uipc_socket.c revision 1.178 1 /* $NetBSD: uipc_socket.c,v 1.178 2008/12/07 20:58:46 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.178 2008/12/07 20:58:46 pooka Exp $");
67
68 #include "opt_sock_counters.h"
69 #include "opt_sosend_loan.h"
70 #include "opt_mbuftrace.h"
71 #include "opt_somaxkva.h"
72 #include "opt_multiprocessor.h" /* XXX */
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/proc.h>
77 #include <sys/file.h>
78 #include <sys/filedesc.h>
79 #include <sys/kmem.h>
80 #include <sys/mbuf.h>
81 #include <sys/domain.h>
82 #include <sys/kernel.h>
83 #include <sys/protosw.h>
84 #include <sys/socket.h>
85 #include <sys/socketvar.h>
86 #include <sys/signalvar.h>
87 #include <sys/resourcevar.h>
88 #include <sys/uidinfo.h>
89 #include <sys/event.h>
90 #include <sys/poll.h>
91 #include <sys/kauth.h>
92 #include <sys/mutex.h>
93 #include <sys/condvar.h>
94
95 #include <uvm/uvm.h>
96
97 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
98 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
99
100 extern const struct fileops socketops;
101
102 extern int somaxconn; /* patchable (XXX sysctl) */
103 int somaxconn = SOMAXCONN;
104 kmutex_t *softnet_lock;
105
106 #ifdef SOSEND_COUNTERS
107 #include <sys/device.h>
108
109 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
110 NULL, "sosend", "loan big");
111 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
112 NULL, "sosend", "copy big");
113 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
114 NULL, "sosend", "copy small");
115 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
116 NULL, "sosend", "kva limit");
117
118 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
119
120 EVCNT_ATTACH_STATIC(sosend_loan_big);
121 EVCNT_ATTACH_STATIC(sosend_copy_big);
122 EVCNT_ATTACH_STATIC(sosend_copy_small);
123 EVCNT_ATTACH_STATIC(sosend_kvalimit);
124 #else
125
126 #define SOSEND_COUNTER_INCR(ev) /* nothing */
127
128 #endif /* SOSEND_COUNTERS */
129
130 static struct callback_entry sokva_reclaimerentry;
131
132 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
133 int sock_loan_thresh = -1;
134 #else
135 int sock_loan_thresh = 4096;
136 #endif
137
138 static kmutex_t so_pendfree_lock;
139 static struct mbuf *so_pendfree;
140
141 #ifndef SOMAXKVA
142 #define SOMAXKVA (16 * 1024 * 1024)
143 #endif
144 int somaxkva = SOMAXKVA;
145 static int socurkva;
146 static kcondvar_t socurkva_cv;
147
148 #define SOCK_LOAN_CHUNK 65536
149
150 static size_t sodopendfree(void);
151 static size_t sodopendfreel(void);
152
153 static void sysctl_kern_somaxkva_setup(void);
154 static struct sysctllog *socket_sysctllog;
155
156 static vsize_t
157 sokvareserve(struct socket *so, vsize_t len)
158 {
159 int error;
160
161 mutex_enter(&so_pendfree_lock);
162 while (socurkva + len > somaxkva) {
163 size_t freed;
164
165 /*
166 * try to do pendfree.
167 */
168
169 freed = sodopendfreel();
170
171 /*
172 * if some kva was freed, try again.
173 */
174
175 if (freed)
176 continue;
177
178 SOSEND_COUNTER_INCR(&sosend_kvalimit);
179 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
180 if (error) {
181 len = 0;
182 break;
183 }
184 }
185 socurkva += len;
186 mutex_exit(&so_pendfree_lock);
187 return len;
188 }
189
190 static void
191 sokvaunreserve(vsize_t len)
192 {
193
194 mutex_enter(&so_pendfree_lock);
195 socurkva -= len;
196 cv_broadcast(&socurkva_cv);
197 mutex_exit(&so_pendfree_lock);
198 }
199
200 /*
201 * sokvaalloc: allocate kva for loan.
202 */
203
204 vaddr_t
205 sokvaalloc(vsize_t len, struct socket *so)
206 {
207 vaddr_t lva;
208
209 /*
210 * reserve kva.
211 */
212
213 if (sokvareserve(so, len) == 0)
214 return 0;
215
216 /*
217 * allocate kva.
218 */
219
220 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
221 if (lva == 0) {
222 sokvaunreserve(len);
223 return (0);
224 }
225
226 return lva;
227 }
228
229 /*
230 * sokvafree: free kva for loan.
231 */
232
233 void
234 sokvafree(vaddr_t sva, vsize_t len)
235 {
236
237 /*
238 * free kva.
239 */
240
241 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
242
243 /*
244 * unreserve kva.
245 */
246
247 sokvaunreserve(len);
248 }
249
250 static void
251 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
252 {
253 vaddr_t sva, eva;
254 vsize_t len;
255 int npgs;
256
257 KASSERT(pgs != NULL);
258
259 eva = round_page((vaddr_t) buf + size);
260 sva = trunc_page((vaddr_t) buf);
261 len = eva - sva;
262 npgs = len >> PAGE_SHIFT;
263
264 pmap_kremove(sva, len);
265 pmap_update(pmap_kernel());
266 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
267 sokvafree(sva, len);
268 }
269
270 static size_t
271 sodopendfree(void)
272 {
273 size_t rv;
274
275 if (__predict_true(so_pendfree == NULL))
276 return 0;
277
278 mutex_enter(&so_pendfree_lock);
279 rv = sodopendfreel();
280 mutex_exit(&so_pendfree_lock);
281
282 return rv;
283 }
284
285 /*
286 * sodopendfreel: free mbufs on "pendfree" list.
287 * unlock and relock so_pendfree_lock when freeing mbufs.
288 *
289 * => called with so_pendfree_lock held.
290 */
291
292 static size_t
293 sodopendfreel(void)
294 {
295 struct mbuf *m, *next;
296 size_t rv = 0;
297
298 KASSERT(mutex_owned(&so_pendfree_lock));
299
300 while (so_pendfree != NULL) {
301 m = so_pendfree;
302 so_pendfree = NULL;
303 mutex_exit(&so_pendfree_lock);
304
305 for (; m != NULL; m = next) {
306 next = m->m_next;
307 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
308 KASSERT(m->m_ext.ext_refcnt == 0);
309
310 rv += m->m_ext.ext_size;
311 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
312 m->m_ext.ext_size);
313 pool_cache_put(mb_cache, m);
314 }
315
316 mutex_enter(&so_pendfree_lock);
317 }
318
319 return (rv);
320 }
321
322 void
323 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
324 {
325
326 KASSERT(m != NULL);
327
328 /*
329 * postpone freeing mbuf.
330 *
331 * we can't do it in interrupt context
332 * because we need to put kva back to kernel_map.
