Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.197
      1 /*	$NetBSD: uipc_socket.c,v 1.197 2009/12/29 03:48:18 elad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.197 2009/12/29 03:48:18 elad Exp $");
     67 
     68 #include "opt_compat_netbsd.h"
     69 #include "opt_sock_counters.h"
     70 #include "opt_sosend_loan.h"
     71 #include "opt_mbuftrace.h"
     72 #include "opt_somaxkva.h"
     73 #include "opt_multiprocessor.h"	/* XXX */
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/proc.h>
     78 #include <sys/file.h>
     79 #include <sys/filedesc.h>
     80 #include <sys/kmem.h>
     81 #include <sys/mbuf.h>
     82 #include <sys/domain.h>
     83 #include <sys/kernel.h>
     84 #include <sys/protosw.h>
     85 #include <sys/socket.h>
     86 #include <sys/socketvar.h>
     87 #include <sys/signalvar.h>
     88 #include <sys/resourcevar.h>
     89 #include <sys/uidinfo.h>
     90 #include <sys/event.h>
     91 #include <sys/poll.h>
     92 #include <sys/kauth.h>
     93 #include <sys/mutex.h>
     94 #include <sys/condvar.h>
     95 
     96 #ifdef COMPAT_50
     97 #include <compat/sys/time.h>
     98 #include <compat/sys/socket.h>
     99 #endif
    100 
    101 #include <uvm/uvm.h>
    102 
    103 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
    104 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    105 
    106 extern const struct fileops socketops;
    107 
    108 extern int	somaxconn;			/* patchable (XXX sysctl) */
    109 int		somaxconn = SOMAXCONN;
    110 kmutex_t	*softnet_lock;
    111 
    112 #ifdef SOSEND_COUNTERS
    113 #include <sys/device.h>
    114 
    115 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    116     NULL, "sosend", "loan big");
    117 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    118     NULL, "sosend", "copy big");
    119 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    120     NULL, "sosend", "copy small");
    121 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    122     NULL, "sosend", "kva limit");
    123 
    124 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    125 
    126 EVCNT_ATTACH_STATIC(sosend_loan_big);
    127 EVCNT_ATTACH_STATIC(sosend_copy_big);
    128 EVCNT_ATTACH_STATIC(sosend_copy_small);
    129 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    130 #else
    131 
    132 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    133 
    134 #endif /* SOSEND_COUNTERS */
    135 
    136 static struct callback_entry sokva_reclaimerentry;
    137 
    138 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    139 int sock_loan_thresh = -1;
    140 #else
    141 int sock_loan_thresh = 4096;
    142 #endif
    143 
    144 static kmutex_t so_pendfree_lock;
    145 static struct mbuf *so_pendfree;
    146 
    147 #ifndef SOMAXKVA
    148 #define	SOMAXKVA (16 * 1024 * 1024)
    149 #endif
    150 int somaxkva = SOMAXKVA;
    151 static int socurkva;
    152 static kcondvar_t socurkva_cv;
    153 
    154 static kauth_listener_t socket_listener;
    155 
    156 #define	SOCK_LOAN_CHUNK		65536
    157 
    158 static size_t sodopendfree(void);
    159 static size_t sodopendfreel(void);
    160 
    161 static void sysctl_kern_somaxkva_setup(void);
    162 static struct sysctllog *socket_sysctllog;
    163 
    164 static vsize_t
    165 sokvareserve(struct socket *so, vsize_t len)
    166 {
    167 	int error;
    168 
    169 	mutex_enter(&so_pendfree_lock);
    170 	while (socurkva + len > somaxkva) {
    171 		size_t freed;
    172 
    173 		/*
    174 		 * try to do pendfree.
    175 		 */
    176 
    177 		freed = sodopendfreel();
    178 
    179 		/*
    180 		 * if some kva was freed, try again.
    181 		 */
    182 
    183 		if (freed)
    184 			continue;
    185 
    186 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    187 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    188 		if (error) {
    189 			len = 0;
    190 			break;
    191 		}
    192 	}
    193 	socurkva += len;
    194 	mutex_exit(&so_pendfree_lock);
    195 	return len;
    196 }
    197 
    198 static void
    199 sokvaunreserve(vsize_t len)
    200 {
    201 
    202 	mutex_enter(&so_pendfree_lock);
    203 	socurkva -= len;
    204 	cv_broadcast(&socurkva_cv);
    205 	mutex_exit(&so_pendfree_lock);
    206 }
    207 
    208 /*
    209  * sokvaalloc: allocate kva for loan.
    210  */
    211 
    212 vaddr_t
    213 sokvaalloc(vsize_t len, struct socket *so)
    214 {
    215 	vaddr_t lva;
    216 
    217 	/*
    218 	 * reserve kva.
    219 	 */
    220 
    221 	if (sokvareserve(so, len) == 0)
    222 		return 0;
    223 
    224 	/*
    225 	 * allocate kva.
    226 	 */
    227 
    228 	lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    229 	if (lva == 0) {
    230 		sokvaunreserve(len);
    231 		return (0);
    232 	}
    233 
    234 	return lva;
    235 }
    236 
    237 /*
    238  * sokvafree: free kva for loan.
    239  */
    240 
    241 void
    242 sokvafree(vaddr_t sva, vsize_t len)
    243 {
    244 
    245 	/*
    246 	 * free kva.
    247 	 */
    248 
    249 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    250 
    251 	/*
    252 	 * unreserve kva.
    253 	 */
    254 
    255 	sokvaunreserve(len);
    256 }
    257 
    258 static void
    259 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    260 {
    261 	vaddr_t sva, eva;
    262 	vsize_t len;
    263 	int npgs;
    264 
    265 	KASSERT(pgs != NULL);
    266 
    267 	eva = round_page((vaddr_t) buf + size);
    268 	sva = trunc_page((vaddr_t) buf);
    269 	len = eva - sva;
    270 	npgs = len >> PAGE_SHIFT;
    271 
    272 	pmap_kremove(sva, len);
    273 	pmap_update(pmap_kernel());
    274 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    275 	sokvafree(sva, len);
    276 }
    277 
    278 static size_t
    279 sodopendfree(void)
    280 {
    281 	size_t rv;
    282 
    283 	if (__predict_true(so_pendfree == NULL))
    284 		return 0;
    285 
    286 	mutex_enter(&so_pendfree_lock);
    287 	rv = sodopendfreel();
    288 	mutex_exit(&so_pendfree_lock);
    289 
    290 	return rv;
    291 }
    292 
    293 /*
    294  * sodopendfreel: free mbufs on "pendfree" list.
    295  * unlock and relock so_pendfree_lock when freeing mbufs.
    296  *
    297  * => called with so_pendfree_lock held.
    298  */
    299 
    300 static size_t
    301 sodopendfreel(void)
    302 {
    303 	struct mbuf *m, *next;
    304 	size_t rv = 0;
    305 
    306 	KASSERT(mutex_owned(&so_pendfree_lock));
    307 
    308 	while (so_pendfree != NULL) {
    309 		m = so_pendfree;
    310 		so_pendfree = NULL;
    311 		mutex_exit(&so_pendfree_lock);
    312 
    313 		for (; m != NULL; m = next) {
    314 			next = m->m_next;
    315 			KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
    316 			KASSERT(m->m_ext.ext_refcnt == 0);
    317 
    318 			rv += m->m_ext.ext_size;
    319 			sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    320 			    m->m_ext.ext_size);
    321 			pool_cache_put(mb_cache, m);
    322 		}
    323 
    324 		mutex_enter(&so_pendfree_lock);
    325 	}
    326 
    327 	return (rv);
    328 }
    329 
    330 void
    331 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    332 {
    333 
    334 	KASSERT(m != NULL);
    335 
    336 	/*
    337 	 * postpone freeing mbuf.
    338 	 *
    339 	 * we can't do it in interrupt context
    340 	 * because we need to put kva back to kernel_map.
