (error) {
    178 			len = 0;
    179 			break;
    180 		}
    181 	}
    182 	socurkva += len;
    183 	mutex_exit(&so_pendfree_lock);
    184 	return len;
    185 }
    186 
    187 static void
    188 sokvaunreserve(vsize_t len)
    189 {
    190 
    191 	mutex_enter(&so_pendfree_lock);
    192 	socurkva -= len;
    193 	cv_broadcast(&socurkva_cv);
    194 	mutex_exit(&so_pendfree_lock);
    195 }
    196 
    197 /*
    198  * sokvaalloc: allocate kva for loan.
    199  */
    200 
    201 vaddr_t
    202 sokvaalloc(vsize_t len, struct socket *so)
    203 {
    204 	vaddr_t lva;
    205 
    206 	/*
    207 	 * reserve kva.
    208 	 */
    209 
    210 	if (sokvareserve(so, len) == 0)
    211 		return 0;
    212 
    213 	/*
    214 	 * allocate kva.
    215 	 */
    216 
    217 	lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    218 	if (lva == 0) {
    219 		sokvaunreserve(len);
    220 		return (0);
    221 	}
    222 
    223 	return lva;
    224 }
    225 
    226 /*
    227  * sokvafree: free kva for loan.
    228  */
    229 
    230 void
    231 sokvafree(vaddr_t sva, vsize_t len)
    232 {
    233 
    234 	/*
    235 	 * free kva.
    236 	 */
    237 
    238 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    239 
    240 	/*
    241 	 * unreserve kva.
    242 	 */
    243 
    244 	sokvaunreserve(len);
    245 }
    246 
    247 static void
    248 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    249 {
    250 	vaddr_t sva, eva;
    251 	vsize_t len;
    252 	int npgs;
    253 
    254 	KASSERT(pgs != NULL);
    255 
    256 	eva = round_page((vaddr_t) buf + size);
    257 	sva = trunc_page((vaddr_t) buf);
    258 	len = eva - sva;
    259 	npgs = len >> PAGE_SHIFT;
    260 
    261 	pmap_kremove(sva, len);
    262 	pmap_update(pmap_kernel());
    263 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    264 	sokvafree(sva, len);
    265 }
    266 
    267 static size_t
    268 sodopendfree(void)
    269 {
    270 	size_t rv;
    271 
    272 	if (__predict_true(so_pendfree == NULL))
    273 		return 0;
    274 
    275 	mutex_enter(&so_pendfree_lock);
    276 	rv = sodopendfreel();
    277 	mutex_exit(&so_pendfree_lock);
    278 
    279 	return rv;
    280 }
    281 
    282 /*
    283  * sodopendfreel: free mbufs on "pendfree" list.
    284  * unlock and relock so_pendfree_lock when freeing mbufs.
    285  *
    286  * => called with so_pendfree_lock held.
    287  */
    288 
    289 static size_t
    290 sodopendfreel(void)
    291 {
    292 	struct mbuf *m, *next;
    293 	size_t rv = 0;
    294 
    295 	KASSERT(mutex_owned(&so_pendfree_lock));
    296 
    297 	while (so_pendfree != NULL) {
    298 		m = so_pendfree;
    299 		so_pendfree = NULL;
    300 		mutex_exit(&so_pendfree_lock);
    301 
    302 		for (; m != NULL; m = next) {
    303 			next = m->m_next;
    304 			KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
    305 			KASSERT(m->m_ext.ext_refcnt == 0);
    306 
    307 			rv += m->m_ext.ext_size;
    308 			sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    309 			    m->m_ext.ext_size);
    310 			pool_cache_put(mb_cache, m);
    311 		}
    312 
    313 		mutex_enter(&so_pendfree_lock);
    314 	}
    315 
    316 	return (rv);
    317 }
    318 
    319 void
    320 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    321 {
    322 
    323 	KASSERT(m != NULL);
    324 
    325 	/*
    326 	 * postpone freeing mbuf.
    327 	 *
    328 	 * we can't do it in interrupt context
    329 	 * because we need to put kva back to kernel_map.
    330 	 */
    331 
    332 	mutex_enter(&so_pendfree_lock);
    333 	m->m_next = so_pendfree;
    334 	so_pendfree = m;
    335 	cv_broadcast(&socurkva_cv);
    336 	mutex_exit(&so_pendfree_lock);
    337 }
    338 
    339 static long
    340 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    341 {
    342 	struct iovec *iov = uio->uio_iov;
    343 	vaddr_t sva, eva;
    344 	vsize_t len;
    345 	vaddr_t lva;
    346 	int npgs, error;
    347 	vaddr_t va;
    348 	int i;
    349 
    350 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    351 		return (0);
    352 
    353 	if (iov->iov_len < (size_t) space)
    354 		space = iov->iov_len;
    355 	if (space > SOCK_LOAN_CHUNK)
    356 		space = SOCK_LOAN_CHUNK;
    357 
    358 	eva = round_page((vaddr_t) iov->iov_base + space);
    359 	sva = trunc_page((vaddr_t) iov->iov_base);
    360 	len = eva - sva;
    361 	npgs = len >> PAGE_SHIFT;
    362 
    363 	KASSERT(npgs <= M_EXT_MAXPAGES);
    364 
    365 	lva = sokvaalloc(len, so);
    366 	if (lva == 0)
    367 		return 0;
    368 
    369 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    370 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    371 	if (error) {
    372 		sokvafree(lva, len);
    373 		return (0);
    374 	}
    375 
    376 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    377 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    378 		    VM_PROT_READ);
    379 	pmap_update(pmap_kernel());
    380 
    381 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    382 
    383 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    384 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    385 
    386 	uio->uio_resid -= space;
    387 	/* uio_offset not updated, not set/used for write(2) */
    388 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    389 	uio->uio_iov->iov_len -= space;
    390 	if (uio->uio_iov->iov_len == 0) {
    391 		uio->uio_iov++;
    392 		uio->uio_iovcnt--;
    393 	}
    394 
    395 	return (space);
    396 }
    397 
    398 static int
    399 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    400 {
    401 
    402 	KASSERT(ce == &sokva_reclaimerentry);
    403 	KASSERT(obj == NULL);
    404 
    405 	sodopendfree();
    406 	if (!vm_map_starved_p(kernel_map)) {
    407 		return CALLBACK_CHAIN_ABORT;
    408 	}
    409 	return CALLBACK_CHAIN_CONTINUE;
    410 }
    411 
    412 struct mbuf *
    413 getsombuf(struct socket *so, int type)
    414 {
    415 	struct mbuf *m;
    416 
    417 	m = m_get(M_WAIT, type);
    418 	MCLAIM(m, so->so_mowner);
    419 	return m;
    420 }
    421 
    422 void
    423 soinit(void)
    424 {
    425 
    426 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    427 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    428 	cv_init(&socurkva_cv, "sokva");
    429 	soinit2();
    430 
    431 	/* Set the initial adjusted socket buffer size. */
    432 	if (sb_max_set(sb_max))
    433 		panic("bad initial sb_max value: %lu", sb_max);
    434 
    435 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    436 	    &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
    437 }
    438 
    439 /*
    440  * Socket operation routines.
    441  * These routines are called by the routines in
    442  * sys_socket.c or from a system process, and
    443  * implement the semantics of socket operations by
    444  * switching out to the protocol specific routines.
