Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.174
      1 /*	$NetBSD: uipc_socket.c,v 1.174 2008/10/11 13:40:57 pooka Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.174 2008/10/11 13:40:57 pooka Exp $");
     67 
     68 #include "opt_inet.h"
     69 #include "opt_sock_counters.h"
     70 #include "opt_sosend_loan.h"
     71 #include "opt_mbuftrace.h"
     72 #include "opt_somaxkva.h"
     73 #include "opt_multiprocessor.h"	/* XXX */
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/proc.h>
     78 #include <sys/file.h>
     79 #include <sys/filedesc.h>
     80 #include <sys/kmem.h>
     81 #include <sys/mbuf.h>
     82 #include <sys/domain.h>
     83 #include <sys/kernel.h>
     84 #include <sys/protosw.h>
     85 #include <sys/socket.h>
     86 #include <sys/socketvar.h>
     87 #include <sys/signalvar.h>
     88 #include <sys/resourcevar.h>
     89 #include <sys/uidinfo.h>
     90 #include <sys/event.h>
     91 #include <sys/poll.h>
     92 #include <sys/kauth.h>
     93 #include <sys/mutex.h>
     94 #include <sys/condvar.h>
     95 
     96 #include <uvm/uvm.h>
     97 
     98 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
     99 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    100 
    101 extern const struct fileops socketops;
    102 
    103 extern int	somaxconn;			/* patchable (XXX sysctl) */
    104 int		somaxconn = SOMAXCONN;
    105 kmutex_t	*softnet_lock;
    106 
    107 #ifdef SOSEND_COUNTERS
    108 #include <sys/device.h>
    109 
    110 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    111     NULL, "sosend", "loan big");
    112 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    113     NULL, "sosend", "copy big");
    114 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    115     NULL, "sosend", "copy small");
    116 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    117     NULL, "sosend", "kva limit");
    118 
    119 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    120 
    121 EVCNT_ATTACH_STATIC(sosend_loan_big);
    122 EVCNT_ATTACH_STATIC(sosend_copy_big);
    123 EVCNT_ATTACH_STATIC(sosend_copy_small);
    124 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    125 #else
    126 
    127 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    128 
    129 #endif /* SOSEND_COUNTERS */
    130 
    131 static struct callback_entry sokva_reclaimerentry;
    132 
    133 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    134 int sock_loan_thresh = -1;
    135 #else
    136 int sock_loan_thresh = 4096;
    137 #endif
    138 
    139 static kmutex_t so_pendfree_lock;
    140 static struct mbuf *so_pendfree;
    141 
    142 #ifndef SOMAXKVA
    143 #define	SOMAXKVA (16 * 1024 * 1024)
    144 #endif
    145 int somaxkva = SOMAXKVA;
    146 static int socurkva;
    147 static kcondvar_t socurkva_cv;
    148 
    149 #define	SOCK_LOAN_CHUNK		65536
    150 
    151 static size_t sodopendfree(void);
    152 static size_t sodopendfreel(void);
    153 
    154 static vsize_t
    155 sokvareserve(struct socket *so, vsize_t len)
    156 {
    157 	int error;
    158 
    159 	mutex_enter(&so_pendfree_lock);
    160 	while (socurkva + len > somaxkva) {
    161 		size_t freed;
    162 
    163 		/*
    164 		 * try to do pendfree.
    165 		 */
    166 
    167 		freed = sodopendfreel();
    168 
    169 		/*
    170 		 * if some kva was freed, try again.
    171 		 */
    172 
    173 		if (freed)
    174 			continue;
    175 
    176 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    177 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    178 		if (error) {
    179 			len = 0;
    180 			break;
    181 		}
    182 	}
    183 	socurkva += len;
    184 	mutex_exit(&so_pendfree_lock);
    185 	return len;
    186 }
    187 
    188 static void
    189 sokvaunreserve(vsize_t len)
    190 {
    191 
    192 	mutex_enter(&so_pendfree_lock);
    193 	socurkva -= len;
    194 	cv_broadcast(&socurkva_cv);
    195 	mutex_exit(&so_pendfree_lock);
    196 }
    197 
    198 /*
    199  * sokvaalloc: allocate kva for loan.
    200  */
    201 
    202 vaddr_t
    203 sokvaalloc(vsize_t len, struct socket *so)
    204 {
    205 	vaddr_t lva;
    206 
    207 	/*
    208 	 * reserve kva.
    209 	 */
    210 
    211 	if (sokvareserve(so, len) == 0)
    212 		return 0;
    213 
    214 	/*
    215 	 * allocate kva.
    216 	 */
    217 
    218 	lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    219 	if (lva == 0) {
    220 		sokvaunreserve(len);
    221 		return (0);
    222 	}
    223 
    224 	return lva;
    225 }
    226 
    227 /*
    228  * sokvafree: free kva for loan.
    229  */
    230 
    231 void
    232 sokvafree(vaddr_t sva, vsize_t len)
    233 {
    234 
    235 	/*
    236 	 * free kva.
    237 	 */
    238 
    239 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    240 
    241 	/*
    242 	 * unreserve kva.
    243 	 */
    244 
    245 	sokvaunreserve(len);
    246 }
    247 
    248 static void
    249 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    250 {
    251 	vaddr_t sva, eva;
    252 	vsize_t len;
    253 	int npgs;
    254 
    255 	KASSERT(pgs != NULL);
    256 
    257 	eva = round_page((vaddr_t) buf + size);
    258 	sva = trunc_page((vaddr_t) buf);
    259 	len = eva - sva;
    260 	npgs = len >> PAGE_SHIFT;
    261 
    262 	pmap_kremove(sva, len);
    263 	pmap_update(pmap_kernel());
    264 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    265 	sokvafree(sva, len);
    266 }
    267 
    268 static size_t
    269 sodopendfree(void)
    270 {
    271 	size_t rv;
    272 
    273 	if (__predict_true(so_pendfree == NULL))
    274 		return 0;
    275 
    276 	mutex_enter(&so_pendfree_lock);
    277 	rv = sodopendfreel();
    278 	mutex_exit(&so_pendfree_lock);
    279 
    280 	return rv;
    281 }
    282 
    283 /*
    284  * sodopendfreel: free mbufs on "pendfree" list.
    285  * unlock and relock so_pendfree_lock when freeing mbufs.
    286  *
    287  * => called with so_pendfree_lock held.
    288  */
    289 
    290 static size_t
    291 sodopendfreel(void)
    292 {
    293 	struct mbuf *m, *next;
    294 	size_t rv = 0;
    295 
    296 	KASSERT(mutex_owned(&so_pendfree_lock));
    297 
    298 	while (so_pendfree != NULL) {
    299 		m = so_pendfree;
    300 		so_pendfree = NULL;
    301 		mutex_exit(&so_pendfree_lock);
    302 
    303 		for (; m != NULL; m = next) {
    304 			next = m->m_next;
    305 			KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
    306 			KASSERT(m->m_ext.ext_refcnt == 0);
    307 
    308 			rv += m->m_ext.ext_size;
    309 			sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    310 			    m->m_ext.ext_size);
    311 			pool_cache_put(mb_cache, m);
    312 		}
    313 
    314 		mutex_enter(&so_pendfree_lock);
    315 	}
    316 
    317 	return (rv);
    318 }
    319 
    320 void
    321 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    322 {
    323 
    324 	KASSERT(m != NULL);
    325 
    326 	/*
    327 	 * postpone freeing mbuf.
    328 	 *
    329 	 * we can't do it in interrupt context
    330 	 * because we need to put kva back to kernel_map.