    341 	 */
    342 
    343 	mutex_enter(&so_pendfree_lock);
    344 	m->m_next = so_pendfree;
    345 	so_pendfree = m;
    346 	cv_broadcast(&socurkva_cv);
    347 	mutex_exit(&so_pendfree_lock);
    348 }
    349 
    350 static long
    351 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    352 {
    353 	struct iovec *iov = uio->uio_iov;
    354 	vaddr_t sva, eva;
    355 	vsize_t len;
    356 	vaddr_t lva;
    357 	int npgs, error;
    358 	vaddr_t va;
    359 	int i;
    360 
    361 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    362 		return (0);
    363 
    364 	if (iov->iov_len < (size_t) space)
    365 		space = iov->iov_len;
    366 	if (space > SOCK_LOAN_CHUNK)
    367 		space = SOCK_LOAN_CHUNK;
    368 
    369 	eva = round_page((vaddr_t) iov->iov_base + space);
    370 	sva = trunc_page((vaddr_t) iov->iov_base);
    371 	len = eva - sva;
    372 	npgs = len >> PAGE_SHIFT;
    373 
    374 	KASSERT(npgs <= M_EXT_MAXPAGES);
    375 
    376 	lva = sokvaalloc(len, so);
    377 	if (lva == 0)
    378 		return 0;
    379 
    380 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    381 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    382 	if (error) {
    383 		sokvafree(lva, len);
    384 		return (0);
    385 	}
    386 
    387 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    388 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    389 		    VM_PROT_READ, 0);
    390 	pmap_update(pmap_kernel());
    391 
    392 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    393 
    394 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    395 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    396 
    397 	uio->uio_resid -= space;
    398 	/* uio_offset not updated, not set/used for write(2) */
    399 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    400 	uio->uio_iov->iov_len -= space;
    401 	if (uio->uio_iov->iov_len == 0) {
    402 		uio->uio_iov++;
    403 		uio->uio_iovcnt--;
    404 	}
    405 
    406 	return (space);
    407 }
    408 
    409 static int
    410 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    411 {
    412 
    413 	KASSERT(ce == &sokva_reclaimerentry);
    414 	KASSERT(obj == NULL);
    415 
    416 	sodopendfree();
    417 	if (!vm_map_starved_p(kernel_map)) {
    418 		return CALLBACK_CHAIN_ABORT;
    419 	}
    420 	return CALLBACK_CHAIN_CONTINUE;
    421 }
    422 
    423 struct mbuf *
    424 getsombuf(struct socket *so, int type)
    425 {
    426 	struct mbuf *m;
    427 
    428 	m = m_get(M_WAIT, type);
    429 	MCLAIM(m, so->so_mowner);
    430 	return m;
    431 }
    432 
    433 static int
    434 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    435     void *arg0, void *arg1, void *arg2, void *arg3)
    436 {
    437 	int result;
    438 	enum kauth_network_req req;
    439 
    440 	result = KAUTH_RESULT_DEFER;
    441 	req = (enum kauth_network_req)arg0;
    442 
    443 	if ((action != KAUTH_NETWORK_SOCKET) &&
    444 	    (action != KAUTH_NETWORK_BIND))
    445 		return result;
    446 
    447 	switch (req) {
    448 	case KAUTH_REQ_NETWORK_BIND_PORT:
    449 		result = KAUTH_RESULT_ALLOW;
    450 		break;
    451 
    452 	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
    453 		/* Normal users can only drop their own connections. */
    454 		struct socket *so = (struct socket *)arg1;
    455 		uid_t sockuid = so->so_uidinfo->ui_uid;
    456 
    457 		if (sockuid == kauth_cred_getuid(cred) ||
    458 		    sockuid == kauth_cred_geteuid(cred))
    459 			result = KAUTH_RESULT_ALLOW;
    460 
    461 		break;
    462 		}
    463 
    464 	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
    465 		/* We allow "raw" routing/bluetooth sockets to anyone. */
    466 		if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_BLUETOOTH)
    467 			result = KAUTH_RESULT_ALLOW;
    468 		else {
    469 			/* Privileged, let secmodel handle this. */
    470 			if ((u_long)arg2 == SOCK_RAW)
    471 				break;
    472 		}
    473 
    474 		result = KAUTH_RESULT_ALLOW;
    475 
    476 		break;
    477 
    478 	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
    479 		result = KAUTH_RESULT_ALLOW;
    480 
    481 		break;
    482 
    483 	default:
    484 		break;
    485 	}
    486 
    487 	return result;
    488 }
    489 
    490 void
    491 soinit(void)
    492 {
    493 
    494 	sysctl_kern_somaxkva_setup();
    495 
    496 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    497 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    498 	cv_init(&socurkva_cv, "sokva");
    499 	soinit2();
    500 
    501 	/* Set the initial adjusted socket buffer size. */
    502 	if (sb_max_set(sb_max))
    503 		panic("bad initial sb_max value: %lu", sb_max);
    504 
    505 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    506 	    &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
    507 
    508 	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    509 	    socket_listener_cb, NULL);
    510 }
    511 
    512 /*
    513  * Socket operation routines.
    514  * These routines are called by the routines in
    515  * sys_socket.c or from a system process, and
    516  * implement the semantics of socket operations by
    517  * switching out to the protocol specific routines.
    518  */
    519 /*ARGSUSED*/
    520 int
    521 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    522 	 struct socket *lockso)
    523 {
    524 	const struct protosw	*prp;
    525 	struct socket	*so;
    526 	uid_t		uid;
    527 	int		error;
    528 	kmutex_t	*lock;
    529 
    530 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    531 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    532 	    KAUTH_ARG(proto));
    533 	if (error != 0)
    534 		return error;
    535 
    536 	if (proto)
    537 		prp = pffindproto(dom, proto, type);
    538 	else
    539 		prp = pffindtype(dom, type);
    540 	if (prp == NULL) {
    541 		/* no support for domain */
    542 		if (pffinddomain(dom) == 0)
    543 			return EAFNOSUPPORT;
    544 		/* no support for socket type */
    545 		if (proto == 0 && type != 0)
    546 			return EPROTOTYPE;
    547 		return EPROTONOSUPPORT;
    548 	}
    549 	if (prp->pr_usrreq == NULL)
    550 		return EPROTONOSUPPORT;
    551 	if (prp->pr_type != type)
    552 		return EPROTOTYPE;
    553 
    554 	so = soget(true);
    555 	so->so_type = type;
    556 	so->so_proto = prp;
    557 	so->so_send = sosend;
    558 	so->so_receive = soreceive;
    559 #ifdef MBUFTRACE
    560 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    561 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    562 	so->so_mowner = &prp->pr_domain->dom_mowner;
    563 #endif
    564 	uid = kauth_cred_geteuid(l->l_cred);
    565 	so->so_uidinfo = uid_find(uid);
    566 	so->so_egid = kauth_cred_getegid(l->l_cred);
    567 	so->so_cpid = l->l_proc->p_pid;
    568 	if (lockso != NULL) {
    569 		/* Caller wants us to share a lock. */
    570 		lock = lockso->so_lock;
    571 		so->so_lock = lock;
    572 		mutex_obj_hold(lock);
    573 		mutex_enter(lock);
    574 	} else {
    575 		/* Lock assigned and taken during PRU_ATTACH. */
    576 	}
    577 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
    578 	    (struct mbuf *)(long)proto, NULL, l);
    579 	KASSERT(solocked(so));
    580 	if (error != 0) {
    581 		so->so_state |= SS_NOFDREF;
    582 		sofree(so);
    583 		return error;
    584 	}
    585 	sounlock(so);
    586 	*aso = so;
    587 	return 0;
    588 }
    589 
    590 /* On success, write file descriptor to fdout and return zero.  On
    591  * failure, return non-zero; *fdout will be undefined.
    592  */
    593 int
    594 fsocreate(int domain, struct socket **sop, int type, int protocol,
    595     struct lwp *l, int *fdout)
    596 {
    597 	struct socket	*so;
    598 	struct file	*fp;
    599 	int		fd, error;
    600 
    601 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    602 		return (error);
    603 	fp->f_flag = FREAD|FWRITE;
    604 	fp->f_type = DTYPE_SOCKET;
    605 	fp->f_ops = &socketops;
    606 	error = socreate(domain, &so, type, protocol, l, NULL);
    607 	if (error != 0) {
    608 		fd_abort(curproc, fp, fd);
    609 	} else {
    610 		if (sop != NULL)
    611 			*sop = so;
    612 		fp->f_data = so;
    613 		fd_affix(curproc, fp, fd);
    614 		*fdout = fd;
    615 	}
    616 	return error;
    617 }
    618 
    619 int
    620 sofamily(const struct socket *so)
    621 {
    622 	const struct protosw *pr;
    623 	const struct domain *dom;
    624 
    625 	if ((pr = so->so_proto) == NULL)
    626 		return AF_UNSPEC;
    627 	if ((dom = pr->pr_domain) == NULL)
    628 		return AF_UNSPEC;
    629 	return dom->dom_family;
    630 }
    631 
    632 int
    633 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    634 {
    635 	int	error;
    636 
    637 	solock(so);
    638 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
    639 	sounlock(so);
    640 	return error;
    641 }
    642 
    643 int
    644 solisten(struct socket *so, int backlog, struct lwp *l)
    645 {
    646 	int	error;
    647 
    648 	solock(so);
    649 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    650 	    SS_ISDISCONNECTING)) != 0) {
    651 	    	sounlock(so);
    652 		return (EOPNOTSUPP);
    653 	}
    654 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
    655 	    NULL, NULL, l);
    656 	if (error != 0) {
    657 		sounlock(so);
    658 		return error;
    659 	}
    660 	if (TAILQ_EMPTY(&so->so_q))
    661 		so->so_options |= SO_ACCEPTCONN;
    662 	if (backlog < 0)
    663 		backlog = 0;
    664 	so->so_qlimit = min(backlog, somaxconn);
    665 	sounlock(so);
    666 	return 0;
    667 }
    668 
    669 void
    670 sofree(struct socket *so)
    671 {
    672 	u_int refs;
    673 
    674 	KASSERT(solocked(so));
    675 
    676 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    677 		sounlock(so);
    678 		return;
    679 	}
    680 	if (so->so_head) {
    681 		/*
    682 		 * We must not decommission a socket that's on the accept(2)
    683 		 * queue.  If we do, then accept(2) may hang after select(2)
    684 		 * indicated that the listening socket was ready.
    685 		 */
    686 		if (!soqremque(so, 0)) {
    687 			sounlock(so);
    688 			return;
    689 		}
    690 	}
    691 	if (so->so_rcv.sb_hiwat)
    692 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    693 		    RLIM_INFINITY);
    694 	if (so->so_snd.sb_hiwat)
    695 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    696 		    RLIM_INFINITY);
    697 	sbrelease(&so->so_snd, so);
    698 	KASSERT(!cv_has_waiters(&so->so_cv));
    699 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    700 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    701 	sorflush(so);
    702 	refs = so->so_aborting;	/* XXX */
    703 	/* Remove acccept filter if one is present. */
    704 	if (so->so_accf != NULL)
    705 		(void)accept_filt_clear(so);
    706 	sounlock(so);
    707 	if (refs == 0)		/* XXX */
    708 		soput(so);
    709 }
    710 
    711 /*
    712  * Close a socket on last file table reference removal.
