Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.195
      1 /*	$NetBSD: uipc_socket.c,v 1.195 2009/12/09 21:32:59 dsl Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.195 2009/12/09 21:32:59 dsl Exp $");
     67 
     68 #include "opt_compat_netbsd.h"
     69 #include "opt_sock_counters.h"
     70 #include "opt_sosend_loan.h"
     71 #include "opt_mbuftrace.h"
     72 #include "opt_somaxkva.h"
     73 #include "opt_multiprocessor.h"	/* XXX */
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/proc.h>
     78 #include <sys/file.h>
     79 #include <sys/filedesc.h>
     80 #include <sys/kmem.h>
     81 #include <sys/mbuf.h>
     82 #include <sys/domain.h>
     83 #include <sys/kernel.h>
     84 #include <sys/protosw.h>
     85 #include <sys/socket.h>
     86 #include <sys/socketvar.h>
     87 #include <sys/signalvar.h>
     88 #include <sys/resourcevar.h>
     89 #include <sys/uidinfo.h>
     90 #include <sys/event.h>
     91 #include <sys/poll.h>
     92 #include <sys/kauth.h>
     93 #include <sys/mutex.h>
     94 #include <sys/condvar.h>
     95 
     96 #ifdef COMPAT_50
     97 #include <compat/sys/time.h>
     98 #include <compat/sys/socket.h>
     99 #endif
    100 
    101 #include <uvm/uvm.h>
    102 
    103 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
    104 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    105 
    106 extern const struct fileops socketops;
    107 
    108 extern int	somaxconn;			/* patchable (XXX sysctl) */
    109 int		somaxconn = SOMAXCONN;
    110 kmutex_t	*softnet_lock;
    111 
    112 #ifdef SOSEND_COUNTERS
    113 #include <sys/device.h>
    114 
    115 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    116     NULL, "sosend", "loan big");
    117 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    118     NULL, "sosend", "copy big");
    119 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    120     NULL, "sosend", "copy small");
    121 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    122     NULL, "sosend", "kva limit");
    123 
    124 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    125 
    126 EVCNT_ATTACH_STATIC(sosend_loan_big);
    127 EVCNT_ATTACH_STATIC(sosend_copy_big);
    128 EVCNT_ATTACH_STATIC(sosend_copy_small);
    129 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    130 #else
    131 
    132 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    133 
    134 #endif /* SOSEND_COUNTERS */
    135 
    136 static struct callback_entry sokva_reclaimerentry;
    137 
    138 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    139 int sock_loan_thresh = -1;
    140 #else
    141 int sock_loan_thresh = 4096;
    142 #endif
    143 
    144 static kmutex_t so_pendfree_lock;
    145 static struct mbuf *so_pendfree;
    146 
    147 #ifndef SOMAXKVA
    148 #define	SOMAXKVA (16 * 1024 * 1024)
    149 #endif
    150 int somaxkva = SOMAXKVA;
    151 static int socurkva;
    152 static kcondvar_t socurkva_cv;
    153 
    154 static kauth_listener_t socket_listener;
    155 
    156 #define	SOCK_LOAN_CHUNK		65536
    157 
    158 static size_t sodopendfree(void);
    159 static size_t sodopendfreel(void);
    160 
    161 static void sysctl_kern_somaxkva_setup(void);
    162 static struct sysctllog *socket_sysctllog;
    163 
    164 static vsize_t
    165 sokvareserve(struct socket *so, vsize_t len)
    166 {
    167 	int error;
    168 
    169 	mutex_enter(&so_pendfree_lock);
    170 	while (socurkva + len > somaxkva) {
    171 		size_t freed;
    172 
    173 		/*
    174 		 * try to do pendfree.
    175 		 */
    176 
    177 		freed = sodopendfreel();
    178 
    179 		/*
    180 		 * if some kva was freed, try again.
    181 		 */
    182 
    183 		if (freed)
    184 			continue;
    185 
    186 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    187 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    188 		if (error) {
    189 			len = 0;
    190 			break;
    191 		}
    192 	}
    193 	socurkva += len;
    194 	mutex_exit(&so_pendfree_lock);
    195 	return len;
    196 }
    197 
    198 static void
    199 sokvaunreserve(vsize_t len)
    200 {
    201 
    202 	mutex_enter(&so_pendfree_lock);
    203 	socurkva -= len;
    204 	cv_broadcast(&socurkva_cv);
    205 	mutex_exit(&so_pendfree_lock);
    206 }
    207 
    208 /*
    209  * sokvaalloc: allocate kva for loan.
    210  */
    211 
    212 vaddr_t
    213 sokvaalloc(vsize_t len, struct socket *so)
    214 {
    215 	vaddr_t lva;
    216 
    217 	/*
    218 	 * reserve kva.
    219 	 */
    220 
    221 	if (sokvareserve(so, len) == 0)
    222 		return 0;
    223 
    224 	/*
    225 	 * allocate kva.
    226 	 */
    227 
    228 	lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    229 	if (lva == 0) {
    230 		sokvaunreserve(len);
    231 		return (0);
    232 	}
    233 
    234 	return lva;
    235 }
    236 
    237 /*
    238  * sokvafree: free kva for loan.
    239  */
    240 
    241 void
    242 sokvafree(vaddr_t sva, vsize_t len)
    243 {
    244 
    245 	/*
    246 	 * free kva.
    247 	 */
    248 
    249 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    250 
    251 	/*
    252 	 * unreserve kva.
    253 	 */
    254 
    255 	sokvaunreserve(len);
    256 }
    257 
    258 static void
    259 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    260 {
    261 	vaddr_t sva, eva;
    262 	vsize_t len;
    263 	int npgs;
    264 
    265 	KASSERT(pgs != NULL);
    266 
    267 	eva = round_page((vaddr_t) buf + size);
    268 	sva = trunc_page((vaddr_t) buf);
    269 	len = eva - sva;
    270 	npgs = len >> PAGE_SHIFT;
    271 
    272 	pmap_kremove(sva, len);
    273 	pmap_update(pmap_kernel());
    274 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    275 	sokvafree(sva, len);
    276 }
    277 
    278 static size_t
    279 sodopendfree(void)
    280 {
    281 	size_t rv;
    282 
    283 	if (__predict_true(so_pendfree == NULL))
    284 		return 0;
    285 
    286 	mutex_enter(&so_pendfree_lock);
    287 	rv = sodopendfreel();
    288 	mutex_exit(&so_pendfree_lock);
    289 
    290 	return rv;
    291 }
    292 
    293 /*
    294  * sodopendfreel: free mbufs on "pendfree" list.
    295  * unlock and relock so_pendfree_lock when freeing mbufs.
    296  *
    297  * => called with so_pendfree_lock held.
    298  */
    299 
    300 static size_t
    301 sodopendfreel(void)
    302 {
    303 	struct mbuf *m, *next;
    304 	size_t rv = 0;
    305 
    306 	KASSERT(mutex_owned(&so_pendfree_lock));
    307 
    308 	while (so_pendfree != NULL) {
    309 		m = so_pendfree;
    310 		so_pendfree = NULL;
    311 		mutex_exit(&so_pendfree_lock);
    312 
    313 		for (; m != NULL; m = next) {
    314 			next = m->m_next;
    315 			KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
    316 			KASSERT(m->m_ext.ext_refcnt == 0);
    317 
    318 			rv += m->m_ext.ext_size;
    319 			sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    320 			    m->m_ext.ext_size);
    321 			pool_cache_put(mb_cache, m);
    322 		}
    323 
    324 		mutex_enter(&so_pendfree_lock);
    325 	}
    326 
    327 	return (rv);
    328 }
    329 
    330 void
    331 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    332 {
    333 
    334 	KASSERT(m != NULL);
    335 
    336 	/*
    337 	 * postpone freeing mbuf.
    338 	 *
    339 	 * we can't do it in interrupt context
    340 	 * because we need to put kva back to kernel_map.