    445  */
    446 /*ARGSUSED*/
    447 int
    448 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    449 	 struct socket *lockso)
    450 {
    451 	const struct protosw	*prp;
    452 	struct socket	*so;
    453 	uid_t		uid;
    454 	int		error;
    455 	kmutex_t	*lock;
    456 
    457 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    458 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    459 	    KAUTH_ARG(proto));
    460 	if (error != 0)
    461 		return error;
    462 
    463 	if (proto)
    464 		prp = pffindproto(dom, proto, type);
    465 	else
    466 		prp = pffindtype(dom, type);
    467 	if (prp == NULL) {
    468 		/* no support for domain */
    469 		if (pffinddomain(dom) == 0)
    470 			return EAFNOSUPPORT;
    471 		/* no support for socket type */
    472 		if (proto == 0 && type != 0)
    473 			return EPROTOTYPE;
    474 		return EPROTONOSUPPORT;
    475 	}
    476 	if (prp->pr_usrreq == NULL)
    477 		return EPROTONOSUPPORT;
    478 	if (prp->pr_type != type)
    479 		return EPROTOTYPE;
    480 
    481 	so = soget(true);
    482 	so->so_type = type;
    483 	so->so_proto = prp;
    484 	so->so_send = sosend;
    485 	so->so_receive = soreceive;
    486 #ifdef MBUFTRACE
    487 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    488 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    489 	so->so_mowner = &prp->pr_domain->dom_mowner;
    490 #endif
    491 	uid = kauth_cred_geteuid(l->l_cred);
    492 	so->so_uidinfo = uid_find(uid);
    493 	so->so_egid = kauth_cred_getegid(l->l_cred);
    494 	so->so_cpid = l->l_proc->p_pid;
    495 	if (lockso != NULL) {
    496 		/* Caller wants us to share a lock. */
    497 		lock = lockso->so_lock;
    498 		so->so_lock = lock;
    499 		mutex_obj_hold(lock);
    500 		mutex_enter(lock);
    501 	} else {
    502 		/* Lock assigned and taken during PRU_ATTACH. */
    503 	}
    504 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
    505 	    (struct mbuf *)(long)proto, NULL, l);
    506 	KASSERT(solocked(so));
    507 	if (error != 0) {
    508 		so->so_state |= SS_NOFDREF;
    509 		sofree(so);
    510 		return error;
    511 	}
    512 	sounlock(so);
    513 	*aso = so;
    514 	return 0;
    515 }
    516 
    517 /* On success, write file descriptor to fdout and return zero.  On
    518  * failure, return non-zero; *fdout will be undefined.
    519  */
    520 int
    521 fsocreate(int domain, struct socket **sop, int type, int protocol,
    522     struct lwp *l, int *fdout)
    523 {
    524 	struct socket	*so;
    525 	struct file	*fp;
    526 	int		fd, error;
    527 
    528 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    529 		return (error);
    530 	fp->f_flag = FREAD|FWRITE;
    531 	fp->f_type = DTYPE_SOCKET;
    532 	fp->f_ops = &socketops;
    533 	error = socreate(domain, &so, type, protocol, l, NULL);
    534 	if (error != 0) {
    535 		fd_abort(curproc, fp, fd);
    536 	} else {
    537 		if (sop != NULL)
    538 			*sop = so;
    539 		fp->f_data = so;
    540 		fd_affix(curproc, fp, fd);
    541 		*fdout = fd;
    542 	}
    543 	return error;
    544 }
    545 
    546 int
    547 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    548 {
    549 	int	error;
    550 
    551 	solock(so);
    552 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
    553 	sounlock(so);
    554 	return error;
    555 }
    556 
    557 int
    558 solisten(struct socket *so, int backlog, struct lwp *l)
    559 {
    560 	int	error;
    561 
    562 	solock(so);
    563 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    564 	    SS_ISDISCONNECTING)) != 0) {
    565 	    	sounlock(so);
    566 		return (EOPNOTSUPP);
    567 	}
    568 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
    569 	    NULL, NULL, l);
    570 	if (error != 0) {
    571 		sounlock(so);
    572 		return error;
    573 	}
    574 	if (TAILQ_EMPTY(&so->so_q))
    575 		so->so_options |= SO_ACCEPTCONN;
    576 	if (backlog < 0)
    577 		backlog = 0;
    578 	so->so_qlimit = min(backlog, somaxconn);
    579 	sounlock(so);
    580 	return 0;
    581 }
    582 
    583 void
    584 sofree(struct socket *so)
    585 {
    586 	u_int refs;
    587 
    588 	KASSERT(solocked(so));
    589 
    590 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    591 		sounlock(so);
    592 		return;
    593 	}
    594 	if (so->so_head) {
    595 		/*
    596 		 * We must not decommission a socket that's on the accept(2)
    597 		 * queue.  If we do, then accept(2) may hang after select(2)
    598 		 * indicated that the listening socket was ready.
    599 		 */
    600 		if (!soqremque(so, 0)) {
    601 			sounlock(so);
    602 			return;
    603 		}
    604 	}
    605 	if (so->so_rcv.sb_hiwat)
    606 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    607 		    RLIM_INFINITY);
    608 	if (so->so_snd.sb_hiwat)
    609 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    610 		    RLIM_INFINITY);
    611 	sbrelease(&so->so_snd, so);
    612 	KASSERT(!cv_has_waiters(&so->so_cv));
    613 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    614 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    615 	sorflush(so);
    616 	refs = so->so_aborting;	/* XXX */
    617 #ifdef INET
    618 	/* remove acccept filter if one is present. */
    619 	if (so->so_accf != NULL)
    620 		do_setopt_accept_filter(so, NULL);
    621 #endif
    622 	sounlock(so);
    623 	if (refs == 0)		/* XXX */
    624 		soput(so);
    625 }
    626 
    627 /*
    628  * Close a socket on last file table reference removal.
    629  * Initiate disconnect if connected.
    630  * Free socket when disconnect complete.
    631  */
    632 int
    633 soclose(struct socket *so)
    634 {
    635 	struct socket	*so2;
    636 	int		error;
    637 	int		error2;
    638 
    639 	error = 0;
    640 	solock(so);
    641 	if (so->so_options & SO_ACCEPTCONN) {
    642 		do {
    643 			while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    644 				KASSERT(solocked2(so, so2));
    645 				(void) soqremque(so2, 0);
    646 				/* soabort drops the lock. */
    647 				(void) soabort(so2);
    648 				solock(so);
    649 			}
    650 			while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    651 				KASSERT(solocked2(so, so2));
    652 				(void) soqremque(so2, 1);
    653 				/* soabort drops the lock. */
    654 				(void) soabort(so2);
    655 				solock(so);
    656 			}
    657 		} while (!TAILQ_EMPTY(&so->so_q0));
    658 	}
    659 	if (so->so_pcb == 0)
    660 		goto discard;
    661 	if (so->so_state & SS_ISCONNECTED) {
    662 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    663 			error = sodisconnect(so);
    664 			if (error)
    665 				goto drop;
    666 		}
    667 		if (so->so_options & SO_LINGER) {
    668 			if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
    669 				goto drop;
    670 			while (so->so_state & SS_ISCONNECTED) {
    671 				error = sowait(so, so->so_linger * hz);
    672 				if (error)
    673 					break;
    674 			}
    675 		}
    676 	}
    677  drop:
    678 	if (so->so_pcb) {
    679 		error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    680 		    NULL, NULL, NULL, NULL);
    681 		if (error == 0)
    682 			error = error2;
    683 	}
    684  discard:
    685 	if (so->so_state & SS_NOFDREF)
    686 		panic("soclose: NOFDREF");
    687 	so->so_state |= SS_NOFDREF;
    688 	sofree(so);
    689 	return (error);
    690 }
    691 
    692 /*
    693  * Must be called with the socket locked..  Will return with it unlocked.
    694  */
    695 int
    696 soabort(struct socket *so)
    697 {
    698 	u_int refs;
    699 	int error;
    700 
    701 	KASSERT(solocked(so));
    702 	KASSERT(so->so_head == NULL);
    703 
    704 	so->so_aborting++;		/* XXX */
    705 	error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
    706 	    NULL, NULL, NULL);
    707 	refs = --so->so_aborting;	/* XXX */
    708 	if (error || (refs == 0)) {
    709 		sofree(so);
    710 	} else {
    711 		sounlock(so);
    712 	}
    713 	return error;
    714 }
    715 
    716 int
    717 soaccept(struct socket *so, struct mbuf *nam)
    718 {
    719 	int	error;
    720 
    721 	KASSERT(solocked(so));
    722 
    723 	error = 0;
    724 	if ((so->so_state & SS_NOFDREF) == 0)
    725 		panic("soaccept: !NOFDREF");
    726 	so->so_state &= ~SS_NOFDREF;
    727 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    728 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    729 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    730 		    NULL, nam, NULL, NULL);
    731 	else
    732 		error = ECONNABORTED;
    733 
    734 	return (error);
    735 }
    736 
    737 int
    738 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    739 {
    740 	int		error;
    741 
    742 	KASSERT(solocked(so));
    743 
    744 	if (so->so_options & SO_ACCEPTCONN)
    745 		return (EOPNOTSUPP);
    746 	/*
    747 	 * If protocol is connection-based, can only connect once.
    748 	 * Otherwise, if connected, try to disconnect first.
    749 	 * This allows user to disconnect by connecting to, e.g.,
    750 	 * a null address.
