uipc_socket.c revision 1.177.4.4 1 /* $NetBSD: uipc_socket.c,v 1.177.4.4 2011/08/08 19:45:57 riz Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.177.4.4 2011/08/08 19:45:57 riz Exp $");
67
68 #include "opt_sock_counters.h"
69 #include "opt_sosend_loan.h"
70 #include "opt_mbuftrace.h"
71 #include "opt_somaxkva.h"
72 #include "opt_multiprocessor.h" /* XXX */
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/proc.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/kmem.h>
80 #include <sys/mbuf.h>
81 #include <sys/domain.h>
82 #include <sys/kernel.h>
83 #include <sys/protosw.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/signalvar.h>
87 #include <sys/resourcevar.h>
88 #include <sys/uidinfo.h>
89 #include <sys/event.h>
90 #include <sys/poll.h>
91 #include <sys/kauth.h>
92 #include <sys/mutex.h>
93 #include <sys/condvar.h>
94 #include <sys/kthread.h>
95
96 #include <uvm/uvm.h>
97
98 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
99 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
100
101 extern const struct fileops socketops;
102
103 extern int somaxconn; /* patchable (XXX sysctl) */
104 int somaxconn = SOMAXCONN;
105 kmutex_t *softnet_lock;
106
107 #ifdef SOSEND_COUNTERS
108 #include <sys/device.h>
109
110 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
111 NULL, "sosend", "loan big");
112 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
113 NULL, "sosend", "copy big");
114 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
115 NULL, "sosend", "copy small");
116 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
117 NULL, "sosend", "kva limit");
118
119 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
120
121 EVCNT_ATTACH_STATIC(sosend_loan_big);
122 EVCNT_ATTACH_STATIC(sosend_copy_big);
123 EVCNT_ATTACH_STATIC(sosend_copy_small);
124 EVCNT_ATTACH_STATIC(sosend_kvalimit);
125 #else
126
127 #define SOSEND_COUNTER_INCR(ev) /* nothing */
128
129 #endif /* SOSEND_COUNTERS */
130
131 static struct callback_entry sokva_reclaimerentry;
132
133 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
134 int sock_loan_thresh = -1;
135 #else
136 int sock_loan_thresh = 4096;
137 #endif
138
139 static kmutex_t so_pendfree_lock;
140 static struct mbuf *so_pendfree = NULL;
141
142 #ifndef SOMAXKVA
143 #define SOMAXKVA (16 * 1024 * 1024)
144 #endif
145 int somaxkva = SOMAXKVA;
146 static int socurkva;
147 static kcondvar_t socurkva_cv;
148
149 #define SOCK_LOAN_CHUNK 65536
150
151 static void sopendfree_thread(void *);
152 static kcondvar_t pendfree_thread_cv;
153 static lwp_t *sopendfree_lwp;
154
155 static vsize_t
156 sokvareserve(struct socket *so, vsize_t len)
157 {
158 int error;
159
160 mutex_enter(&so_pendfree_lock);
161 while (socurkva + len > somaxkva) {
162 SOSEND_COUNTER_INCR(&sosend_kvalimit);
163 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
164 if (error) {
165 len = 0;
166 break;
167 }
168 }
169 socurkva += len;
170 mutex_exit(&so_pendfree_lock);
171 return len;
172 }
173
174 static void
175 sokvaunreserve(vsize_t len)
176 {
177
178 mutex_enter(&so_pendfree_lock);
179 socurkva -= len;
180 cv_broadcast(&socurkva_cv);
181 mutex_exit(&so_pendfree_lock);
182 }
183
184 /*
185 * sokvaalloc: allocate kva for loan.
186 */
187
188 vaddr_t
189 sokvaalloc(vsize_t len, struct socket *so)
190 {
191 vaddr_t lva;
192
193 /*
194 * reserve kva.
195 */
196
197 if (sokvareserve(so, len) == 0)
198 return 0;
199
200 /*
201 * allocate kva.
202 */
203
204 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
205 if (lva == 0) {
206 sokvaunreserve(len);
207 return (0);
208 }
209
210 return lva;
211 }
212
213 /*
214 * sokvafree: free kva for loan.
215 */
216
217 void
218 sokvafree(vaddr_t sva, vsize_t len)
219 {
220
221 /*
222 * free kva.
223 */
224
225 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
226
227 /*
228 * unreserve kva.
229 */
230
231 sokvaunreserve(len);
232 }
233
234 static void
235 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
236 {
237 vaddr_t sva, eva;
238 vsize_t len;
239 int npgs;
240
241 KASSERT(pgs != NULL);
242
243 eva = round_page((vaddr_t) buf + size);
244 sva = trunc_page((vaddr_t) buf);
245 len = eva - sva;
246 npgs = len >> PAGE_SHIFT;
247
248 pmap_kremove(sva, len);
249 pmap_update(pmap_kernel());
250 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
251 sokvafree(sva, len);
252 }
253
254 /*
255 * sopendfree_thread: free mbufs on "pendfree" list.
256 * unlock and relock so_pendfree_lock when freeing mbufs.
257 */
258
259 static void
260 sopendfree_thread(void *v)
261 {
262 struct mbuf *m, *next;
263 size_t rv;
264
265 mutex_enter(&so_pendfree_lock);
266
267 for (;;) {
268 rv = 0;
269 while (so_pendfree != NULL) {
270 m = so_pendfree;
271 so_pendfree = NULL;
272 mutex_exit(&so_pendfree_lock);
273
274 for (; m != NULL; m = next) {
275 next = m->m_next;
276 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
277 KASSERT(m->m_ext.ext_refcnt == 0);
278
279 rv += m->m_ext.ext_size;
280 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
281 m->m_ext.ext_size);
282 pool_cache_put(mb_cache, m);
283 }
284
285 mutex_enter(&so_pendfree_lock);
286 }
287 if (rv)
288 cv_broadcast(&socurkva_cv);
289 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
290 }
291 panic("sopendfree_thread");
292 /* NOTREACHED */
293 }
294
295 void
296 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
297 {
298
299 KASSERT(m != NULL);
300
301 /*
302 * postpone freeing mbuf.
303 *
304 * we can't do it in interrupt context
305 * because we need to put kva back to kernel_map.
306 */
307
308 mutex_enter(&so_pendfree_lock);
309 m->m_next = so_pendfree;
310 so_pendfree = m;
311 cv_signal(&pendfree_thread_cv);
312 mutex_exit(&so_pendfree_lock);
313 }
314
315 static long
316 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
317 {
318 struct iovec *iov = uio->uio_iov;
319 vaddr_t sva, eva;
320 vsize_t len;
321 vaddr_t lva;
322 int npgs, error;
323 vaddr_t va;
324 int i;
325
326 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
327 return (0);
328
329 if (iov->iov_len < (size_t) space)
330 space = iov->iov_len;
331 if (space > SOCK_LOAN_CHUNK)
332 space = SOCK_LOAN_CHUNK;
333
334 eva = round_page((vaddr_t) iov->iov_base + space);
335 sva = trunc_page((vaddr_t) iov->iov_base);
336 len = eva - sva;
337 npgs = len >> PAGE_SHIFT;
338
339 KASSERT(npgs <= M_EXT_MAXPAGES);
340
341 lva = sokvaalloc(len, so);
342 if (lva == 0)
343 return 0;
344
345 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
346 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
347 if (error) {
348 sokvafree(lva, len);
349 return (0);
350 }
351
352 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
353 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
354 VM_PROT_READ);
355 pmap_update(pmap_kernel());
356
357 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
358
359 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
360 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
361
362 uio->uio_resid -= space;
363 /* uio_offset not updated, not set/used for write(2) */
364 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
365 uio->uio_iov->iov_len -= space;
366 if (uio->uio_iov->iov_len == 0) {
367 uio->uio_iov++;
368 uio->uio_iovcnt--;
369 }
370
371 return (space);
372 }
373
374 static int
375 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
376 {
377
378 KASSERT(ce == &sokva_reclaimerentry);
379 KASSERT(obj == NULL);
380
381 if (!vm_map_starved_p(kernel_map)) {
382 return CALLBACK_CHAIN_ABORT;
383 }
384 return CALLBACK_CHAIN_CONTINUE;
385 }
386
387 struct mbuf *
388 getsombuf(struct socket *so, int type)
389 {
390 struct mbuf *m;
391
392 m = m_get(M_WAIT, type);
393 MCLAIM(m, so->so_mowner);
394 return m;
395 }
396
397 void
398 soinit()
399 {
400 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
401 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
402 cv_init(&socurkva_cv, "sokva");
403 cv_init(&pendfree_thread_cv, "sopendfr");
404 soinit2();
405
406
407 /* Set the initial adjusted socket buffer size. */
408 if (sb_max_set(sb_max))
409 panic("bad initial sb_max value: %lu", sb_max);
410
411 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
412 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
413 }
414
415 void
416 soinit1(void)
417 {
418 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
419 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
420 if (error)
421 panic("soinit1 %d", error);
422 }
423
424 /*
425 * Socket operation routines.
