uipc_socket.c revision 1.197 1 /* $NetBSD: uipc_socket.c,v 1.197 2009/12/29 03:48:18 elad Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.197 2009/12/29 03:48:18 elad Exp $");
67
68 #include "opt_compat_netbsd.h"
69 #include "opt_sock_counters.h"
70 #include "opt_sosend_loan.h"
71 #include "opt_mbuftrace.h"
72 #include "opt_somaxkva.h"
73 #include "opt_multiprocessor.h" /* XXX */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/file.h>
79 #include <sys/filedesc.h>
80 #include <sys/kmem.h>
81 #include <sys/mbuf.h>
82 #include <sys/domain.h>
83 #include <sys/kernel.h>
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/signalvar.h>
88 #include <sys/resourcevar.h>
89 #include <sys/uidinfo.h>
90 #include <sys/event.h>
91 #include <sys/poll.h>
92 #include <sys/kauth.h>
93 #include <sys/mutex.h>
94 #include <sys/condvar.h>
95
96 #ifdef COMPAT_50
97 #include <compat/sys/time.h>
98 #include <compat/sys/socket.h>
99 #endif
100
101 #include <uvm/uvm.h>
102
103 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
104 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
105
106 extern const struct fileops socketops;
107
108 extern int somaxconn; /* patchable (XXX sysctl) */
109 int somaxconn = SOMAXCONN;
110 kmutex_t *softnet_lock;
111
112 #ifdef SOSEND_COUNTERS
113 #include <sys/device.h>
114
115 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
116 NULL, "sosend", "loan big");
117 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
118 NULL, "sosend", "copy big");
119 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
120 NULL, "sosend", "copy small");
121 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
122 NULL, "sosend", "kva limit");
123
124 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
125
126 EVCNT_ATTACH_STATIC(sosend_loan_big);
127 EVCNT_ATTACH_STATIC(sosend_copy_big);
128 EVCNT_ATTACH_STATIC(sosend_copy_small);
129 EVCNT_ATTACH_STATIC(sosend_kvalimit);
130 #else
131
132 #define SOSEND_COUNTER_INCR(ev) /* nothing */
133
134 #endif /* SOSEND_COUNTERS */
135
136 static struct callback_entry sokva_reclaimerentry;
137
138 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
139 int sock_loan_thresh = -1;
140 #else
141 int sock_loan_thresh = 4096;
142 #endif
143
144 static kmutex_t so_pendfree_lock;
145 static struct mbuf *so_pendfree;
146
147 #ifndef SOMAXKVA
148 #define SOMAXKVA (16 * 1024 * 1024)
149 #endif
150 int somaxkva = SOMAXKVA;
151 static int socurkva;
152 static kcondvar_t socurkva_cv;
153
154 static kauth_listener_t socket_listener;
155
156 #define SOCK_LOAN_CHUNK 65536
157
158 static size_t sodopendfree(void);
159 static size_t sodopendfreel(void);
160
161 static void sysctl_kern_somaxkva_setup(void);
162 static struct sysctllog *socket_sysctllog;
163
164 static vsize_t
165 sokvareserve(struct socket *so, vsize_t len)
166 {
167 int error;
168
169 mutex_enter(&so_pendfree_lock);
170 while (socurkva + len > somaxkva) {
171 size_t freed;
172
173 /*
174 * try to do pendfree.
175 */
176
177 freed = sodopendfreel();
178
179 /*
180 * if some kva was freed, try again.
181 */
182
183 if (freed)
184 continue;
185
186 SOSEND_COUNTER_INCR(&sosend_kvalimit);
187 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
188 if (error) {
189 len = 0;
190 break;
191 }
192 }
193 socurkva += len;
194 mutex_exit(&so_pendfree_lock);
195 return len;
196 }
197
198 static void
199 sokvaunreserve(vsize_t len)
200 {
201
202 mutex_enter(&so_pendfree_lock);
203 socurkva -= len;
204 cv_broadcast(&socurkva_cv);
205 mutex_exit(&so_pendfree_lock);
206 }
207
208 /*
209 * sokvaalloc: allocate kva for loan.
210 */
211
212 vaddr_t
213 sokvaalloc(vsize_t len, struct socket *so)
214 {
215 vaddr_t lva;
216
217 /*
218 * reserve kva.
219 */
220
221 if (sokvareserve(so, len) == 0)
222 return 0;
223
224 /*
225 * allocate kva.
226 */
227
228 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
229 if (lva == 0) {
230 sokvaunreserve(len);
231 return (0);
232 }
233
234 return lva;
235 }
236
237 /*
238 * sokvafree: free kva for loan.
239 */
240
241 void
242 sokvafree(vaddr_t sva, vsize_t len)
243 {
244
245 /*
246 * free kva.
247 */
248
249 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
250
251 /*
252 * unreserve kva.
253 */
254
255 sokvaunreserve(len);
256 }
257
258 static void
259 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
260 {
261 vaddr_t sva, eva;
262 vsize_t len;
263 int npgs;
264
265 KASSERT(pgs != NULL);
266
267 eva = round_page((vaddr_t) buf + size);
268 sva = trunc_page((vaddr_t) buf);
269 len = eva - sva;
270 npgs = len >> PAGE_SHIFT;
271
272 pmap_kremove(sva, len);
273 pmap_update(pmap_kernel());
274 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
275 sokvafree(sva, len);
276 }
277
278 static size_t
279 sodopendfree(void)
280 {
281 size_t rv;
282
283 if (__predict_true(so_pendfree == NULL))
284 return 0;
285
286 mutex_enter(&so_pendfree_lock);
287 rv = sodopendfreel();
288 mutex_exit(&so_pendfree_lock);
289
290 return rv;
291 }
292
293 /*
294 * sodopendfreel: free mbufs on "pendfree" list.
295 * unlock and relock so_pendfree_lock when freeing mbufs.
296 *
297 * => called with so_pendfree_lock held.
298 */
299
300 static size_t
301 sodopendfreel(void)
302 {
303 struct mbuf *m, *next;
304 size_t rv = 0;
305
306 KASSERT(mutex_owned(&so_pendfree_lock));
307
308 while (so_pendfree != NULL) {
309 m = so_pendfree;
310 so_pendfree = NULL;
311 mutex_exit(&so_pendfree_lock);
312
313 for (; m != NULL; m = next) {
314 next = m->m_next;
315 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
316 KASSERT(m->m_ext.ext_refcnt == 0);
317
318 rv += m->m_ext.ext_size;
319 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
320 m->m_ext.ext_size);
321 pool_cache_put(mb_cache, m);
322 }
323
324 mutex_enter(&so_pendfree_lock);
325 }
326
327 return (rv);
328 }
329
330 void
331 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
332 {
333
334 KASSERT(m != NULL);
335
336 /*
337 * postpone freeing mbuf.
338 *
339 * we can't do it in interrupt context
340 * because we need to put kva back to kernel_map.