    751 	 */
    752 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    753 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    754 	    (error = sodisconnect(so))))
    755 		error = EISCONN;
    756 	else
    757 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    758 		    NULL, nam, NULL, l);
    759 	return (error);
    760 }
    761 
    762 int
    763 soconnect2(struct socket *so1, struct socket *so2)
    764 {
    765 	int	error;
    766 
    767 	KASSERT(solocked2(so1, so2));
    768 
    769 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    770 	    NULL, (struct mbuf *)so2, NULL, NULL);
    771 	return (error);
    772 }
    773 
    774 int
    775 sodisconnect(struct socket *so)
    776 {
    777 	int	error;
    778 
    779 	KASSERT(solocked(so));
    780 
    781 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    782 		error = ENOTCONN;
    783 	} else if (so->so_state & SS_ISDISCONNECTING) {
    784 		error = EALREADY;
    785 	} else {
    786 		error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    787 		    NULL, NULL, NULL, NULL);
    788 	}
    789 	sodopendfree();
    790 	return (error);
    791 }
    792 
    793 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    794 /*
    795  * Send on a socket.
    796  * If send must go all at once and message is larger than
    797  * send buffering, then hard error.
    798  * Lock against other senders.
    799  * If must go all at once and not enough room now, then
    800  * inform user that this would block and do nothing.
    801  * Otherwise, if nonblocking, send as much as possible.
    802  * The data to be sent is described by "uio" if nonzero,
    803  * otherwise by the mbuf chain "top" (which must be null
    804  * if uio is not).  Data provided in mbuf chain must be small
    805  * enough to send all at once.
    806  *
    807  * Returns nonzero on error, timeout or signal; callers
    808  * must check for short counts if EINTR/ERESTART are returned.
    809  * Data and control buffers are freed on return.
    810  */
    811 int
    812 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    813 	struct mbuf *control, int flags, struct lwp *l)
    814 {
    815 	struct mbuf	**mp, *m;
    816 	struct proc	*p;
    817 	long		space, len, resid, clen, mlen;
    818 	int		error, s, dontroute, atomic;
    819 
    820 	p = l->l_proc;
    821 	sodopendfree();
    822 	clen = 0;
    823 
    824 	/*
    825 	 * solock() provides atomicity of access.  splsoftnet() prevents
    826 	 * protocol processing soft interrupts from interrupting us and
    827 	 * blocking (expensive).
    828 	 */
    829 	s = splsoftnet();
    830 	solock(so);
    831 	atomic = sosendallatonce(so) || top;
    832 	if (uio)
    833 		resid = uio->uio_resid;
    834 	else
    835 		resid = top->m_pkthdr.len;
    836 	/*
    837 	 * In theory resid should be unsigned.
    838 	 * However, space must be signed, as it might be less than 0
    839 	 * if we over-committed, and we must use a signed comparison
    840 	 * of space and resid.  On the other hand, a negative resid
    841 	 * causes us to loop sending 0-length segments to the protocol.
    842 	 */
    843 	if (resid < 0) {
    844 		error = EINVAL;
    845 		goto out;
    846 	}
    847 	dontroute =
    848 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    849 	    (so->so_proto->pr_flags & PR_ATOMIC);
    850 	l->l_ru.ru_msgsnd++;
    851 	if (control)
    852 		clen = control->m_len;
    853  restart:
    854 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    855 		goto out;
    856 	do {
    857 		if (so->so_state & SS_CANTSENDMORE) {
    858 			error = EPIPE;
    859 			goto release;
    860 		}
    861 		if (so->so_error) {
    862 			error = so->so_error;
    863 			so->so_error = 0;
    864 			goto release;
    865 		}
    866 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    867 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    868 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    869 				    !(resid == 0 && clen != 0)) {
    870 					error = ENOTCONN;
    871 					goto release;
    872 				}
    873 			} else if (addr == 0) {
    874 				error = EDESTADDRREQ;
    875 				goto release;
    876 			}
    877 		}
    878 		space = sbspace(&so->so_snd);
    879 		if (flags & MSG_OOB)
    880 			space += 1024;
    881 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    882 		    clen > so->so_snd.sb_hiwat) {
    883 			error = EMSGSIZE;
    884 			goto release;
    885 		}
    886 		if (space < resid + clen &&
    887 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    888 			if (so->so_nbio) {
    889 				error = EWOULDBLOCK;
    890 				goto release;
    891 			}
    892 			sbunlock(&so->so_snd);
    893 			error = sbwait(&so->so_snd);
    894 			if (error)
    895 				goto out;
    896 			goto restart;
    897 		}
    898 		mp = &top;
    899 		space -= clen;
    900 		do {
    901 			if (uio == NULL) {
    902 				/*
    903 				 * Data is prepackaged in "top".
    904 				 */
    905 				resid = 0;
    906 				if (flags & MSG_EOR)
    907 					top->m_flags |= M_EOR;
    908 			} else do {
    909 				sounlock(so);
    910 				splx(s);
    911 				if (top == NULL) {
    912 					m = m_gethdr(M_WAIT, MT_DATA);
    913 					mlen = MHLEN;
    914 					m->m_pkthdr.len = 0;
    915 					m->m_pkthdr.rcvif = NULL;
    916 				} else {
    917 					m = m_get(M_WAIT, MT_DATA);
    918 					mlen = MLEN;
    919 				}
    920 				MCLAIM(m, so->so_snd.sb_mowner);
    921 				if (sock_loan_thresh >= 0 &&
    922 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
    923 				    space >= sock_loan_thresh &&
    924 				    (len = sosend_loan(so, uio, m,
    925 						       space)) != 0) {
    926 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    927 					space -= len;
    928 					goto have_data;
    929 				}
    930 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
    931 					SOSEND_COUNTER_INCR(&sosend_copy_big);
    932 					m_clget(m, M_WAIT);
    933 					if ((m->m_flags & M_EXT) == 0)
    934 						goto nopages;
    935 					mlen = MCLBYTES;
    936 					if (atomic && top == 0) {
    937 						len = lmin(MCLBYTES - max_hdr,
    938 						    resid);
    939 						m->m_data += max_hdr;
    940 					} else
    941 						len = lmin(MCLBYTES, resid);
    942 					space -= len;
    943 				} else {
    944  nopages:
    945 					SOSEND_COUNTER_INCR(&sosend_copy_small);
    946 					len = lmin(lmin(mlen, resid), space);
    947 					space -= len;
    948 					/*
    949 					 * For datagram protocols, leave room
    950 					 * for protocol headers in first mbuf.
    951 					 */
    952 					if (atomic && top == 0 && len < mlen)
    953 						MH_ALIGN(m, len);
    954 				}
    955 				error = uiomove(mtod(m, void *), (int)len, uio);
    956  have_data:
    957 				resid = uio->uio_resid;
    958 				m->m_len = len;
    959 				*mp = m;
    960 				top->m_pkthdr.len += len;
    961 				s = splsoftnet();
    962 				solock(so);
    963 				if (error != 0)
    964 					goto release;
    965 				mp = &m->m_next;
    966 				if (resid <= 0) {
    967 					if (flags & MSG_EOR)
    968 						top->m_flags |= M_EOR;
    969 					break;
    970 				}
    971 			} while (space > 0 && atomic);
    972 
    973 			if (so->so_state & SS_CANTSENDMORE) {
    974 				error = EPIPE;
    975 				goto release;
    976 			}
    977 			if (dontroute)
    978 				so->so_options |= SO_DONTROUTE;
    979 			if (resid > 0)
    980 				so->so_state |= SS_MORETOCOME;
    981 			error = (*so->so_proto->pr_usrreq)(so,
    982 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
    983 			    top, addr, control, curlwp);
    984 			if (dontroute)
    985 				so->so_options &= ~SO_DONTROUTE;
    986 			if (resid > 0)
    987 				so->so_state &= ~SS_MORETOCOME;
    988 			clen = 0;
    989 			control = NULL;
    990 			top = NULL;
    991 			mp = &top;
    992 			if (error != 0)
    993 				goto release;
    994 		} while (resid && space > 0);
    995 	} while (resid);
    996 
    997  release:
    998 	sbunlock(&so->so_snd);
    999  out:
   1000 	sounlock(so);
   1001 	splx(s);
   1002 	if (top)
   1003 		m_freem(top);
   1004 	if (control)
   1005 		m_freem(control);
   1006 	return (error);
   1007 }
   1008 
   1009 /*
   1010  * Following replacement or removal of the first mbuf on the first
   1011  * mbuf chain of a socket buffer, push necessary state changes back
   1012  * into the socket buffer so that other consumers see the values
   1013  * consistently.  'nextrecord' is the callers locally stored value of
   1014  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1015  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1016  */
   1017 static void
   1018 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1019 {
   1020 
   1021 	KASSERT(solocked(sb->sb_so));
   1022 
   1023 	/*
   1024 	 * First, update for the new value of nextrecord.  If necessary,
   1025 	 * make it the first record.