426 * These routines are called by the routines in
427 * sys_socket.c or from a system process, and
428 * implement the semantics of socket operations by
429 * switching out to the protocol specific routines.
430 */
431 /*ARGSUSED*/
432 int
433 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
434 struct socket *lockso)
435 {
436 const struct protosw *prp;
437 struct socket *so;
438 uid_t uid;
439 int error;
440 kmutex_t *lock;
441
442 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
443 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
444 KAUTH_ARG(proto));
445 if (error != 0)
446 return error;
447
448 if (proto)
449 prp = pffindproto(dom, proto, type);
450 else
451 prp = pffindtype(dom, type);
452 if (prp == NULL) {
453 /* no support for domain */
454 if (pffinddomain(dom) == 0)
455 return EAFNOSUPPORT;
456 /* no support for socket type */
457 if (proto == 0 && type != 0)
458 return EPROTOTYPE;
459 return EPROTONOSUPPORT;
460 }
461 if (prp->pr_usrreq == NULL)
462 return EPROTONOSUPPORT;
463 if (prp->pr_type != type)
464 return EPROTOTYPE;
465
466 so = soget(true);
467 so->so_type = type;
468 so->so_proto = prp;
469 so->so_send = sosend;
470 so->so_receive = soreceive;
471 #ifdef MBUFTRACE
472 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
473 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
474 so->so_mowner = &prp->pr_domain->dom_mowner;
475 #endif
476 uid = kauth_cred_geteuid(l->l_cred);
477 so->so_uidinfo = uid_find(uid);
478 so->so_egid = kauth_cred_getegid(l->l_cred);
479 so->so_cpid = l->l_proc->p_pid;
480 if (lockso != NULL) {
481 /* Caller wants us to share a lock. */
482 lock = lockso->so_lock;
483 so->so_lock = lock;
484 mutex_obj_hold(lock);
485 mutex_enter(lock);
486 } else {
487 /* Lock assigned and taken during PRU_ATTACH. */
488 }
489 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
490 (struct mbuf *)(long)proto, NULL, l);
491 KASSERT(solocked(so));
492 if (error != 0) {
493 so->so_state |= SS_NOFDREF;
494 sofree(so);
495 return error;
496 }
497 sounlock(so);
498 *aso = so;
499 return 0;
500 }
501
502 /* On success, write file descriptor to fdout and return zero. On
503 * failure, return non-zero; *fdout will be undefined.
504 */
505 int
506 fsocreate(int domain, struct socket **sop, int type, int protocol,
507 struct lwp *l, int *fdout)
508 {
509 struct socket *so;
510 struct file *fp;
511 int fd, error;
512
513 if ((error = fd_allocfile(&fp, &fd)) != 0)
514 return (error);
515 fp->f_flag = FREAD|FWRITE;
516 fp->f_type = DTYPE_SOCKET;
517 fp->f_ops = &socketops;
518 error = socreate(domain, &so, type, protocol, l, NULL);
519 if (error != 0) {
520 fd_abort(curproc, fp, fd);
521 } else {
522 if (sop != NULL)
523 *sop = so;
524 fp->f_data = so;
525 fd_affix(curproc, fp, fd);
526 *fdout = fd;
527 }
528 return error;
529 }
530
531 int
532 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
533 {
534 int error;
535
536 solock(so);
537 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
538 sounlock(so);
539 return error;
540 }
541
542 int
543 solisten(struct socket *so, int backlog, struct lwp *l)
544 {
545 int error;
546
547 solock(so);
548 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
549 SS_ISDISCONNECTING)) != 0) {
550 sounlock(so);
551 return (EOPNOTSUPP);
552 }
553 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
554 NULL, NULL, l);
555 if (error != 0) {
556 sounlock(so);
557 return error;
558 }
559 if (TAILQ_EMPTY(&so->so_q))
560 so->so_options |= SO_ACCEPTCONN;
561 if (backlog < 0)
562 backlog = 0;
563 so->so_qlimit = min(backlog, somaxconn);
564 sounlock(so);
565 return 0;
566 }
567
568 void
569 sofree(struct socket *so)
570 {
571 u_int refs;
572
573 KASSERT(solocked(so));
574
575 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
576 sounlock(so);
577 return;
578 }
579 if (so->so_head) {
580 /*
581 * We must not decommission a socket that's on the accept(2)
582 * queue. If we do, then accept(2) may hang after select(2)
583 * indicated that the listening socket was ready.
584 */
585 if (!soqremque(so, 0)) {
586 sounlock(so);
587 return;
588 }
589 }
590 if (so->so_rcv.sb_hiwat)
591 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
592 RLIM_INFINITY);
593 if (so->so_snd.sb_hiwat)
594 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
595 RLIM_INFINITY);
596 sbrelease(&so->so_snd, so);
597 KASSERT(!cv_has_waiters(&so->so_cv));
598 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
599 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
600 sorflush(so);
601 refs = so->so_aborting; /* XXX */
602 /* Remove acccept filter if one is present. */
603 if (so->so_accf != NULL)
604 (void)accept_filt_clear(so);
605 sounlock(so);
606 if (refs == 0) /* XXX */
607 soput(so);
608 }
609
610 /*
611 * Close a socket on last file table reference removal.
612 * Initiate disconnect if connected.
613 * Free socket when disconnect complete.
614 */
615 int
616 soclose(struct socket *so)
617 {
618 struct socket *so2;
619 int error;
620 int error2;
621
622 error = 0;
623 solock(so);
624 if (so->so_options & SO_ACCEPTCONN) {
625 for (;;) {
626 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
627 KASSERT(solocked2(so, so2));
628 (void) soqremque(so2, 0);
629 /* soabort drops the lock. */
630 (void) soabort(so2);
631 solock(so);
632 continue;
633 }
634 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
635 KASSERT(solocked2(so, so2));
636 (void) soqremque(so2, 1);
637 /* soabort drops the lock. */
638 (void) soabort(so2);
639 solock(so);
640 continue;
641 }
642 break;
643 }
644 }
645 if (so->so_pcb == 0)
646 goto discard;
647 if (so->so_state & SS_ISCONNECTED) {
648 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
649 error = sodisconnect(so);
650 if (error)
651 goto drop;
652 }
653 if (so->so_options & SO_LINGER) {
654 if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
655 goto drop;
656 while (so->so_state & SS_ISCONNECTED) {
657 error = sowait(so, true, so->so_linger * hz);
658 if (error)
659 break;
660 }
661 }
662 }
663 drop:
664 if (so->so_pcb) {
665 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
666 NULL, NULL, NULL, NULL);
667 if (error == 0)
668 error = error2;
669 }
670 discard:
671 if (so->so_state & SS_NOFDREF)
672 panic("soclose: NOFDREF");
673 so->so_state |= SS_NOFDREF;
674 sofree(so);
675 return (error);
676 }
677
678 /*
679 * Must be called with the socket locked.. Will return with it unlocked.