341 */
342
343 mutex_enter(&so_pendfree_lock);
344 m->m_next = so_pendfree;
345 so_pendfree = m;
346 cv_broadcast(&socurkva_cv);
347 mutex_exit(&so_pendfree_lock);
348 }
349
350 static long
351 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
352 {
353 struct iovec *iov = uio->uio_iov;
354 vaddr_t sva, eva;
355 vsize_t len;
356 vaddr_t lva;
357 int npgs, error;
358 vaddr_t va;
359 int i;
360
361 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
362 return (0);
363
364 if (iov->iov_len < (size_t) space)
365 space = iov->iov_len;
366 if (space > SOCK_LOAN_CHUNK)
367 space = SOCK_LOAN_CHUNK;
368
369 eva = round_page((vaddr_t) iov->iov_base + space);
370 sva = trunc_page((vaddr_t) iov->iov_base);
371 len = eva - sva;
372 npgs = len >> PAGE_SHIFT;
373
374 KASSERT(npgs <= M_EXT_MAXPAGES);
375
376 lva = sokvaalloc(len, so);
377 if (lva == 0)
378 return 0;
379
380 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
381 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
382 if (error) {
383 sokvafree(lva, len);
384 return (0);
385 }
386
387 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
388 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
389 VM_PROT_READ, 0);
390 pmap_update(pmap_kernel());
391
392 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
393
394 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
395 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
396
397 uio->uio_resid -= space;
398 /* uio_offset not updated, not set/used for write(2) */
399 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
400 uio->uio_iov->iov_len -= space;
401 if (uio->uio_iov->iov_len == 0) {
402 uio->uio_iov++;
403 uio->uio_iovcnt--;
404 }
405
406 return (space);
407 }
408
409 static int
410 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
411 {
412
413 KASSERT(ce == &sokva_reclaimerentry);
414 KASSERT(obj == NULL);
415
416 sodopendfree();
417 if (!vm_map_starved_p(kernel_map)) {
418 return CALLBACK_CHAIN_ABORT;
419 }
420 return CALLBACK_CHAIN_CONTINUE;
421 }
422
423 struct mbuf *
424 getsombuf(struct socket *so, int type)
425 {
426 struct mbuf *m;
427
428 m = m_get(M_WAIT, type);
429 MCLAIM(m, so->so_mowner);
430 return m;
431 }
432
433 static int
434 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
435 void *arg0, void *arg1, void *arg2, void *arg3)
436 {
437 int result;
438 enum kauth_network_req req;
439
440 result = KAUTH_RESULT_DEFER;
441 req = (enum kauth_network_req)arg0;
442
443 if ((action != KAUTH_NETWORK_SOCKET) &&
444 (action != KAUTH_NETWORK_BIND))
445 return result;
446
447 switch (req) {
448 case KAUTH_REQ_NETWORK_BIND_PORT:
449 result = KAUTH_RESULT_ALLOW;
450 break;
451
452 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
453 /* Normal users can only drop their own connections. */
454 struct socket *so = (struct socket *)arg1;
455 uid_t sockuid = so->so_uidinfo->ui_uid;
456
457 if (sockuid == kauth_cred_getuid(cred) ||
458 sockuid == kauth_cred_geteuid(cred))
459 result = KAUTH_RESULT_ALLOW;
460
461 break;
462 }
463
464 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
465 /* We allow "raw" routing/bluetooth sockets to anyone. */
466 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_BLUETOOTH)
467 result = KAUTH_RESULT_ALLOW;
468 else {
469 /* Privileged, let secmodel handle this. */
470 if ((u_long)arg2 == SOCK_RAW)
471 break;
472 }
473
474 result = KAUTH_RESULT_ALLOW;
475
476 break;
477
478 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
479 result = KAUTH_RESULT_ALLOW;
480
481 break;
482
483 default:
484 break;
485 }
486
487 return result;
488 }
489
490 void
491 soinit(void)
492 {
493
494 sysctl_kern_somaxkva_setup();
495
496 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
497 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
498 cv_init(&socurkva_cv, "sokva");
499 soinit2();
500
501 /* Set the initial adjusted socket buffer size. */
502 if (sb_max_set(sb_max))
503 panic("bad initial sb_max value: %lu", sb_max);
504
505 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
506 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
507
508 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
509 socket_listener_cb, NULL);
510 }
511
512 /*
513 * Socket operation routines.
514 * These routines are called by the routines in
515 * sys_socket.c or from a system process, and
516 * implement the semantics of socket operations by
517 * switching out to the protocol specific routines.
518 */
519 /*ARGSUSED*/
520 int
521 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
522 struct socket *lockso)
523 {
524 const struct protosw *prp;
525 struct socket *so;
526 uid_t uid;
527 int error;
528 kmutex_t *lock;
529
530 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
531 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
532 KAUTH_ARG(proto));
533 if (error != 0)
534 return error;
535
536 if (proto)
537 prp = pffindproto(dom, proto, type);
538 else
539 prp = pffindtype(dom, type);
540 if (prp == NULL) {
541 /* no support for domain */
542 if (pffinddomain(dom) == 0)
543 return EAFNOSUPPORT;
544 /* no support for socket type */
545 if (proto == 0 && type != 0)
546 return EPROTOTYPE;
547 return EPROTONOSUPPORT;
548 }
549 if (prp->pr_usrreq == NULL)
550 return EPROTONOSUPPORT;
551 if (prp->pr_type != type)
552 return EPROTOTYPE;
553
554 so = soget(true);
555 so->so_type = type;
556 so->so_proto = prp;
557 so->so_send = sosend;
558 so->so_receive = soreceive;
559 #ifdef MBUFTRACE
560 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
561 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
562 so->so_mowner = &prp->pr_domain->dom_mowner;
563 #endif
564 uid = kauth_cred_geteuid(l->l_cred);
565 so->so_uidinfo = uid_find(uid);
566 so->so_egid = kauth_cred_getegid(l->l_cred);
567 so->so_cpid = l->l_proc->p_pid;
568 if (lockso != NULL) {
569 /* Caller wants us to share a lock. */
570 lock = lockso->so_lock;
571 so->so_lock = lock;
572 mutex_obj_hold(lock);
573 mutex_enter(lock);
574 } else {
575 /* Lock assigned and taken during PRU_ATTACH. */
576 }
577 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
578 (struct mbuf *)(long)proto, NULL, l);
579 KASSERT(solocked(so));
580 if (error != 0) {
581 so->so_state |= SS_NOFDREF;
582 sofree(so);
583 return error;
584 }
585 sounlock(so);
586 *aso = so;
587 return 0;
588 }
589
590 /* On success, write file descriptor to fdout and return zero. On
591 * failure, return non-zero; *fdout will be undefined.
592 */
593 int
594 fsocreate(int domain, struct socket **sop, int type, int protocol,
595 struct lwp *l, int *fdout)
596 {
597 struct socket *so;
598 struct file *fp;
599 int fd, error;
600
601 if ((error = fd_allocfile(&fp, &fd)) != 0)
602 return (error);
603 fp->f_flag = FREAD|FWRITE;
604 fp->f_type = DTYPE_SOCKET;
605 fp->f_ops = &socketops;
606 error = socreate(domain, &so, type, protocol, l, NULL);
607 if (error != 0) {
608 fd_abort(curproc, fp, fd);
609 } else {
610 if (sop != NULL)
611 *sop = so;
612 fp->f_data = so;
613 fd_affix(curproc, fp, fd);
614 *fdout = fd;
615 }
616 return error;
617 }
618
619 int
620 sofamily(const struct socket *so)
621 {
622 const struct protosw *pr;
623 const struct domain *dom;
624
625 if ((pr = so->so_proto) == NULL)
626 return AF_UNSPEC;
627 if ((dom = pr->pr_domain) == NULL)
628 return AF_UNSPEC;
629 return dom->dom_family;
630 }
631
632 int
633 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
634 {
635 int error;
636
637 solock(so);
638 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
639 sounlock(so);
640 return error;
641 }
642
643 int
644 solisten(struct socket *so, int backlog, struct lwp *l)
645 {
646 int error;
647
648 solock(so);
649 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
650 SS_ISDISCONNECTING)) != 0) {
651 sounlock(so);
652 return (EOPNOTSUPP);
653 }
654 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
655 NULL, NULL, l);
656 if (error != 0) {
657 sounlock(so);
658 return error;
659 }
660 if (TAILQ_EMPTY(&so->so_q))
661 so->so_options |= SO_ACCEPTCONN;
662 if (backlog < 0)
663 backlog = 0;
664 so->so_qlimit = min(backlog, somaxconn);
665 sounlock(so);
666 return 0;
667 }
668
669 void
670 sofree(struct socket *so)
671 {
672 u_int refs;
673
674 KASSERT(solocked(so));
675
676 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
677 sounlock(so);
678 return;
679 }
680 if (so->so_head) {
681 /*
682 * We must not decommission a socket that's on the accept(2)
683 * queue. If we do, then accept(2) may hang after select(2)
684 * indicated that the listening socket was ready.
685 */
686 if (!soqremque(so, 0)) {
687 sounlock(so);
688 return;
689 }
690 }
691 if (so->so_rcv.sb_hiwat)
692 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
693 RLIM_INFINITY);
694 if (so->so_snd.sb_hiwat)
695 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
696 RLIM_INFINITY);
697 sbrelease(&so->so_snd, so);
698 KASSERT(!cv_has_waiters(&so->so_cv));
699 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
700 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
701 sorflush(so);
702 refs = so->so_aborting; /* XXX */
703 /* Remove acccept filter if one is present. */
704 if (so->so_accf != NULL)
705 (void)accept_filt_clear(so);
706 sounlock(so);
707 if (refs == 0) /* XXX */
708 soput(so);
709 }
710
711 /*
712 * Close a socket on last file table reference removal.
713 * Initiate disconnect if connected.
714 * Free socket when disconnect complete.