    713  * Initiate disconnect if connected.
    714  * Free socket when disconnect complete.
    715  */
    716 int
    717 soclose(struct socket *so)
    718 {
    719 	struct socket	*so2;
    720 	int		error;
    721 	int		error2;
    722 
    723 	error = 0;
    724 	solock(so);
    725 	if (so->so_options & SO_ACCEPTCONN) {
    726 		for (;;) {
    727 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    728 				KASSERT(solocked2(so, so2));
    729 				(void) soqremque(so2, 0);
    730 				/* soabort drops the lock. */
    731 				(void) soabort(so2);
    732 				solock(so);
    733 				continue;
    734 			}
    735 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    736 				KASSERT(solocked2(so, so2));
    737 				(void) soqremque(so2, 1);
    738 				/* soabort drops the lock. */
    739 				(void) soabort(so2);
    740 				solock(so);
    741 				continue;
    742 			}
    743 			break;
    744 		}
    745 	}
    746 	if (so->so_pcb == 0)
    747 		goto discard;
    748 	if (so->so_state & SS_ISCONNECTED) {
    749 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    750 			error = sodisconnect(so);
    751 			if (error)
    752 				goto drop;
    753 		}
    754 		if (so->so_options & SO_LINGER) {
    755 			if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
    756 				goto drop;
    757 			while (so->so_state & SS_ISCONNECTED) {
    758 				error = sowait(so, true, so->so_linger * hz);
    759 				if (error)
    760 					break;
    761 			}
    762 		}
    763 	}
    764  drop:
    765 	if (so->so_pcb) {
    766 		error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    767 		    NULL, NULL, NULL, NULL);
    768 		if (error == 0)
    769 			error = error2;
    770 	}
    771  discard:
    772 	if (so->so_state & SS_NOFDREF)
    773 		panic("soclose: NOFDREF");
    774 	so->so_state |= SS_NOFDREF;
    775 	sofree(so);
    776 	return (error);
    777 }
    778 
    779 /*
    780  * Must be called with the socket locked..  Will return with it unlocked.
    781  */
    782 int
    783 soabort(struct socket *so)
    784 {
    785 	u_int refs;
    786 	int error;
    787 
    788 	KASSERT(solocked(so));
    789 	KASSERT(so->so_head == NULL);
    790 
    791 	so->so_aborting++;		/* XXX */
    792 	error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
    793 	    NULL, NULL, NULL);
    794 	refs = --so->so_aborting;	/* XXX */
    795 	if (error || (refs == 0)) {
    796 		sofree(so);
    797 	} else {
    798 		sounlock(so);
    799 	}
    800 	return error;
    801 }
    802 
    803 int
    804 soaccept(struct socket *so, struct mbuf *nam)
    805 {
    806 	int	error;
    807 
    808 	KASSERT(solocked(so));
    809 
    810 	error = 0;
    811 	if ((so->so_state & SS_NOFDREF) == 0)
    812 		panic("soaccept: !NOFDREF");
    813 	so->so_state &= ~SS_NOFDREF;
    814 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    815 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    816 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    817 		    NULL, nam, NULL, NULL);
    818 	else
    819 		error = ECONNABORTED;
    820 
    821 	return (error);
    822 }
    823 
    824 int
    825 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    826 {
    827 	int		error;
    828 
    829 	KASSERT(solocked(so));
    830 
    831 	if (so->so_options & SO_ACCEPTCONN)
    832 		return (EOPNOTSUPP);
    833 	/*
    834 	 * If protocol is connection-based, can only connect once.
    835 	 * Otherwise, if connected, try to disconnect first.
    836 	 * This allows user to disconnect by connecting to, e.g.,
    837 	 * a null address.
    838 	 */
    839 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    840 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    841 	    (error = sodisconnect(so))))
    842 		error = EISCONN;
    843 	else
    844 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    845 		    NULL, nam, NULL, l);
    846 	return (error);
    847 }
    848 
    849 int
    850 soconnect2(struct socket *so1, struct socket *so2)
    851 {
    852 	int	error;
    853 
    854 	KASSERT(solocked2(so1, so2));
    855 
    856 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    857 	    NULL, (struct mbuf *)so2, NULL, NULL);
    858 	return (error);
    859 }
    860 
    861 int
    862 sodisconnect(struct socket *so)
    863 {
    864 	int	error;
    865 
    866 	KASSERT(solocked(so));
    867 
    868 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    869 		error = ENOTCONN;
    870 	} else if (so->so_state & SS_ISDISCONNECTING) {
    871 		error = EALREADY;
    872 	} else {
    873 		error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    874 		    NULL, NULL, NULL, NULL);
    875 	}
    876 	sodopendfree();
    877 	return (error);
    878 }
    879 
    880 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    881 /*
    882  * Send on a socket.
    883  * If send must go all at once and message is larger than
    884  * send buffering, then hard error.
    885  * Lock against other senders.
    886  * If must go all at once and not enough room now, then
    887  * inform user that this would block and do nothing.
    888  * Otherwise, if nonblocking, send as much as possible.
    889  * The data to be sent is described by "uio" if nonzero,
    890  * otherwise by the mbuf chain "top" (which must be null
    891  * if uio is not).  Data provided in mbuf chain must be small
    892  * enough to send all at once.
    893  *
    894  * Returns nonzero on error, timeout or signal; callers
    895  * must check for short counts if EINTR/ERESTART are returned.
    896  * Data and control buffers are freed on return.
    897  */
    898 int
    899 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    900 	struct mbuf *control, int flags, struct lwp *l)
    901 {
    902 	struct mbuf	**mp, *m;
    903 	struct proc	*p;
    904 	long		space, len, resid, clen, mlen;
    905 	int		error, s, dontroute, atomic;
    906 	short		wakeup_state = 0;
    907 
    908 	p = l->l_proc;
    909 	sodopendfree();
    910 	clen = 0;
    911 
    912 	/*
    913 	 * solock() provides atomicity of access.  splsoftnet() prevents
    914 	 * protocol processing soft interrupts from interrupting us and
    915 	 * blocking (expensive).
    916 	 */
    917 	s = splsoftnet();
    918 	solock(so);
    919 	atomic = sosendallatonce(so) || top;
    920 	if (uio)
    921 		resid = uio->uio_resid;
    922 	else
    923 		resid = top->m_pkthdr.len;
    924 	/*
    925 	 * In theory resid should be unsigned.
    926 	 * However, space must be signed, as it might be less than 0
    927 	 * if we over-committed, and we must use a signed comparison
    928 	 * of space and resid.  On the other hand, a negative resid
    929 	 * causes us to loop sending 0-length segments to the protocol.
    930 	 */
    931 	if (resid < 0) {
    932 		error = EINVAL;
    933 		goto out;
    934 	}
    935 	dontroute =
    936 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    937 	    (so->so_proto->pr_flags & PR_ATOMIC);
    938 	l->l_ru.ru_msgsnd++;
    939 	if (control)
    940 		clen = control->m_len;
    941  restart:
    942 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    943 		goto out;
    944 	do {
    945 		if (so->so_state & SS_CANTSENDMORE) {
    946 			error = EPIPE;
    947 			goto release;
    948 		}
    949 		if (so->so_error) {
    950 			error = so->so_error;
    951 			so->so_error = 0;
    952 			goto release;
    953 		}
    954 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    955 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    956 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    957 				    !(resid == 0 && clen != 0)) {
    958 					error = ENOTCONN;
    959 					goto release;
    960 				}
    961 			} else if (addr == 0) {
    962 				error = EDESTADDRREQ;
    963 				goto release;
    964 			}
    965 		}
    966 		space = sbspace(&so->so_snd);
    967 		if (flags & MSG_OOB)
    968 			space += 1024;
    969 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    970 		    clen > so->so_snd.sb_hiwat) {
    971 			error = EMSGSIZE;
    972 			goto release;
    973 		}
    974 		if (space < resid + clen &&
    975 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    976 			if (so->so_nbio) {
    977 				error = EWOULDBLOCK;
    978 				goto release;
    979 			}
    980 			sbunlock(&so->so_snd);
    981 			if (wakeup_state & SS_RESTARTSYS) {
    982 				error = ERESTART;
    983 				goto out;
    984 			}
    985 			error = sbwait(&so->so_snd);
    986 			if (error)
    987 				goto out;
    988 			wakeup_state = so->so_state;
    989 			goto restart;
    990 		}
    991 		wakeup_state = 0;
    992 		mp = &top;
    993 		space -= clen;
    994 		do {
    995 			if (uio == NULL) {
    996 				/*
    997 				 * Data is prepackaged in "top".