680 */
681 int
682 soabort(struct socket *so)
683 {
684 u_int refs;
685 int error;
686
687 KASSERT(solocked(so));
688 KASSERT(so->so_head == NULL);
689
690 so->so_aborting++; /* XXX */
691 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
692 NULL, NULL, NULL);
693 refs = --so->so_aborting; /* XXX */
694 if (error || (refs == 0)) {
695 sofree(so);
696 } else {
697 sounlock(so);
698 }
699 return error;
700 }
701
702 int
703 soaccept(struct socket *so, struct mbuf *nam)
704 {
705 int error;
706
707 KASSERT(solocked(so));
708
709 error = 0;
710 if ((so->so_state & SS_NOFDREF) == 0)
711 panic("soaccept: !NOFDREF");
712 so->so_state &= ~SS_NOFDREF;
713 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
714 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
715 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
716 NULL, nam, NULL, NULL);
717 else
718 error = ECONNABORTED;
719
720 return (error);
721 }
722
723 int
724 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
725 {
726 int error;
727
728 KASSERT(solocked(so));
729
730 if (so->so_options & SO_ACCEPTCONN)
731 return (EOPNOTSUPP);
732 /*
733 * If protocol is connection-based, can only connect once.
734 * Otherwise, if connected, try to disconnect first.
735 * This allows user to disconnect by connecting to, e.g.,
736 * a null address.
737 */
738 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
739 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
740 (error = sodisconnect(so))))
741 error = EISCONN;
742 else
743 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
744 NULL, nam, NULL, l);
745 return (error);
746 }
747
748 int
749 soconnect2(struct socket *so1, struct socket *so2)
750 {
751 int error;
752
753 KASSERT(solocked2(so1, so2));
754
755 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
756 NULL, (struct mbuf *)so2, NULL, NULL);
757 return (error);
758 }
759
760 int
761 sodisconnect(struct socket *so)
762 {
763 int error;
764
765 KASSERT(solocked(so));
766
767 if ((so->so_state & SS_ISCONNECTED) == 0) {
768 error = ENOTCONN;
769 } else if (so->so_state & SS_ISDISCONNECTING) {
770 error = EALREADY;
771 } else {
772 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
773 NULL, NULL, NULL, NULL);
774 }
775 return (error);
776 }
777
778 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
779 /*
780 * Send on a socket.
781 * If send must go all at once and message is larger than
782 * send buffering, then hard error.
783 * Lock against other senders.
784 * If must go all at once and not enough room now, then
785 * inform user that this would block and do nothing.
786 * Otherwise, if nonblocking, send as much as possible.
787 * The data to be sent is described by "uio" if nonzero,
788 * otherwise by the mbuf chain "top" (which must be null
789 * if uio is not). Data provided in mbuf chain must be small
790 * enough to send all at once.
791 *
792 * Returns nonzero on error, timeout or signal; callers
793 * must check for short counts if EINTR/ERESTART are returned.
794 * Data and control buffers are freed on return.
795 */
796 int
797 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
798 struct mbuf *control, int flags, struct lwp *l)
799 {
800 struct mbuf **mp, *m;
801 struct proc *p;
802 long space, len, resid, clen, mlen;
803 int error, s, dontroute, atomic;
804
805 p = l->l_proc;
806 clen = 0;
807
808 /*
809 * solock() provides atomicity of access. splsoftnet() prevents
810 * protocol processing soft interrupts from interrupting us and
811 * blocking (expensive).
812 */
813 s = splsoftnet();
814 solock(so);
815 atomic = sosendallatonce(so) || top;
816 if (uio)
817 resid = uio->uio_resid;
818 else
819 resid = top->m_pkthdr.len;
820 /*
821 * In theory resid should be unsigned.
822 * However, space must be signed, as it might be less than 0
823 * if we over-committed, and we must use a signed comparison
824 * of space and resid. On the other hand, a negative resid
825 * causes us to loop sending 0-length segments to the protocol.
826 */
827 if (resid < 0) {
828 error = EINVAL;
829 goto out;
830 }
831 dontroute =
832 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
833 (so->so_proto->pr_flags & PR_ATOMIC);
834 l->l_ru.ru_msgsnd++;
835 if (control)
836 clen = control->m_len;
837 restart:
838 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
839 goto out;
840 do {
841 if (so->so_state & SS_CANTSENDMORE) {
842 error = EPIPE;
843 goto release;
844 }
845 if (so->so_error) {
846 error = so->so_error;
847 so->so_error = 0;
848 goto release;
849 }
850 if ((so->so_state & SS_ISCONNECTED) == 0) {
851 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
852 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
853 !(resid == 0 && clen != 0)) {
854 error = ENOTCONN;
855 goto release;
856 }
857 } else if (addr == 0) {
858 error = EDESTADDRREQ;
859 goto release;
860 }
861 }
862 space = sbspace(&so->so_snd);
863 if (flags & MSG_OOB)
864 space += 1024;
865 if ((atomic && resid > so->so_snd.sb_hiwat) ||
866 clen > so->so_snd.sb_hiwat) {
867 error = EMSGSIZE;
868 goto release;
869 }
870 if (space < resid + clen &&
871 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
872 if (so->so_nbio) {
873 error = EWOULDBLOCK;
874 goto release;
875 }
876 sbunlock(&so->so_snd);
877 error = sbwait(&so->so_snd);
878 if (error)
879 goto out;
880 goto restart;
881 }
882 mp = ⊤
883 space -= clen;
884 do {
885 if (uio == NULL) {
886 /*
887 * Data is prepackaged in "top".
888 */
889 resid = 0;
890 if (flags & MSG_EOR)
891 top->m_flags |= M_EOR;
892 } else do {
893 sounlock(so);
894 splx(s);
895 if (top == NULL) {
896 m = m_gethdr(M_WAIT, MT_DATA);
897 mlen = MHLEN;
898 m->m_pkthdr.len = 0;
899 m->m_pkthdr.rcvif = NULL;
900 } else {
901 m = m_get(M_WAIT, MT_DATA);
902 mlen = MLEN;
903 }
904 MCLAIM(m, so->so_snd.sb_mowner);
905 if (sock_loan_thresh >= 0 &&
906 uio->uio_iov->iov_len >= sock_loan_thresh &&
907 space >= sock_loan_thresh &&
908 (len = sosend_loan(so, uio, m,
909 space)) != 0) {
910 SOSEND_COUNTER_INCR(&sosend_loan_big);
911 space -= len;
912 goto have_data;
913 }
914 if (resid >= MINCLSIZE && space >= MCLBYTES) {
915 SOSEND_COUNTER_INCR(&sosend_copy_big);
916 m_clget(m, M_WAIT);
917 if ((m->m_flags & M_EXT) == 0)
918 goto nopages;
919 mlen = MCLBYTES;
920 if (atomic && top == 0) {
921 len = lmin(MCLBYTES - max_hdr,
922 resid);
923 m->m_data += max_hdr;
924 } else
925 len = lmin(MCLBYTES, resid);
926 space -= len;
927 } else {
928 nopages:
929 SOSEND_COUNTER_INCR(&sosend_copy_small);
930 len = lmin(lmin(mlen, resid), space);
931 space -= len;
932 /*
933 * For datagram protocols, leave room
934 * for protocol headers in first mbuf.