    341 	 */
    342 
    343 	mutex_enter(&so_pendfree_lock);
    344 	m->m_next = so_pendfree;
    345 	so_pendfree = m;
    346 	cv_broadcast(&socurkva_cv);
    347 	mutex_exit(&so_pendfree_lock);
    348 }
    349 
    350 static long
    351 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    352 {
    353 	struct iovec *iov = uio->uio_iov;
    354 	vaddr_t sva, eva;
    355 	vsize_t len;
    356 	vaddr_t lva;
    357 	int npgs, error;
    358 	vaddr_t va;
    359 	int i;
    360 
    361 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    362 		return (0);
    363 
    364 	if (iov->iov_len < (size_t) space)
    365 		space = iov->iov_len;
    366 	if (space > SOCK_LOAN_CHUNK)
    367 		space = SOCK_LOAN_CHUNK;
    368 
    369 	eva = round_page((vaddr_t) iov->iov_base + space);
    370 	sva = trunc_page((vaddr_t) iov->iov_base);
    371 	len = eva - sva;
    372 	npgs = len >> PAGE_SHIFT;
    373 
    374 	KASSERT(npgs <= M_EXT_MAXPAGES);
    375 
    376 	lva = sokvaalloc(len, so);
    377 	if (lva == 0)
    378 		return 0;
    379 
    380 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    381 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    382 	if (error) {
    383 		sokvafree(lva, len);
    384 		return (0);
    385 	}
    386 
    387 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    388 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    389 		    VM_PROT_READ, 0);
    390 	pmap_update(pmap_kernel());
    391 
    392 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    393 
    394 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    395 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    396 
    397 	uio->uio_resid -= space;
    398 	/* uio_offset not updated, not set/used for write(2) */
    399 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    400 	uio->uio_iov->iov_len -= space;
    401 	if (uio->uio_iov->iov_len == 0) {
    402 		uio->uio_iov++;
    403 		uio->uio_iovcnt--;
    404 	}
    405 
    406 	return (space);
    407 }
    408 
    409 static int
    410 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    411 {
    412 
    413 	KASSERT(ce == &sokva_reclaimerentry);
    414 	KASSERT(obj == NULL);
    415 
    416 	sodopendfree();
    417 	if (!vm_map_starved_p(kernel_map)) {
    418 		return CALLBACK_CHAIN_ABORT;
    419 	}
    420 	return CALLBACK_CHAIN_CONTINUE;
    421 }
    422 
    423 struct mbuf *
    424 getsombuf(struct socket *so, int type)
    425 {
    426 	struct mbuf *m;
    427 
    428 	m = m_get(M_WAIT, type);
    429 	MCLAIM(m, so->so_mowner);
    430 	return m;
    431 }
    432 
    433 static int
    434 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    435     void *arg0, void *arg1, void *arg2, void *arg3)
    436 {
    437 	int result;
    438 	enum kauth_network_req req;
    439 
    440 	result = KAUTH_RESULT_DEFER;
    441 	req = (enum kauth_network_req)arg0;
    442 
    443 	if ((action != KAUTH_NETWORK_SOCKET) &&
    444 	    (action != KAUTH_NETWORK_BIND))
    445 		return result;
    446 
    447 	switch (req) {
    448 	case KAUTH_REQ_NETWORK_BIND_PORT:
    449 		result = KAUTH_RESULT_ALLOW;
    450 		break;
    451 
    452 	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
    453 		/* Normal users can only drop their own connections. */
    454 		struct socket *so = (struct socket *)arg1;
    455 		uid_t sockuid = so->so_uidinfo->ui_uid;
    456 
    457 		if (sockuid == kauth_cred_getuid(cred) ||
    458 		    sockuid == kauth_cred_geteuid(cred))
    459 			result = KAUTH_RESULT_ALLOW;
    460 
    461 		break;
    462 		}
    463 
    464 	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
    465 		/* We allow "raw" routing/bluetooth sockets to anyone. */
    466 		if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_BLUETOOTH)
    467 			result = KAUTH_RESULT_ALLOW;
    468 		else {
    469 			/* Privileged, let secmodel handle this. */
    470 			if ((u_long)arg2 == SOCK_RAW)
    471 				break;
    472 		}
    473 
    474 		result = KAUTH_RESULT_ALLOW;
    475 
    476 		break;
    477 
    478 	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
    479 		result = KAUTH_RESULT_ALLOW;
    480 
    481 		break;
    482 
    483 	default:
    484 		break;
    485 	}
    486 
    487 	return result;
    488 }
    489 
    490 void
    491 soinit(void)
    492 {
    493 
    494 	sysctl_kern_somaxkva_setup();
    495 
    496 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    497 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    498 	cv_init(&socurkva_cv, "sokva");
    499 	soinit2();
    500 
    501 	/* Set the initial adjusted socket buffer size. */
    502 	if (sb_max_set(sb_max))
    503 		panic("bad initial sb_max value: %lu", sb_max);
    504 
    505 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    506 	    &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
    507 
    508 	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    509 	    socket_listener_cb, NULL);
    510 }
    511 
    512 /*
    513  * Socket operation routines.
    514  * These routines are called by the routines in
    515  * sys_socket.c or from a system process, and
    516  * implement the semantics of socket operations by
    517  * switching out to the protocol specific routines.
    518  */
    519 /*ARGSUSED*/
    520 int
    521 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    522 	 struct socket *lockso)
    523 {
    524 	const struct protosw	*prp;
    525 	struct socket	*so;
    526 	uid_t		uid;
    527 	int		error;
    528 	kmutex_t	*lock;
    529 
    530 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    531 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    532 	    KAUTH_ARG(proto));
    533 	if (error != 0)
    534 		return error;
    535 
    536 	if (proto)
    537 		prp = pffindproto(dom, proto, type);
    538 	else
    539 		prp = pffindtype(dom, type);
    540 	if (prp == NULL) {
    541 		/* no support for domain */
    542 		if (pffinddomain(dom) == 0)
    543 			return EAFNOSUPPORT;
    544 		/* no support for socket type */
    545 		if (proto == 0 && type != 0)
    546 			return EPROTOTYPE;
    547 		return EPROTONOSUPPORT;
    548 	}
    549 	if (prp->pr_usrreq == NULL)
    550 		return EPROTONOSUPPORT;
    551 	if (prp->pr_type != type)
    552 		return EPROTOTYPE;
    553 
    554 	so = soget(true);
    555 	so->so_type = type;
    556 	so->so_proto = prp;
    557 	so->so_send = sosend;
    558 	so->so_receive = soreceive;
    559 #ifdef MBUFTRACE
    560 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    561 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    562 	so->so_mowner = &prp->pr_domain->dom_mowner;
    563 #endif
    564 	/* so->so_cred = kauth_cred_dup(l->l_cred); */
    565 	uid = kauth_cred_geteuid(l->l_cred);
    566 	so->so_uidinfo = uid_find(uid);
    567 	so->so_egid = kauth_cred_getegid(l->l_cred);
    568 	so->so_cpid = l->l_proc->p_pid;
    569 	if (lockso != NULL) {
    570 		/* Caller wants us to share a lock. */
    571 		lock = lockso->so_lock;
    572 		so->so_lock = lock;
    573 		mutex_obj_hold(lock);
    574 		mutex_enter(lock);
    575 	} else {
    576 		/* Lock assigned and taken during PRU_ATTACH. */
    577 	}
    578 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
    579 	    (struct mbuf *)(long)proto, NULL, l);
    580 	KASSERT(solocked(so));
    581 	if (error != 0) {
    582 		so->so_state |= SS_NOFDREF;
    583 		sofree(so);
    584 		return error;
    585 	}
    586 	sounlock(so);
    587 	*aso = so;
    588 	return 0;
    589 }
    590 
    591 /* On success, write file descriptor to fdout and return zero.  On
    592  * failure, return non-zero; *fdout will be undefined.
    593  */
    594 int
    595 fsocreate(int domain, struct socket **sop, int type, int protocol,
    596     struct lwp *l, int *fdout)
    597 {
    598 	struct socket	*so;
    599 	struct file	*fp;
    600 	int		fd, error;
    601 
    602 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    603 		return (error);
    604 	fp->f_flag = FREAD|FWRITE;
    605 	fp->f_type = DTYPE_SOCKET;
    606 	fp->f_ops = &socketops;
    607 	error = socreate(domain, &so, type, protocol, l, NULL);
    608 	if (error != 0) {
    609 		fd_abort(curproc, fp, fd);
    610 	} else {
    611 		if (sop != NULL)
    612 			*sop = so;
    613 		fp->f_data = so;
    614 		fd_affix(curproc, fp, fd);
    615 		*fdout = fd;
    616 	}
    617 	return error;
    618 }
    619 
    620 int
    621 sofamily(const struct socket *so)
    622 {
    623 	const struct protosw *pr;
    624 	const struct domain *dom;
    625 
    626 	if ((pr = so->so_proto) == NULL)
    627 		return AF_UNSPEC;
    628 	if ((dom = pr->pr_domain) == NULL)
    629 		return AF_UNSPEC;
    630 	return dom->dom_family;
    631 }
    632 
    633 int
    634 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    635 {
    636 	int	error;
    637 
    638 	solock(so);
    639 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
    640 	sounlock(so);
    641 	return error;
    642 }
    643 
    644 int
    645 solisten(struct socket *so, int backlog, struct lwp *l)
    646 {
    647 	int	error;
    648 
    649 	solock(so);
    650 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    651 	    SS_ISDISCONNECTING)) != 0) {
    652 	    	sounlock(so);
    653 		return (EOPNOTSUPP);
    654 	}
    655 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
    656 	    NULL, NULL, l);
    657 	if (error != 0) {
    658 		sounlock(so);
    659 		return error;
    660 	}
    661 	if (TAILQ_EMPTY(&so->so_q))
    662 		so->so_options |= SO_ACCEPTCONN;
    663 	if (backlog < 0)
    664 		backlog = 0;
    665 	so->so_qlimit = min(backlog, somaxconn);
    666 	sounlock(so);
    667 	return 0;
    668 }
    669 
    670 void
    671 sofree(struct socket *so)
    672 {
    673 	u_int refs;
    674 
    675 	KASSERT(solocked(so));
    676 
    677 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    678 		sounlock(so);
    679 		return;
    680 	}
    681 	if (so->so_head) {
    682 		/*
    683 		 * We must not decommission a socket that's on the accept(2)
    684 		 * queue.  If we do, then accept(2) may hang after select(2)
    685 		 * indicated that the listening socket was ready.
    686 		 */
    687 		if (!soqremque(so, 0)) {
    688 			sounlock(so);
    689 			return;
    690 		}
    691 	}
    692 	if (so->so_rcv.sb_hiwat)
    693 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    694 		    RLIM_INFINITY);
    695 	if (so->so_snd.sb_hiwat)
    696 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    697 		    RLIM_INFINITY);
    698 	sbrelease(&so->so_snd, so);
    699 	KASSERT(!cv_has_waiters(&so->so_cv));
    700 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    701 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    702 	sorflush(so);
    703 	refs = so->so_aborting;	/* XXX */
    704 	/* Remove acccept filter if one is present. */
    705 	if (so->so_accf != NULL)
    706 		(void)accept_filt_clear(so);
    707 	/* kauth_cred_free(so->so_cred); */
    708 	sounlock(so);
    709 	if (refs == 0)		/* XXX */
    710 		soput(so);
    711 }
    712 
    713 /*
    714  * Close a socket on last file table reference removal.