    998 				 */
    999 				resid = 0;
   1000 				if (flags & MSG_EOR)
   1001 					top->m_flags |= M_EOR;
   1002 			} else do {
   1003 				sounlock(so);
   1004 				splx(s);
   1005 				if (top == NULL) {
   1006 					m = m_gethdr(M_WAIT, MT_DATA);
   1007 					mlen = MHLEN;
   1008 					m->m_pkthdr.len = 0;
   1009 					m->m_pkthdr.rcvif = NULL;
   1010 				} else {
   1011 					m = m_get(M_WAIT, MT_DATA);
   1012 					mlen = MLEN;
   1013 				}
   1014 				MCLAIM(m, so->so_snd.sb_mowner);
   1015 				if (sock_loan_thresh >= 0 &&
   1016 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
   1017 				    space >= sock_loan_thresh &&
   1018 				    (len = sosend_loan(so, uio, m,
   1019 						       space)) != 0) {
   1020 					SOSEND_COUNTER_INCR(&sosend_loan_big);
   1021 					space -= len;
   1022 					goto have_data;
   1023 				}
   1024 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
   1025 					SOSEND_COUNTER_INCR(&sosend_copy_big);
   1026 					m_clget(m, M_WAIT);
   1027 					if ((m->m_flags & M_EXT) == 0)
   1028 						goto nopages;
   1029 					mlen = MCLBYTES;
   1030 					if (atomic && top == 0) {
   1031 						len = lmin(MCLBYTES - max_hdr,
   1032 						    resid);
   1033 						m->m_data += max_hdr;
   1034 					} else
   1035 						len = lmin(MCLBYTES, resid);
   1036 					space -= len;
   1037 				} else {
   1038  nopages:
   1039 					SOSEND_COUNTER_INCR(&sosend_copy_small);
   1040 					len = lmin(lmin(mlen, resid), space);
   1041 					space -= len;
   1042 					/*
   1043 					 * For datagram protocols, leave room
   1044 					 * for protocol headers in first mbuf.
   1045 					 */
   1046 					if (atomic && top == 0 && len < mlen)
   1047 						MH_ALIGN(m, len);
   1048 				}
   1049 				error = uiomove(mtod(m, void *), (int)len, uio);
   1050  have_data:
   1051 				resid = uio->uio_resid;
   1052 				m->m_len = len;
   1053 				*mp = m;
   1054 				top->m_pkthdr.len += len;
   1055 				s = splsoftnet();
   1056 				solock(so);
   1057 				if (error != 0)
   1058 					goto release;
   1059 				mp = &m->m_next;
   1060 				if (resid <= 0) {
   1061 					if (flags & MSG_EOR)
   1062 						top->m_flags |= M_EOR;
   1063 					break;
   1064 				}
   1065 			} while (space > 0 && atomic);
   1066 
   1067 			if (so->so_state & SS_CANTSENDMORE) {
   1068 				error = EPIPE;
   1069 				goto release;
   1070 			}
   1071 			if (dontroute)
   1072 				so->so_options |= SO_DONTROUTE;
   1073 			if (resid > 0)
   1074 				so->so_state |= SS_MORETOCOME;
   1075 			error = (*so->so_proto->pr_usrreq)(so,
   1076 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
   1077 			    top, addr, control, curlwp);
   1078 			if (dontroute)
   1079 				so->so_options &= ~SO_DONTROUTE;
   1080 			if (resid > 0)
   1081 				so->so_state &= ~SS_MORETOCOME;
   1082 			clen = 0;
   1083 			control = NULL;
   1084 			top = NULL;
   1085 			mp = &top;
   1086 			if (error != 0)
   1087 				goto release;
   1088 		} while (resid && space > 0);
   1089 	} while (resid);
   1090 
   1091  release:
   1092 	sbunlock(&so->so_snd);
   1093  out:
   1094 	sounlock(so);
   1095 	splx(s);
   1096 	if (top)
   1097 		m_freem(top);
   1098 	if (control)
   1099 		m_freem(control);
   1100 	return (error);
   1101 }
   1102 
   1103 /*
   1104  * Following replacement or removal of the first mbuf on the first
   1105  * mbuf chain of a socket buffer, push necessary state changes back
   1106  * into the socket buffer so that other consumers see the values
   1107  * consistently.  'nextrecord' is the callers locally stored value of
   1108  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1109  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1110  */
   1111 static void
   1112 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1113 {
   1114 
   1115 	KASSERT(solocked(sb->sb_so));
   1116 
   1117 	/*
   1118 	 * First, update for the new value of nextrecord.  If necessary,
   1119 	 * make it the first record.
   1120 	 */
   1121 	if (sb->sb_mb != NULL)
   1122 		sb->sb_mb->m_nextpkt = nextrecord;
   1123 	else
   1124 		sb->sb_mb = nextrecord;
   1125 
   1126         /*
   1127          * Now update any dependent socket buffer fields to reflect
   1128          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1129          * the addition of a second clause that takes care of the
   1130          * case where sb_mb has been updated, but remains the last
   1131          * record.
   1132          */
   1133         if (sb->sb_mb == NULL) {
   1134                 sb->sb_mbtail = NULL;
   1135                 sb->sb_lastrecord = NULL;
   1136         } else if (sb->sb_mb->m_nextpkt == NULL)
   1137                 sb->sb_lastrecord = sb->sb_mb;
   1138 }
   1139 
   1140 /*
   1141  * Implement receive operations on a socket.
   1142  * We depend on the way that records are added to the sockbuf
   1143  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1144  * must begin with an address if the protocol so specifies,
   1145  * followed by an optional mbuf or mbufs containing ancillary data,
   1146  * and then zero or more mbufs of data.
   1147  * In order to avoid blocking network interrupts for the entire time here,
   1148  * we splx() while doing the actual copy to user space.
   1149  * Although the sockbuf is locked, new data may still be appended,
   1150  * and thus we must maintain consistency of the sockbuf during that time.
   1151  *
   1152  * The caller may receive the data as a single mbuf chain by supplying
   1153  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1154  * only for the count in uio_resid.
   1155  */
   1156 int
   1157 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1158 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1159 {
   1160 	struct lwp *l = curlwp;
   1161 	struct mbuf	*m, **mp, *mt;
   1162 	int atomic, flags, len, error, s, offset, moff, type, orig_resid;
   1163 	const struct protosw	*pr;
   1164 	struct mbuf	*nextrecord;
   1165 	int		mbuf_removed = 0;
   1166 	const struct domain *dom;
   1167 	short		wakeup_state = 0;
   1168 
   1169 	pr = so->so_proto;
   1170 	atomic = pr->pr_flags & PR_ATOMIC;
   1171 	dom = pr->pr_domain;
   1172 	mp = mp0;
   1173 	type = 0;
   1174 	orig_resid = uio->uio_resid;
   1175 
   1176 	if (paddr != NULL)
   1177 		*paddr = NULL;
   1178 	if (controlp != NULL)
   1179 		*controlp = NULL;
   1180 	if (flagsp != NULL)
   1181 		flags = *flagsp &~ MSG_EOR;
   1182 	else
   1183 		flags = 0;
   1184 
   1185 	if ((flags & MSG_DONTWAIT) == 0)
   1186 		sodopendfree();
   1187 
   1188 	if (flags & MSG_OOB) {
   1189 		m = m_get(M_WAIT, MT_DATA);
   1190 		solock(so);
   1191 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
   1192 		    (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
   1193 		sounlock(so);
   1194 		if (error)
   1195 			goto bad;
   1196 		do {
   1197 			error = uiomove(mtod(m, void *),
   1198 			    (int) min(uio->uio_resid, m->m_len), uio);
   1199 			m = m_free(m);
   1200 		} while (uio->uio_resid > 0 && error == 0 && m);
   1201  bad:
   1202 		if (m != NULL)
   1203 			m_freem(m);
   1204 		return error;
   1205 	}
   1206 	if (mp != NULL)
   1207 		*mp = NULL;
   1208 
   1209 	/*
   1210 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1211 	 * protocol processing soft interrupts from interrupting us and
   1212 	 * blocking (expensive).
   1213 	 */
   1214 	s = splsoftnet();
   1215 	solock(so);
   1216 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
   1217 		(*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
   1218 
   1219  restart:
   1220 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1221 		sounlock(so);
   1222 		splx(s);
   1223 		return error;
   1224 	}
   1225 
   1226 	m = so->so_rcv.sb_mb;
   1227 	/*
   1228 	 * If we have less data than requested, block awaiting more
   1229 	 * (subject to any timeout) if:
   1230 	 *   1. the current count is less than the low water mark,
   1231 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1232 	 *	receive operation at once if we block (resid <= hiwat), or
   1233 	 *   3. MSG_DONTWAIT is not set.
   1234 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1235 	 * we have to do the receive in sections, and thus risk returning
   1236 	 * a short count if a timeout or signal occurs after we start.
   1237 	 */
   1238 	if (m == NULL ||
   1239 	    ((flags & MSG_DONTWAIT) == 0 &&
   1240 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1241 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1242 	      ((flags & MSG_WAITALL) &&
   1243 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1244 	     m->m_nextpkt == NULL && !atomic)) {
   1245 #ifdef DIAGNOSTIC
   1246 		if (m == NULL && so->so_rcv.sb_cc)
   1247 			panic("receive 1");
   1248 #endif
   1249 		if (so->so_error) {
   1250 			if (m != NULL)
   1251 				goto dontblock;
   1252 			error = so->so_error;
   1253 			if ((flags & MSG_PEEK) == 0)
   1254 				so->so_error = 0;
   1255 			goto release;
   1256 		}
   1257 		if (so->so_state & SS_CANTRCVMORE) {
   1258 			if (m != NULL)
   1259 				goto dontblock;
   1260 			else
   1261 				goto release;
   1262 		}
   1263 		for (; m != NULL; m = m->m_next)
   1264 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1265 				m = so->so_rcv.sb_mb;
   1266 				goto dontblock;
   1267 			}
   1268 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1269 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1270 			error = ENOTCONN;
   1271 			goto release;
   1272 		}
   1273 		if (uio->uio_resid == 0)
   1274 			goto release;
   1275 		if (so->so_nbio || (flags & MSG_DONTWAIT)) {
   1276 			error = EWOULDBLOCK;
   1277 			goto release;
   1278 		}
   1279 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1280 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1281 		sbunlock(&so->so_rcv);
   1282 		if (wakeup_state & SS_RESTARTSYS)
   1283 			error = ERESTART;
   1284 		else
   1285 			error = sbwait(&so->so_rcv);
   1286 		if (error != 0) {
   1287 			sounlock(so);
   1288 			splx(s);
   1289 			return error;
   1290 		}
   1291 		wakeup_state = so->so_state;
   1292 		goto restart;
   1293 	}
   1294  dontblock:
   1295 	/*
   1296 	 * On entry here, m points to the first record of the socket buffer.