935 */
936 if (atomic && top == 0 && len < mlen)
937 MH_ALIGN(m, len);
938 }
939 error = uiomove(mtod(m, void *), (int)len, uio);
940 have_data:
941 resid = uio->uio_resid;
942 m->m_len = len;
943 *mp = m;
944 top->m_pkthdr.len += len;
945 s = splsoftnet();
946 solock(so);
947 if (error != 0)
948 goto release;
949 mp = &m->m_next;
950 if (resid <= 0) {
951 if (flags & MSG_EOR)
952 top->m_flags |= M_EOR;
953 break;
954 }
955 } while (space > 0 && atomic);
956
957 if (so->so_state & SS_CANTSENDMORE) {
958 error = EPIPE;
959 goto release;
960 }
961 if (dontroute)
962 so->so_options |= SO_DONTROUTE;
963 if (resid > 0)
964 so->so_state |= SS_MORETOCOME;
965 error = (*so->so_proto->pr_usrreq)(so,
966 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
967 top, addr, control, curlwp);
968 if (dontroute)
969 so->so_options &= ~SO_DONTROUTE;
970 if (resid > 0)
971 so->so_state &= ~SS_MORETOCOME;
972 clen = 0;
973 control = NULL;
974 top = NULL;
975 mp = ⊤
976 if (error != 0)
977 goto release;
978 } while (resid && space > 0);
979 } while (resid);
980
981 release:
982 sbunlock(&so->so_snd);
983 out:
984 sounlock(so);
985 splx(s);
986 if (top)
987 m_freem(top);
988 if (control)
989 m_freem(control);
990 return (error);
991 }
992
993 /*
994 * Following replacement or removal of the first mbuf on the first
995 * mbuf chain of a socket buffer, push necessary state changes back
996 * into the socket buffer so that other consumers see the values
997 * consistently. 'nextrecord' is the callers locally stored value of
998 * the original value of sb->sb_mb->m_nextpkt which must be restored
999 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1000 */
1001 static void
1002 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1003 {
1004
1005 KASSERT(solocked(sb->sb_so));
1006
1007 /*
1008 * First, update for the new value of nextrecord. If necessary,
1009 * make it the first record.
1010 */
1011 if (sb->sb_mb != NULL)
1012 sb->sb_mb->m_nextpkt = nextrecord;
1013 else
1014 sb->sb_mb = nextrecord;
1015
1016 /*
1017 * Now update any dependent socket buffer fields to reflect
1018 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1019 * the addition of a second clause that takes care of the
1020 * case where sb_mb has been updated, but remains the last
1021 * record.
1022 */
1023 if (sb->sb_mb == NULL) {
1024 sb->sb_mbtail = NULL;
1025 sb->sb_lastrecord = NULL;
1026 } else if (sb->sb_mb->m_nextpkt == NULL)
1027 sb->sb_lastrecord = sb->sb_mb;
1028 }
1029
1030 /*
1031 * Implement receive operations on a socket.
1032 * We depend on the way that records are added to the sockbuf
1033 * by sbappend*. In particular, each record (mbufs linked through m_next)
1034 * must begin with an address if the protocol so specifies,
1035 * followed by an optional mbuf or mbufs containing ancillary data,
1036 * and then zero or more mbufs of data.
1037 * In order to avoid blocking network interrupts for the entire time here,
1038 * we splx() while doing the actual copy to user space.
1039 * Although the sockbuf is locked, new data may still be appended,
1040 * and thus we must maintain consistency of the sockbuf during that time.
1041 *
1042 * The caller may receive the data as a single mbuf chain by supplying
1043 * an mbuf **mp0 for use in returning the chain. The uio is then used
1044 * only for the count in uio_resid.
1045 */
1046 int
1047 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1048 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1049 {
1050 struct lwp *l = curlwp;
1051 struct mbuf *m, **mp, *mt;
1052 int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1053 const struct protosw *pr;
1054 struct mbuf *nextrecord;
1055 int mbuf_removed = 0;
1056 const struct domain *dom;
1057
1058 pr = so->so_proto;
1059 atomic = pr->pr_flags & PR_ATOMIC;
1060 dom = pr->pr_domain;
1061 mp = mp0;
1062 type = 0;
1063 orig_resid = uio->uio_resid;
1064
1065 if (paddr != NULL)
1066 *paddr = NULL;
1067 if (controlp != NULL)
1068 *controlp = NULL;
1069 if (flagsp != NULL)
1070 flags = *flagsp &~ MSG_EOR;
1071 else
1072 flags = 0;
1073
1074 if (flags & MSG_OOB) {
1075 m = m_get(M_WAIT, MT_DATA);
1076 solock(so);
1077 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1078 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1079 sounlock(so);
1080 if (error)
1081 goto bad;
1082 do {
1083 error = uiomove(mtod(m, void *),
1084 (int) min(uio->uio_resid, m->m_len), uio);
1085 m = m_free(m);
1086 } while (uio->uio_resid > 0 && error == 0 && m);
1087 bad:
1088 if (m != NULL)
1089 m_freem(m);
1090 return error;
1091 }
1092 if (mp != NULL)
1093 *mp = NULL;
1094
1095 /*
1096 * solock() provides atomicity of access. splsoftnet() prevents
1097 * protocol processing soft interrupts from interrupting us and
1098 * blocking (expensive).
1099 */
1100 s = splsoftnet();
1101 solock(so);
1102 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1103 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1104
1105 restart:
1106 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1107 sounlock(so);
1108 splx(s);
1109 return error;
1110 }
1111
1112 m = so->so_rcv.sb_mb;
1113 /*
1114 * If we have less data than requested, block awaiting more
1115 * (subject to any timeout) if:
1116 * 1. the current count is less than the low water mark,
1117 * 2. MSG_WAITALL is set, and it is possible to do the entire
1118 * receive operation at once if we block (resid <= hiwat), or
1119 * 3. MSG_DONTWAIT is not set.
1120 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1121 * we have to do the receive in sections, and thus risk returning
1122 * a short count if a timeout or signal occurs after we start.
1123 */
1124 if (m == NULL ||
1125 ((flags & MSG_DONTWAIT) == 0 &&
1126 so->so_rcv.sb_cc < uio->uio_resid &&
1127 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1128 ((flags & MSG_WAITALL) &&
1129 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1130 m->m_nextpkt == NULL && !atomic)) {
1131 #ifdef DIAGNOSTIC
1132 if (m == NULL && so->so_rcv.sb_cc)
1133 panic("receive 1");
1134 #endif
1135 if (so->so_error) {
1136 if (m != NULL)
1137 goto dontblock;
1138 error = so->so_error;
1139 if ((flags & MSG_PEEK) == 0)
1140 so->so_error = 0;
1141 goto release;
1142 }
1143 if (so->so_state & SS_CANTRCVMORE) {
1144 if (m != NULL)
1145 goto dontblock;
1146 else
1147 goto release;
1148 }
1149 for (; m != NULL; m = m->m_next)
1150 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1151 m = so->so_rcv.sb_mb;
1152 goto dontblock;
1153 }
1154 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1155 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1156 error = ENOTCONN;
1157 goto release;
1158 }
1159 if (uio->uio_resid == 0)
1160 goto release;
1161 if (so->so_nbio || (flags & MSG_DONTWAIT)) {
1162 error = EWOULDBLOCK;
1163 goto release;
1164 }
1165 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1166 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1167 sbunlock(&so->so_rcv);
1168 error = sbwait(&so->so_rcv);
1169 if (error != 0) {
1170 sounlock(so);
1171 splx(s);
1172 return error;
1173 }
1174 goto restart;
1175 }
1176 dontblock:
1177 /*
1178 * On entry here, m points to the first record of the socket buffer.
1179 * From this point onward, we maintain 'nextrecord' as a cache of the
1180 * pointer to the next record in the socket buffer. We must keep the
1181 * various socket buffer pointers and local stack versions of the
1182 * pointers in sync, pushing out modifications before dropping the
1183 * socket lock, and re-reading them when picking it up.
1184 *
1185 * Otherwise, we will race with the network stack appending new data
1186 * or records onto the socket buffer by using inconsistent/stale
1187 * versions of the field, possibly resulting in socket buffer
1188 * corruption.
1189 *
1190 * By holding the high-level sblock(), we prevent simultaneous
1191 * readers from pulling off the front of the socket buffer.