    715  * Initiate disconnect if connected.
    716  * Free socket when disconnect complete.
    717  */
    718 int
    719 soclose(struct socket *so)
    720 {
    721 	struct socket	*so2;
    722 	int		error;
    723 	int		error2;
    724 
    725 	error = 0;
    726 	solock(so);
    727 	if (so->so_options & SO_ACCEPTCONN) {
    728 		for (;;) {
    729 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    730 				KASSERT(solocked2(so, so2));
    731 				(void) soqremque(so2, 0);
    732 				/* soabort drops the lock. */
    733 				(void) soabort(so2);
    734 				solock(so);
    735 				continue;
    736 			}
    737 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    738 				KASSERT(solocked2(so, so2));
    739 				(void) soqremque(so2, 1);
    740 				/* soabort drops the lock. */
    741 				(void) soabort(so2);
    742 				solock(so);
    743 				continue;
    744 			}
    745 			break;
    746 		}
    747 	}
    748 	if (so->so_pcb == 0)
    749 		goto discard;
    750 	if (so->so_state & SS_ISCONNECTED) {
    751 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    752 			error = sodisconnect(so);
    753 			if (error)
    754 				goto drop;
    755 		}
    756 		if (so->so_options & SO_LINGER) {
    757 			if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
    758 				goto drop;
    759 			while (so->so_state & SS_ISCONNECTED) {
    760 				error = sowait(so, true, so->so_linger * hz);
    761 				if (error)
    762 					break;
    763 			}
    764 		}
    765 	}
    766  drop:
    767 	if (so->so_pcb) {
    768 		error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    769 		    NULL, NULL, NULL, NULL);
    770 		if (error == 0)
    771 			error = error2;
    772 	}
    773  discard:
    774 	if (so->so_state & SS_NOFDREF)
    775 		panic("soclose: NOFDREF");
    776 	so->so_state |= SS_NOFDREF;
    777 	sofree(so);
    778 	return (error);
    779 }
    780 
    781 /*
    782  * Must be called with the socket locked..  Will return with it unlocked.
    783  */
    784 int
    785 soabort(struct socket *so)
    786 {
    787 	u_int refs;
    788 	int error;
    789 
    790 	KASSERT(solocked(so));
    791 	KASSERT(so->so_head == NULL);
    792 
    793 	so->so_aborting++;		/* XXX */
    794 	error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
    795 	    NULL, NULL, NULL);
    796 	refs = --so->so_aborting;	/* XXX */
    797 	if (error || (refs == 0)) {
    798 		sofree(so);
    799 	} else {
    800 		sounlock(so);
    801 	}
    802 	return error;
    803 }
    804 
    805 int
    806 soaccept(struct socket *so, struct mbuf *nam)
    807 {
    808 	int	error;
    809 
    810 	KASSERT(solocked(so));
    811 
    812 	error = 0;
    813 	if ((so->so_state & SS_NOFDREF) == 0)
    814 		panic("soaccept: !NOFDREF");
    815 	so->so_state &= ~SS_NOFDREF;
    816 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    817 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    818 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    819 		    NULL, nam, NULL, NULL);
    820 	else
    821 		error = ECONNABORTED;
    822 
    823 	return (error);
    824 }
    825 
    826 int
    827 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    828 {
    829 	int		error;
    830 
    831 	KASSERT(solocked(so));
    832 
    833 	if (so->so_options & SO_ACCEPTCONN)
    834 		return (EOPNOTSUPP);
    835 	/*
    836 	 * If protocol is connection-based, can only connect once.
    837 	 * Otherwise, if connected, try to disconnect first.
    838 	 * This allows user to disconnect by connecting to, e.g.,
    839 	 * a null address.
    840 	 */
    841 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    842 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    843 	    (error = sodisconnect(so))))
    844 		error = EISCONN;
    845 	else
    846 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    847 		    NULL, nam, NULL, l);
    848 	return (error);
    849 }
    850 
    851 int
    852 soconnect2(struct socket *so1, struct socket *so2)
    853 {
    854 	int	error;
    855 
    856 	KASSERT(solocked2(so1, so2));
    857 
    858 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    859 	    NULL, (struct mbuf *)so2, NULL, NULL);
    860 	return (error);
    861 }
    862 
    863 int
    864 sodisconnect(struct socket *so)
    865 {
    866 	int	error;
    867 
    868 	KASSERT(solocked(so));
    869 
    870 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    871 		error = ENOTCONN;
    872 	} else if (so->so_state & SS_ISDISCONNECTING) {
    873 		error = EALREADY;
    874 	} else {
    875 		error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    876 		    NULL, NULL, NULL, NULL);
    877 	}
    878 	sodopendfree();
    879 	return (error);
    880 }
    881 
    882 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    883 /*
    884  * Send on a socket.
    885  * If send must go all at once and message is larger than
    886  * send buffering, then hard error.
    887  * Lock against other senders.
    888  * If must go all at once and not enough room now, then
    889  * inform user that this would block and do nothing.
    890  * Otherwise, if nonblocking, send as much as possible.
    891  * The data to be sent is described by "uio" if nonzero,
    892  * otherwise by the mbuf chain "top" (which must be null
    893  * if uio is not).  Data provided in mbuf chain must be small
    894  * enough to send all at once.
    895  *
    896  * Returns nonzero on error, timeout or signal; callers
    897  * must check for short counts if EINTR/ERESTART are returned.
    898  * Data and control buffers are freed on return.
    899  */
    900 int
    901 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    902 	struct mbuf *control, int flags, struct lwp *l)
    903 {
    904 	struct mbuf	**mp, *m;
    905 	struct proc	*p;
    906 	long		space, len, resid, clen, mlen;
    907 	int		error, s, dontroute, atomic;
    908 
    909 	p = l->l_proc;
    910 	sodopendfree();
    911 	clen = 0;
    912 
    913 	/*
    914 	 * solock() provides atomicity of access.  splsoftnet() prevents
    915 	 * protocol processing soft interrupts from interrupting us and
    916 	 * blocking (expensive).
    917 	 */
    918 	s = splsoftnet();
    919 	solock(so);
    920 	atomic = sosendallatonce(so) || top;
    921 	if (uio)
    922 		resid = uio->uio_resid;
    923 	else
    924 		resid = top->m_pkthdr.len;
    925 	/*
    926 	 * In theory resid should be unsigned.
    927 	 * However, space must be signed, as it might be less than 0
    928 	 * if we over-committed, and we must use a signed comparison
    929 	 * of space and resid.  On the other hand, a negative resid
    930 	 * causes us to loop sending 0-length segments to the protocol.
    931 	 */
    932 	if (resid < 0) {
    933 		error = EINVAL;
    934 		goto out;
    935 	}
    936 	dontroute =
    937 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    938 	    (so->so_proto->pr_flags & PR_ATOMIC);
    939 	l->l_ru.ru_msgsnd++;
    940 	if (control)
    941 		clen = control->m_len;
    942  restart:
    943 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    944 		goto out;
    945 	do {
    946 		if (so->so_state & SS_CANTSENDMORE) {
    947 			error = EPIPE;
    948 			goto release;
    949 		}
    950 		if (so->so_error) {
    951 			error = so->so_error;
    952 			so->so_error = 0;
    953 			goto release;
    954 		}
    955 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    956 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    957 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    958 				    !(resid == 0 && clen != 0)) {
    959 					error = ENOTCONN;
    960 					goto release;
    961 				}
    962 			} else if (addr == 0) {
    963 				error = EDESTADDRREQ;
    964 				goto release;
    965 			}
    966 		}
    967 		space = sbspace(&so->so_snd);
    968 		if (flags & MSG_OOB)
    969 			space += 1024;
    970 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    971 		    clen > so->so_snd.sb_hiwat) {
    972 			error = EMSGSIZE;
    973 			goto release;
    974 		}
    975 		if (space < resid + clen &&
    976 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    977 			if (so->so_nbio) {
    978 				error = EWOULDBLOCK;
    979 				goto release;
    980 			}
    981 			sbunlock(&so->so_snd);
    982 			error = sbwait(&so->so_snd);
    983 			if (error)
    984 				goto out;
    985 			goto restart;
    986 		}
    987 		mp = &top;
    988 		space -= clen;
    989 		do {
    990 			if (uio == NULL) {
    991 				/*
    992 				 * Data is prepackaged in "top".
