uipc_socket.c revision 1.202 1 /* $NetBSD: uipc_socket.c,v 1.202 2011/01/17 07:13:32 uebayasi Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.202 2011/01/17 07:13:32 uebayasi Exp $");
67
68 #include "opt_compat_netbsd.h"
69 #include "opt_sock_counters.h"
70 #include "opt_sosend_loan.h"
71 #include "opt_mbuftrace.h"
72 #include "opt_somaxkva.h"
73 #include "opt_multiprocessor.h" /* XXX */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/file.h>
79 #include <sys/filedesc.h>
80 #include <sys/kmem.h>
81 #include <sys/mbuf.h>
82 #include <sys/domain.h>
83 #include <sys/kernel.h>
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/signalvar.h>
88 #include <sys/resourcevar.h>
89 #include <sys/uidinfo.h>
90 #include <sys/event.h>
91 #include <sys/poll.h>
92 #include <sys/kauth.h>
93 #include <sys/mutex.h>
94 #include <sys/condvar.h>
95
96 #ifdef COMPAT_50
97 #include <compat/sys/time.h>
98 #include <compat/sys/socket.h>
99 #endif
100
101 #include <uvm/uvm_extern.h>
102 #include <uvm/uvm_loan.h>
103 #include <uvm/uvm_page.h>
104
105 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
106 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
107
108 extern const struct fileops socketops;
109
110 extern int somaxconn; /* patchable (XXX sysctl) */
111 int somaxconn = SOMAXCONN;
112 kmutex_t *softnet_lock;
113
114 #ifdef SOSEND_COUNTERS
115 #include <sys/device.h>
116
117 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
118 NULL, "sosend", "loan big");
119 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
120 NULL, "sosend", "copy big");
121 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
122 NULL, "sosend", "copy small");
123 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
124 NULL, "sosend", "kva limit");
125
126 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
127
128 EVCNT_ATTACH_STATIC(sosend_loan_big);
129 EVCNT_ATTACH_STATIC(sosend_copy_big);
130 EVCNT_ATTACH_STATIC(sosend_copy_small);
131 EVCNT_ATTACH_STATIC(sosend_kvalimit);
132 #else
133
134 #define SOSEND_COUNTER_INCR(ev) /* nothing */
135
136 #endif /* SOSEND_COUNTERS */
137
138 static struct callback_entry sokva_reclaimerentry;
139
140 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
141 int sock_loan_thresh = -1;
142 #else
143 int sock_loan_thresh = 4096;
144 #endif
145
146 static kmutex_t so_pendfree_lock;
147 static struct mbuf *so_pendfree;
148
149 #ifndef SOMAXKVA
150 #define SOMAXKVA (16 * 1024 * 1024)
151 #endif
152 int somaxkva = SOMAXKVA;
153 static int socurkva;
154 static kcondvar_t socurkva_cv;
155
156 static kauth_listener_t socket_listener;
157
158 #define SOCK_LOAN_CHUNK 65536
159
160 static size_t sodopendfree(void);
161 static size_t sodopendfreel(void);
162
163 static void sysctl_kern_somaxkva_setup(void);
164 static struct sysctllog *socket_sysctllog;
165
166 static vsize_t
167 sokvareserve(struct socket *so, vsize_t len)
168 {
169 int error;
170
171 mutex_enter(&so_pendfree_lock);
172 while (socurkva + len > somaxkva) {
173 size_t freed;
174
175 /*
176 * try to do pendfree.
177 */
178
179 freed = sodopendfreel();
180
181 /*
182 * if some kva was freed, try again.
183 */
184
185 if (freed)
186 continue;
187
188 SOSEND_COUNTER_INCR(&sosend_kvalimit);
189 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
190 if (error) {
191 len = 0;
192 break;
193 }
194 }
195 socurkva += len;
196 mutex_exit(&so_pendfree_lock);
197 return len;
198 }
199
200 static void
201 sokvaunreserve(vsize_t len)
202 {
203
204 mutex_enter(&so_pendfree_lock);
205 socurkva -= len;
206 cv_broadcast(&socurkva_cv);
207 mutex_exit(&so_pendfree_lock);
208 }
209
210 /*
211 * sokvaalloc: allocate kva for loan.
212 */
213
214 vaddr_t
215 sokvaalloc(vsize_t len, struct socket *so)
216 {
217 vaddr_t lva;
218
219 /*
220 * reserve kva.