   1026 	 */
   1027 	if (sb->sb_mb != NULL)
   1028 		sb->sb_mb->m_nextpkt = nextrecord;
   1029 	else
   1030 		sb->sb_mb = nextrecord;
   1031 
   1032         /*
   1033          * Now update any dependent socket buffer fields to reflect
   1034          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1035          * the addition of a second clause that takes care of the
   1036          * case where sb_mb has been updated, but remains the last
   1037          * record.
   1038          */
   1039         if (sb->sb_mb == NULL) {
   1040                 sb->sb_mbtail = NULL;
   1041                 sb->sb_lastrecord = NULL;
   1042         } else if (sb->sb_mb->m_nextpkt == NULL)
   1043                 sb->sb_lastrecord = sb->sb_mb;
   1044 }
   1045 
   1046 /*
   1047  * Implement receive operations on a socket.
   1048  * We depend on the way that records are added to the sockbuf
   1049  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1050  * must begin with an address if the protocol so specifies,
   1051  * followed by an optional mbuf or mbufs containing ancillary data,
   1052  * and then zero or more mbufs of data.
   1053  * In order to avoid blocking network interrupts for the entire time here,
   1054  * we splx() while doing the actual copy to user space.
   1055  * Although the sockbuf is locked, new data may still be appended,
   1056  * and thus we must maintain consistency of the sockbuf during that time.
   1057  *
   1058  * The caller may receive the data as a single mbuf chain by supplying
   1059  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1060  * only for the count in uio_resid.
   1061  */
   1062 int
   1063 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1064 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1065 {
   1066 	struct lwp *l = curlwp;
   1067 	struct mbuf	*m, **mp, *mt;
   1068 	int atomic, flags, len, error, s, offset, moff, type, orig_resid;
   1069 	const struct protosw	*pr;
   1070 	struct mbuf	*nextrecord;
   1071 	int		mbuf_removed = 0;
   1072 	const struct domain *dom;
   1073 
   1074 	pr = so->so_proto;
   1075 	atomic = pr->pr_flags & PR_ATOMIC;
   1076 	dom = pr->pr_domain;
   1077 	mp = mp0;
   1078 	type = 0;
   1079 	orig_resid = uio->uio_resid;
   1080 
   1081 	if (paddr != NULL)
   1082 		*paddr = NULL;
   1083 	if (controlp != NULL)
   1084 		*controlp = NULL;
   1085 	if (flagsp != NULL)
   1086 		flags = *flagsp &~ MSG_EOR;
   1087 	else
   1088 		flags = 0;
   1089 
   1090 	if ((flags & MSG_DONTWAIT) == 0)
   1091 		sodopendfree();
   1092 
   1093 	if (flags & MSG_OOB) {
   1094 		m = m_get(M_WAIT, MT_DATA);
   1095 		solock(so);
   1096 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
   1097 		    (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
   1098 		sounlock(so);
   1099 		if (error)
   1100 			goto bad;
   1101 		do {
   1102 			error = uiomove(mtod(m, void *),
   1103 			    (int) min(uio->uio_resid, m->m_len), uio);
   1104 			m = m_free(m);
   1105 		} while (uio->uio_resid > 0 && error == 0 && m);
   1106  bad:
   1107 		if (m != NULL)
   1108 			m_freem(m);
   1109 		return error;
   1110 	}
   1111 	if (mp != NULL)
   1112 		*mp = NULL;
   1113 
   1114 	/*
   1115 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1116 	 * protocol processing soft interrupts from interrupting us and
   1117 	 * blocking (expensive).
   1118 	 */
   1119 	s = splsoftnet();
   1120 	solock(so);
   1121 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
   1122 		(*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
   1123 
   1124  restart:
   1125 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1126 		sounlock(so);
   1127 		splx(s);
   1128 		return error;
   1129 	}
   1130 
   1131 	m = so->so_rcv.sb_mb;
   1132 	/*
   1133 	 * If we have less data than requested, block awaiting more
   1134 	 * (subject to any timeout) if:
   1135 	 *   1. the current count is less than the low water mark,
   1136 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1137 	 *	receive operation at once if we block (resid <= hiwat), or
   1138 	 *   3. MSG_DONTWAIT is not set.
   1139 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1140 	 * we have to do the receive in sections, and thus risk returning
   1141 	 * a short count if a timeout or signal occurs after we start.
   1142 	 */
   1143 	if (m == NULL ||
   1144 	    ((flags & MSG_DONTWAIT) == 0 &&
   1145 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1146 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1147 	      ((flags & MSG_WAITALL) &&
   1148 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1149 	     m->m_nextpkt == NULL && !atomic)) {
   1150 #ifdef DIAGNOSTIC
   1151 		if (m == NULL && so->so_rcv.sb_cc)
   1152 			panic("receive 1");
   1153 #endif
   1154 		if (so->so_error) {
   1155 			if (m != NULL)
   1156 				goto dontblock;
   1157 			error = so->so_error;
   1158 			if ((flags & MSG_PEEK) == 0)
   1159 				so->so_error = 0;
   1160 			goto release;
   1161 		}
   1162 		if (so->so_state & SS_CANTRCVMORE) {
   1163 			if (m != NULL)
   1164 				goto dontblock;
   1165 			else
   1166 				goto release;
   1167 		}
   1168 		for (; m != NULL; m = m->m_next)
   1169 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1170 				m = so->so_rcv.sb_mb;
   1171 				goto dontblock;
   1172 			}
   1173 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1174 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1175 			error = ENOTCONN;
   1176 			goto release;
   1177 		}
   1178 		if (uio->uio_resid == 0)
   1179 			goto release;
   1180 		if (so->so_nbio || (flags & MSG_DONTWAIT)) {
   1181 			error = EWOULDBLOCK;
   1182 			goto release;
   1183 		}
   1184 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1185 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1186 		sbunlock(&so->so_rcv);
   1187 		error = sbwait(&so->so_rcv);
   1188 		if (error != 0) {
   1189 			sounlock(so);
   1190 			splx(s);
   1191 			return error;
   1192 		}
   1193 		goto restart;
   1194 	}
   1195  dontblock:
   1196 	/*
   1197 	 * On entry here, m points to the first record of the socket buffer.
   1198 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1199 	 * pointer to the next record in the socket buffer.  We must keep the
   1200 	 * various socket buffer pointers and local stack versions of the
   1201 	 * pointers in sync, pushing out modifications before dropping the
   1202 	 * socket lock, and re-reading them when picking it up.
   1203 	 *
   1204 	 * Otherwise, we will race with the network stack appending new data
   1205 	 * or records onto the socket buffer by using inconsistent/stale
   1206 	 * versions of the field, possibly resulting in socket buffer
   1207 	 * corruption.
   1208 	 *
   1209 	 * By holding the high-level sblock(), we prevent simultaneous
   1210 	 * readers from pulling off the front of the socket buffer.
   1211 	 */
   1212 	if (l != NULL)
   1213 		l->l_ru.ru_msgrcv++;
   1214 	KASSERT(m == so->so_rcv.sb_mb);
   1215 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1216 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1217 	nextrecord = m->m_nextpkt;
   1218 	if (pr->pr_flags & PR_ADDR) {
   1219 #ifdef DIAGNOSTIC
   1220 		if (m->m_type != MT_SONAME)
   1221 			panic("receive 1a");
   1222 #endif
   1223 		orig_resid = 0;
   1224 		if (flags & MSG_PEEK) {
   1225 			if (paddr)
   1226 				*paddr = m_copy(m, 0, m->m_len);
   1227 			m = m->m_next;
   1228 		} else {
   1229 			sbfree(&so->so_rcv, m);
   1230 			mbuf_removed = 1;
   1231 			if (paddr != NULL) {
   1232 				*paddr = m;
   1233 				so->so_rcv.sb_mb = m->m_next;
   1234 				m->m_next = NULL;
   1235 				m = so->so_rcv.sb_mb;
   1236 			} else {
   1237 				MFREE(m, so->so_rcv.sb_mb);
   1238 				m = so->so_rcv.sb_mb;
   1239 			}
   1240 			sbsync(&so->so_rcv, nextrecord);
   1241 		}
   1242 	}
   1243 
   1244 	/*
   1245 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1246 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1247 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1248 	 * perform externalization (or freeing if controlp == NULL).
