uipc_socket.c revision 1.171 1 /* $NetBSD: uipc_socket.c,v 1.171 2008/08/06 15:01:23 plunky Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.171 2008/08/06 15:01:23 plunky Exp $");
67
68 #include "opt_inet.h"
69 #include "opt_sock_counters.h"
70 #include "opt_sosend_loan.h"
71 #include "opt_mbuftrace.h"
72 #include "opt_somaxkva.h"
73 #include "opt_multiprocessor.h" /* XXX */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/file.h>
79 #include <sys/filedesc.h>
80 #include <sys/malloc.h>
81 #include <sys/mbuf.h>
82 #include <sys/domain.h>
83 #include <sys/kernel.h>
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/signalvar.h>
88 #include <sys/resourcevar.h>
89 #include <sys/event.h>
90 #include <sys/poll.h>
91 #include <sys/kauth.h>
92 #include <sys/mutex.h>
93 #include <sys/condvar.h>
94
95 #include <uvm/uvm.h>
96
97 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
98 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
99
100 extern const struct fileops socketops;
101
102 extern int somaxconn; /* patchable (XXX sysctl) */
103 int somaxconn = SOMAXCONN;
104 kmutex_t *softnet_lock;
105
106 #ifdef SOSEND_COUNTERS
107 #include <sys/device.h>
108
109 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
110 NULL, "sosend", "loan big");
111 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
112 NULL, "sosend", "copy big");
113 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
114 NULL, "sosend", "copy small");
115 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
116 NULL, "sosend", "kva limit");
117
118 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
119
120 EVCNT_ATTACH_STATIC(sosend_loan_big);
121 EVCNT_ATTACH_STATIC(sosend_copy_big);
122 EVCNT_ATTACH_STATIC(sosend_copy_small);
123 EVCNT_ATTACH_STATIC(sosend_kvalimit);
124 #else
125
126 #define SOSEND_COUNTER_INCR(ev) /* nothing */
127
128 #endif /* SOSEND_COUNTERS */
129
130 static struct callback_entry sokva_reclaimerentry;
131
132 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
133 int sock_loan_thresh = -1;
134 #else
135 int sock_loan_thresh = 4096;
136 #endif
137
138 static kmutex_t so_pendfree_lock;
139 static struct mbuf *so_pendfree;
140
141 #ifndef SOMAXKVA
142 #define SOMAXKVA (16 * 1024 * 1024)
143 #endif
144 int somaxkva = SOMAXKVA;
145 static int socurkva;
146 static kcondvar_t socurkva_cv;
147
148 #define SOCK_LOAN_CHUNK 65536
149
150 static size_t sodopendfree(void);
151 static size_t sodopendfreel(void);
152
153 static vsize_t
154 sokvareserve(struct socket *so, vsize_t len)
155 {
156 int error;
157
158 mutex_enter(&so_pendfree_lock);
159 while (socurkva + len > somaxkva) {
160 size_t freed;
161
162 /*
163 * try to do pendfree.
164 */
165
166 freed = sodopendfreel();
167
168 /*
169 * if some kva was freed, try again.
170 */
171
172 if (freed)
173 continue;
174
175 SOSEND_COUNTER_INCR(&sosend_kvalimit);
176 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
177 if (error) {
178 len = 0;
179 break;
180 }
181 }
182 socurkva += len;
183 mutex_exit(&so_pendfree_lock);
184 return len;
185 }
186
187 static void
188 sokvaunreserve(vsize_t len)
189 {
190
191 mutex_enter(&so_pendfree_lock);
192 socurkva -= len;
193 cv_broadcast(&socurkva_cv);
194 mutex_exit(&so_pendfree_lock);
195 }
196
197 /*
198 * sokvaalloc: allocate kva for loan.
199 */
200
201 vaddr_t
202 sokvaalloc(vsize_t len, struct socket *so)
203 {
204 vaddr_t lva;
205
206 /*
207 * reserve kva.
208 */
209
210 if (sokvareserve(so, len) == 0)
211 return 0;
212
213 /*
214 * allocate kva.
215 */
216
217 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
218 if (lva == 0) {
219 sokvaunreserve(len);
220 return (0);
221 }
222
223 return lva;
224 }
225
226 /*
227 * sokvafree: free kva for loan.
228 */
229
230 void
231 sokvafree(vaddr_t sva, vsize_t len)
232 {
233
234 /*
235 * free kva.
236 */
237
238 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
239
240 /*
241 * unreserve kva.
242 */
243
244 sokvaunreserve(len);
245 }
246
247 static void
248 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
249 {
250 vaddr_t sva, eva;
251 vsize_t len;
252 int npgs;
253
254 KASSERT(pgs != NULL);
255
256 eva = round_page((vaddr_t) buf + size);
257 sva = trunc_page((vaddr_t) buf);
258 len = eva - sva;
259 npgs = len >> PAGE_SHIFT;
260
261 pmap_kremove(sva, len);
262 pmap_update(pmap_kernel());
263 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
264 sokvafree(sva, len);
265 }
266
267 static size_t
268 sodopendfree(void)
269 {
270 size_t rv;
271
272 if (__predict_true(so_pendfree == NULL))
273 return 0;
274
275 mutex_enter(&so_pendfree_lock);
276 rv = sodopendfreel();
277 mutex_exit(&so_pendfree_lock);
278
279 return rv;
280 }
281
282 /*
283 * sodopendfreel: free mbufs on "pendfree" list.
284 * unlock and relock so_pendfree_lock when freeing mbufs.
285 *
286 * => called with so_pendfree_lock held.
287 */
288
289 static size_t
290 sodopendfreel(void)
291 {
292 struct mbuf *m, *next;
293 size_t rv = 0;
294
295 KASSERT(mutex_owned(&so_pendfree_lock));
296
297 while (so_pendfree != NULL) {
298 m = so_pendfree;
299 so_pendfree = NULL;
300 mutex_exit(&so_pendfree_lock);
301
302 for (; m != NULL; m = next) {
303 next = m->m_next;
304 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
305 KASSERT(m->m_ext.ext_refcnt == 0);
306
307 rv += m->m_ext.ext_size;
308 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
309 m->m_ext.ext_size);
310 pool_cache_put(mb_cache, m);
311 }
312
313 mutex_enter(&so_pendfree_lock);
314 }
315
316 return (rv);
317 }
318
319 void
320 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
321 {
322
323 KASSERT(m != NULL);
324
325 /*
326 * postpone freeing mbuf.
327 *
328 * we can't do it in interrupt context
329 * because we need to put kva back to kernel_map.
330 */
331
332 mutex_enter(&so_pendfree_lock);
333 m->m_next = so_pendfree;
334 so_pendfree = m;
335 cv_broadcast(&socurkva_cv);
336 mutex_exit(&so_pendfree_lock);
337 }
338
339 static long
340 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
341 {
342 struct iovec *iov = uio->uio_iov;
343 vaddr_t sva, eva;
344 vsize_t len;
345 vaddr_t lva;
346 int npgs, error;
347 vaddr_t va;
348 int i;
349
350 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
351 return (0);
352
353 if (iov->iov_len < (size_t) space)
354 space = iov->iov_len;
355 if (space > SOCK_LOAN_CHUNK)
356 space = SOCK_LOAN_CHUNK;
357
358 eva = round_page((vaddr_t) iov->iov_base + space);
359 sva = trunc_page((vaddr_t) iov->iov_base);
360 len = eva - sva;
361 npgs = len >> PAGE_SHIFT;
362
363 KASSERT(npgs <= M_EXT_MAXPAGES);
364
365 lva = sokvaalloc(len, so);
366 if (lva == 0)
367 return 0;
368
369 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
370 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
371 if (error) {
372 sokvafree(lva, len);
373 return (0);
374 }
375
376 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
377 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
378 VM_PROT_READ);
379 pmap_update(pmap_kernel());
380
381 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
382
383 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
384 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
385
386 uio->uio_resid -= space;
387 /* uio_offset not updated, not set/used for write(2) */
388 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
389 uio->uio_iov->iov_len -= space;
390 if (uio->uio_iov->iov_len == 0) {
391 uio->uio_iov++;
392 uio->uio_iovcnt--;
393 }
394
395 return (space);
396 }
397
398 static int
399 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
400 {
401
402 KASSERT(ce == &sokva_reclaimerentry);
403 KASSERT(obj == NULL);
404
405 sodopendfree();
406 if (!vm_map_starved_p(kernel_map)) {
407 return CALLBACK_CHAIN_ABORT;
408 }
409 return CALLBACK_CHAIN_CONTINUE;
410 }
411
412 struct mbuf *
413 getsombuf(struct socket *so, int type)
414 {
415 struct mbuf *m;
416
417 m = m_get(M_WAIT, type);
418 MCLAIM(m, so->so_mowner);
419 return m;
420 }
421
422 void
423 soinit(void)
424 {
425
426 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
427 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
428 cv_init(&socurkva_cv, "sokva");
429 soinit2();
430
431 /* Set the initial adjusted socket buffer size. */
432 if (sb_max_set(sb_max))
433 panic("bad initial sb_max value: %lu", sb_max);
434
435 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
436 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
437 }
438
439 /*
440 * Socket operation routines.
