uipc_socket.c revision 1.196 1 /* $NetBSD: uipc_socket.c,v 1.196 2009/12/20 09:36:06 dsl Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.196 2009/12/20 09:36:06 dsl Exp $");
67
68 #include "opt_compat_netbsd.h"
69 #include "opt_sock_counters.h"
70 #include "opt_sosend_loan.h"
71 #include "opt_mbuftrace.h"
72 #include "opt_somaxkva.h"
73 #include "opt_multiprocessor.h" /* XXX */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/file.h>
79 #include <sys/filedesc.h>
80 #include <sys/kmem.h>
81 #include <sys/mbuf.h>
82 #include <sys/domain.h>
83 #include <sys/kernel.h>
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/signalvar.h>
88 #include <sys/resourcevar.h>
89 #include <sys/uidinfo.h>
90 #include <sys/event.h>
91 #include <sys/poll.h>
92 #include <sys/kauth.h>
93 #include <sys/mutex.h>
94 #include <sys/condvar.h>
95
96 #ifdef COMPAT_50
97 #include <compat/sys/time.h>
98 #include <compat/sys/socket.h>
99 #endif
100
101 #include <uvm/uvm.h>
102
103 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
104 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
105
106 extern const struct fileops socketops;
107
108 extern int somaxconn; /* patchable (XXX sysctl) */
109 int somaxconn = SOMAXCONN;
110 kmutex_t *softnet_lock;
111
112 #ifdef SOSEND_COUNTERS
113 #include <sys/device.h>
114
115 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
116 NULL, "sosend", "loan big");
117 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
118 NULL, "sosend", "copy big");
119 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
120 NULL, "sosend", "copy small");
121 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
122 NULL, "sosend", "kva limit");
123
124 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
125
126 EVCNT_ATTACH_STATIC(sosend_loan_big);
127 EVCNT_ATTACH_STATIC(sosend_copy_big);
128 EVCNT_ATTACH_STATIC(sosend_copy_small);
129 EVCNT_ATTACH_STATIC(sosend_kvalimit);
130 #else
131
132 #define SOSEND_COUNTER_INCR(ev) /* nothing */
133
134 #endif /* SOSEND_COUNTERS */
135
136 static struct callback_entry sokva_reclaimerentry;
137
138 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
139 int sock_loan_thresh = -1;
140 #else
141 int sock_loan_thresh = 4096;
142 #endif
143
144 static kmutex_t so_pendfree_lock;
145 static struct mbuf *so_pendfree;
146
147 #ifndef SOMAXKVA
148 #define SOMAXKVA (16 * 1024 * 1024)
149 #endif
150 int somaxkva = SOMAXKVA;
151 static int socurkva;
152 static kcondvar_t socurkva_cv;
153
154 static kauth_listener_t socket_listener;
155
156 #define SOCK_LOAN_CHUNK 65536
157
158 static size_t sodopendfree(void);
159 static size_t sodopendfreel(void);
160
161 static void sysctl_kern_somaxkva_setup(void);
162 static struct sysctllog *socket_sysctllog;
163
164 static vsize_t
165 sokvareserve(struct socket *so, vsize_t len)
166 {
167 int error;
168
169 mutex_enter(&so_pendfree_lock);
170 while (socurkva + len > somaxkva) {
171 size_t freed;
172
173 /*
174 * try to do pendfree.
175 */
176
177 freed = sodopendfreel();
178
179 /*
180 * if some kva was freed, try again.
181 */
182
183 if (freed)
184 continue;
185
186 SOSEND_COUNTER_INCR(&sosend_kvalimit);
187 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
188 if (error) {
189 len = 0;
190 break;
191 }
192 }
193 socurkva += len;
194 mutex_exit(&so_pendfree_lock);
195 return len;
196 }
197
198 static void
199 sokvaunreserve(vsize_t len)
200 {
201
202 mutex_enter(&so_pendfree_lock);
203 socurkva -= len;
204 cv_broadcast(&socurkva_cv);
205 mutex_exit(&so_pendfree_lock);
206 }
207
208 /*
209 * sokvaalloc: allocate kva for loan.
210 */
211
212 vaddr_t
213 sokvaalloc(vsize_t len, struct socket *so)
214 {
215 vaddr_t lva;
216
217 /*
218 * reserve kva.
219 */
220
221 if (sokvareserve(so, len) == 0)
222 return 0;
223
224 /*
225 * allocate kva.
226 */
227
228 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
229 if (lva == 0) {
230 sokvaunreserve(len);
231 return (0);
232 }
233
234 return lva;
235 }
236
237 /*
238 * sokvafree: free kva for loan.
239 */
240
241 void
242 sokvafree(vaddr_t sva, vsize_t len)
243 {
244
245 /*
246 * free kva.
247 */
248
249 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
250
251 /*
252 * unreserve kva.
253 */
254
255 sokvaunreserve(len);
256 }
257
258 static void
259 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
260 {
261 vaddr_t sva, eva;
262 vsize_t len;
263 int npgs;
264
265 KASSERT(pgs != NULL);
266
267 eva = round_page((vaddr_t) buf + size);
268 sva = trunc_page((vaddr_t) buf);
269 len = eva - sva;
270 npgs = len >> PAGE_SHIFT;
271
272 pmap_kremove(sva, len);
273 pmap_update(pmap_kernel());
274 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
275 sokvafree(sva, len);
276 }
277
278 static size_t
279 sodopendfree(void)
280 {
281 size_t rv;
282
283 if (__predict_true(so_pendfree == NULL))
284 return 0;
285
286 mutex_enter(&so_pendfree_lock);
287 rv = sodopendfreel();
288 mutex_exit(&so_pendfree_lock);
289
290 return rv;
291 }
292
293 /*
294 * sodopendfreel: free mbufs on "pendfree" list.
295 * unlock and relock so_pendfree_lock when freeing mbufs.
296 *
297 * => called with so_pendfree_lock held.
298 */
299
300 static size_t
301 sodopendfreel(void)
302 {
303 struct mbuf *m, *next;
304 size_t rv = 0;
305
306 KASSERT(mutex_owned(&so_pendfree_lock));
307
308 while (so_pendfree != NULL) {
309 m = so_pendfree;
310 so_pendfree = NULL;
311 mutex_exit(&so_pendfree_lock);
312
313 for (; m != NULL; m = next) {
314 next = m->m_next;
315 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
316 KASSERT(m->m_ext.ext_refcnt == 0);
317
318 rv += m->m_ext.ext_size;
319 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
320 m->m_ext.ext_size);
321 pool_cache_put(mb_cache, m);
322 }
323
324 mutex_enter(&so_pendfree_lock);
325 }
326
327 return (rv);
328 }
329
330 void
331 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
332 {
333
334 KASSERT(m != NULL);
335
336 /*
337 * postpone freeing mbuf.
338 *
339 * we can't do it in interrupt context
340 * because we need to put kva back to kernel_map.