    993 				 */
    994 				resid = 0;
    995 				if (flags & MSG_EOR)
    996 					top->m_flags |= M_EOR;
    997 			} else do {
    998 				sounlock(so);
    999 				splx(s);
   1000 				if (top == NULL) {
   1001 					m = m_gethdr(M_WAIT, MT_DATA);
   1002 					mlen = MHLEN;
   1003 					m->m_pkthdr.len = 0;
   1004 					m->m_pkthdr.rcvif = NULL;
   1005 				} else {
   1006 					m = m_get(M_WAIT, MT_DATA);
   1007 					mlen = MLEN;
   1008 				}
   1009 				MCLAIM(m, so->so_snd.sb_mowner);
   1010 				if (sock_loan_thresh >= 0 &&
   1011 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
   1012 				    space >= sock_loan_thresh &&
   1013 				    (len = sosend_loan(so, uio, m,
   1014 						       space)) != 0) {
   1015 					SOSEND_COUNTER_INCR(&sosend_loan_big);
   1016 					space -= len;
   1017 					goto have_data;
   1018 				}
   1019 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
   1020 					SOSEND_COUNTER_INCR(&sosend_copy_big);
   1021 					m_clget(m, M_WAIT);
   1022 					if ((m->m_flags & M_EXT) == 0)
   1023 						goto nopages;
   1024 					mlen = MCLBYTES;
   1025 					if (atomic && top == 0) {
   1026 						len = lmin(MCLBYTES - max_hdr,
   1027 						    resid);
   1028 						m->m_data += max_hdr;
   1029 					} else
   1030 						len = lmin(MCLBYTES, resid);
   1031 					space -= len;
   1032 				} else {
   1033  nopages:
   1034 					SOSEND_COUNTER_INCR(&sosend_copy_small);
   1035 					len = lmin(lmin(mlen, resid), space);
   1036 					space -= len;
   1037 					/*
   1038 					 * For datagram protocols, leave room
   1039 					 * for protocol headers in first mbuf.
   1040 					 */
   1041 					if (atomic && top == 0 && len < mlen)
   1042 						MH_ALIGN(m, len);
   1043 				}
   1044 				error = uiomove(mtod(m, void *), (int)len, uio);
   1045  have_data:
   1046 				resid = uio->uio_resid;
   1047 				m->m_len = len;
   1048 				*mp = m;
   1049 				top->m_pkthdr.len += len;
   1050 				s = splsoftnet();
   1051 				solock(so);
   1052 				if (error != 0)
   1053 					goto release;
   1054 				mp = &m->m_next;
   1055 				if (resid <= 0) {
   1056 					if (flags & MSG_EOR)
   1057 						top->m_flags |= M_EOR;
   1058 					break;
   1059 				}
   1060 			} while (space > 0 && atomic);
   1061 
   1062 			if (so->so_state & SS_CANTSENDMORE) {
   1063 				error = EPIPE;
   1064 				goto release;
   1065 			}
   1066 			if (dontroute)
   1067 				so->so_options |= SO_DONTROUTE;
   1068 			if (resid > 0)
   1069 				so->so_state |= SS_MORETOCOME;
   1070 			error = (*so->so_proto->pr_usrreq)(so,
   1071 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
   1072 			    top, addr, control, curlwp);
   1073 			if (dontroute)
   1074 				so->so_options &= ~SO_DONTROUTE;
   1075 			if (resid > 0)
   1076 				so->so_state &= ~SS_MORETOCOME;
   1077 			clen = 0;
   1078 			control = NULL;
   1079 			top = NULL;
   1080 			mp = &top;
   1081 			if (error != 0)
   1082 				goto release;
   1083 		} while (resid && space > 0);
   1084 	} while (resid);
   1085 
   1086  release:
   1087 	sbunlock(&so->so_snd);
   1088  out:
   1089 	sounlock(so);
   1090 	splx(s);
   1091 	if (top)
   1092 		m_freem(top);
   1093 	if (control)
   1094 		m_freem(control);
   1095 	return (error);
   1096 }
   1097 
   1098 /*
   1099  * Following replacement or removal of the first mbuf on the first
   1100  * mbuf chain of a socket buffer, push necessary state changes back
   1101  * into the socket buffer so that other consumers see the values
   1102  * consistently.  'nextrecord' is the callers locally stored value of
   1103  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1104  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1105  */
   1106 static void
   1107 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1108 {
   1109 
   1110 	KASSERT(solocked(sb->sb_so));
   1111 
   1112 	/*
   1113 	 * First, update for the new value of nextrecord.  If necessary,
   1114 	 * make it the first record.
   1115 	 */
   1116 	if (sb->sb_mb != NULL)
   1117 		sb->sb_mb->m_nextpkt = nextrecord;
   1118 	else
   1119 		sb->sb_mb = nextrecord;
   1120 
   1121         /*
   1122          * Now update any dependent socket buffer fields to reflect
   1123          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1124          * the addition of a second clause that takes care of the
   1125          * case where sb_mb has been updated, but remains the last
   1126          * record.
   1127          */
   1128         if (sb->sb_mb == NULL) {
   1129                 sb->sb_mbtail = NULL;
   1130                 sb->sb_lastrecord = NULL;
   1131         } else if (sb->sb_mb->m_nextpkt == NULL)
   1132                 sb->sb_lastrecord = sb->sb_mb;
   1133 }
   1134 
   1135 /*
   1136  * Implement receive operations on a socket.
   1137  * We depend on the way that records are added to the sockbuf
   1138  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1139  * must begin with an address if the protocol so specifies,
   1140  * followed by an optional mbuf or mbufs containing ancillary data,
   1141  * and then zero or more mbufs of data.
   1142  * In order to avoid blocking network interrupts for the entire time here,
   1143  * we splx() while doing the actual copy to user space.
   1144  * Although the sockbuf is locked, new data may still be appended,
   1145  * and thus we must maintain consistency of the sockbuf during that time.
   1146  *
   1147  * The caller may receive the data as a single mbuf chain by supplying
   1148  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1149  * only for the count in uio_resid.
   1150  */
   1151 int
   1152 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1153 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1154 {
   1155 	struct lwp *l = curlwp;
   1156 	struct mbuf	*m, **mp, *mt;
   1157 	int atomic, flags, len, error, s, offset, moff, type, orig_resid;
   1158 	const struct protosw	*pr;
   1159 	struct mbuf	*nextrecord;
   1160 	int		mbuf_removed = 0;
   1161 	const struct domain *dom;
   1162 
   1163 	pr = so->so_proto;
   1164 	atomic = pr->pr_flags & PR_ATOMIC;
   1165 	dom = pr->pr_domain;
   1166 	mp = mp0;
   1167 	type = 0;
   1168 	orig_resid = uio->uio_resid;
   1169 
   1170 	if (paddr != NULL)
   1171 		*paddr = NULL;
   1172 	if (controlp != NULL)
   1173 		*controlp = NULL;
   1174 	if (flagsp != NULL)
   1175 		flags = *flagsp &~ MSG_EOR;
   1176 	else
   1177 		flags = 0;
   1178 
   1179 	if ((flags & MSG_DONTWAIT) == 0)
   1180 		sodopendfree();
   1181 
   1182 	if (flags & MSG_OOB) {
   1183 		m = m_get(M_WAIT, MT_DATA);
   1184 		solock(so);
   1185 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
   1186 		    (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
   1187 		sounlock(so);
   1188 		if (error)
   1189 			goto bad;
   1190 		do {
   1191 			error = uiomove(mtod(m, void *),
   1192 			    (int) min(uio->uio_resid, m->m_len), uio);
   1193 			m = m_free(m);
   1194 		} while (uio->uio_resid > 0 && error == 0 && m);
   1195  bad:
   1196 		if (m != NULL)
   1197 			m_freem(m);
   1198 		return error;
   1199 	}
   1200 	if (mp != NULL)
   1201 		*mp = NULL;
   1202 
   1203 	/*
   1204 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1205 	 * protocol processing soft interrupts from interrupting us and
   1206 	 * blocking (expensive).
   1207 	 */
   1208 	s = splsoftnet();
   1209 	solock(so);
   1210 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
   1211 		(*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
   1212 
   1213  restart:
   1214 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1215 		sounlock(so);
   1216 		splx(s);
   1217 		return error;
   1218 	}
   1219 
   1220 	m = so->so_rcv.sb_mb;
   1221 	/*
   1222 	 * If we have less data than requested, block awaiting more
   1223 	 * (subject to any timeout) if:
   1224 	 *   1. the current count is less than the low water mark,
   1225 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1226 	 *	receive operation at once if we block (resid <= hiwat), or
   1227 	 *   3. MSG_DONTWAIT is not set.
   1228 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1229 	 * we have to do the receive in sections, and thus risk returning
   1230 	 * a short count if a timeout or signal occurs after we start.
   1231 	 */
   1232 	if (m == NULL ||
   1233 	    ((flags & MSG_DONTWAIT) == 0 &&
   1234 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1235 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1236 	      ((flags & MSG_WAITALL) &&
   1237 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1238 	     m->m_nextpkt == NULL && !atomic)) {
   1239 #ifdef DIAGNOSTIC
   1240 		if (m == NULL && so->so_rcv.sb_cc)
   1241 			panic("receive 1");
   1242 #endif
   1243 		if (so->so_error) {
   1244 			if (m != NULL)
   1245 				goto dontblock;
   1246 			error = so->so_error;
   1247 			if ((flags & MSG_PEEK) == 0)
   1248 				so->so_error = 0;
   1249 			goto release;
   1250 		}
   1251 		if (so->so_state & SS_CANTRCVMORE) {
   1252 			if (m != NULL)
   1253 				goto dontblock;
   1254 			else
   1255 				goto release;
   1256 		}
   1257 		for (; m != NULL; m = m->m_next)
   1258 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1259 				m = so->so_rcv.sb_mb;
   1260 				goto dontblock;
   1261 			}
   1262 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1263 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1264 			error = ENOTCONN;
   1265 			goto release;
   1266 		}
   1267 		if (uio->uio_resid == 0)
   1268 			goto release;
   1269 		if (so->so_nbio || (flags & MSG_DONTWAIT)) {
   1270 			error = EWOULDBLOCK;
   1271 			goto release;
   1272 		}
   1273 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1274 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1275 		sbunlock(&so->so_rcv);
   1276 		error = sbwait(&so->so_rcv);
   1277 		if (error != 0) {
   1278 			sounlock(so);
   1279 			splx(s);
   1280 			return error;
   1281 		}
   1282 		goto restart;
   1283 	}
   1284  dontblock:
   1285 	/*
   1286 	 * On entry here, m points to the first record of the socket buffer.