441 * These routines are called by the routines in
442 * sys_socket.c or from a system process, and
443 * implement the semantics of socket operations by
444 * switching out to the protocol specific routines.
445 */
446 /*ARGSUSED*/
447 int
448 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
449 struct socket *lockso)
450 {
451 const struct protosw *prp;
452 struct socket *so;
453 uid_t uid;
454 int error;
455 kmutex_t *lock;
456
457 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
458 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
459 KAUTH_ARG(proto));
460 if (error != 0)
461 return error;
462
463 if (proto)
464 prp = pffindproto(dom, proto, type);
465 else
466 prp = pffindtype(dom, type);
467 if (prp == NULL) {
468 /* no support for domain */
469 if (pffinddomain(dom) == 0)
470 return EAFNOSUPPORT;
471 /* no support for socket type */
472 if (proto == 0 && type != 0)
473 return EPROTOTYPE;
474 return EPROTONOSUPPORT;
475 }
476 if (prp->pr_usrreq == NULL)
477 return EPROTONOSUPPORT;
478 if (prp->pr_type != type)
479 return EPROTOTYPE;
480
481 so = soget(true);
482 so->so_type = type;
483 so->so_proto = prp;
484 so->so_send = sosend;
485 so->so_receive = soreceive;
486 #ifdef MBUFTRACE
487 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
488 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
489 so->so_mowner = &prp->pr_domain->dom_mowner;
490 #endif
491 uid = kauth_cred_geteuid(l->l_cred);
492 so->so_uidinfo = uid_find(uid);
493 so->so_egid = kauth_cred_getegid(l->l_cred);
494 so->so_cpid = l->l_proc->p_pid;
495 if (lockso != NULL) {
496 /* Caller wants us to share a lock. */
497 lock = lockso->so_lock;
498 so->so_lock = lock;
499 mutex_obj_hold(lock);
500 mutex_enter(lock);
501 } else {
502 /* Lock assigned and taken during PRU_ATTACH. */
503 }
504 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
505 (struct mbuf *)(long)proto, NULL, l);
506 KASSERT(solocked(so));
507 if (error != 0) {
508 so->so_state |= SS_NOFDREF;
509 sofree(so);
510 return error;
511 }
512 sounlock(so);
513 *aso = so;
514 return 0;
515 }
516
517 /* On success, write file descriptor to fdout and return zero. On
518 * failure, return non-zero; *fdout will be undefined.
519 */
520 int
521 fsocreate(int domain, struct socket **sop, int type, int protocol,
522 struct lwp *l, int *fdout)
523 {
524 struct socket *so;
525 struct file *fp;
526 int fd, error;
527
528 if ((error = fd_allocfile(&fp, &fd)) != 0)
529 return (error);
530 fp->f_flag = FREAD|FWRITE;
531 fp->f_type = DTYPE_SOCKET;
532 fp->f_ops = &socketops;
533 error = socreate(domain, &so, type, protocol, l, NULL);
534 if (error != 0) {
535 fd_abort(curproc, fp, fd);
536 } else {
537 if (sop != NULL)
538 *sop = so;
539 fp->f_data = so;
540 fd_affix(curproc, fp, fd);
541 *fdout = fd;
542 }
543 return error;
544 }
545
546 int
547 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
548 {
549 int error;
550
551 solock(so);
552 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
553 sounlock(so);
554 return error;
555 }
556
557 int
558 solisten(struct socket *so, int backlog, struct lwp *l)
559 {
560 int error;
561
562 solock(so);
563 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
564 SS_ISDISCONNECTING)) != 0) {
565 sounlock(so);
566 return (EOPNOTSUPP);
567 }
568 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
569 NULL, NULL, l);
570 if (error != 0) {
571 sounlock(so);
572 return error;
573 }
574 if (TAILQ_EMPTY(&so->so_q))
575 so->so_options |= SO_ACCEPTCONN;
576 if (backlog < 0)
577 backlog = 0;
578 so->so_qlimit = min(backlog, somaxconn);
579 sounlock(so);
580 return 0;
581 }
582
583 void
584 sofree(struct socket *so)
585 {
586 u_int refs;
587
588 KASSERT(solocked(so));
589
590 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
591 sounlock(so);
592 return;
593 }
594 if (so->so_head) {
595 /*
596 * We must not decommission a socket that's on the accept(2)
597 * queue. If we do, then accept(2) may hang after select(2)
598 * indicated that the listening socket was ready.
599 */
600 if (!soqremque(so, 0)) {
601 sounlock(so);
602 return;
603 }
604 }
605 if (so->so_rcv.sb_hiwat)
606 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
607 RLIM_INFINITY);
608 if (so->so_snd.sb_hiwat)
609 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
610 RLIM_INFINITY);
611 sbrelease(&so->so_snd, so);
612 KASSERT(!cv_has_waiters(&so->so_cv));
613 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
614 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
615 sorflush(so);
616 refs = so->so_aborting; /* XXX */
617 #ifdef INET
618 /* remove acccept filter if one is present. */
619 if (so->so_accf != NULL)
620 do_setopt_accept_filter(so, NULL);
621 #endif
622 sounlock(so);
623 if (refs == 0) /* XXX */
624 soput(so);
625 }
626
627 /*
628 * Close a socket on last file table reference removal.
629 * Initiate disconnect if connected.
630 * Free socket when disconnect complete.
631 */
632 int
633 soclose(struct socket *so)
634 {
635 struct socket *so2;
636 int error;
637 int error2;
638
639 error = 0;
640 solock(so);
641 if (so->so_options & SO_ACCEPTCONN) {
642 do {
643 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
644 KASSERT(solocked2(so, so2));
645 (void) soqremque(so2, 0);
646 /* soabort drops the lock. */
647 (void) soabort(so2);
648 solock(so);
649 }
650 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
651 KASSERT(solocked2(so, so2));
652 (void) soqremque(so2, 1);
653 /* soabort drops the lock. */
654 (void) soabort(so2);
655 solock(so);
656 }
657 } while (!TAILQ_EMPTY(&so->so_q0));
658 }
659 if (so->so_pcb == 0)
660 goto discard;
661 if (so->so_state & SS_ISCONNECTED) {
662 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
663 error = sodisconnect(so);
664 if (error)
665 goto drop;
666 }
667 if (so->so_options & SO_LINGER) {
668 if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
669 goto drop;
670 while (so->so_state & SS_ISCONNECTED) {
671 error = sowait(so, so->so_linger * hz);
672 if (error)
673 break;
674 }
675 }
676 }
677 drop:
678 if (so->so_pcb) {
679 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
680 NULL, NULL, NULL, NULL);
681 if (error == 0)
682 error = error2;
683 }
684 discard:
685 if (so->so_state & SS_NOFDREF)
686 panic("soclose: NOFDREF");
687 so->so_state |= SS_NOFDREF;
688 sofree(so);
689 return (error);
690 }
691
692 /*
693 * Must be called with the socket locked.. Will return with it unlocked.
