Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.200.2.1
      1 /*	$NetBSD: uipc_socket.c,v 1.200.2.1 2010/10/22 07:22:30 uebayasi Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.200.2.1 2010/10/22 07:22:30 uebayasi Exp $");
     67 
     68 #include "opt_compat_netbsd.h"
     69 #include "opt_sock_counters.h"
     70 #include "opt_sosend_loan.h"
     71 #include "opt_mbuftrace.h"
     72 #include "opt_somaxkva.h"
     73 #include "opt_multiprocessor.h"	/* XXX */
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/proc.h>
     78 #include <sys/file.h>
     79 #include <sys/filedesc.h>
     80 #include <sys/kmem.h>
     81 #include <sys/mbuf.h>
     82 #include <sys/domain.h>
     83 #include <sys/kernel.h>
     84 #include <sys/protosw.h>
     85 #include <sys/socket.h>
     86 #include <sys/socketvar.h>
     87 #include <sys/signalvar.h>
     88 #include <sys/resourcevar.h>
     89 #include <sys/uidinfo.h>
     90 #include <sys/event.h>
     91 #include <sys/poll.h>
     92 #include <sys/kauth.h>
     93 #include <sys/mutex.h>
     94 #include <sys/condvar.h>
     95 
     96 #ifdef COMPAT_50
     97 #include <compat/sys/time.h>
     98 #include <compat/sys/socket.h>
     99 #endif
    100 
    101 #include <uvm/uvm.h>
    102 
    103 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
    104 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    105 
    106 extern const struct fileops socketops;
    107 
    108 extern int	somaxconn;			/* patchable (XXX sysctl) */
    109 int		somaxconn = SOMAXCONN;
    110 kmutex_t	*softnet_lock;
    111 
    112 #ifdef SOSEND_COUNTERS
    113 #include <sys/device.h>
    114 
    115 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    116     NULL, "sosend", "loan big");
    117 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    118     NULL, "sosend", "copy big");
    119 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    120     NULL, "sosend", "copy small");
    121 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    122     NULL, "sosend", "kva limit");
    123 
    124 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    125 
    126 EVCNT_ATTACH_STATIC(sosend_loan_big);
    127 EVCNT_ATTACH_STATIC(sosend_copy_big);
    128 EVCNT_ATTACH_STATIC(sosend_copy_small);
    129 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    130 #else
    131 
    132 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    133 
    134 #endif /* SOSEND_COUNTERS */
    135 
    136 static struct callback_entry sokva_reclaimerentry;
    137 
    138 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    139 int sock_loan_thresh = -1;
    140 #else
    141 int sock_loan_thresh = 4096;
    142 #endif
    143 
    144 static kmutex_t so_pendfree_lock;
    145 static struct mbuf *so_pendfree;
    146 
    147 #ifndef SOMAXKVA
    148 #define	SOMAXKVA (16 * 1024 * 1024)
    149 #endif
    150 int somaxkva = SOMAXKVA;
    151 static int socurkva;
    152 static kcondvar_t socurkva_cv;
    153 
    154 static kauth_listener_t socket_listener;
    155 
    156 #define	SOCK_LOAN_CHUNK		65536
    157 
    158 static size_t sodopendfree(void);
    159 static size_t sodopendfreel(void);
    160 
    161 static void sysctl_kern_somaxkva_setup(void);
    162 static struct sysctllog *socket_sysctllog;
    163 
    164 static vsize_t
    165 sokvareserve(struct socket *so, vsize_t len)
    166 {
    167 	int error;
    168 
    169 	mutex_enter(&so_pendfree_lock);
    170 	while (socurkva + len > somaxkva) {
    171 		size_t freed;
    172 
    173 		/*
    174 		 * try to do pendfree.
    175 		 */
    176 
    177 		freed = sodopendfreel();
    178 
    179 		/*
    180 		 * if some kva was freed, try again.
    181 		 */
    182 
    183 		if (freed)
    184 			continue;
    185 
    186 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    187 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    188 		if (error) {
    189 			len = 0;
    190 			break;
    191 		}
    192 	}
    193 	socurkva += len;
    194 	mutex_exit(&so_pendfree_lock);
    195 	return len;
    196 }
    197 
    198 static void
    199 sokvaunreserve(vsize_t len)
    200 {
    201 
    202 	mutex_enter(&so_pendfree_lock);
    203 	socurkva -= len;
    204 	cv_broadcast(&socurkva_cv);
    205 	mutex_exit(&so_pendfree_lock);
    206 }
    207 
    208 /*
    209  * sokvaalloc: allocate kva for loan.
    210  */
    211 
    212 vaddr_t
    213 sokvaalloc(vsize_t len, struct socket *so)
    214 {
    215 	vaddr_t lva;
    216 
    217 	/*
    218 	 * reserve kva.
    219 	 */
    220 
    221 	if (sokvareserve(so, len) == 0)
    222 		return 0;
    223 
    224 	/*
    225 	 * allocate kva.
    226 	 */
    227 
    228 	lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    229 	if (lva == 0) {
    230 		sokvaunreserve(len);
    231 		return (0);
    232 	}
    233 
    234 	return lva;
    235 }
    236 
    237 /*
    238  * sokvafree: free kva for loan.
    239  */
    240 
    241 void
    242 sokvafree(vaddr_t sva, vsize_t len)
    243 {
    244 
    245 	/*
    246 	 * free kva.
    247 	 */
    248 
    249 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    250 
    251 	/*
    252 	 * unreserve kva.
    253 	 */
    254 
    255 	sokvaunreserve(len);
    256 }
    257 
    258 static void
    259 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    260 {
    261 	vaddr_t sva, eva;
    262 	vsize_t len;
    263 	int npgs;
    264 
    265 	KASSERT(pgs != NULL);
    266 
    267 	eva = round_page((vaddr_t) buf + size);
    268 	sva = trunc_page((vaddr_t) buf);
    269 	len = eva - sva;
    270 	npgs = len >> PAGE_SHIFT;
    271 
    272 	pmap_kremove(sva, len);
    273 	pmap_update(pmap_kernel());
    274 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    275 	sokvafree(sva, len);
    276 }
    277 
    278 static size_t
    279 sodopendfree(void)
    280 {
    281 	size_t rv;
    282 
    283 	if (__predict_true(so_pendfree == NULL))
    284 		return 0;
    285 
    286 	mutex_enter(&so_pendfree_lock);
    287 	rv = sodopendfreel();
    288 	mutex_exit(&so_pendfree_lock);
    289 
    290 	return rv;
    291 }
    292 
    293 /*
    294  * sodopendfreel: free mbufs on "pendfree" list.
    295  * unlock and relock so_pendfree_lock when freeing mbufs.
    296  *
    297  * => called with so_pendfree_lock held.
    298  */
    299 
    300 static size_t
    301 sodopendfreel(void)
    302 {
    303 	struct mbuf *m, *next;
    304 	size_t rv = 0;
    305 
    306 	KASSERT(mutex_owned(&so_pendfree_lock));
    307 
    308 	while (so_pendfree != NULL) {
    309 		m = so_pendfree;
    310 		so_pendfree = NULL;
    311 		mutex_exit(&so_pendfree_lock);
    312 
    313 		for (; m != NULL; m = next) {
    314 			next = m->m_next;
    315 			KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
    316 			KASSERT(m->m_ext.ext_refcnt == 0);
    317 
    318 			rv += m->m_ext.ext_size;
    319 			sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    320 			    m->m_ext.ext_size);
    321 			pool_cache_put(mb_cache, m);
    322 		}
    323 
    324 		mutex_enter(&so_pendfree_lock);
    325 	}
    326 
    327 	return (rv);
    328 }
    329 
    330 void
    331 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    332 {
    333 
    334 	KASSERT(m != NULL);
    335 
    336 	/*
    337 	 * postpone freeing mbuf.
    338 	 *
    339 	 * we can't do it in interrupt context
    340 	 * because we need to put kva back to kernel_map.