341 */
342
343 mutex_enter(&so_pendfree_lock);
344 m->m_next = so_pendfree;
345 so_pendfree = m;
346 cv_broadcast(&socurkva_cv);
347 mutex_exit(&so_pendfree_lock);
348 }
349
350 static long
351 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
352 {
353 struct iovec *iov = uio->uio_iov;
354 vaddr_t sva, eva;
355 vsize_t len;
356 vaddr_t lva;
357 int npgs, error;
358 vaddr_t va;
359 int i;
360
361 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
362 return (0);
363
364 if (iov->iov_len < (size_t) space)
365 space = iov->iov_len;
366 if (space > SOCK_LOAN_CHUNK)
367 space = SOCK_LOAN_CHUNK;
368
369 eva = round_page((vaddr_t) iov->iov_base + space);
370 sva = trunc_page((vaddr_t) iov->iov_base);
371 len = eva - sva;
372 npgs = len >> PAGE_SHIFT;
373
374 KASSERT(npgs <= M_EXT_MAXPAGES);
375
376 lva = sokvaalloc(len, so);
377 if (lva == 0)
378 return 0;
379
380 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
381 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
382 if (error) {
383 sokvafree(lva, len);
384 return (0);
385 }
386
387 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
388 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
389 VM_PROT_READ, 0);
390 pmap_update(pmap_kernel());
391
392 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
393
394 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
395 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
396
397 uio->uio_resid -= space;
398 /* uio_offset not updated, not set/used for write(2) */
399 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
400 uio->uio_iov->iov_len -= space;
401 if (uio->uio_iov->iov_len == 0) {
402 uio->uio_iov++;
403 uio->uio_iovcnt--;
404 }
405
406 return (space);
407 }
408
409 static int
410 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
411 {
412
413 KASSERT(ce == &sokva_reclaimerentry);
414 KASSERT(obj == NULL);
415
416 sodopendfree();
417 if (!vm_map_starved_p(kernel_map)) {
418 return CALLBACK_CHAIN_ABORT;
419 }
420 return CALLBACK_CHAIN_CONTINUE;
421 }
422
423 struct mbuf *
424 getsombuf(struct socket *so, int type)
425 {
426 struct mbuf *m;
427
428 m = m_get(M_WAIT, type);
429 MCLAIM(m, so->so_mowner);
430 return m;
431 }
432
433 static int
434 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
435 void *arg0, void *arg1, void *arg2, void *arg3)
436 {
437 int result;
438 enum kauth_network_req req;
439
440 result = KAUTH_RESULT_DEFER;
441 req = (enum kauth_network_req)arg0;
442
443 if ((action != KAUTH_NETWORK_SOCKET) &&
444 (action != KAUTH_NETWORK_BIND))
445 return result;
446
447 switch (req) {
448 case KAUTH_REQ_NETWORK_BIND_PORT:
449 result = KAUTH_RESULT_ALLOW;
450 break;
451
452 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
453 /* Normal users can only drop their own connections. */
454 struct socket *so = (struct socket *)arg1;
455 uid_t sockuid = so->so_uidinfo->ui_uid;
456
457 if (sockuid == kauth_cred_getuid(cred) ||
458 sockuid == kauth_cred_geteuid(cred))
459 result = KAUTH_RESULT_ALLOW;
460
461 break;
462 }
463
464 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
465 /* We allow "raw" routing/bluetooth sockets to anyone. */
466 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_BLUETOOTH)
467 result = KAUTH_RESULT_ALLOW;
468 else {
469 /* Privileged, let secmodel handle this. */
470 if ((u_long)arg2 == SOCK_RAW)
471 break;
472 }
473
474 result = KAUTH_RESULT_ALLOW;
475
476 break;
477
478 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
479 result = KAUTH_RESULT_ALLOW;
480
481 break;
482
483 default:
484 break;
485 }
486
487 return result;
488 }
489
490 void
491 soinit(void)
492 {
493
494 sysctl_kern_somaxkva_setup();
495
496 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
497 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
498 cv_init(&socurkva_cv, "sokva");
499 soinit2();
500
501 /* Set the initial adjusted socket buffer size. */
502 if (sb_max_set(sb_max))
503 panic("bad initial sb_max value: %lu", sb_max);
504
505 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
506 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
507
508 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
509 socket_listener_cb, NULL);
510 }
511
512 /*
513 * Socket operation routines.
514 * These routines are called by the routines in
515 * sys_socket.c or from a system process, and
516 * implement the semantics of socket operations by
517 * switching out to the protocol specific routines.
518 */
519 /*ARGSUSED*/
520 int
521 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
522 struct socket *lockso)
523 {
524 const struct protosw *prp;
525 struct socket *so;
526 uid_t uid;
527 int error;
528 kmutex_t *lock;
529
530 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
531 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
532 KAUTH_ARG(proto));
533 if (error != 0)
534 return error;
535
536 if (proto)
537 prp = pffindproto(dom, proto, type);
538 else
539 prp = pffindtype(dom, type);
540 if (prp == NULL) {
541 /* no support for domain */
542 if (pffinddomain(dom) == 0)
543 return EAFNOSUPPORT;
544 /* no support for socket type */
545 if (proto == 0 && type != 0)
546 return EPROTOTYPE;
547 return EPROTONOSUPPORT;
548 }
549 if (prp->pr_usrreq == NULL)
550 return EPROTONOSUPPORT;
551 if (prp->pr_type != type)
552 return EPROTOTYPE;
553
554 so = soget(true);
555 so->so_type = type;
556 so->so_proto = prp;
557 so->so_send = sosend;
558 so->so_receive = soreceive;
559 #ifdef MBUFTRACE
560 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
561 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
562 so->so_mowner = &prp->pr_domain->dom_mowner;
563 #endif
564 /* so->so_cred = kauth_cred_dup(l->l_cred); */
565 uid = kauth_cred_geteuid(l->l_cred);
566 so->so_uidinfo = uid_find(uid);
567 so->so_egid = kauth_cred_getegid(l->l_cred);
568 so->so_cpid = l->l_proc->p_pid;
569 if (lockso != NULL) {
570 /* Caller wants us to share a lock. */
571 lock = lockso->so_lock;
572 so->so_lock = lock;
573 mutex_obj_hold(lock);
574 mutex_enter(lock);
575 } else {
576 /* Lock assigned and taken during PRU_ATTACH. */
577 }
578 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
579 (struct mbuf *)(long)proto, NULL, l);
580 KASSERT(solocked(so));
581 if (error != 0) {
582 so->so_state |= SS_NOFDREF;
583 sofree(so);
584 return error;
585 }
586 sounlock(so);
587 *aso = so;
588 return 0;
589 }
590
591 /* On success, write file descriptor to fdout and return zero. On
592 * failure, return non-zero; *fdout will be undefined.
593 */
594 int
595 fsocreate(int domain, struct socket **sop, int type, int protocol,
596 struct lwp *l, int *fdout)
597 {
598 struct socket *so;
599 struct file *fp;
600 int fd, error;
601
602 if ((error = fd_allocfile(&fp, &fd)) != 0)
603 return (error);
604 fp->f_flag = FREAD|FWRITE;
605 fp->f_type = DTYPE_SOCKET;
606 fp->f_ops = &socketops;
607 error = socreate(domain, &so, type, protocol, l, NULL);
608 if (error != 0) {
609 fd_abort(curproc, fp, fd);
610 } else {
611 if (sop != NULL)
612 *sop = so;
613 fp->f_data = so;
614 fd_affix(curproc, fp, fd);
615 *fdout = fd;
616 }
617 return error;
618 }
619
620 int
621 sofamily(const struct socket *so)
622 {
623 const struct protosw *pr;
624 const struct domain *dom;
625
626 if ((pr = so->so_proto) == NULL)
627 return AF_UNSPEC;
628 if ((dom = pr->pr_domain) == NULL)
629 return AF_UNSPEC;
630 return dom->dom_family;
631 }
632
633 int
634 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
635 {
636 int error;
637
638 solock(so);
639 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
640 sounlock(so);
641 return error;
642 }
643
644 int
645 solisten(struct socket *so, int backlog, struct lwp *l)
646 {
647 int error;
648
649 solock(so);
650 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
651 SS_ISDISCONNECTING)) != 0) {
652 sounlock(so);
653 return (EOPNOTSUPP);
654 }
655 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
656 NULL, NULL, l);
657 if (error != 0) {
658 sounlock(so);
659 return error;
660 }
661 if (TAILQ_EMPTY(&so->so_q))
662 so->so_options |= SO_ACCEPTCONN;
663 if (backlog < 0)
664 backlog = 0;
665 so->so_qlimit = min(backlog, somaxconn);
666 sounlock(so);
667 return 0;
668 }
669
670 void
671 sofree(struct socket *so)
672 {
673 u_int refs;
674
675 KASSERT(solocked(so));
676
677 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
678 sounlock(so);
679 return;
680 }
681 if (so->so_head) {
682 /*
683 * We must not decommission a socket that's on the accept(2)
684 * queue. If we do, then accept(2) may hang after select(2)
685 * indicated that the listening socket was ready.
686 */
687 if (!soqremque(so, 0)) {
688 sounlock(so);
689 return;
690 }
691 }
692 if (so->so_rcv.sb_hiwat)
693 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
694 RLIM_INFINITY);
695 if (so->so_snd.sb_hiwat)
696 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
697 RLIM_INFINITY);
698 sbrelease(&so->so_snd, so);
699 KASSERT(!cv_has_waiters(&so->so_cv));
700 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
701 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
702 sorflush(so);
703 refs = so->so_aborting; /* XXX */
704 /* Remove acccept filter if one is present. */
705 if (so->so_accf != NULL)
706 (void)accept_filt_clear(so);
707 /* kauth_cred_free(so->so_cred); */
708 sounlock(so);
709 if (refs == 0) /* XXX */
710 soput(so);
711 }
712
713 /*
714 * Close a socket on last file table reference removal.
715 * Initiate disconnect if connected.
716 * Free socket when disconnect complete.