   1297 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1298 	 * pointer to the next record in the socket buffer.  We must keep the
   1299 	 * various socket buffer pointers and local stack versions of the
   1300 	 * pointers in sync, pushing out modifications before dropping the
   1301 	 * socket lock, and re-reading them when picking it up.
   1302 	 *
   1303 	 * Otherwise, we will race with the network stack appending new data
   1304 	 * or records onto the socket buffer by using inconsistent/stale
   1305 	 * versions of the field, possibly resulting in socket buffer
   1306 	 * corruption.
   1307 	 *
   1308 	 * By holding the high-level sblock(), we prevent simultaneous
   1309 	 * readers from pulling off the front of the socket buffer.
   1310 	 */
   1311 	if (l != NULL)
   1312 		l->l_ru.ru_msgrcv++;
   1313 	KASSERT(m == so->so_rcv.sb_mb);
   1314 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1315 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1316 	nextrecord = m->m_nextpkt;
   1317 	if (pr->pr_flags & PR_ADDR) {
   1318 #ifdef DIAGNOSTIC
   1319 		if (m->m_type != MT_SONAME)
   1320 			panic("receive 1a");
   1321 #endif
   1322 		orig_resid = 0;
   1323 		if (flags & MSG_PEEK) {
   1324 			if (paddr)
   1325 				*paddr = m_copy(m, 0, m->m_len);
   1326 			m = m->m_next;
   1327 		} else {
   1328 			sbfree(&so->so_rcv, m);
   1329 			mbuf_removed = 1;
   1330 			if (paddr != NULL) {
   1331 				*paddr = m;
   1332 				so->so_rcv.sb_mb = m->m_next;
   1333 				m->m_next = NULL;
   1334 				m = so->so_rcv.sb_mb;
   1335 			} else {
   1336 				MFREE(m, so->so_rcv.sb_mb);
   1337 				m = so->so_rcv.sb_mb;
   1338 			}
   1339 			sbsync(&so->so_rcv, nextrecord);
   1340 		}
   1341 	}
   1342 
   1343 	/*
   1344 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1345 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1346 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1347 	 * perform externalization (or freeing if controlp == NULL).
   1348 	 */
   1349 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1350 		struct mbuf *cm = NULL, *cmn;
   1351 		struct mbuf **cme = &cm;
   1352 
   1353 		do {
   1354 			if (flags & MSG_PEEK) {
   1355 				if (controlp != NULL) {
   1356 					*controlp = m_copy(m, 0, m->m_len);
   1357 					controlp = &(*controlp)->m_next;
   1358 				}
   1359 				m = m->m_next;
   1360 			} else {
   1361 				sbfree(&so->so_rcv, m);
   1362 				so->so_rcv.sb_mb = m->m_next;
   1363 				m->m_next = NULL;
   1364 				*cme = m;
   1365 				cme = &(*cme)->m_next;
   1366 				m = so->so_rcv.sb_mb;
   1367 			}
   1368 		} while (m != NULL && m->m_type == MT_CONTROL);
   1369 		if ((flags & MSG_PEEK) == 0)
   1370 			sbsync(&so->so_rcv, nextrecord);
   1371 		for (; cm != NULL; cm = cmn) {
   1372 			cmn = cm->m_next;
   1373 			cm->m_next = NULL;
   1374 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1375 			if (controlp != NULL) {
   1376 				if (dom->dom_externalize != NULL &&
   1377 				    type == SCM_RIGHTS) {
   1378 					sounlock(so);
   1379 					splx(s);
   1380 					error = (*dom->dom_externalize)(cm, l);
   1381 					s = splsoftnet();
   1382 					solock(so);
   1383 				}
   1384 				*controlp = cm;
   1385 				while (*controlp != NULL)
   1386 					controlp = &(*controlp)->m_next;
   1387 			} else {
   1388 				/*
   1389 				 * Dispose of any SCM_RIGHTS message that went
   1390 				 * through the read path rather than recv.
   1391 				 */
   1392 				if (dom->dom_dispose != NULL &&
   1393 				    type == SCM_RIGHTS) {
   1394 				    	sounlock(so);
   1395 					(*dom->dom_dispose)(cm);
   1396 					solock(so);
   1397 				}
   1398 				m_freem(cm);
   1399 			}
   1400 		}
   1401 		if (m != NULL)
   1402 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1403 		else
   1404 			nextrecord = so->so_rcv.sb_mb;
   1405 		orig_resid = 0;
   1406 	}
   1407 
   1408 	/* If m is non-NULL, we have some data to read. */
   1409 	if (__predict_true(m != NULL)) {
   1410 		type = m->m_type;
   1411 		if (type == MT_OOBDATA)
   1412 			flags |= MSG_OOB;
   1413 	}
   1414 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1415 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1416 
   1417 	moff = 0;
   1418 	offset = 0;
   1419 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1420 		if (m->m_type == MT_OOBDATA) {
   1421 			if (type != MT_OOBDATA)
   1422 				break;
   1423 		} else if (type == MT_OOBDATA)
   1424 			break;
   1425 #ifdef DIAGNOSTIC
   1426 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1427 			panic("receive 3");
   1428 #endif
   1429 		so->so_state &= ~SS_RCVATMARK;
   1430 		wakeup_state = 0;
   1431 		len = uio->uio_resid;
   1432 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1433 			len = so->so_oobmark - offset;
   1434 		if (len > m->m_len - moff)
   1435 			len = m->m_len - moff;
   1436 		/*
   1437 		 * If mp is set, just pass back the mbufs.
   1438 		 * Otherwise copy them out via the uio, then free.
   1439 		 * Sockbuf must be consistent here (points to current mbuf,
   1440 		 * it points to next record) when we drop priority;
   1441 		 * we must note any additions to the sockbuf when we
   1442 		 * block interrupts again.
   1443 		 */
   1444 		if (mp == NULL) {
   1445 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1446 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1447 			sounlock(so);
   1448 			splx(s);
   1449 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
   1450 			s = splsoftnet();
   1451 			solock(so);
   1452 			if (error != 0) {
   1453 				/*
   1454 				 * If any part of the record has been removed
   1455 				 * (such as the MT_SONAME mbuf, which will
   1456 				 * happen when PR_ADDR, and thus also
   1457 				 * PR_ATOMIC, is set), then drop the entire
   1458 				 * record to maintain the atomicity of the
   1459 				 * receive operation.
   1460 				 *
   1461 				 * This avoids a later panic("receive 1a")
   1462 				 * when compiled with DIAGNOSTIC.
   1463 				 */
   1464 				if (m && mbuf_removed && atomic)
   1465 					(void) sbdroprecord(&so->so_rcv);
   1466 
   1467 				goto release;
   1468 			}
   1469 		} else
   1470 			uio->uio_resid -= len;
   1471 		if (len == m->m_len - moff) {
   1472 			if (m->m_flags & M_EOR)
   1473 				flags |= MSG_EOR;
   1474 			if (flags & MSG_PEEK) {
   1475 				m = m->m_next;
   1476 				moff = 0;
   1477 			} else {
   1478 				nextrecord = m->m_nextpkt;
   1479 				sbfree(&so->so_rcv, m);
   1480 				if (mp) {
   1481 					*mp = m;
   1482 					mp = &m->m_next;
   1483 					so->so_rcv.sb_mb = m = m->m_next;
   1484 					*mp = NULL;
   1485 				} else {
   1486 					MFREE(m, so->so_rcv.sb_mb);
   1487 					m = so->so_rcv.sb_mb;
   1488 				}
   1489 				/*
   1490 				 * If m != NULL, we also know that
   1491 				 * so->so_rcv.sb_mb != NULL.
   1492 				 */
   1493 				KASSERT(so->so_rcv.sb_mb == m);
   1494 				if (m) {
   1495 					m->m_nextpkt = nextrecord;
   1496 					if (nextrecord == NULL)
   1497 						so->so_rcv.sb_lastrecord = m;
   1498 				} else {
   1499 					so->so_rcv.sb_mb = nextrecord;
   1500 					SB_EMPTY_FIXUP(&so->so_rcv);
   1501 				}
   1502 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1503 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1504 			}
   1505 		} else if (flags & MSG_PEEK)
   1506 			moff += len;
   1507 		else {
   1508 			if (mp != NULL) {
   1509 				mt = m_copym(m, 0, len, M_NOWAIT);
   1510 				if (__predict_false(mt == NULL)) {
   1511 					sounlock(so);
   1512 					mt = m_copym(m, 0, len, M_WAIT);
   1513 					solock(so);
   1514 				}
   1515 				*mp = mt;
   1516 			}
   1517 			m->m_data += len;
   1518 			m->m_len -= len;
   1519 			so->so_rcv.sb_cc -= len;
   1520 		}
   1521 		if (so->so_oobmark) {
   1522 			if ((flags & MSG_PEEK) == 0) {
   1523 				so->so_oobmark -= len;
   1524 				if (so->so_oobmark == 0) {
   1525 					so->so_state |= SS_RCVATMARK;
   1526 					break;
   1527 				}
   1528 			} else {
   1529 				offset += len;
   1530 				if (offset == so->so_oobmark)
   1531 					break;
   1532 			}
   1533 		}
   1534 		if (flags & MSG_EOR)
   1535 			break;
   1536 		/*
   1537 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1538 		 * we must not quit until "uio->uio_resid == 0" or an error
   1539 		 * termination.  If a signal/timeout occurs, return
   1540 		 * with a short count but without error.
