uipc_socket.c revision 1.194 1 /* $NetBSD: uipc_socket.c,v 1.194 2009/11/07 07:27:49 cegger Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.194 2009/11/07 07:27:49 cegger Exp $");
67
68 #include "opt_compat_netbsd.h"
69 #include "opt_sock_counters.h"
70 #include "opt_sosend_loan.h"
71 #include "opt_mbuftrace.h"
72 #include "opt_somaxkva.h"
73 #include "opt_multiprocessor.h" /* XXX */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/file.h>
79 #include <sys/filedesc.h>
80 #include <sys/kmem.h>
81 #include <sys/mbuf.h>
82 #include <sys/domain.h>
83 #include <sys/kernel.h>
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/signalvar.h>
88 #include <sys/resourcevar.h>
89 #include <sys/uidinfo.h>
90 #include <sys/event.h>
91 #include <sys/poll.h>
92 #include <sys/kauth.h>
93 #include <sys/mutex.h>
94 #include <sys/condvar.h>
95
96 #ifdef COMPAT_50
97 #include <compat/sys/time.h>
98 #include <compat/sys/socket.h>
99 #endif
100
101 #include <uvm/uvm.h>
102
103 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
104 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
105
106 extern const struct fileops socketops;
107
108 extern int somaxconn; /* patchable (XXX sysctl) */
109 int somaxconn = SOMAXCONN;
110 kmutex_t *softnet_lock;
111
112 #ifdef SOSEND_COUNTERS
113 #include <sys/device.h>
114
115 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
116 NULL, "sosend", "loan big");
117 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
118 NULL, "sosend", "copy big");
119 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
120 NULL, "sosend", "copy small");
121 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
122 NULL, "sosend", "kva limit");
123
124 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
125
126 EVCNT_ATTACH_STATIC(sosend_loan_big);
127 EVCNT_ATTACH_STATIC(sosend_copy_big);
128 EVCNT_ATTACH_STATIC(sosend_copy_small);
129 EVCNT_ATTACH_STATIC(sosend_kvalimit);
130 #else
131
132 #define SOSEND_COUNTER_INCR(ev) /* nothing */
133
134 #endif /* SOSEND_COUNTERS */
135
136 static struct callback_entry sokva_reclaimerentry;
137
138 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
139 int sock_loan_thresh = -1;
140 #else
141 int sock_loan_thresh = 4096;
142 #endif
143
144 static kmutex_t so_pendfree_lock;
145 static struct mbuf *so_pendfree;
146
147 #ifndef SOMAXKVA
148 #define SOMAXKVA (16 * 1024 * 1024)
149 #endif
150 int somaxkva = SOMAXKVA;
151 static int socurkva;
152 static kcondvar_t socurkva_cv;
153
154 static kauth_listener_t socket_listener;
155
156 #define SOCK_LOAN_CHUNK 65536
157
158 static size_t sodopendfree(void);
159 static size_t sodopendfreel(void);
160
161 static void sysctl_kern_somaxkva_setup(void);
162 static struct sysctllog *socket_sysctllog;
163
164 static vsize_t
165 sokvareserve(struct socket *so, vsize_t len)
166 {
167 int error;
168
169 mutex_enter(&so_pendfree_lock);
170 while (socurkva + len > somaxkva) {
171 size_t freed;
172
173 /*
174 * try to do pendfree.
175 */
176
177 freed = sodopendfreel();
178
179 /*
180 * if some kva was freed, try again.
181 */
182
183 if (freed)
184 continue;
185
186 SOSEND_COUNTER_INCR(&sosend_kvalimit);
187 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
188 if (error) {
189 len = 0;
190 break;
191 }
192 }
193 socurkva += len;
194 mutex_exit(&so_pendfree_lock);
195 return len;
196 }
197
198 static void
199 sokvaunreserve(vsize_t len)
200 {
201
202 mutex_enter(&so_pendfree_lock);
203 socurkva -= len;
204 cv_broadcast(&socurkva_cv);
205 mutex_exit(&so_pendfree_lock);
206 }
207
208 /*
209 * sokvaalloc: allocate kva for loan.
210 */
211
212 vaddr_t
213 sokvaalloc(vsize_t len, struct socket *so)
214 {
215 vaddr_t lva;
216
217 /*
218 * reserve kva.
219 */
220
221 if (sokvareserve(so, len) == 0)
222 return 0;
223
224 /*
225 * allocate kva.
226 */
227
228 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
229 if (lva == 0) {
230 sokvaunreserve(len);
231 return (0);
232 }
233
234 return lva;
235 }
236
237 /*
238 * sokvafree: free kva for loan.
239 */
240
241 void
242 sokvafree(vaddr_t sva, vsize_t len)
243 {
244
245 /*
246 * free kva.
247 */
248
249 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
250
251 /*
252 * unreserve kva.
253 */
254
255 sokvaunreserve(len);
256 }
257
258 static void
259 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
260 {
261 vaddr_t sva, eva;
262 vsize_t len;
263 int npgs;
264
265 KASSERT(pgs != NULL);
266
267 eva = round_page((vaddr_t) buf + size);
268 sva = trunc_page((vaddr_t) buf);
269 len = eva - sva;
270 npgs = len >> PAGE_SHIFT;
271
272 pmap_kremove(sva, len);
273 pmap_update(pmap_kernel());
274 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
275 sokvafree(sva, len);
276 }
277
278 static size_t
279 sodopendfree(void)
280 {
281 size_t rv;
282
283 if (__predict_true(so_pendfree == NULL))
284 return 0;
285
286 mutex_enter(&so_pendfree_lock);
287 rv = sodopendfreel();
288 mutex_exit(&so_pendfree_lock);
289
290 return rv;
291 }
292
293 /*
294 * sodopendfreel: free mbufs on "pendfree" list.
295 * unlock and relock so_pendfree_lock when freeing mbufs.
296 *
297 * => called with so_pendfree_lock held.
298 */
299
300 static size_t
301 sodopendfreel(void)
302 {
303 struct mbuf *m, *next;
304 size_t rv = 0;
305
306 KASSERT(mutex_owned(&so_pendfree_lock));
307
308 while (so_pendfree != NULL) {
309 m = so_pendfree;
310 so_pendfree = NULL;
311 mutex_exit(&so_pendfree_lock);
312
313 for (; m != NULL; m = next) {
314 next = m->m_next;
315 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
316 KASSERT(m->m_ext.ext_refcnt == 0);
317
318 rv += m->m_ext.ext_size;
319 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
320 m->m_ext.ext_size);
321 pool_cache_put(mb_cache, m);
322 }
323
324 mutex_enter(&so_pendfree_lock);
325 }
326
327 return (rv);
328 }
329
330 void
331 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
332 {
333
334 KASSERT(m != NULL);
335
336 /*
337 * postpone freeing mbuf.
338 *
339 * we can't do it in interrupt context
340 * because we need to put kva back to kernel_map.