221 */
222
223 if (sokvareserve(so, len) == 0)
224 return 0;
225
226 /*
227 * allocate kva.
228 */
229
230 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
231 if (lva == 0) {
232 sokvaunreserve(len);
233 return (0);
234 }
235
236 return lva;
237 }
238
239 /*
240 * sokvafree: free kva for loan.
241 */
242
243 void
244 sokvafree(vaddr_t sva, vsize_t len)
245 {
246
247 /*
248 * free kva.
249 */
250
251 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
252
253 /*
254 * unreserve kva.
255 */
256
257 sokvaunreserve(len);
258 }
259
260 static void
261 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
262 {
263 vaddr_t sva, eva;
264 vsize_t len;
265 int npgs;
266
267 KASSERT(pgs != NULL);
268
269 eva = round_page((vaddr_t) buf + size);
270 sva = trunc_page((vaddr_t) buf);
271 len = eva - sva;
272 npgs = len >> PAGE_SHIFT;
273
274 pmap_kremove(sva, len);
275 pmap_update(pmap_kernel());
276 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
277 sokvafree(sva, len);
278 }
279
280 static size_t
281 sodopendfree(void)
282 {
283 size_t rv;
284
285 if (__predict_true(so_pendfree == NULL))
286 return 0;
287
288 mutex_enter(&so_pendfree_lock);
289 rv = sodopendfreel();
290 mutex_exit(&so_pendfree_lock);
291
292 return rv;
293 }
294
295 /*
296 * sodopendfreel: free mbufs on "pendfree" list.
297 * unlock and relock so_pendfree_lock when freeing mbufs.
298 *
299 * => called with so_pendfree_lock held.
300 */
301
302 static size_t
303 sodopendfreel(void)
304 {
305 struct mbuf *m, *next;
306 size_t rv = 0;
307
308 KASSERT(mutex_owned(&so_pendfree_lock));
309
310 while (so_pendfree != NULL) {
311 m = so_pendfree;
312 so_pendfree = NULL;
313 mutex_exit(&so_pendfree_lock);
314
315 for (; m != NULL; m = next) {
316 next = m->m_next;
317 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
318 KASSERT(m->m_ext.ext_refcnt == 0);
319
320 rv += m->m_ext.ext_size;
321 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
322 m->m_ext.ext_size);
323 pool_cache_put(mb_cache, m);
324 }
325
326 mutex_enter(&so_pendfree_lock);
327 }
328
329 return (rv);
330 }
331
332 void
333 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
334 {
335
336 KASSERT(m != NULL);
337
338 /*
339 * postpone freeing mbuf.
340 *
341 * we can't do it in interrupt context
342 * because we need to put kva back to kernel_map.
343 */
344
345 mutex_enter(&so_pendfree_lock);
346 m->m_next = so_pendfree;
347 so_pendfree = m;
348 cv_broadcast(&socurkva_cv);
349 mutex_exit(&so_pendfree_lock);
350 }
351
352 static long
353 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
354 {
355 struct iovec *iov = uio->uio_iov;
356 vaddr_t sva, eva;
357 vsize_t len;
358 vaddr_t lva;
359 int npgs, error;
360 vaddr_t va;
361 int i;
362
363 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
364 return (0);
365
366 if (iov->iov_len < (size_t) space)
367 space = iov->iov_len;
368 if (space > SOCK_LOAN_CHUNK)
369 space = SOCK_LOAN_CHUNK;
370
371 eva = round_page((vaddr_t) iov->iov_base + space);
372 sva = trunc_page((vaddr_t) iov->iov_base);
373 len = eva - sva;
374 npgs = len >> PAGE_SHIFT;
375
376 KASSERT(npgs <= M_EXT_MAXPAGES);
377
378 lva = sokvaalloc(len, so);
379 if (lva == 0)
380 return 0;
381
382 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
383 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
384 if (error) {
385 sokvafree(lva, len);
386 return (0);
387 }
388
389 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
390 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
391 VM_PROT_READ, 0);
392 pmap_update(pmap_kernel());
393
394 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
395
396 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
397 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
398
399 uio->uio_resid -= space;
400 /* uio_offset not updated, not set/used for write(2) */
401 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
402 uio->uio_iov->iov_len -= space;
403 if (uio->uio_iov->iov_len == 0) {
404 uio->uio_iov++;
405 uio->uio_iovcnt--;
406 }
407
408 return (space);
409 }
410
411 static int
412 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
413 {
414
415 KASSERT(ce == &sokva_reclaimerentry);
416 KASSERT(obj == NULL);
417
418 sodopendfree();
419 if (!vm_map_starved_p(kernel_map)) {
420 return CALLBACK_CHAIN_ABORT;
421 }
422 return CALLBACK_CHAIN_CONTINUE;