    331 	 */
    332 
    333 	mutex_enter(&so_pendfree_lock);
    334 	m->m_next = so_pendfree;
    335 	so_pendfree = m;
    336 	cv_broadcast(&socurkva_cv);
    337 	mutex_exit(&so_pendfree_lock);
    338 }
    339 
    340 static long
    341 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    342 {
    343 	struct iovec *iov = uio->uio_iov;
    344 	vaddr_t sva, eva;
    345 	vsize_t len;
    346 	vaddr_t lva;
    347 	int npgs, error;
    348 	vaddr_t va;
    349 	int i;
    350 
    351 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    352 		return (0);
    353 
    354 	if (iov->iov_len < (size_t) space)
    355 		space = iov->iov_len;
    356 	if (space > SOCK_LOAN_CHUNK)
    357 		space = SOCK_LOAN_CHUNK;
    358 
    359 	eva = round_page((vaddr_t) iov->iov_base + space);
    360 	sva = trunc_page((vaddr_t) iov->iov_base);
    361 	len = eva - sva;
    362 	npgs = len >> PAGE_SHIFT;
    363 
    364 	KASSERT(npgs <= M_EXT_MAXPAGES);
    365 
    366 	lva = sokvaalloc(len, so);
    367 	if (lva == 0)
    368 		return 0;
    369 
    370 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    371 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    372 	if (error) {
    373 		sokvafree(lva, len);
    374 		return (0);
    375 	}
    376 
    377 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    378 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    379 		    VM_PROT_READ);
    380 	pmap_update(pmap_kernel());
    381 
    382 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    383 
    384 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    385 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    386 
    387 	uio->uio_resid -= space;
    388 	/* uio_offset not updated, not set/used for write(2) */
    389 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    390 	uio->uio_iov->iov_len -= space;
    391 	if (uio->uio_iov->iov_len == 0) {
    392 		uio->uio_iov++;
    393 		uio->uio_iovcnt--;
    394 	}
    395 
    396 	return (space);
    397 }
    398 
    399 static int
    400 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    401 {
    402 
    403 	KASSERT(ce == &sokva_reclaimerentry);
    404 	KASSERT(obj == NULL);
    405 
    406 	sodopendfree();
    407 	if (!vm_map_starved_p(kernel_map)) {
    408 		return CALLBACK_CHAIN_ABORT;
    409 	}
    410 	return CALLBACK_CHAIN_CONTINUE;
    411 }
    412 
    413 struct mbuf *
    414 getsombuf(struct socket *so, int type)
    415 {
    416 	struct mbuf *m;
    417 
    418 	m = m_get(M_WAIT, type);
    419 	MCLAIM(m, so->so_mowner);
    420 	return m;
    421 }
    422 
    423 void
    424 soinit(void)
    425 {
    426 
    427 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    428 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    429 	cv_init(&socurkva_cv, "sokva");
    430 	soinit2();
    431 
    432 	/* Set the initial adjusted socket buffer size. */
    433 	if (sb_max_set(sb_max))
    434 		panic("bad initial sb_max value: %lu", sb_max);
    435 
    436 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    437 	    &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
    438 }
    439 
    440 /*
    441  * Socket operation routines.
    442  * These routines are called by the routines in
    443  * sys_socket.c or from a system process, and
    444  * implement the semantics of socket operations by
    445  * switching out to the protocol specific routines.
    446  */
    447 /*ARGSUSED*/
    448 int
    449 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    450 	 struct socket *lockso)
    451 {
    452 	const struct protosw	*prp;
    453 	struct socket	*so;
    454 	uid_t		uid;
    455 	int		error;
    456 	kmutex_t	*lock;
    457 
    458 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    459 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    460 	    KAUTH_ARG(proto));
    461 	if (error != 0)
    462 		return error;
    463 
    464 	if (proto)
    465 		prp = pffindproto(dom, proto, type);
    466 	else
    467 		prp = pffindtype(dom, type);
    468 	if (prp == NULL) {
    469 		/* no support for domain */
    470 		if (pffinddomain(dom) == 0)
    471 			return EAFNOSUPPORT;
    472 		/* no support for socket type */
    473 		if (proto == 0 && type != 0)
    474 			return EPROTOTYPE;
    475 		return EPROTONOSUPPORT;
    476 	}
    477 	if (prp->pr_usrreq == NULL)
    478 		return EPROTONOSUPPORT;
    479 	if (prp->pr_type != type)
    480 		return EPROTOTYPE;
    481 
    482 	so = soget(true);
    483 	so->so_type = type;
    484 	so->so_proto = prp;
    485 	so->so_send = sosend;
    486 	so->so_receive = soreceive;
    487 #ifdef MBUFTRACE
    488 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    489 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    490 	so->so_mowner = &prp->pr_domain->dom_mowner;
    491 #endif
    492 	uid = kauth_cred_geteuid(l->l_cred);
    493 	so->so_uidinfo = uid_find(uid);
    494 	so->so_egid = kauth_cred_getegid(l->l_cred);
    495 	so->so_cpid = l->l_proc->p_pid;
    496 	if (lockso != NULL) {
    497 		/* Caller wants us to share a lock. */
    498 		lock = lockso->so_lock;
    499 		so->so_lock = lock;
    500 		mutex_obj_hold(lock);
    501 		mutex_enter(lock);
    502 	} else {
    503 		/* Lock assigned and taken during PRU_ATTACH. */
    504 	}
    505 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
    506 	    (struct mbuf *)(long)proto, NULL, l);
    507 	KASSERT(solocked(so));
    508 	if (error != 0) {
    509 		so->so_state |= SS_NOFDREF;
    510 		sofree(so);
    511 		return error;
    512 	}
    513 	sounlock(so);
    514 	*aso = so;
    515 	return 0;
    516 }
    517 
    518 /* On success, write file descriptor to fdout and return zero.  On
    519  * failure, return non-zero; *fdout will be undefined.
    520  */
    521 int
    522 fsocreate(int domain, struct socket **sop, int type, int protocol,
    523     struct lwp *l, int *fdout)
    524 {
    525 	struct socket	*so;
    526 	struct file	*fp;
    527 	int		fd, error;
    528 
    529 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    530 		return (error);
    531 	fp->f_flag = FREAD|FWRITE;
    532 	fp->f_type = DTYPE_SOCKET;
    533 	fp->f_ops = &socketops;
    534 	error = socreate(domain, &so, type, protocol, l, NULL);
    535 	if (error != 0) {
    536 		fd_abort(curproc, fp, fd);
    537 	} else {
    538 		if (sop != NULL)
    539 			*sop = so;
    540 		fp->f_data = so;
    541 		fd_affix(curproc, fp, fd);
    542 		*fdout = fd;
    543 	}
    544 	return error;
    545 }
    546 
    547 int
    548 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    549 {
    550 	int	error;
    551 
    552 	solock(so);
    553 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
    554 	sounlock(so);
    555 	return error;
    556 }
    557 
    558 int
    559 solisten(struct socket *so, int backlog, struct lwp *l)
    560 {
    561 	int	error;
    562 
    563 	solock(so);
    564 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    565 	    SS_ISDISCONNECTING)) != 0) {
    566 	    	sounlock(so);
    567 		return (EOPNOTSUPP);
    568 	}
    569 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
    570 	    NULL, NULL, l);
    571 	if (error != 0) {
    572 		sounlock(so);
    573 		return error;
    574 	}
    575 	if (TAILQ_EMPTY(&so->so_q))
    576 		so->so_options |= SO_ACCEPTCONN;
    577 	if (backlog < 0)
    578 		backlog = 0;
    579 	so->so_qlimit = min(backlog, somaxconn);
    580 	sounlock(so);
    581 	return 0;
    582 }
    583 
    584 void
    585 sofree(struct socket *so)
    586 {
    587 	u_int refs;
    588 
    589 	KASSERT(solocked(so));
    590 
    591 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    592 		sounlock(so);
    593 		return;
    594 	}
    595 	if (so->so_head) {
    596 		/*
    597 		 * We must not decommission a socket that's on the accept(2)
    598 		 * queue.  If we do, then accept(2) may hang after select(2)
    599 		 * indicated that the listening socket was ready.
    600 		 */
    601 		if (!soqremque(so, 0)) {
    602 			sounlock(so);
    603 			return;
    604 		}
    605 	}
    606 	if (so->so_rcv.sb_hiwat)
    607 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    608 		    RLIM_INFINITY);
    609 	if (so->so_snd.sb_hiwat)
    610 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    611 		    RLIM_INFINITY);
    612 	sbrelease(&so->so_snd, so);
    613 	KASSERT(!cv_has_waiters(&so->so_cv));
    614 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    615 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    616 	sorflush(so);
    617 	refs = so->so_aborting;	/* XXX */
    618 #ifdef INET
    619 	/* remove acccept filter if one is present. */
    620 	if (so->so_accf != NULL)
    621 		do_setopt_accept_filter(so, NULL);
    622 #endif
    623 	sounlock(so);
    624 	if (refs == 0)		/* XXX */
    625 		soput(so);
    626 }
    627 
    628 /*
    629  * Close a socket on last file table reference removal.
    630  * Initiate disconnect if connected.
    631  * Free socket when disconnect complete.