   1287 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1288 	 * pointer to the next record in the socket buffer.  We must keep the
   1289 	 * various socket buffer pointers and local stack versions of the
   1290 	 * pointers in sync, pushing out modifications before dropping the
   1291 	 * socket lock, and re-reading them when picking it up.
   1292 	 *
   1293 	 * Otherwise, we will race with the network stack appending new data
   1294 	 * or records onto the socket buffer by using inconsistent/stale
   1295 	 * versions of the field, possibly resulting in socket buffer
   1296 	 * corruption.
   1297 	 *
   1298 	 * By holding the high-level sblock(), we prevent simultaneous
   1299 	 * readers from pulling off the front of the socket buffer.
   1300 	 */
   1301 	if (l != NULL)
   1302 		l->l_ru.ru_msgrcv++;
   1303 	KASSERT(m == so->so_rcv.sb_mb);
   1304 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1305 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1306 	nextrecord = m->m_nextpkt;
   1307 	if (pr->pr_flags & PR_ADDR) {
   1308 #ifdef DIAGNOSTIC
   1309 		if (m->m_type != MT_SONAME)
   1310 			panic("receive 1a");
   1311 #endif
   1312 		orig_resid = 0;
   1313 		if (flags & MSG_PEEK) {
   1314 			if (paddr)
   1315 				*paddr = m_copy(m, 0, m->m_len);
   1316 			m = m->m_next;
   1317 		} else {
   1318 			sbfree(&so->so_rcv, m);
   1319 			mbuf_removed = 1;
   1320 			if (paddr != NULL) {
   1321 				*paddr = m;
   1322 				so->so_rcv.sb_mb = m->m_next;
   1323 				m->m_next = NULL;
   1324 				m = so->so_rcv.sb_mb;
   1325 			} else {
   1326 				MFREE(m, so->so_rcv.sb_mb);
   1327 				m = so->so_rcv.sb_mb;
   1328 			}
   1329 			sbsync(&so->so_rcv, nextrecord);
   1330 		}
   1331 	}
   1332 
   1333 	/*
   1334 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1335 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1336 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1337 	 * perform externalization (or freeing if controlp == NULL).
   1338 	 */
   1339 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1340 		struct mbuf *cm = NULL, *cmn;
   1341 		struct mbuf **cme = &cm;
   1342 
   1343 		do {
   1344 			if (flags & MSG_PEEK) {
   1345 				if (controlp != NULL) {
   1346 					*controlp = m_copy(m, 0, m->m_len);
   1347 					controlp = &(*controlp)->m_next;
   1348 				}
   1349 				m = m->m_next;
   1350 			} else {
   1351 				sbfree(&so->so_rcv, m);
   1352 				so->so_rcv.sb_mb = m->m_next;
   1353 				m->m_next = NULL;
   1354 				*cme = m;
   1355 				cme = &(*cme)->m_next;
   1356 				m = so->so_rcv.sb_mb;
   1357 			}
   1358 		} while (m != NULL && m->m_type == MT_CONTROL);
   1359 		if ((flags & MSG_PEEK) == 0)
   1360 			sbsync(&so->so_rcv, nextrecord);
   1361 		for (; cm != NULL; cm = cmn) {
   1362 			cmn = cm->m_next;
   1363 			cm->m_next = NULL;
   1364 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1365 			if (controlp != NULL) {
   1366 				if (dom->dom_externalize != NULL &&
   1367 				    type == SCM_RIGHTS) {
   1368 					sounlock(so);
   1369 					splx(s);
   1370 					error = (*dom->dom_externalize)(cm, l);
   1371 					s = splsoftnet();
   1372 					solock(so);
   1373 				}
   1374 				*controlp = cm;
   1375 				while (*controlp != NULL)
   1376 					controlp = &(*controlp)->m_next;
   1377 			} else {
   1378 				/*
   1379 				 * Dispose of any SCM_RIGHTS message that went
   1380 				 * through the read path rather than recv.
   1381 				 */
   1382 				if (dom->dom_dispose != NULL &&
   1383 				    type == SCM_RIGHTS) {
   1384 				    	sounlock(so);
   1385 					(*dom->dom_dispose)(cm);
   1386 					solock(so);
   1387 				}
   1388 				m_freem(cm);
   1389 			}
   1390 		}
   1391 		if (m != NULL)
   1392 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1393 		else
   1394 			nextrecord = so->so_rcv.sb_mb;
   1395 		orig_resid = 0;
   1396 	}
   1397 
   1398 	/* If m is non-NULL, we have some data to read. */
   1399 	if (__predict_true(m != NULL)) {
   1400 		type = m->m_type;
   1401 		if (type == MT_OOBDATA)
   1402 			flags |= MSG_OOB;
   1403 	}
   1404 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1405 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1406 
   1407 	moff = 0;
   1408 	offset = 0;
   1409 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1410 		if (m->m_type == MT_OOBDATA) {
   1411 			if (type != MT_OOBDATA)
   1412 				break;
   1413 		} else if (type == MT_OOBDATA)
   1414 			break;
   1415 #ifdef DIAGNOSTIC
   1416 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1417 			panic("receive 3");
   1418 #endif
   1419 		so->so_state &= ~SS_RCVATMARK;
   1420 		len = uio->uio_resid;
   1421 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1422 			len = so->so_oobmark - offset;
   1423 		if (len > m->m_len - moff)
   1424 			len = m->m_len - moff;
   1425 		/*
   1426 		 * If mp is set, just pass back the mbufs.
   1427 		 * Otherwise copy them out via the uio, then free.
   1428 		 * Sockbuf must be consistent here (points to current mbuf,
   1429 		 * it points to next record) when we drop priority;
   1430 		 * we must note any additions to the sockbuf when we
   1431 		 * block interrupts again.
   1432 		 */
   1433 		if (mp == NULL) {
   1434 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1435 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1436 			sounlock(so);
   1437 			splx(s);
   1438 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
   1439 			s = splsoftnet();
   1440 			solock(so);
   1441 			if (error != 0) {
   1442 				/*
   1443 				 * If any part of the record has been removed
   1444 				 * (such as the MT_SONAME mbuf, which will
   1445 				 * happen when PR_ADDR, and thus also
   1446 				 * PR_ATOMIC, is set), then drop the entire
   1447 				 * record to maintain the atomicity of the
   1448 				 * receive operation.
   1449 				 *
   1450 				 * This avoids a later panic("receive 1a")
   1451 				 * when compiled with DIAGNOSTIC.
   1452 				 */
   1453 				if (m && mbuf_removed && atomic)
   1454 					(void) sbdroprecord(&so->so_rcv);
   1455 
   1456 				goto release;
   1457 			}
   1458 		} else
   1459 			uio->uio_resid -= len;
   1460 		if (len == m->m_len - moff) {
   1461 			if (m->m_flags & M_EOR)
   1462 				flags |= MSG_EOR;
   1463 			if (flags & MSG_PEEK) {
   1464 				m = m->m_next;
   1465 				moff = 0;
   1466 			} else {
   1467 				nextrecord = m->m_nextpkt;
   1468 				sbfree(&so->so_rcv, m);
   1469 				if (mp) {
   1470 					*mp = m;
   1471 					mp = &m->m_next;
   1472 					so->so_rcv.sb_mb = m = m->m_next;
   1473 					*mp = NULL;
   1474 				} else {
   1475 					MFREE(m, so->so_rcv.sb_mb);
   1476 					m = so->so_rcv.sb_mb;
   1477 				}
   1478 				/*
   1479 				 * If m != NULL, we also know that
   1480 				 * so->so_rcv.sb_mb != NULL.
   1481 				 */
   1482 				KASSERT(so->so_rcv.sb_mb == m);
   1483 				if (m) {
   1484 					m->m_nextpkt = nextrecord;
   1485 					if (nextrecord == NULL)
   1486 						so->so_rcv.sb_lastrecord = m;
   1487 				} else {
   1488 					so->so_rcv.sb_mb = nextrecord;
   1489 					SB_EMPTY_FIXUP(&so->so_rcv);
   1490 				}
   1491 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1492 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1493 			}
   1494 		} else if (flags & MSG_PEEK)
   1495 			moff += len;
   1496 		else {
   1497 			if (mp != NULL) {
   1498 				mt = m_copym(m, 0, len, M_NOWAIT);
   1499 				if (__predict_false(mt == NULL)) {
   1500 					sounlock(so);
   1501 					mt = m_copym(m, 0, len, M_WAIT);
   1502 					solock(so);
   1503 				}
   1504 				*mp = mt;
   1505 			}
   1506 			m->m_data += len;
   1507 			m->m_len -= len;
   1508 			so->so_rcv.sb_cc -= len;
   1509 		}
   1510 		if (so->so_oobmark) {
   1511 			if ((flags & MSG_PEEK) == 0) {
   1512 				so->so_oobmark -= len;
   1513 				if (so->so_oobmark == 0) {
   1514 					so->so_state |= SS_RCVATMARK;
   1515 					break;
   1516 				}
   1517 			} else {
   1518 				offset += len;
   1519 				if (offset == so->so_oobmark)
   1520 					break;
   1521 			}
   1522 		}
   1523 		if (flags & MSG_EOR)
   1524 			break;
   1525 		/*
   1526 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1527 		 * we must not quit until "uio->uio_resid == 0" or an error
   1528 		 * termination.  If a signal/timeout occurs, return
   1529 		 * with a short count but without error.