    341 	 */
    342 
    343 	mutex_enter(&so_pendfree_lock);
    344 	m->m_next = so_pendfree;
    345 	so_pendfree = m;
    346 	cv_broadcast(&socurkva_cv);
    347 	mutex_exit(&so_pendfree_lock);
    348 }
    349 
    350 static long
    351 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    352 {
    353 	struct iovec *iov = uio->uio_iov;
    354 	vaddr_t sva, eva;
    355 	vsize_t len;
    356 	vaddr_t lva;
    357 	int npgs, error;
    358 	vaddr_t va;
    359 	int i;
    360 
    361 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    362 		return (0);
    363 
    364 	if (iov->iov_len < (size_t) space)
    365 		space = iov->iov_len;
    366 	if (space > SOCK_LOAN_CHUNK)
    367 		space = SOCK_LOAN_CHUNK;
    368 
    369 	eva = round_page((vaddr_t) iov->iov_base + space);
    370 	sva = trunc_page((vaddr_t) iov->iov_base);
    371 	len = eva - sva;
    372 	npgs = len >> PAGE_SHIFT;
    373 
    374 	KASSERT(npgs <= M_EXT_MAXPAGES);
    375 
    376 	lva = sokvaalloc(len, so);
    377 	if (lva == 0)
    378 		return 0;
    379 
    380 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    381 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    382 	if (error) {
    383 		sokvafree(lva, len);
    384 		return (0);
    385 	}
    386 
    387 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    388 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    389 		    VM_PROT_READ, 0);
    390 	pmap_update(pmap_kernel());
    391 
    392 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    393 
    394 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    395 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    396 
    397 	uio->uio_resid -= space;
    398 	/* uio_offset not updated, not set/used for write(2) */
    399 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    400 	uio->uio_iov->iov_len -= space;
    401 	if (uio->uio_iov->iov_len == 0) {
    402 		uio->uio_iov++;
    403 		uio->uio_iovcnt--;
    404 	}
    405 
    406 	return (space);
    407 }
    408 
    409 static int
    410 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    411 {
    412 
    413 	KASSERT(ce == &sokva_reclaimerentry);
    414 	KASSERT(obj == NULL);
    415 
    416 	sodopendfree();
    417 	if (!vm_map_starved_p(kernel_map)) {
    418 		return CALLBACK_CHAIN_ABORT;
    419 	}
    420 	return CALLBACK_CHAIN_CONTINUE;
    421 }
    422 
    423 struct mbuf *
    424 getsombuf(struct socket *so, int type)
    425 {
    426 	struct mbuf *m;
    427 
    428 	m = m_get(M_WAIT, type);
    429 	MCLAIM(m, so->so_mowner);
    430 	return m;
    431 }
    432 
    433 static int
    434 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    435     void *arg0, void *arg1, void *arg2, void *arg3)
    436 {
    437 	int result;
    438 	enum kauth_network_req req;
    439 
    440 	result = KAUTH_RESULT_DEFER;
    441 	req = (enum kauth_network_req)arg0;
    442 
    443 	if ((action != KAUTH_NETWORK_SOCKET) &&
    444 	    (action != KAUTH_NETWORK_BIND))
    445 		return result;
    446 
    447 	switch (req) {
    448 	case KAUTH_REQ_NETWORK_BIND_PORT:
    449 		result = KAUTH_RESULT_ALLOW;
    450 		break;
    451 
    452 	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
    453 		/* Normal users can only drop their own connections. */
    454 		struct socket *so = (struct socket *)arg1;
    455 
    456 		if (proc_uidmatch(cred, so->so_cred))
    457 			result = KAUTH_RESULT_ALLOW;
    458 
    459 		break;
    460 		}
    461 
    462 	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
    463 		/* We allow "raw" routing/bluetooth sockets to anyone. */
    464 		if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_BLUETOOTH)
    465 			result = KAUTH_RESULT_ALLOW;
    466 		else {
    467 			/* Privileged, let secmodel handle this. */
    468 			if ((u_long)arg2 == SOCK_RAW)
    469 				break;
    470 		}
    471 
    472 		result = KAUTH_RESULT_ALLOW;
    473 
    474 		break;
    475 
    476 	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
    477 		result = KAUTH_RESULT_ALLOW;
    478 
    479 		break;
    480 
    481 	default:
    482 		break;
    483 	}
    484 
    485 	return result;
    486 }
    487 
    488 void
    489 soinit(void)
    490 {
    491 
    492 	sysctl_kern_somaxkva_setup();
    493 
    494 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    495 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    496 	cv_init(&socurkva_cv, "sokva");
    497 	soinit2();
    498 
    499 	/* Set the initial adjusted socket buffer size. */
    500 	if (sb_max_set(sb_max))
    501 		panic("bad initial sb_max value: %lu", sb_max);
    502 
    503 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    504 	    &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
    505 
    506 	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    507 	    socket_listener_cb, NULL);
    508 }
    509 
    510 /*
    511  * Socket operation routines.
    512  * These routines are called by the routines in
    513  * sys_socket.c or from a system process, and
    514  * implement the semantics of socket operations by
    515  * switching out to the protocol specific routines.
    516  */
    517 /*ARGSUSED*/
    518 int
    519 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    520 	 struct socket *lockso)
    521 {
    522 	const struct protosw	*prp;
    523 	struct socket	*so;
    524 	uid_t		uid;
    525 	int		error;
    526 	kmutex_t	*lock;
    527 
    528 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    529 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    530 	    KAUTH_ARG(proto));
    531 	if (error != 0)
    532 		return error;
    533 
    534 	if (proto)
    535 		prp = pffindproto(dom, proto, type);
    536 	else
    537 		prp = pffindtype(dom, type);
    538 	if (prp == NULL) {
    539 		/* no support for domain */
    540 		if (pffinddomain(dom) == 0)
    541 			return EAFNOSUPPORT;
    542 		/* no support for socket type */
    543 		if (proto == 0 && type != 0)
    544 			return EPROTOTYPE;
    545 		return EPROTONOSUPPORT;
    546 	}
    547 	if (prp->pr_usrreq == NULL)
    548 		return EPROTONOSUPPORT;
    549 	if (prp->pr_type != type)
    550 		return EPROTOTYPE;
    551 
    552 	so = soget(true);
    553 	so->so_type = type;
    554 	so->so_proto = prp;
    555 	so->so_send = sosend;
    556 	so->so_receive = soreceive;
    557 #ifdef MBUFTRACE
    558 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    559 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    560 	so->so_mowner = &prp->pr_domain->dom_mowner;
    561 #endif
    562 	uid = kauth_cred_geteuid(l->l_cred);
    563 	so->so_uidinfo = uid_find(uid);
    564 	so->so_cpid = l->l_proc->p_pid;
    565 	if (lockso != NULL) {
    566 		/* Caller wants us to share a lock. */
    567 		lock = lockso->so_lock;
    568 		so->so_lock = lock;
    569 		mutex_obj_hold(lock);
    570 		mutex_enter(lock);
    571 	} else {
    572 		/* Lock assigned and taken during PRU_ATTACH. */
    573 	}
    574 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
    575 	    (struct mbuf *)(long)proto, NULL, l);
    576 	KASSERT(solocked(so));
    577 	if (error != 0) {
    578 		so->so_state |= SS_NOFDREF;
    579 		sofree(so);
    580 		return error;
    581 	}
    582 	so->so_cred = kauth_cred_dup(l->l_cred);
    583 	sounlock(so);
    584 	*aso = so;
    585 	return 0;
    586 }
    587 
    588 /* On success, write file descriptor to fdout and return zero.  On
    589  * failure, return non-zero; *fdout will be undefined.
    590  */
    591 int
    592 fsocreate(int domain, struct socket **sop, int type, int protocol,
    593     struct lwp *l, int *fdout)
    594 {
    595 	struct socket	*so;
    596 	struct file	*fp;
    597 	int		fd, error;
    598 
    599 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    600 		return (error);
    601 	fp->f_flag = FREAD|FWRITE;
    602 	fp->f_type = DTYPE_SOCKET;
    603 	fp->f_ops = &socketops;
    604 	error = socreate(domain, &so, type, protocol, l, NULL);
    605 	if (error != 0) {
    606 		fd_abort(curproc, fp, fd);
    607 	} else {
    608 		if (sop != NULL)
    609 			*sop = so;
    610 		fp->f_data = so;
    611 		fd_affix(curproc, fp, fd);
    612 		*fdout = fd;
    613 	}
    614 	return error;
    615 }
    616 
    617 int
    618 sofamily(const struct socket *so)
    619 {
    620 	const struct protosw *pr;
    621 	const struct domain *dom;
    622 
    623 	if ((pr = so->so_proto) == NULL)
    624 		return AF_UNSPEC;
    625 	if ((dom = pr->pr_domain) == NULL)
    626 		return AF_UNSPEC;
    627 	return dom->dom_family;
    628 }
    629 
    630 int
    631 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    632 {
    633 	int	error;
    634 
    635 	solock(so);
    636 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
    637 	sounlock(so);
    638 	return error;
    639 }
    640 
    641 int
    642 solisten(struct socket *so, int backlog, struct lwp *l)
    643 {
    644 	int	error;
    645 
    646 	solock(so);
    647 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    648 	    SS_ISDISCONNECTING)) != 0) {
    649 	    	sounlock(so);
    650 		return (EOPNOTSUPP);
    651 	}
    652 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
    653 	    NULL, NULL, l);
    654 	if (error != 0) {
    655 		sounlock(so);
    656 		return error;
    657 	}
    658 	if (TAILQ_EMPTY(&so->so_q))
    659 		so->so_options |= SO_ACCEPTCONN;
    660 	if (backlog < 0)
    661 		backlog = 0;
    662 	so->so_qlimit = min(backlog, somaxconn);
    663 	sounlock(so);
    664 	return 0;
    665 }
    666 
    667 void
    668 sofree(struct socket *so)
    669 {
    670 	u_int refs;
    671 
    672 	KASSERT(solocked(so));
    673 
    674 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    675 		sounlock(so);
    676 		return;
    677 	}
    678 	if (so->so_head) {
    679 		/*
    680 		 * We must not decommission a socket that's on the accept(2)
    681 		 * queue.  If we do, then accept(2) may hang after select(2)
    682 		 * indicated that the listening socket was ready.
    683 		 */
    684 		if (!soqremque(so, 0)) {
    685 			sounlock(so);
    686 			return;
    687 		}
    688 	}
    689 	if (so->so_rcv.sb_hiwat)
    690 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    691 		    RLIM_INFINITY);
    692 	if (so->so_snd.sb_hiwat)
    693 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    694 		    RLIM_INFINITY);
    695 	sbrelease(&so->so_snd, so);
    696 	KASSERT(!cv_has_waiters(&so->so_cv));
    697 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    698 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    699 	sorflush(so);
    700 	refs = so->so_aborting;	/* XXX */
    701 	/* Remove acccept filter if one is present. */
    702 	if (so->so_accf != NULL)
    703 		(void)accept_filt_clear(so);
    704 	sounlock(so);
    705 	if (refs == 0)		/* XXX */
    706 		soput(so);
    707 }
    708 
    709 /*
    710  * Close a socket on last file table reference removal.