694 */
695 int
696 soabort(struct socket *so)
697 {
698 u_int refs;
699 int error;
700
701 KASSERT(solocked(so));
702 KASSERT(so->so_head == NULL);
703
704 so->so_aborting++; /* XXX */
705 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
706 NULL, NULL, NULL);
707 refs = --so->so_aborting; /* XXX */
708 if (error || (refs == 0)) {
709 sofree(so);
710 } else {
711 sounlock(so);
712 }
713 return error;
714 }
715
716 int
717 soaccept(struct socket *so, struct mbuf *nam)
718 {
719 int error;
720
721 KASSERT(solocked(so));
722
723 error = 0;
724 if ((so->so_state & SS_NOFDREF) == 0)
725 panic("soaccept: !NOFDREF");
726 so->so_state &= ~SS_NOFDREF;
727 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
728 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
729 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
730 NULL, nam, NULL, NULL);
731 else
732 error = ECONNABORTED;
733
734 return (error);
735 }
736
737 int
738 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
739 {
740 int error;
741
742 KASSERT(solocked(so));
743
744 if (so->so_options & SO_ACCEPTCONN)
745 return (EOPNOTSUPP);
746 /*
747 * If protocol is connection-based, can only connect once.
748 * Otherwise, if connected, try to disconnect first.
749 * This allows user to disconnect by connecting to, e.g.,
750 * a null address.
751 */
752 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
753 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
754 (error = sodisconnect(so))))
755 error = EISCONN;
756 else
757 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
758 NULL, nam, NULL, l);
759 return (error);
760 }
761
762 int
763 soconnect2(struct socket *so1, struct socket *so2)
764 {
765 int error;
766
767 KASSERT(solocked2(so1, so2));
768
769 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
770 NULL, (struct mbuf *)so2, NULL, NULL);
771 return (error);
772 }
773
774 int
775 sodisconnect(struct socket *so)
776 {
777 int error;
778
779 KASSERT(solocked(so));
780
781 if ((so->so_state & SS_ISCONNECTED) == 0) {
782 error = ENOTCONN;
783 } else if (so->so_state & SS_ISDISCONNECTING) {
784 error = EALREADY;
785 } else {
786 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
787 NULL, NULL, NULL, NULL);
788 }
789 sodopendfree();
790 return (error);
791 }
792
793 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
794 /*
795 * Send on a socket.
796 * If send must go all at once and message is larger than
797 * send buffering, then hard error.
798 * Lock against other senders.
799 * If must go all at once and not enough room now, then
800 * inform user that this would block and do nothing.
801 * Otherwise, if nonblocking, send as much as possible.
802 * The data to be sent is described by "uio" if nonzero,
803 * otherwise by the mbuf chain "top" (which must be null
804 * if uio is not). Data provided in mbuf chain must be small
805 * enough to send all at once.
806 *
807 * Returns nonzero on error, timeout or signal; callers
808 * must check for short counts if EINTR/ERESTART are returned.
809 * Data and control buffers are freed on return.
810 */
811 int
812 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
813 struct mbuf *control, int flags, struct lwp *l)
814 {
815 struct mbuf **mp, *m;
816 struct proc *p;
817 long space, len, resid, clen, mlen;
818 int error, s, dontroute, atomic;
819
820 p = l->l_proc;
821 sodopendfree();
822 clen = 0;
823
824 /*
825 * solock() provides atomicity of access. splsoftnet() prevents
826 * protocol processing soft interrupts from interrupting us and
827 * blocking (expensive).
828 */
829 s = splsoftnet();
830 solock(so);
831 atomic = sosendallatonce(so) || top;
832 if (uio)
833 resid = uio->uio_resid;
834 else
835 resid = top->m_pkthdr.len;
836 /*
837 * In theory resid should be unsigned.
838 * However, space must be signed, as it might be less than 0
839 * if we over-committed, and we must use a signed comparison
840 * of space and resid. On the other hand, a negative resid
841 * causes us to loop sending 0-length segments to the protocol.
842 */
843 if (resid < 0) {
844 error = EINVAL;
845 goto out;
846 }
847 dontroute =
848 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
849 (so->so_proto->pr_flags & PR_ATOMIC);
850 l->l_ru.ru_msgsnd++;
851 if (control)
852 clen = control->m_len;
853 restart:
854 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
855 goto out;
856 do {
857 if (so->so_state & SS_CANTSENDMORE) {
858 error = EPIPE;
859 goto release;
860 }
861 if (so->so_error) {
862 error = so->so_error;
863 so->so_error = 0;
864 goto release;
865 }
866 if ((so->so_state & SS_ISCONNECTED) == 0) {
867 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
868 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
869 !(resid == 0 && clen != 0)) {
870 error = ENOTCONN;
871 goto release;
872 }
873 } else if (addr == 0) {
874 error = EDESTADDRREQ;
875 goto release;
876 }
877 }
878 space = sbspace(&so->so_snd);
879 if (flags & MSG_OOB)
880 space += 1024;
881 if ((atomic && resid > so->so_snd.sb_hiwat) ||
882 clen > so->so_snd.sb_hiwat) {
883 error = EMSGSIZE;
884 goto release;
885 }
886 if (space < resid + clen &&
887 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
888 if (so->so_nbio) {
889 error = EWOULDBLOCK;
890 goto release;
891 }
892 sbunlock(&so->so_snd);
893 error = sbwait(&so->so_snd);
894 if (error)
895 goto out;
896 goto restart;
897 }
898 mp = ⊤
899 space -= clen;
900 do {
901 if (uio == NULL) {
902 /*
903 * Data is prepackaged in "top".
904 */
905 resid = 0;
906 if (flags & MSG_EOR)
907 top->m_flags |= M_EOR;
908 } else do {
909 sounlock(so);
910 splx(s);
911 if (top == NULL) {
912 m = m_gethdr(M_WAIT, MT_DATA);
913 mlen = MHLEN;
914 m->m_pkthdr.len = 0;
915 m->m_pkthdr.rcvif = NULL;
916 } else {
917 m = m_get(M_WAIT, MT_DATA);
918 mlen = MLEN;
919 }
920 MCLAIM(m, so->so_snd.sb_mowner);
921 if (sock_loan_thresh >= 0 &&
922 uio->uio_iov->iov_len >= sock_loan_thresh &&
923 space >= sock_loan_thresh &&
924 (len = sosend_loan(so, uio, m,
925 space)) != 0) {
926 SOSEND_COUNTER_INCR(&sosend_loan_big);
927 space -= len;
928 goto have_data;
929 }
930 if (resid >= MINCLSIZE && space >= MCLBYTES) {
931 SOSEND_COUNTER_INCR(&sosend_copy_big);
932 m_clget(m, M_WAIT);
933 if ((m->m_flags & M_EXT) == 0)
934 goto nopages;
935 mlen = MCLBYTES;
936 if (atomic && top == 0) {
937 len = lmin(MCLBYTES - max_hdr,
938 resid);
939 m->m_data += max_hdr;
940 } else
941 len = lmin(MCLBYTES, resid);
942 space -= len;
943 } else {
944 nopages:
945 SOSEND_COUNTER_INCR(&sosend_copy_small);
946 len = lmin(lmin(mlen, resid), space);
947 space -= len;
948 /*
949 * For datagram protocols, leave room
950 * for protocol headers in first mbuf.