333 */
334
335 mutex_enter(&so_pendfree_lock);
336 m->m_next = so_pendfree;
337 so_pendfree = m;
338 cv_broadcast(&socurkva_cv);
339 mutex_exit(&so_pendfree_lock);
340 }
341
342 static long
343 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
344 {
345 struct iovec *iov = uio->uio_iov;
346 vaddr_t sva, eva;
347 vsize_t len;
348 vaddr_t lva;
349 int npgs, error;
350 vaddr_t va;
351 int i;
352
353 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
354 return (0);
355
356 if (iov->iov_len < (size_t) space)
357 space = iov->iov_len;
358 if (space > SOCK_LOAN_CHUNK)
359 space = SOCK_LOAN_CHUNK;
360
361 eva = round_page((vaddr_t) iov->iov_base + space);
362 sva = trunc_page((vaddr_t) iov->iov_base);
363 len = eva - sva;
364 npgs = len >> PAGE_SHIFT;
365
366 KASSERT(npgs <= M_EXT_MAXPAGES);
367
368 lva = sokvaalloc(len, so);
369 if (lva == 0)
370 return 0;
371
372 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
373 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
374 if (error) {
375 sokvafree(lva, len);
376 return (0);
377 }
378
379 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
380 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
381 VM_PROT_READ);
382 pmap_update(pmap_kernel());
383
384 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
385
386 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
387 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
388
389 uio->uio_resid -= space;
390 /* uio_offset not updated, not set/used for write(2) */
391 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
392 uio->uio_iov->iov_len -= space;
393 if (uio->uio_iov->iov_len == 0) {
394 uio->uio_iov++;
395 uio->uio_iovcnt--;
396 }
397
398 return (space);
399 }
400
401 static int
402 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
403 {
404
405 KASSERT(ce == &sokva_reclaimerentry);
406 KASSERT(obj == NULL);
407
408 sodopendfree();
409 if (!vm_map_starved_p(kernel_map)) {
410 return CALLBACK_CHAIN_ABORT;
411 }
412 return CALLBACK_CHAIN_CONTINUE;
413 }
414
415 struct mbuf *
416 getsombuf(struct socket *so, int type)
417 {
418 struct mbuf *m;
419
420 m = m_get(M_WAIT, type);
421 MCLAIM(m, so->so_mowner);
422 return m;
423 }
424
425 void
426 soinit(void)
427 {
428
429 sysctl_kern_somaxkva_setup();
430
431 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
432 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
433 cv_init(&socurkva_cv, "sokva");
434 soinit2();
435
436 /* Set the initial adjusted socket buffer size. */
437 if (sb_max_set(sb_max))
438 panic("bad initial sb_max value: %lu", sb_max);
439
440 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
441 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
442 }
443
444 /*
445 * Socket operation routines.
446 * These routines are called by the routines in
447 * sys_socket.c or from a system process, and
448 * implement the semantics of socket operations by
449 * switching out to the protocol specific routines.
450 */
451 /*ARGSUSED*/
452 int
453 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
454 struct socket *lockso)
455 {
456 const struct protosw *prp;
457 struct socket *so;
458 uid_t uid;
459 int error;
460 kmutex_t *lock;
461
462 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
463 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
464 KAUTH_ARG(proto));
465 if (error != 0)
466 return error;
467
468 if (proto)
469 prp = pffindproto(dom, proto, type);
470 else
471 prp = pffindtype(dom, type);
472 if (prp == NULL) {
473 /* no support for domain */
474 if (pffinddomain(dom) == 0)
475 return EAFNOSUPPORT;
476 /* no support for socket type */
477 if (proto == 0 && type != 0)
478 return EPROTOTYPE;
479 return EPROTONOSUPPORT;
480 }
481 if (prp->pr_usrreq == NULL)
482 return EPROTONOSUPPORT;
483 if (prp->pr_type != type)
484 return EPROTOTYPE;
485
486 so = soget(true);
487 so->so_type = type;
488 so->so_proto = prp;
489 so->so_send = sosend;
490 so->so_receive = soreceive;
491 #ifdef MBUFTRACE
492 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
493 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
494 so->so_mowner = &prp->pr_domain->dom_mowner;
495 #endif
496 uid = kauth_cred_geteuid(l->l_cred);
497 so->so_uidinfo = uid_find(uid);
498 so->so_egid = kauth_cred_getegid(l->l_cred);
499 so->so_cpid = l->l_proc->p_pid;
500 if (lockso != NULL) {
501 /* Caller wants us to share a lock. */
502 lock = lockso->so_lock;
503 so->so_lock = lock;
504 mutex_obj_hold(lock);
505 mutex_enter(lock);
506 } else {
507 /* Lock assigned and taken during PRU_ATTACH. */
508 }
509 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
510 (struct mbuf *)(long)proto, NULL, l);
511 KASSERT(solocked(so));
512 if (error != 0) {
513 so->so_state |= SS_NOFDREF;
514 sofree(so);
515 return error;
516 }
517 sounlock(so);
518 *aso = so;
519 return 0;
520 }
521
522 /* On success, write file descriptor to fdout and return zero. On
523 * failure, return non-zero; *fdout will be undefined.
524 */
525 int
526 fsocreate(int domain, struct socket **sop, int type, int protocol,
527 struct lwp *l, int *fdout)
528 {
529 struct socket *so;
530 struct file *fp;
531 int fd, error;
532
533 if ((error = fd_allocfile(&fp, &fd)) != 0)
534 return (error);
535 fp->f_flag = FREAD|FWRITE;
536 fp->f_type = DTYPE_SOCKET;
537 fp->f_ops = &socketops;
538 error = socreate(domain, &so, type, protocol, l, NULL);
539 if (error != 0) {
540 fd_abort(curproc, fp, fd);
541 } else {
542 if (sop != NULL)
543 *sop = so;
544 fp->f_data = so;
545 fd_affix(curproc, fp, fd);
546 *fdout = fd;
547 }
548 return error;
549 }
550
551 int
552 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
553 {
554 int error;
555
556 solock(so);
557 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
558 sounlock(so);
559 return error;
560 }
561
562 int
563 solisten(struct socket *so, int backlog, struct lwp *l)
564 {
565 int error;
566
567 solock(so);
568 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
569 SS_ISDISCONNECTING)) != 0) {
570 sounlock(so);
571 return (EOPNOTSUPP);
572 }
573 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
574 NULL, NULL, l);
575 if (error != 0) {
576 sounlock(so);
577 return error;
578 }
579 if (TAILQ_EMPTY(&so->so_q))
580 so->so_options |= SO_ACCEPTCONN;
581 if (backlog < 0)
582 backlog = 0;
583 so->so_qlimit = min(backlog, somaxconn);
584 sounlock(so);
585 return 0;
586 }
587
588 void
589 sofree(struct socket *so)
590 {
591 u_int refs;
592
593 KASSERT(solocked(so));
594
595 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
596 sounlock(so);
597 return;
598 }
599 if (so->so_head) {
600 /*
601 * We must not decommission a socket that's on the accept(2)
602 * queue. If we do, then accept(2) may hang after select(2)
603 * indicated that the listening socket was ready.
604 */
605 if (!soqremque(so, 0)) {
606 sounlock(so);
607 return;
608 }
609 }
610 if (so->so_rcv.sb_hiwat)
611 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
612 RLIM_INFINITY);
613 if (so->so_snd.sb_hiwat)
614 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
615 RLIM_INFINITY);
616 sbrelease(&so->so_snd, so);
617 KASSERT(!cv_has_waiters(&so->so_cv));
618 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
619 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
620 sorflush(so);
621 refs = so->so_aborting; /* XXX */
622 /* Remove acccept filter if one is present. */
623 if (so->so_accf != NULL)
624 (void)accept_filt_clear(so);
625 sounlock(so);
626 if (refs == 0) /* XXX */
627 soput(so);
628 }
629
630 /*
631 * Close a socket on last file table reference removal.
632 * Initiate disconnect if connected.
633 * Free socket when disconnect complete.
634 */
635 int
636 soclose(struct socket *so)
637 {
638 struct socket *so2;
639 int error;
640 int error2;
641
642 error = 0;
643 solock(so);
644 if (so->so_options & SO_ACCEPTCONN) {
645 for (;;) {
646 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
647 KASSERT(solocked2(so, so2));
648 (void) soqremque(so2, 0);
649 /* soabort drops the lock. */
650 (void) soabort(so2);
651 solock(so);
652 continue;
653 }
654 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
655 KASSERT(solocked2(so, so2));
656 (void) soqremque(so2, 1);
657 /* soabort drops the lock. */
658 (void) soabort(so2);
659 solock(so);
660 continue;
661 }
662 break;
663 }
664 }
665 if (so->so_pcb == 0)
666 goto discard;
667 if (so->so_state & SS_ISCONNECTED) {
668 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
669 error = sodisconnect(so);
670 if (error)
671 goto drop;
672 }
673 if (so->so_options & SO_LINGER) {
674 if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
675 goto drop;
676 while (so->so_state & SS_ISCONNECTED) {
677 error = sowait(so, so->so_linger * hz);
678 if (error)
679 break;
680 }
681 }
682 }
683 drop:
684 if (so->so_pcb) {
685 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
686 NULL, NULL, NULL, NULL);
687 if (error == 0)
688 error = error2;
689 }
690 discard:
691 if (so->so_state & SS_NOFDREF)
692 panic("soclose: NOFDREF");
693 so->so_state |= SS_NOFDREF;
694 sofree(so);
695 return (error);
696 }
697
698 /*
699 * Must be called with the socket locked.. Will return with it unlocked.