    711  * Initiate disconnect if connected.
    712  * Free socket when disconnect complete.
    713  */
    714 int
    715 soclose(struct socket *so)
    716 {
    717 	struct socket	*so2;
    718 	int		error;
    719 	int		error2;
    720 
    721 	error = 0;
    722 	solock(so);
    723 	if (so->so_options & SO_ACCEPTCONN) {
    724 		for (;;) {
    725 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    726 				KASSERT(solocked2(so, so2));
    727 				(void) soqremque(so2, 0);
    728 				/* soabort drops the lock. */
    729 				(void) soabort(so2);
    730 				solock(so);
    731 				continue;
    732 			}
    733 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    734 				KASSERT(solocked2(so, so2));
    735 				(void) soqremque(so2, 1);
    736 				/* soabort drops the lock. */
    737 				(void) soabort(so2);
    738 				solock(so);
    739 				continue;
    740 			}
    741 			break;
    742 		}
    743 	}
    744 	if (so->so_pcb == 0)
    745 		goto discard;
    746 	if (so->so_state & SS_ISCONNECTED) {
    747 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    748 			error = sodisconnect(so);
    749 			if (error)
    750 				goto drop;
    751 		}
    752 		if (so->so_options & SO_LINGER) {
    753 			if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
    754 				goto drop;
    755 			while (so->so_state & SS_ISCONNECTED) {
    756 				error = sowait(so, true, so->so_linger * hz);
    757 				if (error)
    758 					break;
    759 			}
    760 		}
    761 	}
    762  drop:
    763 	if (so->so_pcb) {
    764 		error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    765 		    NULL, NULL, NULL, NULL);
    766 		if (error == 0)
    767 			error = error2;
    768 	}
    769  discard:
    770 	if (so->so_state & SS_NOFDREF)
    771 		panic("soclose: NOFDREF");
    772 	kauth_cred_free(so->so_cred);
    773 	so->so_state |= SS_NOFDREF;
    774 	sofree(so);
    775 	return (error);
    776 }
    777 
    778 /*
    779  * Must be called with the socket locked..  Will return with it unlocked.
    780  */
    781 int
    782 soabort(struct socket *so)
    783 {
    784 	u_int refs;
    785 	int error;
    786 
    787 	KASSERT(solocked(so));
    788 	KASSERT(so->so_head == NULL);
    789 
    790 	so->so_aborting++;		/* XXX */
    791 	error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
    792 	    NULL, NULL, NULL);
    793 	refs = --so->so_aborting;	/* XXX */
    794 	if (error || (refs == 0)) {
    795 		sofree(so);
    796 	} else {
    797 		sounlock(so);
    798 	}
    799 	return error;
    800 }
    801 
    802 int
    803 soaccept(struct socket *so, struct mbuf *nam)
    804 {
    805 	int	error;
    806 
    807 	KASSERT(solocked(so));
    808 
    809 	error = 0;
    810 	if ((so->so_state & SS_NOFDREF) == 0)
    811 		panic("soaccept: !NOFDREF");
    812 	so->so_state &= ~SS_NOFDREF;
    813 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    814 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    815 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    816 		    NULL, nam, NULL, NULL);
    817 	else
    818 		error = ECONNABORTED;
    819 
    820 	return (error);
    821 }
    822 
    823 int
    824 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    825 {
    826 	int		error;
    827 
    828 	KASSERT(solocked(so));
    829 
    830 	if (so->so_options & SO_ACCEPTCONN)
    831 		return (EOPNOTSUPP);
    832 	/*
    833 	 * If protocol is connection-based, can only connect once.
    834 	 * Otherwise, if connected, try to disconnect first.
    835 	 * This allows user to disconnect by connecting to, e.g.,
    836 	 * a null address.
    837 	 */
    838 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    839 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    840 	    (error = sodisconnect(so))))
    841 		error = EISCONN;
    842 	else
    843 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    844 		    NULL, nam, NULL, l);
    845 	return (error);
    846 }
    847 
    848 int
    849 soconnect2(struct socket *so1, struct socket *so2)
    850 {
    851 	int	error;
    852 
    853 	KASSERT(solocked2(so1, so2));
    854 
    855 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    856 	    NULL, (struct mbuf *)so2, NULL, NULL);
    857 	return (error);
    858 }
    859 
    860 int
    861 sodisconnect(struct socket *so)
    862 {
    863 	int	error;
    864 
    865 	KASSERT(solocked(so));
    866 
    867 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    868 		error = ENOTCONN;
    869 	} else if (so->so_state & SS_ISDISCONNECTING) {
    870 		error = EALREADY;
    871 	} else {
    872 		error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    873 		    NULL, NULL, NULL, NULL);
    874 	}
    875 	sodopendfree();
    876 	return (error);
    877 }
    878 
    879 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    880 /*
    881  * Send on a socket.
    882  * If send must go all at once and message is larger than
    883  * send buffering, then hard error.
    884  * Lock against other senders.
    885  * If must go all at once and not enough room now, then
    886  * inform user that this would block and do nothing.
    887  * Otherwise, if nonblocking, send as much as possible.
    888  * The data to be sent is described by "uio" if nonzero,
    889  * otherwise by the mbuf chain "top" (which must be null
    890  * if uio is not).  Data provided in mbuf chain must be small
    891  * enough to send all at once.
    892  *
    893  * Returns nonzero on error, timeout or signal; callers
    894  * must check for short counts if EINTR/ERESTART are returned.
    895  * Data and control buffers are freed on return.
    896  */
    897 int
    898 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    899 	struct mbuf *control, int flags, struct lwp *l)
    900 {
    901 	struct mbuf	**mp, *m;
    902 	struct proc	*p;
    903 	long		space, len, resid, clen, mlen;
    904 	int		error, s, dontroute, atomic;
    905 	short		wakeup_state = 0;
    906 
    907 	p = l->l_proc;
    908 	sodopendfree();
    909 	clen = 0;
    910 
    911 	/*
    912 	 * solock() provides atomicity of access.  splsoftnet() prevents
    913 	 * protocol processing soft interrupts from interrupting us and
    914 	 * blocking (expensive).
    915 	 */
    916 	s = splsoftnet();
    917 	solock(so);
    918 	atomic = sosendallatonce(so) || top;
    919 	if (uio)
    920 		resid = uio->uio_resid;
    921 	else
    922 		resid = top->m_pkthdr.len;
    923 	/*
    924 	 * In theory resid should be unsigned.
    925 	 * However, space must be signed, as it might be less than 0
    926 	 * if we over-committed, and we must use a signed comparison
    927 	 * of space and resid.  On the other hand, a negative resid
    928 	 * causes us to loop sending 0-length segments to the protocol.
    929 	 */
    930 	if (resid < 0) {
    931 		error = EINVAL;
    932 		goto out;
    933 	}
    934 	dontroute =
    935 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    936 	    (so->so_proto->pr_flags & PR_ATOMIC);
    937 	l->l_ru.ru_msgsnd++;
    938 	if (control)
    939 		clen = control->m_len;
    940  restart:
    941 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    942 		goto out;
    943 	do {
    944 		if (so->so_state & SS_CANTSENDMORE) {
    945 			error = EPIPE;
    946 			goto release;
    947 		}
    948 		if (so->so_error) {
    949 			error = so->so_error;
    950 			so->so_error = 0;
    951 			goto release;
    952 		}
    953 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    954 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    955 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    956 				    !(resid == 0 && clen != 0)) {
    957 					error = ENOTCONN;
    958 					goto release;
    959 				}
    960 			} else if (addr == 0) {
    961 				error = EDESTADDRREQ;
    962 				goto release;
    963 			}
    964 		}
    965 		space = sbspace(&so->so_snd);
    966 		if (flags & MSG_OOB)
    967 			space += 1024;
    968 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    969 		    clen > so->so_snd.sb_hiwat) {
    970 			error = EMSGSIZE;
    971 			goto release;
    972 		}
    973 		if (space < resid + clen &&
    974 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    975 			if (so->so_nbio) {
    976 				error = EWOULDBLOCK;
    977 				goto release;
    978 			}
    979 			sbunlock(&so->so_snd);
    980 			if (wakeup_state & SS_RESTARTSYS) {
    981 				error = ERESTART;
    982 				goto out;
    983 			}
    984 			error = sbwait(&so->so_snd);
    985 			if (error)
    986 				goto out;
    987 			wakeup_state = so->so_state;
    988 			goto restart;
    989 		}
    990 		wakeup_state = 0;
    991 		mp = &top;
    992 		space -= clen;
    993 		do {
    994 			if (uio == NULL) {
    995 				/*
    996 				 * Data is prepackaged in "top".