    632  */
    633 int
    634 soclose(struct socket *so)
    635 {
    636 	struct socket	*so2;
    637 	int		error;
    638 	int		error2;
    639 
    640 	error = 0;
    641 	solock(so);
    642 	if (so->so_options & SO_ACCEPTCONN) {
    643 		for (;;) {
    644 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    645 				KASSERT(solocked2(so, so2));
    646 				(void) soqremque(so2, 0);
    647 				/* soabort drops the lock. */
    648 				(void) soabort(so2);
    649 				solock(so);
    650 				continue;
    651 			}
    652 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    653 				KASSERT(solocked2(so, so2));
    654 				(void) soqremque(so2, 1);
    655 				/* soabort drops the lock. */
    656 				(void) soabort(so2);
    657 				solock(so);
    658 				continue;
    659 			}
    660 			break;
    661 		}
    662 	}
    663 	if (so->so_pcb == 0)
    664 		goto discard;
    665 	if (so->so_state & SS_ISCONNECTED) {
    666 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    667 			error = sodisconnect(so);
    668 			if (error)
    669 				goto drop;
    670 		}
    671 		if (so->so_options & SO_LINGER) {
    672 			if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
    673 				goto drop;
    674 			while (so->so_state & SS_ISCONNECTED) {
    675 				error = sowait(so, so->so_linger * hz);
    676 				if (error)
    677 					break;
    678 			}
    679 		}
    680 	}
    681  drop:
    682 	if (so->so_pcb) {
    683 		error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    684 		    NULL, NULL, NULL, NULL);
    685 		if (error == 0)
    686 			error = error2;
    687 	}
    688  discard:
    689 	if (so->so_state & SS_NOFDREF)
    690 		panic("soclose: NOFDREF");
    691 	so->so_state |= SS_NOFDREF;
    692 	sofree(so);
    693 	return (error);
    694 }
    695 
    696 /*
    697  * Must be called with the socket locked..  Will return with it unlocked.
    698  */
    699 int
    700 soabort(struct socket *so)
    701 {
    702 	u_int refs;
    703 	int error;
    704 
    705 	KASSERT(solocked(so));
    706 	KASSERT(so->so_head == NULL);
    707 
    708 	so->so_aborting++;		/* XXX */
    709 	error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
    710 	    NULL, NULL, NULL);
    711 	refs = --so->so_aborting;	/* XXX */
    712 	if (error || (refs == 0)) {
    713 		sofree(so);
    714 	} else {
    715 		sounlock(so);
    716 	}
    717 	return error;
    718 }
    719 
    720 int
    721 soaccept(struct socket *so, struct mbuf *nam)
    722 {
    723 	int	error;
    724 
    725 	KASSERT(solocked(so));
    726 
    727 	error = 0;
    728 	if ((so->so_state & SS_NOFDREF) == 0)
    729 		panic("soaccept: !NOFDREF");
    730 	so->so_state &= ~SS_NOFDREF;
    731 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    732 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    733 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    734 		    NULL, nam, NULL, NULL);
    735 	else
    736 		error = ECONNABORTED;
    737 
    738 	return (error);
    739 }
    740 
    741 int
    742 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    743 {
    744 	int		error;
    745 
    746 	KASSERT(solocked(so));
    747 
    748 	if (so->so_options & SO_ACCEPTCONN)
    749 		return (EOPNOTSUPP);
    750 	/*
    751 	 * If protocol is connection-based, can only connect once.
    752 	 * Otherwise, if connected, try to disconnect first.
    753 	 * This allows user to disconnect by connecting to, e.g.,
    754 	 * a null address.
    755 	 */
    756 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    757 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    758 	    (error = sodisconnect(so))))
    759 		error = EISCONN;
    760 	else
    761 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    762 		    NULL, nam, NULL, l);
    763 	return (error);
    764 }
    765 
    766 int
    767 soconnect2(struct socket *so1, struct socket *so2)
    768 {
    769 	int	error;
    770 
    771 	KASSERT(solocked2(so1, so2));
    772 
    773 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    774 	    NULL, (struct mbuf *)so2, NULL, NULL);
    775 	return (error);
    776 }
    777 
    778 int
    779 sodisconnect(struct socket *so)
    780 {
    781 	int	error;
    782 
    783 	KASSERT(solocked(so));
    784 
    785 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    786 		error = ENOTCONN;
    787 	} else if (so->so_state & SS_ISDISCONNECTING) {
    788 		error = EALREADY;
    789 	} else {
    790 		error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    791 		    NULL, NULL, NULL, NULL);
    792 	}
    793 	sodopendfree();
    794 	return (error);
    795 }
    796 
    797 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    798 /*
    799  * Send on a socket.
    800  * If send must go all at once and message is larger than
    801  * send buffering, then hard error.
    802  * Lock against other senders.
    803  * If must go all at once and not enough room now, then
    804  * inform user that this would block and do nothing.
    805  * Otherwise, if nonblocking, send as much as possible.
    806  * The data to be sent is described by "uio" if nonzero,
    807  * otherwise by the mbuf chain "top" (which must be null
    808  * if uio is not).  Data provided in mbuf chain must be small
    809  * enough to send all at once.
    810  *
    811  * Returns nonzero on error, timeout or signal; callers
    812  * must check for short counts if EINTR/ERESTART are returned.
    813  * Data and control buffers are freed on return.
    814  */
    815 int
    816 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    817 	struct mbuf *control, int flags, struct lwp *l)
    818 {
    819 	struct mbuf	**mp, *m;
    820 	struct proc	*p;
    821 	long		space, len, resid, clen, mlen;
    822 	int		error, s, dontroute, atomic;
    823 
    824 	p = l->l_proc;
    825 	sodopendfree();
    826 	clen = 0;
    827 
    828 	/*
    829 	 * solock() provides atomicity of access.  splsoftnet() prevents
    830 	 * protocol processing soft interrupts from interrupting us and
    831 	 * blocking (expensive).
    832 	 */
    833 	s = splsoftnet();
    834 	solock(so);
    835 	atomic = sosendallatonce(so) || top;
    836 	if (uio)
    837 		resid = uio->uio_resid;
    838 	else
    839 		resid = top->m_pkthdr.len;
    840 	/*
    841 	 * In theory resid should be unsigned.
    842 	 * However, space must be signed, as it might be less than 0
    843 	 * if we over-committed, and we must use a signed comparison
    844 	 * of space and resid.  On the other hand, a negative resid
    845 	 * causes us to loop sending 0-length segments to the protocol.
    846 	 */
    847 	if (resid < 0) {
    848 		error = EINVAL;
    849 		goto out;
    850 	}
    851 	dontroute =
    852 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    853 	    (so->so_proto->pr_flags & PR_ATOMIC);
    854 	l->l_ru.ru_msgsnd++;
    855 	if (control)
    856 		clen = control->m_len;
    857  restart:
    858 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    859 		goto out;
    860 	do {
    861 		if (so->so_state & SS_CANTSENDMORE) {
    862 			error = EPIPE;
    863 			goto release;
    864 		}
    865 		if (so->so_error) {
    866 			error = so->so_error;
    867 			so->so_error = 0;
    868 			goto release;
    869 		}
    870 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    871 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    872 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    873 				    !(resid == 0 && clen != 0)) {
    874 					error = ENOTCONN;
    875 					goto release;
    876 				}
    877 			} else if (addr == 0) {
    878 				error = EDESTADDRREQ;
    879 				goto release;
    880 			}
    881 		}
    882 		space = sbspace(&so->so_snd);
    883 		if (flags & MSG_OOB)
    884 			space += 1024;
    885 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    886 		    clen > so->so_snd.sb_hiwat) {
    887 			error = EMSGSIZE;
    888 			goto release;
    889 		}
    890 		if (space < resid + clen &&
    891 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    892 			if (so->so_nbio) {
    893 				error = EWOULDBLOCK;
    894 				goto release;
    895 			}
    896 			sbunlock(&so->so_snd);
    897 			error = sbwait(&so->so_snd);
    898 			if (error)
    899 				goto out;
    900 			goto restart;
    901 		}
    902 		mp = &top;
    903 		space -= clen;
    904 		do {
    905 			if (uio == NULL) {
    906 				/*
    907 				 * Data is prepackaged in "top".
    908 				 */
    909 				resid = 0;
    910 				if (flags & MSG_EOR)
    911 					top->m_flags |= M_EOR;
    912 			} else do {
    913 				sounlock(so);
    914 				splx(s);
    915 				if (top == NULL) {
    916 					m = m_gethdr(M_WAIT, MT_DATA);
    917 					mlen = MHLEN;
    918 					m->m_pkthdr.len = 0;
    919 					m->m_pkthdr.rcvif = NULL;
    920 				} else {
    921 					m = m_get(M_WAIT, MT_DATA);
    922 					mlen = MLEN;
    923 				}
    924 				MCLAIM(m, so->so_snd.sb_mowner);
    925 				if (sock_loan_thresh >= 0 &&
    926 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
    927 				    space >= sock_loan_thresh &&
    928 				    (len = sosend_loan(so, uio, m,
    929 						       space)) != 0) {
    930 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    931 					space -= len;
    932 					goto have_data;
    933 				}
    934 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
    935 					SOSEND_COUNTER_INCR(&sosend_copy_big);
    936 					m_clget(m, M_WAIT);
    937 					if ((m->m_flags & M_EXT) == 0)
    938 						goto nopages;
    939 					mlen = MCLBYTES;
    940 					if (atomic && top == 0) {
    941 						len = lmin(MCLBYTES - max_hdr,
    942 						    resid);
    943 						m->m_data += max_hdr;
    944 					} else
    945 						len = lmin(MCLBYTES, resid);
    946 					space -= len;
    947 				} else {
    948  nopages:
    949 					SOSEND_COUNTER_INCR(&sosend_copy_small);
    950 					len = lmin(lmin(mlen, resid), space);
    951 					space -= len;
    952 					/*
    953 					 * For datagram protocols, leave room
    954 					 * for protocol headers in first mbuf.