715 */
716 int
717 soclose(struct socket *so)
718 {
719 struct socket *so2;
720 int error;
721 int error2;
722
723 error = 0;
724 solock(so);
725 if (so->so_options & SO_ACCEPTCONN) {
726 for (;;) {
727 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
728 KASSERT(solocked2(so, so2));
729 (void) soqremque(so2, 0);
730 /* soabort drops the lock. */
731 (void) soabort(so2);
732 solock(so);
733 continue;
734 }
735 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
736 KASSERT(solocked2(so, so2));
737 (void) soqremque(so2, 1);
738 /* soabort drops the lock. */
739 (void) soabort(so2);
740 solock(so);
741 continue;
742 }
743 break;
744 }
745 }
746 if (so->so_pcb == 0)
747 goto discard;
748 if (so->so_state & SS_ISCONNECTED) {
749 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
750 error = sodisconnect(so);
751 if (error)
752 goto drop;
753 }
754 if (so->so_options & SO_LINGER) {
755 if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
756 goto drop;
757 while (so->so_state & SS_ISCONNECTED) {
758 error = sowait(so, true, so->so_linger * hz);
759 if (error)
760 break;
761 }
762 }
763 }
764 drop:
765 if (so->so_pcb) {
766 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
767 NULL, NULL, NULL, NULL);
768 if (error == 0)
769 error = error2;
770 }
771 discard:
772 if (so->so_state & SS_NOFDREF)
773 panic("soclose: NOFDREF");
774 so->so_state |= SS_NOFDREF;
775 sofree(so);
776 return (error);
777 }
778
779 /*
780 * Must be called with the socket locked.. Will return with it unlocked.
781 */
782 int
783 soabort(struct socket *so)
784 {
785 u_int refs;
786 int error;
787
788 KASSERT(solocked(so));
789 KASSERT(so->so_head == NULL);
790
791 so->so_aborting++; /* XXX */
792 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
793 NULL, NULL, NULL);
794 refs = --so->so_aborting; /* XXX */
795 if (error || (refs == 0)) {
796 sofree(so);
797 } else {
798 sounlock(so);
799 }
800 return error;
801 }
802
803 int
804 soaccept(struct socket *so, struct mbuf *nam)
805 {
806 int error;
807
808 KASSERT(solocked(so));
809
810 error = 0;
811 if ((so->so_state & SS_NOFDREF) == 0)
812 panic("soaccept: !NOFDREF");
813 so->so_state &= ~SS_NOFDREF;
814 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
815 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
816 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
817 NULL, nam, NULL, NULL);
818 else
819 error = ECONNABORTED;
820
821 return (error);
822 }
823
824 int
825 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
826 {
827 int error;
828
829 KASSERT(solocked(so));
830
831 if (so->so_options & SO_ACCEPTCONN)
832 return (EOPNOTSUPP);
833 /*
834 * If protocol is connection-based, can only connect once.
835 * Otherwise, if connected, try to disconnect first.
836 * This allows user to disconnect by connecting to, e.g.,
837 * a null address.
838 */
839 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
840 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
841 (error = sodisconnect(so))))
842 error = EISCONN;
843 else
844 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
845 NULL, nam, NULL, l);
846 return (error);
847 }
848
849 int
850 soconnect2(struct socket *so1, struct socket *so2)
851 {
852 int error;
853
854 KASSERT(solocked2(so1, so2));
855
856 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
857 NULL, (struct mbuf *)so2, NULL, NULL);
858 return (error);
859 }
860
861 int
862 sodisconnect(struct socket *so)
863 {
864 int error;
865
866 KASSERT(solocked(so));
867
868 if ((so->so_state & SS_ISCONNECTED) == 0) {
869 error = ENOTCONN;
870 } else if (so->so_state & SS_ISDISCONNECTING) {
871 error = EALREADY;
872 } else {
873 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
874 NULL, NULL, NULL, NULL);
875 }
876 sodopendfree();
877 return (error);
878 }
879
880 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
881 /*
882 * Send on a socket.
883 * If send must go all at once and message is larger than
884 * send buffering, then hard error.
885 * Lock against other senders.
886 * If must go all at once and not enough room now, then
887 * inform user that this would block and do nothing.
888 * Otherwise, if nonblocking, send as much as possible.
889 * The data to be sent is described by "uio" if nonzero,
890 * otherwise by the mbuf chain "top" (which must be null
891 * if uio is not). Data provided in mbuf chain must be small
892 * enough to send all at once.
893 *
894 * Returns nonzero on error, timeout or signal; callers
895 * must check for short counts if EINTR/ERESTART are returned.
896 * Data and control buffers are freed on return.
897 */
898 int
899 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
900 struct mbuf *control, int flags, struct lwp *l)
901 {
902 struct mbuf **mp, *m;
903 struct proc *p;
904 long space, len, resid, clen, mlen;
905 int error, s, dontroute, atomic;
906 short wakeup_state = 0;
907
908 p = l->l_proc;
909 sodopendfree();
910 clen = 0;
911
912 /*
913 * solock() provides atomicity of access. splsoftnet() prevents
914 * protocol processing soft interrupts from interrupting us and
915 * blocking (expensive).
916 */
917 s = splsoftnet();
918 solock(so);
919 atomic = sosendallatonce(so) || top;
920 if (uio)
921 resid = uio->uio_resid;
922 else
923 resid = top->m_pkthdr.len;
924 /*
925 * In theory resid should be unsigned.
926 * However, space must be signed, as it might be less than 0
927 * if we over-committed, and we must use a signed comparison
928 * of space and resid. On the other hand, a negative resid
929 * causes us to loop sending 0-length segments to the protocol.
930 */
931 if (resid < 0) {
932 error = EINVAL;
933 goto out;
934 }
935 dontroute =
936 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
937 (so->so_proto->pr_flags & PR_ATOMIC);
938 l->l_ru.ru_msgsnd++;
939 if (control)
940 clen = control->m_len;
941 restart:
942 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
943 goto out;
944 do {
945 if (so->so_state & SS_CANTSENDMORE) {
946 error = EPIPE;
947 goto release;
948 }
949 if (so->so_error) {
950 error = so->so_error;
951 so->so_error = 0;
952 goto release;
953 }
954 if ((so->so_state & SS_ISCONNECTED) == 0) {
955 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
956 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
957 !(resid == 0 && clen != 0)) {
958 error = ENOTCONN;
959 goto release;
960 }
961 } else if (addr == 0) {
962 error = EDESTADDRREQ;
963 goto release;
964 }
965 }
966 space = sbspace(&so->so_snd);
967 if (flags & MSG_OOB)
968 space += 1024;
969 if ((atomic && resid > so->so_snd.sb_hiwat) ||
970 clen > so->so_snd.sb_hiwat) {
971 error = EMSGSIZE;
972 goto release;
973 }
974 if (space < resid + clen &&
975 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
976 if (so->so_nbio) {
977 error = EWOULDBLOCK;
978 goto release;
979 }
980 sbunlock(&so->so_snd);
981 if (wakeup_state & SS_RESTARTSYS) {
982 error = ERESTART;
983 goto out;
984 }
985 error = sbwait(&so->so_snd);
986 if (error)
987 goto out;
988 wakeup_state = so->so_state;
989 goto restart;
990 }
991 wakeup_state = 0;
992 mp = ⊤
993 space -= clen;
994 do {
995 if (uio == NULL) {
996 /*
997 * Data is prepackaged in "top".
998 */
999 resid = 0;
1000 if (flags & MSG_EOR)
1001 top->m_flags |= M_EOR;
1002 } else do {
1003 sounlock(so);
1004 splx(s);
1005 if (top == NULL) {
1006 m = m_gethdr(M_WAIT, MT_DATA);
1007 mlen = MHLEN;
1008 m->m_pkthdr.len = 0;
1009 m->m_pkthdr.rcvif = NULL;
1010 } else {
1011 m = m_get(M_WAIT, MT_DATA);
1012 mlen = MLEN;
1013 }
1014 MCLAIM(m, so->so_snd.sb_mowner);
1015 if (sock_loan_thresh >= 0 &&
1016 uio->uio_iov->iov_len >= sock_loan_thresh &&
1017 space >= sock_loan_thresh &&
1018 (len = sosend_loan(so, uio, m,
1019 space)) != 0) {
1020 SOSEND_COUNTER_INCR(&sosend_loan_big);
1021 space -= len;
1022 goto have_data;
1023 }
1024 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1025 SOSEND_COUNTER_INCR(&sosend_copy_big);
1026 m_clget(m, M_WAIT);
1027 if ((m->m_flags & M_EXT) == 0)
1028 goto nopages;
1029 mlen = MCLBYTES;
1030 if (atomic && top == 0) {
1031 len = lmin(MCLBYTES - max_hdr,
1032 resid);
1033 m->m_data += max_hdr;
1034 } else
1035 len = lmin(MCLBYTES, resid);
1036 space -= len;
1037 } else {
1038 nopages:
1039 SOSEND_COUNTER_INCR(&sosend_copy_small);
1040 len = lmin(lmin(mlen, resid), space);
1041 space -= len;
1042 /*
1043 * For datagram protocols, leave room
1044 * for protocol headers in first mbuf.