    997 				 */
    998 				resid = 0;
    999 				if (flags & MSG_EOR)
   1000 					top->m_flags |= M_EOR;
   1001 			} else do {
   1002 				sounlock(so);
   1003 				splx(s);
   1004 				if (top == NULL) {
   1005 					m = m_gethdr(M_WAIT, MT_DATA);
   1006 					mlen = MHLEN;
   1007 					m->m_pkthdr.len = 0;
   1008 					m->m_pkthdr.rcvif = NULL;
   1009 				} else {
   1010 					m = m_get(M_WAIT, MT_DATA);
   1011 					mlen = MLEN;
   1012 				}
   1013 				MCLAIM(m, so->so_snd.sb_mowner);
   1014 				if (sock_loan_thresh >= 0 &&
   1015 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
   1016 				    space >= sock_loan_thresh &&
   1017 				    (len = sosend_loan(so, uio, m,
   1018 						       space)) != 0) {
   1019 					SOSEND_COUNTER_INCR(&sosend_loan_big);
   1020 					space -= len;
   1021 					goto have_data;
   1022 				}
   1023 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
   1024 					SOSEND_COUNTER_INCR(&sosend_copy_big);
   1025 					m_clget(m, M_DONTWAIT);
   1026 					if ((m->m_flags & M_EXT) == 0)
   1027 						goto nopages;
   1028 					mlen = MCLBYTES;
   1029 					if (atomic && top == 0) {
   1030 						len = lmin(MCLBYTES - max_hdr,
   1031 						    resid);
   1032 						m->m_data += max_hdr;
   1033 					} else
   1034 						len = lmin(MCLBYTES, resid);
   1035 					space -= len;
   1036 				} else {
   1037  nopages:
   1038 					SOSEND_COUNTER_INCR(&sosend_copy_small);
   1039 					len = lmin(lmin(mlen, resid), space);
   1040 					space -= len;
   1041 					/*
   1042 					 * For datagram protocols, leave room
   1043 					 * for protocol headers in first mbuf.
   1044 					 */
   1045 					if (atomic && top == 0 && len < mlen)
   1046 						MH_ALIGN(m, len);
   1047 				}
   1048 				error = uiomove(mtod(m, void *), (int)len, uio);
   1049  have_data:
   1050 				resid = uio->uio_resid;
   1051 				m->m_len = len;
   1052 				*mp = m;
   1053 				top->m_pkthdr.len += len;
   1054 				s = splsoftnet();
   1055 				solock(so);
   1056 				if (error != 0)
   1057 					goto release;
   1058 				mp = &m->m_next;
   1059 				if (resid <= 0) {
   1060 					if (flags & MSG_EOR)
   1061 						top->m_flags |= M_EOR;
   1062 					break;
   1063 				}
   1064 			} while (space > 0 && atomic);
   1065 
   1066 			if (so->so_state & SS_CANTSENDMORE) {
   1067 				error = EPIPE;
   1068 				goto release;
   1069 			}
   1070 			if (dontroute)
   1071 				so->so_options |= SO_DONTROUTE;
   1072 			if (resid > 0)
   1073 				so->so_state |= SS_MORETOCOME;
   1074 			error = (*so->so_proto->pr_usrreq)(so,
   1075 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
   1076 			    top, addr, control, curlwp);
   1077 			if (dontroute)
   1078 				so->so_options &= ~SO_DONTROUTE;
   1079 			if (resid > 0)
   1080 				so->so_state &= ~SS_MORETOCOME;
   1081 			clen = 0;
   1082 			control = NULL;
   1083 			top = NULL;
   1084 			mp = &top;
   1085 			if (error != 0)
   1086 				goto release;
   1087 		} while (resid && space > 0);
   1088 	} while (resid);
   1089 
   1090  release:
   1091 	sbunlock(&so->so_snd);
   1092  out:
   1093 	sounlock(so);
   1094 	splx(s);
   1095 	if (top)
   1096 		m_freem(top);
   1097 	if (control)
   1098 		m_freem(control);
   1099 	return (error);
   1100 }
   1101 
   1102 /*
   1103  * Following replacement or removal of the first mbuf on the first
   1104  * mbuf chain of a socket buffer, push necessary state changes back
   1105  * into the socket buffer so that other consumers see the values
   1106  * consistently.  'nextrecord' is the callers locally stored value of
   1107  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1108  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1109  */
   1110 static void
   1111 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1112 {
   1113 
   1114 	KASSERT(solocked(sb->sb_so));
   1115 
   1116 	/*
   1117 	 * First, update for the new value of nextrecord.  If necessary,
   1118 	 * make it the first record.
   1119 	 */
   1120 	if (sb->sb_mb != NULL)
   1121 		sb->sb_mb->m_nextpkt = nextrecord;
   1122 	else
   1123 		sb->sb_mb = nextrecord;
   1124 
   1125         /*
   1126          * Now update any dependent socket buffer fields to reflect
   1127          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1128          * the addition of a second clause that takes care of the
   1129          * case where sb_mb has been updated, but remains the last
   1130          * record.
   1131          */
   1132         if (sb->sb_mb == NULL) {
   1133                 sb->sb_mbtail = NULL;
   1134                 sb->sb_lastrecord = NULL;
   1135         } else if (sb->sb_mb->m_nextpkt == NULL)
   1136                 sb->sb_lastrecord = sb->sb_mb;
   1137 }
   1138 
   1139 /*
   1140  * Implement receive operations on a socket.
   1141  * We depend on the way that records are added to the sockbuf
   1142  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1143  * must begin with an address if the protocol so specifies,
   1144  * followed by an optional mbuf or mbufs containing ancillary data,
   1145  * and then zero or more mbufs of data.
   1146  * In order to avoid blocking network interrupts for the entire time here,
   1147  * we splx() while doing the actual copy to user space.
   1148  * Although the sockbuf is locked, new data may still be appended,
   1149  * and thus we must maintain consistency of the sockbuf during that time.
   1150  *
   1151  * The caller may receive the data as a single mbuf chain by supplying
   1152  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1153  * only for the count in uio_resid.
   1154  */
   1155 int
   1156 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1157 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1158 {
   1159 	struct lwp *l = curlwp;
   1160 	struct mbuf	*m, **mp, *mt;
   1161 	int atomic, flags, len, error, s, offset, moff, type, orig_resid;
   1162 	const struct protosw	*pr;
   1163 	struct mbuf	*nextrecord;
   1164 	int		mbuf_removed = 0;
   1165 	const struct domain *dom;
   1166 	short		wakeup_state = 0;
   1167 
   1168 	pr = so->so_proto;
   1169 	atomic = pr->pr_flags & PR_ATOMIC;
   1170 	dom = pr->pr_domain;
   1171 	mp = mp0;
   1172 	type = 0;
   1173 	orig_resid = uio->uio_resid;
   1174 
   1175 	if (paddr != NULL)
   1176 		*paddr = NULL;
   1177 	if (controlp != NULL)
   1178 		*controlp = NULL;
   1179 	if (flagsp != NULL)
   1180 		flags = *flagsp &~ MSG_EOR;
   1181 	else
   1182 		flags = 0;
   1183 
   1184 	if ((flags & MSG_DONTWAIT) == 0)
   1185 		sodopendfree();
   1186 
   1187 	if (flags & MSG_OOB) {
   1188 		m = m_get(M_WAIT, MT_DATA);
   1189 		solock(so);
   1190 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
   1191 		    (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
   1192 		sounlock(so);
   1193 		if (error)
   1194 			goto bad;
   1195 		do {
   1196 			error = uiomove(mtod(m, void *),
   1197 			    (int) min(uio->uio_resid, m->m_len), uio);
   1198 			m = m_free(m);
   1199 		} while (uio->uio_resid > 0 && error == 0 && m);
   1200  bad:
   1201 		if (m != NULL)
   1202 			m_freem(m);
   1203 		return error;
   1204 	}
   1205 	if (mp != NULL)
   1206 		*mp = NULL;
   1207 
   1208 	/*
   1209 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1210 	 * protocol processing soft interrupts from interrupting us and
   1211 	 * blocking (expensive).
   1212 	 */
   1213 	s = splsoftnet();
   1214 	solock(so);
   1215 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
   1216 		(*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
   1217 
   1218  restart:
   1219 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1220 		sounlock(so);
   1221 		splx(s);
   1222 		return error;
   1223 	}
   1224 
   1225 	m = so->so_rcv.sb_mb;
   1226 	/*
   1227 	 * If we have less data than requested, block awaiting more
   1228 	 * (subject to any timeout) if:
   1229 	 *   1. the current count is less than the low water mark,
   1230 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1231 	 *	receive operation at once if we block (resid <= hiwat), or
   1232 	 *   3. MSG_DONTWAIT is not set.
   1233 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1234 	 * we have to do the receive in sections, and thus risk returning
   1235 	 * a short count if a timeout or signal occurs after we start.
   1236 	 */
   1237 	if (m == NULL ||
   1238 	    ((flags & MSG_DONTWAIT) == 0 &&
   1239 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1240 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1241 	      ((flags & MSG_WAITALL) &&
   1242 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1243 	     m->m_nextpkt == NULL && !atomic)) {
   1244 #ifdef DIAGNOSTIC
   1245 		if (m == NULL && so->so_rcv.sb_cc)
   1246 			panic("receive 1");
   1247 #endif
   1248 		if (so->so_error) {
   1249 			if (m != NULL)
   1250 				goto dontblock;
   1251 			error = so->so_error;
   1252 			if ((flags & MSG_PEEK) == 0)
   1253 				so->so_error = 0;
   1254 			goto release;
   1255 		}
   1256 		if (so->so_state & SS_CANTRCVMORE) {
   1257 			if (m != NULL)
   1258 				goto dontblock;
   1259 			else
   1260 				goto release;
   1261 		}
   1262 		for (; m != NULL; m = m->m_next)
   1263 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1264 				m = so->so_rcv.sb_mb;
   1265 				goto dontblock;
   1266 			}
   1267 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1268 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1269 			error = ENOTCONN;
   1270 			goto release;
   1271 		}
   1272 		if (uio->uio_resid == 0)
   1273 			goto release;
   1274 		if (so->so_nbio || (flags & MSG_DONTWAIT)) {
   1275 			error = EWOULDBLOCK;
   1276 			goto release;
   1277 		}
   1278 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1279 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1280 		sbunlock(&so->so_rcv);
   1281 		if (wakeup_state & SS_RESTARTSYS)
   1282 			error = ERESTART;
   1283 		else
   1284 			error = sbwait(&so->so_rcv);
   1285 		if (error != 0) {
   1286 			sounlock(so);
   1287 			splx(s);
   1288 			return error;
   1289 		}
   1290 		wakeup_state = so->so_state;
   1291 		goto restart;
   1292 	}
   1293  dontblock:
   1294 	/*
   1295 	 * On entry here, m points to the first record of the socket buffer.