717 */
718 int
719 soclose(struct socket *so)
720 {
721 struct socket *so2;
722 int error;
723 int error2;
724
725 error = 0;
726 solock(so);
727 if (so->so_options & SO_ACCEPTCONN) {
728 for (;;) {
729 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
730 KASSERT(solocked2(so, so2));
731 (void) soqremque(so2, 0);
732 /* soabort drops the lock. */
733 (void) soabort(so2);
734 solock(so);
735 continue;
736 }
737 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
738 KASSERT(solocked2(so, so2));
739 (void) soqremque(so2, 1);
740 /* soabort drops the lock. */
741 (void) soabort(so2);
742 solock(so);
743 continue;
744 }
745 break;
746 }
747 }
748 if (so->so_pcb == 0)
749 goto discard;
750 if (so->so_state & SS_ISCONNECTED) {
751 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
752 error = sodisconnect(so);
753 if (error)
754 goto drop;
755 }
756 if (so->so_options & SO_LINGER) {
757 if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
758 goto drop;
759 while (so->so_state & SS_ISCONNECTED) {
760 error = sowait(so, true, so->so_linger * hz);
761 if (error)
762 break;
763 }
764 }
765 }
766 drop:
767 if (so->so_pcb) {
768 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
769 NULL, NULL, NULL, NULL);
770 if (error == 0)
771 error = error2;
772 }
773 discard:
774 if (so->so_state & SS_NOFDREF)
775 panic("soclose: NOFDREF");
776 so->so_state |= SS_NOFDREF;
777 sofree(so);
778 return (error);
779 }
780
781 /*
782 * Must be called with the socket locked.. Will return with it unlocked.
783 */
784 int
785 soabort(struct socket *so)
786 {
787 u_int refs;
788 int error;
789
790 KASSERT(solocked(so));
791 KASSERT(so->so_head == NULL);
792
793 so->so_aborting++; /* XXX */
794 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
795 NULL, NULL, NULL);
796 refs = --so->so_aborting; /* XXX */
797 if (error || (refs == 0)) {
798 sofree(so);
799 } else {
800 sounlock(so);
801 }
802 return error;
803 }
804
805 int
806 soaccept(struct socket *so, struct mbuf *nam)
807 {
808 int error;
809
810 KASSERT(solocked(so));
811
812 error = 0;
813 if ((so->so_state & SS_NOFDREF) == 0)
814 panic("soaccept: !NOFDREF");
815 so->so_state &= ~SS_NOFDREF;
816 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
817 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
818 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
819 NULL, nam, NULL, NULL);
820 else
821 error = ECONNABORTED;
822
823 return (error);
824 }
825
826 int
827 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
828 {
829 int error;
830
831 KASSERT(solocked(so));
832
833 if (so->so_options & SO_ACCEPTCONN)
834 return (EOPNOTSUPP);
835 /*
836 * If protocol is connection-based, can only connect once.
837 * Otherwise, if connected, try to disconnect first.
838 * This allows user to disconnect by connecting to, e.g.,
839 * a null address.
840 */
841 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
842 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
843 (error = sodisconnect(so))))
844 error = EISCONN;
845 else
846 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
847 NULL, nam, NULL, l);
848 return (error);
849 }
850
851 int
852 soconnect2(struct socket *so1, struct socket *so2)
853 {
854 int error;
855
856 KASSERT(solocked2(so1, so2));
857
858 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
859 NULL, (struct mbuf *)so2, NULL, NULL);
860 return (error);
861 }
862
863 int
864 sodisconnect(struct socket *so)
865 {
866 int error;
867
868 KASSERT(solocked(so));
869
870 if ((so->so_state & SS_ISCONNECTED) == 0) {
871 error = ENOTCONN;
872 } else if (so->so_state & SS_ISDISCONNECTING) {
873 error = EALREADY;
874 } else {
875 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
876 NULL, NULL, NULL, NULL);
877 }
878 sodopendfree();
879 return (error);
880 }
881
882 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
883 /*
884 * Send on a socket.
885 * If send must go all at once and message is larger than
886 * send buffering, then hard error.
887 * Lock against other senders.
888 * If must go all at once and not enough room now, then
889 * inform user that this would block and do nothing.
890 * Otherwise, if nonblocking, send as much as possible.
891 * The data to be sent is described by "uio" if nonzero,
892 * otherwise by the mbuf chain "top" (which must be null
893 * if uio is not). Data provided in mbuf chain must be small
894 * enough to send all at once.
895 *
896 * Returns nonzero on error, timeout or signal; callers
897 * must check for short counts if EINTR/ERESTART are returned.
898 * Data and control buffers are freed on return.
899 */
900 int
901 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
902 struct mbuf *control, int flags, struct lwp *l)
903 {
904 struct mbuf **mp, *m;
905 struct proc *p;
906 long space, len, resid, clen, mlen;
907 int error, s, dontroute, atomic;
908 short wakeup_state = 0;
909
910 p = l->l_proc;
911 sodopendfree();
912 clen = 0;
913
914 /*
915 * solock() provides atomicity of access. splsoftnet() prevents
916 * protocol processing soft interrupts from interrupting us and
917 * blocking (expensive).
918 */
919 s = splsoftnet();
920 solock(so);
921 atomic = sosendallatonce(so) || top;
922 if (uio)
923 resid = uio->uio_resid;
924 else
925 resid = top->m_pkthdr.len;
926 /*
927 * In theory resid should be unsigned.
928 * However, space must be signed, as it might be less than 0
929 * if we over-committed, and we must use a signed comparison
930 * of space and resid. On the other hand, a negative resid
931 * causes us to loop sending 0-length segments to the protocol.
932 */
933 if (resid < 0) {
934 error = EINVAL;
935 goto out;
936 }
937 dontroute =
938 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
939 (so->so_proto->pr_flags & PR_ATOMIC);
940 l->l_ru.ru_msgsnd++;
941 if (control)
942 clen = control->m_len;
943 restart:
944 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
945 goto out;
946 do {
947 if (so->so_state & SS_CANTSENDMORE) {
948 error = EPIPE;
949 goto release;
950 }
951 if (so->so_error) {
952 error = so->so_error;
953 so->so_error = 0;
954 goto release;
955 }
956 if ((so->so_state & SS_ISCONNECTED) == 0) {
957 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
958 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
959 !(resid == 0 && clen != 0)) {
960 error = ENOTCONN;
961 goto release;
962 }
963 } else if (addr == 0) {
964 error = EDESTADDRREQ;
965 goto release;
966 }
967 }
968 space = sbspace(&so->so_snd);
969 if (flags & MSG_OOB)
970 space += 1024;
971 if ((atomic && resid > so->so_snd.sb_hiwat) ||
972 clen > so->so_snd.sb_hiwat) {
973 error = EMSGSIZE;
974 goto release;
975 }
976 if (space < resid + clen &&
977 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
978 if (so->so_nbio) {
979 error = EWOULDBLOCK;
980 goto release;
981 }
982 sbunlock(&so->so_snd);
983 if (wakeup_state & SS_RESTARTSYS) {
984 error = ERESTART;
985 goto out;
986 }
987 error = sbwait(&so->so_snd);
988 if (error)
989 goto out;
990 wakeup_state = so->so_state;
991 goto restart;
992 }
993 wakeup_state = 0;
994 mp = ⊤
995 space -= clen;
996 do {
997 if (uio == NULL) {
998 /*
999 * Data is prepackaged in "top".
1000 */
1001 resid = 0;
1002 if (flags & MSG_EOR)
1003 top->m_flags |= M_EOR;
1004 } else do {
1005 sounlock(so);
1006 splx(s);
1007 if (top == NULL) {
1008 m = m_gethdr(M_WAIT, MT_DATA);
1009 mlen = MHLEN;
1010 m->m_pkthdr.len = 0;
1011 m->m_pkthdr.rcvif = NULL;
1012 } else {
1013 m = m_get(M_WAIT, MT_DATA);
1014 mlen = MLEN;
1015 }
1016 MCLAIM(m, so->so_snd.sb_mowner);
1017 if (sock_loan_thresh >= 0 &&
1018 uio->uio_iov->iov_len >= sock_loan_thresh &&
1019 space >= sock_loan_thresh &&
1020 (len = sosend_loan(so, uio, m,
1021 space)) != 0) {
1022 SOSEND_COUNTER_INCR(&sosend_loan_big);
1023 space -= len;
1024 goto have_data;
1025 }
1026 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1027 SOSEND_COUNTER_INCR(&sosend_copy_big);
1028 m_clget(m, M_WAIT);
1029 if ((m->m_flags & M_EXT) == 0)
1030 goto nopages;
1031 mlen = MCLBYTES;
1032 if (atomic && top == 0) {
1033 len = lmin(MCLBYTES - max_hdr,
1034 resid);
1035 m->m_data += max_hdr;
1036 } else
1037 len = lmin(MCLBYTES, resid);
1038 space -= len;
1039 } else {
1040 nopages:
1041 SOSEND_COUNTER_INCR(&sosend_copy_small);
1042 len = lmin(lmin(mlen, resid), space);
1043 space -= len;
1044 /*
1045 * For datagram protocols, leave room
1046 * for protocol headers in first mbuf.