   1530 		 * Keep sockbuf locked against other readers.
   1531 		 */
   1532 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1533 		    !sosendallatonce(so) && !nextrecord) {
   1534 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1535 				break;
   1536 			/*
   1537 			 * If we are peeking and the socket receive buffer is
   1538 			 * full, stop since we can't get more data to peek at.
   1539 			 */
   1540 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1541 				break;
   1542 			/*
   1543 			 * If we've drained the socket buffer, tell the
   1544 			 * protocol in case it needs to do something to
   1545 			 * get it filled again.
   1546 			 */
   1547 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1548 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1549 				    NULL, (struct mbuf *)(long)flags, NULL, l);
   1550 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1551 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1552 			error = sbwait(&so->so_rcv);
   1553 			if (error != 0) {
   1554 				sbunlock(&so->so_rcv);
   1555 				sounlock(so);
   1556 				splx(s);
   1557 				return 0;
   1558 			}
   1559 			if ((m = so->so_rcv.sb_mb) != NULL)
   1560 				nextrecord = m->m_nextpkt;
   1561 		}
   1562 	}
   1563 
   1564 	if (m && atomic) {
   1565 		flags |= MSG_TRUNC;
   1566 		if ((flags & MSG_PEEK) == 0)
   1567 			(void) sbdroprecord(&so->so_rcv);
   1568 	}
   1569 	if ((flags & MSG_PEEK) == 0) {
   1570 		if (m == NULL) {
   1571 			/*
   1572 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1573 			 * part makes sure sb_lastrecord is up-to-date if
   1574 			 * there is still data in the socket buffer.
   1575 			 */
   1576 			so->so_rcv.sb_mb = nextrecord;
   1577 			if (so->so_rcv.sb_mb == NULL) {
   1578 				so->so_rcv.sb_mbtail = NULL;
   1579 				so->so_rcv.sb_lastrecord = NULL;
   1580 			} else if (nextrecord->m_nextpkt == NULL)
   1581 				so->so_rcv.sb_lastrecord = nextrecord;
   1582 		}
   1583 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1584 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1585 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1586 			(*pr->pr_usrreq)(so, PRU_RCVD, NULL,
   1587 			    (struct mbuf *)(long)flags, NULL, l);
   1588 	}
   1589 	if (orig_resid == uio->uio_resid && orig_resid &&
   1590 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1591 		sbunlock(&so->so_rcv);
   1592 		goto restart;
   1593 	}
   1594 
   1595 	if (flagsp != NULL)
   1596 		*flagsp |= flags;
   1597  release:
   1598 	sbunlock(&so->so_rcv);
   1599 	sounlock(so);
   1600 	splx(s);
   1601 	return error;
   1602 }
   1603 
   1604 int
   1605 soshutdown(struct socket *so, int how)
   1606 {
   1607 	const struct protosw	*pr;
   1608 	int	error;
   1609 
   1610 	KASSERT(solocked(so));
   1611 
   1612 	pr = so->so_proto;
   1613 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1614 		return (EINVAL);
   1615 
   1616 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1617 		sorflush(so);
   1618 		error = 0;
   1619 	}
   1620 	if (how == SHUT_WR || how == SHUT_RDWR)
   1621 		error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
   1622 		    NULL, NULL, NULL);
   1623 
   1624 	return error;
   1625 }
   1626 
   1627 void
   1628 soabortop(struct socket *so)
   1629 {
   1630 #if 0   /* ad@ wrote this, then disabled it as 'not working' */
   1631 	solock(so);
   1632 	so->so_state |= SS_ISABORTING;
   1633 	cv_broadcast(&so->so_cv);
   1634 	soshutdown(so, SHUT_RDWR);
   1635 	sounlock(so);
   1636 #endif
   1637 }
   1638 
   1639 void
   1640 sorflush(struct socket *so)
   1641 {
   1642 	struct sockbuf	*sb, asb;
   1643 	const struct protosw	*pr;
   1644 
   1645 	KASSERT(solocked(so));
   1646 
   1647 	sb = &so->so_rcv;
   1648 	pr = so->so_proto;
   1649 	socantrcvmore(so);
   1650 	sb->sb_flags |= SB_NOINTR;
   1651 	(void )sblock(sb, M_WAITOK);
   1652 	sbunlock(sb);
   1653 	asb = *sb;
   1654 	/*
   1655 	 * Clear most of the sockbuf structure, but leave some of the
   1656 	 * fields valid.
   1657 	 */
   1658 	memset(&sb->sb_startzero, 0,
   1659 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1660 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1661 		sounlock(so);
   1662 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1663 		solock(so);
   1664 	}
   1665 	sbrelease(&asb, so);
   1666 }
   1667 
   1668 /*
   1669  * internal set SOL_SOCKET options
   1670  */
   1671 static int
   1672 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1673 {
   1674 	int error = EINVAL, optval, opt;
   1675 	struct linger l;
   1676 	struct timeval tv;
   1677 
   1678 	switch ((opt = sopt->sopt_name)) {
   1679 
   1680 	case SO_ACCEPTFILTER:
   1681 		error = accept_filt_setopt(so, sopt);
   1682 		KASSERT(solocked(so));
   1683 		break;
   1684 
   1685   	case SO_LINGER:
   1686  		error = sockopt_get(sopt, &l, sizeof(l));
   1687 		solock(so);
   1688  		if (error)
   1689  			break;
   1690  		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1691  		    l.l_linger > (INT_MAX / hz)) {
   1692 			error = EDOM;
   1693 			break;
   1694 		}
   1695  		so->so_linger = l.l_linger;
   1696  		if (l.l_onoff)
   1697  			so->so_options |= SO_LINGER;
   1698  		else
   1699  			so->so_options &= ~SO_LINGER;
   1700    		break;
   1701 
   1702 	case SO_DEBUG:
   1703 	case SO_KEEPALIVE:
   1704 	case SO_DONTROUTE:
   1705 	case SO_USELOOPBACK:
   1706 	case SO_BROADCAST:
   1707 	case SO_REUSEADDR:
   1708 	case SO_REUSEPORT:
   1709 	case SO_OOBINLINE:
   1710 	case SO_TIMESTAMP:
   1711 #ifdef SO_OTIMESTAMP
   1712 	case SO_OTIMESTAMP:
   1713 #endif
   1714 		error = sockopt_getint(sopt, &optval);
   1715 		solock(so);
   1716 		if (error)
   1717 			break;
   1718 		if (optval)
   1719 			so->so_options |= opt;
   1720 		else
   1721 			so->so_options &= ~opt;
   1722 		break;
   1723 
   1724 	case SO_SNDBUF:
   1725 	case SO_RCVBUF:
   1726 	case SO_SNDLOWAT:
   1727 	case SO_RCVLOWAT:
   1728 		error = sockopt_getint(sopt, &optval);
   1729 		solock(so);
   1730 		if (error)
   1731 			break;
   1732 
   1733 		/*
   1734 		 * Values < 1 make no sense for any of these
   1735 		 * options, so disallow them.
   1736 		 */
   1737 		if (optval < 1) {
   1738 			error = EINVAL;
   1739 			break;
   1740 		}
   1741 
   1742 		switch (opt) {
   1743 		case SO_SNDBUF:
   1744 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
   1745 				error = ENOBUFS;
   1746 				break;
   1747 			}
   1748 			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1749 			break;
   1750 
   1751 		case SO_RCVBUF:
   1752 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
   1753 				error = ENOBUFS;
   1754 				break;
   1755 			}
   1756 			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1757 			break;
   1758 
   1759 		/*
   1760 		 * Make sure the low-water is never greater than
   1761 		 * the high-water.