951 */
952 if (atomic && top == 0 && len < mlen)
953 MH_ALIGN(m, len);
954 }
955 error = uiomove(mtod(m, void *), (int)len, uio);
956 have_data:
957 resid = uio->uio_resid;
958 m->m_len = len;
959 *mp = m;
960 top->m_pkthdr.len += len;
961 s = splsoftnet();
962 solock(so);
963 if (error != 0)
964 goto release;
965 mp = &m->m_next;
966 if (resid <= 0) {
967 if (flags & MSG_EOR)
968 top->m_flags |= M_EOR;
969 break;
970 }
971 } while (space > 0 && atomic);
972
973 if (so->so_state & SS_CANTSENDMORE) {
974 error = EPIPE;
975 goto release;
976 }
977 if (dontroute)
978 so->so_options |= SO_DONTROUTE;
979 if (resid > 0)
980 so->so_state |= SS_MORETOCOME;
981 error = (*so->so_proto->pr_usrreq)(so,
982 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
983 top, addr, control, curlwp);
984 if (dontroute)
985 so->so_options &= ~SO_DONTROUTE;
986 if (resid > 0)
987 so->so_state &= ~SS_MORETOCOME;
988 clen = 0;
989 control = NULL;
990 top = NULL;
991 mp = ⊤
992 if (error != 0)
993 goto release;
994 } while (resid && space > 0);
995 } while (resid);
996
997 release:
998 sbunlock(&so->so_snd);
999 out:
1000 sounlock(so);
1001 splx(s);
1002 if (top)
1003 m_freem(top);
1004 if (control)
1005 m_freem(control);
1006 return (error);
1007 }
1008
1009 /*
1010 * Following replacement or removal of the first mbuf on the first
1011 * mbuf chain of a socket buffer, push necessary state changes back
1012 * into the socket buffer so that other consumers see the values
1013 * consistently. 'nextrecord' is the callers locally stored value of
1014 * the original value of sb->sb_mb->m_nextpkt which must be restored
1015 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1016 */
1017 static void
1018 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1019 {
1020
1021 KASSERT(solocked(sb->sb_so));
1022
1023 /*
1024 * First, update for the new value of nextrecord. If necessary,
1025 * make it the first record.
1026 */
1027 if (sb->sb_mb != NULL)
1028 sb->sb_mb->m_nextpkt = nextrecord;
1029 else
1030 sb->sb_mb = nextrecord;
1031
1032 /*
1033 * Now update any dependent socket buffer fields to reflect
1034 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1035 * the addition of a second clause that takes care of the
1036 * case where sb_mb has been updated, but remains the last
1037 * record.
1038 */
1039 if (sb->sb_mb == NULL) {
1040 sb->sb_mbtail = NULL;
1041 sb->sb_lastrecord = NULL;
1042 } else if (sb->sb_mb->m_nextpkt == NULL)
1043 sb->sb_lastrecord = sb->sb_mb;
1044 }
1045
1046 /*
1047 * Implement receive operations on a socket.
1048 * We depend on the way that records are added to the sockbuf
1049 * by sbappend*. In particular, each record (mbufs linked through m_next)
1050 * must begin with an address if the protocol so specifies,
1051 * followed by an optional mbuf or mbufs containing ancillary data,
1052 * and then zero or more mbufs of data.
1053 * In order to avoid blocking network interrupts for the entire time here,
1054 * we splx() while doing the actual copy to user space.
1055 * Although the sockbuf is locked, new data may still be appended,
1056 * and thus we must maintain consistency of the sockbuf during that time.
1057 *
1058 * The caller may receive the data as a single mbuf chain by supplying
1059 * an mbuf **mp0 for use in returning the chain. The uio is then used
1060 * only for the count in uio_resid.
1061 */
1062 int
1063 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1064 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1065 {
1066 struct lwp *l = curlwp;
1067 struct mbuf *m, **mp, *mt;
1068 int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1069 const struct protosw *pr;
1070 struct mbuf *nextrecord;
1071 int mbuf_removed = 0;
1072 const struct domain *dom;
1073
1074 pr = so->so_proto;
1075 atomic = pr->pr_flags & PR_ATOMIC;
1076 dom = pr->pr_domain;
1077 mp = mp0;
1078 type = 0;
1079 orig_resid = uio->uio_resid;
1080
1081 if (paddr != NULL)
1082 *paddr = NULL;
1083 if (controlp != NULL)
1084 *controlp = NULL;
1085 if (flagsp != NULL)
1086 flags = *flagsp &~ MSG_EOR;
1087 else
1088 flags = 0;
1089
1090 if ((flags & MSG_DONTWAIT) == 0)
1091 sodopendfree();
1092
1093 if (flags & MSG_OOB) {
1094 m = m_get(M_WAIT, MT_DATA);
1095 solock(so);
1096 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1097 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1098 sounlock(so);
1099 if (error)
1100 goto bad;
1101 do {
1102 error = uiomove(mtod(m, void *),
1103 (int) min(uio->uio_resid, m->m_len), uio);
1104 m = m_free(m);
1105 } while (uio->uio_resid > 0 && error == 0 && m);
1106 bad:
1107 if (m != NULL)
1108 m_freem(m);
1109 return error;
1110 }
1111 if (mp != NULL)
1112 *mp = NULL;
1113
1114 /*
1115 * solock() provides atomicity of access. splsoftnet() prevents
1116 * protocol processing soft interrupts from interrupting us and
1117 * blocking (expensive).
1118 */
1119 s = splsoftnet();
1120 solock(so);
1121 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1122 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1123
1124 restart:
1125 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1126 sounlock(so);
1127 splx(s);
1128 return error;
1129 }
1130
1131 m = so->so_rcv.sb_mb;
1132 /*
1133 * If we have less data than requested, block awaiting more
1134 * (subject to any timeout) if:
1135 * 1. the current count is less than the low water mark,
1136 * 2. MSG_WAITALL is set, and it is possible to do the entire
1137 * receive operation at once if we block (resid <= hiwat), or
1138 * 3. MSG_DONTWAIT is not set.
1139 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1140 * we have to do the receive in sections, and thus risk returning
1141 * a short count if a timeout or signal occurs after we start.
1142 */
1143 if (m == NULL ||
1144 ((flags & MSG_DONTWAIT) == 0 &&
1145 so->so_rcv.sb_cc < uio->uio_resid &&
1146 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1147 ((flags & MSG_WAITALL) &&
1148 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1149 m->m_nextpkt == NULL && !atomic)) {
1150 #ifdef DIAGNOSTIC
1151 if (m == NULL && so->so_rcv.sb_cc)
1152 panic("receive 1");
1153 #endif
1154 if (so->so_error) {
1155 if (m != NULL)
1156 goto dontblock;
1157 error = so->so_error;
1158 if ((flags & MSG_PEEK) == 0)
1159 so->so_error = 0;
1160 goto release;
1161 }
1162 if (so->so_state & SS_CANTRCVMORE) {
1163 if (m != NULL)
1164 goto dontblock;
1165 else
1166 goto release;
1167 }
1168 for (; m != NULL; m = m->m_next)
1169 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1170 m = so->so_rcv.sb_mb;
1171 goto dontblock;
1172 }
1173 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1174 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1175 error = ENOTCONN;
1176 goto release;
1177 }
1178 if (uio->uio_resid == 0)
1179 goto release;
1180 if (so->so_nbio || (flags & MSG_DONTWAIT)) {
1181 error = EWOULDBLOCK;
1182 goto release;
1183 }
1184 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1185 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1186 sbunlock(&so->so_rcv);
1187 error = sbwait(&so->so_rcv);
1188 if (error != 0) {
1189 sounlock(so);
1190 splx(s);
1191 return error;
1192 }
1193 goto restart;
1194 }
1195 dontblock:
1196 /*
1197 * On entry here, m points to the first record of the socket buffer.
1198 * From this point onward, we maintain 'nextrecord' as a cache of the
1199 * pointer to the next record in the socket buffer. We must keep the
1200 * various socket buffer pointers and local stack versions of the
1201 * pointers in sync, pushing out modifications before dropping the
1202 * socket lock, and re-reading them when picking it up.