1045 */
1046 if (atomic && top == 0 && len < mlen)
1047 MH_ALIGN(m, len);
1048 }
1049 error = uiomove(mtod(m, void *), (int)len, uio);
1050 have_data:
1051 resid = uio->uio_resid;
1052 m->m_len = len;
1053 *mp = m;
1054 top->m_pkthdr.len += len;
1055 s = splsoftnet();
1056 solock(so);
1057 if (error != 0)
1058 goto release;
1059 mp = &m->m_next;
1060 if (resid <= 0) {
1061 if (flags & MSG_EOR)
1062 top->m_flags |= M_EOR;
1063 break;
1064 }
1065 } while (space > 0 && atomic);
1066
1067 if (so->so_state & SS_CANTSENDMORE) {
1068 error = EPIPE;
1069 goto release;
1070 }
1071 if (dontroute)
1072 so->so_options |= SO_DONTROUTE;
1073 if (resid > 0)
1074 so->so_state |= SS_MORETOCOME;
1075 error = (*so->so_proto->pr_usrreq)(so,
1076 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
1077 top, addr, control, curlwp);
1078 if (dontroute)
1079 so->so_options &= ~SO_DONTROUTE;
1080 if (resid > 0)
1081 so->so_state &= ~SS_MORETOCOME;
1082 clen = 0;
1083 control = NULL;
1084 top = NULL;
1085 mp = ⊤
1086 if (error != 0)
1087 goto release;
1088 } while (resid && space > 0);
1089 } while (resid);
1090
1091 release:
1092 sbunlock(&so->so_snd);
1093 out:
1094 sounlock(so);
1095 splx(s);
1096 if (top)
1097 m_freem(top);
1098 if (control)
1099 m_freem(control);
1100 return (error);
1101 }
1102
1103 /*
1104 * Following replacement or removal of the first mbuf on the first
1105 * mbuf chain of a socket buffer, push necessary state changes back
1106 * into the socket buffer so that other consumers see the values
1107 * consistently. 'nextrecord' is the callers locally stored value of
1108 * the original value of sb->sb_mb->m_nextpkt which must be restored
1109 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1110 */
1111 static void
1112 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1113 {
1114
1115 KASSERT(solocked(sb->sb_so));
1116
1117 /*
1118 * First, update for the new value of nextrecord. If necessary,
1119 * make it the first record.
1120 */
1121 if (sb->sb_mb != NULL)
1122 sb->sb_mb->m_nextpkt = nextrecord;
1123 else
1124 sb->sb_mb = nextrecord;
1125
1126 /*
1127 * Now update any dependent socket buffer fields to reflect
1128 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1129 * the addition of a second clause that takes care of the
1130 * case where sb_mb has been updated, but remains the last
1131 * record.
1132 */
1133 if (sb->sb_mb == NULL) {
1134 sb->sb_mbtail = NULL;
1135 sb->sb_lastrecord = NULL;
1136 } else if (sb->sb_mb->m_nextpkt == NULL)
1137 sb->sb_lastrecord = sb->sb_mb;
1138 }
1139
1140 /*
1141 * Implement receive operations on a socket.
1142 * We depend on the way that records are added to the sockbuf
1143 * by sbappend*. In particular, each record (mbufs linked through m_next)
1144 * must begin with an address if the protocol so specifies,
1145 * followed by an optional mbuf or mbufs containing ancillary data,
1146 * and then zero or more mbufs of data.
1147 * In order to avoid blocking network interrupts for the entire time here,
1148 * we splx() while doing the actual copy to user space.
1149 * Although the sockbuf is locked, new data may still be appended,
1150 * and thus we must maintain consistency of the sockbuf during that time.
1151 *
1152 * The caller may receive the data as a single mbuf chain by supplying
1153 * an mbuf **mp0 for use in returning the chain. The uio is then used
1154 * only for the count in uio_resid.
1155 */
1156 int
1157 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1158 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1159 {
1160 struct lwp *l = curlwp;
1161 struct mbuf *m, **mp, *mt;
1162 int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1163 const struct protosw *pr;
1164 struct mbuf *nextrecord;
1165 int mbuf_removed = 0;
1166 const struct domain *dom;
1167 short wakeup_state = 0;
1168
1169 pr = so->so_proto;
1170 atomic = pr->pr_flags & PR_ATOMIC;
1171 dom = pr->pr_domain;
1172 mp = mp0;
1173 type = 0;
1174 orig_resid = uio->uio_resid;
1175
1176 if (paddr != NULL)
1177 *paddr = NULL;
1178 if (controlp != NULL)
1179 *controlp = NULL;
1180 if (flagsp != NULL)
1181 flags = *flagsp &~ MSG_EOR;
1182 else
1183 flags = 0;
1184
1185 if ((flags & MSG_DONTWAIT) == 0)
1186 sodopendfree();
1187
1188 if (flags & MSG_OOB) {
1189 m = m_get(M_WAIT, MT_DATA);
1190 solock(so);
1191 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1192 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1193 sounlock(so);
1194 if (error)
1195 goto bad;
1196 do {
1197 error = uiomove(mtod(m, void *),
1198 (int) min(uio->uio_resid, m->m_len), uio);
1199 m = m_free(m);
1200 } while (uio->uio_resid > 0 && error == 0 && m);
1201 bad:
1202 if (m != NULL)
1203 m_freem(m);
1204 return error;
1205 }
1206 if (mp != NULL)
1207 *mp = NULL;
1208
1209 /*
1210 * solock() provides atomicity of access. splsoftnet() prevents
1211 * protocol processing soft interrupts from interrupting us and
1212 * blocking (expensive).
1213 */
1214 s = splsoftnet();
1215 solock(so);
1216 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1217 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1218
1219 restart:
1220 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1221 sounlock(so);
1222 splx(s);
1223 return error;
1224 }
1225
1226 m = so->so_rcv.sb_mb;
1227 /*
1228 * If we have less data than requested, block awaiting more
1229 * (subject to any timeout) if:
1230 * 1. the current count is less than the low water mark,
1231 * 2. MSG_WAITALL is set, and it is possible to do the entire
1232 * receive operation at once if we block (resid <= hiwat), or
1233 * 3. MSG_DONTWAIT is not set.
1234 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1235 * we have to do the receive in sections, and thus risk returning
1236 * a short count if a timeout or signal occurs after we start.
1237 */
1238 if (m == NULL ||
1239 ((flags & MSG_DONTWAIT) == 0 &&
1240 so->so_rcv.sb_cc < uio->uio_resid &&
1241 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1242 ((flags & MSG_WAITALL) &&
1243 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1244 m->m_nextpkt == NULL && !atomic)) {
1245 #ifdef DIAGNOSTIC
1246 if (m == NULL && so->so_rcv.sb_cc)
1247 panic("receive 1");
1248 #endif
1249 if (so->so_error) {
1250 if (m != NULL)
1251 goto dontblock;
1252 error = so->so_error;
1253 if ((flags & MSG_PEEK) == 0)
1254 so->so_error = 0;
1255 goto release;
1256 }
1257 if (so->so_state & SS_CANTRCVMORE) {
1258 if (m != NULL)
1259 goto dontblock;
1260 else
1261 goto release;
1262 }
1263 for (; m != NULL; m = m->m_next)
1264 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1265 m = so->so_rcv.sb_mb;
1266 goto dontblock;
1267 }
1268 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1269 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1270 error = ENOTCONN;
1271 goto release;
1272 }
1273 if (uio->uio_resid == 0)
1274 goto release;
1275 if (so->so_nbio || (flags & MSG_DONTWAIT)) {
1276 error = EWOULDBLOCK;
1277 goto release;
1278 }
1279 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1280 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1281 sbunlock(&so->so_rcv);
1282 if (wakeup_state & SS_RESTARTSYS)
1283 error = ERESTART;
1284 else
1285 error = sbwait(&so->so_rcv);
1286 if (error != 0) {
1287 sounlock(so);
1288 splx(s);
1289 return error;
1290 }
1291 wakeup_state = so->so_state;
1292 goto restart;
1293 }
1294 dontblock:
1295 /*
1296 * On entry here, m points to the first record of the socket buffer.