   1249 	 */
   1250 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1251 		struct mbuf *cm = NULL, *cmn;
   1252 		struct mbuf **cme = &cm;
   1253 
   1254 		do {
   1255 			if (flags & MSG_PEEK) {
   1256 				if (controlp != NULL) {
   1257 					*controlp = m_copy(m, 0, m->m_len);
   1258 					controlp = &(*controlp)->m_next;
   1259 				}
   1260 				m = m->m_next;
   1261 			} else {
   1262 				sbfree(&so->so_rcv, m);
   1263 				so->so_rcv.sb_mb = m->m_next;
   1264 				m->m_next = NULL;
   1265 				*cme = m;
   1266 				cme = &(*cme)->m_next;
   1267 				m = so->so_rcv.sb_mb;
   1268 			}
   1269 		} while (m != NULL && m->m_type == MT_CONTROL);
   1270 		if ((flags & MSG_PEEK) == 0)
   1271 			sbsync(&so->so_rcv, nextrecord);
   1272 		for (; cm != NULL; cm = cmn) {
   1273 			cmn = cm->m_next;
   1274 			cm->m_next = NULL;
   1275 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1276 			if (controlp != NULL) {
   1277 				if (dom->dom_externalize != NULL &&
   1278 				    type == SCM_RIGHTS) {
   1279 					sounlock(so);
   1280 					splx(s);
   1281 					error = (*dom->dom_externalize)(cm, l);
   1282 					s = splsoftnet();
   1283 					solock(so);
   1284 				}
   1285 				*controlp = cm;
   1286 				while (*controlp != NULL)
   1287 					controlp = &(*controlp)->m_next;
   1288 			} else {
   1289 				/*
   1290 				 * Dispose of any SCM_RIGHTS message that went
   1291 				 * through the read path rather than recv.
   1292 				 */
   1293 				if (dom->dom_dispose != NULL &&
   1294 				    type == SCM_RIGHTS) {
   1295 				    	sounlock(so);
   1296 					(*dom->dom_dispose)(cm);
   1297 					solock(so);
   1298 				}
   1299 				m_freem(cm);
   1300 			}
   1301 		}
   1302 		if (m != NULL)
   1303 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1304 		else
   1305 			nextrecord = so->so_rcv.sb_mb;
   1306 		orig_resid = 0;
   1307 	}
   1308 
   1309 	/* If m is non-NULL, we have some data to read. */
   1310 	if (__predict_true(m != NULL)) {
   1311 		type = m->m_type;
   1312 		if (type == MT_OOBDATA)
   1313 			flags |= MSG_OOB;
   1314 	}
   1315 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1316 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1317 
   1318 	moff = 0;
   1319 	offset = 0;
   1320 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1321 		if (m->m_type == MT_OOBDATA) {
   1322 			if (type != MT_OOBDATA)
   1323 				break;
   1324 		} else if (type == MT_OOBDATA)
   1325 			break;
   1326 #ifdef DIAGNOSTIC
   1327 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1328 			panic("receive 3");
   1329 #endif
   1330 		so->so_state &= ~SS_RCVATMARK;
   1331 		len = uio->uio_resid;
   1332 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1333 			len = so->so_oobmark - offset;
   1334 		if (len > m->m_len - moff)
   1335 			len = m->m_len - moff;
   1336 		/*
   1337 		 * If mp is set, just pass back the mbufs.
   1338 		 * Otherwise copy them out via the uio, then free.
   1339 		 * Sockbuf must be consistent here (points to current mbuf,
   1340 		 * it points to next record) when we drop priority;
   1341 		 * we must note any additions to the sockbuf when we
   1342 		 * block interrupts again.
   1343 		 */
   1344 		if (mp == NULL) {
   1345 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1346 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1347 			sounlock(so);
   1348 			splx(s);
   1349 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
   1350 			s = splsoftnet();
   1351 			solock(so);
   1352 			if (error != 0) {
   1353 				/*
   1354 				 * If any part of the record has been removed
   1355 				 * (such as the MT_SONAME mbuf, which will
   1356 				 * happen when PR_ADDR, and thus also
   1357 				 * PR_ATOMIC, is set), then drop the entire
   1358 				 * record to maintain the atomicity of the
   1359 				 * receive operation.
   1360 				 *
   1361 				 * This avoids a later panic("receive 1a")
   1362 				 * when compiled with DIAGNOSTIC.
   1363 				 */
   1364 				if (m && mbuf_removed && atomic)
   1365 					(void) sbdroprecord(&so->so_rcv);
   1366 
   1367 				goto release;
   1368 			}
   1369 		} else
   1370 			uio->uio_resid -= len;
   1371 		if (len == m->m_len - moff) {
   1372 			if (m->m_flags & M_EOR)
   1373 				flags |= MSG_EOR;
   1374 			if (flags & MSG_PEEK) {
   1375 				m = m->m_next;
   1376 				moff = 0;
   1377 			} else {
   1378 				nextrecord = m->m_nextpkt;
   1379 				sbfree(&so->so_rcv, m);
   1380 				if (mp) {
   1381 					*mp = m;
   1382 					mp = &m->m_next;
   1383 					so->so_rcv.sb_mb = m = m->m_next;
   1384 					*mp = NULL;
   1385 				} else {
   1386 					MFREE(m, so->so_rcv.sb_mb);
   1387 					m = so->so_rcv.sb_mb;
   1388 				}
   1389 				/*
   1390 				 * If m != NULL, we also know that
   1391 				 * so->so_rcv.sb_mb != NULL.
   1392 				 */
   1393 				KASSERT(so->so_rcv.sb_mb == m);
   1394 				if (m) {
   1395 					m->m_nextpkt = nextrecord;
   1396 					if (nextrecord == NULL)
   1397 						so->so_rcv.sb_lastrecord = m;
   1398 				} else {
   1399 					so->so_rcv.sb_mb = nextrecord;
   1400 					SB_EMPTY_FIXUP(&so->so_rcv);
   1401 				}
   1402 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1403 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1404 			}
   1405 		} else if (flags & MSG_PEEK)
   1406 			moff += len;
   1407 		else {
   1408 			if (mp != NULL) {
   1409 				mt = m_copym(m, 0, len, M_NOWAIT);
   1410 				if (__predict_false(mt == NULL)) {
   1411 					sounlock(so);
   1412 					mt = m_copym(m, 0, len, M_WAIT);
   1413 					solock(so);
   1414 				}
   1415 				*mp = mt;
   1416 			}
   1417 			m->m_data += len;
   1418 			m->m_len -= len;
   1419 			so->so_rcv.sb_cc -= len;
   1420 		}
   1421 		if (so->so_oobmark) {
   1422 			if ((flags & MSG_PEEK) == 0) {
   1423 				so->so_oobmark -= len;
   1424 				if (so->so_oobmark == 0) {
   1425 					so->so_state |= SS_RCVATMARK;
   1426 					break;
   1427 				}
   1428 			} else {
   1429 				offset += len;
   1430 				if (offset == so->so_oobmark)
   1431 					break;
   1432 			}
   1433 		}
   1434 		if (flags & MSG_EOR)
   1435 			break;
   1436 		/*
   1437 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1438 		 * we must not quit until "uio->uio_resid == 0" or an error
   1439 		 * termination.  If a signal/timeout occurs, return
   1440 		 * with a short count but without error.
   1441 		 * Keep sockbuf locked against other readers.
   1442 		 */
   1443 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1444 		    !sosendallatonce(so) && !nextrecord) {
   1445 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1446 				break;
   1447 			/*
   1448 			 * If we are peeking and the socket receive buffer is
   1449 			 * full, stop since we can't get more data to peek at.
   1450 			 */
   1451 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1452 				break;
   1453 			/*
   1454 			 * If we've drained the socket buffer, tell the
   1455 			 * protocol in case it needs to do something to
   1456 			 * get it filled again.