1047 */
1048 if (atomic && top == 0 && len < mlen)
1049 MH_ALIGN(m, len);
1050 }
1051 error = uiomove(mtod(m, void *), (int)len, uio);
1052 have_data:
1053 resid = uio->uio_resid;
1054 m->m_len = len;
1055 *mp = m;
1056 top->m_pkthdr.len += len;
1057 s = splsoftnet();
1058 solock(so);
1059 if (error != 0)
1060 goto release;
1061 mp = &m->m_next;
1062 if (resid <= 0) {
1063 if (flags & MSG_EOR)
1064 top->m_flags |= M_EOR;
1065 break;
1066 }
1067 } while (space > 0 && atomic);
1068
1069 if (so->so_state & SS_CANTSENDMORE) {
1070 error = EPIPE;
1071 goto release;
1072 }
1073 if (dontroute)
1074 so->so_options |= SO_DONTROUTE;
1075 if (resid > 0)
1076 so->so_state |= SS_MORETOCOME;
1077 error = (*so->so_proto->pr_usrreq)(so,
1078 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
1079 top, addr, control, curlwp);
1080 if (dontroute)
1081 so->so_options &= ~SO_DONTROUTE;
1082 if (resid > 0)
1083 so->so_state &= ~SS_MORETOCOME;
1084 clen = 0;
1085 control = NULL;
1086 top = NULL;
1087 mp = ⊤
1088 if (error != 0)
1089 goto release;
1090 } while (resid && space > 0);
1091 } while (resid);
1092
1093 release:
1094 sbunlock(&so->so_snd);
1095 out:
1096 sounlock(so);
1097 splx(s);
1098 if (top)
1099 m_freem(top);
1100 if (control)
1101 m_freem(control);
1102 return (error);
1103 }
1104
1105 /*
1106 * Following replacement or removal of the first mbuf on the first
1107 * mbuf chain of a socket buffer, push necessary state changes back
1108 * into the socket buffer so that other consumers see the values
1109 * consistently. 'nextrecord' is the callers locally stored value of
1110 * the original value of sb->sb_mb->m_nextpkt which must be restored
1111 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1112 */
1113 static void
1114 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1115 {
1116
1117 KASSERT(solocked(sb->sb_so));
1118
1119 /*
1120 * First, update for the new value of nextrecord. If necessary,
1121 * make it the first record.
1122 */
1123 if (sb->sb_mb != NULL)
1124 sb->sb_mb->m_nextpkt = nextrecord;
1125 else
1126 sb->sb_mb = nextrecord;
1127
1128 /*
1129 * Now update any dependent socket buffer fields to reflect
1130 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1131 * the addition of a second clause that takes care of the
1132 * case where sb_mb has been updated, but remains the last
1133 * record.
1134 */
1135 if (sb->sb_mb == NULL) {
1136 sb->sb_mbtail = NULL;
1137 sb->sb_lastrecord = NULL;
1138 } else if (sb->sb_mb->m_nextpkt == NULL)
1139 sb->sb_lastrecord = sb->sb_mb;
1140 }
1141
1142 /*
1143 * Implement receive operations on a socket.
1144 * We depend on the way that records are added to the sockbuf
1145 * by sbappend*. In particular, each record (mbufs linked through m_next)
1146 * must begin with an address if the protocol so specifies,
1147 * followed by an optional mbuf or mbufs containing ancillary data,
1148 * and then zero or more mbufs of data.
1149 * In order to avoid blocking network interrupts for the entire time here,
1150 * we splx() while doing the actual copy to user space.
1151 * Although the sockbuf is locked, new data may still be appended,
1152 * and thus we must maintain consistency of the sockbuf during that time.
1153 *
1154 * The caller may receive the data as a single mbuf chain by supplying
1155 * an mbuf **mp0 for use in returning the chain. The uio is then used
1156 * only for the count in uio_resid.
1157 */
1158 int
1159 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1160 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1161 {
1162 struct lwp *l = curlwp;
1163 struct mbuf *m, **mp, *mt;
1164 int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1165 const struct protosw *pr;
1166 struct mbuf *nextrecord;
1167 int mbuf_removed = 0;
1168 const struct domain *dom;
1169 short wakeup_state = 0;
1170
1171 pr = so->so_proto;
1172 atomic = pr->pr_flags & PR_ATOMIC;
1173 dom = pr->pr_domain;
1174 mp = mp0;
1175 type = 0;
1176 orig_resid = uio->uio_resid;
1177
1178 if (paddr != NULL)
1179 *paddr = NULL;
1180 if (controlp != NULL)
1181 *controlp = NULL;
1182 if (flagsp != NULL)
1183 flags = *flagsp &~ MSG_EOR;
1184 else
1185 flags = 0;
1186
1187 if ((flags & MSG_DONTWAIT) == 0)
1188 sodopendfree();
1189
1190 if (flags & MSG_OOB) {
1191 m = m_get(M_WAIT, MT_DATA);
1192 solock(so);
1193 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1194 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1195 sounlock(so);
1196 if (error)
1197 goto bad;
1198 do {
1199 error = uiomove(mtod(m, void *),
1200 (int) min(uio->uio_resid, m->m_len), uio);
1201 m = m_free(m);
1202 } while (uio->uio_resid > 0 && error == 0 && m);
1203 bad:
1204 if (m != NULL)
1205 m_freem(m);
1206 return error;
1207 }
1208 if (mp != NULL)
1209 *mp = NULL;
1210
1211 /*
1212 * solock() provides atomicity of access. splsoftnet() prevents
1213 * protocol processing soft interrupts from interrupting us and
1214 * blocking (expensive).
1215 */
1216 s = splsoftnet();
1217 solock(so);
1218 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1219 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1220
1221 restart:
1222 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1223 sounlock(so);
1224 splx(s);
1225 return error;
1226 }
1227
1228 m = so->so_rcv.sb_mb;
1229 /*
1230 * If we have less data than requested, block awaiting more
1231 * (subject to any timeout) if:
1232 * 1. the current count is less than the low water mark,
1233 * 2. MSG_WAITALL is set, and it is possible to do the entire
1234 * receive operation at once if we block (resid <= hiwat), or
1235 * 3. MSG_DONTWAIT is not set.
1236 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1237 * we have to do the receive in sections, and thus risk returning
1238 * a short count if a timeout or signal occurs after we start.
1239 */
1240 if (m == NULL ||
1241 ((flags & MSG_DONTWAIT) == 0 &&
1242 so->so_rcv.sb_cc < uio->uio_resid &&
1243 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1244 ((flags & MSG_WAITALL) &&
1245 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1246 m->m_nextpkt == NULL && !atomic)) {
1247 #ifdef DIAGNOSTIC
1248 if (m == NULL && so->so_rcv.sb_cc)
1249 panic("receive 1");
1250 #endif
1251 if (so->so_error) {
1252 if (m != NULL)
1253 goto dontblock;
1254 error = so->so_error;
1255 if ((flags & MSG_PEEK) == 0)
1256 so->so_error = 0;
1257 goto release;
1258 }
1259 if (so->so_state & SS_CANTRCVMORE) {
1260 if (m != NULL)
1261 goto dontblock;
1262 else
1263 goto release;
1264 }
1265 for (; m != NULL; m = m->m_next)
1266 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1267 m = so->so_rcv.sb_mb;
1268 goto dontblock;
1269 }
1270 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1271 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1272 error = ENOTCONN;
1273 goto release;
1274 }
1275 if (uio->uio_resid == 0)
1276 goto release;
1277 if (so->so_nbio || (flags & MSG_DONTWAIT)) {
1278 error = EWOULDBLOCK;
1279 goto release;
1280 }
1281 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1282 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1283 sbunlock(&so->so_rcv);
1284 if (wakeup_state & SS_RESTARTSYS)
1285 error = ERESTART;
1286 else
1287 error = sbwait(&so->so_rcv);
1288 if (error != 0) {
1289 sounlock(so);
1290 splx(s);
1291 return error;
1292 }
1293 wakeup_state = so->so_state;
1294 goto restart;
1295 }
1296 dontblock:
1297 /*
1298 * On entry here, m points to the first record of the socket buffer.