423 }
424
425 struct mbuf *
426 getsombuf(struct socket *so, int type)
427 {
428 struct mbuf *m;
429
430 m = m_get(M_WAIT, type);
431 MCLAIM(m, so->so_mowner);
432 return m;
433 }
434
435 static int
436 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
437 void *arg0, void *arg1, void *arg2, void *arg3)
438 {
439 int result;
440 enum kauth_network_req req;
441
442 result = KAUTH_RESULT_DEFER;
443 req = (enum kauth_network_req)arg0;
444
445 if ((action != KAUTH_NETWORK_SOCKET) &&
446 (action != KAUTH_NETWORK_BIND))
447 return result;
448
449 switch (req) {
450 case KAUTH_REQ_NETWORK_BIND_PORT:
451 result = KAUTH_RESULT_ALLOW;
452 break;
453
454 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
455 /* Normal users can only drop their own connections. */
456 struct socket *so = (struct socket *)arg1;
457
458 if (proc_uidmatch(cred, so->so_cred))
459 result = KAUTH_RESULT_ALLOW;
460
461 break;
462 }
463
464 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
465 /* We allow "raw" routing/bluetooth sockets to anyone. */
466 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_BLUETOOTH)
467 result = KAUTH_RESULT_ALLOW;
468 else {
469 /* Privileged, let secmodel handle this. */
470 if ((u_long)arg2 == SOCK_RAW)
471 break;
472 }
473
474 result = KAUTH_RESULT_ALLOW;
475
476 break;
477
478 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
479 result = KAUTH_RESULT_ALLOW;
480
481 break;
482
483 default:
484 break;
485 }
486
487 return result;
488 }
489
490 void
491 soinit(void)
492 {
493
494 sysctl_kern_somaxkva_setup();
495
496 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
497 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
498 cv_init(&socurkva_cv, "sokva");
499 soinit2();
500
501 /* Set the initial adjusted socket buffer size. */
502 if (sb_max_set(sb_max))
503 panic("bad initial sb_max value: %lu", sb_max);
504
505 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
506 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
507
508 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
509 socket_listener_cb, NULL);
510 }
511
512 /*
513 * Socket operation routines.
514 * These routines are called by the routines in
515 * sys_socket.c or from a system process, and
516 * implement the semantics of socket operations by
517 * switching out to the protocol specific routines.
518 */
519 /*ARGSUSED*/
520 int
521 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
522 struct socket *lockso)
523 {
524 const struct protosw *prp;
525 struct socket *so;
526 uid_t uid;
527 int error;
528 kmutex_t *lock;
529
530 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
531 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
532 KAUTH_ARG(proto));
533 if (error != 0)
534 return error;
535
536 if (proto)
537 prp = pffindproto(dom, proto, type);
538 else
539 prp = pffindtype(dom, type);
540 if (prp == NULL) {
541 /* no support for domain */
542 if (pffinddomain(dom) == 0)
543 return EAFNOSUPPORT;
544 /* no support for socket type */
545 if (proto == 0 && type != 0)
546 return EPROTOTYPE;
547 return EPROTONOSUPPORT;
548 }
549 if (prp->pr_usrreq == NULL)
550 return EPROTONOSUPPORT;
551 if (prp->pr_type != type)
552 return EPROTOTYPE;
553
554 so = soget(true);
555 so->so_type = type;
556 so->so_proto = prp;
557 so->so_send = sosend;
558 so->so_receive = soreceive;
559 #ifdef MBUFTRACE
560 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
561 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
562 so->so_mowner = &prp->pr_domain->dom_mowner;
563 #endif
564 uid = kauth_cred_geteuid(l->l_cred);
565 so->so_uidinfo = uid_find(uid);
566 so->so_cpid = l->l_proc->p_pid;
567 if (lockso != NULL) {
568 /* Caller wants us to share a lock. */
569 lock = lockso->so_lock;
570 so->so_lock = lock;
571 mutex_obj_hold(lock);
572 mutex_enter(lock);
573 } else {
574 /* Lock assigned and taken during PRU_ATTACH. */
575 }
576 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
577 (struct mbuf *)(long)proto, NULL, l);
578 KASSERT(solocked(so));
579 if (error != 0) {
580 so->so_state |= SS_NOFDREF;
581 sofree(so);
582 return error;
583 }
584 so->so_cred = kauth_cred_dup(l->l_cred);
585 sounlock(so);
586 *aso = so;
587 return 0;
588 }
589
590 /* On success, write file descriptor to fdout and return zero. On
591 * failure, return non-zero; *fdout will be undefined.