700 */
701 int
702 soabort(struct socket *so)
703 {
704 u_int refs;
705 int error;
706
707 KASSERT(solocked(so));
708 KASSERT(so->so_head == NULL);
709
710 so->so_aborting++; /* XXX */
711 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
712 NULL, NULL, NULL);
713 refs = --so->so_aborting; /* XXX */
714 if (error || (refs == 0)) {
715 sofree(so);
716 } else {
717 sounlock(so);
718 }
719 return error;
720 }
721
722 int
723 soaccept(struct socket *so, struct mbuf *nam)
724 {
725 int error;
726
727 KASSERT(solocked(so));
728
729 error = 0;
730 if ((so->so_state & SS_NOFDREF) == 0)
731 panic("soaccept: !NOFDREF");
732 so->so_state &= ~SS_NOFDREF;
733 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
734 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
735 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
736 NULL, nam, NULL, NULL);
737 else
738 error = ECONNABORTED;
739
740 return (error);
741 }
742
743 int
744 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
745 {
746 int error;
747
748 KASSERT(solocked(so));
749
750 if (so->so_options & SO_ACCEPTCONN)
751 return (EOPNOTSUPP);
752 /*
753 * If protocol is connection-based, can only connect once.
754 * Otherwise, if connected, try to disconnect first.
755 * This allows user to disconnect by connecting to, e.g.,
756 * a null address.
757 */
758 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
759 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
760 (error = sodisconnect(so))))
761 error = EISCONN;
762 else
763 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
764 NULL, nam, NULL, l);
765 return (error);
766 }
767
768 int
769 soconnect2(struct socket *so1, struct socket *so2)
770 {
771 int error;
772
773 KASSERT(solocked2(so1, so2));
774
775 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
776 NULL, (struct mbuf *)so2, NULL, NULL);
777 return (error);
778 }
779
780 int
781 sodisconnect(struct socket *so)
782 {
783 int error;
784
785 KASSERT(solocked(so));
786
787 if ((so->so_state & SS_ISCONNECTED) == 0) {
788 error = ENOTCONN;
789 } else if (so->so_state & SS_ISDISCONNECTING) {
790 error = EALREADY;
791 } else {
792 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
793 NULL, NULL, NULL, NULL);
794 }
795 sodopendfree();
796 return (error);
797 }
798
799 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
800 /*
801 * Send on a socket.
802 * If send must go all at once and message is larger than
803 * send buffering, then hard error.
804 * Lock against other senders.
805 * If must go all at once and not enough room now, then
806 * inform user that this would block and do nothing.
807 * Otherwise, if nonblocking, send as much as possible.
808 * The data to be sent is described by "uio" if nonzero,
809 * otherwise by the mbuf chain "top" (which must be null
810 * if uio is not). Data provided in mbuf chain must be small
811 * enough to send all at once.
812 *
813 * Returns nonzero on error, timeout or signal; callers
814 * must check for short counts if EINTR/ERESTART are returned.
815 * Data and control buffers are freed on return.
816 */
817 int
818 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
819 struct mbuf *control, int flags, struct lwp *l)
820 {
821 struct mbuf **mp, *m;
822 struct proc *p;
823 long space, len, resid, clen, mlen;
824 int error, s, dontroute, atomic;
825
826 p = l->l_proc;
827 sodopendfree();
828 clen = 0;
829
830 /*
831 * solock() provides atomicity of access. splsoftnet() prevents
832 * protocol processing soft interrupts from interrupting us and
833 * blocking (expensive).
834 */
835 s = splsoftnet();
836 solock(so);
837 atomic = sosendallatonce(so) || top;
838 if (uio)
839 resid = uio->uio_resid;
840 else
841 resid = top->m_pkthdr.len;
842 /*
843 * In theory resid should be unsigned.
844 * However, space must be signed, as it might be less than 0
845 * if we over-committed, and we must use a signed comparison
846 * of space and resid. On the other hand, a negative resid
847 * causes us to loop sending 0-length segments to the protocol.
848 */
849 if (resid < 0) {
850 error = EINVAL;
851 goto out;
852 }
853 dontroute =
854 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
855 (so->so_proto->pr_flags & PR_ATOMIC);
856 l->l_ru.ru_msgsnd++;
857 if (control)
858 clen = control->m_len;
859 restart:
860 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
861 goto out;
862 do {
863 if (so->so_state & SS_CANTSENDMORE) {
864 error = EPIPE;
865 goto release;
866 }
867 if (so->so_error) {
868 error = so->so_error;
869 so->so_error = 0;
870 goto release;
871 }
872 if ((so->so_state & SS_ISCONNECTED) == 0) {
873 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
874 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
875 !(resid == 0 && clen != 0)) {
876 error = ENOTCONN;
877 goto release;
878 }
879 } else if (addr == 0) {
880 error = EDESTADDRREQ;
881 goto release;
882 }
883 }
884 space = sbspace(&so->so_snd);
885 if (flags & MSG_OOB)
886 space += 1024;
887 if ((atomic && resid > so->so_snd.sb_hiwat) ||
888 clen > so->so_snd.sb_hiwat) {
889 error = EMSGSIZE;
890 goto release;
891 }
892 if (space < resid + clen &&
893 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
894 if (so->so_nbio) {
895 error = EWOULDBLOCK;
896 goto release;
897 }
898 sbunlock(&so->so_snd);
899 error = sbwait(&so->so_snd);
900 if (error)
901 goto out;
902 goto restart;
903 }
904 mp = ⊤
905 space -= clen;
906 do {
907 if (uio == NULL) {
908 /*
909 * Data is prepackaged in "top".
910 */
911 resid = 0;
912 if (flags & MSG_EOR)
913 top->m_flags |= M_EOR;
914 } else do {
915 sounlock(so);
916 splx(s);
917 if (top == NULL) {
918 m = m_gethdr(M_WAIT, MT_DATA);
919 mlen = MHLEN;
920 m->m_pkthdr.len = 0;
921 m->m_pkthdr.rcvif = NULL;
922 } else {
923 m = m_get(M_WAIT, MT_DATA);
924 mlen = MLEN;
925 }
926 MCLAIM(m, so->so_snd.sb_mowner);
927 if (sock_loan_thresh >= 0 &&
928 uio->uio_iov->iov_len >= sock_loan_thresh &&
929 space >= sock_loan_thresh &&
930 (len = sosend_loan(so, uio, m,
931 space)) != 0) {
932 SOSEND_COUNTER_INCR(&sosend_loan_big);
933 space -= len;
934 goto have_data;
935 }
936 if (resid >= MINCLSIZE && space >= MCLBYTES) {
937 SOSEND_COUNTER_INCR(&sosend_copy_big);
938 m_clget(m, M_WAIT);
939 if ((m->m_flags & M_EXT) == 0)
940 goto nopages;
941 mlen = MCLBYTES;
942 if (atomic && top == 0) {
943 len = lmin(MCLBYTES - max_hdr,
944 resid);
945 m->m_data += max_hdr;
946 } else
947 len = lmin(MCLBYTES, resid);
948 space -= len;
949 } else {
950 nopages:
951 SOSEND_COUNTER_INCR(&sosend_copy_small);
952 len = lmin(lmin(mlen, resid), space);
953 space -= len;
954 /*
955 * For datagram protocols, leave room
956 * for protocol headers in first mbuf.