    955 					 */
    956 					if (atomic && top == 0 && len < mlen)
    957 						MH_ALIGN(m, len);
    958 				}
    959 				error = uiomove(mtod(m, void *), (int)len, uio);
    960  have_data:
    961 				resid = uio->uio_resid;
    962 				m->m_len = len;
    963 				*mp = m;
    964 				top->m_pkthdr.len += len;
    965 				s = splsoftnet();
    966 				solock(so);
    967 				if (error != 0)
    968 					goto release;
    969 				mp = &m->m_next;
    970 				if (resid <= 0) {
    971 					if (flags & MSG_EOR)
    972 						top->m_flags |= M_EOR;
    973 					break;
    974 				}
    975 			} while (space > 0 && atomic);
    976 
    977 			if (so->so_state & SS_CANTSENDMORE) {
    978 				error = EPIPE;
    979 				goto release;
    980 			}
    981 			if (dontroute)
    982 				so->so_options |= SO_DONTROUTE;
    983 			if (resid > 0)
    984 				so->so_state |= SS_MORETOCOME;
    985 			error = (*so->so_proto->pr_usrreq)(so,
    986 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
    987 			    top, addr, control, curlwp);
    988 			if (dontroute)
    989 				so->so_options &= ~SO_DONTROUTE;
    990 			if (resid > 0)
    991 				so->so_state &= ~SS_MORETOCOME;
    992 			clen = 0;
    993 			control = NULL;
    994 			top = NULL;
    995 			mp = &top;
    996 			if (error != 0)
    997 				goto release;
    998 		} while (resid && space > 0);
    999 	} while (resid);
   1000 
   1001  release:
   1002 	sbunlock(&so->so_snd);
   1003  out:
   1004 	sounlock(so);
   1005 	splx(s);
   1006 	if (top)
   1007 		m_freem(top);
   1008 	if (control)
   1009 		m_freem(control);
   1010 	return (error);
   1011 }
   1012 
   1013 /*
   1014  * Following replacement or removal of the first mbuf on the first
   1015  * mbuf chain of a socket buffer, push necessary state changes back
   1016  * into the socket buffer so that other consumers see the values
   1017  * consistently.  'nextrecord' is the callers locally stored value of
   1018  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1019  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1020  */
   1021 static void
   1022 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1023 {
   1024 
   1025 	KASSERT(solocked(sb->sb_so));
   1026 
   1027 	/*
   1028 	 * First, update for the new value of nextrecord.  If necessary,
   1029 	 * make it the first record.
   1030 	 */
   1031 	if (sb->sb_mb != NULL)
   1032 		sb->sb_mb->m_nextpkt = nextrecord;
   1033 	else
   1034 		sb->sb_mb = nextrecord;
   1035 
   1036         /*
   1037          * Now update any dependent socket buffer fields to reflect
   1038          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1039          * the addition of a second clause that takes care of the
   1040          * case where sb_mb has been updated, but remains the last
   1041          * record.
   1042          */
   1043         if (sb->sb_mb == NULL) {
   1044                 sb->sb_mbtail = NULL;
   1045                 sb->sb_lastrecord = NULL;
   1046         } else if (sb->sb_mb->m_nextpkt == NULL)
   1047                 sb->sb_lastrecord = sb->sb_mb;
   1048 }
   1049 
   1050 /*
   1051  * Implement receive operations on a socket.
   1052  * We depend on the way that records are added to the sockbuf
   1053  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1054  * must begin with an address if the protocol so specifies,
   1055  * followed by an optional mbuf or mbufs containing ancillary data,
   1056  * and then zero or more mbufs of data.
   1057  * In order to avoid blocking network interrupts for the entire time here,
   1058  * we splx() while doing the actual copy to user space.
   1059  * Although the sockbuf is locked, new data may still be appended,
   1060  * and thus we must maintain consistency of the sockbuf during that time.
   1061  *
   1062  * The caller may receive the data as a single mbuf chain by supplying
   1063  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1064  * only for the count in uio_resid.
   1065  */
   1066 int
   1067 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1068 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1069 {
   1070 	struct lwp *l = curlwp;
   1071 	struct mbuf	*m, **mp, *mt;
   1072 	int atomic, flags, len, error, s, offset, moff, type, orig_resid;
   1073 	const struct protosw	*pr;
   1074 	struct mbuf	*nextrecord;
   1075 	int		mbuf_removed = 0;
   1076 	const struct domain *dom;
   1077 
   1078 	pr = so->so_proto;
   1079 	atomic = pr->pr_flags & PR_ATOMIC;
   1080 	dom = pr->pr_domain;
   1081 	mp = mp0;
   1082 	type = 0;
   1083 	orig_resid = uio->uio_resid;
   1084 
   1085 	if (paddr != NULL)
   1086 		*paddr = NULL;
   1087 	if (controlp != NULL)
   1088 		*controlp = NULL;
   1089 	if (flagsp != NULL)
   1090 		flags = *flagsp &~ MSG_EOR;
   1091 	else
   1092 		flags = 0;
   1093 
   1094 	if ((flags & MSG_DONTWAIT) == 0)
   1095 		sodopendfree();
   1096 
   1097 	if (flags & MSG_OOB) {
   1098 		m = m_get(M_WAIT, MT_DATA);
   1099 		solock(so);
   1100 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
   1101 		    (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
   1102 		sounlock(so);
   1103 		if (error)
   1104 			goto bad;
   1105 		do {
   1106 			error = uiomove(mtod(m, void *),
   1107 			    (int) min(uio->uio_resid, m->m_len), uio);
   1108 			m = m_free(m);
   1109 		} while (uio->uio_resid > 0 && error == 0 && m);
   1110  bad:
   1111 		if (m != NULL)
   1112 			m_freem(m);
   1113 		return error;
   1114 	}
   1115 	if (mp != NULL)
   1116 		*mp = NULL;
   1117 
   1118 	/*
   1119 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1120 	 * protocol processing soft interrupts from interrupting us and
   1121 	 * blocking (expensive).
   1122 	 */
   1123 	s = splsoftnet();
   1124 	solock(so);
   1125 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
   1126 		(*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
   1127 
   1128  restart:
   1129 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1130 		sounlock(so);
   1131 		splx(s);
   1132 		return error;
   1133 	}
   1134 
   1135 	m = so->so_rcv.sb_mb;
   1136 	/*
   1137 	 * If we have less data than requested, block awaiting more
   1138 	 * (subject to any timeout) if:
   1139 	 *   1. the current count is less than the low water mark,
   1140 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1141 	 *	receive operation at once if we block (resid <= hiwat), or
   1142 	 *   3. MSG_DONTWAIT is not set.
   1143 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1144 	 * we have to do the receive in sections, and thus risk returning
   1145 	 * a short count if a timeout or signal occurs after we start.
   1146 	 */
   1147 	if (m == NULL ||
   1148 	    ((flags & MSG_DONTWAIT) == 0 &&
   1149 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1150 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1151 	      ((flags & MSG_WAITALL) &&
   1152 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1153 	     m->m_nextpkt == NULL && !atomic)) {
   1154 #ifdef DIAGNOSTIC
   1155 		if (m == NULL && so->so_rcv.sb_cc)
   1156 			panic("receive 1");
   1157 #endif
   1158 		if (so->so_error) {
   1159 			if (m != NULL)
   1160 				goto dontblock;
   1161 			error = so->so_error;
   1162 			if ((flags & MSG_PEEK) == 0)
   1163 				so->so_error = 0;
   1164 			goto release;
   1165 		}
   1166 		if (so->so_state & SS_CANTRCVMORE) {
   1167 			if (m != NULL)
   1168 				goto dontblock;
   1169 			else
   1170 				goto release;
   1171 		}
   1172 		for (; m != NULL; m = m->m_next)
   1173 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1174 				m = so->so_rcv.sb_mb;
   1175 				goto dontblock;
   1176 			}
   1177 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1178 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1179 			error = ENOTCONN;
   1180 			goto release;
   1181 		}
   1182 		if (uio->uio_resid == 0)
   1183 			goto release;
   1184 		if (so->so_nbio || (flags & MSG_DONTWAIT)) {
   1185 			error = EWOULDBLOCK;
   1186 			goto release;
   1187 		}
   1188 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1189 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1190 		sbunlock(&so->so_rcv);
   1191 		error = sbwait(&so->so_rcv);
   1192 		if (error != 0) {
   1193 			sounlock(so);
   1194 			splx(s);
   1195 			return error;
   1196 		}
   1197 		goto restart;
   1198 	}
   1199  dontblock:
   1200 	/*
   1201 	 * On entry here, m points to the first record of the socket buffer.