592 */
593 int
594 fsocreate(int domain, struct socket **sop, int type, int protocol,
595 struct lwp *l, int *fdout)
596 {
597 struct socket *so;
598 struct file *fp;
599 int fd, error;
600
601 if ((error = fd_allocfile(&fp, &fd)) != 0)
602 return (error);
603 fp->f_flag = FREAD|FWRITE;
604 fp->f_type = DTYPE_SOCKET;
605 fp->f_ops = &socketops;
606 error = socreate(domain, &so, type, protocol, l, NULL);
607 if (error != 0) {
608 fd_abort(curproc, fp, fd);
609 } else {
610 if (sop != NULL)
611 *sop = so;
612 fp->f_data = so;
613 fd_affix(curproc, fp, fd);
614 *fdout = fd;
615 }
616 return error;
617 }
618
619 int
620 sofamily(const struct socket *so)
621 {
622 const struct protosw *pr;
623 const struct domain *dom;
624
625 if ((pr = so->so_proto) == NULL)
626 return AF_UNSPEC;
627 if ((dom = pr->pr_domain) == NULL)
628 return AF_UNSPEC;
629 return dom->dom_family;
630 }
631
632 int
633 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
634 {
635 int error;
636
637 solock(so);
638 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
639 sounlock(so);
640 return error;
641 }
642
643 int
644 solisten(struct socket *so, int backlog, struct lwp *l)
645 {
646 int error;
647
648 solock(so);
649 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
650 SS_ISDISCONNECTING)) != 0) {
651 sounlock(so);
652 return (EOPNOTSUPP);
653 }
654 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
655 NULL, NULL, l);
656 if (error != 0) {
657 sounlock(so);
658 return error;
659 }
660 if (TAILQ_EMPTY(&so->so_q))
661 so->so_options |= SO_ACCEPTCONN;
662 if (backlog < 0)
663 backlog = 0;
664 so->so_qlimit = min(backlog, somaxconn);
665 sounlock(so);
666 return 0;
667 }
668
669 void
670 sofree(struct socket *so)
671 {
672 u_int refs;
673
674 KASSERT(solocked(so));
675
676 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
677 sounlock(so);
678 return;
679 }
680 if (so->so_head) {
681 /*
682 * We must not decommission a socket that's on the accept(2)
683 * queue. If we do, then accept(2) may hang after select(2)
684 * indicated that the listening socket was ready.
685 */
686 if (!soqremque(so, 0)) {
687 sounlock(so);
688 return;
689 }
690 }
691 if (so->so_rcv.sb_hiwat)
692 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
693 RLIM_INFINITY);
694 if (so->so_snd.sb_hiwat)
695 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
696 RLIM_INFINITY);
697 sbrelease(&so->so_snd, so);
698 KASSERT(!cv_has_waiters(&so->so_cv));
699 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
700 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
701 sorflush(so);
702 refs = so->so_aborting; /* XXX */
703 /* Remove acccept filter if one is present. */
704 if (so->so_accf != NULL)
705 (void)accept_filt_clear(so);
706 sounlock(so);
707 if (refs == 0) /* XXX */
708 soput(so);
709 }
710
711 /*
712 * Close a socket on last file table reference removal.
713 * Initiate disconnect if connected.
714 * Free socket when disconnect complete.