1203 *
1204 * Otherwise, we will race with the network stack appending new data
1205 * or records onto the socket buffer by using inconsistent/stale
1206 * versions of the field, possibly resulting in socket buffer
1207 * corruption.
1208 *
1209 * By holding the high-level sblock(), we prevent simultaneous
1210 * readers from pulling off the front of the socket buffer.
1211 */
1212 if (l != NULL)
1213 l->l_ru.ru_msgrcv++;
1214 KASSERT(m == so->so_rcv.sb_mb);
1215 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1216 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1217 nextrecord = m->m_nextpkt;
1218 if (pr->pr_flags & PR_ADDR) {
1219 #ifdef DIAGNOSTIC
1220 if (m->m_type != MT_SONAME)
1221 panic("receive 1a");
1222 #endif
1223 orig_resid = 0;
1224 if (flags & MSG_PEEK) {
1225 if (paddr)
1226 *paddr = m_copy(m, 0, m->m_len);
1227 m = m->m_next;
1228 } else {
1229 sbfree(&so->so_rcv, m);
1230 mbuf_removed = 1;
1231 if (paddr != NULL) {
1232 *paddr = m;
1233 so->so_rcv.sb_mb = m->m_next;
1234 m->m_next = NULL;
1235 m = so->so_rcv.sb_mb;
1236 } else {
1237 MFREE(m, so->so_rcv.sb_mb);
1238 m = so->so_rcv.sb_mb;
1239 }
1240 sbsync(&so->so_rcv, nextrecord);
1241 }
1242 }
1243
1244 /*
1245 * Process one or more MT_CONTROL mbufs present before any data mbufs
1246 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1247 * just copy the data; if !MSG_PEEK, we call into the protocol to
1248 * perform externalization (or freeing if controlp == NULL).
1249 */
1250 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1251 struct mbuf *cm = NULL, *cmn;
1252 struct mbuf **cme = &cm;
1253
1254 do {
1255 if (flags & MSG_PEEK) {
1256 if (controlp != NULL) {
1257 *controlp = m_copy(m, 0, m->m_len);
1258 controlp = &(*controlp)->m_next;
1259 }
1260 m = m->m_next;
1261 } else {
1262 sbfree(&so->so_rcv, m);
1263 so->so_rcv.sb_mb = m->m_next;
1264 m->m_next = NULL;
1265 *cme = m;
1266 cme = &(*cme)->m_next;
1267 m = so->so_rcv.sb_mb;
1268 }
1269 } while (m != NULL && m->m_type == MT_CONTROL);
1270 if ((flags & MSG_PEEK) == 0)
1271 sbsync(&so->so_rcv, nextrecord);
1272 for (; cm != NULL; cm = cmn) {
1273 cmn = cm->m_next;
1274 cm->m_next = NULL;
1275 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1276 if (controlp != NULL) {
1277 if (dom->dom_externalize != NULL &&
1278 type == SCM_RIGHTS) {
1279 sounlock(so);
1280 splx(s);
1281 error = (*dom->dom_externalize)(cm, l);
1282 s = splsoftnet();
1283 solock(so);
1284 }
1285 *controlp = cm;
1286 while (*controlp != NULL)
1287 controlp = &(*controlp)->m_next;
1288 } else {
1289 /*
1290 * Dispose of any SCM_RIGHTS message that went
1291 * through the read path rather than recv.
1292 */
1293 if (dom->dom_dispose != NULL &&
1294 type == SCM_RIGHTS) {
1295 sounlock(so);
1296 (*dom->dom_dispose)(cm);
1297 solock(so);
1298 }
1299 m_freem(cm);
1300 }
1301 }
1302 if (m != NULL)
1303 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1304 else
1305 nextrecord = so->so_rcv.sb_mb;
1306 orig_resid = 0;
1307 }
1308
1309 /* If m is non-NULL, we have some data to read. */
1310 if (__predict_true(m != NULL)) {
1311 type = m->m_type;
1312 if (type == MT_OOBDATA)
1313 flags |= MSG_OOB;
1314 }
1315 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1316 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1317
1318 moff = 0;
1319 offset = 0;
1320 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1321 if (m->m_type == MT_OOBDATA) {
1322 if (type != MT_OOBDATA)
1323 break;
1324 } else if (type == MT_OOBDATA)
1325 break;
1326 #ifdef DIAGNOSTIC
1327 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1328 panic("receive 3");
1329 #endif
1330 so->so_state &= ~SS_RCVATMARK;
1331 len = uio->uio_resid;
1332 if (so->so_oobmark && len > so->so_oobmark - offset)
1333 len = so->so_oobmark - offset;
1334 if (len > m->m_len - moff)
1335 len = m->m_len - moff;
1336 /*
1337 * If mp is set, just pass back the mbufs.
1338 * Otherwise copy them out via the uio, then free.
1339 * Sockbuf must be consistent here (points to current mbuf,
1340 * it points to next record) when we drop priority;
1341 * we must note any additions to the sockbuf when we
1342 * block interrupts again.
1343 */
1344 if (mp == NULL) {
1345 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1346 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1347 sounlock(so);
1348 splx(s);
1349 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1350 s = splsoftnet();
1351 solock(so);
1352 if (error != 0) {
1353 /*
1354 * If any part of the record has been removed
1355 * (such as the MT_SONAME mbuf, which will
1356 * happen when PR_ADDR, and thus also
1357 * PR_ATOMIC, is set), then drop the entire
1358 * record to maintain the atomicity of the
1359 * receive operation.
1360 *
1361 * This avoids a later panic("receive 1a")
1362 * when compiled with DIAGNOSTIC.
1363 */
1364 if (m && mbuf_removed && atomic)
1365 (void) sbdroprecord(&so->so_rcv);
1366
1367 goto release;
1368 }
1369 } else
1370 uio->uio_resid -= len;
1371 if (len == m->m_len - moff) {
1372 if (m->m_flags & M_EOR)
1373 flags |= MSG_EOR;
1374 if (flags & MSG_PEEK) {
1375 m = m->m_next;
1376 moff = 0;
1377 } else {
1378 nextrecord = m->m_nextpkt;
1379 sbfree(&so->so_rcv, m);
1380 if (mp) {
1381 *mp = m;
1382 mp = &m->m_next;
1383 so->so_rcv.sb_mb = m = m->m_next;
1384 *mp = NULL;
1385 } else {
1386 MFREE(m, so->so_rcv.sb_mb);
1387 m = so->so_rcv.sb_mb;
1388 }
1389 /*
1390 * If m != NULL, we also know that
1391 * so->so_rcv.sb_mb != NULL.
1392 */
1393 KASSERT(so->so_rcv.sb_mb == m);
1394 if (m) {
1395 m->m_nextpkt = nextrecord;
1396 if (nextrecord == NULL)
1397 so->so_rcv.sb_lastrecord = m;
1398 } else {
1399 so->so_rcv.sb_mb = nextrecord;
1400 SB_EMPTY_FIXUP(&so->so_rcv);
1401 }
1402 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1403 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1404 }
1405 } else if (flags & MSG_PEEK)
1406 moff += len;
1407 else {
1408 if (mp != NULL) {
1409 mt = m_copym(m, 0, len, M_NOWAIT);
1410 if (__predict_false(mt == NULL)) {
1411 sounlock(so);
1412 mt = m_copym(m, 0, len, M_WAIT);
1413 solock(so);
1414 }
1415 *mp = mt;
1416 }
1417 m->m_data += len;
1418 m->m_len -= len;
1419 so->so_rcv.sb_cc -= len;
1420 }
1421 if (so->so_oobmark) {
1422 if ((flags & MSG_PEEK) == 0) {
1423 so->so_oobmark -= len;
1424 if (so->so_oobmark == 0) {
1425 so->so_state |= SS_RCVATMARK;
1426 break;
1427 }
1428 } else {
1429 offset += len;
1430 if (offset == so->so_oobmark)
1431 break;
1432 }
1433 }
1434 if (flags & MSG_EOR)
1435 break;
1436 /*
1437 * If the MSG_WAITALL flag is set (for non-atomic socket),
1438 * we must not quit until "uio->uio_resid == 0" or an error
1439 * termination. If a signal/timeout occurs, return
1440 * with a short count but without error.