   1202 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1203 	 * pointer to the next record in the socket buffer.  We must keep the
   1204 	 * various socket buffer pointers and local stack versions of the
   1205 	 * pointers in sync, pushing out modifications before dropping the
   1206 	 * socket lock, and re-reading them when picking it up.
   1207 	 *
   1208 	 * Otherwise, we will race with the network stack appending new data
   1209 	 * or records onto the socket buffer by using inconsistent/stale
   1210 	 * versions of the field, possibly resulting in socket buffer
   1211 	 * corruption.
   1212 	 *
   1213 	 * By holding the high-level sblock(), we prevent simultaneous
   1214 	 * readers from pulling off the front of the socket buffer.
   1215 	 */
   1216 	if (l != NULL)
   1217 		l->l_ru.ru_msgrcv++;
   1218 	KASSERT(m == so->so_rcv.sb_mb);
   1219 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1220 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1221 	nextrecord = m->m_nextpkt;
   1222 	if (pr->pr_flags & PR_ADDR) {
   1223 #ifdef DIAGNOSTIC
   1224 		if (m->m_type != MT_SONAME)
   1225 			panic("receive 1a");
   1226 #endif
   1227 		orig_resid = 0;
   1228 		if (flags & MSG_PEEK) {
   1229 			if (paddr)
   1230 				*paddr = m_copy(m, 0, m->m_len);
   1231 			m = m->m_next;
   1232 		} else {
   1233 			sbfree(&so->so_rcv, m);
   1234 			mbuf_removed = 1;
   1235 			if (paddr != NULL) {
   1236 				*paddr = m;
   1237 				so->so_rcv.sb_mb = m->m_next;
   1238 				m->m_next = NULL;
   1239 				m = so->so_rcv.sb_mb;
   1240 			} else {
   1241 				MFREE(m, so->so_rcv.sb_mb);
   1242 				m = so->so_rcv.sb_mb;
   1243 			}
   1244 			sbsync(&so->so_rcv, nextrecord);
   1245 		}
   1246 	}
   1247 
   1248 	/*
   1249 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1250 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1251 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1252 	 * perform externalization (or freeing if controlp == NULL).
   1253 	 */
   1254 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1255 		struct mbuf *cm = NULL, *cmn;
   1256 		struct mbuf **cme = &cm;
   1257 
   1258 		do {
   1259 			if (flags & MSG_PEEK) {
   1260 				if (controlp != NULL) {
   1261 					*controlp = m_copy(m, 0, m->m_len);
   1262 					controlp = &(*controlp)->m_next;
   1263 				}
   1264 				m = m->m_next;
   1265 			} else {
   1266 				sbfree(&so->so_rcv, m);
   1267 				so->so_rcv.sb_mb = m->m_next;
   1268 				m->m_next = NULL;
   1269 				*cme = m;
   1270 				cme = &(*cme)->m_next;
   1271 				m = so->so_rcv.sb_mb;
   1272 			}
   1273 		} while (m != NULL && m->m_type == MT_CONTROL);
   1274 		if ((flags & MSG_PEEK) == 0)
   1275 			sbsync(&so->so_rcv, nextrecord);
   1276 		for (; cm != NULL; cm = cmn) {
   1277 			cmn = cm->m_next;
   1278 			cm->m_next = NULL;
   1279 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1280 			if (controlp != NULL) {
   1281 				if (dom->dom_externalize != NULL &&
   1282 				    type == SCM_RIGHTS) {
   1283 					sounlock(so);
   1284 					splx(s);
   1285 					error = (*dom->dom_externalize)(cm, l);
   1286 					s = splsoftnet();
   1287 					solock(so);
   1288 				}
   1289 				*controlp = cm;
   1290 				while (*controlp != NULL)
   1291 					controlp = &(*controlp)->m_next;
   1292 			} else {
   1293 				/*
   1294 				 * Dispose of any SCM_RIGHTS message that went
   1295 				 * through the read path rather than recv.
   1296 				 */
   1297 				if (dom->dom_dispose != NULL &&
   1298 				    type == SCM_RIGHTS) {
   1299 				    	sounlock(so);
   1300 					(*dom->dom_dispose)(cm);
   1301 					solock(so);
   1302 				}
   1303 				m_freem(cm);
   1304 			}
   1305 		}
   1306 		if (m != NULL)
   1307 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1308 		else
   1309 			nextrecord = so->so_rcv.sb_mb;
   1310 		orig_resid = 0;
   1311 	}
   1312 
   1313 	/* If m is non-NULL, we have some data to read. */
   1314 	if (__predict_true(m != NULL)) {
   1315 		type = m->m_type;
   1316 		if (type == MT_OOBDATA)
   1317 			flags |= MSG_OOB;
   1318 	}
   1319 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1320 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1321 
   1322 	moff = 0;
   1323 	offset = 0;
   1324 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1325 		if (m->m_type == MT_OOBDATA) {
   1326 			if (type != MT_OOBDATA)
   1327 				break;
   1328 		} else if (type == MT_OOBDATA)
   1329 			break;
   1330 #ifdef DIAGNOSTIC
   1331 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1332 			panic("receive 3");
   1333 #endif
   1334 		so->so_state &= ~SS_RCVATMARK;
   1335 		len = uio->uio_resid;
   1336 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1337 			len = so->so_oobmark - offset;
   1338 		if (len > m->m_len - moff)
   1339 			len = m->m_len - moff;
   1340 		/*
   1341 		 * If mp is set, just pass back the mbufs.
   1342 		 * Otherwise copy them out via the uio, then free.
   1343 		 * Sockbuf must be consistent here (points to current mbuf,
   1344 		 * it points to next record) when we drop priority;
   1345 		 * we must note any additions to the sockbuf when we
   1346 		 * block interrupts again.
   1347 		 */
   1348 		if (mp == NULL) {
   1349 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1350 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1351 			sounlock(so);
   1352 			splx(s);
   1353 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
   1354 			s = splsoftnet();
   1355 			solock(so);
   1356 			if (error != 0) {
   1357 				/*
   1358 				 * If any part of the record has been removed
   1359 				 * (such as the MT_SONAME mbuf, which will
   1360 				 * happen when PR_ADDR, and thus also
   1361 				 * PR_ATOMIC, is set), then drop the entire
   1362 				 * record to maintain the atomicity of the
   1363 				 * receive operation.
   1364 				 *
   1365 				 * This avoids a later panic("receive 1a")
   1366 				 * when compiled with DIAGNOSTIC.
   1367 				 */
   1368 				if (m && mbuf_removed && atomic)
   1369 					(void) sbdroprecord(&so->so_rcv);
   1370 
   1371 				goto release;
   1372 			}
   1373 		} else
   1374 			uio->uio_resid -= len;
   1375 		if (len == m->m_len - moff) {
   1376 			if (m->m_flags & M_EOR)
   1377 				flags |= MSG_EOR;
   1378 			if (flags & MSG_PEEK) {
   1379 				m = m->m_next;
   1380 				moff = 0;
   1381 			} else {
   1382 				nextrecord = m->m_nextpkt;
   1383 				sbfree(&so->so_rcv, m);
   1384 				if (mp) {
   1385 					*mp = m;
   1386 					mp = &m->m_next;
   1387 					so->so_rcv.sb_mb = m = m->m_next;
   1388 					*mp = NULL;
   1389 				} else {
   1390 					MFREE(m, so->so_rcv.sb_mb);
   1391 					m = so->so_rcv.sb_mb;
   1392 				}
   1393 				/*
   1394 				 * If m != NULL, we also know that
   1395 				 * so->so_rcv.sb_mb != NULL.
   1396 				 */
   1397 				KASSERT(so->so_rcv.sb_mb == m);
   1398 				if (m) {
   1399 					m->m_nextpkt = nextrecord;
   1400 					if (nextrecord == NULL)
   1401 						so->so_rcv.sb_lastrecord = m;
   1402 				} else {
   1403 					so->so_rcv.sb_mb = nextrecord;
   1404 					SB_EMPTY_FIXUP(&so->so_rcv);
   1405 				}
   1406 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1407 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1408 			}
   1409 		} else if (flags & MSG_PEEK)
   1410 			moff += len;
   1411 		else {
   1412 			if (mp != NULL) {
   1413 				mt = m_copym(m, 0, len, M_NOWAIT);
   1414 				if (__predict_false(mt == NULL)) {
   1415 					sounlock(so);
   1416 					mt = m_copym(m, 0, len, M_WAIT);
   1417 					solock(so);
   1418 				}
   1419 				*mp = mt;
   1420 			}
   1421 			m->m_data += len;
   1422 			m->m_len -= len;
   1423 			so->so_rcv.sb_cc -= len;
   1424 		}
   1425 		if (so->so_oobmark) {
   1426 			if ((flags & MSG_PEEK) == 0) {
   1427 				so->so_oobmark -= len;
   1428 				if (so->so_oobmark == 0) {
   1429 					so->so_state |= SS_RCVATMARK;
   1430 					break;
   1431 				}
   1432 			} else {
   1433 				offset += len;
   1434 				if (offset == so->so_oobmark)
   1435 					break;
   1436 			}
   1437 		}
   1438 		if (flags & MSG_EOR)
   1439 			break;
   1440 		/*
   1441 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1442 		 * we must not quit until "uio->uio_resid == 0" or an error
   1443 		 * termination.  If a signal/timeout occurs, return
   1444 		 * with a short count but without error.