   1296 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1297 	 * pointer to the next record in the socket buffer.  We must keep the
   1298 	 * various socket buffer pointers and local stack versions of the
   1299 	 * pointers in sync, pushing out modifications before dropping the
   1300 	 * socket lock, and re-reading them when picking it up.
   1301 	 *
   1302 	 * Otherwise, we will race with the network stack appending new data
   1303 	 * or records onto the socket buffer by using inconsistent/stale
   1304 	 * versions of the field, possibly resulting in socket buffer
   1305 	 * corruption.
   1306 	 *
   1307 	 * By holding the high-level sblock(), we prevent simultaneous
   1308 	 * readers from pulling off the front of the socket buffer.
   1309 	 */
   1310 	if (l != NULL)
   1311 		l->l_ru.ru_msgrcv++;
   1312 	KASSERT(m == so->so_rcv.sb_mb);
   1313 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1314 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1315 	nextrecord = m->m_nextpkt;
   1316 	if (pr->pr_flags & PR_ADDR) {
   1317 #ifdef DIAGNOSTIC
   1318 		if (m->m_type != MT_SONAME)
   1319 			panic("receive 1a");
   1320 #endif
   1321 		orig_resid = 0;
   1322 		if (flags & MSG_PEEK) {
   1323 			if (paddr)
   1324 				*paddr = m_copy(m, 0, m->m_len);
   1325 			m = m->m_next;
   1326 		} else {
   1327 			sbfree(&so->so_rcv, m);
   1328 			mbuf_removed = 1;
   1329 			if (paddr != NULL) {
   1330 				*paddr = m;
   1331 				so->so_rcv.sb_mb = m->m_next;
   1332 				m->m_next = NULL;
   1333 				m = so->so_rcv.sb_mb;
   1334 			} else {
   1335 				MFREE(m, so->so_rcv.sb_mb);
   1336 				m = so->so_rcv.sb_mb;
   1337 			}
   1338 			sbsync(&so->so_rcv, nextrecord);
   1339 		}
   1340 	}
   1341 
   1342 	/*
   1343 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1344 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1345 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1346 	 * perform externalization (or freeing if controlp == NULL).
   1347 	 */
   1348 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1349 		struct mbuf *cm = NULL, *cmn;
   1350 		struct mbuf **cme = &cm;
   1351 
   1352 		do {
   1353 			if (flags & MSG_PEEK) {
   1354 				if (controlp != NULL) {
   1355 					*controlp = m_copy(m, 0, m->m_len);
   1356 					controlp = &(*controlp)->m_next;
   1357 				}
   1358 				m = m->m_next;
   1359 			} else {
   1360 				sbfree(&so->so_rcv, m);
   1361 				so->so_rcv.sb_mb = m->m_next;
   1362 				m->m_next = NULL;
   1363 				*cme = m;
   1364 				cme = &(*cme)->m_next;
   1365 				m = so->so_rcv.sb_mb;
   1366 			}
   1367 		} while (m != NULL && m->m_type == MT_CONTROL);
   1368 		if ((flags & MSG_PEEK) == 0)
   1369 			sbsync(&so->so_rcv, nextrecord);
   1370 		for (; cm != NULL; cm = cmn) {
   1371 			cmn = cm->m_next;
   1372 			cm->m_next = NULL;
   1373 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1374 			if (controlp != NULL) {
   1375 				if (dom->dom_externalize != NULL &&
   1376 				    type == SCM_RIGHTS) {
   1377 					sounlock(so);
   1378 					splx(s);
   1379 					error = (*dom->dom_externalize)(cm, l);
   1380 					s = splsoftnet();
   1381 					solock(so);
   1382 				}
   1383 				*controlp = cm;
   1384 				while (*controlp != NULL)
   1385 					controlp = &(*controlp)->m_next;
   1386 			} else {
   1387 				/*
   1388 				 * Dispose of any SCM_RIGHTS message that went
   1389 				 * through the read path rather than recv.
   1390 				 */
   1391 				if (dom->dom_dispose != NULL &&
   1392 				    type == SCM_RIGHTS) {
   1393 				    	sounlock(so);
   1394 					(*dom->dom_dispose)(cm);
   1395 					solock(so);
   1396 				}
   1397 				m_freem(cm);
   1398 			}
   1399 		}
   1400 		if (m != NULL)
   1401 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1402 		else
   1403 			nextrecord = so->so_rcv.sb_mb;
   1404 		orig_resid = 0;
   1405 	}
   1406 
   1407 	/* If m is non-NULL, we have some data to read. */
   1408 	if (__predict_true(m != NULL)) {
   1409 		type = m->m_type;
   1410 		if (type == MT_OOBDATA)
   1411 			flags |= MSG_OOB;
   1412 	}
   1413 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1414 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1415 
   1416 	moff = 0;
   1417 	offset = 0;
   1418 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1419 		if (m->m_type == MT_OOBDATA) {
   1420 			if (type != MT_OOBDATA)
   1421 				break;
   1422 		} else if (type == MT_OOBDATA)
   1423 			break;
   1424 #ifdef DIAGNOSTIC
   1425 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1426 			panic("receive 3");
   1427 #endif
   1428 		so->so_state &= ~SS_RCVATMARK;
   1429 		wakeup_state = 0;
   1430 		len = uio->uio_resid;
   1431 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1432 			len = so->so_oobmark - offset;
   1433 		if (len > m->m_len - moff)
   1434 			len = m->m_len - moff;
   1435 		/*
   1436 		 * If mp is set, just pass back the mbufs.
   1437 		 * Otherwise copy them out via the uio, then free.
   1438 		 * Sockbuf must be consistent here (points to current mbuf,
   1439 		 * it points to next record) when we drop priority;
   1440 		 * we must note any additions to the sockbuf when we
   1441 		 * block interrupts again.
   1442 		 */
   1443 		if (mp == NULL) {
   1444 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1445 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1446 			sounlock(so);
   1447 			splx(s);
   1448 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
   1449 			s = splsoftnet();
   1450 			solock(so);
   1451 			if (error != 0) {
   1452 				/*
   1453 				 * If any part of the record has been removed
   1454 				 * (such as the MT_SONAME mbuf, which will
   1455 				 * happen when PR_ADDR, and thus also
   1456 				 * PR_ATOMIC, is set), then drop the entire
   1457 				 * record to maintain the atomicity of the
   1458 				 * receive operation.
   1459 				 *
   1460 				 * This avoids a later panic("receive 1a")
   1461 				 * when compiled with DIAGNOSTIC.
   1462 				 */
   1463 				if (m && mbuf_removed && atomic)
   1464 					(void) sbdroprecord(&so->so_rcv);
   1465 
   1466 				goto release;
   1467 			}
   1468 		} else
   1469 			uio->uio_resid -= len;
   1470 		if (len == m->m_len - moff) {
   1471 			if (m->m_flags & M_EOR)
   1472 				flags |= MSG_EOR;
   1473 			if (flags & MSG_PEEK) {
   1474 				m = m->m_next;
   1475 				moff = 0;
   1476 			} else {
   1477 				nextrecord = m->m_nextpkt;
   1478 				sbfree(&so->so_rcv, m);
   1479 				if (mp) {
   1480 					*mp = m;
   1481 					mp = &m->m_next;
   1482 					so->so_rcv.sb_mb = m = m->m_next;
   1483 					*mp = NULL;
   1484 				} else {
   1485 					MFREE(m, so->so_rcv.sb_mb);
   1486 					m = so->so_rcv.sb_mb;
   1487 				}
   1488 				/*
   1489 				 * If m != NULL, we also know that
   1490 				 * so->so_rcv.sb_mb != NULL.
   1491 				 */
   1492 				KASSERT(so->so_rcv.sb_mb == m);
   1493 				if (m) {
   1494 					m->m_nextpkt = nextrecord;
   1495 					if (nextrecord == NULL)
   1496 						so->so_rcv.sb_lastrecord = m;
   1497 				} else {
   1498 					so->so_rcv.sb_mb = nextrecord;
   1499 					SB_EMPTY_FIXUP(&so->so_rcv);
   1500 				}
   1501 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1502 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1503 			}
   1504 		} else if (flags & MSG_PEEK)
   1505 			moff += len;
   1506 		else {
   1507 			if (mp != NULL) {
   1508 				mt = m_copym(m, 0, len, M_NOWAIT);
   1509 				if (__predict_false(mt == NULL)) {
   1510 					sounlock(so);
   1511 					mt = m_copym(m, 0, len, M_WAIT);
   1512 					solock(so);
   1513 				}
   1514 				*mp = mt;
   1515 			}
   1516 			m->m_data += len;
   1517 			m->m_len -= len;
   1518 			so->so_rcv.sb_cc -= len;
   1519 		}
   1520 		if (so->so_oobmark) {
   1521 			if ((flags & MSG_PEEK) == 0) {
   1522 				so->so_oobmark -= len;
   1523 				if (so->so_oobmark == 0) {
   1524 					so->so_state |= SS_RCVATMARK;
   1525 					break;
   1526 				}
   1527 			} else {
   1528 				offset += len;
   1529 				if (offset == so->so_oobmark)
   1530 					break;
   1531 			}
   1532 		}
   1533 		if (flags & MSG_EOR)
   1534 			break;
   1535 		/*
   1536 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1537 		 * we must not quit until "uio->uio_resid == 0" or an error
   1538 		 * termination.  If a signal/timeout occurs, return
   1539 		 * with a short count but without error.