957 */
958 if (atomic && top == 0 && len < mlen)
959 MH_ALIGN(m, len);
960 }
961 error = uiomove(mtod(m, void *), (int)len, uio);
962 have_data:
963 resid = uio->uio_resid;
964 m->m_len = len;
965 *mp = m;
966 top->m_pkthdr.len += len;
967 s = splsoftnet();
968 solock(so);
969 if (error != 0)
970 goto release;
971 mp = &m->m_next;
972 if (resid <= 0) {
973 if (flags & MSG_EOR)
974 top->m_flags |= M_EOR;
975 break;
976 }
977 } while (space > 0 && atomic);
978
979 if (so->so_state & SS_CANTSENDMORE) {
980 error = EPIPE;
981 goto release;
982 }
983 if (dontroute)
984 so->so_options |= SO_DONTROUTE;
985 if (resid > 0)
986 so->so_state |= SS_MORETOCOME;
987 error = (*so->so_proto->pr_usrreq)(so,
988 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
989 top, addr, control, curlwp);
990 if (dontroute)
991 so->so_options &= ~SO_DONTROUTE;
992 if (resid > 0)
993 so->so_state &= ~SS_MORETOCOME;
994 clen = 0;
995 control = NULL;
996 top = NULL;
997 mp = ⊤
998 if (error != 0)
999 goto release;
1000 } while (resid && space > 0);
1001 } while (resid);
1002
1003 release:
1004 sbunlock(&so->so_snd);
1005 out:
1006 sounlock(so);
1007 splx(s);
1008 if (top)
1009 m_freem(top);
1010 if (control)
1011 m_freem(control);
1012 return (error);
1013 }
1014
1015 /*
1016 * Following replacement or removal of the first mbuf on the first
1017 * mbuf chain of a socket buffer, push necessary state changes back
1018 * into the socket buffer so that other consumers see the values
1019 * consistently. 'nextrecord' is the callers locally stored value of
1020 * the original value of sb->sb_mb->m_nextpkt which must be restored
1021 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1022 */
1023 static void
1024 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1025 {
1026
1027 KASSERT(solocked(sb->sb_so));
1028
1029 /*
1030 * First, update for the new value of nextrecord. If necessary,
1031 * make it the first record.
1032 */
1033 if (sb->sb_mb != NULL)
1034 sb->sb_mb->m_nextpkt = nextrecord;
1035 else
1036 sb->sb_mb = nextrecord;
1037
1038 /*
1039 * Now update any dependent socket buffer fields to reflect
1040 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1041 * the addition of a second clause that takes care of the
1042 * case where sb_mb has been updated, but remains the last
1043 * record.
1044 */
1045 if (sb->sb_mb == NULL) {
1046 sb->sb_mbtail = NULL;
1047 sb->sb_lastrecord = NULL;
1048 } else if (sb->sb_mb->m_nextpkt == NULL)
1049 sb->sb_lastrecord = sb->sb_mb;
1050 }
1051
1052 /*
1053 * Implement receive operations on a socket.
1054 * We depend on the way that records are added to the sockbuf
1055 * by sbappend*. In particular, each record (mbufs linked through m_next)
1056 * must begin with an address if the protocol so specifies,
1057 * followed by an optional mbuf or mbufs containing ancillary data,
1058 * and then zero or more mbufs of data.
1059 * In order to avoid blocking network interrupts for the entire time here,
1060 * we splx() while doing the actual copy to user space.
1061 * Although the sockbuf is locked, new data may still be appended,
1062 * and thus we must maintain consistency of the sockbuf during that time.
1063 *
1064 * The caller may receive the data as a single mbuf chain by supplying
1065 * an mbuf **mp0 for use in returning the chain. The uio is then used
1066 * only for the count in uio_resid.
1067 */
1068 int
1069 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1070 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1071 {
1072 struct lwp *l = curlwp;
1073 struct mbuf *m, **mp, *mt;
1074 int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1075 const struct protosw *pr;
1076 struct mbuf *nextrecord;
1077 int mbuf_removed = 0;
1078 const struct domain *dom;
1079
1080 pr = so->so_proto;
1081 atomic = pr->pr_flags & PR_ATOMIC;
1082 dom = pr->pr_domain;
1083 mp = mp0;
1084 type = 0;
1085 orig_resid = uio->uio_resid;
1086
1087 if (paddr != NULL)
1088 *paddr = NULL;
1089 if (controlp != NULL)
1090 *controlp = NULL;
1091 if (flagsp != NULL)
1092 flags = *flagsp &~ MSG_EOR;
1093 else
1094 flags = 0;
1095
1096 if ((flags & MSG_DONTWAIT) == 0)
1097 sodopendfree();
1098
1099 if (flags & MSG_OOB) {
1100 m = m_get(M_WAIT, MT_DATA);
1101 solock(so);
1102 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1103 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1104 sounlock(so);
1105 if (error)
1106 goto bad;
1107 do {
1108 error = uiomove(mtod(m, void *),
1109 (int) min(uio->uio_resid, m->m_len), uio);
1110 m = m_free(m);
1111 } while (uio->uio_resid > 0 && error == 0 && m);
1112 bad:
1113 if (m != NULL)
1114 m_freem(m);
1115 return error;
1116 }
1117 if (mp != NULL)
1118 *mp = NULL;
1119
1120 /*
1121 * solock() provides atomicity of access. splsoftnet() prevents
1122 * protocol processing soft interrupts from interrupting us and
1123 * blocking (expensive).
1124 */
1125 s = splsoftnet();
1126 solock(so);
1127 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1128 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1129
1130 restart:
1131 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1132 sounlock(so);
1133 splx(s);
1134 return error;
1135 }
1136
1137 m = so->so_rcv.sb_mb;
1138 /*
1139 * If we have less data than requested, block awaiting more
1140 * (subject to any timeout) if:
1141 * 1. the current count is less than the low water mark,
1142 * 2. MSG_WAITALL is set, and it is possible to do the entire
1143 * receive operation at once if we block (resid <= hiwat), or
1144 * 3. MSG_DONTWAIT is not set.
1145 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1146 * we have to do the receive in sections, and thus risk returning
1147 * a short count if a timeout or signal occurs after we start.
1148 */
1149 if (m == NULL ||
1150 ((flags & MSG_DONTWAIT) == 0 &&
1151 so->so_rcv.sb_cc < uio->uio_resid &&
1152 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1153 ((flags & MSG_WAITALL) &&
1154 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1155 m->m_nextpkt == NULL && !atomic)) {
1156 #ifdef DIAGNOSTIC
1157 if (m == NULL && so->so_rcv.sb_cc)
1158 panic("receive 1");
1159 #endif
1160 if (so->so_error) {
1161 if (m != NULL)
1162 goto dontblock;
1163 error = so->so_error;
1164 if ((flags & MSG_PEEK) == 0)
1165 so->so_error = 0;
1166 goto release;
1167 }
1168 if (so->so_state & SS_CANTRCVMORE) {
1169 if (m != NULL)
1170 goto dontblock;
1171 else
1172 goto release;
1173 }
1174 for (; m != NULL; m = m->m_next)
1175 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1176 m = so->so_rcv.sb_mb;
1177 goto dontblock;
1178 }
1179 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1180 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1181 error = ENOTCONN;
1182 goto release;
1183 }
1184 if (uio->uio_resid == 0)
1185 goto release;
1186 if (so->so_nbio || (flags & MSG_DONTWAIT)) {
1187 error = EWOULDBLOCK;
1188 goto release;
1189 }
1190 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1191 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1192 sbunlock(&so->so_rcv);
1193 error = sbwait(&so->so_rcv);
1194 if (error != 0) {
1195 sounlock(so);
1196 splx(s);
1197 return error;
1198 }
1199 goto restart;
1200 }
1201 dontblock:
1202 /*
1203 * On entry here, m points to the first record of the socket buffer.
1204 * From this point onward, we maintain 'nextrecord' as a cache of the
1205 * pointer to the next record in the socket buffer. We must keep the
1206 * various socket buffer pointers and local stack versions of the
1207 * pointers in sync, pushing out modifications before dropping the
1208 * socket lock, and re-reading them when picking it up.