1299 * From this point onward, we maintain 'nextrecord' as a cache of the
1300 * pointer to the next record in the socket buffer. We must keep the
1301 * various socket buffer pointers and local stack versions of the
1302 * pointers in sync, pushing out modifications before dropping the
1303 * socket lock, and re-reading them when picking it up.
1304 *
1305 * Otherwise, we will race with the network stack appending new data
1306 * or records onto the socket buffer by using inconsistent/stale
1307 * versions of the field, possibly resulting in socket buffer
1308 * corruption.
1309 *
1310 * By holding the high-level sblock(), we prevent simultaneous
1311 * readers from pulling off the front of the socket buffer.
1312 */
1313 if (l != NULL)
1314 l->l_ru.ru_msgrcv++;
1315 KASSERT(m == so->so_rcv.sb_mb);
1316 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1317 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1318 nextrecord = m->m_nextpkt;
1319 if (pr->pr_flags & PR_ADDR) {
1320 #ifdef DIAGNOSTIC
1321 if (m->m_type != MT_SONAME)
1322 panic("receive 1a");
1323 #endif
1324 orig_resid = 0;
1325 if (flags & MSG_PEEK) {
1326 if (paddr)
1327 *paddr = m_copy(m, 0, m->m_len);
1328 m = m->m_next;
1329 } else {
1330 sbfree(&so->so_rcv, m);
1331 mbuf_removed = 1;
1332 if (paddr != NULL) {
1333 *paddr = m;
1334 so->so_rcv.sb_mb = m->m_next;
1335 m->m_next = NULL;
1336 m = so->so_rcv.sb_mb;
1337 } else {
1338 MFREE(m, so->so_rcv.sb_mb);
1339 m = so->so_rcv.sb_mb;
1340 }
1341 sbsync(&so->so_rcv, nextrecord);
1342 }
1343 }
1344
1345 /*
1346 * Process one or more MT_CONTROL mbufs present before any data mbufs
1347 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1348 * just copy the data; if !MSG_PEEK, we call into the protocol to
1349 * perform externalization (or freeing if controlp == NULL).
1350 */
1351 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1352 struct mbuf *cm = NULL, *cmn;
1353 struct mbuf **cme = &cm;
1354
1355 do {
1356 if (flags & MSG_PEEK) {
1357 if (controlp != NULL) {
1358 *controlp = m_copy(m, 0, m->m_len);
1359 controlp = &(*controlp)->m_next;
1360 }
1361 m = m->m_next;
1362 } else {
1363 sbfree(&so->so_rcv, m);
1364 so->so_rcv.sb_mb = m->m_next;
1365 m->m_next = NULL;
1366 *cme = m;
1367 cme = &(*cme)->m_next;
1368 m = so->so_rcv.sb_mb;
1369 }
1370 } while (m != NULL && m->m_type == MT_CONTROL);
1371 if ((flags & MSG_PEEK) == 0)
1372 sbsync(&so->so_rcv, nextrecord);
1373 for (; cm != NULL; cm = cmn) {
1374 cmn = cm->m_next;
1375 cm->m_next = NULL;
1376 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1377 if (controlp != NULL) {
1378 if (dom->dom_externalize != NULL &&
1379 type == SCM_RIGHTS) {
1380 sounlock(so);
1381 splx(s);
1382 error = (*dom->dom_externalize)(cm, l);
1383 s = splsoftnet();
1384 solock(so);
1385 }
1386 *controlp = cm;
1387 while (*controlp != NULL)
1388 controlp = &(*controlp)->m_next;
1389 } else {
1390 /*
1391 * Dispose of any SCM_RIGHTS message that went
1392 * through the read path rather than recv.
1393 */
1394 if (dom->dom_dispose != NULL &&
1395 type == SCM_RIGHTS) {
1396 sounlock(so);
1397 (*dom->dom_dispose)(cm);
1398 solock(so);
1399 }
1400 m_freem(cm);
1401 }
1402 }
1403 if (m != NULL)
1404 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1405 else
1406 nextrecord = so->so_rcv.sb_mb;
1407 orig_resid = 0;
1408 }
1409
1410 /* If m is non-NULL, we have some data to read. */
1411 if (__predict_true(m != NULL)) {
1412 type = m->m_type;
1413 if (type == MT_OOBDATA)
1414 flags |= MSG_OOB;
1415 }
1416 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1417 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1418
1419 moff = 0;
1420 offset = 0;
1421 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1422 if (m->m_type == MT_OOBDATA) {
1423 if (type != MT_OOBDATA)
1424 break;
1425 } else if (type == MT_OOBDATA)
1426 break;
1427 #ifdef DIAGNOSTIC
1428 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1429 panic("receive 3");
1430 #endif
1431 so->so_state &= ~SS_RCVATMARK;
1432 wakeup_state = 0;
1433 len = uio->uio_resid;
1434 if (so->so_oobmark && len > so->so_oobmark - offset)
1435 len = so->so_oobmark - offset;
1436 if (len > m->m_len - moff)
1437 len = m->m_len - moff;
1438 /*
1439 * If mp is set, just pass back the mbufs.
1440 * Otherwise copy them out via the uio, then free.
1441 * Sockbuf must be consistent here (points to current mbuf,
1442 * it points to next record) when we drop priority;
1443 * we must note any additions to the sockbuf when we
1444 * block interrupts again.
1445 */
1446 if (mp == NULL) {
1447 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1448 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1449 sounlock(so);
1450 splx(s);
1451 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1452 s = splsoftnet();
1453 solock(so);
1454 if (error != 0) {
1455 /*
1456 * If any part of the record has been removed
1457 * (such as the MT_SONAME mbuf, which will
1458 * happen when PR_ADDR, and thus also
1459 * PR_ATOMIC, is set), then drop the entire
1460 * record to maintain the atomicity of the
1461 * receive operation.
1462 *
1463 * This avoids a later panic("receive 1a")
1464 * when compiled with DIAGNOSTIC.
1465 */
1466 if (m && mbuf_removed && atomic)
1467 (void) sbdroprecord(&so->so_rcv);
1468
1469 goto release;
1470 }
1471 } else
1472 uio->uio_resid -= len;
1473 if (len == m->m_len - moff) {
1474 if (m->m_flags & M_EOR)
1475 flags |= MSG_EOR;
1476 if (flags & MSG_PEEK) {
1477 m = m->m_next;
1478 moff = 0;
1479 } else {
1480 nextrecord = m->m_nextpkt;
1481 sbfree(&so->so_rcv, m);
1482 if (mp) {
1483 *mp = m;
1484 mp = &m->m_next;
1485 so->so_rcv.sb_mb = m = m->m_next;
1486 *mp = NULL;
1487 } else {
1488 MFREE(m, so->so_rcv.sb_mb);
1489 m = so->so_rcv.sb_mb;
1490 }
1491 /*
1492 * If m != NULL, we also know that
1493 * so->so_rcv.sb_mb != NULL.
1494 */
1495 KASSERT(so->so_rcv.sb_mb == m);
1496 if (m) {
1497 m->m_nextpkt = nextrecord;
1498 if (nextrecord == NULL)
1499 so->so_rcv.sb_lastrecord = m;
1500 } else {
1501 so->so_rcv.sb_mb = nextrecord;
1502 SB_EMPTY_FIXUP(&so->so_rcv);
1503 }
1504 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1505 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1506 }
1507 } else if (flags & MSG_PEEK)
1508 moff += len;
1509 else {
1510 if (mp != NULL) {
1511 mt = m_copym(m, 0, len, M_NOWAIT);
1512 if (__predict_false(mt == NULL)) {
1513 sounlock(so);
1514 mt = m_copym(m, 0, len, M_WAIT);
1515 solock(so);
1516 }
1517 *mp = mt;
1518 }
1519 m->m_data += len;
1520 m->m_len -= len;
1521 so->so_rcv.sb_cc -= len;
1522 }
1523 if (so->so_oobmark) {
1524 if ((flags & MSG_PEEK) == 0) {
1525 so->so_oobmark -= len;
1526 if (so->so_oobmark == 0) {
1527 so->so_state |= SS_RCVATMARK;
1528 break;
1529 }
1530 } else {
1531 offset += len;
1532 if (offset == so->so_oobmark)
1533 break;
1534 }
1535 }
1536 if (flags & MSG_EOR)
1537 break;
1538 /*
1539 * If the MSG_WAITALL flag is set (for non-atomic socket),
1540 * we must not quit until "uio->uio_resid == 0" or an error
1541 * termination. If a signal/timeout occurs, return
1542 * with a short count but without error.