   1540 		 * Keep sockbuf locked against other readers.
   1541 		 */
   1542 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1543 		    !sosendallatonce(so) && !nextrecord) {
   1544 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1545 				break;
   1546 			/*
   1547 			 * If we are peeking and the socket receive buffer is
   1548 			 * full, stop since we can't get more data to peek at.
   1549 			 */
   1550 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1551 				break;
   1552 			/*
   1553 			 * If we've drained the socket buffer, tell the
   1554 			 * protocol in case it needs to do something to
   1555 			 * get it filled again.
   1556 			 */
   1557 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1558 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1559 				    NULL, (struct mbuf *)(long)flags, NULL, l);
   1560 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1561 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1562 			if (wakeup_state & SS_RESTARTSYS)
   1563 				error = ERESTART;
   1564 			else
   1565 				error = sbwait(&so->so_rcv);
   1566 			if (error != 0) {
   1567 				sbunlock(&so->so_rcv);
   1568 				sounlock(so);
   1569 				splx(s);
   1570 				return 0;
   1571 			}
   1572 			if ((m = so->so_rcv.sb_mb) != NULL)
   1573 				nextrecord = m->m_nextpkt;
   1574 			wakeup_state = so->so_state;
   1575 		}
   1576 	}
   1577 
   1578 	if (m && atomic) {
   1579 		flags |= MSG_TRUNC;
   1580 		if ((flags & MSG_PEEK) == 0)
   1581 			(void) sbdroprecord(&so->so_rcv);
   1582 	}
   1583 	if ((flags & MSG_PEEK) == 0) {
   1584 		if (m == NULL) {
   1585 			/*
   1586 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1587 			 * part makes sure sb_lastrecord is up-to-date if
   1588 			 * there is still data in the socket buffer.
   1589 			 */
   1590 			so->so_rcv.sb_mb = nextrecord;
   1591 			if (so->so_rcv.sb_mb == NULL) {
   1592 				so->so_rcv.sb_mbtail = NULL;
   1593 				so->so_rcv.sb_lastrecord = NULL;
   1594 			} else if (nextrecord->m_nextpkt == NULL)
   1595 				so->so_rcv.sb_lastrecord = nextrecord;
   1596 		}
   1597 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1598 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1599 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1600 			(*pr->pr_usrreq)(so, PRU_RCVD, NULL,
   1601 			    (struct mbuf *)(long)flags, NULL, l);
   1602 	}
   1603 	if (orig_resid == uio->uio_resid && orig_resid &&
   1604 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1605 		sbunlock(&so->so_rcv);
   1606 		goto restart;
   1607 	}
   1608 
   1609 	if (flagsp != NULL)
   1610 		*flagsp |= flags;
   1611  release:
   1612 	sbunlock(&so->so_rcv);
   1613 	sounlock(so);
   1614 	splx(s);
   1615 	return error;
   1616 }
   1617 
   1618 int
   1619 soshutdown(struct socket *so, int how)
   1620 {
   1621 	const struct protosw	*pr;
   1622 	int	error;
   1623 
   1624 	KASSERT(solocked(so));
   1625 
   1626 	pr = so->so_proto;
   1627 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1628 		return (EINVAL);
   1629 
   1630 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1631 		sorflush(so);
   1632 		error = 0;
   1633 	}
   1634 	if (how == SHUT_WR || how == SHUT_RDWR)
   1635 		error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
   1636 		    NULL, NULL, NULL);
   1637 
   1638 	return error;
   1639 }
   1640 
   1641 void
   1642 sorestart(struct socket *so)
   1643 {
   1644 	/*
   1645 	 * An application has called close() on an fd on which another
   1646 	 * of its threads has called a socket system call.
   1647 	 * Mark this and wake everyone up, and code that would block again
   1648 	 * instead returns ERESTART.
   1649 	 * On system call re-entry the fd is validated and EBADF returned.
   1650 	 * Any other fd will block again on the 2nd syscall.
   1651 	 */
   1652 	solock(so);
   1653 	so->so_state |= SS_RESTARTSYS;
   1654 	cv_broadcast(&so->so_cv);
   1655 	cv_broadcast(&so->so_snd.sb_cv);
   1656 	cv_broadcast(&so->so_rcv.sb_cv);
   1657 	sounlock(so);
   1658 }
   1659 
   1660 void
   1661 sorflush(struct socket *so)
   1662 {
   1663 	struct sockbuf	*sb, asb;
   1664 	const struct protosw	*pr;
   1665 
   1666 	KASSERT(solocked(so));
   1667 
   1668 	sb = &so->so_rcv;
   1669 	pr = so->so_proto;
   1670 	socantrcvmore(so);
   1671 	sb->sb_flags |= SB_NOINTR;
   1672 	(void )sblock(sb, M_WAITOK);
   1673 	sbunlock(sb);
   1674 	asb = *sb;
   1675 	/*
   1676 	 * Clear most of the sockbuf structure, but leave some of the
   1677 	 * fields valid.
   1678 	 */
   1679 	memset(&sb->sb_startzero, 0,
   1680 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1681 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1682 		sounlock(so);
   1683 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1684 		solock(so);
   1685 	}
   1686 	sbrelease(&asb, so);
   1687 }
   1688 
   1689 /*
   1690  * internal set SOL_SOCKET options
   1691  */
   1692 static int
   1693 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1694 {
   1695 	int error = EINVAL, optval, opt;
   1696 	struct linger l;
   1697 	struct timeval tv;
   1698 
   1699 	switch ((opt = sopt->sopt_name)) {
   1700 
   1701 	case SO_ACCEPTFILTER:
   1702 		error = accept_filt_setopt(so, sopt);
   1703 		KASSERT(solocked(so));
   1704 		break;
   1705 
   1706   	case SO_LINGER:
   1707  		error = sockopt_get(sopt, &l, sizeof(l));
   1708 		solock(so);
   1709  		if (error)
   1710  			break;
   1711  		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1712  		    l.l_linger > (INT_MAX / hz)) {
   1713 			error = EDOM;
   1714 			break;
   1715 		}
   1716  		so->so_linger = l.l_linger;
   1717  		if (l.l_onoff)
   1718  			so->so_options |= SO_LINGER;
   1719  		else
   1720  			so->so_options &= ~SO_LINGER;
   1721    		break;
   1722 
   1723 	case SO_DEBUG:
   1724 	case SO_KEEPALIVE:
   1725 	case SO_DONTROUTE:
   1726 	case SO_USELOOPBACK:
   1727 	case SO_BROADCAST:
   1728 	case SO_REUSEADDR:
   1729 	case SO_REUSEPORT:
   1730 	case SO_OOBINLINE:
   1731 	case SO_TIMESTAMP:
   1732 #ifdef SO_OTIMESTAMP
   1733 	case SO_OTIMESTAMP:
   1734 #endif
   1735 		error = sockopt_getint(sopt, &optval);
   1736 		solock(so);
   1737 		if (error)
   1738 			break;
   1739 		if (optval)
   1740 			so->so_options |= opt;
   1741 		else
   1742 			so->so_options &= ~opt;
   1743 		break;
   1744 
   1745 	case SO_SNDBUF:
   1746 	case SO_RCVBUF:
   1747 	case SO_SNDLOWAT:
   1748 	case SO_RCVLOWAT:
   1749 		error = sockopt_getint(sopt, &optval);
   1750 		solock(so);
   1751 		if (error)
   1752 			break;
   1753 
   1754 		/*
   1755 		 * Values < 1 make no sense for any of these
   1756 		 * options, so disallow them.
   1757 		 */
   1758 		if (optval < 1) {
   1759 			error = EINVAL;
   1760 			break;
   1761 		}
   1762 
   1763 		switch (opt) {
   1764 		case SO_SNDBUF:
   1765 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
   1766 				error = ENOBUFS;
   1767 				break;
   1768 			}
   1769 			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1770 			break;
   1771 
   1772 		case SO_RCVBUF:
   1773 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
   1774 				error = ENOBUFS;
   1775 				break;
   1776 			}
   1777 			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1778 			break;
   1779 
   1780 		/*
   1781 		 * Make sure the low-water is never greater than
   1782 		 * the high-water.