1209 *
1210 * Otherwise, we will race with the network stack appending new data
1211 * or records onto the socket buffer by using inconsistent/stale
1212 * versions of the field, possibly resulting in socket buffer
1213 * corruption.
1214 *
1215 * By holding the high-level sblock(), we prevent simultaneous
1216 * readers from pulling off the front of the socket buffer.
1217 */
1218 if (l != NULL)
1219 l->l_ru.ru_msgrcv++;
1220 KASSERT(m == so->so_rcv.sb_mb);
1221 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1222 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1223 nextrecord = m->m_nextpkt;
1224 if (pr->pr_flags & PR_ADDR) {
1225 #ifdef DIAGNOSTIC
1226 if (m->m_type != MT_SONAME)
1227 panic("receive 1a");
1228 #endif
1229 orig_resid = 0;
1230 if (flags & MSG_PEEK) {
1231 if (paddr)
1232 *paddr = m_copy(m, 0, m->m_len);
1233 m = m->m_next;
1234 } else {
1235 sbfree(&so->so_rcv, m);
1236 mbuf_removed = 1;
1237 if (paddr != NULL) {
1238 *paddr = m;
1239 so->so_rcv.sb_mb = m->m_next;
1240 m->m_next = NULL;
1241 m = so->so_rcv.sb_mb;
1242 } else {
1243 MFREE(m, so->so_rcv.sb_mb);
1244 m = so->so_rcv.sb_mb;
1245 }
1246 sbsync(&so->so_rcv, nextrecord);
1247 }
1248 }
1249
1250 /*
1251 * Process one or more MT_CONTROL mbufs present before any data mbufs
1252 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1253 * just copy the data; if !MSG_PEEK, we call into the protocol to
1254 * perform externalization (or freeing if controlp == NULL).
1255 */
1256 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1257 struct mbuf *cm = NULL, *cmn;
1258 struct mbuf **cme = &cm;
1259
1260 do {
1261 if (flags & MSG_PEEK) {
1262 if (controlp != NULL) {
1263 *controlp = m_copy(m, 0, m->m_len);
1264 controlp = &(*controlp)->m_next;
1265 }
1266 m = m->m_next;
1267 } else {
1268 sbfree(&so->so_rcv, m);
1269 so->so_rcv.sb_mb = m->m_next;
1270 m->m_next = NULL;
1271 *cme = m;
1272 cme = &(*cme)->m_next;
1273 m = so->so_rcv.sb_mb;
1274 }
1275 } while (m != NULL && m->m_type == MT_CONTROL);
1276 if ((flags & MSG_PEEK) == 0)
1277 sbsync(&so->so_rcv, nextrecord);
1278 for (; cm != NULL; cm = cmn) {
1279 cmn = cm->m_next;
1280 cm->m_next = NULL;
1281 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1282 if (controlp != NULL) {
1283 if (dom->dom_externalize != NULL &&
1284 type == SCM_RIGHTS) {
1285 sounlock(so);
1286 splx(s);
1287 error = (*dom->dom_externalize)(cm, l);
1288 s = splsoftnet();
1289 solock(so);
1290 }
1291 *controlp = cm;
1292 while (*controlp != NULL)
1293 controlp = &(*controlp)->m_next;
1294 } else {
1295 /*
1296 * Dispose of any SCM_RIGHTS message that went
1297 * through the read path rather than recv.
1298 */
1299 if (dom->dom_dispose != NULL &&
1300 type == SCM_RIGHTS) {
1301 sounlock(so);
1302 (*dom->dom_dispose)(cm);
1303 solock(so);
1304 }
1305 m_freem(cm);
1306 }
1307 }
1308 if (m != NULL)
1309 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1310 else
1311 nextrecord = so->so_rcv.sb_mb;
1312 orig_resid = 0;
1313 }
1314
1315 /* If m is non-NULL, we have some data to read. */
1316 if (__predict_true(m != NULL)) {
1317 type = m->m_type;
1318 if (type == MT_OOBDATA)
1319 flags |= MSG_OOB;
1320 }
1321 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1322 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1323
1324 moff = 0;
1325 offset = 0;
1326 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1327 if (m->m_type == MT_OOBDATA) {
1328 if (type != MT_OOBDATA)
1329 break;
1330 } else if (type == MT_OOBDATA)
1331 break;
1332 #ifdef DIAGNOSTIC
1333 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1334 panic("receive 3");
1335 #endif
1336 so->so_state &= ~SS_RCVATMARK;
1337 len = uio->uio_resid;
1338 if (so->so_oobmark && len > so->so_oobmark - offset)
1339 len = so->so_oobmark - offset;
1340 if (len > m->m_len - moff)
1341 len = m->m_len - moff;
1342 /*
1343 * If mp is set, just pass back the mbufs.
1344 * Otherwise copy them out via the uio, then free.
1345 * Sockbuf must be consistent here (points to current mbuf,
1346 * it points to next record) when we drop priority;
1347 * we must note any additions to the sockbuf when we
1348 * block interrupts again.
1349 */
1350 if (mp == NULL) {
1351 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1352 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1353 sounlock(so);
1354 splx(s);
1355 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1356 s = splsoftnet();
1357 solock(so);
1358 if (error != 0) {
1359 /*
1360 * If any part of the record has been removed
1361 * (such as the MT_SONAME mbuf, which will
1362 * happen when PR_ADDR, and thus also
1363 * PR_ATOMIC, is set), then drop the entire
1364 * record to maintain the atomicity of the
1365 * receive operation.
1366 *
1367 * This avoids a later panic("receive 1a")
1368 * when compiled with DIAGNOSTIC.
1369 */
1370 if (m && mbuf_removed && atomic)
1371 (void) sbdroprecord(&so->so_rcv);
1372
1373 goto release;
1374 }
1375 } else
1376 uio->uio_resid -= len;
1377 if (len == m->m_len - moff) {
1378 if (m->m_flags & M_EOR)
1379 flags |= MSG_EOR;
1380 if (flags & MSG_PEEK) {
1381 m = m->m_next;
1382 moff = 0;
1383 } else {
1384 nextrecord = m->m_nextpkt;
1385 sbfree(&so->so_rcv, m);
1386 if (mp) {
1387 *mp = m;
1388 mp = &m->m_next;
1389 so->so_rcv.sb_mb = m = m->m_next;
1390 *mp = NULL;
1391 } else {
1392 MFREE(m, so->so_rcv.sb_mb);
1393 m = so->so_rcv.sb_mb;
1394 }
1395 /*
1396 * If m != NULL, we also know that
1397 * so->so_rcv.sb_mb != NULL.
1398 */
1399 KASSERT(so->so_rcv.sb_mb == m);
1400 if (m) {
1401 m->m_nextpkt = nextrecord;
1402 if (nextrecord == NULL)
1403 so->so_rcv.sb_lastrecord = m;
1404 } else {
1405 so->so_rcv.sb_mb = nextrecord;
1406 SB_EMPTY_FIXUP(&so->so_rcv);
1407 }
1408 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1409 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1410 }
1411 } else if (flags & MSG_PEEK)
1412 moff += len;
1413 else {
1414 if (mp != NULL) {
1415 mt = m_copym(m, 0, len, M_NOWAIT);
1416 if (__predict_false(mt == NULL)) {
1417 sounlock(so);
1418 mt = m_copym(m, 0, len, M_WAIT);
1419 solock(so);
1420 }
1421 *mp = mt;
1422 }
1423 m->m_data += len;
1424 m->m_len -= len;
1425 so->so_rcv.sb_cc -= len;
1426 }
1427 if (so->so_oobmark) {
1428 if ((flags & MSG_PEEK) == 0) {
1429 so->so_oobmark -= len;
1430 if (so->so_oobmark == 0) {
1431 so->so_state |= SS_RCVATMARK;
1432 break;
1433 }
1434 } else {
1435 offset += len;
1436 if (offset == so->so_oobmark)
1437 break;
1438 }
1439 }
1440 if (flags & MSG_EOR)
1441 break;
1442 /*
1443 * If the MSG_WAITALL flag is set (for non-atomic socket),
1444 * we must not quit until "uio->uio_resid == 0" or an error
1445 * termination. If a signal/timeout occurs, return
1446 * with a short count but without error.