341 */
342
343 mutex_enter(&so_pendfree_lock);
344 m->m_next = so_pendfree;
345 so_pendfree = m;
346 cv_broadcast(&socurkva_cv);
347 mutex_exit(&so_pendfree_lock);
348 }
349
350 static long
351 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
352 {
353 struct iovec *iov = uio->uio_iov;
354 vaddr_t sva, eva;
355 vsize_t len;
356 vaddr_t lva;
357 int npgs, error;
358 vaddr_t va;
359 int i;
360
361 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
362 return (0);
363
364 if (iov->iov_len < (size_t) space)
365 space = iov->iov_len;
366 if (space > SOCK_LOAN_CHUNK)
367 space = SOCK_LOAN_CHUNK;
368
369 eva = round_page((vaddr_t) iov->iov_base + space);
370 sva = trunc_page((vaddr_t) iov->iov_base);
371 len = eva - sva;
372 npgs = len >> PAGE_SHIFT;
373
374 KASSERT(npgs <= M_EXT_MAXPAGES);
375
376 lva = sokvaalloc(len, so);
377 if (lva == 0)
378 return 0;
379
380 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
381 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
382 if (error) {
383 sokvafree(lva, len);
384 return (0);
385 }
386
387 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
388 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
389 VM_PROT_READ, 0);
390 pmap_update(pmap_kernel());
391
392 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
393
394 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
395 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
396
397 uio->uio_resid -= space;
398 /* uio_offset not updated, not set/used for write(2) */
399 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
400 uio->uio_iov->iov_len -= space;
401 if (uio->uio_iov->iov_len == 0) {
402 uio->uio_iov++;
403 uio->uio_iovcnt--;
404 }
405
406 return (space);
407 }
408
409 static int
410 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
411 {
412
413 KASSERT(ce == &sokva_reclaimerentry);
414 KASSERT(obj == NULL);
415
416 sodopendfree();
417 if (!vm_map_starved_p(kernel_map)) {
418 return CALLBACK_CHAIN_ABORT;
419 }
420 return CALLBACK_CHAIN_CONTINUE;
421 }
422
423 struct mbuf *
424 getsombuf(struct socket *so, int type)
425 {
426 struct mbuf *m;
427
428 m = m_get(M_WAIT, type);
429 MCLAIM(m, so->so_mowner);
430 return m;
431 }
432
433 static int
434 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
435 void *arg0, void *arg1, void *arg2, void *arg3)
436 {
437 int result;
438 enum kauth_network_req req;
439
440 result = KAUTH_RESULT_DEFER;
441 req = (enum kauth_network_req)arg0;
442
443 if ((action != KAUTH_NETWORK_SOCKET) &&
444 (action != KAUTH_NETWORK_BIND))
445 return result;
446
447 switch (req) {
448 case KAUTH_REQ_NETWORK_BIND_PORT:
449 result = KAUTH_RESULT_ALLOW;
450 break;
451
452 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
453 /* Normal users can only drop their own connections. */
454 struct socket *so = (struct socket *)arg1;
455 uid_t sockuid = so->so_uidinfo->ui_uid;
456
457 if (sockuid == kauth_cred_getuid(cred) ||
458 sockuid == kauth_cred_geteuid(cred))
459 result = KAUTH_RESULT_ALLOW;
460
461 break;
462 }
463
464 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
465 /* We allow "raw" routing/bluetooth sockets to anyone. */
466 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_BLUETOOTH)
467 result = KAUTH_RESULT_ALLOW;
468 else {
469 /* Privileged, let secmodel handle this. */
470 if ((u_long)arg2 == SOCK_RAW)
471 break;
472 }
473
474 result = KAUTH_RESULT_ALLOW;
475
476 break;
477
478 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
479 result = KAUTH_RESULT_ALLOW;
480
481 break;
482
483 default:
484 break;
485 }
486
487 return result;
488 }
489
490 void
491 soinit(void)
492 {
493
494 sysctl_kern_somaxkva_setup();
495
496 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
497 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
498 cv_init(&socurkva_cv, "sokva");
499 soinit2();
500
501 /* Set the initial adjusted socket buffer size. */
502 if (sb_max_set(sb_max))
503 panic("bad initial sb_max value: %lu", sb_max);
504
505 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
506 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
507
508 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
509 socket_listener_cb, NULL);
510 }
511
512 /*
513 * Socket operation routines.
514 * These routines are called by the routines in
515 * sys_socket.c or from a system process, and
516 * implement the semantics of socket operations by
517 * switching out to the protocol specific routines.
518 */
519 /*ARGSUSED*/
520 int
521 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
522 struct socket *lockso)
523 {
524 const struct protosw *prp;
525 struct socket *so;
526 uid_t uid;
527 int error;
528 kmutex_t *lock;
529
530 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
531 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
532 KAUTH_ARG(proto));
533 if (error != 0)
534 return error;
535
536 if (proto)
537 prp = pffindproto(dom, proto, type);
538 else
539 prp = pffindtype(dom, type);
540 if (prp == NULL) {
541 /* no support for domain */
542 if (pffinddomain(dom) == 0)
543 return EAFNOSUPPORT;
544 /* no support for socket type */
545 if (proto == 0 && type != 0)
546 return EPROTOTYPE;
547 return EPROTONOSUPPORT;
548 }
549 if (prp->pr_usrreq == NULL)
550 return EPROTONOSUPPORT;
551 if (prp->pr_type != type)
552 return EPROTOTYPE;
553
554 so = soget(true);
555 so->so_type = type;
556 so->so_proto = prp;
557 so->so_send = sosend;
558 so->so_receive = soreceive;
559 #ifdef MBUFTRACE
560 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
561 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
562 so->so_mowner = &prp->pr_domain->dom_mowner;
563 #endif
564 /* so->so_cred = kauth_cred_dup(l->l_cred); */
565 uid = kauth_cred_geteuid(l->l_cred);
566 so->so_uidinfo = uid_find(uid);
567 so->so_egid = kauth_cred_getegid(l->l_cred);
568 so->so_cpid = l->l_proc->p_pid;
569 if (lockso != NULL) {
570 /* Caller wants us to share a lock. */
571 lock = lockso->so_lock;
572 so->so_lock = lock;
573 mutex_obj_hold(lock);
574 mutex_enter(lock);
575 } else {
576 /* Lock assigned and taken during PRU_ATTACH. */
577 }
578 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
579 (struct mbuf *)(long)proto, NULL, l);
580 KASSERT(solocked(so));
581 if (error != 0) {
582 so->so_state |= SS_NOFDREF;
583 sofree(so);
584 return error;
585 }
586 sounlock(so);
587 *aso = so;
588 return 0;
589 }
590
591 /* On success, write file descriptor to fdout and return zero. On
592 * failure, return non-zero; *fdout will be undefined.
593 */
594 int
595 fsocreate(int domain, struct socket **sop, int type, int protocol,
596 struct lwp *l, int *fdout)
597 {
598 struct socket *so;
599 struct file *fp;
600 int fd, error;
601
602 if ((error = fd_allocfile(&fp, &fd)) != 0)
603 return (error);
604 fp->f_flag = FREAD|FWRITE;
605 fp->f_type = DTYPE_SOCKET;
606 fp->f_ops = &socketops;
607 error = socreate(domain, &so, type, protocol, l, NULL);
608 if (error != 0) {
609 fd_abort(curproc, fp, fd);
610 } else {
611 if (sop != NULL)
612 *sop = so;
613 fp->f_data = so;
614 fd_affix(curproc, fp, fd);
615 *fdout = fd;
616 }
617 return error;
618 }
619
620 int
621 sofamily(const struct socket *so)
622 {
623 const struct protosw *pr;
624 const struct domain *dom;
625
626 if ((pr = so->so_proto) == NULL)
627 return AF_UNSPEC;
628 if ((dom = pr->pr_domain) == NULL)
629 return AF_UNSPEC;
630 return dom->dom_family;
631 }
632
633 int
634 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
635 {
636 int error;
637
638 solock(so);
639 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
640 sounlock(so);
641 return error;
642 }
643
644 int
645 solisten(struct socket *so, int backlog, struct lwp *l)
646 {
647 int error;
648
649 solock(so);
650 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
651 SS_ISDISCONNECTING)) != 0) {
652 sounlock(so);
653 return (EOPNOTSUPP);
654 }
655 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
656 NULL, NULL, l);
657 if (error != 0) {
658 sounlock(so);
659 return error;
660 }
661 if (TAILQ_EMPTY(&so->so_q))
662 so->so_options |= SO_ACCEPTCONN;
663 if (backlog < 0)
664 backlog = 0;
665 so->so_qlimit = min(backlog, somaxconn);
666 sounlock(so);
667 return 0;
668 }
669
670 void
671 sofree(struct socket *so)
672 {
673 u_int refs;
674
675 KASSERT(solocked(so));
676
677 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
678 sounlock(so);
679 return;
680 }
681 if (so->so_head) {
682 /*
683 * We must not decommission a socket that's on the accept(2)
684 * queue. If we do, then accept(2) may hang after select(2)
685 * indicated that the listening socket was ready.
686 */
687 if (!soqremque(so, 0)) {
688 sounlock(so);
689 return;
690 }
691 }
692 if (so->so_rcv.sb_hiwat)
693 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
694 RLIM_INFINITY);
695 if (so->so_snd.sb_hiwat)
696 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
697 RLIM_INFINITY);
698 sbrelease(&so->so_snd, so);
699 KASSERT(!cv_has_waiters(&so->so_cv));
700 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
701 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
702 sorflush(so);
703 refs = so->so_aborting; /* XXX */
704 /* Remove acccept filter if one is present. */
705 if (so->so_accf != NULL)
706 (void)accept_filt_clear(so);
707 /* kauth_cred_free(so->so_cred); */
708 sounlock(so);
709 if (refs == 0) /* XXX */
710 soput(so);
711 }
712
713 /*
714 * Close a socket on last file table reference removal.
715 * Initiate disconnect if connected.