   1541 		 * Keep sockbuf locked against other readers.
   1542 		 */
   1543 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1544 		    !sosendallatonce(so) && !nextrecord) {
   1545 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1546 				break;
   1547 			/*
   1548 			 * If we are peeking and the socket receive buffer is
   1549 			 * full, stop since we can't get more data to peek at.
   1550 			 */
   1551 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1552 				break;
   1553 			/*
   1554 			 * If we've drained the socket buffer, tell the
   1555 			 * protocol in case it needs to do something to
   1556 			 * get it filled again.
   1557 			 */
   1558 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1559 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1560 				    NULL, (struct mbuf *)(long)flags, NULL, l);
   1561 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1562 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1563 			if (wakeup_state & SS_RESTARTSYS)
   1564 				error = ERESTART;
   1565 			else
   1566 				error = sbwait(&so->so_rcv);
   1567 			if (error != 0) {
   1568 				sbunlock(&so->so_rcv);
   1569 				sounlock(so);
   1570 				splx(s);
   1571 				return 0;
   1572 			}
   1573 			if ((m = so->so_rcv.sb_mb) != NULL)
   1574 				nextrecord = m->m_nextpkt;
   1575 			wakeup_state = so->so_state;
   1576 		}
   1577 	}
   1578 
   1579 	if (m && atomic) {
   1580 		flags |= MSG_TRUNC;
   1581 		if ((flags & MSG_PEEK) == 0)
   1582 			(void) sbdroprecord(&so->so_rcv);
   1583 	}
   1584 	if ((flags & MSG_PEEK) == 0) {
   1585 		if (m == NULL) {
   1586 			/*
   1587 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1588 			 * part makes sure sb_lastrecord is up-to-date if
   1589 			 * there is still data in the socket buffer.
   1590 			 */
   1591 			so->so_rcv.sb_mb = nextrecord;
   1592 			if (so->so_rcv.sb_mb == NULL) {
   1593 				so->so_rcv.sb_mbtail = NULL;
   1594 				so->so_rcv.sb_lastrecord = NULL;
   1595 			} else if (nextrecord->m_nextpkt == NULL)
   1596 				so->so_rcv.sb_lastrecord = nextrecord;
   1597 		}
   1598 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1599 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1600 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1601 			(*pr->pr_usrreq)(so, PRU_RCVD, NULL,
   1602 			    (struct mbuf *)(long)flags, NULL, l);
   1603 	}
   1604 	if (orig_resid == uio->uio_resid && orig_resid &&
   1605 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1606 		sbunlock(&so->so_rcv);
   1607 		goto restart;
   1608 	}
   1609 
   1610 	if (flagsp != NULL)
   1611 		*flagsp |= flags;
   1612  release:
   1613 	sbunlock(&so->so_rcv);
   1614 	sounlock(so);
   1615 	splx(s);
   1616 	return error;
   1617 }
   1618 
   1619 int
   1620 soshutdown(struct socket *so, int how)
   1621 {
   1622 	const struct protosw	*pr;
   1623 	int	error;
   1624 
   1625 	KASSERT(solocked(so));
   1626 
   1627 	pr = so->so_proto;
   1628 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1629 		return (EINVAL);
   1630 
   1631 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1632 		sorflush(so);
   1633 		error = 0;
   1634 	}
   1635 	if (how == SHUT_WR || how == SHUT_RDWR)
   1636 		error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
   1637 		    NULL, NULL, NULL);
   1638 
   1639 	return error;
   1640 }
   1641 
   1642 void
   1643 sorestart(struct socket *so)
   1644 {
   1645 	/*
   1646 	 * An application has called close() on an fd on which another
   1647 	 * of its threads has called a socket system call.
   1648 	 * Mark this and wake everyone up, and code that would block again
   1649 	 * instead returns ERESTART.
   1650 	 * On system call re-entry the fd is validated and EBADF returned.
   1651 	 * Any other fd will block again on the 2nd syscall.
   1652 	 */
   1653 	solock(so);
   1654 	so->so_state |= SS_RESTARTSYS;
   1655 	cv_broadcast(&so->so_cv);
   1656 	cv_broadcast(&so->so_snd.sb_cv);
   1657 	cv_broadcast(&so->so_rcv.sb_cv);
   1658 	sounlock(so);
   1659 }
   1660 
   1661 void
   1662 sorflush(struct socket *so)
   1663 {
   1664 	struct sockbuf	*sb, asb;
   1665 	const struct protosw	*pr;
   1666 
   1667 	KASSERT(solocked(so));
   1668 
   1669 	sb = &so->so_rcv;
   1670 	pr = so->so_proto;
   1671 	socantrcvmore(so);
   1672 	sb->sb_flags |= SB_NOINTR;
   1673 	(void )sblock(sb, M_WAITOK);
   1674 	sbunlock(sb);
   1675 	asb = *sb;
   1676 	/*
   1677 	 * Clear most of the sockbuf structure, but leave some of the
   1678 	 * fields valid.
   1679 	 */
   1680 	memset(&sb->sb_startzero, 0,
   1681 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1682 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1683 		sounlock(so);
   1684 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1685 		solock(so);
   1686 	}
   1687 	sbrelease(&asb, so);
   1688 }
   1689 
   1690 /*
   1691  * internal set SOL_SOCKET options
   1692  */
   1693 static int
   1694 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1695 {
   1696 	int error = EINVAL, optval, opt;
   1697 	struct linger l;
   1698 	struct timeval tv;
   1699 
   1700 	switch ((opt = sopt->sopt_name)) {
   1701 
   1702 	case SO_ACCEPTFILTER:
   1703 		error = accept_filt_setopt(so, sopt);
   1704 		KASSERT(solocked(so));
   1705 		break;
   1706 
   1707   	case SO_LINGER:
   1708  		error = sockopt_get(sopt, &l, sizeof(l));
   1709 		solock(so);
   1710  		if (error)
   1711  			break;
   1712  		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1713  		    l.l_linger > (INT_MAX / hz)) {
   1714 			error = EDOM;
   1715 			break;
   1716 		}
   1717  		so->so_linger = l.l_linger;
   1718  		if (l.l_onoff)
   1719  			so->so_options |= SO_LINGER;
   1720  		else
   1721  			so->so_options &= ~SO_LINGER;
   1722    		break;
   1723 
   1724 	case SO_DEBUG:
   1725 	case SO_KEEPALIVE:
   1726 	case SO_DONTROUTE:
   1727 	case SO_USELOOPBACK:
   1728 	case SO_BROADCAST:
   1729 	case SO_REUSEADDR:
   1730 	case SO_REUSEPORT:
   1731 	case SO_OOBINLINE:
   1732 	case SO_TIMESTAMP:
   1733 #ifdef SO_OTIMESTAMP
   1734 	case SO_OTIMESTAMP:
   1735 #endif
   1736 		error = sockopt_getint(sopt, &optval);
   1737 		solock(so);
   1738 		if (error)
   1739 			break;
   1740 		if (optval)
   1741 			so->so_options |= opt;
   1742 		else
   1743 			so->so_options &= ~opt;
   1744 		break;
   1745 
   1746 	case SO_SNDBUF:
   1747 	case SO_RCVBUF:
   1748 	case SO_SNDLOWAT:
   1749 	case SO_RCVLOWAT:
   1750 		error = sockopt_getint(sopt, &optval);
   1751 		solock(so);
   1752 		if (error)
   1753 			break;
   1754 
   1755 		/*
   1756 		 * Values < 1 make no sense for any of these
   1757 		 * options, so disallow them.
   1758 		 */
   1759 		if (optval < 1) {
   1760 			error = EINVAL;
   1761 			break;
   1762 		}
   1763 
   1764 		switch (opt) {
   1765 		case SO_SNDBUF:
   1766 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
   1767 				error = ENOBUFS;
   1768 				break;
   1769 			}
   1770 			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1771 			break;
   1772 
   1773 		case SO_RCVBUF:
   1774 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
   1775 				error = ENOBUFS;
   1776 				break;
   1777 			}
   1778 			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1779 			break;
   1780 
   1781 		/*
   1782 		 * Make sure the low-water is never greater than
   1783 		 * the high-water.