1543 * Keep sockbuf locked against other readers.
1544 */
1545 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1546 !sosendallatonce(so) && !nextrecord) {
1547 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1548 break;
1549 /*
1550 * If we are peeking and the socket receive buffer is
1551 * full, stop since we can't get more data to peek at.
1552 */
1553 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1554 break;
1555 /*
1556 * If we've drained the socket buffer, tell the
1557 * protocol in case it needs to do something to
1558 * get it filled again.
1559 */
1560 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1561 (*pr->pr_usrreq)(so, PRU_RCVD,
1562 NULL, (struct mbuf *)(long)flags, NULL, l);
1563 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1564 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1565 if (wakeup_state & SS_RESTARTSYS)
1566 error = ERESTART;
1567 else
1568 error = sbwait(&so->so_rcv);
1569 if (error != 0) {
1570 sbunlock(&so->so_rcv);
1571 sounlock(so);
1572 splx(s);
1573 return 0;
1574 }
1575 if ((m = so->so_rcv.sb_mb) != NULL)
1576 nextrecord = m->m_nextpkt;
1577 wakeup_state = so->so_state;
1578 }
1579 }
1580
1581 if (m && atomic) {
1582 flags |= MSG_TRUNC;
1583 if ((flags & MSG_PEEK) == 0)
1584 (void) sbdroprecord(&so->so_rcv);
1585 }
1586 if ((flags & MSG_PEEK) == 0) {
1587 if (m == NULL) {
1588 /*
1589 * First part is an inline SB_EMPTY_FIXUP(). Second
1590 * part makes sure sb_lastrecord is up-to-date if
1591 * there is still data in the socket buffer.
1592 */
1593 so->so_rcv.sb_mb = nextrecord;
1594 if (so->so_rcv.sb_mb == NULL) {
1595 so->so_rcv.sb_mbtail = NULL;
1596 so->so_rcv.sb_lastrecord = NULL;
1597 } else if (nextrecord->m_nextpkt == NULL)
1598 so->so_rcv.sb_lastrecord = nextrecord;
1599 }
1600 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1601 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1602 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1603 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1604 (struct mbuf *)(long)flags, NULL, l);
1605 }
1606 if (orig_resid == uio->uio_resid && orig_resid &&
1607 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1608 sbunlock(&so->so_rcv);
1609 goto restart;
1610 }
1611
1612 if (flagsp != NULL)
1613 *flagsp |= flags;
1614 release:
1615 sbunlock(&so->so_rcv);
1616 sounlock(so);
1617 splx(s);
1618 return error;
1619 }
1620
1621 int
1622 soshutdown(struct socket *so, int how)
1623 {
1624 const struct protosw *pr;
1625 int error;
1626
1627 KASSERT(solocked(so));
1628
1629 pr = so->so_proto;
1630 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1631 return (EINVAL);
1632
1633 if (how == SHUT_RD || how == SHUT_RDWR) {
1634 sorflush(so);
1635 error = 0;
1636 }
1637 if (how == SHUT_WR || how == SHUT_RDWR)
1638 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1639 NULL, NULL, NULL);
1640
1641 return error;
1642 }
1643
1644 void
1645 sorestart(struct socket *so)
1646 {
1647 /*
1648 * An application has called close() on an fd on which another
1649 * of its threads has called a socket system call.
1650 * Mark this and wake everyone up, and code that would block again
1651 * instead returns ERESTART.
1652 * On system call re-entry the fd is validated and EBADF returned.
1653 * Any other fd will block again on the 2nd syscall.
1654 */
1655 solock(so);
1656 so->so_state |= SS_RESTARTSYS;
1657 cv_broadcast(&so->so_cv);
1658 cv_broadcast(&so->so_snd.sb_cv);
1659 cv_broadcast(&so->so_rcv.sb_cv);
1660 sounlock(so);
1661 }
1662
1663 void
1664 sorflush(struct socket *so)
1665 {
1666 struct sockbuf *sb, asb;
1667 const struct protosw *pr;
1668
1669 KASSERT(solocked(so));
1670
1671 sb = &so->so_rcv;
1672 pr = so->so_proto;
1673 socantrcvmore(so);
1674 sb->sb_flags |= SB_NOINTR;
1675 (void )sblock(sb, M_WAITOK);
1676 sbunlock(sb);
1677 asb = *sb;
1678 /*
1679 * Clear most of the sockbuf structure, but leave some of the
1680 * fields valid.
1681 */
1682 memset(&sb->sb_startzero, 0,
1683 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1684 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1685 sounlock(so);
1686 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1687 solock(so);
1688 }
1689 sbrelease(&asb, so);
1690 }
1691
1692 /*
1693 * internal set SOL_SOCKET options
1694 */
1695 static int
1696 sosetopt1(struct socket *so, const struct sockopt *sopt)
1697 {
1698 int error = EINVAL, optval, opt;
1699 struct linger l;
1700 struct timeval tv;
1701
1702 switch ((opt = sopt->sopt_name)) {
1703
1704 case SO_ACCEPTFILTER:
1705 error = accept_filt_setopt(so, sopt);
1706 KASSERT(solocked(so));
1707 break;
1708
1709 case SO_LINGER:
1710 error = sockopt_get(sopt, &l, sizeof(l));
1711 solock(so);
1712 if (error)
1713 break;
1714 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1715 l.l_linger > (INT_MAX / hz)) {
1716 error = EDOM;
1717 break;
1718 }
1719 so->so_linger = l.l_linger;
1720 if (l.l_onoff)
1721 so->so_options |= SO_LINGER;
1722 else
1723 so->so_options &= ~SO_LINGER;
1724 break;
1725
1726 case SO_DEBUG:
1727 case SO_KEEPALIVE:
1728 case SO_DONTROUTE:
1729 case SO_USELOOPBACK:
1730 case SO_BROADCAST:
1731 case SO_REUSEADDR:
1732 case SO_REUSEPORT:
1733 case SO_OOBINLINE:
1734 case SO_TIMESTAMP:
1735 #ifdef SO_OTIMESTAMP
1736 case SO_OTIMESTAMP:
1737 #endif
1738 error = sockopt_getint(sopt, &optval);
1739 solock(so);
1740 if (error)
1741 break;
1742 if (optval)
1743 so->so_options |= opt;
1744 else
1745 so->so_options &= ~opt;
1746 break;
1747
1748 case SO_SNDBUF:
1749 case SO_RCVBUF:
1750 case SO_SNDLOWAT:
1751 case SO_RCVLOWAT:
1752 error = sockopt_getint(sopt, &optval);
1753 solock(so);
1754 if (error)
1755 break;
1756
1757 /*
1758 * Values < 1 make no sense for any of these
1759 * options, so disallow them.
1760 */
1761 if (optval < 1) {
1762 error = EINVAL;
1763 break;
1764 }
1765
1766 switch (opt) {
1767 case SO_SNDBUF:
1768 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1769 error = ENOBUFS;
1770 break;
1771 }
1772 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1773 break;
1774
1775 case SO_RCVBUF:
1776 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1777 error = ENOBUFS;
1778 break;
1779 }
1780 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1781 break;
1782
1783 /*
1784 * Make sure the low-water is never greater than
1785 * the high-water.