716 * Free socket when disconnect complete.
717 */
718 int
719 soclose(struct socket *so)
720 {
721 struct socket *so2;
722 int error;
723 int error2;
724
725 error = 0;
726 solock(so);
727 if (so->so_options & SO_ACCEPTCONN) {
728 for (;;) {
729 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
730 KASSERT(solocked2(so, so2));
731 (void) soqremque(so2, 0);
732 /* soabort drops the lock. */
733 (void) soabort(so2);
734 solock(so);
735 continue;
736 }
737 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
738 KASSERT(solocked2(so, so2));
739 (void) soqremque(so2, 1);
740 /* soabort drops the lock. */
741 (void) soabort(so2);
742 solock(so);
743 continue;
744 }
745 break;
746 }
747 }
748 if (so->so_pcb == 0)
749 goto discard;
750 if (so->so_state & SS_ISCONNECTED) {
751 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
752 error = sodisconnect(so);
753 if (error)
754 goto drop;
755 }
756 if (so->so_options & SO_LINGER) {
757 if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
758 goto drop;
759 while (so->so_state & SS_ISCONNECTED) {
760 error = sowait(so, true, so->so_linger * hz);
761 if (error)
762 break;
763 }
764 }
765 }
766 drop:
767 if (so->so_pcb) {
768 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
769 NULL, NULL, NULL, NULL);
770 if (error == 0)
771 error = error2;
772 }
773 discard:
774 if (so->so_state & SS_NOFDREF)
775 panic("soclose: NOFDREF");
776 so->so_state |= SS_NOFDREF;
777 sofree(so);
778 return (error);
779 }
780
781 /*
782 * Must be called with the socket locked.. Will return with it unlocked.
783 */
784 int
785 soabort(struct socket *so)
786 {
787 u_int refs;
788 int error;
789
790 KASSERT(solocked(so));
791 KASSERT(so->so_head == NULL);
792
793 so->so_aborting++; /* XXX */
794 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
795 NULL, NULL, NULL);
796 refs = --so->so_aborting; /* XXX */
797 if (error || (refs == 0)) {
798 sofree(so);
799 } else {
800 sounlock(so);
801 }
802 return error;
803 }
804
805 int
806 soaccept(struct socket *so, struct mbuf *nam)
807 {
808 int error;
809
810 KASSERT(solocked(so));
811
812 error = 0;
813 if ((so->so_state & SS_NOFDREF) == 0)
814 panic("soaccept: !NOFDREF");
815 so->so_state &= ~SS_NOFDREF;
816 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
817 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
818 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
819 NULL, nam, NULL, NULL);
820 else
821 error = ECONNABORTED;
822
823 return (error);
824 }
825
826 int
827 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
828 {
829 int error;
830
831 KASSERT(solocked(so));
832
833 if (so->so_options & SO_ACCEPTCONN)
834 return (EOPNOTSUPP);
835 /*
836 * If protocol is connection-based, can only connect once.
837 * Otherwise, if connected, try to disconnect first.
838 * This allows user to disconnect by connecting to, e.g.,
839 * a null address.
840 */
841 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
842 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
843 (error = sodisconnect(so))))
844 error = EISCONN;
845 else
846 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
847 NULL, nam, NULL, l);
848 return (error);
849 }
850
851 int
852 soconnect2(struct socket *so1, struct socket *so2)
853 {
854 int error;
855
856 KASSERT(solocked2(so1, so2));
857
858 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
859 NULL, (struct mbuf *)so2, NULL, NULL);
860 return (error);
861 }
862
863 int
864 sodisconnect(struct socket *so)
865 {
866 int error;
867
868 KASSERT(solocked(so));
869
870 if ((so->so_state & SS_ISCONNECTED) == 0) {
871 error = ENOTCONN;
872 } else if (so->so_state & SS_ISDISCONNECTING) {
873 error = EALREADY;
874 } else {
875 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
876 NULL, NULL, NULL, NULL);
877 }
878 sodopendfree();
879 return (error);
880 }
881
882 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
883 /*
884 * Send on a socket.
885 * If send must go all at once and message is larger than
886 * send buffering, then hard error.
887 * Lock against other senders.
888 * If must go all at once and not enough room now, then
889 * inform user that this would block and do nothing.
890 * Otherwise, if nonblocking, send as much as possible.
891 * The data to be sent is described by "uio" if nonzero,
892 * otherwise by the mbuf chain "top" (which must be null
893 * if uio is not). Data provided in mbuf chain must be small
894 * enough to send all at once.
895 *
896 * Returns nonzero on error, timeout or signal; callers
897 * must check for short counts if EINTR/ERESTART are returned.
898 * Data and control buffers are freed on return.
899 */
900 int
901 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
902 struct mbuf *control, int flags, struct lwp *l)
903 {
904 struct mbuf **mp, *m;
905 struct proc *p;
906 long space, len, resid, clen, mlen;
907 int error, s, dontroute, atomic;
908
909 p = l->l_proc;
910 sodopendfree();
911 clen = 0;
912
913 /*
914 * solock() provides atomicity of access. splsoftnet() prevents
915 * protocol processing soft interrupts from interrupting us and
916 * blocking (expensive).
917 */
918 s = splsoftnet();
919 solock(so);
920 atomic = sosendallatonce(so) || top;
921 if (uio)
922 resid = uio->uio_resid;
923 else
924 resid = top->m_pkthdr.len;
925 /*
926 * In theory resid should be unsigned.
927 * However, space must be signed, as it might be less than 0
928 * if we over-committed, and we must use a signed comparison
929 * of space and resid. On the other hand, a negative resid
930 * causes us to loop sending 0-length segments to the protocol.
931 */
932 if (resid < 0) {
933 error = EINVAL;
934 goto out;
935 }
936 dontroute =
937 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
938 (so->so_proto->pr_flags & PR_ATOMIC);
939 l->l_ru.ru_msgsnd++;
940 if (control)
941 clen = control->m_len;
942 restart:
943 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
944 goto out;
945 do {
946 if (so->so_state & SS_CANTSENDMORE) {
947 error = EPIPE;
948 goto release;
949 }
950 if (so->so_error) {
951 error = so->so_error;
952 so->so_error = 0;
953 goto release;
954 }
955 if ((so->so_state & SS_ISCONNECTED) == 0) {
956 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
957 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
958 !(resid == 0 && clen != 0)) {
959 error = ENOTCONN;
960 goto release;
961 }
962 } else if (addr == 0) {
963 error = EDESTADDRREQ;
964 goto release;
965 }
966 }
967 space = sbspace(&so->so_snd);
968 if (flags & MSG_OOB)
969 space += 1024;
970 if ((atomic && resid > so->so_snd.sb_hiwat) ||
971 clen > so->so_snd.sb_hiwat) {
972 error = EMSGSIZE;
973 goto release;
974 }
975 if (space < resid + clen &&
976 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
977 if (so->so_nbio) {
978 error = EWOULDBLOCK;
979 goto release;
980 }
981 sbunlock(&so->so_snd);
982 error = sbwait(&so->so_snd);
983 if (error)
984 goto out;
985 goto restart;
986 }
987 mp = ⊤
988 space -= clen;
989 do {
990 if (uio == NULL) {
991 /*
992 * Data is prepackaged in "top".
993 */
994 resid = 0;
995 if (flags & MSG_EOR)
996 top->m_flags |= M_EOR;
997 } else do {
998 sounlock(so);
999 splx(s);
1000 if (top == NULL) {
1001 m = m_gethdr(M_WAIT, MT_DATA);
1002 mlen = MHLEN;
1003 m->m_pkthdr.len = 0;
1004 m->m_pkthdr.rcvif = NULL;
1005 } else {
1006 m = m_get(M_WAIT, MT_DATA);
1007 mlen = MLEN;
1008 }
1009 MCLAIM(m, so->so_snd.sb_mowner);
1010 if (sock_loan_thresh >= 0 &&
1011 uio->uio_iov->iov_len >= sock_loan_thresh &&
1012 space >= sock_loan_thresh &&
1013 (len = sosend_loan(so, uio, m,
1014 space)) != 0) {
1015 SOSEND_COUNTER_INCR(&sosend_loan_big);
1016 space -= len;
1017 goto have_data;
1018 }
1019 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1020 SOSEND_COUNTER_INCR(&sosend_copy_big);
1021 m_clget(m, M_WAIT);
1022 if ((m->m_flags & M_EXT) == 0)
1023 goto nopages;
1024 mlen = MCLBYTES;
1025 if (atomic && top == 0) {
1026 len = lmin(MCLBYTES - max_hdr,
1027 resid);
1028 m->m_data += max_hdr;
1029 } else
1030 len = lmin(MCLBYTES, resid);
1031 space -= len;
1032 } else {
1033 nopages:
1034 SOSEND_COUNTER_INCR(&sosend_copy_small);
1035 len = lmin(lmin(mlen, resid), space);
1036 space -= len;
1037 /*
1038 * For datagram protocols, leave room
1039 * for protocol headers in first mbuf.