   1784 		 */
   1785 		case SO_SNDLOWAT:
   1786 			if (optval > so->so_snd.sb_hiwat)
   1787 				optval = so->so_snd.sb_hiwat;
   1788 
   1789 			so->so_snd.sb_lowat = optval;
   1790 			break;
   1791 
   1792 		case SO_RCVLOWAT:
   1793 			if (optval > so->so_rcv.sb_hiwat)
   1794 				optval = so->so_rcv.sb_hiwat;
   1795 
   1796 			so->so_rcv.sb_lowat = optval;
   1797 			break;
   1798 		}
   1799 		break;
   1800 
   1801 #ifdef COMPAT_50
   1802 	case SO_OSNDTIMEO:
   1803 	case SO_ORCVTIMEO: {
   1804 		struct timeval50 otv;
   1805 		error = sockopt_get(sopt, &otv, sizeof(otv));
   1806 		if (error) {
   1807 			solock(so);
   1808 			break;
   1809 		}
   1810 		timeval50_to_timeval(&otv, &tv);
   1811 		opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
   1812 		error = 0;
   1813 		/*FALLTHROUGH*/
   1814 	}
   1815 #endif /* COMPAT_50 */
   1816 
   1817 	case SO_SNDTIMEO:
   1818 	case SO_RCVTIMEO:
   1819 		if (error)
   1820 			error = sockopt_get(sopt, &tv, sizeof(tv));
   1821 		solock(so);
   1822 		if (error)
   1823 			break;
   1824 
   1825 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
   1826 			error = EDOM;
   1827 			break;
   1828 		}
   1829 
   1830 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1831 		if (optval == 0 && tv.tv_usec != 0)
   1832 			optval = 1;
   1833 
   1834 		switch (opt) {
   1835 		case SO_SNDTIMEO:
   1836 			so->so_snd.sb_timeo = optval;
   1837 			break;
   1838 		case SO_RCVTIMEO:
   1839 			so->so_rcv.sb_timeo = optval;
   1840 			break;
   1841 		}
   1842 		break;
   1843 
   1844 	default:
   1845 		solock(so);
   1846 		error = ENOPROTOOPT;
   1847 		break;
   1848 	}
   1849 	KASSERT(solocked(so));
   1850 	return error;
   1851 }
   1852 
   1853 int
   1854 sosetopt(struct socket *so, struct sockopt *sopt)
   1855 {
   1856 	int error, prerr;
   1857 
   1858 	if (sopt->sopt_level == SOL_SOCKET) {
   1859 		error = sosetopt1(so, sopt);
   1860 		KASSERT(solocked(so));
   1861 	} else {
   1862 		error = ENOPROTOOPT;
   1863 		solock(so);
   1864 	}
   1865 
   1866 	if ((error == 0 || error == ENOPROTOOPT) &&
   1867 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1868 		/* give the protocol stack a shot */
   1869 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1870 		if (prerr == 0)
   1871 			error = 0;
   1872 		else if (prerr != ENOPROTOOPT)
   1873 			error = prerr;
   1874 	}
   1875 	sounlock(so);
   1876 	return error;
   1877 }
   1878 
   1879 /*
   1880  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1881  */
   1882 int
   1883 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1884     const void *val, size_t valsize)
   1885 {
   1886 	struct sockopt sopt;
   1887 	int error;
   1888 
   1889 	KASSERT(valsize == 0 || val != NULL);
   1890 
   1891 	sockopt_init(&sopt, level, name, valsize);
   1892 	sockopt_set(&sopt, val, valsize);
   1893 
   1894 	error = sosetopt(so, &sopt);
   1895 
   1896 	sockopt_destroy(&sopt);
   1897 
   1898 	return error;
   1899 }
   1900 
   1901 /*
   1902  * internal get SOL_SOCKET options
   1903  */
   1904 static int
   1905 sogetopt1(struct socket *so, struct sockopt *sopt)
   1906 {
   1907 	int error, optval, opt;
   1908 	struct linger l;
   1909 	struct timeval tv;
   1910 
   1911 	switch ((opt = sopt->sopt_name)) {
   1912 
   1913 	case SO_ACCEPTFILTER:
   1914 		error = accept_filt_getopt(so, sopt);
   1915 		break;
   1916 
   1917 	case SO_LINGER:
   1918 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1919 		l.l_linger = so->so_linger;
   1920 
   1921 		error = sockopt_set(sopt, &l, sizeof(l));
   1922 		break;
   1923 
   1924 	case SO_USELOOPBACK:
   1925 	case SO_DONTROUTE:
   1926 	case SO_DEBUG:
   1927 	case SO_KEEPALIVE:
   1928 	case SO_REUSEADDR:
   1929 	case SO_REUSEPORT:
   1930 	case SO_BROADCAST:
   1931 	case SO_OOBINLINE:
   1932 	case SO_TIMESTAMP:
   1933 #ifdef SO_OTIMESTAMP
   1934 	case SO_OTIMESTAMP:
   1935 #endif
   1936 		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
   1937 		break;
   1938 
   1939 	case SO_TYPE:
   1940 		error = sockopt_setint(sopt, so->so_type);
   1941 		break;
   1942 
   1943 	case SO_ERROR:
   1944 		error = sockopt_setint(sopt, so->so_error);
   1945 		so->so_error = 0;
   1946 		break;
   1947 
   1948 	case SO_SNDBUF:
   1949 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1950 		break;
   1951 
   1952 	case SO_RCVBUF:
   1953 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1954 		break;
   1955 
   1956 	case SO_SNDLOWAT:
   1957 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1958 		break;
   1959 
   1960 	case SO_RCVLOWAT:
   1961 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1962 		break;
   1963 
   1964 #ifdef COMPAT_50
   1965 	case SO_OSNDTIMEO:
   1966 	case SO_ORCVTIMEO: {
   1967 		struct timeval50 otv;
   1968 
   1969 		optval = (opt == SO_OSNDTIMEO ?
   1970 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1971 
   1972 		otv.tv_sec = optval / hz;
   1973 		otv.tv_usec = (optval % hz) * tick;
   1974 
   1975 		error = sockopt_set(sopt, &otv, sizeof(otv));
   1976 		break;
   1977 	}
   1978 #endif /* COMPAT_50 */
   1979 
   1980 	case SO_SNDTIMEO:
   1981 	case SO_RCVTIMEO:
   1982 		optval = (opt == SO_SNDTIMEO ?
   1983 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1984 
   1985 		tv.tv_sec = optval / hz;
   1986 		tv.tv_usec = (optval % hz) * tick;
   1987 
   1988 		error = sockopt_set(sopt, &tv, sizeof(tv));
   1989 		break;
   1990 
   1991 	case SO_OVERFLOWED:
   1992 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   1993 		break;
   1994 
   1995 	default:
   1996 		error = ENOPROTOOPT;
   1997 		break;
   1998 	}
   1999 
   2000 	return (error);
   2001 }
   2002 
   2003 int
   2004 sogetopt(struct socket *so, struct sockopt *sopt)
   2005 {
   2006 	int		error;
   2007 
   2008 	solock(so);
   2009 	if (sopt->sopt_level != SOL_SOCKET) {
   2010 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   2011 			error = ((*so->so_proto->pr_ctloutput)
   2012 			    (PRCO_GETOPT, so, sopt));
   2013 		} else
   2014 			error = (ENOPROTOOPT);
   2015 	} else {
   2016 		error = sogetopt1(so, sopt);
   2017 	}
   2018 	sounlock(so);
   2019 	return (error);
   2020 }
   2021 
   2022 /*
   2023  * alloc sockopt data buffer buffer
   2024  *	- will be released at destroy
   2025  */
   2026 static int
   2027 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
   2028 {
   2029 
   2030 	KASSERT(sopt->sopt_size == 0);
   2031 
   2032 	if (len > sizeof(sopt->sopt_buf)) {
   2033 		sopt->sopt_data = kmem_zalloc(len, kmflag);
   2034 		if (sopt->sopt_data == NULL)
   2035 			return ENOMEM;
   2036 	} else
   2037 		sopt->sopt_data = sopt->sopt_buf;
   2038 
   2039 	sopt->sopt_size = len;
   2040 	return 0;
   2041 }
   2042 
   2043 /*
   2044  * initialise sockopt storage
   2045  *	- MAY sleep during allocation
   2046  */
   2047 void
   2048 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   2049 {
   2050 
   2051 	memset(sopt, 0, sizeof(*sopt));
   2052 
   2053 	sopt->sopt_level = level;
   2054 	sopt->sopt_name = name;
   2055 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
   2056 }
   2057 
   2058 /*
   2059  * destroy sockopt storage
   2060  *	- will release any held memory references
   2061  */
   2062 void
   2063 sockopt_destroy(struct sockopt *sopt)
   2064 {
   2065 
   2066 	if (sopt->sopt_data != sopt->sopt_buf)
   2067 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   2068 
   2069 	memset(sopt, 0, sizeof(*sopt));
   2070 }
   2071 
   2072 /*
   2073  * set sockopt value
   2074  *	- value is copied into sockopt
   2075  * 	- memory is allocated when necessary, will not sleep
   2076  */
   2077 int
   2078 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   2079 {
   2080 	int error;
   2081 
   2082 	if (sopt->sopt_size == 0) {
   2083 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2084 		if (error)
   2085 			return error;
   2086 	}
   2087 
   2088 	KASSERT(sopt->sopt_size == len);
   2089 	memcpy(sopt->sopt_data, buf, len);
   2090 	return 0;
   2091 }
   2092 
   2093 /*
   2094  * common case of set sockopt integer value
   2095  */
   2096 int
   2097 sockopt_setint(struct sockopt *sopt, int val)
   2098 {
   2099 
   2100 	return sockopt_set(sopt, &val, sizeof(int));
   2101 }
   2102 
   2103 /*
   2104  * get sockopt value
   2105  *	- correct size must be given
   2106  */
   2107 int
   2108 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   2109 {
   2110 
   2111 	if (sopt->sopt_size != len)
   2112 		return EINVAL;
   2113 
   2114 	memcpy(buf, sopt->sopt_data, len);
   2115 	return 0;
   2116 }
   2117 
   2118 /*
   2119  * common case of get sockopt integer value
   2120  */
   2121 int
   2122 sockopt_getint(const struct sockopt *sopt, int *valp)
   2123 {
   2124 
   2125 	return sockopt_get(sopt, valp, sizeof(int));
   2126 }
   2127 
   2128 /*
   2129  * set sockopt value from mbuf
   2130  *	- ONLY for legacy code
   2131  *	- mbuf is released by sockopt