   1783 		 */
   1784 		case SO_SNDLOWAT:
   1785 			if (optval > so->so_snd.sb_hiwat)
   1786 				optval = so->so_snd.sb_hiwat;
   1787 
   1788 			so->so_snd.sb_lowat = optval;
   1789 			break;
   1790 
   1791 		case SO_RCVLOWAT:
   1792 			if (optval > so->so_rcv.sb_hiwat)
   1793 				optval = so->so_rcv.sb_hiwat;
   1794 
   1795 			so->so_rcv.sb_lowat = optval;
   1796 			break;
   1797 		}
   1798 		break;
   1799 
   1800 #ifdef COMPAT_50
   1801 	case SO_OSNDTIMEO:
   1802 	case SO_ORCVTIMEO: {
   1803 		struct timeval50 otv;
   1804 		error = sockopt_get(sopt, &otv, sizeof(otv));
   1805 		if (error) {
   1806 			solock(so);
   1807 			break;
   1808 		}
   1809 		timeval50_to_timeval(&otv, &tv);
   1810 		opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
   1811 		error = 0;
   1812 		/*FALLTHROUGH*/
   1813 	}
   1814 #endif /* COMPAT_50 */
   1815 
   1816 	case SO_SNDTIMEO:
   1817 	case SO_RCVTIMEO:
   1818 		if (error)
   1819 			error = sockopt_get(sopt, &tv, sizeof(tv));
   1820 		solock(so);
   1821 		if (error)
   1822 			break;
   1823 
   1824 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
   1825 			error = EDOM;
   1826 			break;
   1827 		}
   1828 
   1829 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1830 		if (optval == 0 && tv.tv_usec != 0)
   1831 			optval = 1;
   1832 
   1833 		switch (opt) {
   1834 		case SO_SNDTIMEO:
   1835 			so->so_snd.sb_timeo = optval;
   1836 			break;
   1837 		case SO_RCVTIMEO:
   1838 			so->so_rcv.sb_timeo = optval;
   1839 			break;
   1840 		}
   1841 		break;
   1842 
   1843 	default:
   1844 		solock(so);
   1845 		error = ENOPROTOOPT;
   1846 		break;
   1847 	}
   1848 	KASSERT(solocked(so));
   1849 	return error;
   1850 }
   1851 
   1852 int
   1853 sosetopt(struct socket *so, struct sockopt *sopt)
   1854 {
   1855 	int error, prerr;
   1856 
   1857 	if (sopt->sopt_level == SOL_SOCKET) {
   1858 		error = sosetopt1(so, sopt);
   1859 		KASSERT(solocked(so));
   1860 	} else {
   1861 		error = ENOPROTOOPT;
   1862 		solock(so);
   1863 	}
   1864 
   1865 	if ((error == 0 || error == ENOPROTOOPT) &&
   1866 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1867 		/* give the protocol stack a shot */
   1868 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1869 		if (prerr == 0)
   1870 			error = 0;
   1871 		else if (prerr != ENOPROTOOPT)
   1872 			error = prerr;
   1873 	}
   1874 	sounlock(so);
   1875 	return error;
   1876 }
   1877 
   1878 /*
   1879  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1880  */
   1881 int
   1882 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1883     const void *val, size_t valsize)
   1884 {
   1885 	struct sockopt sopt;
   1886 	int error;
   1887 
   1888 	KASSERT(valsize == 0 || val != NULL);
   1889 
   1890 	sockopt_init(&sopt, level, name, valsize);
   1891 	sockopt_set(&sopt, val, valsize);
   1892 
   1893 	error = sosetopt(so, &sopt);
   1894 
   1895 	sockopt_destroy(&sopt);
   1896 
   1897 	return error;
   1898 }
   1899 
   1900 /*
   1901  * internal get SOL_SOCKET options
   1902  */
   1903 static int
   1904 sogetopt1(struct socket *so, struct sockopt *sopt)
   1905 {
   1906 	int error, optval, opt;
   1907 	struct linger l;
   1908 	struct timeval tv;
   1909 
   1910 	switch ((opt = sopt->sopt_name)) {
   1911 
   1912 	case SO_ACCEPTFILTER:
   1913 		error = accept_filt_getopt(so, sopt);
   1914 		break;
   1915 
   1916 	case SO_LINGER:
   1917 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1918 		l.l_linger = so->so_linger;
   1919 
   1920 		error = sockopt_set(sopt, &l, sizeof(l));
   1921 		break;
   1922 
   1923 	case SO_USELOOPBACK:
   1924 	case SO_DONTROUTE:
   1925 	case SO_DEBUG:
   1926 	case SO_KEEPALIVE:
   1927 	case SO_REUSEADDR:
   1928 	case SO_REUSEPORT:
   1929 	case SO_BROADCAST:
   1930 	case SO_OOBINLINE:
   1931 	case SO_TIMESTAMP:
   1932 #ifdef SO_OTIMESTAMP
   1933 	case SO_OTIMESTAMP:
   1934 #endif
   1935 		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
   1936 		break;
   1937 
   1938 	case SO_TYPE:
   1939 		error = sockopt_setint(sopt, so->so_type);
   1940 		break;
   1941 
   1942 	case SO_ERROR:
   1943 		error = sockopt_setint(sopt, so->so_error);
   1944 		so->so_error = 0;
   1945 		break;
   1946 
   1947 	case SO_SNDBUF:
   1948 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1949 		break;
   1950 
   1951 	case SO_RCVBUF:
   1952 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1953 		break;
   1954 
   1955 	case SO_SNDLOWAT:
   1956 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1957 		break;
   1958 
   1959 	case SO_RCVLOWAT:
   1960 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1961 		break;
   1962 
   1963 #ifdef COMPAT_50
   1964 	case SO_OSNDTIMEO:
   1965 	case SO_ORCVTIMEO: {
   1966 		struct timeval50 otv;
   1967 
   1968 		optval = (opt == SO_OSNDTIMEO ?
   1969 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1970 
   1971 		otv.tv_sec = optval / hz;
   1972 		otv.tv_usec = (optval % hz) * tick;
   1973 
   1974 		error = sockopt_set(sopt, &otv, sizeof(otv));
   1975 		break;
   1976 	}
   1977 #endif /* COMPAT_50 */
   1978 
   1979 	case SO_SNDTIMEO:
   1980 	case SO_RCVTIMEO:
   1981 		optval = (opt == SO_SNDTIMEO ?
   1982 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1983 
   1984 		tv.tv_sec = optval / hz;
   1985 		tv.tv_usec = (optval % hz) * tick;
   1986 
   1987 		error = sockopt_set(sopt, &tv, sizeof(tv));
   1988 		break;
   1989 
   1990 	case SO_OVERFLOWED:
   1991 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   1992 		break;
   1993 
   1994 	default:
   1995 		error = ENOPROTOOPT;
   1996 		break;
   1997 	}
   1998 
   1999 	return (error);
   2000 }
   2001 
   2002 int
   2003 sogetopt(struct socket *so, struct sockopt *sopt)
   2004 {
   2005 	int		error;
   2006 
   2007 	solock(so);
   2008 	if (sopt->sopt_level != SOL_SOCKET) {
   2009 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   2010 			error = ((*so->so_proto->pr_ctloutput)
   2011 			    (PRCO_GETOPT, so, sopt));
   2012 		} else
   2013 			error = (ENOPROTOOPT);
   2014 	} else {
   2015 		error = sogetopt1(so, sopt);
   2016 	}
   2017 	sounlock(so);
   2018 	return (error);
   2019 }
   2020 
   2021 /*
   2022  * alloc sockopt data buffer buffer
   2023  *	- will be released at destroy
   2024  */
   2025 static int
   2026 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
   2027 {
   2028 
   2029 	KASSERT(sopt->sopt_size == 0);
   2030 
   2031 	if (len > sizeof(sopt->sopt_buf)) {
   2032 		sopt->sopt_data = kmem_zalloc(len, kmflag);
   2033 		if (sopt->sopt_data == NULL)
   2034 			return ENOMEM;
   2035 	} else
   2036 		sopt->sopt_data = sopt->sopt_buf;
   2037 
   2038 	sopt->sopt_size = len;
   2039 	return 0;
   2040 }
   2041 
   2042 /*
   2043  * initialise sockopt storage
   2044  *	- MAY sleep during allocation
   2045  */
   2046 void
   2047 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   2048 {
   2049 
   2050 	memset(sopt, 0, sizeof(*sopt));
   2051 
   2052 	sopt->sopt_level = level;
   2053 	sopt->sopt_name = name;
   2054 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
   2055 }
   2056 
   2057 /*
   2058  * destroy sockopt storage
   2059  *	- will release any held memory references
   2060  */
   2061 void
   2062 sockopt_destroy(struct sockopt *sopt)
   2063 {
   2064 
   2065 	if (sopt->sopt_data != sopt->sopt_buf)
   2066 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   2067 
   2068 	memset(sopt, 0, sizeof(*sopt));
   2069 }
   2070 
   2071 /*
   2072  * set sockopt value
   2073  *	- value is copied into sockopt
   2074  * 	- memory is allocated when necessary, will not sleep
   2075  */
   2076 int
   2077 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   2078 {
   2079 	int error;
   2080 
   2081 	if (sopt->sopt_size == 0) {
   2082 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2083 		if (error)
   2084 			return error;
   2085 	}
   2086 
   2087 	KASSERT(sopt->sopt_size == len);
   2088 	memcpy(sopt->sopt_data, buf, len);
   2089 	return 0;
   2090 }
   2091 
   2092 /*
   2093  * common case of set sockopt integer value
   2094  */
   2095 int
   2096 sockopt_setint(struct sockopt *sopt, int val)
   2097 {
   2098 
   2099 	return sockopt_set(sopt, &val, sizeof(int));
   2100 }
   2101 
   2102 /*
   2103  * get sockopt value
   2104  *	- correct size must be given
   2105  */
   2106 int
   2107 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   2108 {
   2109 
   2110 	if (sopt->sopt_size != len)
   2111 		return EINVAL;
   2112 
   2113 	memcpy(buf, sopt->sopt_data, len);
   2114 	return 0;
   2115 }
   2116 
   2117 /*
   2118  * common case of get sockopt integer value
   2119  */
   2120 int
   2121 sockopt_getint(const struct sockopt *sopt, int *valp)
   2122 {
   2123 
   2124 	return sockopt_get(sopt, valp, sizeof(int));
   2125 }
   2126 
   2127 /*
   2128  * set sockopt value from mbuf
   2129  *	- ONLY for legacy code
   2130  *	- mbuf is released by sockopt