   1762 		 */
   1763 		case SO_SNDLOWAT:
   1764 			if (optval > so->so_snd.sb_hiwat)
   1765 				optval = so->so_snd.sb_hiwat;
   1766 
   1767 			so->so_snd.sb_lowat = optval;
   1768 			break;
   1769 
   1770 		case SO_RCVLOWAT:
   1771 			if (optval > so->so_rcv.sb_hiwat)
   1772 				optval = so->so_rcv.sb_hiwat;
   1773 
   1774 			so->so_rcv.sb_lowat = optval;
   1775 			break;
   1776 		}
   1777 		break;
   1778 
   1779 #ifdef COMPAT_50
   1780 	case SO_OSNDTIMEO:
   1781 	case SO_ORCVTIMEO: {
   1782 		struct timeval50 otv;
   1783 		error = sockopt_get(sopt, &otv, sizeof(otv));
   1784 		if (error) {
   1785 			solock(so);
   1786 			break;
   1787 		}
   1788 		timeval50_to_timeval(&otv, &tv);
   1789 		opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
   1790 		error = 0;
   1791 		/*FALLTHROUGH*/
   1792 	}
   1793 #endif /* COMPAT_50 */
   1794 
   1795 	case SO_SNDTIMEO:
   1796 	case SO_RCVTIMEO:
   1797 		if (error)
   1798 			error = sockopt_get(sopt, &tv, sizeof(tv));
   1799 		solock(so);
   1800 		if (error)
   1801 			break;
   1802 
   1803 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
   1804 			error = EDOM;
   1805 			break;
   1806 		}
   1807 
   1808 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1809 		if (optval == 0 && tv.tv_usec != 0)
   1810 			optval = 1;
   1811 
   1812 		switch (opt) {
   1813 		case SO_SNDTIMEO:
   1814 			so->so_snd.sb_timeo = optval;
   1815 			break;
   1816 		case SO_RCVTIMEO:
   1817 			so->so_rcv.sb_timeo = optval;
   1818 			break;
   1819 		}
   1820 		break;
   1821 
   1822 	default:
   1823 		solock(so);
   1824 		error = ENOPROTOOPT;
   1825 		break;
   1826 	}
   1827 	KASSERT(solocked(so));
   1828 	return error;
   1829 }
   1830 
   1831 int
   1832 sosetopt(struct socket *so, struct sockopt *sopt)
   1833 {
   1834 	int error, prerr;
   1835 
   1836 	if (sopt->sopt_level == SOL_SOCKET) {
   1837 		error = sosetopt1(so, sopt);
   1838 		KASSERT(solocked(so));
   1839 	} else {
   1840 		error = ENOPROTOOPT;
   1841 		solock(so);
   1842 	}
   1843 
   1844 	if ((error == 0 || error == ENOPROTOOPT) &&
   1845 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1846 		/* give the protocol stack a shot */
   1847 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1848 		if (prerr == 0)
   1849 			error = 0;
   1850 		else if (prerr != ENOPROTOOPT)
   1851 			error = prerr;
   1852 	}
   1853 	sounlock(so);
   1854 	return error;
   1855 }
   1856 
   1857 /*
   1858  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1859  */
   1860 int
   1861 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1862     const void *val, size_t valsize)
   1863 {
   1864 	struct sockopt sopt;
   1865 	int error;
   1866 
   1867 	KASSERT(valsize == 0 || val != NULL);
   1868 
   1869 	sockopt_init(&sopt, level, name, valsize);
   1870 	sockopt_set(&sopt, val, valsize);
   1871 
   1872 	error = sosetopt(so, &sopt);
   1873 
   1874 	sockopt_destroy(&sopt);
   1875 
   1876 	return error;
   1877 }
   1878 
   1879 /*
   1880  * internal get SOL_SOCKET options
   1881  */
   1882 static int
   1883 sogetopt1(struct socket *so, struct sockopt *sopt)
   1884 {
   1885 	int error, optval, opt;
   1886 	struct linger l;
   1887 	struct timeval tv;
   1888 
   1889 	switch ((opt = sopt->sopt_name)) {
   1890 
   1891 	case SO_ACCEPTFILTER:
   1892 		error = accept_filt_getopt(so, sopt);
   1893 		break;
   1894 
   1895 	case SO_LINGER:
   1896 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1897 		l.l_linger = so->so_linger;
   1898 
   1899 		error = sockopt_set(sopt, &l, sizeof(l));
   1900 		break;
   1901 
   1902 	case SO_USELOOPBACK:
   1903 	case SO_DONTROUTE:
   1904 	case SO_DEBUG:
   1905 	case SO_KEEPALIVE:
   1906 	case SO_REUSEADDR:
   1907 	case SO_REUSEPORT:
   1908 	case SO_BROADCAST:
   1909 	case SO_OOBINLINE:
   1910 	case SO_TIMESTAMP:
   1911 #ifdef SO_OTIMESTAMP
   1912 	case SO_OTIMESTAMP:
   1913 #endif
   1914 		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
   1915 		break;
   1916 
   1917 	case SO_TYPE:
   1918 		error = sockopt_setint(sopt, so->so_type);
   1919 		break;
   1920 
   1921 	case SO_ERROR:
   1922 		error = sockopt_setint(sopt, so->so_error);
   1923 		so->so_error = 0;
   1924 		break;
   1925 
   1926 	case SO_SNDBUF:
   1927 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1928 		break;
   1929 
   1930 	case SO_RCVBUF:
   1931 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1932 		break;
   1933 
   1934 	case SO_SNDLOWAT:
   1935 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1936 		break;
   1937 
   1938 	case SO_RCVLOWAT:
   1939 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1940 		break;
   1941 
   1942 #ifdef COMPAT_50
   1943 	case SO_OSNDTIMEO:
   1944 	case SO_ORCVTIMEO: {
   1945 		struct timeval50 otv;
   1946 
   1947 		optval = (opt == SO_OSNDTIMEO ?
   1948 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1949 
   1950 		otv.tv_sec = optval / hz;
   1951 		otv.tv_usec = (optval % hz) * tick;
   1952 
   1953 		error = sockopt_set(sopt, &otv, sizeof(otv));
   1954 		break;
   1955 	}
   1956 #endif /* COMPAT_50 */
   1957 
   1958 	case SO_SNDTIMEO:
   1959 	case SO_RCVTIMEO:
   1960 		optval = (opt == SO_SNDTIMEO ?
   1961 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1962 
   1963 		tv.tv_sec = optval / hz;
   1964 		tv.tv_usec = (optval % hz) * tick;
   1965 
   1966 		error = sockopt_set(sopt, &tv, sizeof(tv));
   1967 		break;
   1968 
   1969 	case SO_OVERFLOWED:
   1970 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   1971 		break;
   1972 
   1973 	default:
   1974 		error = ENOPROTOOPT;
   1975 		break;
   1976 	}
   1977 
   1978 	return (error);
   1979 }
   1980 
   1981 int
   1982 sogetopt(struct socket *so, struct sockopt *sopt)
   1983 {
   1984 	int		error;
   1985 
   1986 	solock(so);
   1987 	if (sopt->sopt_level != SOL_SOCKET) {
   1988 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1989 			error = ((*so->so_proto->pr_ctloutput)
   1990 			    (PRCO_GETOPT, so, sopt));
   1991 		} else
   1992 			error = (ENOPROTOOPT);
   1993 	} else {
   1994 		error = sogetopt1(so, sopt);
   1995 	}
   1996 	sounlock(so);
   1997 	return (error);
   1998 }
   1999 
   2000 /*
   2001  * alloc sockopt data buffer buffer
   2002  *	- will be released at destroy
   2003  */
   2004 static int
   2005 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
   2006 {
   2007 
   2008 	KASSERT(sopt->sopt_size == 0);
   2009 
   2010 	if (len > sizeof(sopt->sopt_buf)) {
   2011 		sopt->sopt_data = kmem_zalloc(len, kmflag);
   2012 		if (sopt->sopt_data == NULL)
   2013 			return ENOMEM;
   2014 	} else
   2015 		sopt->sopt_data = sopt->sopt_buf;
   2016 
   2017 	sopt->sopt_size = len;
   2018 	return 0;
   2019 }
   2020 
   2021 /*
   2022  * initialise sockopt storage
   2023  *	- MAY sleep during allocation
   2024  */
   2025 void
   2026 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   2027 {
   2028 
   2029 	memset(sopt, 0, sizeof(*sopt));
   2030 
   2031 	sopt->sopt_level = level;
   2032 	sopt->sopt_name = name;
   2033 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
   2034 }
   2035 
   2036 /*
   2037  * destroy sockopt storage
   2038  *	- will release any held memory references
   2039  */
   2040 void
   2041 sockopt_destroy(struct sockopt *sopt)
   2042 {
   2043 
   2044 	if (sopt->sopt_data != sopt->sopt_buf)
   2045 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   2046 
   2047 	memset(sopt, 0, sizeof(*sopt));
   2048 }
   2049 
   2050 /*
   2051  * set sockopt value
   2052  *	- value is copied into sockopt
   2053  * 	- memory is allocated when necessary, will not sleep
   2054  */
   2055 int
   2056 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   2057 {
   2058 	int error;
   2059 
   2060 	if (sopt->sopt_size == 0) {
   2061 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2062 		if (error)
   2063 			return error;
   2064 	}
   2065 
   2066 	KASSERT(sopt->sopt_size == len);
   2067 	memcpy(sopt->sopt_data, buf, len);
   2068 	return 0;
   2069 }
   2070 
   2071 /*
   2072  * common case of set sockopt integer value
   2073  */
   2074 int
   2075 sockopt_setint(struct sockopt *sopt, int val)
   2076 {
   2077 
   2078 	return sockopt_set(sopt, &val, sizeof(int));
   2079 }
   2080 
   2081 /*
   2082  * get sockopt value
   2083  *	- correct size must be given
   2084  */
   2085 int
   2086 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   2087 {
   2088 
   2089 	if (sopt->sopt_size != len)
   2090 		return EINVAL;
   2091 
   2092 	memcpy(buf, sopt->sopt_data, len);
   2093 	return 0;
   2094 }
   2095 
   2096 /*
   2097  * common case of get sockopt integer value
   2098  */
   2099 int
   2100 sockopt_getint(const struct sockopt *sopt, int *valp)
   2101 {
   2102 
   2103 	return sockopt_get(sopt, valp, sizeof(int));
   2104 }
   2105 
   2106 /*
   2107  * set sockopt value from mbuf
   2108  *	- ONLY for legacy code
   2109  *	- mbuf is released by sockopt