1786 */
1787 case SO_SNDLOWAT:
1788 if (optval > so->so_snd.sb_hiwat)
1789 optval = so->so_snd.sb_hiwat;
1790
1791 so->so_snd.sb_lowat = optval;
1792 break;
1793
1794 case SO_RCVLOWAT:
1795 if (optval > so->so_rcv.sb_hiwat)
1796 optval = so->so_rcv.sb_hiwat;
1797
1798 so->so_rcv.sb_lowat = optval;
1799 break;
1800 }
1801 break;
1802
1803 #ifdef COMPAT_50
1804 case SO_OSNDTIMEO:
1805 case SO_ORCVTIMEO: {
1806 struct timeval50 otv;
1807 error = sockopt_get(sopt, &otv, sizeof(otv));
1808 if (error) {
1809 solock(so);
1810 break;
1811 }
1812 timeval50_to_timeval(&otv, &tv);
1813 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1814 error = 0;
1815 /*FALLTHROUGH*/
1816 }
1817 #endif /* COMPAT_50 */
1818
1819 case SO_SNDTIMEO:
1820 case SO_RCVTIMEO:
1821 if (error)
1822 error = sockopt_get(sopt, &tv, sizeof(tv));
1823 solock(so);
1824 if (error)
1825 break;
1826
1827 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1828 error = EDOM;
1829 break;
1830 }
1831
1832 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1833 if (optval == 0 && tv.tv_usec != 0)
1834 optval = 1;
1835
1836 switch (opt) {
1837 case SO_SNDTIMEO:
1838 so->so_snd.sb_timeo = optval;
1839 break;
1840 case SO_RCVTIMEO:
1841 so->so_rcv.sb_timeo = optval;
1842 break;
1843 }
1844 break;
1845
1846 default:
1847 solock(so);
1848 error = ENOPROTOOPT;
1849 break;
1850 }
1851 KASSERT(solocked(so));
1852 return error;
1853 }
1854
1855 int
1856 sosetopt(struct socket *so, struct sockopt *sopt)
1857 {
1858 int error, prerr;
1859
1860 if (sopt->sopt_level == SOL_SOCKET) {
1861 error = sosetopt1(so, sopt);
1862 KASSERT(solocked(so));
1863 } else {
1864 error = ENOPROTOOPT;
1865 solock(so);
1866 }
1867
1868 if ((error == 0 || error == ENOPROTOOPT) &&
1869 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1870 /* give the protocol stack a shot */
1871 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1872 if (prerr == 0)
1873 error = 0;
1874 else if (prerr != ENOPROTOOPT)
1875 error = prerr;
1876 }
1877 sounlock(so);
1878 return error;
1879 }
1880
1881 /*
1882 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1883 */
1884 int
1885 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1886 const void *val, size_t valsize)
1887 {
1888 struct sockopt sopt;
1889 int error;
1890
1891 KASSERT(valsize == 0 || val != NULL);
1892
1893 sockopt_init(&sopt, level, name, valsize);
1894 sockopt_set(&sopt, val, valsize);
1895
1896 error = sosetopt(so, &sopt);
1897
1898 sockopt_destroy(&sopt);
1899
1900 return error;
1901 }
1902
1903 /*
1904 * internal get SOL_SOCKET options
1905 */
1906 static int
1907 sogetopt1(struct socket *so, struct sockopt *sopt)
1908 {
1909 int error, optval, opt;
1910 struct linger l;
1911 struct timeval tv;
1912
1913 switch ((opt = sopt->sopt_name)) {
1914
1915 case SO_ACCEPTFILTER:
1916 error = accept_filt_getopt(so, sopt);
1917 break;
1918
1919 case SO_LINGER:
1920 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1921 l.l_linger = so->so_linger;
1922
1923 error = sockopt_set(sopt, &l, sizeof(l));
1924 break;
1925
1926 case SO_USELOOPBACK:
1927 case SO_DONTROUTE:
1928 case SO_DEBUG:
1929 case SO_KEEPALIVE:
1930 case SO_REUSEADDR:
1931 case SO_REUSEPORT:
1932 case SO_BROADCAST:
1933 case SO_OOBINLINE:
1934 case SO_TIMESTAMP:
1935 #ifdef SO_OTIMESTAMP
1936 case SO_OTIMESTAMP:
1937 #endif
1938 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1939 break;
1940
1941 case SO_TYPE:
1942 error = sockopt_setint(sopt, so->so_type);
1943 break;
1944
1945 case SO_ERROR:
1946 error = sockopt_setint(sopt, so->so_error);
1947 so->so_error = 0;
1948 break;
1949
1950 case SO_SNDBUF:
1951 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1952 break;
1953
1954 case SO_RCVBUF:
1955 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1956 break;
1957
1958 case SO_SNDLOWAT:
1959 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1960 break;
1961
1962 case SO_RCVLOWAT:
1963 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1964 break;
1965
1966 #ifdef COMPAT_50
1967 case SO_OSNDTIMEO:
1968 case SO_ORCVTIMEO: {
1969 struct timeval50 otv;
1970
1971 optval = (opt == SO_OSNDTIMEO ?
1972 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1973
1974 otv.tv_sec = optval / hz;
1975 otv.tv_usec = (optval % hz) * tick;
1976
1977 error = sockopt_set(sopt, &otv, sizeof(otv));
1978 break;
1979 }
1980 #endif /* COMPAT_50 */
1981
1982 case SO_SNDTIMEO:
1983 case SO_RCVTIMEO:
1984 optval = (opt == SO_SNDTIMEO ?
1985 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1986
1987 tv.tv_sec = optval / hz;
1988 tv.tv_usec = (optval % hz) * tick;
1989
1990 error = sockopt_set(sopt, &tv, sizeof(tv));
1991 break;
1992
1993 case SO_OVERFLOWED:
1994 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1995 break;
1996
1997 default:
1998 error = ENOPROTOOPT;
1999 break;
2000 }
2001
2002 return (error);
2003 }
2004
2005 int
2006 sogetopt(struct socket *so, struct sockopt *sopt)
2007 {
2008 int error;
2009
2010 solock(so);
2011 if (sopt->sopt_level != SOL_SOCKET) {
2012 if (so->so_proto && so->so_proto->pr_ctloutput) {
2013 error = ((*so->so_proto->pr_ctloutput)
2014 (PRCO_GETOPT, so, sopt));
2015 } else
2016 error = (ENOPROTOOPT);
2017 } else {
2018 error = sogetopt1(so, sopt);
2019 }
2020 sounlock(so);
2021 return (error);
2022 }
2023
2024 /*
2025 * alloc sockopt data buffer buffer
2026 * - will be released at destroy
2027 */
2028 static int
2029 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2030 {
2031
2032 KASSERT(sopt->sopt_size == 0);
2033
2034 if (len > sizeof(sopt->sopt_buf)) {
2035 sopt->sopt_data = kmem_zalloc(len, kmflag);
2036 if (sopt->sopt_data == NULL)
2037 return ENOMEM;
2038 } else
2039 sopt->sopt_data = sopt->sopt_buf;
2040
2041 sopt->sopt_size = len;
2042 return 0;
2043 }
2044
2045 /*
2046 * initialise sockopt storage
2047 * - MAY sleep during allocation
2048 */
2049 void
2050 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2051 {
2052
2053 memset(sopt, 0, sizeof(*sopt));
2054
2055 sopt->sopt_level = level;
2056 sopt->sopt_name = name;
2057 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2058 }
2059
2060 /*
2061 * destroy sockopt storage
2062 * - will release any held memory references
2063 */
2064 void
2065 sockopt_destroy(struct sockopt *sopt)
2066 {
2067
2068 if (sopt->sopt_data != sopt->sopt_buf)
2069 kmem_free(sopt->sopt_data, sopt->sopt_size);
2070
2071 memset(sopt, 0, sizeof(*sopt));
2072 }
2073
2074 /*
2075 * set sockopt value
2076 * - value is copied into sockopt
2077 * - memory is allocated when necessary, will not sleep
2078 */
2079 int
2080 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2081 {
2082 int error;
2083
2084 if (sopt->sopt_size == 0) {
2085 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2086 if (error)
2087 return error;
2088 }
2089
2090 KASSERT(sopt->sopt_size == len);
2091 memcpy(sopt->sopt_data, buf, len);
2092 return 0;
2093 }
2094
2095 /*
2096 * common case of set sockopt integer value
2097 */
2098 int
2099 sockopt_setint(struct sockopt *sopt, int val)
2100 {
2101
2102 return sockopt_set(sopt, &val, sizeof(int));
2103 }
2104
2105 /*
2106 * get sockopt value
2107 * - correct size must be given
2108 */
2109 int
2110 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2111 {
2112
2113 if (sopt->sopt_size != len)
2114 return EINVAL;
2115
2116 memcpy(buf, sopt->sopt_data, len);
2117 return 0;
2118 }
2119
2120 /*
2121 * common case of get sockopt integer value
2122 */
2123 int
2124 sockopt_getint(const struct sockopt *sopt, int *valp)
2125 {
2126
2127 return sockopt_get(sopt, valp, sizeof(int));
2128 }
2129
2130 /*
2131 * set sockopt value from mbuf
2132 * - ONLY for legacy code
2133 * - mbuf is released by sockopt
2134 * - will not sleep
2135 */
2136 int