715 */
716 int
717 soclose(struct socket *so)
718 {
719 struct socket *so2;
720 int error;
721 int error2;
722
723 error = 0;
724 solock(so);
725 if (so->so_options & SO_ACCEPTCONN) {
726 for (;;) {
727 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
728 KASSERT(solocked2(so, so2));
729 (void) soqremque(so2, 0);
730 /* soabort drops the lock. */
731 (void) soabort(so2);
732 solock(so);
733 continue;
734 }
735 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
736 KASSERT(solocked2(so, so2));
737 (void) soqremque(so2, 1);
738 /* soabort drops the lock. */
739 (void) soabort(so2);
740 solock(so);
741 continue;
742 }
743 break;
744 }
745 }
746 if (so->so_pcb == 0)
747 goto discard;
748 if (so->so_state & SS_ISCONNECTED) {
749 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
750 error = sodisconnect(so);
751 if (error)
752 goto drop;
753 }
754 if (so->so_options & SO_LINGER) {
755 if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
756 goto drop;
757 while (so->so_state & SS_ISCONNECTED) {
758 error = sowait(so, true, so->so_linger * hz);
759 if (error)
760 break;
761 }
762 }
763 }
764 drop:
765 if (so->so_pcb) {
766 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
767 NULL, NULL, NULL, NULL);
768 if (error == 0)
769 error = error2;
770 }
771 discard:
772 if (so->so_state & SS_NOFDREF)
773 panic("soclose: NOFDREF");
774 kauth_cred_free(so->so_cred);
775 so->so_state |= SS_NOFDREF;
776 sofree(so);
777 return (error);
778 }
779
780 /*
781 * Must be called with the socket locked.. Will return with it unlocked.
782 */
783 int
784 soabort(struct socket *so)
785 {
786 u_int refs;
787 int error;
788
789 KASSERT(solocked(so));
790 KASSERT(so->so_head == NULL);
791
792 so->so_aborting++; /* XXX */
793 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
794 NULL, NULL, NULL);
795 refs = --so->so_aborting; /* XXX */
796 if (error || (refs == 0)) {
797 sofree(so);
798 } else {
799 sounlock(so);
800 }
801 return error;
802 }
803
804 int
805 soaccept(struct socket *so, struct mbuf *nam)
806 {
807 int error;
808
809 KASSERT(solocked(so));
810
811 error = 0;
812 if ((so->so_state & SS_NOFDREF) == 0)
813 panic("soaccept: !NOFDREF");
814 so->so_state &= ~SS_NOFDREF;
815 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
816 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
817 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
818 NULL, nam, NULL, NULL);
819 else
820 error = ECONNABORTED;
821
822 return (error);
823 }
824
825 int
826 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
827 {
828 int error;
829
830 KASSERT(solocked(so));
831
832 if (so->so_options & SO_ACCEPTCONN)
833 return (EOPNOTSUPP);
834 /*
835 * If protocol is connection-based, can only connect once.
836 * Otherwise, if connected, try to disconnect first.
837 * This allows user to disconnect by connecting to, e.g.,
838 * a null address.
839 */
840 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
841 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
842 (error = sodisconnect(so))))
843 error = EISCONN;
844 else
845 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
846 NULL, nam, NULL, l);
847 return (error);
848 }
849
850 int
851 soconnect2(struct socket *so1, struct socket *so2)
852 {
853 int error;
854
855 KASSERT(solocked2(so1, so2));
856
857 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
858 NULL, (struct mbuf *)so2, NULL, NULL);
859 return (error);
860 }
861
862 int
863 sodisconnect(struct socket *so)
864 {
865 int error;
866
867 KASSERT(solocked(so));
868
869 if ((so->so_state & SS_ISCONNECTED) == 0) {
870 error = ENOTCONN;
871 } else if (so->so_state & SS_ISDISCONNECTING) {
872 error = EALREADY;
873 } else {
874 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
875 NULL, NULL, NULL, NULL);
876 }
877 sodopendfree();
878 return (error);
879 }
880
881 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
882 /*
883 * Send on a socket.
884 * If send must go all at once and message is larger than
885 * send buffering, then hard error.
886 * Lock against other senders.
887 * If must go all at once and not enough room now, then
888 * inform user that this would block and do nothing.
889 * Otherwise, if nonblocking, send as much as possible.
890 * The data to be sent is described by "uio" if nonzero,
891 * otherwise by the mbuf chain "top" (which must be null
892 * if uio is not). Data provided in mbuf chain must be small
893 * enough to send all at once.
894 *
895 * Returns nonzero on error, timeout or signal; callers
896 * must check for short counts if EINTR/ERESTART are returned.
897 * Data and control buffers are freed on return.
898 */
899 int
900 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
901 struct mbuf *control, int flags, struct lwp *l)
902 {
903 struct mbuf **mp, *m;
904 struct proc *p;
905 long space, len, resid, clen, mlen;
906 int error, s, dontroute, atomic;
907 short wakeup_state = 0;
908
909 p = l->l_proc;
910 sodopendfree();
911 clen = 0;
912
913 /*
914 * solock() provides atomicity of access. splsoftnet() prevents
915 * protocol processing soft interrupts from interrupting us and
916 * blocking (expensive).