   1457 			 */
   1458 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1459 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1460 				    NULL, (struct mbuf *)(long)flags, NULL, l);
   1461 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1462 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1463 			error = sbwait(&so->so_rcv);
   1464 			if (error != 0) {
   1465 				sbunlock(&so->so_rcv);
   1466 				sounlock(so);
   1467 				splx(s);
   1468 				return 0;
   1469 			}
   1470 			if ((m = so->so_rcv.sb_mb) != NULL)
   1471 				nextrecord = m->m_nextpkt;
   1472 		}
   1473 	}
   1474 
   1475 	if (m && atomic) {
   1476 		flags |= MSG_TRUNC;
   1477 		if ((flags & MSG_PEEK) == 0)
   1478 			(void) sbdroprecord(&so->so_rcv);
   1479 	}
   1480 	if ((flags & MSG_PEEK) == 0) {
   1481 		if (m == NULL) {
   1482 			/*
   1483 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1484 			 * part makes sure sb_lastrecord is up-to-date if
   1485 			 * there is still data in the socket buffer.
   1486 			 */
   1487 			so->so_rcv.sb_mb = nextrecord;
   1488 			if (so->so_rcv.sb_mb == NULL) {
   1489 				so->so_rcv.sb_mbtail = NULL;
   1490 				so->so_rcv.sb_lastrecord = NULL;
   1491 			} else if (nextrecord->m_nextpkt == NULL)
   1492 				so->so_rcv.sb_lastrecord = nextrecord;
   1493 		}
   1494 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1495 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1496 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1497 			(*pr->pr_usrreq)(so, PRU_RCVD, NULL,
   1498 			    (struct mbuf *)(long)flags, NULL, l);
   1499 	}
   1500 	if (orig_resid == uio->uio_resid && orig_resid &&
   1501 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1502 		sbunlock(&so->so_rcv);
   1503 		goto restart;
   1504 	}
   1505 
   1506 	if (flagsp != NULL)
   1507 		*flagsp |= flags;
   1508  release:
   1509 	sbunlock(&so->so_rcv);
   1510 	sounlock(so);
   1511 	splx(s);
   1512 	return error;
   1513 }
   1514 
   1515 int
   1516 soshutdown(struct socket *so, int how)
   1517 {
   1518 	const struct protosw	*pr;
   1519 	int	error;
   1520 
   1521 	KASSERT(solocked(so));
   1522 
   1523 	pr = so->so_proto;
   1524 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1525 		return (EINVAL);
   1526 
   1527 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1528 		sorflush(so);
   1529 		error = 0;
   1530 	}
   1531 	if (how == SHUT_WR || how == SHUT_RDWR)
   1532 		error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
   1533 		    NULL, NULL, NULL);
   1534 
   1535 	return error;
   1536 }
   1537 
   1538 void
   1539 sorflush(struct socket *so)
   1540 {
   1541 	struct sockbuf	*sb, asb;
   1542 	const struct protosw	*pr;
   1543 
   1544 	KASSERT(solocked(so));
   1545 
   1546 	sb = &so->so_rcv;
   1547 	pr = so->so_proto;
   1548 	socantrcvmore(so);
   1549 	sb->sb_flags |= SB_NOINTR;
   1550 	(void )sblock(sb, M_WAITOK);
   1551 	sbunlock(sb);
   1552 	asb = *sb;
   1553 	/*
   1554 	 * Clear most of the sockbuf structure, but leave some of the
   1555 	 * fields valid.
   1556 	 */
   1557 	memset(&sb->sb_startzero, 0,
   1558 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1559 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1560 		sounlock(so);
   1561 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1562 		solock(so);
   1563 	}
   1564 	sbrelease(&asb, so);
   1565 }
   1566 
   1567 /*
   1568  * internal set SOL_SOCKET options
   1569  */
   1570 static int
   1571 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1572 {
   1573 	int error, optval;
   1574 	struct linger l;
   1575 	struct timeval tv;
   1576 
   1577 	switch (sopt->sopt_name) {
   1578 
   1579 #ifdef INET
   1580 	case SO_ACCEPTFILTER:
   1581 		error = do_setopt_accept_filter(so, sopt);
   1582 		if (error)
   1583 			return error;
   1584 		break;
   1585 #endif
   1586 
   1587   	case SO_LINGER:
   1588  		error = sockopt_get(sopt, &l, sizeof(l));
   1589  		if (error)
   1590  			return (error);
   1591 
   1592  		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1593  		    l.l_linger > (INT_MAX / hz))
   1594 			return EDOM;
   1595  		so->so_linger = l.l_linger;
   1596  		if (l.l_onoff)
   1597  			so->so_options |= SO_LINGER;
   1598  		else
   1599  			so->so_options &= ~SO_LINGER;
   1600 
   1601   		break;
   1602 
   1603 	case SO_DEBUG:
   1604 	case SO_KEEPALIVE:
   1605 	case SO_DONTROUTE:
   1606 	case SO_USELOOPBACK:
   1607 	case SO_BROADCAST:
   1608 	case SO_REUSEADDR:
   1609 	case SO_REUSEPORT:
   1610 	case SO_OOBINLINE:
   1611 	case SO_TIMESTAMP:
   1612 		error = sockopt_getint(sopt, &optval);
   1613 		if (error)
   1614 			return (error);
   1615 
   1616 		if (optval)
   1617 			so->so_options |= sopt->sopt_name;
   1618 		else
   1619 			so->so_options &= ~sopt->sopt_name;
   1620 		break;
   1621 
   1622 	case SO_SNDBUF:
   1623 	case SO_RCVBUF:
   1624 	case SO_SNDLOWAT:
   1625 	case SO_RCVLOWAT:
   1626 		error = sockopt_getint(sopt, &optval);
   1627 		if (error)
   1628 			return (error);
   1629 
   1630 		/*
   1631 		 * Values < 1 make no sense for any of these
   1632 		 * options, so disallow them.
   1633 		 */
   1634 		if (optval < 1)
   1635 			return EINVAL;
   1636 
   1637 		switch (sopt->sopt_name) {
   1638 		case SO_SNDBUF:
   1639 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0)
   1640 				return ENOBUFS;
   1641 
   1642 			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1643 			break;
   1644 
   1645 		case SO_RCVBUF:
   1646 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0)
   1647 				return ENOBUFS;
   1648 
   1649 			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1650 			break;
   1651 
   1652 		/*
   1653 		 * Make sure the low-water is never greater than
   1654 		 * the high-water.