1192 */
1193 if (l != NULL)
1194 l->l_ru.ru_msgrcv++;
1195 KASSERT(m == so->so_rcv.sb_mb);
1196 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1197 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1198 nextrecord = m->m_nextpkt;
1199 if (pr->pr_flags & PR_ADDR) {
1200 #ifdef DIAGNOSTIC
1201 if (m->m_type != MT_SONAME)
1202 panic("receive 1a");
1203 #endif
1204 orig_resid = 0;
1205 if (flags & MSG_PEEK) {
1206 if (paddr)
1207 *paddr = m_copy(m, 0, m->m_len);
1208 m = m->m_next;
1209 } else {
1210 sbfree(&so->so_rcv, m);
1211 mbuf_removed = 1;
1212 if (paddr != NULL) {
1213 *paddr = m;
1214 so->so_rcv.sb_mb = m->m_next;
1215 m->m_next = NULL;
1216 m = so->so_rcv.sb_mb;
1217 } else {
1218 MFREE(m, so->so_rcv.sb_mb);
1219 m = so->so_rcv.sb_mb;
1220 }
1221 sbsync(&so->so_rcv, nextrecord);
1222 }
1223 }
1224
1225 /*
1226 * Process one or more MT_CONTROL mbufs present before any data mbufs
1227 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1228 * just copy the data; if !MSG_PEEK, we call into the protocol to
1229 * perform externalization (or freeing if controlp == NULL).
1230 */
1231 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1232 struct mbuf *cm = NULL, *cmn;
1233 struct mbuf **cme = &cm;
1234
1235 do {
1236 if (flags & MSG_PEEK) {
1237 if (controlp != NULL) {
1238 *controlp = m_copy(m, 0, m->m_len);
1239 controlp = &(*controlp)->m_next;
1240 }
1241 m = m->m_next;
1242 } else {
1243 sbfree(&so->so_rcv, m);
1244 so->so_rcv.sb_mb = m->m_next;
1245 m->m_next = NULL;
1246 *cme = m;
1247 cme = &(*cme)->m_next;
1248 m = so->so_rcv.sb_mb;
1249 }
1250 } while (m != NULL && m->m_type == MT_CONTROL);
1251 if ((flags & MSG_PEEK) == 0)
1252 sbsync(&so->so_rcv, nextrecord);
1253 for (; cm != NULL; cm = cmn) {
1254 cmn = cm->m_next;
1255 cm->m_next = NULL;
1256 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1257 if (controlp != NULL) {
1258 if (dom->dom_externalize != NULL &&
1259 type == SCM_RIGHTS) {
1260 sounlock(so);
1261 splx(s);
1262 error = (*dom->dom_externalize)(cm, l);
1263 s = splsoftnet();
1264 solock(so);
1265 }
1266 *controlp = cm;
1267 while (*controlp != NULL)
1268 controlp = &(*controlp)->m_next;
1269 } else {
1270 /*
1271 * Dispose of any SCM_RIGHTS message that went
1272 * through the read path rather than recv.
1273 */
1274 if (dom->dom_dispose != NULL &&
1275 type == SCM_RIGHTS) {
1276 sounlock(so);
1277 (*dom->dom_dispose)(cm);
1278 solock(so);
1279 }
1280 m_freem(cm);
1281 }
1282 }
1283 if (m != NULL)
1284 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1285 else
1286 nextrecord = so->so_rcv.sb_mb;
1287 orig_resid = 0;
1288 }
1289
1290 /* If m is non-NULL, we have some data to read. */
1291 if (__predict_true(m != NULL)) {
1292 type = m->m_type;
1293 if (type == MT_OOBDATA)
1294 flags |= MSG_OOB;
1295 }
1296 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1297 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1298
1299 moff = 0;
1300 offset = 0;
1301 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1302 if (m->m_type == MT_OOBDATA) {
1303 if (type != MT_OOBDATA)
1304 break;
1305 } else if (type == MT_OOBDATA)
1306 break;
1307 #ifdef DIAGNOSTIC
1308 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1309 panic("receive 3");
1310 #endif
1311 so->so_state &= ~SS_RCVATMARK;
1312 len = uio->uio_resid;
1313 if (so->so_oobmark && len > so->so_oobmark - offset)
1314 len = so->so_oobmark - offset;
1315 if (len > m->m_len - moff)
1316 len = m->m_len - moff;
1317 /*
1318 * If mp is set, just pass back the mbufs.
1319 * Otherwise copy them out via the uio, then free.
1320 * Sockbuf must be consistent here (points to current mbuf,
1321 * it points to next record) when we drop priority;
1322 * we must note any additions to the sockbuf when we
1323 * block interrupts again.
1324 */
1325 if (mp == NULL) {
1326 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1327 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1328 sounlock(so);
1329 splx(s);
1330 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1331 s = splsoftnet();
1332 solock(so);
1333 if (error != 0) {
1334 /*
1335 * If any part of the record has been removed
1336 * (such as the MT_SONAME mbuf, which will
1337 * happen when PR_ADDR, and thus also
1338 * PR_ATOMIC, is set), then drop the entire
1339 * record to maintain the atomicity of the
1340 * receive operation.
1341 *
1342 * This avoids a later panic("receive 1a")
1343 * when compiled with DIAGNOSTIC.
1344 */
1345 if (m && mbuf_removed && atomic)
1346 (void) sbdroprecord(&so->so_rcv);
1347
1348 goto release;
1349 }
1350 } else
1351 uio->uio_resid -= len;
1352 if (len == m->m_len - moff) {
1353 if (m->m_flags & M_EOR)
1354 flags |= MSG_EOR;
1355 if (flags & MSG_PEEK) {
1356 m = m->m_next;
1357 moff = 0;
1358 } else {
1359 nextrecord = m->m_nextpkt;
1360 sbfree(&so->so_rcv, m);
1361 if (mp) {
1362 *mp = m;
1363 mp = &m->m_next;
1364 so->so_rcv.sb_mb = m = m->m_next;
1365 *mp = NULL;
1366 } else {
1367 MFREE(m, so->so_rcv.sb_mb);
1368 m = so->so_rcv.sb_mb;
1369 }
1370 /*
1371 * If m != NULL, we also know that
1372 * so->so_rcv.sb_mb != NULL.
1373 */
1374 KASSERT(so->so_rcv.sb_mb == m);
1375 if (m) {
1376 m->m_nextpkt = nextrecord;
1377 if (nextrecord == NULL)
1378 so->so_rcv.sb_lastrecord = m;
1379 } else {
1380 so->so_rcv.sb_mb = nextrecord;
1381 SB_EMPTY_FIXUP(&so->so_rcv);
1382 }
1383 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1384 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1385 }
1386 } else if (flags & MSG_PEEK)
1387 moff += len;
1388 else {
1389 if (mp != NULL) {
1390 mt = m_copym(m, 0, len, M_NOWAIT);
1391 if (__predict_false(mt == NULL)) {
1392 sounlock(so);
1393 mt = m_copym(m, 0, len, M_WAIT);
1394 solock(so);
1395 }
1396 *mp = mt;
1397 }
1398 m->m_data += len;
1399 m->m_len -= len;
1400 so->so_rcv.sb_cc -= len;
1401 }
1402 if (so->so_oobmark) {
1403 if ((flags & MSG_PEEK) == 0) {
1404 so->so_oobmark -= len;
1405 if (so->so_oobmark == 0) {
1406 so->so_state |= SS_RCVATMARK;
1407 break;
1408 }
1409 } else {
1410 offset += len;
1411 if (offset == so->so_oobmark)
1412 break;
1413 }
1414 }
1415 if (flags & MSG_EOR)
1416 break;
1417 /*
1418 * If the MSG_WAITALL flag is set (for non-atomic socket),
1419 * we must not quit until "uio->uio_resid == 0" or an error
1420 * termination. If a signal/timeout occurs, return
1421 * with a short count but without error.
1422 * Keep sockbuf locked against other readers.
1423 */
1424 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1425 !sosendallatonce(so) && !nextrecord) {
1426 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1427 break;
1428 /*
1429 * If we are peeking and the socket receive buffer is
1430 * full, stop since we can't get more data to peek at.