1447 * Keep sockbuf locked against other readers.
1448 */
1449 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1450 !sosendallatonce(so) && !nextrecord) {
1451 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1452 break;
1453 /*
1454 * If we are peeking and the socket receive buffer is
1455 * full, stop since we can't get more data to peek at.
1456 */
1457 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1458 break;
1459 /*
1460 * If we've drained the socket buffer, tell the
1461 * protocol in case it needs to do something to
1462 * get it filled again.
1463 */
1464 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1465 (*pr->pr_usrreq)(so, PRU_RCVD,
1466 NULL, (struct mbuf *)(long)flags, NULL, l);
1467 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1468 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1469 error = sbwait(&so->so_rcv);
1470 if (error != 0) {
1471 sbunlock(&so->so_rcv);
1472 sounlock(so);
1473 splx(s);
1474 return 0;
1475 }
1476 if ((m = so->so_rcv.sb_mb) != NULL)
1477 nextrecord = m->m_nextpkt;
1478 }
1479 }
1480
1481 if (m && atomic) {
1482 flags |= MSG_TRUNC;
1483 if ((flags & MSG_PEEK) == 0)
1484 (void) sbdroprecord(&so->so_rcv);
1485 }
1486 if ((flags & MSG_PEEK) == 0) {
1487 if (m == NULL) {
1488 /*
1489 * First part is an inline SB_EMPTY_FIXUP(). Second
1490 * part makes sure sb_lastrecord is up-to-date if
1491 * there is still data in the socket buffer.
1492 */
1493 so->so_rcv.sb_mb = nextrecord;
1494 if (so->so_rcv.sb_mb == NULL) {
1495 so->so_rcv.sb_mbtail = NULL;
1496 so->so_rcv.sb_lastrecord = NULL;
1497 } else if (nextrecord->m_nextpkt == NULL)
1498 so->so_rcv.sb_lastrecord = nextrecord;
1499 }
1500 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1501 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1502 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1503 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1504 (struct mbuf *)(long)flags, NULL, l);
1505 }
1506 if (orig_resid == uio->uio_resid && orig_resid &&
1507 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1508 sbunlock(&so->so_rcv);
1509 goto restart;
1510 }
1511
1512 if (flagsp != NULL)
1513 *flagsp |= flags;
1514 release:
1515 sbunlock(&so->so_rcv);
1516 sounlock(so);
1517 splx(s);
1518 return error;
1519 }
1520
1521 int
1522 soshutdown(struct socket *so, int how)
1523 {
1524 const struct protosw *pr;
1525 int error;
1526
1527 KASSERT(solocked(so));
1528
1529 pr = so->so_proto;
1530 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1531 return (EINVAL);
1532
1533 if (how == SHUT_RD || how == SHUT_RDWR) {
1534 sorflush(so);
1535 error = 0;
1536 }
1537 if (how == SHUT_WR || how == SHUT_RDWR)
1538 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1539 NULL, NULL, NULL);
1540
1541 return error;
1542 }
1543
1544 void
1545 sorflush(struct socket *so)
1546 {
1547 struct sockbuf *sb, asb;
1548 const struct protosw *pr;
1549
1550 KASSERT(solocked(so));
1551
1552 sb = &so->so_rcv;
1553 pr = so->so_proto;
1554 socantrcvmore(so);
1555 sb->sb_flags |= SB_NOINTR;
1556 (void )sblock(sb, M_WAITOK);
1557 sbunlock(sb);
1558 asb = *sb;
1559 /*
1560 * Clear most of the sockbuf structure, but leave some of the
1561 * fields valid.
1562 */
1563 memset(&sb->sb_startzero, 0,
1564 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1565 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1566 sounlock(so);
1567 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1568 solock(so);
1569 }
1570 sbrelease(&asb, so);
1571 }
1572
1573 /*
1574 * internal set SOL_SOCKET options
1575 */
1576 static int
1577 sosetopt1(struct socket *so, const struct sockopt *sopt)
1578 {
1579 int error, optval;
1580 struct linger l;
1581 struct timeval tv;
1582
1583 switch (sopt->sopt_name) {
1584
1585 case SO_ACCEPTFILTER:
1586 error = accept_filt_setopt(so, sopt);
1587 KASSERT(solocked(so));
1588 break;
1589
1590 case SO_LINGER:
1591 error = sockopt_get(sopt, &l, sizeof(l));
1592 solock(so);
1593 if (error)
1594 break;
1595 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1596 l.l_linger > (INT_MAX / hz)) {
1597 error = EDOM;
1598 break;
1599 }
1600 so->so_linger = l.l_linger;
1601 if (l.l_onoff)
1602 so->so_options |= SO_LINGER;
1603 else
1604 so->so_options &= ~SO_LINGER;
1605 break;
1606
1607 case SO_DEBUG:
1608 case SO_KEEPALIVE:
1609 case SO_DONTROUTE:
1610 case SO_USELOOPBACK:
1611 case SO_BROADCAST:
1612 case SO_REUSEADDR:
1613 case SO_REUSEPORT:
1614 case SO_OOBINLINE:
1615 case SO_TIMESTAMP:
1616 error = sockopt_getint(sopt, &optval);
1617 solock(so);
1618 if (error)
1619 break;
1620 if (optval)
1621 so->so_options |= sopt->sopt_name;
1622 else
1623 so->so_options &= ~sopt->sopt_name;
1624 break;
1625
1626 case SO_SNDBUF:
1627 case SO_RCVBUF:
1628 case SO_SNDLOWAT:
1629 case SO_RCVLOWAT:
1630 error = sockopt_getint(sopt, &optval);
1631 solock(so);
1632 if (error)
1633 break;
1634
1635 /*
1636 * Values < 1 make no sense for any of these
1637 * options, so disallow them.
1638 */
1639 if (optval < 1) {
1640 error = EINVAL;
1641 break;
1642 }
1643
1644 switch (sopt->sopt_name) {
1645 case SO_SNDBUF:
1646 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1647 error = ENOBUFS;
1648 break;
1649 }
1650 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1651 break;
1652
1653 case SO_RCVBUF:
1654 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1655 error = ENOBUFS;
1656 break;
1657 }
1658 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1659 break;
1660
1661 /*
1662 * Make sure the low-water is never greater than
1663 * the high-water.