   1655 		 */
   1656 		case SO_SNDLOWAT:
   1657 			if (optval > so->so_snd.sb_hiwat)
   1658 				optval = so->so_snd.sb_hiwat;
   1659 
   1660 			so->so_snd.sb_lowat = optval;
   1661 			break;
   1662 
   1663 		case SO_RCVLOWAT:
   1664 			if (optval > so->so_rcv.sb_hiwat)
   1665 				optval = so->so_rcv.sb_hiwat;
   1666 
   1667 			so->so_rcv.sb_lowat = optval;
   1668 			break;
   1669 		}
   1670 		break;
   1671 
   1672 	case SO_SNDTIMEO:
   1673 	case SO_RCVTIMEO:
   1674 		error = sockopt_get(sopt, &tv, sizeof(tv));
   1675 		if (error)
   1676 			return (error);
   1677 
   1678 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz)
   1679 			return EDOM;
   1680 
   1681 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1682 		if (optval == 0 && tv.tv_usec != 0)
   1683 			optval = 1;
   1684 
   1685 		switch (sopt->sopt_name) {
   1686 		case SO_SNDTIMEO:
   1687 			so->so_snd.sb_timeo = optval;
   1688 			break;
   1689 		case SO_RCVTIMEO:
   1690 			so->so_rcv.sb_timeo = optval;
   1691 			break;
   1692 		}
   1693 		break;
   1694 
   1695 	default:
   1696 		return ENOPROTOOPT;
   1697 	}
   1698 	return 0;
   1699 }
   1700 
   1701 int
   1702 sosetopt(struct socket *so, struct sockopt *sopt)
   1703 {
   1704 	int error, prerr;
   1705 
   1706 	solock(so);
   1707 	if (sopt->sopt_level == SOL_SOCKET)
   1708 		error = sosetopt1(so, sopt);
   1709 	else
   1710 		error = ENOPROTOOPT;
   1711 
   1712 	if ((error == 0 || error == ENOPROTOOPT) &&
   1713 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1714 		/* give the protocol stack a shot */
   1715 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1716 		if (prerr == 0)
   1717 			error = 0;
   1718 		else if (prerr != ENOPROTOOPT)
   1719 			error = prerr;
   1720 	}
   1721 	sounlock(so);
   1722 	return error;
   1723 }
   1724 
   1725 /*
   1726  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1727  */
   1728 int
   1729 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1730     const void *val, size_t valsize)
   1731 {
   1732 	struct sockopt sopt;
   1733 	int error;
   1734 
   1735 	KASSERT(valsize == 0 || val != NULL);
   1736 
   1737 	sockopt_init(&sopt, level, name, valsize);
   1738 	sockopt_set(&sopt, val, valsize);
   1739 
   1740 	error = sosetopt(so, &sopt);
   1741 
   1742 	sockopt_destroy(&sopt);
   1743 
   1744 	return error;
   1745 }
   1746 
   1747 /*
   1748  * internal get SOL_SOCKET options
   1749  */
   1750 static int
   1751 sogetopt1(struct socket *so, struct sockopt *sopt)
   1752 {
   1753 	int error, optval;
   1754 	struct linger l;
   1755 	struct timeval tv;
   1756 
   1757 	switch (sopt->sopt_name) {
   1758 
   1759 #ifdef INET
   1760 	case SO_ACCEPTFILTER:
   1761 		error = do_getopt_accept_filter(so, sopt);
   1762 		break;
   1763 #endif
   1764 
   1765 	case SO_LINGER:
   1766 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1767 		l.l_linger = so->so_linger;
   1768 
   1769 		error = sockopt_set(sopt, &l, sizeof(l));
   1770 		break;
   1771 
   1772 	case SO_USELOOPBACK:
   1773 	case SO_DONTROUTE:
   1774 	case SO_DEBUG:
   1775 	case SO_KEEPALIVE:
   1776 	case SO_REUSEADDR:
   1777 	case SO_REUSEPORT:
   1778 	case SO_BROADCAST:
   1779 	case SO_OOBINLINE:
   1780 	case SO_TIMESTAMP:
   1781 		error = sockopt_setint(sopt,
   1782 		    (so->so_options & sopt->sopt_name) ? 1 : 0);
   1783 		break;
   1784 
   1785 	case SO_TYPE:
   1786 		error = sockopt_setint(sopt, so->so_type);
   1787 		break;
   1788 
   1789 	case SO_ERROR:
   1790 		error = sockopt_setint(sopt, so->so_error);
   1791 		so->so_error = 0;
   1792 		break;
   1793 
   1794 	case SO_SNDBUF:
   1795 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1796 		break;
   1797 
   1798 	case SO_RCVBUF:
   1799 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1800 		break;
   1801 
   1802 	case SO_SNDLOWAT:
   1803 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1804 		break;
   1805 
   1806 	case SO_RCVLOWAT:
   1807 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1808 		break;
   1809 
   1810 	case SO_SNDTIMEO:
   1811 	case SO_RCVTIMEO:
   1812 		optval = (sopt->sopt_name == SO_SNDTIMEO ?
   1813 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1814 
   1815 		tv.tv_sec = optval / hz;
   1816 		tv.tv_usec = (optval % hz) * tick;
   1817 
   1818 		error = sockopt_set(sopt, &tv, sizeof(tv));
   1819 		break;
   1820 
   1821 	case SO_OVERFLOWED:
   1822 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   1823 		break;
   1824 
   1825 	default:
   1826 		error = ENOPROTOOPT;
   1827 		break;
   1828 	}
   1829 
   1830 	return (error);
   1831 }
   1832 
   1833 int
   1834 sogetopt(struct socket *so, struct sockopt *sopt)
   1835 {
   1836 	int		error;
   1837 
   1838 	solock(so);
   1839 	if (sopt->sopt_level != SOL_SOCKET) {
   1840 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1841 			error = ((*so->so_proto->pr_ctloutput)
   1842 			    (PRCO_GETOPT, so, sopt));
   1843 		} else
   1844 			error = (ENOPROTOOPT);
   1845 	} else {
   1846 		error = sogetopt1(so, sopt);
   1847 	}
   1848 	sounlock(so);
   1849 	return (error);
   1850 }
   1851 
   1852 /*
   1853  * alloc sockopt data buffer buffer
   1854  *	- will be released at destroy
   1855  */
   1856 static void
   1857 sockopt_alloc(struct sockopt *sopt, size_t len)
   1858 {
   1859 
   1860 	KASSERT(sopt->sopt_size == 0);
   1861 
   1862 	if (len > sizeof(sopt->sopt_buf))
   1863 		sopt->sopt_data = malloc(len, M_SOOPTS, M_WAITOK | M_ZERO);
   1864 	else
   1865 		sopt->sopt_data = sopt->sopt_buf;
   1866 
   1867 	sopt->sopt_size = len;
   1868 }
   1869 
   1870 /*
   1871  * initialise sockopt storage
   1872  */
   1873 void
   1874 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   1875 {
   1876 
   1877 	memset(sopt, 0, sizeof(*sopt));
   1878 
   1879 	sopt->sopt_level = level;
   1880 	sopt->sopt_name = name;
   1881 	sockopt_alloc(sopt, size);
   1882 }
   1883 
   1884 /*
   1885  * destroy sockopt storage
   1886  *	- will release any held memory references
   1887  */
   1888 void
   1889 sockopt_destroy(struct sockopt *sopt)
   1890 {
   1891 
   1892 	if (sopt->sopt_data != sopt->sopt_buf)
   1893 		free(sopt->sopt_data, M_SOOPTS);
   1894 
   1895 	memset(sopt, 0, sizeof(*sopt));
   1896 }
   1897 
   1898 /*
   1899  * set sockopt value
   1900  *	- value is copied into sockopt
   1901  * 	- memory is allocated when necessary
   1902  */
   1903 int
   1904 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   1905 {
   1906 
   1907 	if (sopt->sopt_size == 0)
   1908 		sockopt_alloc(sopt, len);
   1909 
   1910 	KASSERT(sopt->sopt_size == len);
   1911 	memcpy(sopt->sopt_data, buf, len);
   1912 	return 0;
   1913 }
   1914 
   1915 /*
   1916  * common case of set sockopt integer value
   1917  */
   1918 int
   1919 sockopt_setint(struct sockopt *sopt, int val)
   1920 {
   1921 
   1922 	return sockopt_set(sopt, &val, sizeof(int));
   1923 }
   1924 
   1925 /*
   1926  * get sockopt value
   1927  *	- correct size must be given
   1928  */
   1929 int
   1930 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   1931 {
   1932 
   1933 	if (sopt->sopt_size != len)
   1934 		return EINVAL;
   1935 
   1936 	memcpy(buf, sopt->sopt_data, len);
   1937 	return 0;
   1938 }
   1939 
   1940 /*
   1941  * common case of get sockopt integer value
   1942  */
   1943 int
   1944 sockopt_getint(const struct sockopt *sopt, int *valp)
   1945 {
   1946 
   1947 	return sockopt_get(sopt, valp, sizeof(int));
   1948 }
   1949 
   1950 /*
   1951  * set sockopt value from mbuf
   1952  *	- ONLY for legacy code
   1953  *	- mbuf is released by sockopt
   1954  */
   1955 int
   1956 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   1957 {
   1958 	size_t len;
   1959 
   1960 	len = m_length(m);
   1961 
   1962 	if (sopt->sopt_size == 0)
   1963 		sockopt_alloc(sopt, len);
   1964 
   1965 	KASSERT(sopt->sopt_size == len);
   1966 	m_copydata(m, 0, len, sopt->sopt_data);
   1967 	m_freem(m);
   1968 
   1969 	return 0;
   1970 }
   1971 
   1972 /*
   1973  * get sockopt value into mbuf
   1974  *	- ONLY for legacy code