1431 */
1432 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1433 break;
1434 /*
1435 * If we've drained the socket buffer, tell the
1436 * protocol in case it needs to do something to
1437 * get it filled again.
1438 */
1439 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1440 (*pr->pr_usrreq)(so, PRU_RCVD,
1441 NULL, (struct mbuf *)(long)flags, NULL, l);
1442 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1443 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1444 error = sbwait(&so->so_rcv);
1445 if (error != 0) {
1446 sbunlock(&so->so_rcv);
1447 sounlock(so);
1448 splx(s);
1449 return 0;
1450 }
1451 if ((m = so->so_rcv.sb_mb) != NULL)
1452 nextrecord = m->m_nextpkt;
1453 }
1454 }
1455
1456 if (m && atomic) {
1457 flags |= MSG_TRUNC;
1458 if ((flags & MSG_PEEK) == 0)
1459 (void) sbdroprecord(&so->so_rcv);
1460 }
1461 if ((flags & MSG_PEEK) == 0) {
1462 if (m == NULL) {
1463 /*
1464 * First part is an inline SB_EMPTY_FIXUP(). Second
1465 * part makes sure sb_lastrecord is up-to-date if
1466 * there is still data in the socket buffer.
1467 */
1468 so->so_rcv.sb_mb = nextrecord;
1469 if (so->so_rcv.sb_mb == NULL) {
1470 so->so_rcv.sb_mbtail = NULL;
1471 so->so_rcv.sb_lastrecord = NULL;
1472 } else if (nextrecord->m_nextpkt == NULL)
1473 so->so_rcv.sb_lastrecord = nextrecord;
1474 }
1475 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1476 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1477 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1478 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1479 (struct mbuf *)(long)flags, NULL, l);
1480 }
1481 if (orig_resid == uio->uio_resid && orig_resid &&
1482 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1483 sbunlock(&so->so_rcv);
1484 goto restart;
1485 }
1486
1487 if (flagsp != NULL)
1488 *flagsp |= flags;
1489 release:
1490 sbunlock(&so->so_rcv);
1491 sounlock(so);
1492 splx(s);
1493 return error;
1494 }
1495
1496 int
1497 soshutdown(struct socket *so, int how)
1498 {
1499 const struct protosw *pr;
1500 int error;
1501
1502 KASSERT(solocked(so));
1503
1504 pr = so->so_proto;
1505 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1506 return (EINVAL);
1507
1508 if (how == SHUT_RD || how == SHUT_RDWR) {
1509 sorflush(so);
1510 error = 0;
1511 }
1512 if (how == SHUT_WR || how == SHUT_RDWR)
1513 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1514 NULL, NULL, NULL);
1515
1516 return error;
1517 }
1518
1519 int
1520 sodrain(struct socket *so)
1521 {
1522 int error;
1523
1524 solock(so);
1525 so->so_state |= SS_ISDRAINING;
1526 cv_broadcast(&so->so_cv);
1527 error = soshutdown(so, SHUT_RDWR);
1528 sounlock(so);
1529
1530 return error;
1531 }
1532
1533 void
1534 sorflush(struct socket *so)
1535 {
1536 struct sockbuf *sb, asb;
1537 const struct protosw *pr;
1538
1539 KASSERT(solocked(so));
1540
1541 sb = &so->so_rcv;
1542 pr = so->so_proto;
1543 socantrcvmore(so);
1544 sb->sb_flags |= SB_NOINTR;
1545 (void )sblock(sb, M_WAITOK);
1546 sbunlock(sb);
1547 asb = *sb;
1548 /*
1549 * Clear most of the sockbuf structure, but leave some of the
1550 * fields valid.
1551 */
1552 memset(&sb->sb_startzero, 0,
1553 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1554 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1555 sounlock(so);
1556 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1557 solock(so);
1558 }
1559 sbrelease(&asb, so);
1560 }
1561
1562 /*
1563 * internal set SOL_SOCKET options
1564 */
1565 static int
1566 sosetopt1(struct socket *so, const struct sockopt *sopt)
1567 {
1568 int error, optval;
1569 struct linger l;
1570 struct timeval tv;
1571
1572 switch (sopt->sopt_name) {
1573
1574 case SO_ACCEPTFILTER:
1575 error = accept_filt_setopt(so, sopt);
1576 KASSERT(solocked(so));
1577 break;
1578
1579 case SO_LINGER:
1580 error = sockopt_get(sopt, &l, sizeof(l));
1581 solock(so);
1582 if (error)
1583 break;
1584 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1585 l.l_linger > (INT_MAX / hz)) {
1586 error = EDOM;
1587 break;
1588 }
1589 so->so_linger = l.l_linger;
1590 if (l.l_onoff)
1591 so->so_options |= SO_LINGER;
1592 else
1593 so->so_options &= ~SO_LINGER;
1594 break;
1595
1596 case SO_DEBUG:
1597 case SO_KEEPALIVE:
1598 case SO_DONTROUTE:
1599 case SO_USELOOPBACK:
1600 case SO_BROADCAST:
1601 case SO_REUSEADDR:
1602 case SO_REUSEPORT:
1603 case SO_OOBINLINE:
1604 case SO_TIMESTAMP:
1605 error = sockopt_getint(sopt, &optval);
1606 solock(so);
1607 if (error)
1608 break;
1609 if (optval)
1610 so->so_options |= sopt->sopt_name;
1611 else
1612 so->so_options &= ~sopt->sopt_name;
1613 break;
1614
1615 case SO_SNDBUF:
1616 case SO_RCVBUF:
1617 case SO_SNDLOWAT:
1618 case SO_RCVLOWAT:
1619 error = sockopt_getint(sopt, &optval);
1620 solock(so);
1621 if (error)
1622 break;
1623
1624 /*
1625 * Values < 1 make no sense for any of these
1626 * options, so disallow them.
1627 */
1628 if (optval < 1) {
1629 error = EINVAL;
1630 break;
1631 }
1632
1633 switch (sopt->sopt_name) {
1634 case SO_SNDBUF:
1635 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1636 error = ENOBUFS;
1637 break;
1638 }
1639 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1640 break;
1641
1642 case SO_RCVBUF:
1643 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1644 error = ENOBUFS;
1645 break;
1646 }
1647 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1648 break;
1649
1650 /*
1651 * Make sure the low-water is never greater than
1652 * the high-water.