1664 */
1665 case SO_SNDLOWAT:
1666 if (optval > so->so_snd.sb_hiwat)
1667 optval = so->so_snd.sb_hiwat;
1668
1669 so->so_snd.sb_lowat = optval;
1670 break;
1671
1672 case SO_RCVLOWAT:
1673 if (optval > so->so_rcv.sb_hiwat)
1674 optval = so->so_rcv.sb_hiwat;
1675
1676 so->so_rcv.sb_lowat = optval;
1677 break;
1678 }
1679 break;
1680
1681 case SO_SNDTIMEO:
1682 case SO_RCVTIMEO:
1683 error = sockopt_get(sopt, &tv, sizeof(tv));
1684 solock(so);
1685 if (error)
1686 break;
1687
1688 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1689 error = EDOM;
1690 break;
1691 }
1692
1693 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1694 if (optval == 0 && tv.tv_usec != 0)
1695 optval = 1;
1696
1697 switch (sopt->sopt_name) {
1698 case SO_SNDTIMEO:
1699 so->so_snd.sb_timeo = optval;
1700 break;
1701 case SO_RCVTIMEO:
1702 so->so_rcv.sb_timeo = optval;
1703 break;
1704 }
1705 break;
1706
1707 default:
1708 solock(so);
1709 error = ENOPROTOOPT;
1710 break;
1711 }
1712 KASSERT(solocked(so));
1713 return error;
1714 }
1715
1716 int
1717 sosetopt(struct socket *so, struct sockopt *sopt)
1718 {
1719 int error, prerr;
1720
1721 if (sopt->sopt_level == SOL_SOCKET) {
1722 error = sosetopt1(so, sopt);
1723 KASSERT(solocked(so));
1724 } else {
1725 error = ENOPROTOOPT;
1726 solock(so);
1727 }
1728
1729 if ((error == 0 || error == ENOPROTOOPT) &&
1730 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1731 /* give the protocol stack a shot */
1732 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1733 if (prerr == 0)
1734 error = 0;
1735 else if (prerr != ENOPROTOOPT)
1736 error = prerr;
1737 }
1738 sounlock(so);
1739 return error;
1740 }
1741
1742 /*
1743 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1744 */
1745 int
1746 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1747 const void *val, size_t valsize)
1748 {
1749 struct sockopt sopt;
1750 int error;
1751
1752 KASSERT(valsize == 0 || val != NULL);
1753
1754 sockopt_init(&sopt, level, name, valsize);
1755 sockopt_set(&sopt, val, valsize);
1756
1757 error = sosetopt(so, &sopt);
1758
1759 sockopt_destroy(&sopt);
1760
1761 return error;
1762 }
1763
1764 /*
1765 * internal get SOL_SOCKET options
1766 */
1767 static int
1768 sogetopt1(struct socket *so, struct sockopt *sopt)
1769 {
1770 int error, optval;
1771 struct linger l;
1772 struct timeval tv;
1773
1774 switch (sopt->sopt_name) {
1775
1776 case SO_ACCEPTFILTER:
1777 error = accept_filt_getopt(so, sopt);
1778 break;
1779
1780 case SO_LINGER:
1781 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1782 l.l_linger = so->so_linger;
1783
1784 error = sockopt_set(sopt, &l, sizeof(l));
1785 break;
1786
1787 case SO_USELOOPBACK:
1788 case SO_DONTROUTE:
1789 case SO_DEBUG:
1790 case SO_KEEPALIVE:
1791 case SO_REUSEADDR:
1792 case SO_REUSEPORT:
1793 case SO_BROADCAST:
1794 case SO_OOBINLINE:
1795 case SO_TIMESTAMP:
1796 error = sockopt_setint(sopt,
1797 (so->so_options & sopt->sopt_name) ? 1 : 0);
1798 break;
1799
1800 case SO_TYPE:
1801 error = sockopt_setint(sopt, so->so_type);
1802 break;
1803
1804 case SO_ERROR:
1805 error = sockopt_setint(sopt, so->so_error);
1806 so->so_error = 0;
1807 break;
1808
1809 case SO_SNDBUF:
1810 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1811 break;
1812
1813 case SO_RCVBUF:
1814 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1815 break;
1816
1817 case SO_SNDLOWAT:
1818 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1819 break;
1820
1821 case SO_RCVLOWAT:
1822 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1823 break;
1824
1825 case SO_SNDTIMEO:
1826 case SO_RCVTIMEO:
1827 optval = (sopt->sopt_name == SO_SNDTIMEO ?
1828 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1829
1830 tv.tv_sec = optval / hz;
1831 tv.tv_usec = (optval % hz) * tick;
1832
1833 error = sockopt_set(sopt, &tv, sizeof(tv));
1834 break;
1835
1836 case SO_OVERFLOWED:
1837 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1838 break;
1839
1840 default:
1841 error = ENOPROTOOPT;
1842 break;
1843 }
1844
1845 return (error);
1846 }
1847
1848 int
1849 sogetopt(struct socket *so, struct sockopt *sopt)
1850 {
1851 int error;
1852
1853 solock(so);
1854 if (sopt->sopt_level != SOL_SOCKET) {
1855 if (so->so_proto && so->so_proto->pr_ctloutput) {
1856 error = ((*so->so_proto->pr_ctloutput)
1857 (PRCO_GETOPT, so, sopt));
1858 } else
1859 error = (ENOPROTOOPT);
1860 } else {
1861 error = sogetopt1(so, sopt);
1862 }
1863 sounlock(so);
1864 return (error);
1865 }
1866
1867 /*
1868 * alloc sockopt data buffer buffer
1869 * - will be released at destroy
1870 */
1871 static int
1872 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
1873 {
1874
1875 KASSERT(sopt->sopt_size == 0);
1876
1877 if (len > sizeof(sopt->sopt_buf)) {
1878 sopt->sopt_data = kmem_zalloc(len, kmflag);
1879 if (sopt->sopt_data == NULL)
1880 return ENOMEM;
1881 } else
1882 sopt->sopt_data = sopt->sopt_buf;
1883
1884 sopt->sopt_size = len;
1885 return 0;
1886 }
1887
1888 /*
1889 * initialise sockopt storage
1890 * - MAY sleep during allocation
1891 */
1892 void
1893 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
1894 {
1895
1896 memset(sopt, 0, sizeof(*sopt));
1897
1898 sopt->sopt_level = level;
1899 sopt->sopt_name = name;
1900 (void)sockopt_alloc(sopt, size, KM_SLEEP);
1901 }
1902
1903 /*
1904 * destroy sockopt storage
1905 * - will release any held memory references
1906 */
1907 void
1908 sockopt_destroy(struct sockopt *sopt)
1909 {
1910
1911 if (sopt->sopt_data != sopt->sopt_buf)
1912 kmem_free(sopt->sopt_data, sopt->sopt_size);
1913
1914 memset(sopt, 0, sizeof(*sopt));
1915 }
1916
1917 /*
1918 * set sockopt value
1919 * - value is copied into sockopt
1920 * - memory is allocated when necessary, will not sleep
1921 */
1922 int
1923 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
1924 {
1925 int error;
1926
1927 if (sopt->sopt_size == 0) {
1928 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
1929 if (error)
1930 return error;
1931 }
1932
1933 KASSERT(sopt->sopt_size == len);
1934 memcpy(sopt->sopt_data, buf, len);
1935 return 0;
1936 }
1937
1938 /*
1939 * common case of set sockopt integer value
1940 */
1941 int
1942 sockopt_setint(struct sockopt *sopt, int val)
1943 {
1944
1945 return sockopt_set(sopt, &val, sizeof(int));
1946 }
1947
1948 /*
1949 * get sockopt value
1950 * - correct size must be given
1951 */
1952 int
1953 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
1954 {
1955
1956 if (sopt->sopt_size != len)
1957 return EINVAL;
1958
1959 memcpy(buf, sopt->sopt_data, len);
1960 return 0;
1961 }
1962
1963 /*
1964 * common case of get sockopt integer value
1965 */
1966 int
1967 sockopt_getint(const struct sockopt *sopt, int *valp)
1968 {
1969
1970 return sockopt_get(sopt, valp, sizeof(int));
1971 }
1972
1973 /*
1974 * set sockopt value from mbuf
1975 * - ONLY for legacy code
1976 * - mbuf is released by sockopt
1977 * - will not sleep
1978 */
1979 int
1980 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
1981 {
1982 size_t len;
1983 int error;
1984
1985 len = m_length(m);
1986
1987 if (sopt->sopt_size == 0) {
1988 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
1989 if (error)
1990 return error;
1991 }
1992
1993 KASSERT(sopt->sopt_size == len);
1994 m_copydata(m, 0, len, sopt->sopt_data);
1995 m_freem(m);
1996
1997 return 0;
1998 }
1999
2000 /*