1040 */
1041 if (atomic && top == 0 && len < mlen)
1042 MH_ALIGN(m, len);
1043 }
1044 error = uiomove(mtod(m, void *), (int)len, uio);
1045 have_data:
1046 resid = uio->uio_resid;
1047 m->m_len = len;
1048 *mp = m;
1049 top->m_pkthdr.len += len;
1050 s = splsoftnet();
1051 solock(so);
1052 if (error != 0)
1053 goto release;
1054 mp = &m->m_next;
1055 if (resid <= 0) {
1056 if (flags & MSG_EOR)
1057 top->m_flags |= M_EOR;
1058 break;
1059 }
1060 } while (space > 0 && atomic);
1061
1062 if (so->so_state & SS_CANTSENDMORE) {
1063 error = EPIPE;
1064 goto release;
1065 }
1066 if (dontroute)
1067 so->so_options |= SO_DONTROUTE;
1068 if (resid > 0)
1069 so->so_state |= SS_MORETOCOME;
1070 error = (*so->so_proto->pr_usrreq)(so,
1071 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
1072 top, addr, control, curlwp);
1073 if (dontroute)
1074 so->so_options &= ~SO_DONTROUTE;
1075 if (resid > 0)
1076 so->so_state &= ~SS_MORETOCOME;
1077 clen = 0;
1078 control = NULL;
1079 top = NULL;
1080 mp = ⊤
1081 if (error != 0)
1082 goto release;
1083 } while (resid && space > 0);
1084 } while (resid);
1085
1086 release:
1087 sbunlock(&so->so_snd);
1088 out:
1089 sounlock(so);
1090 splx(s);
1091 if (top)
1092 m_freem(top);
1093 if (control)
1094 m_freem(control);
1095 return (error);
1096 }
1097
1098 /*
1099 * Following replacement or removal of the first mbuf on the first
1100 * mbuf chain of a socket buffer, push necessary state changes back
1101 * into the socket buffer so that other consumers see the values
1102 * consistently. 'nextrecord' is the callers locally stored value of
1103 * the original value of sb->sb_mb->m_nextpkt which must be restored
1104 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1105 */
1106 static void
1107 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1108 {
1109
1110 KASSERT(solocked(sb->sb_so));
1111
1112 /*
1113 * First, update for the new value of nextrecord. If necessary,
1114 * make it the first record.
1115 */
1116 if (sb->sb_mb != NULL)
1117 sb->sb_mb->m_nextpkt = nextrecord;
1118 else
1119 sb->sb_mb = nextrecord;
1120
1121 /*
1122 * Now update any dependent socket buffer fields to reflect
1123 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1124 * the addition of a second clause that takes care of the
1125 * case where sb_mb has been updated, but remains the last
1126 * record.
1127 */
1128 if (sb->sb_mb == NULL) {
1129 sb->sb_mbtail = NULL;
1130 sb->sb_lastrecord = NULL;
1131 } else if (sb->sb_mb->m_nextpkt == NULL)
1132 sb->sb_lastrecord = sb->sb_mb;
1133 }
1134
1135 /*
1136 * Implement receive operations on a socket.
1137 * We depend on the way that records are added to the sockbuf
1138 * by sbappend*. In particular, each record (mbufs linked through m_next)
1139 * must begin with an address if the protocol so specifies,
1140 * followed by an optional mbuf or mbufs containing ancillary data,
1141 * and then zero or more mbufs of data.
1142 * In order to avoid blocking network interrupts for the entire time here,
1143 * we splx() while doing the actual copy to user space.
1144 * Although the sockbuf is locked, new data may still be appended,
1145 * and thus we must maintain consistency of the sockbuf during that time.
1146 *
1147 * The caller may receive the data as a single mbuf chain by supplying
1148 * an mbuf **mp0 for use in returning the chain. The uio is then used
1149 * only for the count in uio_resid.
1150 */
1151 int
1152 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1153 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1154 {
1155 struct lwp *l = curlwp;
1156 struct mbuf *m, **mp, *mt;
1157 int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1158 const struct protosw *pr;
1159 struct mbuf *nextrecord;
1160 int mbuf_removed = 0;
1161 const struct domain *dom;
1162
1163 pr = so->so_proto;
1164 atomic = pr->pr_flags & PR_ATOMIC;
1165 dom = pr->pr_domain;
1166 mp = mp0;
1167 type = 0;
1168 orig_resid = uio->uio_resid;
1169
1170 if (paddr != NULL)
1171 *paddr = NULL;
1172 if (controlp != NULL)
1173 *controlp = NULL;
1174 if (flagsp != NULL)
1175 flags = *flagsp &~ MSG_EOR;
1176 else
1177 flags = 0;
1178
1179 if ((flags & MSG_DONTWAIT) == 0)
1180 sodopendfree();
1181
1182 if (flags & MSG_OOB) {
1183 m = m_get(M_WAIT, MT_DATA);
1184 solock(so);
1185 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1186 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1187 sounlock(so);
1188 if (error)
1189 goto bad;
1190 do {
1191 error = uiomove(mtod(m, void *),
1192 (int) min(uio->uio_resid, m->m_len), uio);
1193 m = m_free(m);
1194 } while (uio->uio_resid > 0 && error == 0 && m);
1195 bad:
1196 if (m != NULL)
1197 m_freem(m);
1198 return error;
1199 }
1200 if (mp != NULL)
1201 *mp = NULL;
1202
1203 /*
1204 * solock() provides atomicity of access. splsoftnet() prevents
1205 * protocol processing soft interrupts from interrupting us and
1206 * blocking (expensive).
1207 */
1208 s = splsoftnet();
1209 solock(so);
1210 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1211 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1212
1213 restart:
1214 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1215 sounlock(so);
1216 splx(s);
1217 return error;
1218 }
1219
1220 m = so->so_rcv.sb_mb;
1221 /*
1222 * If we have less data than requested, block awaiting more
1223 * (subject to any timeout) if:
1224 * 1. the current count is less than the low water mark,
1225 * 2. MSG_WAITALL is set, and it is possible to do the entire
1226 * receive operation at once if we block (resid <= hiwat), or
1227 * 3. MSG_DONTWAIT is not set.
1228 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1229 * we have to do the receive in sections, and thus risk returning
1230 * a short count if a timeout or signal occurs after we start.
1231 */
1232 if (m == NULL ||
1233 ((flags & MSG_DONTWAIT) == 0 &&
1234 so->so_rcv.sb_cc < uio->uio_resid &&
1235 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1236 ((flags & MSG_WAITALL) &&
1237 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1238 m->m_nextpkt == NULL && !atomic)) {
1239 #ifdef DIAGNOSTIC
1240 if (m == NULL && so->so_rcv.sb_cc)
1241 panic("receive 1");
1242 #endif
1243 if (so->so_error) {
1244 if (m != NULL)
1245 goto dontblock;
1246 error = so->so_error;
1247 if ((flags & MSG_PEEK) == 0)
1248 so->so_error = 0;
1249 goto release;
1250 }
1251 if (so->so_state & SS_CANTRCVMORE) {
1252 if (m != NULL)
1253 goto dontblock;
1254 else
1255 goto release;
1256 }
1257 for (; m != NULL; m = m->m_next)
1258 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1259 m = so->so_rcv.sb_mb;
1260 goto dontblock;
1261 }
1262 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1263 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1264 error = ENOTCONN;
1265 goto release;
1266 }
1267 if (uio->uio_resid == 0)
1268 goto release;
1269 if (so->so_nbio || (flags & MSG_DONTWAIT)) {
1270 error = EWOULDBLOCK;
1271 goto release;
1272 }
1273 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1274 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1275 sbunlock(&so->so_rcv);
1276 error = sbwait(&so->so_rcv);
1277 if (error != 0) {
1278 sounlock(so);
1279 splx(s);
1280 return error;
1281 }
1282 goto restart;
1283 }
1284 dontblock:
1285 /*
1286 * On entry here, m points to the first record of the socket buffer.