   1445 		 * Keep sockbuf locked against other readers.
   1446 		 */
   1447 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1448 		    !sosendallatonce(so) && !nextrecord) {
   1449 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1450 				break;
   1451 			/*
   1452 			 * If we are peeking and the socket receive buffer is
   1453 			 * full, stop since we can't get more data to peek at.
   1454 			 */
   1455 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1456 				break;
   1457 			/*
   1458 			 * If we've drained the socket buffer, tell the
   1459 			 * protocol in case it needs to do something to
   1460 			 * get it filled again.
   1461 			 */
   1462 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1463 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1464 				    NULL, (struct mbuf *)(long)flags, NULL, l);
   1465 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1466 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1467 			error = sbwait(&so->so_rcv);
   1468 			if (error != 0) {
   1469 				sbunlock(&so->so_rcv);
   1470 				sounlock(so);
   1471 				splx(s);
   1472 				return 0;
   1473 			}
   1474 			if ((m = so->so_rcv.sb_mb) != NULL)
   1475 				nextrecord = m->m_nextpkt;
   1476 		}
   1477 	}
   1478 
   1479 	if (m && atomic) {
   1480 		flags |= MSG_TRUNC;
   1481 		if ((flags & MSG_PEEK) == 0)
   1482 			(void) sbdroprecord(&so->so_rcv);
   1483 	}
   1484 	if ((flags & MSG_PEEK) == 0) {
   1485 		if (m == NULL) {
   1486 			/*
   1487 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1488 			 * part makes sure sb_lastrecord is up-to-date if
   1489 			 * there is still data in the socket buffer.
   1490 			 */
   1491 			so->so_rcv.sb_mb = nextrecord;
   1492 			if (so->so_rcv.sb_mb == NULL) {
   1493 				so->so_rcv.sb_mbtail = NULL;
   1494 				so->so_rcv.sb_lastrecord = NULL;
   1495 			} else if (nextrecord->m_nextpkt == NULL)
   1496 				so->so_rcv.sb_lastrecord = nextrecord;
   1497 		}
   1498 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1499 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1500 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1501 			(*pr->pr_usrreq)(so, PRU_RCVD, NULL,
   1502 			    (struct mbuf *)(long)flags, NULL, l);
   1503 	}
   1504 	if (orig_resid == uio->uio_resid && orig_resid &&
   1505 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1506 		sbunlock(&so->so_rcv);
   1507 		goto restart;
   1508 	}
   1509 
   1510 	if (flagsp != NULL)
   1511 		*flagsp |= flags;
   1512  release:
   1513 	sbunlock(&so->so_rcv);
   1514 	sounlock(so);
   1515 	splx(s);
   1516 	return error;
   1517 }
   1518 
   1519 int
   1520 soshutdown(struct socket *so, int how)
   1521 {
   1522 	const struct protosw	*pr;
   1523 	int	error;
   1524 
   1525 	KASSERT(solocked(so));
   1526 
   1527 	pr = so->so_proto;
   1528 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1529 		return (EINVAL);
   1530 
   1531 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1532 		sorflush(so);
   1533 		error = 0;
   1534 	}
   1535 	if (how == SHUT_WR || how == SHUT_RDWR)
   1536 		error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
   1537 		    NULL, NULL, NULL);
   1538 
   1539 	return error;
   1540 }
   1541 
   1542 void
   1543 sorflush(struct socket *so)
   1544 {
   1545 	struct sockbuf	*sb, asb;
   1546 	const struct protosw	*pr;
   1547 
   1548 	KASSERT(solocked(so));
   1549 
   1550 	sb = &so->so_rcv;
   1551 	pr = so->so_proto;
   1552 	socantrcvmore(so);
   1553 	sb->sb_flags |= SB_NOINTR;
   1554 	(void )sblock(sb, M_WAITOK);
   1555 	sbunlock(sb);
   1556 	asb = *sb;
   1557 	/*
   1558 	 * Clear most of the sockbuf structure, but leave some of the
   1559 	 * fields valid.
   1560 	 */
   1561 	memset(&sb->sb_startzero, 0,
   1562 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1563 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1564 		sounlock(so);
   1565 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1566 		solock(so);
   1567 	}
   1568 	sbrelease(&asb, so);
   1569 }
   1570 
   1571 /*
   1572  * internal set SOL_SOCKET options
   1573  */
   1574 static int
   1575 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1576 {
   1577 	int error, optval;
   1578 	struct linger l;
   1579 	struct timeval tv;
   1580 
   1581 	switch (sopt->sopt_name) {
   1582 
   1583 #ifdef INET
   1584 	case SO_ACCEPTFILTER:
   1585 		error = do_setopt_accept_filter(so, sopt);
   1586 		if (error)
   1587 			return error;
   1588 		break;
   1589 #endif
   1590 
   1591   	case SO_LINGER:
   1592  		error = sockopt_get(sopt, &l, sizeof(l));
   1593  		if (error)
   1594  			return (error);
   1595 
   1596  		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1597  		    l.l_linger > (INT_MAX / hz))
   1598 			return EDOM;
   1599  		so->so_linger = l.l_linger;
   1600  		if (l.l_onoff)
   1601  			so->so_options |= SO_LINGER;
   1602  		else
   1603  			so->so_options &= ~SO_LINGER;
   1604 
   1605   		break;
   1606 
   1607 	case SO_DEBUG:
   1608 	case SO_KEEPALIVE:
   1609 	case SO_DONTROUTE:
   1610 	case SO_USELOOPBACK:
   1611 	case SO_BROADCAST:
   1612 	case SO_REUSEADDR:
   1613 	case SO_REUSEPORT:
   1614 	case SO_OOBINLINE:
   1615 	case SO_TIMESTAMP:
   1616 		error = sockopt_getint(sopt, &optval);
   1617 		if (error)
   1618 			return (error);
   1619 
   1620 		if (optval)
   1621 			so->so_options |= sopt->sopt_name;
   1622 		else
   1623 			so->so_options &= ~sopt->sopt_name;
   1624 		break;
   1625 
   1626 	case SO_SNDBUF:
   1627 	case SO_RCVBUF:
   1628 	case SO_SNDLOWAT:
   1629 	case SO_RCVLOWAT:
   1630 		error = sockopt_getint(sopt, &optval);
   1631 		if (error)
   1632 			return (error);
   1633 
   1634 		/*
   1635 		 * Values < 1 make no sense for any of these
   1636 		 * options, so disallow them.
   1637 		 */
   1638 		if (optval < 1)
   1639 			return EINVAL;
   1640 
   1641 		switch (sopt->sopt_name) {
   1642 		case SO_SNDBUF:
   1643 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0)
   1644 				return ENOBUFS;
   1645 
   1646 			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1647 			break;
   1648 
   1649 		case SO_RCVBUF:
   1650 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0)
   1651 				return ENOBUFS;
   1652 
   1653 			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1654 			break;
   1655 
   1656 		/*
   1657 		 * Make sure the low-water is never greater than
   1658 		 * the high-water.