2001 * get sockopt value into mbuf
2002 * - ONLY for legacy code
2003 * - mbuf to be released by the caller
2004 * - will not sleep
2005 */
2006 struct mbuf *
2007 sockopt_getmbuf(const struct sockopt *sopt)
2008 {
2009 struct mbuf *m;
2010
2011 if (sopt->sopt_size > MCLBYTES)
2012 return NULL;
2013
2014 m = m_get(M_DONTWAIT, MT_SOOPTS);
2015 if (m == NULL)
2016 return NULL;
2017
2018 if (sopt->sopt_size > MLEN) {
2019 MCLGET(m, M_DONTWAIT);
2020 if ((m->m_flags & M_EXT) == 0) {
2021 m_free(m);
2022 return NULL;
2023 }
2024 }
2025
2026 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2027 m->m_len = sopt->sopt_size;
2028
2029 return m;
2030 }
2031
2032 void
2033 sohasoutofband(struct socket *so)
2034 {
2035
2036 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2037 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, 0);
2038 }
2039
2040 static void
2041 filt_sordetach(struct knote *kn)
2042 {
2043 struct socket *so;
2044
2045 so = ((file_t *)kn->kn_obj)->f_data;
2046 solock(so);
2047 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2048 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2049 so->so_rcv.sb_flags &= ~SB_KNOTE;
2050 sounlock(so);
2051 }
2052
2053 /*ARGSUSED*/
2054 static int
2055 filt_soread(struct knote *kn, long hint)
2056 {
2057 struct socket *so;
2058 int rv;
2059
2060 so = ((file_t *)kn->kn_obj)->f_data;
2061 if (hint != NOTE_SUBMIT)
2062 solock(so);
2063 kn->kn_data = so->so_rcv.sb_cc;
2064 if (so->so_state & SS_CANTRCVMORE) {
2065 kn->kn_flags |= EV_EOF;
2066 kn->kn_fflags = so->so_error;
2067 rv = 1;
2068 } else if (so->so_error) /* temporary udp error */
2069 rv = 1;
2070 else if (kn->kn_sfflags & NOTE_LOWAT)
2071 rv = (kn->kn_data >= kn->kn_sdata);
2072 else
2073 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2074 if (hint != NOTE_SUBMIT)
2075 sounlock(so);
2076 return rv;
2077 }
2078
2079 static void
2080 filt_sowdetach(struct knote *kn)
2081 {
2082 struct socket *so;
2083
2084 so = ((file_t *)kn->kn_obj)->f_data;
2085 solock(so);
2086 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2087 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2088 so->so_snd.sb_flags &= ~SB_KNOTE;
2089 sounlock(so);
2090 }
2091
2092 /*ARGSUSED*/
2093 static int
2094 filt_sowrite(struct knote *kn, long hint)
2095 {
2096 struct socket *so;
2097 int rv;
2098
2099 so = ((file_t *)kn->kn_obj)->f_data;
2100 if (hint != NOTE_SUBMIT)
2101 solock(so);
2102 kn->kn_data = sbspace(&so->so_snd);
2103 if (so->so_state & SS_CANTSENDMORE) {
2104 kn->kn_flags |= EV_EOF;
2105 kn->kn_fflags = so->so_error;
2106 rv = 1;
2107 } else if (so->so_error) /* temporary udp error */
2108 rv = 1;
2109 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2110 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2111 rv = 0;
2112 else if (kn->kn_sfflags & NOTE_LOWAT)
2113 rv = (kn->kn_data >= kn->kn_sdata);
2114 else
2115 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2116 if (hint != NOTE_SUBMIT)
2117 sounlock(so);
2118 return rv;
2119 }
2120
2121 /*ARGSUSED*/
2122 static int
2123 filt_solisten(struct knote *kn, long hint)
2124 {
2125 struct socket *so;
2126 int rv;
2127
2128 so = ((file_t *)kn->kn_obj)->f_data;
2129
2130 /*
2131 * Set kn_data to number of incoming connections, not
2132 * counting partial (incomplete) connections.
2133 */
2134 if (hint != NOTE_SUBMIT)
2135 solock(so);
2136 kn->kn_data = so->so_qlen;
2137 rv = (kn->kn_data > 0);
2138 if (hint != NOTE_SUBMIT)
2139 sounlock(so);
2140 return rv;
2141 }
2142
2143 static const struct filterops solisten_filtops =
2144 { 1, NULL, filt_sordetach, filt_solisten };
2145 static const struct filterops soread_filtops =
2146 { 1, NULL, filt_sordetach, filt_soread };
2147 static const struct filterops sowrite_filtops =
2148 { 1, NULL, filt_sowdetach, filt_sowrite };
2149
2150 int
2151 soo_kqfilter(struct file *fp, struct knote *kn)
2152 {
2153 struct socket *so;
2154 struct sockbuf *sb;
2155
2156 so = ((file_t *)kn->kn_obj)->f_data;
2157 solock(so);
2158 switch (kn->kn_filter) {
2159 case EVFILT_READ:
2160 if (so->so_options & SO_ACCEPTCONN)
2161 kn->kn_fop = &solisten_filtops;
2162 else
2163 kn->kn_fop = &soread_filtops;
2164 sb = &so->so_rcv;
2165 break;
2166 case EVFILT_WRITE:
2167 kn->kn_fop = &sowrite_filtops;
2168 sb = &so->so_snd;
2169 break;
2170 default:
2171 sounlock(so);
2172 return (EINVAL);
2173 }
2174 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2175 sb->sb_flags |= SB_KNOTE;
2176 sounlock(so);
2177 return (0);
2178 }
2179
2180 static int
2181 sodopoll(struct socket *so, int events)
2182 {
2183 int revents;
2184
2185 revents = 0;
2186
2187 if (events & (POLLIN | POLLRDNORM))
2188 if (soreadable(so))
2189 revents |= events & (POLLIN | POLLRDNORM);
2190
2191 if (events & (POLLOUT | POLLWRNORM))
2192 if (sowritable(so))
2193 revents |= events & (POLLOUT | POLLWRNORM);
2194
2195 if (events & (POLLPRI | POLLRDBAND))
2196 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2197 revents |= events & (POLLPRI | POLLRDBAND);
2198
2199 return revents;
2200 }
2201
2202 int
2203 sopoll(struct socket *so, int events)
2204 {
2205 int revents = 0;
2206
2207 #ifndef DIAGNOSTIC
2208 /*
2209 * Do a quick, unlocked check in expectation that the socket
2210 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2211 * as the solocked() assertions will fail.
2212 */
2213 if ((revents = sodopoll(so, events)) != 0)
2214 return revents;
2215 #endif
2216
2217 solock(so);
2218 if ((revents = sodopoll(so, events)) == 0) {
2219 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2220 selrecord(curlwp, &so->so_rcv.sb_sel);
2221 so->so_rcv.sb_flags |= SB_NOTIFY;
2222 }
2223
2224 if (events & (POLLOUT | POLLWRNORM)) {
2225 selrecord(curlwp, &so->so_snd.sb_sel);
2226 so->so_snd.sb_flags |= SB_NOTIFY;
2227 }
2228 }
2229 sounlock(so);
2230
2231 return revents;
2232 }
2233
2234
2235 #include <sys/sysctl.h>
2236
2237 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2238
2239 /*
2240 * sysctl helper routine for kern.somaxkva. ensures that the given
2241 * value is not too small.
2242 * (XXX should we maybe make sure it's not too large as well?)
2243 */
2244 static int
2245 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2246 {
2247 int error, new_somaxkva;
2248 struct sysctlnode node;
2249
2250 new_somaxkva = somaxkva;
2251 node = *rnode;
2252 node.sysctl_data = &new_somaxkva;
2253 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2254 if (error || newp == NULL)
2255 return (error);
2256
2257 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2258 return (EINVAL);
2259
2260 mutex_enter(&so_pendfree_lock);
2261 somaxkva = new_somaxkva;
2262 cv_broadcast(&socurkva_cv);
2263 mutex_exit(&so_pendfree_lock);
2264
2265 return (error);
2266 }
2267
2268 static void
2269 sysctl_kern_somaxkva_setup()
2270 {
2271
2272 KASSERT(socket_sysctllog == NULL);
2273 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2274 CTLFLAG_PERMANENT,
2275 CTLTYPE_NODE, "kern", NULL,
2276 NULL, 0, NULL, 0,
2277 CTL_KERN, CTL_EOL);
2278
2279 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2280 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2281 CTLTYPE_INT, "somaxkva",
2282 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2283 "used for socket buffers"),
2284 sysctl_kern_somaxkva, 0, NULL, 0,
2285 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2286 }
2287