1441 * Keep sockbuf locked against other readers.
1442 */
1443 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1444 !sosendallatonce(so) && !nextrecord) {
1445 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1446 break;
1447 /*
1448 * If we are peeking and the socket receive buffer is
1449 * full, stop since we can't get more data to peek at.
1450 */
1451 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1452 break;
1453 /*
1454 * If we've drained the socket buffer, tell the
1455 * protocol in case it needs to do something to
1456 * get it filled again.
1457 */
1458 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1459 (*pr->pr_usrreq)(so, PRU_RCVD,
1460 NULL, (struct mbuf *)(long)flags, NULL, l);
1461 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1462 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1463 error = sbwait(&so->so_rcv);
1464 if (error != 0) {
1465 sbunlock(&so->so_rcv);
1466 sounlock(so);
1467 splx(s);
1468 return 0;
1469 }
1470 if ((m = so->so_rcv.sb_mb) != NULL)
1471 nextrecord = m->m_nextpkt;
1472 }
1473 }
1474
1475 if (m && atomic) {
1476 flags |= MSG_TRUNC;
1477 if ((flags & MSG_PEEK) == 0)
1478 (void) sbdroprecord(&so->so_rcv);
1479 }
1480 if ((flags & MSG_PEEK) == 0) {
1481 if (m == NULL) {
1482 /*
1483 * First part is an inline SB_EMPTY_FIXUP(). Second
1484 * part makes sure sb_lastrecord is up-to-date if
1485 * there is still data in the socket buffer.
1486 */
1487 so->so_rcv.sb_mb = nextrecord;
1488 if (so->so_rcv.sb_mb == NULL) {
1489 so->so_rcv.sb_mbtail = NULL;
1490 so->so_rcv.sb_lastrecord = NULL;
1491 } else if (nextrecord->m_nextpkt == NULL)
1492 so->so_rcv.sb_lastrecord = nextrecord;
1493 }
1494 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1495 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1496 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1497 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1498 (struct mbuf *)(long)flags, NULL, l);
1499 }
1500 if (orig_resid == uio->uio_resid && orig_resid &&
1501 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1502 sbunlock(&so->so_rcv);
1503 goto restart;
1504 }
1505
1506 if (flagsp != NULL)
1507 *flagsp |= flags;
1508 release:
1509 sbunlock(&so->so_rcv);
1510 sounlock(so);
1511 splx(s);
1512 return error;
1513 }
1514
1515 int
1516 soshutdown(struct socket *so, int how)
1517 {
1518 const struct protosw *pr;
1519 int error;
1520
1521 KASSERT(solocked(so));
1522
1523 pr = so->so_proto;
1524 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1525 return (EINVAL);
1526
1527 if (how == SHUT_RD || how == SHUT_RDWR) {
1528 sorflush(so);
1529 error = 0;
1530 }
1531 if (how == SHUT_WR || how == SHUT_RDWR)
1532 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1533 NULL, NULL, NULL);
1534
1535 return error;
1536 }
1537
1538 void
1539 sorflush(struct socket *so)
1540 {
1541 struct sockbuf *sb, asb;
1542 const struct protosw *pr;
1543
1544 KASSERT(solocked(so));
1545
1546 sb = &so->so_rcv;
1547 pr = so->so_proto;
1548 socantrcvmore(so);
1549 sb->sb_flags |= SB_NOINTR;
1550 (void )sblock(sb, M_WAITOK);
1551 sbunlock(sb);
1552 asb = *sb;
1553 /*
1554 * Clear most of the sockbuf structure, but leave some of the
1555 * fields valid.
1556 */
1557 memset(&sb->sb_startzero, 0,
1558 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1559 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1560 sounlock(so);
1561 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1562 solock(so);
1563 }
1564 sbrelease(&asb, so);
1565 }
1566
1567 /*
1568 * internal set SOL_SOCKET options
1569 */
1570 static int
1571 sosetopt1(struct socket *so, const struct sockopt *sopt)
1572 {
1573 int error, optval;
1574 struct linger l;
1575 struct timeval tv;
1576
1577 switch (sopt->sopt_name) {
1578
1579 #ifdef INET
1580 case SO_ACCEPTFILTER:
1581 error = do_setopt_accept_filter(so, sopt);
1582 if (error)
1583 return error;
1584 break;
1585 #endif
1586
1587 case SO_LINGER:
1588 error = sockopt_get(sopt, &l, sizeof(l));
1589 if (error)
1590 return (error);
1591
1592 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1593 l.l_linger > (INT_MAX / hz))
1594 return EDOM;
1595 so->so_linger = l.l_linger;
1596 if (l.l_onoff)
1597 so->so_options |= SO_LINGER;
1598 else
1599 so->so_options &= ~SO_LINGER;
1600
1601 break;
1602
1603 case SO_DEBUG:
1604 case SO_KEEPALIVE:
1605 case SO_DONTROUTE:
1606 case SO_USELOOPBACK:
1607 case SO_BROADCAST:
1608 case SO_REUSEADDR:
1609 case SO_REUSEPORT:
1610 case SO_OOBINLINE:
1611 case SO_TIMESTAMP:
1612 error = sockopt_getint(sopt, &optval);
1613 if (error)
1614 return (error);
1615
1616 if (optval)
1617 so->so_options |= sopt->sopt_name;
1618 else
1619 so->so_options &= ~sopt->sopt_name;
1620 break;
1621
1622 case SO_SNDBUF:
1623 case SO_RCVBUF:
1624 case SO_SNDLOWAT:
1625 case SO_RCVLOWAT:
1626 error = sockopt_getint(sopt, &optval);
1627 if (error)
1628 return (error);
1629
1630 /*
1631 * Values < 1 make no sense for any of these
1632 * options, so disallow them.
1633 */
1634 if (optval < 1)
1635 return EINVAL;
1636
1637 switch (sopt->sopt_name) {
1638 case SO_SNDBUF:
1639 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0)
1640 return ENOBUFS;
1641
1642 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1643 break;
1644
1645 case SO_RCVBUF:
1646 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0)
1647 return ENOBUFS;
1648
1649 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1650 break;
1651
1652 /*
1653 * Make sure the low-water is never greater than
1654 * the high-water.