1297 * From this point onward, we maintain 'nextrecord' as a cache of the
1298 * pointer to the next record in the socket buffer. We must keep the
1299 * various socket buffer pointers and local stack versions of the
1300 * pointers in sync, pushing out modifications before dropping the
1301 * socket lock, and re-reading them when picking it up.
1302 *
1303 * Otherwise, we will race with the network stack appending new data
1304 * or records onto the socket buffer by using inconsistent/stale
1305 * versions of the field, possibly resulting in socket buffer
1306 * corruption.
1307 *
1308 * By holding the high-level sblock(), we prevent simultaneous
1309 * readers from pulling off the front of the socket buffer.
1310 */
1311 if (l != NULL)
1312 l->l_ru.ru_msgrcv++;
1313 KASSERT(m == so->so_rcv.sb_mb);
1314 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1315 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1316 nextrecord = m->m_nextpkt;
1317 if (pr->pr_flags & PR_ADDR) {
1318 #ifdef DIAGNOSTIC
1319 if (m->m_type != MT_SONAME)
1320 panic("receive 1a");
1321 #endif
1322 orig_resid = 0;
1323 if (flags & MSG_PEEK) {
1324 if (paddr)
1325 *paddr = m_copy(m, 0, m->m_len);
1326 m = m->m_next;
1327 } else {
1328 sbfree(&so->so_rcv, m);
1329 mbuf_removed = 1;
1330 if (paddr != NULL) {
1331 *paddr = m;
1332 so->so_rcv.sb_mb = m->m_next;
1333 m->m_next = NULL;
1334 m = so->so_rcv.sb_mb;
1335 } else {
1336 MFREE(m, so->so_rcv.sb_mb);
1337 m = so->so_rcv.sb_mb;
1338 }
1339 sbsync(&so->so_rcv, nextrecord);
1340 }
1341 }
1342
1343 /*
1344 * Process one or more MT_CONTROL mbufs present before any data mbufs
1345 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1346 * just copy the data; if !MSG_PEEK, we call into the protocol to
1347 * perform externalization (or freeing if controlp == NULL).
1348 */
1349 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1350 struct mbuf *cm = NULL, *cmn;
1351 struct mbuf **cme = &cm;
1352
1353 do {
1354 if (flags & MSG_PEEK) {
1355 if (controlp != NULL) {
1356 *controlp = m_copy(m, 0, m->m_len);
1357 controlp = &(*controlp)->m_next;
1358 }
1359 m = m->m_next;
1360 } else {
1361 sbfree(&so->so_rcv, m);
1362 so->so_rcv.sb_mb = m->m_next;
1363 m->m_next = NULL;
1364 *cme = m;
1365 cme = &(*cme)->m_next;
1366 m = so->so_rcv.sb_mb;
1367 }
1368 } while (m != NULL && m->m_type == MT_CONTROL);
1369 if ((flags & MSG_PEEK) == 0)
1370 sbsync(&so->so_rcv, nextrecord);
1371 for (; cm != NULL; cm = cmn) {
1372 cmn = cm->m_next;
1373 cm->m_next = NULL;
1374 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1375 if (controlp != NULL) {
1376 if (dom->dom_externalize != NULL &&
1377 type == SCM_RIGHTS) {
1378 sounlock(so);
1379 splx(s);
1380 error = (*dom->dom_externalize)(cm, l);
1381 s = splsoftnet();
1382 solock(so);
1383 }
1384 *controlp = cm;
1385 while (*controlp != NULL)
1386 controlp = &(*controlp)->m_next;
1387 } else {
1388 /*
1389 * Dispose of any SCM_RIGHTS message that went
1390 * through the read path rather than recv.
1391 */
1392 if (dom->dom_dispose != NULL &&
1393 type == SCM_RIGHTS) {
1394 sounlock(so);
1395 (*dom->dom_dispose)(cm);
1396 solock(so);
1397 }
1398 m_freem(cm);
1399 }
1400 }
1401 if (m != NULL)
1402 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1403 else
1404 nextrecord = so->so_rcv.sb_mb;
1405 orig_resid = 0;
1406 }
1407
1408 /* If m is non-NULL, we have some data to read. */
1409 if (__predict_true(m != NULL)) {
1410 type = m->m_type;
1411 if (type == MT_OOBDATA)
1412 flags |= MSG_OOB;
1413 }
1414 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1415 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1416
1417 moff = 0;
1418 offset = 0;
1419 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1420 if (m->m_type == MT_OOBDATA) {
1421 if (type != MT_OOBDATA)
1422 break;
1423 } else if (type == MT_OOBDATA)
1424 break;
1425 #ifdef DIAGNOSTIC
1426 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1427 panic("receive 3");
1428 #endif
1429 so->so_state &= ~SS_RCVATMARK;
1430 wakeup_state = 0;
1431 len = uio->uio_resid;
1432 if (so->so_oobmark && len > so->so_oobmark - offset)
1433 len = so->so_oobmark - offset;
1434 if (len > m->m_len - moff)
1435 len = m->m_len - moff;
1436 /*
1437 * If mp is set, just pass back the mbufs.
1438 * Otherwise copy them out via the uio, then free.
1439 * Sockbuf must be consistent here (points to current mbuf,
1440 * it points to next record) when we drop priority;
1441 * we must note any additions to the sockbuf when we
1442 * block interrupts again.
1443 */
1444 if (mp == NULL) {
1445 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1446 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1447 sounlock(so);
1448 splx(s);
1449 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1450 s = splsoftnet();
1451 solock(so);
1452 if (error != 0) {
1453 /*
1454 * If any part of the record has been removed
1455 * (such as the MT_SONAME mbuf, which will
1456 * happen when PR_ADDR, and thus also
1457 * PR_ATOMIC, is set), then drop the entire
1458 * record to maintain the atomicity of the
1459 * receive operation.
1460 *
1461 * This avoids a later panic("receive 1a")
1462 * when compiled with DIAGNOSTIC.
1463 */
1464 if (m && mbuf_removed && atomic)
1465 (void) sbdroprecord(&so->so_rcv);
1466
1467 goto release;
1468 }
1469 } else
1470 uio->uio_resid -= len;
1471 if (len == m->m_len - moff) {
1472 if (m->m_flags & M_EOR)
1473 flags |= MSG_EOR;
1474 if (flags & MSG_PEEK) {
1475 m = m->m_next;
1476 moff = 0;
1477 } else {
1478 nextrecord = m->m_nextpkt;
1479 sbfree(&so->so_rcv, m);
1480 if (mp) {
1481 *mp = m;
1482 mp = &m->m_next;
1483 so->so_rcv.sb_mb = m = m->m_next;
1484 *mp = NULL;
1485 } else {
1486 MFREE(m, so->so_rcv.sb_mb);
1487 m = so->so_rcv.sb_mb;
1488 }
1489 /*
1490 * If m != NULL, we also know that
1491 * so->so_rcv.sb_mb != NULL.
1492 */
1493 KASSERT(so->so_rcv.sb_mb == m);
1494 if (m) {
1495 m->m_nextpkt = nextrecord;
1496 if (nextrecord == NULL)
1497 so->so_rcv.sb_lastrecord = m;
1498 } else {
1499 so->so_rcv.sb_mb = nextrecord;
1500 SB_EMPTY_FIXUP(&so->so_rcv);
1501 }
1502 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1503 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1504 }
1505 } else if (flags & MSG_PEEK)
1506 moff += len;
1507 else {
1508 if (mp != NULL) {
1509 mt = m_copym(m, 0, len, M_NOWAIT);
1510 if (__predict_false(mt == NULL)) {
1511 sounlock(so);
1512 mt = m_copym(m, 0, len, M_WAIT);
1513 solock(so);
1514 }
1515 *mp = mt;
1516 }
1517 m->m_data += len;
1518 m->m_len -= len;
1519 so->so_rcv.sb_cc -= len;
1520 }
1521 if (so->so_oobmark) {
1522 if ((flags & MSG_PEEK) == 0) {
1523 so->so_oobmark -= len;
1524 if (so->so_oobmark == 0) {
1525 so->so_state |= SS_RCVATMARK;
1526 break;
1527 }
1528 } else {
1529 offset += len;
1530 if (offset == so->so_oobmark)
1531 break;
1532 }
1533 }
1534 if (flags & MSG_EOR)
1535 break;
1536 /*
1537 * If the MSG_WAITALL flag is set (for non-atomic socket),
1538 * we must not quit until "uio->uio_resid == 0" or an error
1539 * termination. If a signal/timeout occurs, return
1540 * with a short count but without error.