   2132  *	- will not sleep
   2133  */
   2134 int
   2135 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   2136 {
   2137 	size_t len;
   2138 	int error;
   2139 
   2140 	len = m_length(m);
   2141 
   2142 	if (sopt->sopt_size == 0) {
   2143 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2144 		if (error)
   2145 			return error;
   2146 	}
   2147 
   2148 	KASSERT(sopt->sopt_size == len);
   2149 	m_copydata(m, 0, len, sopt->sopt_data);
   2150 	m_freem(m);
   2151 
   2152 	return 0;
   2153 }
   2154 
   2155 /*
   2156  * get sockopt value into mbuf
   2157  *	- ONLY for legacy code
   2158  *	- mbuf to be released by the caller
   2159  *	- will not sleep
   2160  */
   2161 struct mbuf *
   2162 sockopt_getmbuf(const struct sockopt *sopt)
   2163 {
   2164 	struct mbuf *m;
   2165 
   2166 	if (sopt->sopt_size > MCLBYTES)
   2167 		return NULL;
   2168 
   2169 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   2170 	if (m == NULL)
   2171 		return NULL;
   2172 
   2173 	if (sopt->sopt_size > MLEN) {
   2174 		MCLGET(m, M_DONTWAIT);
   2175 		if ((m->m_flags & M_EXT) == 0) {
   2176 			m_free(m);
   2177 			return NULL;
   2178 		}
   2179 	}
   2180 
   2181 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
   2182 	m->m_len = sopt->sopt_size;
   2183 
   2184 	return m;
   2185 }
   2186 
   2187 void
   2188 sohasoutofband(struct socket *so)
   2189 {
   2190 
   2191 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2192 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
   2193 }
   2194 
   2195 static void
   2196 filt_sordetach(struct knote *kn)
   2197 {
   2198 	struct socket	*so;
   2199 
   2200 	so = ((file_t *)kn->kn_obj)->f_data;
   2201 	solock(so);
   2202 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   2203 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   2204 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2205 	sounlock(so);
   2206 }
   2207 
   2208 /*ARGSUSED*/
   2209 static int
   2210 filt_soread(struct knote *kn, long hint)
   2211 {
   2212 	struct socket	*so;
   2213 	int rv;
   2214 
   2215 	so = ((file_t *)kn->kn_obj)->f_data;
   2216 	if (hint != NOTE_SUBMIT)
   2217 		solock(so);
   2218 	kn->kn_data = so->so_rcv.sb_cc;
   2219 	if (so->so_state & SS_CANTRCVMORE) {
   2220 		kn->kn_flags |= EV_EOF;
   2221 		kn->kn_fflags = so->so_error;
   2222 		rv = 1;
   2223 	} else if (so->so_error)	/* temporary udp error */
   2224 		rv = 1;
   2225 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2226 		rv = (kn->kn_data >= kn->kn_sdata);
   2227 	else
   2228 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2229 	if (hint != NOTE_SUBMIT)
   2230 		sounlock(so);
   2231 	return rv;
   2232 }
   2233 
   2234 static void
   2235 filt_sowdetach(struct knote *kn)
   2236 {
   2237 	struct socket	*so;
   2238 
   2239 	so = ((file_t *)kn->kn_obj)->f_data;
   2240 	solock(so);
   2241 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   2242 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   2243 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2244 	sounlock(so);
   2245 }
   2246 
   2247 /*ARGSUSED*/
   2248 static int
   2249 filt_sowrite(struct knote *kn, long hint)
   2250 {
   2251 	struct socket	*so;
   2252 	int rv;
   2253 
   2254 	so = ((file_t *)kn->kn_obj)->f_data;
   2255 	if (hint != NOTE_SUBMIT)
   2256 		solock(so);
   2257 	kn->kn_data = sbspace(&so->so_snd);
   2258 	if (so->so_state & SS_CANTSENDMORE) {
   2259 		kn->kn_flags |= EV_EOF;
   2260 		kn->kn_fflags = so->so_error;
   2261 		rv = 1;
   2262 	} else if (so->so_error)	/* temporary udp error */
   2263 		rv = 1;
   2264 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2265 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2266 		rv = 0;
   2267 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2268 		rv = (kn->kn_data >= kn->kn_sdata);
   2269 	else
   2270 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2271 	if (hint != NOTE_SUBMIT)
   2272 		sounlock(so);
   2273 	return rv;
   2274 }
   2275 
   2276 /*ARGSUSED*/
   2277 static int
   2278 filt_solisten(struct knote *kn, long hint)
   2279 {
   2280 	struct socket	*so;
   2281 	int rv;
   2282 
   2283 	so = ((file_t *)kn->kn_obj)->f_data;
   2284 
   2285 	/*
   2286 	 * Set kn_data to number of incoming connections, not
   2287 	 * counting partial (incomplete) connections.
   2288 	 */
   2289 	if (hint != NOTE_SUBMIT)
   2290 		solock(so);
   2291 	kn->kn_data = so->so_qlen;
   2292 	rv = (kn->kn_data > 0);
   2293 	if (hint != NOTE_SUBMIT)
   2294 		sounlock(so);
   2295 	return rv;
   2296 }
   2297 
   2298 static const struct filterops solisten_filtops =
   2299 	{ 1, NULL, filt_sordetach, filt_solisten };
   2300 static const struct filterops soread_filtops =
   2301 	{ 1, NULL, filt_sordetach, filt_soread };
   2302 static const struct filterops sowrite_filtops =
   2303 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   2304 
   2305 int
   2306 soo_kqfilter(struct file *fp, struct knote *kn)
   2307 {
   2308 	struct socket	*so;
   2309 	struct sockbuf	*sb;
   2310 
   2311 	so = ((file_t *)kn->kn_obj)->f_data;
   2312 	solock(so);
   2313 	switch (kn->kn_filter) {
   2314 	case EVFILT_READ:
   2315 		if (so->so_options & SO_ACCEPTCONN)
   2316 			kn->kn_fop = &solisten_filtops;
   2317 		else
   2318 			kn->kn_fop = &soread_filtops;
   2319 		sb = &so->so_rcv;
   2320 		break;
   2321 	case EVFILT_WRITE:
   2322 		kn->kn_fop = &sowrite_filtops;
   2323 		sb = &so->so_snd;
   2324 		break;
   2325 	default:
   2326 		sounlock(so);
   2327 		return (EINVAL);
   2328 	}
   2329 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   2330 	sb->sb_flags |= SB_KNOTE;
   2331 	sounlock(so);
   2332 	return (0);
   2333 }
   2334 
   2335 static int
   2336 sodopoll(struct socket *so, int events)
   2337 {
   2338 	int revents;
   2339 
   2340 	revents = 0;
   2341 
   2342 	if (events & (POLLIN | POLLRDNORM))
   2343 		if (soreadable(so))
   2344 			revents |= events & (POLLIN | POLLRDNORM);
   2345 
   2346 	if (events & (POLLOUT | POLLWRNORM))
   2347 		if (sowritable(so))
   2348 			revents |= events & (POLLOUT | POLLWRNORM);
   2349 
   2350 	if (events & (POLLPRI | POLLRDBAND))
   2351 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   2352 			revents |= events & (POLLPRI | POLLRDBAND);
   2353 
   2354 	return revents;
   2355 }
   2356 
   2357 int
   2358 sopoll(struct socket *so, int events)
   2359 {
   2360 	int revents = 0;
   2361 
   2362 #ifndef DIAGNOSTIC
   2363 	/*
   2364 	 * Do a quick, unlocked check in expectation that the socket
   2365 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2366 	 * as the solocked() assertions will fail.
   2367 	 */
   2368 	if ((revents = sodopoll(so, events)) != 0)
   2369 		return revents;
   2370 #endif
   2371 
   2372 	solock(so);
   2373 	if ((revents = sodopoll(so, events)) == 0) {
   2374 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2375 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2376 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2377 		}
   2378 
   2379 		if (events & (POLLOUT | POLLWRNORM)) {
   2380 			selrecord(curlwp, &so->so_snd.sb_sel);
   2381 			so->so_snd.sb_flags |= SB_NOTIFY;
   2382 		}
   2383 	}
   2384 	sounlock(so);
   2385 
   2386 	return revents;
   2387 }
   2388 
   2389 
   2390 #include <sys/sysctl.h>
   2391 
   2392 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2393 
   2394 /*
   2395  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2396  * value is not too small.
   2397  * (XXX should we maybe make sure it's not too large as well?)
   2398  */
   2399 static int
   2400 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2401 {
   2402 	int error, new_somaxkva;
   2403 	struct sysctlnode node;
   2404 
   2405 	new_somaxkva = somaxkva;
   2406 	node = *rnode;
   2407 	node.sysctl_data = &new_somaxkva;
   2408 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2409 	if (error || newp == NULL)
   2410 		return (error);
   2411 
   2412 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2413 		return (EINVAL);
   2414 
   2415 	mutex_enter(&so_pendfree_lock);
   2416 	somaxkva = new_somaxkva;
   2417 	cv_broadcast(&socurkva_cv);
   2418 	mutex_exit(&so_pendfree_lock);
   2419 
   2420 	return (error);
   2421 }
   2422 
   2423 static void
   2424 sysctl_kern_somaxkva_setup(void)
   2425 {
   2426 
   2427 	KASSERT(socket_sysctllog == NULL);
   2428 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2429 		       CTLFLAG_PERMANENT,
   2430 		       CTLTYPE_NODE, "kern", NULL,
   2431 		       NULL, 0, NULL, 0,
   2432 		       CTL_KERN, CTL_EOL);
   2433 
   2434 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2435 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2436 		       CTLTYPE_INT, "somaxkva",
   2437 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2438 				    "used for socket buffers"),
   2439 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2440 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2441 }
   2442