1655 */
1656 case SO_SNDLOWAT:
1657 if (optval > so->so_snd.sb_hiwat)
1658 optval = so->so_snd.sb_hiwat;
1659
1660 so->so_snd.sb_lowat = optval;
1661 break;
1662
1663 case SO_RCVLOWAT:
1664 if (optval > so->so_rcv.sb_hiwat)
1665 optval = so->so_rcv.sb_hiwat;
1666
1667 so->so_rcv.sb_lowat = optval;
1668 break;
1669 }
1670 break;
1671
1672 case SO_SNDTIMEO:
1673 case SO_RCVTIMEO:
1674 error = sockopt_get(sopt, &tv, sizeof(tv));
1675 if (error)
1676 return (error);
1677
1678 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz)
1679 return EDOM;
1680
1681 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1682 if (optval == 0 && tv.tv_usec != 0)
1683 optval = 1;
1684
1685 switch (sopt->sopt_name) {
1686 case SO_SNDTIMEO:
1687 so->so_snd.sb_timeo = optval;
1688 break;
1689 case SO_RCVTIMEO:
1690 so->so_rcv.sb_timeo = optval;
1691 break;
1692 }
1693 break;
1694
1695 default:
1696 return ENOPROTOOPT;
1697 }
1698 return 0;
1699 }
1700
1701 int
1702 sosetopt(struct socket *so, struct sockopt *sopt)
1703 {
1704 int error, prerr;
1705
1706 solock(so);
1707 if (sopt->sopt_level == SOL_SOCKET)
1708 error = sosetopt1(so, sopt);
1709 else
1710 error = ENOPROTOOPT;
1711
1712 if ((error == 0 || error == ENOPROTOOPT) &&
1713 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1714 /* give the protocol stack a shot */
1715 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1716 if (prerr == 0)
1717 error = 0;
1718 else if (prerr != ENOPROTOOPT)
1719 error = prerr;
1720 }
1721 sounlock(so);
1722 return error;
1723 }
1724
1725 /*
1726 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1727 */
1728 int
1729 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1730 const void *val, size_t valsize)
1731 {
1732 struct sockopt sopt;
1733 int error;
1734
1735 KASSERT(valsize == 0 || val != NULL);
1736
1737 sockopt_init(&sopt, level, name, valsize);
1738 sockopt_set(&sopt, val, valsize);
1739
1740 error = sosetopt(so, &sopt);
1741
1742 sockopt_destroy(&sopt);
1743
1744 return error;
1745 }
1746
1747 /*
1748 * internal get SOL_SOCKET options
1749 */
1750 static int
1751 sogetopt1(struct socket *so, struct sockopt *sopt)
1752 {
1753 int error, optval;
1754 struct linger l;
1755 struct timeval tv;
1756
1757 switch (sopt->sopt_name) {
1758
1759 #ifdef INET
1760 case SO_ACCEPTFILTER:
1761 error = do_getopt_accept_filter(so, sopt);
1762 break;
1763 #endif
1764
1765 case SO_LINGER:
1766 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1767 l.l_linger = so->so_linger;
1768
1769 error = sockopt_set(sopt, &l, sizeof(l));
1770 break;
1771
1772 case SO_USELOOPBACK:
1773 case SO_DONTROUTE:
1774 case SO_DEBUG:
1775 case SO_KEEPALIVE:
1776 case SO_REUSEADDR:
1777 case SO_REUSEPORT:
1778 case SO_BROADCAST:
1779 case SO_OOBINLINE:
1780 case SO_TIMESTAMP:
1781 error = sockopt_setint(sopt,
1782 (so->so_options & sopt->sopt_name) ? 1 : 0);
1783 break;
1784
1785 case SO_TYPE:
1786 error = sockopt_setint(sopt, so->so_type);
1787 break;
1788
1789 case SO_ERROR:
1790 error = sockopt_setint(sopt, so->so_error);
1791 so->so_error = 0;
1792 break;
1793
1794 case SO_SNDBUF:
1795 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1796 break;
1797
1798 case SO_RCVBUF:
1799 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1800 break;
1801
1802 case SO_SNDLOWAT:
1803 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1804 break;
1805
1806 case SO_RCVLOWAT:
1807 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1808 break;
1809
1810 case SO_SNDTIMEO:
1811 case SO_RCVTIMEO:
1812 optval = (sopt->sopt_name == SO_SNDTIMEO ?
1813 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1814
1815 tv.tv_sec = optval / hz;
1816 tv.tv_usec = (optval % hz) * tick;
1817
1818 error = sockopt_set(sopt, &tv, sizeof(tv));
1819 break;
1820
1821 case SO_OVERFLOWED:
1822 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1823 break;
1824
1825 default:
1826 error = ENOPROTOOPT;
1827 break;
1828 }
1829
1830 return (error);
1831 }
1832
1833 int
1834 sogetopt(struct socket *so, struct sockopt *sopt)
1835 {
1836 int error;
1837
1838 solock(so);
1839 if (sopt->sopt_level != SOL_SOCKET) {
1840 if (so->so_proto && so->so_proto->pr_ctloutput) {
1841 error = ((*so->so_proto->pr_ctloutput)
1842 (PRCO_GETOPT, so, sopt));
1843 } else
1844 error = (ENOPROTOOPT);
1845 } else {
1846 error = sogetopt1(so, sopt);
1847 }
1848 sounlock(so);
1849 return (error);
1850 }
1851
1852 /*
1853 * alloc sockopt data buffer buffer
1854 * - will be released at destroy
1855 */
1856 static void
1857 sockopt_alloc(struct sockopt *sopt, size_t len)
1858 {
1859
1860 KASSERT(sopt->sopt_size == 0);
1861
1862 if (len > sizeof(sopt->sopt_buf))
1863 sopt->sopt_data = malloc(len, M_SOOPTS, M_WAITOK | M_ZERO);
1864 else
1865 sopt->sopt_data = sopt->sopt_buf;
1866
1867 sopt->sopt_size = len;
1868 }
1869
1870 /*
1871 * initialise sockopt storage
1872 */
1873 void
1874 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
1875 {
1876
1877 memset(sopt, 0, sizeof(*sopt));
1878
1879 sopt->sopt_level = level;
1880 sopt->sopt_name = name;
1881 sockopt_alloc(sopt, size);
1882 }
1883
1884 /*
1885 * destroy sockopt storage
1886 * - will release any held memory references
1887 */
1888 void
1889 sockopt_destroy(struct sockopt *sopt)
1890 {
1891
1892 if (sopt->sopt_data != sopt->sopt_buf)
1893 free(sopt->sopt_data, M_SOOPTS);
1894
1895 memset(sopt, 0, sizeof(*sopt));
1896 }
1897
1898 /*
1899 * set sockopt value
1900 * - value is copied into sockopt
1901 * - memory is allocated when necessary
1902 */
1903 int
1904 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
1905 {
1906
1907 if (sopt->sopt_size == 0)
1908 sockopt_alloc(sopt, len);
1909
1910 KASSERT(sopt->sopt_size == len);
1911 memcpy(sopt->sopt_data, buf, len);
1912 return 0;
1913 }
1914
1915 /*
1916 * common case of set sockopt integer value
1917 */
1918 int
1919 sockopt_setint(struct sockopt *sopt, int val)
1920 {
1921
1922 return sockopt_set(sopt, &val, sizeof(int));
1923 }
1924
1925 /*
1926 * get sockopt value
1927 * - correct size must be given
1928 */
1929 int
1930 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
1931 {
1932
1933 if (sopt->sopt_size != len)
1934 return EINVAL;
1935
1936 memcpy(buf, sopt->sopt_data, len);
1937 return 0;
1938 }
1939
1940 /*
1941 * common case of get sockopt integer value
1942 */
1943 int
1944 sockopt_getint(const struct sockopt *sopt, int *valp)
1945 {
1946
1947 return sockopt_get(sopt, valp, sizeof(int));
1948 }
1949
1950 /*
1951 * set sockopt value from mbuf
1952 * - ONLY for legacy code
1953 * - mbuf is released by sockopt
1954 */
1955 int
1956 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
1957 {
1958 size_t len;
1959
1960 len = m_length(m);
1961
1962 if (sopt->sopt_size == 0)
1963 sockopt_alloc(sopt, len);
1964
1965 KASSERT(sopt->sopt_size == len);
1966 m_copydata(m, 0, len, sopt->sopt_data);
1967 m_freem(m);
1968
1969 return 0;
1970 }
1971
1972 /*
1973 * get sockopt value into mbuf
1974 * - ONLY for legacy code
1975 * - mbuf to be released by the caller
1976 */
1977 struct mbuf *