   1975  *	- mbuf to be released by the caller
   1976  */
   1977 struct mbuf *
   1978 sockopt_getmbuf(const struct sockopt *sopt)
   1979 {
   1980 	struct mbuf *m;
   1981 
   1982 	m = m_get(M_WAIT, MT_SOOPTS);
   1983 	if (m == NULL)
   1984 		return NULL;
   1985 
   1986 	m->m_len = MLEN;
   1987 	m_copyback(m, 0, sopt->sopt_size, sopt->sopt_data);
   1988 	if (m_length(m) != max(sopt->sopt_size, MLEN)) {
   1989 		m_freem(m);
   1990 		return NULL;
   1991 	}
   1992 	m->m_len = min(sopt->sopt_size, MLEN);
   1993 
   1994 	return m;
   1995 }
   1996 
   1997 void
   1998 sohasoutofband(struct socket *so)
   1999 {
   2000 
   2001 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2002 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, 0);
   2003 }
   2004 
   2005 static void
   2006 filt_sordetach(struct knote *kn)
   2007 {
   2008 	struct socket	*so;
   2009 
   2010 	so = ((file_t *)kn->kn_obj)->f_data;
   2011 	solock(so);
   2012 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   2013 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   2014 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2015 	sounlock(so);
   2016 }
   2017 
   2018 /*ARGSUSED*/
   2019 static int
   2020 filt_soread(struct knote *kn, long hint)
   2021 {
   2022 	struct socket	*so;
   2023 	int rv;
   2024 
   2025 	so = ((file_t *)kn->kn_obj)->f_data;
   2026 	if (hint != NOTE_SUBMIT)
   2027 		solock(so);
   2028 	kn->kn_data = so->so_rcv.sb_cc;
   2029 	if (so->so_state & SS_CANTRCVMORE) {
   2030 		kn->kn_flags |= EV_EOF;
   2031 		kn->kn_fflags = so->so_error;
   2032 		rv = 1;
   2033 	} else if (so->so_error)	/* temporary udp error */
   2034 		rv = 1;
   2035 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2036 		rv = (kn->kn_data >= kn->kn_sdata);
   2037 	else
   2038 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2039 	if (hint != NOTE_SUBMIT)
   2040 		sounlock(so);
   2041 	return rv;
   2042 }
   2043 
   2044 static void
   2045 filt_sowdetach(struct knote *kn)
   2046 {
   2047 	struct socket	*so;
   2048 
   2049 	so = ((file_t *)kn->kn_obj)->f_data;
   2050 	solock(so);
   2051 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   2052 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   2053 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2054 	sounlock(so);
   2055 }
   2056 
   2057 /*ARGSUSED*/
   2058 static int
   2059 filt_sowrite(struct knote *kn, long hint)
   2060 {
   2061 	struct socket	*so;
   2062 	int rv;
   2063 
   2064 	so = ((file_t *)kn->kn_obj)->f_data;
   2065 	if (hint != NOTE_SUBMIT)
   2066 		solock(so);
   2067 	kn->kn_data = sbspace(&so->so_snd);
   2068 	if (so->so_state & SS_CANTSENDMORE) {
   2069 		kn->kn_flags |= EV_EOF;
   2070 		kn->kn_fflags = so->so_error;
   2071 		rv = 1;
   2072 	} else if (so->so_error)	/* temporary udp error */
   2073 		rv = 1;
   2074 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2075 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2076 		rv = 0;
   2077 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2078 		rv = (kn->kn_data >= kn->kn_sdata);
   2079 	else
   2080 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2081 	if (hint != NOTE_SUBMIT)
   2082 		sounlock(so);
   2083 	return rv;
   2084 }
   2085 
   2086 /*ARGSUSED*/
   2087 static int
   2088 filt_solisten(struct knote *kn, long hint)
   2089 {
   2090 	struct socket	*so;
   2091 	int rv;
   2092 
   2093 	so = ((file_t *)kn->kn_obj)->f_data;
   2094 
   2095 	/*
   2096 	 * Set kn_data to number of incoming connections, not
   2097 	 * counting partial (incomplete) connections.
   2098 	 */
   2099 	if (hint != NOTE_SUBMIT)
   2100 		solock(so);
   2101 	kn->kn_data = so->so_qlen;
   2102 	rv = (kn->kn_data > 0);
   2103 	if (hint != NOTE_SUBMIT)
   2104 		sounlock(so);
   2105 	return rv;
   2106 }
   2107 
   2108 static const struct filterops solisten_filtops =
   2109 	{ 1, NULL, filt_sordetach, filt_solisten };
   2110 static const struct filterops soread_filtops =
   2111 	{ 1, NULL, filt_sordetach, filt_soread };
   2112 static const struct filterops sowrite_filtops =
   2113 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   2114 
   2115 int
   2116 soo_kqfilter(struct file *fp, struct knote *kn)
   2117 {
   2118 	struct socket	*so;
   2119 	struct sockbuf	*sb;
   2120 
   2121 	so = ((file_t *)kn->kn_obj)->f_data;
   2122 	solock(so);
   2123 	switch (kn->kn_filter) {
   2124 	case EVFILT_READ:
   2125 		if (so->so_options & SO_ACCEPTCONN)
   2126 			kn->kn_fop = &solisten_filtops;
   2127 		else
   2128 			kn->kn_fop = &soread_filtops;
   2129 		sb = &so->so_rcv;
   2130 		break;
   2131 	case EVFILT_WRITE:
   2132 		kn->kn_fop = &sowrite_filtops;
   2133 		sb = &so->so_snd;
   2134 		break;
   2135 	default:
   2136 		sounlock(so);
   2137 		return (EINVAL);
   2138 	}
   2139 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   2140 	sb->sb_flags |= SB_KNOTE;
   2141 	sounlock(so);
   2142 	return (0);
   2143 }
   2144 
   2145 static int
   2146 sodopoll(struct socket *so, int events)
   2147 {
   2148 	int revents;
   2149 
   2150 	revents = 0;
   2151 
   2152 	if (events & (POLLIN | POLLRDNORM))
   2153 		if (soreadable(so))
   2154 			revents |= events & (POLLIN | POLLRDNORM);
   2155 
   2156 	if (events & (POLLOUT | POLLWRNORM))
   2157 		if (sowritable(so))
   2158 			revents |= events & (POLLOUT | POLLWRNORM);
   2159 
   2160 	if (events & (POLLPRI | POLLRDBAND))
   2161 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   2162 			revents |= events & (POLLPRI | POLLRDBAND);
   2163 
   2164 	return revents;
   2165 }
   2166 
   2167 int
   2168 sopoll(struct socket *so, int events)
   2169 {
   2170 	int revents = 0;
   2171 
   2172 #ifndef DIAGNOSTIC
   2173 	/*
   2174 	 * Do a quick, unlocked check in expectation that the socket
   2175 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2176 	 * as the solocked() assertions will fail.
   2177 	 */
   2178 	if ((revents = sodopoll(so, events)) != 0)
   2179 		return revents;
   2180 #endif
   2181 
   2182 	solock(so);
   2183 	if ((revents = sodopoll(so, events)) == 0) {
   2184 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2185 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2186 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2187 		}
   2188 
   2189 		if (events & (POLLOUT | POLLWRNORM)) {
   2190 			selrecord(curlwp, &so->so_snd.sb_sel);
   2191 			so->so_snd.sb_flags |= SB_NOTIFY;
   2192 		}
   2193 	}
   2194 	sounlock(so);
   2195 
   2196 	return revents;
   2197 }
   2198 
   2199 
   2200 #include <sys/sysctl.h>
   2201 
   2202 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2203 
   2204 /*
   2205  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2206  * value is not too small.
   2207  * (XXX should we maybe make sure it's not too large as well?)
   2208  */
   2209 static int
   2210 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2211 {
   2212 	int error, new_somaxkva;
   2213 	struct sysctlnode node;
   2214 
   2215 	new_somaxkva = somaxkva;
   2216 	node = *rnode;
   2217 	node.sysctl_data = &new_somaxkva;
   2218 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2219 	if (error || newp == NULL)
   2220 		return (error);
   2221 
   2222 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2223 		return (EINVAL);
   2224 
   2225 	mutex_enter(&so_pendfree_lock);
   2226 	somaxkva = new_somaxkva;
   2227 	cv_broadcast(&socurkva_cv);
   2228 	mutex_exit(&so_pendfree_lock);
   2229 
   2230 	return (error);
   2231 }
   2232 
   2233 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
   2234 {
   2235 
   2236 	sysctl_createv(clog, 0, NULL, NULL,
   2237 		       CTLFLAG_PERMANENT,
   2238 		       CTLTYPE_NODE, "kern", NULL,
   2239 		       NULL, 0, NULL, 0,
   2240 		       CTL_KERN, CTL_EOL);
   2241 
   2242 	sysctl_createv(clog, 0, NULL, NULL,
   2243 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2244 		       CTLTYPE_INT, "somaxkva",
   2245 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2246 				    "used for socket buffers"),
   2247 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2248 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2249 }
   2250