2137 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2138 {
2139 size_t len;
2140 int error;
2141
2142 len = m_length(m);
2143
2144 if (sopt->sopt_size == 0) {
2145 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2146 if (error)
2147 return error;
2148 }
2149
2150 KASSERT(sopt->sopt_size == len);
2151 m_copydata(m, 0, len, sopt->sopt_data);
2152 m_freem(m);
2153
2154 return 0;
2155 }
2156
2157 /*
2158 * get sockopt value into mbuf
2159 * - ONLY for legacy code
2160 * - mbuf to be released by the caller
2161 * - will not sleep
2162 */
2163 struct mbuf *
2164 sockopt_getmbuf(const struct sockopt *sopt)
2165 {
2166 struct mbuf *m;
2167
2168 if (sopt->sopt_size > MCLBYTES)
2169 return NULL;
2170
2171 m = m_get(M_DONTWAIT, MT_SOOPTS);
2172 if (m == NULL)
2173 return NULL;
2174
2175 if (sopt->sopt_size > MLEN) {
2176 MCLGET(m, M_DONTWAIT);
2177 if ((m->m_flags & M_EXT) == 0) {
2178 m_free(m);
2179 return NULL;
2180 }
2181 }
2182
2183 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2184 m->m_len = sopt->sopt_size;
2185
2186 return m;
2187 }
2188
2189 void
2190 sohasoutofband(struct socket *so)
2191 {
2192
2193 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2194 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2195 }
2196
2197 static void
2198 filt_sordetach(struct knote *kn)
2199 {
2200 struct socket *so;
2201
2202 so = ((file_t *)kn->kn_obj)->f_data;
2203 solock(so);
2204 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2205 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2206 so->so_rcv.sb_flags &= ~SB_KNOTE;
2207 sounlock(so);
2208 }
2209
2210 /*ARGSUSED*/
2211 static int
2212 filt_soread(struct knote *kn, long hint)
2213 {
2214 struct socket *so;
2215 int rv;
2216
2217 so = ((file_t *)kn->kn_obj)->f_data;
2218 if (hint != NOTE_SUBMIT)
2219 solock(so);
2220 kn->kn_data = so->so_rcv.sb_cc;
2221 if (so->so_state & SS_CANTRCVMORE) {
2222 kn->kn_flags |= EV_EOF;
2223 kn->kn_fflags = so->so_error;
2224 rv = 1;
2225 } else if (so->so_error) /* temporary udp error */
2226 rv = 1;
2227 else if (kn->kn_sfflags & NOTE_LOWAT)
2228 rv = (kn->kn_data >= kn->kn_sdata);
2229 else
2230 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2231 if (hint != NOTE_SUBMIT)
2232 sounlock(so);
2233 return rv;
2234 }
2235
2236 static void
2237 filt_sowdetach(struct knote *kn)
2238 {
2239 struct socket *so;
2240
2241 so = ((file_t *)kn->kn_obj)->f_data;
2242 solock(so);
2243 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2244 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2245 so->so_snd.sb_flags &= ~SB_KNOTE;
2246 sounlock(so);
2247 }
2248
2249 /*ARGSUSED*/
2250 static int
2251 filt_sowrite(struct knote *kn, long hint)
2252 {
2253 struct socket *so;
2254 int rv;
2255
2256 so = ((file_t *)kn->kn_obj)->f_data;
2257 if (hint != NOTE_SUBMIT)
2258 solock(so);
2259 kn->kn_data = sbspace(&so->so_snd);
2260 if (so->so_state & SS_CANTSENDMORE) {
2261 kn->kn_flags |= EV_EOF;
2262 kn->kn_fflags = so->so_error;
2263 rv = 1;
2264 } else if (so->so_error) /* temporary udp error */
2265 rv = 1;
2266 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2267 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2268 rv = 0;
2269 else if (kn->kn_sfflags & NOTE_LOWAT)
2270 rv = (kn->kn_data >= kn->kn_sdata);
2271 else
2272 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2273 if (hint != NOTE_SUBMIT)
2274 sounlock(so);
2275 return rv;
2276 }
2277
2278 /*ARGSUSED*/
2279 static int
2280 filt_solisten(struct knote *kn, long hint)
2281 {
2282 struct socket *so;
2283 int rv;
2284
2285 so = ((file_t *)kn->kn_obj)->f_data;
2286
2287 /*
2288 * Set kn_data to number of incoming connections, not
2289 * counting partial (incomplete) connections.
2290 */
2291 if (hint != NOTE_SUBMIT)
2292 solock(so);
2293 kn->kn_data = so->so_qlen;
2294 rv = (kn->kn_data > 0);
2295 if (hint != NOTE_SUBMIT)
2296 sounlock(so);
2297 return rv;
2298 }
2299
2300 static const struct filterops solisten_filtops =
2301 { 1, NULL, filt_sordetach, filt_solisten };
2302 static const struct filterops soread_filtops =
2303 { 1, NULL, filt_sordetach, filt_soread };
2304 static const struct filterops sowrite_filtops =
2305 { 1, NULL, filt_sowdetach, filt_sowrite };
2306
2307 int
2308 soo_kqfilter(struct file *fp, struct knote *kn)
2309 {
2310 struct socket *so;
2311 struct sockbuf *sb;
2312
2313 so = ((file_t *)kn->kn_obj)->f_data;
2314 solock(so);
2315 switch (kn->kn_filter) {
2316 case EVFILT_READ:
2317 if (so->so_options & SO_ACCEPTCONN)
2318 kn->kn_fop = &solisten_filtops;
2319 else
2320 kn->kn_fop = &soread_filtops;
2321 sb = &so->so_rcv;
2322 break;
2323 case EVFILT_WRITE:
2324 kn->kn_fop = &sowrite_filtops;
2325 sb = &so->so_snd;
2326 break;
2327 default:
2328 sounlock(so);
2329 return (EINVAL);
2330 }
2331 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2332 sb->sb_flags |= SB_KNOTE;
2333 sounlock(so);
2334 return (0);
2335 }
2336
2337 static int
2338 sodopoll(struct socket *so, int events)
2339 {
2340 int revents;
2341
2342 revents = 0;
2343
2344 if (events & (POLLIN | POLLRDNORM))
2345 if (soreadable(so))
2346 revents |= events & (POLLIN | POLLRDNORM);
2347
2348 if (events & (POLLOUT | POLLWRNORM))
2349 if (sowritable(so))
2350 revents |= events & (POLLOUT | POLLWRNORM);
2351
2352 if (events & (POLLPRI | POLLRDBAND))
2353 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2354 revents |= events & (POLLPRI | POLLRDBAND);
2355
2356 return revents;
2357 }
2358
2359 int
2360 sopoll(struct socket *so, int events)
2361 {
2362 int revents = 0;
2363
2364 #ifndef DIAGNOSTIC
2365 /*
2366 * Do a quick, unlocked check in expectation that the socket
2367 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2368 * as the solocked() assertions will fail.
2369 */
2370 if ((revents = sodopoll(so, events)) != 0)
2371 return revents;
2372 #endif
2373
2374 solock(so);
2375 if ((revents = sodopoll(so, events)) == 0) {
2376 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2377 selrecord(curlwp, &so->so_rcv.sb_sel);
2378 so->so_rcv.sb_flags |= SB_NOTIFY;
2379 }
2380
2381 if (events & (POLLOUT | POLLWRNORM)) {
2382 selrecord(curlwp, &so->so_snd.sb_sel);
2383 so->so_snd.sb_flags |= SB_NOTIFY;
2384 }
2385 }
2386 sounlock(so);
2387
2388 return revents;
2389 }
2390
2391
2392 #include <sys/sysctl.h>
2393
2394 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2395
2396 /*
2397 * sysctl helper routine for kern.somaxkva. ensures that the given
2398 * value is not too small.
2399 * (XXX should we maybe make sure it's not too large as well?)
2400 */
2401 static int
2402 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2403 {
2404 int error, new_somaxkva;
2405 struct sysctlnode node;
2406
2407 new_somaxkva = somaxkva;
2408 node = *rnode;
2409 node.sysctl_data = &new_somaxkva;
2410 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2411 if (error || newp == NULL)
2412 return (error);
2413
2414 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2415 return (EINVAL);
2416
2417 mutex_enter(&so_pendfree_lock);
2418 somaxkva = new_somaxkva;
2419 cv_broadcast(&socurkva_cv);
2420 mutex_exit(&so_pendfree_lock);
2421
2422 return (error);
2423 }
2424
2425 static void
2426 sysctl_kern_somaxkva_setup(void)
2427 {
2428
2429 KASSERT(socket_sysctllog == NULL);
2430 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2431 CTLFLAG_PERMANENT,
2432 CTLTYPE_NODE, "kern", NULL,
2433 NULL, 0, NULL, 0,
2434 CTL_KERN, CTL_EOL);
2435
2436 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2437 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2438 CTLTYPE_INT, "somaxkva",
2439 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2440 "used for socket buffers"),
2441 sysctl_kern_somaxkva, 0, NULL, 0,
2442 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2443 }
2444