1541 * Keep sockbuf locked against other readers.
1542 */
1543 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1544 !sosendallatonce(so) && !nextrecord) {
1545 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1546 break;
1547 /*
1548 * If we are peeking and the socket receive buffer is
1549 * full, stop since we can't get more data to peek at.
1550 */
1551 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1552 break;
1553 /*
1554 * If we've drained the socket buffer, tell the
1555 * protocol in case it needs to do something to
1556 * get it filled again.
1557 */
1558 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1559 (*pr->pr_usrreq)(so, PRU_RCVD,
1560 NULL, (struct mbuf *)(long)flags, NULL, l);
1561 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1562 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1563 if (wakeup_state & SS_RESTARTSYS)
1564 error = ERESTART;
1565 else
1566 error = sbwait(&so->so_rcv);
1567 if (error != 0) {
1568 sbunlock(&so->so_rcv);
1569 sounlock(so);
1570 splx(s);
1571 return 0;
1572 }
1573 if ((m = so->so_rcv.sb_mb) != NULL)
1574 nextrecord = m->m_nextpkt;
1575 wakeup_state = so->so_state;
1576 }
1577 }
1578
1579 if (m && atomic) {
1580 flags |= MSG_TRUNC;
1581 if ((flags & MSG_PEEK) == 0)
1582 (void) sbdroprecord(&so->so_rcv);
1583 }
1584 if ((flags & MSG_PEEK) == 0) {
1585 if (m == NULL) {
1586 /*
1587 * First part is an inline SB_EMPTY_FIXUP(). Second
1588 * part makes sure sb_lastrecord is up-to-date if
1589 * there is still data in the socket buffer.
1590 */
1591 so->so_rcv.sb_mb = nextrecord;
1592 if (so->so_rcv.sb_mb == NULL) {
1593 so->so_rcv.sb_mbtail = NULL;
1594 so->so_rcv.sb_lastrecord = NULL;
1595 } else if (nextrecord->m_nextpkt == NULL)
1596 so->so_rcv.sb_lastrecord = nextrecord;
1597 }
1598 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1599 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1600 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1601 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1602 (struct mbuf *)(long)flags, NULL, l);
1603 }
1604 if (orig_resid == uio->uio_resid && orig_resid &&
1605 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1606 sbunlock(&so->so_rcv);
1607 goto restart;
1608 }
1609
1610 if (flagsp != NULL)
1611 *flagsp |= flags;
1612 release:
1613 sbunlock(&so->so_rcv);
1614 sounlock(so);
1615 splx(s);
1616 return error;
1617 }
1618
1619 int
1620 soshutdown(struct socket *so, int how)
1621 {
1622 const struct protosw *pr;
1623 int error;
1624
1625 KASSERT(solocked(so));
1626
1627 pr = so->so_proto;
1628 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1629 return (EINVAL);
1630
1631 if (how == SHUT_RD || how == SHUT_RDWR) {
1632 sorflush(so);
1633 error = 0;
1634 }
1635 if (how == SHUT_WR || how == SHUT_RDWR)
1636 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1637 NULL, NULL, NULL);
1638
1639 return error;
1640 }
1641
1642 void
1643 sorestart(struct socket *so)
1644 {
1645 /*
1646 * An application has called close() on an fd on which another
1647 * of its threads has called a socket system call.
1648 * Mark this and wake everyone up, and code that would block again
1649 * instead returns ERESTART.
1650 * On system call re-entry the fd is validated and EBADF returned.
1651 * Any other fd will block again on the 2nd syscall.
1652 */
1653 solock(so);
1654 so->so_state |= SS_RESTARTSYS;
1655 cv_broadcast(&so->so_cv);
1656 cv_broadcast(&so->so_snd.sb_cv);
1657 cv_broadcast(&so->so_rcv.sb_cv);
1658 sounlock(so);
1659 }
1660
1661 void
1662 sorflush(struct socket *so)
1663 {
1664 struct sockbuf *sb, asb;
1665 const struct protosw *pr;
1666
1667 KASSERT(solocked(so));
1668
1669 sb = &so->so_rcv;
1670 pr = so->so_proto;
1671 socantrcvmore(so);
1672 sb->sb_flags |= SB_NOINTR;
1673 (void )sblock(sb, M_WAITOK);
1674 sbunlock(sb);
1675 asb = *sb;
1676 /*
1677 * Clear most of the sockbuf structure, but leave some of the
1678 * fields valid.
1679 */
1680 memset(&sb->sb_startzero, 0,
1681 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1682 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1683 sounlock(so);
1684 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1685 solock(so);
1686 }
1687 sbrelease(&asb, so);
1688 }
1689
1690 /*
1691 * internal set SOL_SOCKET options
1692 */
1693 static int
1694 sosetopt1(struct socket *so, const struct sockopt *sopt)
1695 {
1696 int error = EINVAL, optval, opt;
1697 struct linger l;
1698 struct timeval tv;
1699
1700 switch ((opt = sopt->sopt_name)) {
1701
1702 case SO_ACCEPTFILTER:
1703 error = accept_filt_setopt(so, sopt);
1704 KASSERT(solocked(so));
1705 break;
1706
1707 case SO_LINGER:
1708 error = sockopt_get(sopt, &l, sizeof(l));
1709 solock(so);
1710 if (error)
1711 break;
1712 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1713 l.l_linger > (INT_MAX / hz)) {
1714 error = EDOM;
1715 break;
1716 }
1717 so->so_linger = l.l_linger;
1718 if (l.l_onoff)
1719 so->so_options |= SO_LINGER;
1720 else
1721 so->so_options &= ~SO_LINGER;
1722 break;
1723
1724 case SO_DEBUG:
1725 case SO_KEEPALIVE:
1726 case SO_DONTROUTE:
1727 case SO_USELOOPBACK:
1728 case SO_BROADCAST:
1729 case SO_REUSEADDR:
1730 case SO_REUSEPORT:
1731 case SO_OOBINLINE:
1732 case SO_TIMESTAMP:
1733 #ifdef SO_OTIMESTAMP
1734 case SO_OTIMESTAMP:
1735 #endif
1736 error = sockopt_getint(sopt, &optval);
1737 solock(so);
1738 if (error)
1739 break;
1740 if (optval)
1741 so->so_options |= opt;
1742 else
1743 so->so_options &= ~opt;
1744 break;
1745
1746 case SO_SNDBUF:
1747 case SO_RCVBUF:
1748 case SO_SNDLOWAT:
1749 case SO_RCVLOWAT:
1750 error = sockopt_getint(sopt, &optval);
1751 solock(so);
1752 if (error)
1753 break;
1754
1755 /*
1756 * Values < 1 make no sense for any of these
1757 * options, so disallow them.
1758 */
1759 if (optval < 1) {
1760 error = EINVAL;
1761 break;
1762 }
1763
1764 switch (opt) {
1765 case SO_SNDBUF:
1766 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1767 error = ENOBUFS;
1768 break;
1769 }
1770 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1771 break;
1772
1773 case SO_RCVBUF:
1774 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1775 error = ENOBUFS;
1776 break;
1777 }
1778 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1779 break;
1780
1781 /*
1782 * Make sure the low-water is never greater than
1783 * the high-water.