1287 * From this point onward, we maintain 'nextrecord' as a cache of the
1288 * pointer to the next record in the socket buffer. We must keep the
1289 * various socket buffer pointers and local stack versions of the
1290 * pointers in sync, pushing out modifications before dropping the
1291 * socket lock, and re-reading them when picking it up.
1292 *
1293 * Otherwise, we will race with the network stack appending new data
1294 * or records onto the socket buffer by using inconsistent/stale
1295 * versions of the field, possibly resulting in socket buffer
1296 * corruption.
1297 *
1298 * By holding the high-level sblock(), we prevent simultaneous
1299 * readers from pulling off the front of the socket buffer.
1300 */
1301 if (l != NULL)
1302 l->l_ru.ru_msgrcv++;
1303 KASSERT(m == so->so_rcv.sb_mb);
1304 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1305 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1306 nextrecord = m->m_nextpkt;
1307 if (pr->pr_flags & PR_ADDR) {
1308 #ifdef DIAGNOSTIC
1309 if (m->m_type != MT_SONAME)
1310 panic("receive 1a");
1311 #endif
1312 orig_resid = 0;
1313 if (flags & MSG_PEEK) {
1314 if (paddr)
1315 *paddr = m_copy(m, 0, m->m_len);
1316 m = m->m_next;
1317 } else {
1318 sbfree(&so->so_rcv, m);
1319 mbuf_removed = 1;
1320 if (paddr != NULL) {
1321 *paddr = m;
1322 so->so_rcv.sb_mb = m->m_next;
1323 m->m_next = NULL;
1324 m = so->so_rcv.sb_mb;
1325 } else {
1326 MFREE(m, so->so_rcv.sb_mb);
1327 m = so->so_rcv.sb_mb;
1328 }
1329 sbsync(&so->so_rcv, nextrecord);
1330 }
1331 }
1332
1333 /*
1334 * Process one or more MT_CONTROL mbufs present before any data mbufs
1335 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1336 * just copy the data; if !MSG_PEEK, we call into the protocol to
1337 * perform externalization (or freeing if controlp == NULL).
1338 */
1339 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1340 struct mbuf *cm = NULL, *cmn;
1341 struct mbuf **cme = &cm;
1342
1343 do {
1344 if (flags & MSG_PEEK) {
1345 if (controlp != NULL) {
1346 *controlp = m_copy(m, 0, m->m_len);
1347 controlp = &(*controlp)->m_next;
1348 }
1349 m = m->m_next;
1350 } else {
1351 sbfree(&so->so_rcv, m);
1352 so->so_rcv.sb_mb = m->m_next;
1353 m->m_next = NULL;
1354 *cme = m;
1355 cme = &(*cme)->m_next;
1356 m = so->so_rcv.sb_mb;
1357 }
1358 } while (m != NULL && m->m_type == MT_CONTROL);
1359 if ((flags & MSG_PEEK) == 0)
1360 sbsync(&so->so_rcv, nextrecord);
1361 for (; cm != NULL; cm = cmn) {
1362 cmn = cm->m_next;
1363 cm->m_next = NULL;
1364 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1365 if (controlp != NULL) {
1366 if (dom->dom_externalize != NULL &&
1367 type == SCM_RIGHTS) {
1368 sounlock(so);
1369 splx(s);
1370 error = (*dom->dom_externalize)(cm, l);
1371 s = splsoftnet();
1372 solock(so);
1373 }
1374 *controlp = cm;
1375 while (*controlp != NULL)
1376 controlp = &(*controlp)->m_next;
1377 } else {
1378 /*
1379 * Dispose of any SCM_RIGHTS message that went
1380 * through the read path rather than recv.
1381 */
1382 if (dom->dom_dispose != NULL &&
1383 type == SCM_RIGHTS) {
1384 sounlock(so);
1385 (*dom->dom_dispose)(cm);
1386 solock(so);
1387 }
1388 m_freem(cm);
1389 }
1390 }
1391 if (m != NULL)
1392 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1393 else
1394 nextrecord = so->so_rcv.sb_mb;
1395 orig_resid = 0;
1396 }
1397
1398 /* If m is non-NULL, we have some data to read. */
1399 if (__predict_true(m != NULL)) {
1400 type = m->m_type;
1401 if (type == MT_OOBDATA)
1402 flags |= MSG_OOB;
1403 }
1404 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1405 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1406
1407 moff = 0;
1408 offset = 0;
1409 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1410 if (m->m_type == MT_OOBDATA) {
1411 if (type != MT_OOBDATA)
1412 break;
1413 } else if (type == MT_OOBDATA)
1414 break;
1415 #ifdef DIAGNOSTIC
1416 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1417 panic("receive 3");
1418 #endif
1419 so->so_state &= ~SS_RCVATMARK;
1420 len = uio->uio_resid;
1421 if (so->so_oobmark && len > so->so_oobmark - offset)
1422 len = so->so_oobmark - offset;
1423 if (len > m->m_len - moff)
1424 len = m->m_len - moff;
1425 /*
1426 * If mp is set, just pass back the mbufs.
1427 * Otherwise copy them out via the uio, then free.
1428 * Sockbuf must be consistent here (points to current mbuf,
1429 * it points to next record) when we drop priority;
1430 * we must note any additions to the sockbuf when we
1431 * block interrupts again.
1432 */
1433 if (mp == NULL) {
1434 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1435 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1436 sounlock(so);
1437 splx(s);
1438 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1439 s = splsoftnet();
1440 solock(so);
1441 if (error != 0) {
1442 /*
1443 * If any part of the record has been removed
1444 * (such as the MT_SONAME mbuf, which will
1445 * happen when PR_ADDR, and thus also
1446 * PR_ATOMIC, is set), then drop the entire
1447 * record to maintain the atomicity of the
1448 * receive operation.
1449 *
1450 * This avoids a later panic("receive 1a")
1451 * when compiled with DIAGNOSTIC.
1452 */
1453 if (m && mbuf_removed && atomic)
1454 (void) sbdroprecord(&so->so_rcv);
1455
1456 goto release;
1457 }
1458 } else
1459 uio->uio_resid -= len;
1460 if (len == m->m_len - moff) {
1461 if (m->m_flags & M_EOR)
1462 flags |= MSG_EOR;
1463 if (flags & MSG_PEEK) {
1464 m = m->m_next;
1465 moff = 0;
1466 } else {
1467 nextrecord = m->m_nextpkt;
1468 sbfree(&so->so_rcv, m);
1469 if (mp) {
1470 *mp = m;
1471 mp = &m->m_next;
1472 so->so_rcv.sb_mb = m = m->m_next;
1473 *mp = NULL;
1474 } else {
1475 MFREE(m, so->so_rcv.sb_mb);
1476 m = so->so_rcv.sb_mb;
1477 }
1478 /*
1479 * If m != NULL, we also know that
1480 * so->so_rcv.sb_mb != NULL.
1481 */
1482 KASSERT(so->so_rcv.sb_mb == m);
1483 if (m) {
1484 m->m_nextpkt = nextrecord;
1485 if (nextrecord == NULL)
1486 so->so_rcv.sb_lastrecord = m;
1487 } else {
1488 so->so_rcv.sb_mb = nextrecord;
1489 SB_EMPTY_FIXUP(&so->so_rcv);
1490 }
1491 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1492 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1493 }
1494 } else if (flags & MSG_PEEK)
1495 moff += len;
1496 else {
1497 if (mp != NULL) {
1498 mt = m_copym(m, 0, len, M_NOWAIT);
1499 if (__predict_false(mt == NULL)) {
1500 sounlock(so);
1501 mt = m_copym(m, 0, len, M_WAIT);
1502 solock(so);
1503 }
1504 *mp = mt;
1505 }
1506 m->m_data += len;
1507 m->m_len -= len;
1508 so->so_rcv.sb_cc -= len;
1509 }
1510 if (so->so_oobmark) {
1511 if ((flags & MSG_PEEK) == 0) {
1512 so->so_oobmark -= len;
1513 if (so->so_oobmark == 0) {
1514 so->so_state |= SS_RCVATMARK;
1515 break;
1516 }
1517 } else {
1518 offset += len;
1519 if (offset == so->so_oobmark)
1520 break;
1521 }
1522 }
1523 if (flags & MSG_EOR)
1524 break;
1525 /*
1526 * If the MSG_WAITALL flag is set (for non-atomic socket),
1527 * we must not quit until "uio->uio_resid == 0" or an error
1528 * termination. If a signal/timeout occurs, return
1529 * with a short count but without error.