1653 */
1654 case SO_SNDLOWAT:
1655 if (optval > so->so_snd.sb_hiwat)
1656 optval = so->so_snd.sb_hiwat;
1657
1658 so->so_snd.sb_lowat = optval;
1659 break;
1660
1661 case SO_RCVLOWAT:
1662 if (optval > so->so_rcv.sb_hiwat)
1663 optval = so->so_rcv.sb_hiwat;
1664
1665 so->so_rcv.sb_lowat = optval;
1666 break;
1667 }
1668 break;
1669
1670 case SO_SNDTIMEO:
1671 case SO_RCVTIMEO:
1672 error = sockopt_get(sopt, &tv, sizeof(tv));
1673 solock(so);
1674 if (error)
1675 break;
1676
1677 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1678 error = EDOM;
1679 break;
1680 }
1681
1682 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1683 if (optval == 0 && tv.tv_usec != 0)
1684 optval = 1;
1685
1686 switch (sopt->sopt_name) {
1687 case SO_SNDTIMEO:
1688 so->so_snd.sb_timeo = optval;
1689 break;
1690 case SO_RCVTIMEO:
1691 so->so_rcv.sb_timeo = optval;
1692 break;
1693 }
1694 break;
1695
1696 default:
1697 solock(so);
1698 error = ENOPROTOOPT;
1699 break;
1700 }
1701 KASSERT(solocked(so));
1702 return error;
1703 }
1704
1705 int
1706 sosetopt(struct socket *so, struct sockopt *sopt)
1707 {
1708 int error, prerr;
1709
1710 if (sopt->sopt_level == SOL_SOCKET) {
1711 error = sosetopt1(so, sopt);
1712 KASSERT(solocked(so));
1713 } else {
1714 error = ENOPROTOOPT;
1715 solock(so);
1716 }
1717
1718 if ((error == 0 || error == ENOPROTOOPT) &&
1719 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1720 /* give the protocol stack a shot */
1721 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1722 if (prerr == 0)
1723 error = 0;
1724 else if (prerr != ENOPROTOOPT)
1725 error = prerr;
1726 }
1727 sounlock(so);
1728 return error;
1729 }
1730
1731 /*
1732 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1733 */
1734 int
1735 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1736 const void *val, size_t valsize)
1737 {
1738 struct sockopt sopt;
1739 int error;
1740
1741 KASSERT(valsize == 0 || val != NULL);
1742
1743 sockopt_init(&sopt, level, name, valsize);
1744 sockopt_set(&sopt, val, valsize);
1745
1746 error = sosetopt(so, &sopt);
1747
1748 sockopt_destroy(&sopt);
1749
1750 return error;
1751 }
1752
1753 /*
1754 * internal get SOL_SOCKET options
1755 */
1756 static int
1757 sogetopt1(struct socket *so, struct sockopt *sopt)
1758 {
1759 int error, optval;
1760 struct linger l;
1761 struct timeval tv;
1762
1763 switch (sopt->sopt_name) {
1764
1765 case SO_ACCEPTFILTER:
1766 error = accept_filt_getopt(so, sopt);
1767 break;
1768
1769 case SO_LINGER:
1770 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1771 l.l_linger = so->so_linger;
1772
1773 error = sockopt_set(sopt, &l, sizeof(l));
1774 break;
1775
1776 case SO_USELOOPBACK:
1777 case SO_DONTROUTE:
1778 case SO_DEBUG:
1779 case SO_KEEPALIVE:
1780 case SO_REUSEADDR:
1781 case SO_REUSEPORT:
1782 case SO_BROADCAST:
1783 case SO_OOBINLINE:
1784 case SO_TIMESTAMP:
1785 error = sockopt_setint(sopt,
1786 (so->so_options & sopt->sopt_name) ? 1 : 0);
1787 break;
1788
1789 case SO_TYPE:
1790 error = sockopt_setint(sopt, so->so_type);
1791 break;
1792
1793 case SO_ERROR:
1794 error = sockopt_setint(sopt, so->so_error);
1795 so->so_error = 0;
1796 break;
1797
1798 case SO_SNDBUF:
1799 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1800 break;
1801
1802 case SO_RCVBUF:
1803 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1804 break;
1805
1806 case SO_SNDLOWAT:
1807 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1808 break;
1809
1810 case SO_RCVLOWAT:
1811 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1812 break;
1813
1814 case SO_SNDTIMEO:
1815 case SO_RCVTIMEO:
1816 optval = (sopt->sopt_name == SO_SNDTIMEO ?
1817 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1818
1819 tv.tv_sec = optval / hz;
1820 tv.tv_usec = (optval % hz) * tick;
1821
1822 error = sockopt_set(sopt, &tv, sizeof(tv));
1823 break;
1824
1825 case SO_OVERFLOWED:
1826 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1827 break;
1828
1829 default:
1830 error = ENOPROTOOPT;
1831 break;
1832 }
1833
1834 return (error);
1835 }
1836
1837 int
1838 sogetopt(struct socket *so, struct sockopt *sopt)
1839 {
1840 int error;
1841
1842 solock(so);
1843 if (sopt->sopt_level != SOL_SOCKET) {
1844 if (so->so_proto && so->so_proto->pr_ctloutput) {
1845 error = ((*so->so_proto->pr_ctloutput)
1846 (PRCO_GETOPT, so, sopt));
1847 } else
1848 error = (ENOPROTOOPT);
1849 } else {
1850 error = sogetopt1(so, sopt);
1851 }
1852 sounlock(so);
1853 return (error);
1854 }
1855
1856 /*
1857 * alloc sockopt data buffer buffer
1858 * - will be released at destroy
1859 */
1860 static int
1861 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
1862 {
1863
1864 KASSERT(sopt->sopt_size == 0);
1865
1866 if (len > sizeof(sopt->sopt_buf)) {
1867 sopt->sopt_data = kmem_zalloc(len, kmflag);
1868 if (sopt->sopt_data == NULL)
1869 return ENOMEM;
1870 } else
1871 sopt->sopt_data = sopt->sopt_buf;
1872
1873 sopt->sopt_size = len;
1874 return 0;
1875 }
1876
1877 /*
1878 * initialise sockopt storage
1879 * - MAY sleep during allocation
1880 */
1881 void
1882 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
1883 {
1884
1885 memset(sopt, 0, sizeof(*sopt));
1886
1887 sopt->sopt_level = level;
1888 sopt->sopt_name = name;
1889 (void)sockopt_alloc(sopt, size, KM_SLEEP);
1890 }
1891
1892 /*
1893 * destroy sockopt storage
1894 * - will release any held memory references
1895 */
1896 void
1897 sockopt_destroy(struct sockopt *sopt)
1898 {
1899
1900 if (sopt->sopt_data != sopt->sopt_buf)
1901 kmem_free(sopt->sopt_data, sopt->sopt_size);
1902
1903 memset(sopt, 0, sizeof(*sopt));
1904 }
1905
1906 /*
1907 * set sockopt value
1908 * - value is copied into sockopt
1909 * - memory is allocated when necessary, will not sleep
1910 */
1911 int
1912 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
1913 {
1914 int error;
1915
1916 if (sopt->sopt_size == 0) {
1917 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
1918 if (error)
1919 return error;
1920 }
1921
1922 KASSERT(sopt->sopt_size == len);
1923 memcpy(sopt->sopt_data, buf, len);
1924 return 0;
1925 }
1926
1927 /*
1928 * common case of set sockopt integer value
1929 */
1930 int
1931 sockopt_setint(struct sockopt *sopt, int val)
1932 {
1933
1934 return sockopt_set(sopt, &val, sizeof(int));
1935 }
1936
1937 /*
1938 * get sockopt value
1939 * - correct size must be given
1940 */
1941 int
1942 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
1943 {
1944
1945 if (sopt->sopt_size != len)
1946 return EINVAL;
1947
1948 memcpy(buf, sopt->sopt_data, len);
1949 return 0;
1950 }
1951
1952 /*
1953 * common case of get sockopt integer value
1954 */
1955 int
1956 sockopt_getint(const struct sockopt *sopt, int *valp)
1957 {
1958
1959 return sockopt_get(sopt, valp, sizeof(int));
1960 }
1961
1962 /*
1963 * set sockopt value from mbuf
1964 * - ONLY for legacy code
1965 * - mbuf is released by sockopt
1966 * - will not sleep
1967 */
1968 int
1969 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
1970 {
1971 size_t len;
1972 int error;
1973
1974 len = m_length(m);
1975
1976 if (sopt->sopt_size == 0) {
1977 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
1978 if (error)
1979 return error;
1980 }
1981
1982 KASSERT(sopt->sopt_size == len);
1983 m_copydata(m, 0, len, sopt->sopt_data);
1984 m_freem(m);
1985
1986 return 0;