1784 */
1785 case SO_SNDLOWAT:
1786 if (optval > so->so_snd.sb_hiwat)
1787 optval = so->so_snd.sb_hiwat;
1788
1789 so->so_snd.sb_lowat = optval;
1790 break;
1791
1792 case SO_RCVLOWAT:
1793 if (optval > so->so_rcv.sb_hiwat)
1794 optval = so->so_rcv.sb_hiwat;
1795
1796 so->so_rcv.sb_lowat = optval;
1797 break;
1798 }
1799 break;
1800
1801 #ifdef COMPAT_50
1802 case SO_OSNDTIMEO:
1803 case SO_ORCVTIMEO: {
1804 struct timeval50 otv;
1805 error = sockopt_get(sopt, &otv, sizeof(otv));
1806 if (error) {
1807 solock(so);
1808 break;
1809 }
1810 timeval50_to_timeval(&otv, &tv);
1811 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1812 error = 0;
1813 /*FALLTHROUGH*/
1814 }
1815 #endif /* COMPAT_50 */
1816
1817 case SO_SNDTIMEO:
1818 case SO_RCVTIMEO:
1819 if (error)
1820 error = sockopt_get(sopt, &tv, sizeof(tv));
1821 solock(so);
1822 if (error)
1823 break;
1824
1825 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1826 error = EDOM;
1827 break;
1828 }
1829
1830 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1831 if (optval == 0 && tv.tv_usec != 0)
1832 optval = 1;
1833
1834 switch (opt) {
1835 case SO_SNDTIMEO:
1836 so->so_snd.sb_timeo = optval;
1837 break;
1838 case SO_RCVTIMEO:
1839 so->so_rcv.sb_timeo = optval;
1840 break;
1841 }
1842 break;
1843
1844 default:
1845 solock(so);
1846 error = ENOPROTOOPT;
1847 break;
1848 }
1849 KASSERT(solocked(so));
1850 return error;
1851 }
1852
1853 int
1854 sosetopt(struct socket *so, struct sockopt *sopt)
1855 {
1856 int error, prerr;
1857
1858 if (sopt->sopt_level == SOL_SOCKET) {
1859 error = sosetopt1(so, sopt);
1860 KASSERT(solocked(so));
1861 } else {
1862 error = ENOPROTOOPT;
1863 solock(so);
1864 }
1865
1866 if ((error == 0 || error == ENOPROTOOPT) &&
1867 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1868 /* give the protocol stack a shot */
1869 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1870 if (prerr == 0)
1871 error = 0;
1872 else if (prerr != ENOPROTOOPT)
1873 error = prerr;
1874 }
1875 sounlock(so);
1876 return error;
1877 }
1878
1879 /*
1880 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1881 */
1882 int
1883 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1884 const void *val, size_t valsize)
1885 {
1886 struct sockopt sopt;
1887 int error;
1888
1889 KASSERT(valsize == 0 || val != NULL);
1890
1891 sockopt_init(&sopt, level, name, valsize);
1892 sockopt_set(&sopt, val, valsize);
1893
1894 error = sosetopt(so, &sopt);
1895
1896 sockopt_destroy(&sopt);
1897
1898 return error;
1899 }
1900
1901 /*
1902 * internal get SOL_SOCKET options
1903 */
1904 static int
1905 sogetopt1(struct socket *so, struct sockopt *sopt)
1906 {
1907 int error, optval, opt;
1908 struct linger l;
1909 struct timeval tv;
1910
1911 switch ((opt = sopt->sopt_name)) {
1912
1913 case SO_ACCEPTFILTER:
1914 error = accept_filt_getopt(so, sopt);
1915 break;
1916
1917 case SO_LINGER:
1918 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1919 l.l_linger = so->so_linger;
1920
1921 error = sockopt_set(sopt, &l, sizeof(l));
1922 break;
1923
1924 case SO_USELOOPBACK:
1925 case SO_DONTROUTE:
1926 case SO_DEBUG:
1927 case SO_KEEPALIVE:
1928 case SO_REUSEADDR:
1929 case SO_REUSEPORT:
1930 case SO_BROADCAST:
1931 case SO_OOBINLINE:
1932 case SO_TIMESTAMP:
1933 #ifdef SO_OTIMESTAMP
1934 case SO_OTIMESTAMP:
1935 #endif
1936 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1937 break;
1938
1939 case SO_TYPE:
1940 error = sockopt_setint(sopt, so->so_type);
1941 break;
1942
1943 case SO_ERROR:
1944 error = sockopt_setint(sopt, so->so_error);
1945 so->so_error = 0;
1946 break;
1947
1948 case SO_SNDBUF:
1949 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1950 break;
1951
1952 case SO_RCVBUF:
1953 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1954 break;
1955
1956 case SO_SNDLOWAT:
1957 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1958 break;
1959
1960 case SO_RCVLOWAT:
1961 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1962 break;
1963
1964 #ifdef COMPAT_50
1965 case SO_OSNDTIMEO:
1966 case SO_ORCVTIMEO: {
1967 struct timeval50 otv;
1968
1969 optval = (opt == SO_OSNDTIMEO ?
1970 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1971
1972 otv.tv_sec = optval / hz;
1973 otv.tv_usec = (optval % hz) * tick;
1974
1975 error = sockopt_set(sopt, &otv, sizeof(otv));
1976 break;
1977 }
1978 #endif /* COMPAT_50 */
1979
1980 case SO_SNDTIMEO:
1981 case SO_RCVTIMEO:
1982 optval = (opt == SO_SNDTIMEO ?
1983 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1984
1985 tv.tv_sec = optval / hz;
1986 tv.tv_usec = (optval % hz) * tick;
1987
1988 error = sockopt_set(sopt, &tv, sizeof(tv));
1989 break;
1990
1991 case SO_OVERFLOWED:
1992 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1993 break;
1994
1995 default:
1996 error = ENOPROTOOPT;
1997 break;
1998 }
1999
2000 return (error);
2001 }
2002
2003 int
2004 sogetopt(struct socket *so, struct sockopt *sopt)
2005 {
2006 int error;
2007
2008 solock(so);
2009 if (sopt->sopt_level != SOL_SOCKET) {
2010 if (so->so_proto && so->so_proto->pr_ctloutput) {
2011 error = ((*so->so_proto->pr_ctloutput)
2012 (PRCO_GETOPT, so, sopt));
2013 } else
2014 error = (ENOPROTOOPT);
2015 } else {
2016 error = sogetopt1(so, sopt);
2017 }
2018 sounlock(so);
2019 return (error);
2020 }
2021
2022 /*
2023 * alloc sockopt data buffer buffer
2024 * - will be released at destroy
2025 */
2026 static int
2027 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2028 {
2029
2030 KASSERT(sopt->sopt_size == 0);
2031
2032 if (len > sizeof(sopt->sopt_buf)) {
2033 sopt->sopt_data = kmem_zalloc(len, kmflag);
2034 if (sopt->sopt_data == NULL)
2035 return ENOMEM;
2036 } else
2037 sopt->sopt_data = sopt->sopt_buf;
2038
2039 sopt->sopt_size = len;
2040 return 0;
2041 }
2042
2043 /*
2044 * initialise sockopt storage
2045 * - MAY sleep during allocation
2046 */
2047 void
2048 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2049 {
2050
2051 memset(sopt, 0, sizeof(*sopt));
2052
2053 sopt->sopt_level = level;
2054 sopt->sopt_name = name;
2055 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2056 }
2057
2058 /*
2059 * destroy sockopt storage
2060 * - will release any held memory references
2061 */
2062 void
2063 sockopt_destroy(struct sockopt *sopt)
2064 {
2065
2066 if (sopt->sopt_data != sopt->sopt_buf)
2067 kmem_free(sopt->sopt_data, sopt->sopt_size);
2068
2069 memset(sopt, 0, sizeof(*sopt));
2070 }
2071
2072 /*
2073 * set sockopt value
2074 * - value is copied into sockopt
2075 * - memory is allocated when necessary, will not sleep
2076 */
2077 int
2078 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2079 {
2080 int error;
2081
2082 if (sopt->sopt_size == 0) {
2083 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2084 if (error)
2085 return error;
2086 }
2087
2088 KASSERT(sopt->sopt_size == len);
2089 memcpy(sopt->sopt_data, buf, len);
2090 return 0;
2091 }
2092
2093 /*
2094 * common case of set sockopt integer value
2095 */
2096 int
2097 sockopt_setint(struct sockopt *sopt, int val)
2098 {
2099
2100 return sockopt_set(sopt, &val, sizeof(int));
2101 }
2102
2103 /*
2104 * get sockopt value
2105 * - correct size must be given
2106 */
2107 int
2108 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2109 {
2110
2111 if (sopt->sopt_size != len)
2112 return EINVAL;
2113
2114 memcpy(buf, sopt->sopt_data, len);
2115 return 0;
2116 }
2117
2118 /*
2119 * common case of get sockopt integer value
2120 */
2121 int
2122 sockopt_getint(const struct sockopt *sopt, int *valp)
2123 {
2124
2125 return sockopt_get(sopt, valp, sizeof(int));
2126 }
2127
2128 /*
2129 * set sockopt value from mbuf
2130 * - ONLY for legacy code
2131 * - mbuf is released by sockopt
2132 * - will not sleep
2133 */
2134 int