   1659 		 */
   1660 		case SO_SNDLOWAT:
   1661 			if (optval > so->so_snd.sb_hiwat)
   1662 				optval = so->so_snd.sb_hiwat;
   1663 
   1664 			so->so_snd.sb_lowat = optval;
   1665 			break;
   1666 
   1667 		case SO_RCVLOWAT:
   1668 			if (optval > so->so_rcv.sb_hiwat)
   1669 				optval = so->so_rcv.sb_hiwat;
   1670 
   1671 			so->so_rcv.sb_lowat = optval;
   1672 			break;
   1673 		}
   1674 		break;
   1675 
   1676 	case SO_SNDTIMEO:
   1677 	case SO_RCVTIMEO:
   1678 		error = sockopt_get(sopt, &tv, sizeof(tv));
   1679 		if (error)
   1680 			return (error);
   1681 
   1682 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz)
   1683 			return EDOM;
   1684 
   1685 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1686 		if (optval == 0 && tv.tv_usec != 0)
   1687 			optval = 1;
   1688 
   1689 		switch (sopt->sopt_name) {
   1690 		case SO_SNDTIMEO:
   1691 			so->so_snd.sb_timeo = optval;
   1692 			break;
   1693 		case SO_RCVTIMEO:
   1694 			so->so_rcv.sb_timeo = optval;
   1695 			break;
   1696 		}
   1697 		break;
   1698 
   1699 	default:
   1700 		return ENOPROTOOPT;
   1701 	}
   1702 	return 0;
   1703 }
   1704 
   1705 int
   1706 sosetopt(struct socket *so, struct sockopt *sopt)
   1707 {
   1708 	int error, prerr;
   1709 
   1710 	solock(so);
   1711 	if (sopt->sopt_level == SOL_SOCKET)
   1712 		error = sosetopt1(so, sopt);
   1713 	else
   1714 		error = ENOPROTOOPT;
   1715 
   1716 	if ((error == 0 || error == ENOPROTOOPT) &&
   1717 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1718 		/* give the protocol stack a shot */
   1719 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1720 		if (prerr == 0)
   1721 			error = 0;
   1722 		else if (prerr != ENOPROTOOPT)
   1723 			error = prerr;
   1724 	}
   1725 	sounlock(so);
   1726 	return error;
   1727 }
   1728 
   1729 /*
   1730  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1731  */
   1732 int
   1733 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1734     const void *val, size_t valsize)
   1735 {
   1736 	struct sockopt sopt;
   1737 	int error;
   1738 
   1739 	KASSERT(valsize == 0 || val != NULL);
   1740 
   1741 	sockopt_init(&sopt, level, name, valsize);
   1742 	sockopt_set(&sopt, val, valsize);
   1743 
   1744 	error = sosetopt(so, &sopt);
   1745 
   1746 	sockopt_destroy(&sopt);
   1747 
   1748 	return error;
   1749 }
   1750 
   1751 /*
   1752  * internal get SOL_SOCKET options
   1753  */
   1754 static int
   1755 sogetopt1(struct socket *so, struct sockopt *sopt)
   1756 {
   1757 	int error, optval;
   1758 	struct linger l;
   1759 	struct timeval tv;
   1760 
   1761 	switch (sopt->sopt_name) {
   1762 
   1763 #ifdef INET
   1764 	case SO_ACCEPTFILTER:
   1765 		error = do_getopt_accept_filter(so, sopt);
   1766 		break;
   1767 #endif
   1768 
   1769 	case SO_LINGER:
   1770 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1771 		l.l_linger = so->so_linger;
   1772 
   1773 		error = sockopt_set(sopt, &l, sizeof(l));
   1774 		break;
   1775 
   1776 	case SO_USELOOPBACK:
   1777 	case SO_DONTROUTE:
   1778 	case SO_DEBUG:
   1779 	case SO_KEEPALIVE:
   1780 	case SO_REUSEADDR:
   1781 	case SO_REUSEPORT:
   1782 	case SO_BROADCAST:
   1783 	case SO_OOBINLINE:
   1784 	case SO_TIMESTAMP:
   1785 		error = sockopt_setint(sopt,
   1786 		    (so->so_options & sopt->sopt_name) ? 1 : 0);
   1787 		break;
   1788 
   1789 	case SO_TYPE:
   1790 		error = sockopt_setint(sopt, so->so_type);
   1791 		break;
   1792 
   1793 	case SO_ERROR:
   1794 		error = sockopt_setint(sopt, so->so_error);
   1795 		so->so_error = 0;
   1796 		break;
   1797 
   1798 	case SO_SNDBUF:
   1799 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1800 		break;
   1801 
   1802 	case SO_RCVBUF:
   1803 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1804 		break;
   1805 
   1806 	case SO_SNDLOWAT:
   1807 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1808 		break;
   1809 
   1810 	case SO_RCVLOWAT:
   1811 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1812 		break;
   1813 
   1814 	case SO_SNDTIMEO:
   1815 	case SO_RCVTIMEO:
   1816 		optval = (sopt->sopt_name == SO_SNDTIMEO ?
   1817 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1818 
   1819 		tv.tv_sec = optval / hz;
   1820 		tv.tv_usec = (optval % hz) * tick;
   1821 
   1822 		error = sockopt_set(sopt, &tv, sizeof(tv));
   1823 		break;
   1824 
   1825 	case SO_OVERFLOWED:
   1826 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   1827 		break;
   1828 
   1829 	default:
   1830 		error = ENOPROTOOPT;
   1831 		break;
   1832 	}
   1833 
   1834 	return (error);
   1835 }
   1836 
   1837 int
   1838 sogetopt(struct socket *so, struct sockopt *sopt)
   1839 {
   1840 	int		error;
   1841 
   1842 	solock(so);
   1843 	if (sopt->sopt_level != SOL_SOCKET) {
   1844 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1845 			error = ((*so->so_proto->pr_ctloutput)
   1846 			    (PRCO_GETOPT, so, sopt));
   1847 		} else
   1848 			error = (ENOPROTOOPT);
   1849 	} else {
   1850 		error = sogetopt1(so, sopt);
   1851 	}
   1852 	sounlock(so);
   1853 	return (error);
   1854 }
   1855 
   1856 /*
   1857  * alloc sockopt data buffer buffer
   1858  *	- will be released at destroy
   1859  */
   1860 static void
   1861 sockopt_alloc(struct sockopt *sopt, size_t len)
   1862 {
   1863 
   1864 	KASSERT(sopt->sopt_size == 0);
   1865 
   1866 	if (len > sizeof(sopt->sopt_buf))
   1867 		sopt->sopt_data = kmem_zalloc(len, KM_SLEEP);
   1868 	else
   1869 		sopt->sopt_data = sopt->sopt_buf;
   1870 
   1871 	sopt->sopt_size = len;
   1872 }
   1873 
   1874 /*
   1875  * initialise sockopt storage
   1876  */
   1877 void
   1878 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   1879 {
   1880 
   1881 	memset(sopt, 0, sizeof(*sopt));
   1882 
   1883 	sopt->sopt_level = level;
   1884 	sopt->sopt_name = name;
   1885 	sockopt_alloc(sopt, size);
   1886 }
   1887 
   1888 /*
   1889  * destroy sockopt storage
   1890  *	- will release any held memory references
   1891  */
   1892 void
   1893 sockopt_destroy(struct sockopt *sopt)
   1894 {
   1895 
   1896 	if (sopt->sopt_data != sopt->sopt_buf)
   1897 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   1898 
   1899 	memset(sopt, 0, sizeof(*sopt));
   1900 }
   1901 
   1902 /*
   1903  * set sockopt value
   1904  *	- value is copied into sockopt
   1905  * 	- memory is allocated when necessary
   1906  */
   1907 int
   1908 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   1909 {
   1910 
   1911 	if (sopt->sopt_size == 0)
   1912 		sockopt_alloc(sopt, len);
   1913 
   1914 	KASSERT(sopt->sopt_size == len);
   1915 	memcpy(sopt->sopt_data, buf, len);
   1916 	return 0;
   1917 }
   1918 
   1919 /*
   1920  * common case of set sockopt integer value
   1921  */
   1922 int
   1923 sockopt_setint(struct sockopt *sopt, int val)
   1924 {
   1925 
   1926 	return sockopt_set(sopt, &val, sizeof(int));
   1927 }
   1928 
   1929 /*
   1930  * get sockopt value
   1931  *	- correct size must be given
   1932  */
   1933 int
   1934 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   1935 {
   1936 
   1937 	if (sopt->sopt_size != len)
   1938 		return EINVAL;
   1939 
   1940 	memcpy(buf, sopt->sopt_data, len);
   1941 	return 0;
   1942 }
   1943 
   1944 /*
   1945  * common case of get sockopt integer value
   1946  */
   1947 int
   1948 sockopt_getint(const struct sockopt *sopt, int *valp)
   1949 {
   1950 
   1951 	return sockopt_get(sopt, valp, sizeof(int));
   1952 }
   1953 
   1954 /*
   1955  * set sockopt value from mbuf
   1956  *	- ONLY for legacy code
   1957  *	- mbuf is released by sockopt
   1958  */
   1959 int
   1960 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   1961 {
   1962 	size_t len;
   1963 
   1964 	len = m_length(m);
   1965 
   1966 	if (sopt->sopt_size == 0)
   1967 		sockopt_alloc(sopt, len);
   1968 
   1969 	KASSERT(sopt->sopt_size == len);
   1970 	m_copydata(m, 0, len, sopt->sopt_data);
   1971 	m_freem(m);
   1972 
   1973 	return 0;
   1974 }
   1975 
   1976 /*
   1977  * get sockopt value into mbuf
   1978  *	- ONLY for legacy code