1987 }
1988
1989 /*
1990 * get sockopt value into mbuf
1991 * - ONLY for legacy code
1992 * - mbuf to be released by the caller
1993 * - will not sleep
1994 */
1995 struct mbuf *
1996 sockopt_getmbuf(const struct sockopt *sopt)
1997 {
1998 struct mbuf *m;
1999
2000 if (sopt->sopt_size > MCLBYTES)
2001 return NULL;
2002
2003 m = m_get(M_DONTWAIT, MT_SOOPTS);
2004 if (m == NULL)
2005 return NULL;
2006
2007 if (sopt->sopt_size > MLEN) {
2008 MCLGET(m, M_DONTWAIT);
2009 if ((m->m_flags & M_EXT) == 0) {
2010 m_free(m);
2011 return NULL;
2012 }
2013 }
2014
2015 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2016 m->m_len = sopt->sopt_size;
2017
2018 return m;
2019 }
2020
2021 void
2022 sohasoutofband(struct socket *so)
2023 {
2024
2025 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2026 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2027 }
2028
2029 static void
2030 filt_sordetach(struct knote *kn)
2031 {
2032 struct socket *so;
2033
2034 so = ((file_t *)kn->kn_obj)->f_data;
2035 solock(so);
2036 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2037 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2038 so->so_rcv.sb_flags &= ~SB_KNOTE;
2039 sounlock(so);
2040 }
2041
2042 /*ARGSUSED*/
2043 static int
2044 filt_soread(struct knote *kn, long hint)
2045 {
2046 struct socket *so;
2047 int rv;
2048
2049 so = ((file_t *)kn->kn_obj)->f_data;
2050 if (hint != NOTE_SUBMIT)
2051 solock(so);
2052 kn->kn_data = so->so_rcv.sb_cc;
2053 if (so->so_state & SS_CANTRCVMORE) {
2054 kn->kn_flags |= EV_EOF;
2055 kn->kn_fflags = so->so_error;
2056 rv = 1;
2057 } else if (so->so_error) /* temporary udp error */
2058 rv = 1;
2059 else if (kn->kn_sfflags & NOTE_LOWAT)
2060 rv = (kn->kn_data >= kn->kn_sdata);
2061 else
2062 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2063 if (hint != NOTE_SUBMIT)
2064 sounlock(so);
2065 return rv;
2066 }
2067
2068 static void
2069 filt_sowdetach(struct knote *kn)
2070 {
2071 struct socket *so;
2072
2073 so = ((file_t *)kn->kn_obj)->f_data;
2074 solock(so);
2075 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2076 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2077 so->so_snd.sb_flags &= ~SB_KNOTE;
2078 sounlock(so);
2079 }
2080
2081 /*ARGSUSED*/
2082 static int
2083 filt_sowrite(struct knote *kn, long hint)
2084 {
2085 struct socket *so;
2086 int rv;
2087
2088 so = ((file_t *)kn->kn_obj)->f_data;
2089 if (hint != NOTE_SUBMIT)
2090 solock(so);
2091 kn->kn_data = sbspace(&so->so_snd);
2092 if (so->so_state & SS_CANTSENDMORE) {
2093 kn->kn_flags |= EV_EOF;
2094 kn->kn_fflags = so->so_error;
2095 rv = 1;
2096 } else if (so->so_error) /* temporary udp error */
2097 rv = 1;
2098 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2099 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2100 rv = 0;
2101 else if (kn->kn_sfflags & NOTE_LOWAT)
2102 rv = (kn->kn_data >= kn->kn_sdata);
2103 else
2104 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2105 if (hint != NOTE_SUBMIT)
2106 sounlock(so);
2107 return rv;
2108 }
2109
2110 /*ARGSUSED*/
2111 static int
2112 filt_solisten(struct knote *kn, long hint)
2113 {
2114 struct socket *so;
2115 int rv;
2116
2117 so = ((file_t *)kn->kn_obj)->f_data;
2118
2119 /*
2120 * Set kn_data to number of incoming connections, not
2121 * counting partial (incomplete) connections.
2122 */
2123 if (hint != NOTE_SUBMIT)
2124 solock(so);
2125 kn->kn_data = so->so_qlen;
2126 rv = (kn->kn_data > 0);
2127 if (hint != NOTE_SUBMIT)
2128 sounlock(so);
2129 return rv;
2130 }
2131
2132 static const struct filterops solisten_filtops =
2133 { 1, NULL, filt_sordetach, filt_solisten };
2134 static const struct filterops soread_filtops =
2135 { 1, NULL, filt_sordetach, filt_soread };
2136 static const struct filterops sowrite_filtops =
2137 { 1, NULL, filt_sowdetach, filt_sowrite };
2138
2139 int
2140 soo_kqfilter(struct file *fp, struct knote *kn)
2141 {
2142 struct socket *so;
2143 struct sockbuf *sb;
2144
2145 so = ((file_t *)kn->kn_obj)->f_data;
2146 solock(so);
2147 switch (kn->kn_filter) {
2148 case EVFILT_READ:
2149 if (so->so_options & SO_ACCEPTCONN)
2150 kn->kn_fop = &solisten_filtops;
2151 else
2152 kn->kn_fop = &soread_filtops;
2153 sb = &so->so_rcv;
2154 break;
2155 case EVFILT_WRITE:
2156 kn->kn_fop = &sowrite_filtops;
2157 sb = &so->so_snd;
2158 break;
2159 default:
2160 sounlock(so);
2161 return (EINVAL);
2162 }
2163 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2164 sb->sb_flags |= SB_KNOTE;
2165 sounlock(so);
2166 return (0);
2167 }
2168
2169 static int
2170 sodopoll(struct socket *so, int events)
2171 {
2172 int revents;
2173
2174 revents = 0;
2175
2176 if (events & (POLLIN | POLLRDNORM))
2177 if (soreadable(so))
2178 revents |= events & (POLLIN | POLLRDNORM);
2179
2180 if (events & (POLLOUT | POLLWRNORM))
2181 if (sowritable(so))
2182 revents |= events & (POLLOUT | POLLWRNORM);
2183
2184 if (events & (POLLPRI | POLLRDBAND))
2185 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2186 revents |= events & (POLLPRI | POLLRDBAND);
2187
2188 return revents;
2189 }
2190
2191 int
2192 sopoll(struct socket *so, int events)
2193 {
2194 int revents = 0;
2195
2196 #ifndef DIAGNOSTIC
2197 /*
2198 * Do a quick, unlocked check in expectation that the socket
2199 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2200 * as the solocked() assertions will fail.
2201 */
2202 if ((revents = sodopoll(so, events)) != 0)
2203 return revents;
2204 #endif
2205
2206 solock(so);
2207 if ((revents = sodopoll(so, events)) == 0) {
2208 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2209 selrecord(curlwp, &so->so_rcv.sb_sel);
2210 so->so_rcv.sb_flags |= SB_NOTIFY;
2211 }
2212
2213 if (events & (POLLOUT | POLLWRNORM)) {
2214 selrecord(curlwp, &so->so_snd.sb_sel);
2215 so->so_snd.sb_flags |= SB_NOTIFY;
2216 }
2217 }
2218 sounlock(so);
2219
2220 return revents;
2221 }
2222
2223
2224 #include <sys/sysctl.h>
2225
2226 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2227
2228 /*
2229 * sysctl helper routine for kern.somaxkva. ensures that the given
2230 * value is not too small.
2231 * (XXX should we maybe make sure it's not too large as well?)
2232 */
2233 static int
2234 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2235 {
2236 int error, new_somaxkva;
2237 struct sysctlnode node;
2238
2239 new_somaxkva = somaxkva;
2240 node = *rnode;
2241 node.sysctl_data = &new_somaxkva;
2242 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2243 if (error || newp == NULL)
2244 return (error);
2245
2246 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2247 return (EINVAL);
2248
2249 mutex_enter(&so_pendfree_lock);
2250 somaxkva = new_somaxkva;
2251 cv_broadcast(&socurkva_cv);
2252 mutex_exit(&so_pendfree_lock);
2253
2254 return (error);
2255 }
2256
2257 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup")
2258 {
2259
2260 sysctl_createv(clog, 0, NULL, NULL,
2261 CTLFLAG_PERMANENT,
2262 CTLTYPE_NODE, "kern", NULL,
2263 NULL, 0, NULL, 0,
2264 CTL_KERN, CTL_EOL);
2265
2266 sysctl_createv(clog, 0, NULL, NULL,
2267 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2268 CTLTYPE_INT, "somaxkva",
2269 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2270 "used for socket buffers"),
2271 sysctl_kern_somaxkva, 0, NULL, 0,
2272 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2273 }
2274