2135 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2136 {
2137 size_t len;
2138 int error;
2139
2140 len = m_length(m);
2141
2142 if (sopt->sopt_size == 0) {
2143 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2144 if (error)
2145 return error;
2146 }
2147
2148 KASSERT(sopt->sopt_size == len);
2149 m_copydata(m, 0, len, sopt->sopt_data);
2150 m_freem(m);
2151
2152 return 0;
2153 }
2154
2155 /*
2156 * get sockopt value into mbuf
2157 * - ONLY for legacy code
2158 * - mbuf to be released by the caller
2159 * - will not sleep
2160 */
2161 struct mbuf *
2162 sockopt_getmbuf(const struct sockopt *sopt)
2163 {
2164 struct mbuf *m;
2165
2166 if (sopt->sopt_size > MCLBYTES)
2167 return NULL;
2168
2169 m = m_get(M_DONTWAIT, MT_SOOPTS);
2170 if (m == NULL)
2171 return NULL;
2172
2173 if (sopt->sopt_size > MLEN) {
2174 MCLGET(m, M_DONTWAIT);
2175 if ((m->m_flags & M_EXT) == 0) {
2176 m_free(m);
2177 return NULL;
2178 }
2179 }
2180
2181 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2182 m->m_len = sopt->sopt_size;
2183
2184 return m;
2185 }
2186
2187 void
2188 sohasoutofband(struct socket *so)
2189 {
2190
2191 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2192 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2193 }
2194
2195 static void
2196 filt_sordetach(struct knote *kn)
2197 {
2198 struct socket *so;
2199
2200 so = ((file_t *)kn->kn_obj)->f_data;
2201 solock(so);
2202 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2203 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2204 so->so_rcv.sb_flags &= ~SB_KNOTE;
2205 sounlock(so);
2206 }
2207
2208 /*ARGSUSED*/
2209 static int
2210 filt_soread(struct knote *kn, long hint)
2211 {
2212 struct socket *so;
2213 int rv;
2214
2215 so = ((file_t *)kn->kn_obj)->f_data;
2216 if (hint != NOTE_SUBMIT)
2217 solock(so);
2218 kn->kn_data = so->so_rcv.sb_cc;
2219 if (so->so_state & SS_CANTRCVMORE) {
2220 kn->kn_flags |= EV_EOF;
2221 kn->kn_fflags = so->so_error;
2222 rv = 1;
2223 } else if (so->so_error) /* temporary udp error */
2224 rv = 1;
2225 else if (kn->kn_sfflags & NOTE_LOWAT)
2226 rv = (kn->kn_data >= kn->kn_sdata);
2227 else
2228 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2229 if (hint != NOTE_SUBMIT)
2230 sounlock(so);
2231 return rv;
2232 }
2233
2234 static void
2235 filt_sowdetach(struct knote *kn)
2236 {
2237 struct socket *so;
2238
2239 so = ((file_t *)kn->kn_obj)->f_data;
2240 solock(so);
2241 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2242 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2243 so->so_snd.sb_flags &= ~SB_KNOTE;
2244 sounlock(so);
2245 }
2246
2247 /*ARGSUSED*/
2248 static int
2249 filt_sowrite(struct knote *kn, long hint)
2250 {
2251 struct socket *so;
2252 int rv;
2253
2254 so = ((file_t *)kn->kn_obj)->f_data;
2255 if (hint != NOTE_SUBMIT)
2256 solock(so);
2257 kn->kn_data = sbspace(&so->so_snd);
2258 if (so->so_state & SS_CANTSENDMORE) {
2259 kn->kn_flags |= EV_EOF;
2260 kn->kn_fflags = so->so_error;
2261 rv = 1;
2262 } else if (so->so_error) /* temporary udp error */
2263 rv = 1;
2264 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2265 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2266 rv = 0;
2267 else if (kn->kn_sfflags & NOTE_LOWAT)
2268 rv = (kn->kn_data >= kn->kn_sdata);
2269 else
2270 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2271 if (hint != NOTE_SUBMIT)
2272 sounlock(so);
2273 return rv;
2274 }
2275
2276 /*ARGSUSED*/
2277 static int
2278 filt_solisten(struct knote *kn, long hint)
2279 {
2280 struct socket *so;
2281 int rv;
2282
2283 so = ((file_t *)kn->kn_obj)->f_data;
2284
2285 /*
2286 * Set kn_data to number of incoming connections, not
2287 * counting partial (incomplete) connections.
2288 */
2289 if (hint != NOTE_SUBMIT)
2290 solock(so);
2291 kn->kn_data = so->so_qlen;
2292 rv = (kn->kn_data > 0);
2293 if (hint != NOTE_SUBMIT)
2294 sounlock(so);
2295 return rv;
2296 }
2297
2298 static const struct filterops solisten_filtops =
2299 { 1, NULL, filt_sordetach, filt_solisten };
2300 static const struct filterops soread_filtops =
2301 { 1, NULL, filt_sordetach, filt_soread };
2302 static const struct filterops sowrite_filtops =
2303 { 1, NULL, filt_sowdetach, filt_sowrite };
2304
2305 int
2306 soo_kqfilter(struct file *fp, struct knote *kn)
2307 {
2308 struct socket *so;
2309 struct sockbuf *sb;
2310
2311 so = ((file_t *)kn->kn_obj)->f_data;
2312 solock(so);
2313 switch (kn->kn_filter) {
2314 case EVFILT_READ:
2315 if (so->so_options & SO_ACCEPTCONN)
2316 kn->kn_fop = &solisten_filtops;
2317 else
2318 kn->kn_fop = &soread_filtops;
2319 sb = &so->so_rcv;
2320 break;
2321 case EVFILT_WRITE:
2322 kn->kn_fop = &sowrite_filtops;
2323 sb = &so->so_snd;
2324 break;
2325 default:
2326 sounlock(so);
2327 return (EINVAL);
2328 }
2329 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2330 sb->sb_flags |= SB_KNOTE;
2331 sounlock(so);
2332 return (0);
2333 }
2334
2335 static int
2336 sodopoll(struct socket *so, int events)
2337 {
2338 int revents;
2339
2340 revents = 0;
2341
2342 if (events & (POLLIN | POLLRDNORM))
2343 if (soreadable(so))
2344 revents |= events & (POLLIN | POLLRDNORM);
2345
2346 if (events & (POLLOUT | POLLWRNORM))
2347 if (sowritable(so))
2348 revents |= events & (POLLOUT | POLLWRNORM);
2349
2350 if (events & (POLLPRI | POLLRDBAND))
2351 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2352 revents |= events & (POLLPRI | POLLRDBAND);
2353
2354 return revents;
2355 }
2356
2357 int
2358 sopoll(struct socket *so, int events)
2359 {
2360 int revents = 0;
2361
2362 #ifndef DIAGNOSTIC
2363 /*
2364 * Do a quick, unlocked check in expectation that the socket
2365 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2366 * as the solocked() assertions will fail.
2367 */
2368 if ((revents = sodopoll(so, events)) != 0)
2369 return revents;
2370 #endif
2371
2372 solock(so);
2373 if ((revents = sodopoll(so, events)) == 0) {
2374 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2375 selrecord(curlwp, &so->so_rcv.sb_sel);
2376 so->so_rcv.sb_flags |= SB_NOTIFY;
2377 }
2378
2379 if (events & (POLLOUT | POLLWRNORM)) {
2380 selrecord(curlwp, &so->so_snd.sb_sel);
2381 so->so_snd.sb_flags |= SB_NOTIFY;
2382 }
2383 }
2384 sounlock(so);
2385
2386 return revents;
2387 }
2388
2389
2390 #include <sys/sysctl.h>
2391
2392 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2393
2394 /*
2395 * sysctl helper routine for kern.somaxkva. ensures that the given
2396 * value is not too small.
2397 * (XXX should we maybe make sure it's not too large as well?)
2398 */
2399 static int
2400 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2401 {
2402 int error, new_somaxkva;
2403 struct sysctlnode node;
2404
2405 new_somaxkva = somaxkva;
2406 node = *rnode;
2407 node.sysctl_data = &new_somaxkva;
2408 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2409 if (error || newp == NULL)
2410 return (error);
2411
2412 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2413 return (EINVAL);
2414
2415 mutex_enter(&so_pendfree_lock);
2416 somaxkva = new_somaxkva;
2417 cv_broadcast(&socurkva_cv);
2418 mutex_exit(&so_pendfree_lock);
2419
2420 return (error);
2421 }
2422
2423 static void
2424 sysctl_kern_somaxkva_setup(void)
2425 {
2426
2427 KASSERT(socket_sysctllog == NULL);
2428 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2429 CTLFLAG_PERMANENT,
2430 CTLTYPE_NODE, "kern", NULL,
2431 NULL, 0, NULL, 0,
2432 CTL_KERN, CTL_EOL);
2433
2434 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2435 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2436 CTLTYPE_INT, "somaxkva",
2437 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2438 "used for socket buffers"),
2439 sysctl_kern_somaxkva, 0, NULL, 0,
2440 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2441 }
2442