   1979  *	- mbuf to be released by the caller
   1980  */
   1981 struct mbuf *
   1982 sockopt_getmbuf(const struct sockopt *sopt)
   1983 {
   1984 	struct mbuf *m;
   1985 
   1986 	m = m_get(M_WAIT, MT_SOOPTS);
   1987 	if (m == NULL)
   1988 		return NULL;
   1989 
   1990 	m->m_len = MLEN;
   1991 	m_copyback(m, 0, sopt->sopt_size, sopt->sopt_data);
   1992 	if (m_length(m) != max(sopt->sopt_size, MLEN)) {
   1993 		m_freem(m);
   1994 		return NULL;
   1995 	}
   1996 	m->m_len = min(sopt->sopt_size, MLEN);
   1997 
   1998 	return m;
   1999 }
   2000 
   2001 void
   2002 sohasoutofband(struct socket *so)
   2003 {
   2004 
   2005 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2006 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, 0);
   2007 }
   2008 
   2009 static void
   2010 filt_sordetach(struct knote *kn)
   2011 {
   2012 	struct socket	*so;
   2013 
   2014 	so = ((file_t *)kn->kn_obj)->f_data;
   2015 	solock(so);
   2016 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   2017 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   2018 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2019 	sounlock(so);
   2020 }
   2021 
   2022 /*ARGSUSED*/
   2023 static int
   2024 filt_soread(struct knote *kn, long hint)
   2025 {
   2026 	struct socket	*so;
   2027 	int rv;
   2028 
   2029 	so = ((file_t *)kn->kn_obj)->f_data;
   2030 	if (hint != NOTE_SUBMIT)
   2031 		solock(so);
   2032 	kn->kn_data = so->so_rcv.sb_cc;
   2033 	if (so->so_state & SS_CANTRCVMORE) {
   2034 		kn->kn_flags |= EV_EOF;
   2035 		kn->kn_fflags = so->so_error;
   2036 		rv = 1;
   2037 	} else if (so->so_error)	/* temporary udp error */
   2038 		rv = 1;
   2039 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2040 		rv = (kn->kn_data >= kn->kn_sdata);
   2041 	else
   2042 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2043 	if (hint != NOTE_SUBMIT)
   2044 		sounlock(so);
   2045 	return rv;
   2046 }
   2047 
   2048 static void
   2049 filt_sowdetach(struct knote *kn)
   2050 {
   2051 	struct socket	*so;
   2052 
   2053 	so = ((file_t *)kn->kn_obj)->f_data;
   2054 	solock(so);
   2055 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   2056 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   2057 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2058 	sounlock(so);
   2059 }
   2060 
   2061 /*ARGSUSED*/
   2062 static int
   2063 filt_sowrite(struct knote *kn, long hint)
   2064 {
   2065 	struct socket	*so;
   2066 	int rv;
   2067 
   2068 	so = ((file_t *)kn->kn_obj)->f_data;
   2069 	if (hint != NOTE_SUBMIT)
   2070 		solock(so);
   2071 	kn->kn_data = sbspace(&so->so_snd);
   2072 	if (so->so_state & SS_CANTSENDMORE) {
   2073 		kn->kn_flags |= EV_EOF;
   2074 		kn->kn_fflags = so->so_error;
   2075 		rv = 1;
   2076 	} else if (so->so_error)	/* temporary udp error */
   2077 		rv = 1;
   2078 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2079 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2080 		rv = 0;
   2081 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2082 		rv = (kn->kn_data >= kn->kn_sdata);
   2083 	else
   2084 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2085 	if (hint != NOTE_SUBMIT)
   2086 		sounlock(so);
   2087 	return rv;
   2088 }
   2089 
   2090 /*ARGSUSED*/
   2091 static int
   2092 filt_solisten(struct knote *kn, long hint)
   2093 {
   2094 	struct socket	*so;
   2095 	int rv;
   2096 
   2097 	so = ((file_t *)kn->kn_obj)->f_data;
   2098 
   2099 	/*
   2100 	 * Set kn_data to number of incoming connections, not
   2101 	 * counting partial (incomplete) connections.
   2102 	 */
   2103 	if (hint != NOTE_SUBMIT)
   2104 		solock(so);
   2105 	kn->kn_data = so->so_qlen;
   2106 	rv = (kn->kn_data > 0);
   2107 	if (hint != NOTE_SUBMIT)
   2108 		sounlock(so);
   2109 	return rv;
   2110 }
   2111 
   2112 static const struct filterops solisten_filtops =
   2113 	{ 1, NULL, filt_sordetach, filt_solisten };
   2114 static const struct filterops soread_filtops =
   2115 	{ 1, NULL, filt_sordetach, filt_soread };
   2116 static const struct filterops sowrite_filtops =
   2117 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   2118 
   2119 int
   2120 soo_kqfilter(struct file *fp, struct knote *kn)
   2121 {
   2122 	struct socket	*so;
   2123 	struct sockbuf	*sb;
   2124 
   2125 	so = ((file_t *)kn->kn_obj)->f_data;
   2126 	solock(so);
   2127 	switch (kn->kn_filter) {
   2128 	case EVFILT_READ:
   2129 		if (so->so_options & SO_ACCEPTCONN)
   2130 			kn->kn_fop = &solisten_filtops;
   2131 		else
   2132 			kn->kn_fop = &soread_filtops;
   2133 		sb = &so->so_rcv;
   2134 		break;
   2135 	case EVFILT_WRITE:
   2136 		kn->kn_fop = &sowrite_filtops;
   2137 		sb = &so->so_snd;
   2138 		break;
   2139 	default:
   2140 		sounlock(so);
   2141 		return (EINVAL);
   2142 	}
   2143 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   2144 	sb->sb_flags |= SB_KNOTE;
   2145 	sounlock(so);
   2146 	return (0);
   2147 }
   2148 
   2149 static int
   2150 sodopoll(struct socket *so, int events)
   2151 {
   2152 	int revents;
   2153 
   2154 	revents = 0;
   2155 
   2156 	if (events & (POLLIN | POLLRDNORM))
   2157 		if (soreadable(so))
   2158 			revents |= events & (POLLIN | POLLRDNORM);
   2159 
   2160 	if (events & (POLLOUT | POLLWRNORM))
   2161 		if (sowritable(so))
   2162 			revents |= events & (POLLOUT | POLLWRNORM);
   2163 
   2164 	if (events & (POLLPRI | POLLRDBAND))
   2165 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   2166 			revents |= events & (POLLPRI | POLLRDBAND);
   2167 
   2168 	return revents;
   2169 }
   2170 
   2171 int
   2172 sopoll(struct socket *so, int events)
   2173 {
   2174 	int revents = 0;
   2175 
   2176 #ifndef DIAGNOSTIC
   2177 	/*
   2178 	 * Do a quick, unlocked check in expectation that the socket
   2179 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2180 	 * as the solocked() assertions will fail.
   2181 	 */
   2182 	if ((revents = sodopoll(so, events)) != 0)
   2183 		return revents;
   2184 #endif
   2185 
   2186 	solock(so);
   2187 	if ((revents = sodopoll(so, events)) == 0) {
   2188 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2189 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2190 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2191 		}
   2192 
   2193 		if (events & (POLLOUT | POLLWRNORM)) {
   2194 			selrecord(curlwp, &so->so_snd.sb_sel);
   2195 			so->so_snd.sb_flags |= SB_NOTIFY;
   2196 		}
   2197 	}
   2198 	sounlock(so);
   2199 
   2200 	return revents;
   2201 }
   2202 
   2203 
   2204 #include <sys/sysctl.h>
   2205 
   2206 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2207 
   2208 /*
   2209  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2210  * value is not too small.
   2211  * (XXX should we maybe make sure it's not too large as well?)
   2212  */
   2213 static int
   2214 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2215 {
   2216 	int error, new_somaxkva;
   2217 	struct sysctlnode node;
   2218 
   2219 	new_somaxkva = somaxkva;
   2220 	node = *rnode;
   2221 	node.sysctl_data = &new_somaxkva;
   2222 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2223 	if (error || newp == NULL)
   2224 		return (error);
   2225 
   2226 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2227 		return (EINVAL);
   2228 
   2229 	mutex_enter(&so_pendfree_lock);
   2230 	somaxkva = new_somaxkva;
   2231 	cv_broadcast(&socurkva_cv);
   2232 	mutex_exit(&so_pendfree_lock);
   2233 
   2234 	return (error);
   2235 }
   2236 
   2237 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
   2238 {
   2239 
   2240 	sysctl_createv(clog, 0, NULL, NULL,
   2241 		       CTLFLAG_PERMANENT,
   2242 		       CTLTYPE_NODE, "kern", NULL,
   2243 		       NULL, 0, NULL, 0,
   2244 		       CTL_KERN, CTL_EOL);
   2245 
   2246 	sysctl_createv(clog, 0, NULL, NULL,
   2247 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2248 		       CTLTYPE_INT, "somaxkva",
   2249 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2250 				    "used for socket buffers"),
   2251 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2252 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2253 }
   2254