1530 * Keep sockbuf locked against other readers.
1531 */
1532 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1533 !sosendallatonce(so) && !nextrecord) {
1534 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1535 break;
1536 /*
1537 * If we are peeking and the socket receive buffer is
1538 * full, stop since we can't get more data to peek at.
1539 */
1540 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1541 break;
1542 /*
1543 * If we've drained the socket buffer, tell the
1544 * protocol in case it needs to do something to
1545 * get it filled again.
1546 */
1547 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1548 (*pr->pr_usrreq)(so, PRU_RCVD,
1549 NULL, (struct mbuf *)(long)flags, NULL, l);
1550 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1551 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1552 error = sbwait(&so->so_rcv);
1553 if (error != 0) {
1554 sbunlock(&so->so_rcv);
1555 sounlock(so);
1556 splx(s);
1557 return 0;
1558 }
1559 if ((m = so->so_rcv.sb_mb) != NULL)
1560 nextrecord = m->m_nextpkt;
1561 }
1562 }
1563
1564 if (m && atomic) {
1565 flags |= MSG_TRUNC;
1566 if ((flags & MSG_PEEK) == 0)
1567 (void) sbdroprecord(&so->so_rcv);
1568 }
1569 if ((flags & MSG_PEEK) == 0) {
1570 if (m == NULL) {
1571 /*
1572 * First part is an inline SB_EMPTY_FIXUP(). Second
1573 * part makes sure sb_lastrecord is up-to-date if
1574 * there is still data in the socket buffer.
1575 */
1576 so->so_rcv.sb_mb = nextrecord;
1577 if (so->so_rcv.sb_mb == NULL) {
1578 so->so_rcv.sb_mbtail = NULL;
1579 so->so_rcv.sb_lastrecord = NULL;
1580 } else if (nextrecord->m_nextpkt == NULL)
1581 so->so_rcv.sb_lastrecord = nextrecord;
1582 }
1583 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1584 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1585 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1586 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1587 (struct mbuf *)(long)flags, NULL, l);
1588 }
1589 if (orig_resid == uio->uio_resid && orig_resid &&
1590 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1591 sbunlock(&so->so_rcv);
1592 goto restart;
1593 }
1594
1595 if (flagsp != NULL)
1596 *flagsp |= flags;
1597 release:
1598 sbunlock(&so->so_rcv);
1599 sounlock(so);
1600 splx(s);
1601 return error;
1602 }
1603
1604 int
1605 soshutdown(struct socket *so, int how)
1606 {
1607 const struct protosw *pr;
1608 int error;
1609
1610 KASSERT(solocked(so));
1611
1612 pr = so->so_proto;
1613 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1614 return (EINVAL);
1615
1616 if (how == SHUT_RD || how == SHUT_RDWR) {
1617 sorflush(so);
1618 error = 0;
1619 }
1620 if (how == SHUT_WR || how == SHUT_RDWR)
1621 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1622 NULL, NULL, NULL);
1623
1624 return error;
1625 }
1626
1627 int
1628 sodrain(struct socket *so)
1629 {
1630 int error;
1631
1632 solock(so);
1633 so->so_state |= SS_ISDRAINING;
1634 cv_broadcast(&so->so_cv);
1635 error = soshutdown(so, SHUT_RDWR);
1636 sounlock(so);
1637
1638 return error;
1639 }
1640
1641 void
1642 sorflush(struct socket *so)
1643 {
1644 struct sockbuf *sb, asb;
1645 const struct protosw *pr;
1646
1647 KASSERT(solocked(so));
1648
1649 sb = &so->so_rcv;
1650 pr = so->so_proto;
1651 socantrcvmore(so);
1652 sb->sb_flags |= SB_NOINTR;
1653 (void )sblock(sb, M_WAITOK);
1654 sbunlock(sb);
1655 asb = *sb;
1656 /*
1657 * Clear most of the sockbuf structure, but leave some of the
1658 * fields valid.
1659 */
1660 memset(&sb->sb_startzero, 0,
1661 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1662 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1663 sounlock(so);
1664 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1665 solock(so);
1666 }
1667 sbrelease(&asb, so);
1668 }
1669
1670 /*
1671 * internal set SOL_SOCKET options
1672 */
1673 static int
1674 sosetopt1(struct socket *so, const struct sockopt *sopt)
1675 {
1676 int error = EINVAL, optval, opt;
1677 struct linger l;
1678 struct timeval tv;
1679
1680 switch ((opt = sopt->sopt_name)) {
1681
1682 case SO_ACCEPTFILTER:
1683 error = accept_filt_setopt(so, sopt);
1684 KASSERT(solocked(so));
1685 break;
1686
1687 case SO_LINGER:
1688 error = sockopt_get(sopt, &l, sizeof(l));
1689 solock(so);
1690 if (error)
1691 break;
1692 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1693 l.l_linger > (INT_MAX / hz)) {
1694 error = EDOM;
1695 break;
1696 }
1697 so->so_linger = l.l_linger;
1698 if (l.l_onoff)
1699 so->so_options |= SO_LINGER;
1700 else
1701 so->so_options &= ~SO_LINGER;
1702 break;
1703
1704 case SO_DEBUG:
1705 case SO_KEEPALIVE:
1706 case SO_DONTROUTE:
1707 case SO_USELOOPBACK:
1708 case SO_BROADCAST:
1709 case SO_REUSEADDR:
1710 case SO_REUSEPORT:
1711 case SO_OOBINLINE:
1712 case SO_TIMESTAMP:
1713 #ifdef SO_OTIMESTAMP
1714 case SO_OTIMESTAMP:
1715 #endif
1716 error = sockopt_getint(sopt, &optval);
1717 solock(so);
1718 if (error)
1719 break;
1720 if (optval)
1721 so->so_options |= opt;
1722 else
1723 so->so_options &= ~opt;
1724 break;
1725
1726 case SO_SNDBUF:
1727 case SO_RCVBUF:
1728 case SO_SNDLOWAT:
1729 case SO_RCVLOWAT:
1730 error = sockopt_getint(sopt, &optval);
1731 solock(so);
1732 if (error)
1733 break;
1734
1735 /*
1736 * Values < 1 make no sense for any of these
1737 * options, so disallow them.
1738 */
1739 if (optval < 1) {
1740 error = EINVAL;
1741 break;
1742 }
1743
1744 switch (opt) {
1745 case SO_SNDBUF:
1746 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1747 error = ENOBUFS;
1748 break;
1749 }
1750 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1751 break;
1752
1753 case SO_RCVBUF:
1754 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1755 error = ENOBUFS;
1756 break;
1757 }
1758 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1759 break;
1760
1761 /*
1762 * Make sure the low-water is never greater than
1763 * the high-water.