   2110  *	- will not sleep
   2111  */
   2112 int
   2113 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   2114 {
   2115 	size_t len;
   2116 	int error;
   2117 
   2118 	len = m_length(m);
   2119 
   2120 	if (sopt->sopt_size == 0) {
   2121 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2122 		if (error)
   2123 			return error;
   2124 	}
   2125 
   2126 	KASSERT(sopt->sopt_size == len);
   2127 	m_copydata(m, 0, len, sopt->sopt_data);
   2128 	m_freem(m);
   2129 
   2130 	return 0;
   2131 }
   2132 
   2133 /*
   2134  * get sockopt value into mbuf
   2135  *	- ONLY for legacy code
   2136  *	- mbuf to be released by the caller
   2137  *	- will not sleep
   2138  */
   2139 struct mbuf *
   2140 sockopt_getmbuf(const struct sockopt *sopt)
   2141 {
   2142 	struct mbuf *m;
   2143 
   2144 	if (sopt->sopt_size > MCLBYTES)
   2145 		return NULL;
   2146 
   2147 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   2148 	if (m == NULL)
   2149 		return NULL;
   2150 
   2151 	if (sopt->sopt_size > MLEN) {
   2152 		MCLGET(m, M_DONTWAIT);
   2153 		if ((m->m_flags & M_EXT) == 0) {
   2154 			m_free(m);
   2155 			return NULL;
   2156 		}
   2157 	}
   2158 
   2159 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
   2160 	m->m_len = sopt->sopt_size;
   2161 
   2162 	return m;
   2163 }
   2164 
   2165 void
   2166 sohasoutofband(struct socket *so)
   2167 {
   2168 
   2169 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2170 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
   2171 }
   2172 
   2173 static void
   2174 filt_sordetach(struct knote *kn)
   2175 {
   2176 	struct socket	*so;
   2177 
   2178 	so = ((file_t *)kn->kn_obj)->f_data;
   2179 	solock(so);
   2180 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   2181 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   2182 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2183 	sounlock(so);
   2184 }
   2185 
   2186 /*ARGSUSED*/
   2187 static int
   2188 filt_soread(struct knote *kn, long hint)
   2189 {
   2190 	struct socket	*so;
   2191 	int rv;
   2192 
   2193 	so = ((file_t *)kn->kn_obj)->f_data;
   2194 	if (hint != NOTE_SUBMIT)
   2195 		solock(so);
   2196 	kn->kn_data = so->so_rcv.sb_cc;
   2197 	if (so->so_state & SS_CANTRCVMORE) {
   2198 		kn->kn_flags |= EV_EOF;
   2199 		kn->kn_fflags = so->so_error;
   2200 		rv = 1;
   2201 	} else if (so->so_error)	/* temporary udp error */
   2202 		rv = 1;
   2203 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2204 		rv = (kn->kn_data >= kn->kn_sdata);
   2205 	else
   2206 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2207 	if (hint != NOTE_SUBMIT)
   2208 		sounlock(so);
   2209 	return rv;
   2210 }
   2211 
   2212 static void
   2213 filt_sowdetach(struct knote *kn)
   2214 {
   2215 	struct socket	*so;
   2216 
   2217 	so = ((file_t *)kn->kn_obj)->f_data;
   2218 	solock(so);
   2219 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   2220 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   2221 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2222 	sounlock(so);
   2223 }
   2224 
   2225 /*ARGSUSED*/
   2226 static int
   2227 filt_sowrite(struct knote *kn, long hint)
   2228 {
   2229 	struct socket	*so;
   2230 	int rv;
   2231 
   2232 	so = ((file_t *)kn->kn_obj)->f_data;
   2233 	if (hint != NOTE_SUBMIT)
   2234 		solock(so);
   2235 	kn->kn_data = sbspace(&so->so_snd);
   2236 	if (so->so_state & SS_CANTSENDMORE) {
   2237 		kn->kn_flags |= EV_EOF;
   2238 		kn->kn_fflags = so->so_error;
   2239 		rv = 1;
   2240 	} else if (so->so_error)	/* temporary udp error */
   2241 		rv = 1;
   2242 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2243 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2244 		rv = 0;
   2245 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2246 		rv = (kn->kn_data >= kn->kn_sdata);
   2247 	else
   2248 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2249 	if (hint != NOTE_SUBMIT)
   2250 		sounlock(so);
   2251 	return rv;
   2252 }
   2253 
   2254 /*ARGSUSED*/
   2255 static int
   2256 filt_solisten(struct knote *kn, long hint)
   2257 {
   2258 	struct socket	*so;
   2259 	int rv;
   2260 
   2261 	so = ((file_t *)kn->kn_obj)->f_data;
   2262 
   2263 	/*
   2264 	 * Set kn_data to number of incoming connections, not
   2265 	 * counting partial (incomplete) connections.
   2266 	 */
   2267 	if (hint != NOTE_SUBMIT)
   2268 		solock(so);
   2269 	kn->kn_data = so->so_qlen;
   2270 	rv = (kn->kn_data > 0);
   2271 	if (hint != NOTE_SUBMIT)
   2272 		sounlock(so);
   2273 	return rv;
   2274 }
   2275 
   2276 static const struct filterops solisten_filtops =
   2277 	{ 1, NULL, filt_sordetach, filt_solisten };
   2278 static const struct filterops soread_filtops =
   2279 	{ 1, NULL, filt_sordetach, filt_soread };
   2280 static const struct filterops sowrite_filtops =
   2281 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   2282 
   2283 int
   2284 soo_kqfilter(struct file *fp, struct knote *kn)
   2285 {
   2286 	struct socket	*so;
   2287 	struct sockbuf	*sb;
   2288 
   2289 	so = ((file_t *)kn->kn_obj)->f_data;
   2290 	solock(so);
   2291 	switch (kn->kn_filter) {
   2292 	case EVFILT_READ:
   2293 		if (so->so_options & SO_ACCEPTCONN)
   2294 			kn->kn_fop = &solisten_filtops;
   2295 		else
   2296 			kn->kn_fop = &soread_filtops;
   2297 		sb = &so->so_rcv;
   2298 		break;
   2299 	case EVFILT_WRITE:
   2300 		kn->kn_fop = &sowrite_filtops;
   2301 		sb = &so->so_snd;
   2302 		break;
   2303 	default:
   2304 		sounlock(so);
   2305 		return (EINVAL);
   2306 	}
   2307 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   2308 	sb->sb_flags |= SB_KNOTE;
   2309 	sounlock(so);
   2310 	return (0);
   2311 }
   2312 
   2313 static int
   2314 sodopoll(struct socket *so, int events)
   2315 {
   2316 	int revents;
   2317 
   2318 	revents = 0;
   2319 
   2320 	if (events & (POLLIN | POLLRDNORM))
   2321 		if (soreadable(so))
   2322 			revents |= events & (POLLIN | POLLRDNORM);
   2323 
   2324 	if (events & (POLLOUT | POLLWRNORM))
   2325 		if (sowritable(so))
   2326 			revents |= events & (POLLOUT | POLLWRNORM);
   2327 
   2328 	if (events & (POLLPRI | POLLRDBAND))
   2329 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   2330 			revents |= events & (POLLPRI | POLLRDBAND);
   2331 
   2332 	return revents;
   2333 }
   2334 
   2335 int
   2336 sopoll(struct socket *so, int events)
   2337 {
   2338 	int revents = 0;
   2339 
   2340 #ifndef DIAGNOSTIC
   2341 	/*
   2342 	 * Do a quick, unlocked check in expectation that the socket
   2343 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2344 	 * as the solocked() assertions will fail.
   2345 	 */
   2346 	if ((revents = sodopoll(so, events)) != 0)
   2347 		return revents;
   2348 #endif
   2349 
   2350 	solock(so);
   2351 	if ((revents = sodopoll(so, events)) == 0) {
   2352 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2353 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2354 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2355 		}
   2356 
   2357 		if (events & (POLLOUT | POLLWRNORM)) {
   2358 			selrecord(curlwp, &so->so_snd.sb_sel);
   2359 			so->so_snd.sb_flags |= SB_NOTIFY;
   2360 		}
   2361 	}
   2362 	sounlock(so);
   2363 
   2364 	return revents;
   2365 }
   2366 
   2367 
   2368 #include <sys/sysctl.h>
   2369 
   2370 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2371 
   2372 /*
   2373  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2374  * value is not too small.
   2375  * (XXX should we maybe make sure it's not too large as well?)
   2376  */
   2377 static int
   2378 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2379 {
   2380 	int error, new_somaxkva;
   2381 	struct sysctlnode node;
   2382 
   2383 	new_somaxkva = somaxkva;
   2384 	node = *rnode;
   2385 	node.sysctl_data = &new_somaxkva;
   2386 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2387 	if (error || newp == NULL)
   2388 		return (error);
   2389 
   2390 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2391 		return (EINVAL);
   2392 
   2393 	mutex_enter(&so_pendfree_lock);
   2394 	somaxkva = new_somaxkva;
   2395 	cv_broadcast(&socurkva_cv);
   2396 	mutex_exit(&so_pendfree_lock);
   2397 
   2398 	return (error);
   2399 }
   2400 
   2401 static void
   2402 sysctl_kern_somaxkva_setup(void)
   2403 {
   2404 
   2405 	KASSERT(socket_sysctllog == NULL);
   2406 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2407 		       CTLFLAG_PERMANENT,
   2408 		       CTLTYPE_NODE, "kern", NULL,
   2409 		       NULL, 0, NULL, 0,
   2410 		       CTL_KERN, CTL_EOL);
   2411 
   2412 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2413 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2414 		       CTLTYPE_INT, "somaxkva",
   2415 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2416 				    "used for socket buffers"),
   2417 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2418 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2419 }
   2420