1978 sockopt_getmbuf(const struct sockopt *sopt)
1979 {
1980 struct mbuf *m;
1981
1982 m = m_get(M_WAIT, MT_SOOPTS);
1983 if (m == NULL)
1984 return NULL;
1985
1986 m->m_len = MLEN;
1987 m_copyback(m, 0, sopt->sopt_size, sopt->sopt_data);
1988 if (m_length(m) != max(sopt->sopt_size, MLEN)) {
1989 m_freem(m);
1990 return NULL;
1991 }
1992 m->m_len = min(sopt->sopt_size, MLEN);
1993
1994 return m;
1995 }
1996
1997 void
1998 sohasoutofband(struct socket *so)
1999 {
2000
2001 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2002 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, 0);
2003 }
2004
2005 static void
2006 filt_sordetach(struct knote *kn)
2007 {
2008 struct socket *so;
2009
2010 so = ((file_t *)kn->kn_obj)->f_data;
2011 solock(so);
2012 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2013 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2014 so->so_rcv.sb_flags &= ~SB_KNOTE;
2015 sounlock(so);
2016 }
2017
2018 /*ARGSUSED*/
2019 static int
2020 filt_soread(struct knote *kn, long hint)
2021 {
2022 struct socket *so;
2023 int rv;
2024
2025 so = ((file_t *)kn->kn_obj)->f_data;
2026 if (hint != NOTE_SUBMIT)
2027 solock(so);
2028 kn->kn_data = so->so_rcv.sb_cc;
2029 if (so->so_state & SS_CANTRCVMORE) {
2030 kn->kn_flags |= EV_EOF;
2031 kn->kn_fflags = so->so_error;
2032 rv = 1;
2033 } else if (so->so_error) /* temporary udp error */
2034 rv = 1;
2035 else if (kn->kn_sfflags & NOTE_LOWAT)
2036 rv = (kn->kn_data >= kn->kn_sdata);
2037 else
2038 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2039 if (hint != NOTE_SUBMIT)
2040 sounlock(so);
2041 return rv;
2042 }
2043
2044 static void
2045 filt_sowdetach(struct knote *kn)
2046 {
2047 struct socket *so;
2048
2049 so = ((file_t *)kn->kn_obj)->f_data;
2050 solock(so);
2051 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2052 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2053 so->so_snd.sb_flags &= ~SB_KNOTE;
2054 sounlock(so);
2055 }
2056
2057 /*ARGSUSED*/
2058 static int
2059 filt_sowrite(struct knote *kn, long hint)
2060 {
2061 struct socket *so;
2062 int rv;
2063
2064 so = ((file_t *)kn->kn_obj)->f_data;
2065 if (hint != NOTE_SUBMIT)
2066 solock(so);
2067 kn->kn_data = sbspace(&so->so_snd);
2068 if (so->so_state & SS_CANTSENDMORE) {
2069 kn->kn_flags |= EV_EOF;
2070 kn->kn_fflags = so->so_error;
2071 rv = 1;
2072 } else if (so->so_error) /* temporary udp error */
2073 rv = 1;
2074 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2075 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2076 rv = 0;
2077 else if (kn->kn_sfflags & NOTE_LOWAT)
2078 rv = (kn->kn_data >= kn->kn_sdata);
2079 else
2080 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2081 if (hint != NOTE_SUBMIT)
2082 sounlock(so);
2083 return rv;
2084 }
2085
2086 /*ARGSUSED*/
2087 static int
2088 filt_solisten(struct knote *kn, long hint)
2089 {
2090 struct socket *so;
2091 int rv;
2092
2093 so = ((file_t *)kn->kn_obj)->f_data;
2094
2095 /*
2096 * Set kn_data to number of incoming connections, not
2097 * counting partial (incomplete) connections.
2098 */
2099 if (hint != NOTE_SUBMIT)
2100 solock(so);
2101 kn->kn_data = so->so_qlen;
2102 rv = (kn->kn_data > 0);
2103 if (hint != NOTE_SUBMIT)
2104 sounlock(so);
2105 return rv;
2106 }
2107
2108 static const struct filterops solisten_filtops =
2109 { 1, NULL, filt_sordetach, filt_solisten };
2110 static const struct filterops soread_filtops =
2111 { 1, NULL, filt_sordetach, filt_soread };
2112 static const struct filterops sowrite_filtops =
2113 { 1, NULL, filt_sowdetach, filt_sowrite };
2114
2115 int
2116 soo_kqfilter(struct file *fp, struct knote *kn)
2117 {
2118 struct socket *so;
2119 struct sockbuf *sb;
2120
2121 so = ((file_t *)kn->kn_obj)->f_data;
2122 solock(so);
2123 switch (kn->kn_filter) {
2124 case EVFILT_READ:
2125 if (so->so_options & SO_ACCEPTCONN)
2126 kn->kn_fop = &solisten_filtops;
2127 else
2128 kn->kn_fop = &soread_filtops;
2129 sb = &so->so_rcv;
2130 break;
2131 case EVFILT_WRITE:
2132 kn->kn_fop = &sowrite_filtops;
2133 sb = &so->so_snd;
2134 break;
2135 default:
2136 sounlock(so);
2137 return (EINVAL);
2138 }
2139 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2140 sb->sb_flags |= SB_KNOTE;
2141 sounlock(so);
2142 return (0);
2143 }
2144
2145 static int
2146 sodopoll(struct socket *so, int events)
2147 {
2148 int revents;
2149
2150 revents = 0;
2151
2152 if (events & (POLLIN | POLLRDNORM))
2153 if (soreadable(so))
2154 revents |= events & (POLLIN | POLLRDNORM);
2155
2156 if (events & (POLLOUT | POLLWRNORM))
2157 if (sowritable(so))
2158 revents |= events & (POLLOUT | POLLWRNORM);
2159
2160 if (events & (POLLPRI | POLLRDBAND))
2161 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2162 revents |= events & (POLLPRI | POLLRDBAND);
2163
2164 return revents;
2165 }
2166
2167 int
2168 sopoll(struct socket *so, int events)
2169 {
2170 int revents = 0;
2171
2172 #ifndef DIAGNOSTIC
2173 /*
2174 * Do a quick, unlocked check in expectation that the socket
2175 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2176 * as the solocked() assertions will fail.
2177 */
2178 if ((revents = sodopoll(so, events)) != 0)
2179 return revents;
2180 #endif
2181
2182 solock(so);
2183 if ((revents = sodopoll(so, events)) == 0) {
2184 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2185 selrecord(curlwp, &so->so_rcv.sb_sel);
2186 so->so_rcv.sb_flags |= SB_NOTIFY;
2187 }
2188
2189 if (events & (POLLOUT | POLLWRNORM)) {
2190 selrecord(curlwp, &so->so_snd.sb_sel);
2191 so->so_snd.sb_flags |= SB_NOTIFY;
2192 }
2193 }
2194 sounlock(so);
2195
2196 return revents;
2197 }
2198
2199
2200 #include <sys/sysctl.h>
2201
2202 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2203
2204 /*
2205 * sysctl helper routine for kern.somaxkva. ensures that the given
2206 * value is not too small.
2207 * (XXX should we maybe make sure it's not too large as well?)
2208 */
2209 static int
2210 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2211 {
2212 int error, new_somaxkva;
2213 struct sysctlnode node;
2214
2215 new_somaxkva = somaxkva;
2216 node = *rnode;
2217 node.sysctl_data = &new_somaxkva;
2218 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2219 if (error || newp == NULL)
2220 return (error);
2221
2222 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2223 return (EINVAL);
2224
2225 mutex_enter(&so_pendfree_lock);
2226 somaxkva = new_somaxkva;
2227 cv_broadcast(&socurkva_cv);
2228 mutex_exit(&so_pendfree_lock);
2229
2230 return (error);
2231 }
2232
2233 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
2234 {
2235
2236 sysctl_createv(clog, 0, NULL, NULL,
2237 CTLFLAG_PERMANENT,
2238 CTLTYPE_NODE, "kern", NULL,
2239 NULL, 0, NULL, 0,
2240 CTL_KERN, CTL_EOL);
2241
2242 sysctl_createv(clog, 0, NULL, NULL,
2243 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2244 CTLTYPE_INT, "somaxkva",
2245 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2246 "used for socket buffers"),
2247 sysctl_kern_somaxkva, 0, NULL, 0,
2248 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2249 }
2250