1764 */
1765 case SO_SNDLOWAT:
1766 if (optval > so->so_snd.sb_hiwat)
1767 optval = so->so_snd.sb_hiwat;
1768
1769 so->so_snd.sb_lowat = optval;
1770 break;
1771
1772 case SO_RCVLOWAT:
1773 if (optval > so->so_rcv.sb_hiwat)
1774 optval = so->so_rcv.sb_hiwat;
1775
1776 so->so_rcv.sb_lowat = optval;
1777 break;
1778 }
1779 break;
1780
1781 #ifdef COMPAT_50
1782 case SO_OSNDTIMEO:
1783 case SO_ORCVTIMEO: {
1784 struct timeval50 otv;
1785 error = sockopt_get(sopt, &otv, sizeof(otv));
1786 if (error) {
1787 solock(so);
1788 break;
1789 }
1790 timeval50_to_timeval(&otv, &tv);
1791 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1792 error = 0;
1793 /*FALLTHROUGH*/
1794 }
1795 #endif /* COMPAT_50 */
1796
1797 case SO_SNDTIMEO:
1798 case SO_RCVTIMEO:
1799 if (error)
1800 error = sockopt_get(sopt, &tv, sizeof(tv));
1801 solock(so);
1802 if (error)
1803 break;
1804
1805 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1806 error = EDOM;
1807 break;
1808 }
1809
1810 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1811 if (optval == 0 && tv.tv_usec != 0)
1812 optval = 1;
1813
1814 switch (opt) {
1815 case SO_SNDTIMEO:
1816 so->so_snd.sb_timeo = optval;
1817 break;
1818 case SO_RCVTIMEO:
1819 so->so_rcv.sb_timeo = optval;
1820 break;
1821 }
1822 break;
1823
1824 default:
1825 solock(so);
1826 error = ENOPROTOOPT;
1827 break;
1828 }
1829 KASSERT(solocked(so));
1830 return error;
1831 }
1832
1833 int
1834 sosetopt(struct socket *so, struct sockopt *sopt)
1835 {
1836 int error, prerr;
1837
1838 if (sopt->sopt_level == SOL_SOCKET) {
1839 error = sosetopt1(so, sopt);
1840 KASSERT(solocked(so));
1841 } else {
1842 error = ENOPROTOOPT;
1843 solock(so);
1844 }
1845
1846 if ((error == 0 || error == ENOPROTOOPT) &&
1847 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1848 /* give the protocol stack a shot */
1849 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1850 if (prerr == 0)
1851 error = 0;
1852 else if (prerr != ENOPROTOOPT)
1853 error = prerr;
1854 }
1855 sounlock(so);
1856 return error;
1857 }
1858
1859 /*
1860 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1861 */
1862 int
1863 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1864 const void *val, size_t valsize)
1865 {
1866 struct sockopt sopt;
1867 int error;
1868
1869 KASSERT(valsize == 0 || val != NULL);
1870
1871 sockopt_init(&sopt, level, name, valsize);
1872 sockopt_set(&sopt, val, valsize);
1873
1874 error = sosetopt(so, &sopt);
1875
1876 sockopt_destroy(&sopt);
1877
1878 return error;
1879 }
1880
1881 /*
1882 * internal get SOL_SOCKET options
1883 */
1884 static int
1885 sogetopt1(struct socket *so, struct sockopt *sopt)
1886 {
1887 int error, optval, opt;
1888 struct linger l;
1889 struct timeval tv;
1890
1891 switch ((opt = sopt->sopt_name)) {
1892
1893 case SO_ACCEPTFILTER:
1894 error = accept_filt_getopt(so, sopt);
1895 break;
1896
1897 case SO_LINGER:
1898 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1899 l.l_linger = so->so_linger;
1900
1901 error = sockopt_set(sopt, &l, sizeof(l));
1902 break;
1903
1904 case SO_USELOOPBACK:
1905 case SO_DONTROUTE:
1906 case SO_DEBUG:
1907 case SO_KEEPALIVE:
1908 case SO_REUSEADDR:
1909 case SO_REUSEPORT:
1910 case SO_BROADCAST:
1911 case SO_OOBINLINE:
1912 case SO_TIMESTAMP:
1913 #ifdef SO_OTIMESTAMP
1914 case SO_OTIMESTAMP:
1915 #endif
1916 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1917 break;
1918
1919 case SO_TYPE:
1920 error = sockopt_setint(sopt, so->so_type);
1921 break;
1922
1923 case SO_ERROR:
1924 error = sockopt_setint(sopt, so->so_error);
1925 so->so_error = 0;
1926 break;
1927
1928 case SO_SNDBUF:
1929 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1930 break;
1931
1932 case SO_RCVBUF:
1933 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1934 break;
1935
1936 case SO_SNDLOWAT:
1937 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1938 break;
1939
1940 case SO_RCVLOWAT:
1941 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1942 break;
1943
1944 #ifdef COMPAT_50
1945 case SO_OSNDTIMEO:
1946 case SO_ORCVTIMEO: {
1947 struct timeval50 otv;
1948
1949 optval = (opt == SO_OSNDTIMEO ?
1950 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1951
1952 otv.tv_sec = optval / hz;
1953 otv.tv_usec = (optval % hz) * tick;
1954
1955 error = sockopt_set(sopt, &otv, sizeof(otv));
1956 break;
1957 }
1958 #endif /* COMPAT_50 */
1959
1960 case SO_SNDTIMEO:
1961 case SO_RCVTIMEO:
1962 optval = (opt == SO_SNDTIMEO ?
1963 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1964
1965 tv.tv_sec = optval / hz;
1966 tv.tv_usec = (optval % hz) * tick;
1967
1968 error = sockopt_set(sopt, &tv, sizeof(tv));
1969 break;
1970
1971 case SO_OVERFLOWED:
1972 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1973 break;
1974
1975 default:
1976 error = ENOPROTOOPT;
1977 break;
1978 }
1979
1980 return (error);
1981 }
1982
1983 int
1984 sogetopt(struct socket *so, struct sockopt *sopt)
1985 {
1986 int error;
1987
1988 solock(so);
1989 if (sopt->sopt_level != SOL_SOCKET) {
1990 if (so->so_proto && so->so_proto->pr_ctloutput) {
1991 error = ((*so->so_proto->pr_ctloutput)
1992 (PRCO_GETOPT, so, sopt));
1993 } else
1994 error = (ENOPROTOOPT);
1995 } else {
1996 error = sogetopt1(so, sopt);
1997 }
1998 sounlock(so);
1999 return (error);
2000 }
2001
2002 /*
2003 * alloc sockopt data buffer buffer
2004 * - will be released at destroy
2005 */
2006 static int
2007 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2008 {
2009
2010 KASSERT(sopt->sopt_size == 0);
2011
2012 if (len > sizeof(sopt->sopt_buf)) {
2013 sopt->sopt_data = kmem_zalloc(len, kmflag);
2014 if (sopt->sopt_data == NULL)
2015 return ENOMEM;
2016 } else
2017 sopt->sopt_data = sopt->sopt_buf;
2018
2019 sopt->sopt_size = len;
2020 return 0;
2021 }
2022
2023 /*
2024 * initialise sockopt storage
2025 * - MAY sleep during allocation
2026 */
2027 void
2028 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2029 {
2030
2031 memset(sopt, 0, sizeof(*sopt));
2032
2033 sopt->sopt_level = level;
2034 sopt->sopt_name = name;
2035 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2036 }
2037
2038 /*
2039 * destroy sockopt storage
2040 * - will release any held memory references
2041 */
2042 void
2043 sockopt_destroy(struct sockopt *sopt)
2044 {
2045
2046 if (sopt->sopt_data != sopt->sopt_buf)
2047 kmem_free(sopt->sopt_data, sopt->sopt_size);
2048
2049 memset(sopt, 0, sizeof(*sopt));
2050 }
2051
2052 /*
2053 * set sockopt value
2054 * - value is copied into sockopt
2055 * - memory is allocated when necessary, will not sleep
2056 */
2057 int
2058 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2059 {
2060 int error;
2061
2062 if (sopt->sopt_size == 0) {
2063 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2064 if (error)
2065 return error;
2066 }
2067
2068 KASSERT(sopt->sopt_size == len);
2069 memcpy(sopt->sopt_data, buf, len);
2070 return 0;
2071 }
2072
2073 /*
2074 * common case of set sockopt integer value
2075 */
2076 int
2077 sockopt_setint(struct sockopt *sopt, int val)
2078 {
2079
2080 return sockopt_set(sopt, &val, sizeof(int));
2081 }
2082
2083 /*
2084 * get sockopt value
2085 * - correct size must be given
2086 */
2087 int
2088 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2089 {
2090
2091 if (sopt->sopt_size != len)
2092 return EINVAL;
2093
2094 memcpy(buf, sopt->sopt_data, len);
2095 return 0;
2096 }
2097
2098 /*
2099 * common case of get sockopt integer value
2100 */
2101 int
2102 sockopt_getint(const struct sockopt *sopt, int *valp)
2103 {
2104
2105 return sockopt_get(sopt, valp, sizeof(int));
2106 }
2107
2108 /*
2109 * set sockopt value from mbuf
2110 * - ONLY for legacy code
2111 * - mbuf is released by sockopt
2112 * - will not sleep
2113 */
2114 int