   2131  *	- will not sleep
   2132  */
   2133 int
   2134 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   2135 {
   2136 	size_t len;
   2137 	int error;
   2138 
   2139 	len = m_length(m);
   2140 
   2141 	if (sopt->sopt_size == 0) {
   2142 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2143 		if (error)
   2144 			return error;
   2145 	}
   2146 
   2147 	KASSERT(sopt->sopt_size == len);
   2148 	m_copydata(m, 0, len, sopt->sopt_data);
   2149 	m_freem(m);
   2150 
   2151 	return 0;
   2152 }
   2153 
   2154 /*
   2155  * get sockopt value into mbuf
   2156  *	- ONLY for legacy code
   2157  *	- mbuf to be released by the caller
   2158  *	- will not sleep
   2159  */
   2160 struct mbuf *
   2161 sockopt_getmbuf(const struct sockopt *sopt)
   2162 {
   2163 	struct mbuf *m;
   2164 
   2165 	if (sopt->sopt_size > MCLBYTES)
   2166 		return NULL;
   2167 
   2168 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   2169 	if (m == NULL)
   2170 		return NULL;
   2171 
   2172 	if (sopt->sopt_size > MLEN) {
   2173 		MCLGET(m, M_DONTWAIT);
   2174 		if ((m->m_flags & M_EXT) == 0) {
   2175 			m_free(m);
   2176 			return NULL;
   2177 		}
   2178 	}
   2179 
   2180 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
   2181 	m->m_len = sopt->sopt_size;
   2182 
   2183 	return m;
   2184 }
   2185 
   2186 void
   2187 sohasoutofband(struct socket *so)
   2188 {
   2189 
   2190 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2191 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
   2192 }
   2193 
   2194 static void
   2195 filt_sordetach(struct knote *kn)
   2196 {
   2197 	struct socket	*so;
   2198 
   2199 	so = ((file_t *)kn->kn_obj)->f_data;
   2200 	solock(so);
   2201 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   2202 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   2203 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2204 	sounlock(so);
   2205 }
   2206 
   2207 /*ARGSUSED*/
   2208 static int
   2209 filt_soread(struct knote *kn, long hint)
   2210 {
   2211 	struct socket	*so;
   2212 	int rv;
   2213 
   2214 	so = ((file_t *)kn->kn_obj)->f_data;
   2215 	if (hint != NOTE_SUBMIT)
   2216 		solock(so);
   2217 	kn->kn_data = so->so_rcv.sb_cc;
   2218 	if (so->so_state & SS_CANTRCVMORE) {
   2219 		kn->kn_flags |= EV_EOF;
   2220 		kn->kn_fflags = so->so_error;
   2221 		rv = 1;
   2222 	} else if (so->so_error)	/* temporary udp error */
   2223 		rv = 1;
   2224 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2225 		rv = (kn->kn_data >= kn->kn_sdata);
   2226 	else
   2227 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2228 	if (hint != NOTE_SUBMIT)
   2229 		sounlock(so);
   2230 	return rv;
   2231 }
   2232 
   2233 static void
   2234 filt_sowdetach(struct knote *kn)
   2235 {
   2236 	struct socket	*so;
   2237 
   2238 	so = ((file_t *)kn->kn_obj)->f_data;
   2239 	solock(so);
   2240 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   2241 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   2242 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2243 	sounlock(so);
   2244 }
   2245 
   2246 /*ARGSUSED*/
   2247 static int
   2248 filt_sowrite(struct knote *kn, long hint)
   2249 {
   2250 	struct socket	*so;
   2251 	int rv;
   2252 
   2253 	so = ((file_t *)kn->kn_obj)->f_data;
   2254 	if (hint != NOTE_SUBMIT)
   2255 		solock(so);
   2256 	kn->kn_data = sbspace(&so->so_snd);
   2257 	if (so->so_state & SS_CANTSENDMORE) {
   2258 		kn->kn_flags |= EV_EOF;
   2259 		kn->kn_fflags = so->so_error;
   2260 		rv = 1;
   2261 	} else if (so->so_error)	/* temporary udp error */
   2262 		rv = 1;
   2263 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2264 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2265 		rv = 0;
   2266 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2267 		rv = (kn->kn_data >= kn->kn_sdata);
   2268 	else
   2269 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2270 	if (hint != NOTE_SUBMIT)
   2271 		sounlock(so);
   2272 	return rv;
   2273 }
   2274 
   2275 /*ARGSUSED*/
   2276 static int
   2277 filt_solisten(struct knote *kn, long hint)
   2278 {
   2279 	struct socket	*so;
   2280 	int rv;
   2281 
   2282 	so = ((file_t *)kn->kn_obj)->f_data;
   2283 
   2284 	/*
   2285 	 * Set kn_data to number of incoming connections, not
   2286 	 * counting partial (incomplete) connections.
   2287 	 */
   2288 	if (hint != NOTE_SUBMIT)
   2289 		solock(so);
   2290 	kn->kn_data = so->so_qlen;
   2291 	rv = (kn->kn_data > 0);
   2292 	if (hint != NOTE_SUBMIT)
   2293 		sounlock(so);
   2294 	return rv;
   2295 }
   2296 
   2297 static const struct filterops solisten_filtops =
   2298 	{ 1, NULL, filt_sordetach, filt_solisten };
   2299 static const struct filterops soread_filtops =
   2300 	{ 1, NULL, filt_sordetach, filt_soread };
   2301 static const struct filterops sowrite_filtops =
   2302 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   2303 
   2304 int
   2305 soo_kqfilter(struct file *fp, struct knote *kn)
   2306 {
   2307 	struct socket	*so;
   2308 	struct sockbuf	*sb;
   2309 
   2310 	so = ((file_t *)kn->kn_obj)->f_data;
   2311 	solock(so);
   2312 	switch (kn->kn_filter) {
   2313 	case EVFILT_READ:
   2314 		if (so->so_options & SO_ACCEPTCONN)
   2315 			kn->kn_fop = &solisten_filtops;
   2316 		else
   2317 			kn->kn_fop = &soread_filtops;
   2318 		sb = &so->so_rcv;
   2319 		break;
   2320 	case EVFILT_WRITE:
   2321 		kn->kn_fop = &sowrite_filtops;
   2322 		sb = &so->so_snd;
   2323 		break;
   2324 	default:
   2325 		sounlock(so);
   2326 		return (EINVAL);
   2327 	}
   2328 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   2329 	sb->sb_flags |= SB_KNOTE;
   2330 	sounlock(so);
   2331 	return (0);
   2332 }
   2333 
   2334 static int
   2335 sodopoll(struct socket *so, int events)
   2336 {
   2337 	int revents;
   2338 
   2339 	revents = 0;
   2340 
   2341 	if (events & (POLLIN | POLLRDNORM))
   2342 		if (soreadable(so))
   2343 			revents |= events & (POLLIN | POLLRDNORM);
   2344 
   2345 	if (events & (POLLOUT | POLLWRNORM))
   2346 		if (sowritable(so))
   2347 			revents |= events & (POLLOUT | POLLWRNORM);
   2348 
   2349 	if (events & (POLLPRI | POLLRDBAND))
   2350 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   2351 			revents |= events & (POLLPRI | POLLRDBAND);
   2352 
   2353 	return revents;
   2354 }
   2355 
   2356 int
   2357 sopoll(struct socket *so, int events)
   2358 {
   2359 	int revents = 0;
   2360 
   2361 #ifndef DIAGNOSTIC
   2362 	/*
   2363 	 * Do a quick, unlocked check in expectation that the socket
   2364 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2365 	 * as the solocked() assertions will fail.
   2366 	 */
   2367 	if ((revents = sodopoll(so, events)) != 0)
   2368 		return revents;
   2369 #endif
   2370 
   2371 	solock(so);
   2372 	if ((revents = sodopoll(so, events)) == 0) {
   2373 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2374 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2375 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2376 		}
   2377 
   2378 		if (events & (POLLOUT | POLLWRNORM)) {
   2379 			selrecord(curlwp, &so->so_snd.sb_sel);
   2380 			so->so_snd.sb_flags |= SB_NOTIFY;
   2381 		}
   2382 	}
   2383 	sounlock(so);
   2384 
   2385 	return revents;
   2386 }
   2387 
   2388 
   2389 #include <sys/sysctl.h>
   2390 
   2391 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2392 
   2393 /*
   2394  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2395  * value is not too small.
   2396  * (XXX should we maybe make sure it's not too large as well?)
   2397  */
   2398 static int
   2399 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2400 {
   2401 	int error, new_somaxkva;
   2402 	struct sysctlnode node;
   2403 
   2404 	new_somaxkva = somaxkva;
   2405 	node = *rnode;
   2406 	node.sysctl_data = &new_somaxkva;
   2407 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2408 	if (error || newp == NULL)
   2409 		return (error);
   2410 
   2411 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2412 		return (EINVAL);
   2413 
   2414 	mutex_enter(&so_pendfree_lock);
   2415 	somaxkva = new_somaxkva;
   2416 	cv_broadcast(&socurkva_cv);
   2417 	mutex_exit(&so_pendfree_lock);
   2418 
   2419 	return (error);
   2420 }
   2421 
   2422 static void
   2423 sysctl_kern_somaxkva_setup(void)
   2424 {
   2425 
   2426 	KASSERT(socket_sysctllog == NULL);
   2427 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2428 		       CTLFLAG_PERMANENT,
   2429 		       CTLTYPE_NODE, "kern", NULL,
   2430 		       NULL, 0, NULL, 0,
   2431 		       CTL_KERN, CTL_EOL);
   2432 
   2433 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2434 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2435 		       CTLTYPE_INT, "somaxkva",
   2436 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2437 				    "used for socket buffers"),
   2438 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2439 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2440 }
   2441