2115 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2116 {
2117 size_t len;
2118 int error;
2119
2120 len = m_length(m);
2121
2122 if (sopt->sopt_size == 0) {
2123 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2124 if (error)
2125 return error;
2126 }
2127
2128 KASSERT(sopt->sopt_size == len);
2129 m_copydata(m, 0, len, sopt->sopt_data);
2130 m_freem(m);
2131
2132 return 0;
2133 }
2134
2135 /*
2136 * get sockopt value into mbuf
2137 * - ONLY for legacy code
2138 * - mbuf to be released by the caller
2139 * - will not sleep
2140 */
2141 struct mbuf *
2142 sockopt_getmbuf(const struct sockopt *sopt)
2143 {
2144 struct mbuf *m;
2145
2146 if (sopt->sopt_size > MCLBYTES)
2147 return NULL;
2148
2149 m = m_get(M_DONTWAIT, MT_SOOPTS);
2150 if (m == NULL)
2151 return NULL;
2152
2153 if (sopt->sopt_size > MLEN) {
2154 MCLGET(m, M_DONTWAIT);
2155 if ((m->m_flags & M_EXT) == 0) {
2156 m_free(m);
2157 return NULL;
2158 }
2159 }
2160
2161 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2162 m->m_len = sopt->sopt_size;
2163
2164 return m;
2165 }
2166
2167 void
2168 sohasoutofband(struct socket *so)
2169 {
2170
2171 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2172 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2173 }
2174
2175 static void
2176 filt_sordetach(struct knote *kn)
2177 {
2178 struct socket *so;
2179
2180 so = ((file_t *)kn->kn_obj)->f_data;
2181 solock(so);
2182 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2183 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2184 so->so_rcv.sb_flags &= ~SB_KNOTE;
2185 sounlock(so);
2186 }
2187
2188 /*ARGSUSED*/
2189 static int
2190 filt_soread(struct knote *kn, long hint)
2191 {
2192 struct socket *so;
2193 int rv;
2194
2195 so = ((file_t *)kn->kn_obj)->f_data;
2196 if (hint != NOTE_SUBMIT)
2197 solock(so);
2198 kn->kn_data = so->so_rcv.sb_cc;
2199 if (so->so_state & SS_CANTRCVMORE) {
2200 kn->kn_flags |= EV_EOF;
2201 kn->kn_fflags = so->so_error;
2202 rv = 1;
2203 } else if (so->so_error) /* temporary udp error */
2204 rv = 1;
2205 else if (kn->kn_sfflags & NOTE_LOWAT)
2206 rv = (kn->kn_data >= kn->kn_sdata);
2207 else
2208 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2209 if (hint != NOTE_SUBMIT)
2210 sounlock(so);
2211 return rv;
2212 }
2213
2214 static void
2215 filt_sowdetach(struct knote *kn)
2216 {
2217 struct socket *so;
2218
2219 so = ((file_t *)kn->kn_obj)->f_data;
2220 solock(so);
2221 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2222 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2223 so->so_snd.sb_flags &= ~SB_KNOTE;
2224 sounlock(so);
2225 }
2226
2227 /*ARGSUSED*/
2228 static int
2229 filt_sowrite(struct knote *kn, long hint)
2230 {
2231 struct socket *so;
2232 int rv;
2233
2234 so = ((file_t *)kn->kn_obj)->f_data;
2235 if (hint != NOTE_SUBMIT)
2236 solock(so);
2237 kn->kn_data = sbspace(&so->so_snd);
2238 if (so->so_state & SS_CANTSENDMORE) {
2239 kn->kn_flags |= EV_EOF;
2240 kn->kn_fflags = so->so_error;
2241 rv = 1;
2242 } else if (so->so_error) /* temporary udp error */
2243 rv = 1;
2244 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2245 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2246 rv = 0;
2247 else if (kn->kn_sfflags & NOTE_LOWAT)
2248 rv = (kn->kn_data >= kn->kn_sdata);
2249 else
2250 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2251 if (hint != NOTE_SUBMIT)
2252 sounlock(so);
2253 return rv;
2254 }
2255
2256 /*ARGSUSED*/
2257 static int
2258 filt_solisten(struct knote *kn, long hint)
2259 {
2260 struct socket *so;
2261 int rv;
2262
2263 so = ((file_t *)kn->kn_obj)->f_data;
2264
2265 /*
2266 * Set kn_data to number of incoming connections, not
2267 * counting partial (incomplete) connections.
2268 */
2269 if (hint != NOTE_SUBMIT)
2270 solock(so);
2271 kn->kn_data = so->so_qlen;
2272 rv = (kn->kn_data > 0);
2273 if (hint != NOTE_SUBMIT)
2274 sounlock(so);
2275 return rv;
2276 }
2277
2278 static const struct filterops solisten_filtops =
2279 { 1, NULL, filt_sordetach, filt_solisten };
2280 static const struct filterops soread_filtops =
2281 { 1, NULL, filt_sordetach, filt_soread };
2282 static const struct filterops sowrite_filtops =
2283 { 1, NULL, filt_sowdetach, filt_sowrite };
2284
2285 int
2286 soo_kqfilter(struct file *fp, struct knote *kn)
2287 {
2288 struct socket *so;
2289 struct sockbuf *sb;
2290
2291 so = ((file_t *)kn->kn_obj)->f_data;
2292 solock(so);
2293 switch (kn->kn_filter) {
2294 case EVFILT_READ:
2295 if (so->so_options & SO_ACCEPTCONN)
2296 kn->kn_fop = &solisten_filtops;
2297 else
2298 kn->kn_fop = &soread_filtops;
2299 sb = &so->so_rcv;
2300 break;
2301 case EVFILT_WRITE:
2302 kn->kn_fop = &sowrite_filtops;
2303 sb = &so->so_snd;
2304 break;
2305 default:
2306 sounlock(so);
2307 return (EINVAL);
2308 }
2309 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2310 sb->sb_flags |= SB_KNOTE;
2311 sounlock(so);
2312 return (0);
2313 }
2314
2315 static int
2316 sodopoll(struct socket *so, int events)
2317 {
2318 int revents;
2319
2320 revents = 0;
2321
2322 if (events & (POLLIN | POLLRDNORM))
2323 if (soreadable(so))
2324 revents |= events & (POLLIN | POLLRDNORM);
2325
2326 if (events & (POLLOUT | POLLWRNORM))
2327 if (sowritable(so))
2328 revents |= events & (POLLOUT | POLLWRNORM);
2329
2330 if (events & (POLLPRI | POLLRDBAND))
2331 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2332 revents |= events & (POLLPRI | POLLRDBAND);
2333
2334 return revents;
2335 }
2336
2337 int
2338 sopoll(struct socket *so, int events)
2339 {
2340 int revents = 0;
2341
2342 #ifndef DIAGNOSTIC
2343 /*
2344 * Do a quick, unlocked check in expectation that the socket
2345 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2346 * as the solocked() assertions will fail.
2347 */
2348 if ((revents = sodopoll(so, events)) != 0)
2349 return revents;
2350 #endif
2351
2352 solock(so);
2353 if ((revents = sodopoll(so, events)) == 0) {
2354 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2355 selrecord(curlwp, &so->so_rcv.sb_sel);
2356 so->so_rcv.sb_flags |= SB_NOTIFY;
2357 }
2358
2359 if (events & (POLLOUT | POLLWRNORM)) {
2360 selrecord(curlwp, &so->so_snd.sb_sel);
2361 so->so_snd.sb_flags |= SB_NOTIFY;
2362 }
2363 }
2364 sounlock(so);
2365
2366 return revents;
2367 }
2368
2369
2370 #include <sys/sysctl.h>
2371
2372 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2373
2374 /*
2375 * sysctl helper routine for kern.somaxkva. ensures that the given
2376 * value is not too small.
2377 * (XXX should we maybe make sure it's not too large as well?)
2378 */
2379 static int
2380 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2381 {
2382 int error, new_somaxkva;
2383 struct sysctlnode node;
2384
2385 new_somaxkva = somaxkva;
2386 node = *rnode;
2387 node.sysctl_data = &new_somaxkva;
2388 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2389 if (error || newp == NULL)
2390 return (error);
2391
2392 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2393 return (EINVAL);
2394
2395 mutex_enter(&so_pendfree_lock);
2396 somaxkva = new_somaxkva;
2397 cv_broadcast(&socurkva_cv);
2398 mutex_exit(&so_pendfree_lock);
2399
2400 return (error);
2401 }
2402
2403 static void
2404 sysctl_kern_somaxkva_setup(void)
2405 {
2406
2407 KASSERT(socket_sysctllog == NULL);
2408 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2409 CTLFLAG_PERMANENT,
2410 CTLTYPE_NODE, "kern", NULL,
2411 NULL, 0, NULL, 0,
2412 CTL_KERN, CTL_EOL);
2413
2414 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2415 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2416 CTLTYPE_INT, "somaxkva",
2417 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2418 "used for socket buffers"),
2419 sysctl_kern_somaxkva, 0, NULL, 0,
2420 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2421 }
2422