917 */
918 s = splsoftnet();
919 solock(so);
920 atomic = sosendallatonce(so) || top;
921 if (uio)
922 resid = uio->uio_resid;
923 else
924 resid = top->m_pkthdr.len;
925 /*
926 * In theory resid should be unsigned.
927 * However, space must be signed, as it might be less than 0
928 * if we over-committed, and we must use a signed comparison
929 * of space and resid. On the other hand, a negative resid
930 * causes us to loop sending 0-length segments to the protocol.
931 */
932 if (resid < 0) {
933 error = EINVAL;
934 goto out;
935 }
936 dontroute =
937 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
938 (so->so_proto->pr_flags & PR_ATOMIC);
939 l->l_ru.ru_msgsnd++;
940 if (control)
941 clen = control->m_len;
942 restart:
943 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
944 goto out;
945 do {
946 if (so->so_state & SS_CANTSENDMORE) {
947 error = EPIPE;
948 goto release;
949 }
950 if (so->so_error) {
951 error = so->so_error;
952 so->so_error = 0;
953 goto release;
954 }
955 if ((so->so_state & SS_ISCONNECTED) == 0) {
956 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
957 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
958 !(resid == 0 && clen != 0)) {
959 error = ENOTCONN;
960 goto release;
961 }
962 } else if (addr == 0) {
963 error = EDESTADDRREQ;
964 goto release;
965 }
966 }
967 space = sbspace(&so->so_snd);
968 if (flags & MSG_OOB)
969 space += 1024;
970 if ((atomic && resid > so->so_snd.sb_hiwat) ||
971 clen > so->so_snd.sb_hiwat) {
972 error = EMSGSIZE;
973 goto release;
974 }
975 if (space < resid + clen &&
976 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
977 if (so->so_nbio) {
978 error = EWOULDBLOCK;
979 goto release;
980 }
981 sbunlock(&so->so_snd);
982 if (wakeup_state & SS_RESTARTSYS) {
983 error = ERESTART;
984 goto out;
985 }
986 error = sbwait(&so->so_snd);
987 if (error)
988 goto out;
989 wakeup_state = so->so_state;
990 goto restart;
991 }
992 wakeup_state = 0;
993 mp = ⊤
994 space -= clen;
995 do {
996 if (uio == NULL) {
997 /*
998 * Data is prepackaged in "top".
999 */
1000 resid = 0;
1001 if (flags & MSG_EOR)
1002 top->m_flags |= M_EOR;
1003 } else do {
1004 sounlock(so);
1005 splx(s);
1006 if (top == NULL) {
1007 m = m_gethdr(M_WAIT, MT_DATA);
1008 mlen = MHLEN;
1009 m->m_pkthdr.len = 0;
1010 m->m_pkthdr.rcvif = NULL;
1011 } else {
1012 m = m_get(M_WAIT, MT_DATA);
1013 mlen = MLEN;
1014 }
1015 MCLAIM(m, so->so_snd.sb_mowner);
1016 if (sock_loan_thresh >= 0 &&
1017 uio->uio_iov->iov_len >= sock_loan_thresh &&
1018 space >= sock_loan_thresh &&
1019 (len = sosend_loan(so, uio, m,
1020 space)) != 0) {
1021 SOSEND_COUNTER_INCR(&sosend_loan_big);
1022 space -= len;
1023 goto have_data;
1024 }
1025 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1026 SOSEND_COUNTER_INCR(&sosend_copy_big);
1027 m_clget(m, M_DONTWAIT);
1028 if ((m->m_flags & M_EXT) == 0)
1029 goto nopages;
1030 mlen = MCLBYTES;
1031 if (atomic && top == 0) {
1032 len = lmin(MCLBYTES - max_hdr,
1033 resid);
1034 m->m_data += max_hdr;
1035 } else
1036 len = lmin(MCLBYTES, resid);
1037 space -= len;
1038 } else {
1039 nopages:
1040 SOSEND_COUNTER_INCR(&sosend_copy_small);
1041 len = lmin(lmin(mlen, resid), space);
1042 space -= len;
1043 /*
1044 * For datagram protocols, leave room
1045 * for protocol headers in first mbuf.
1046 */
1047 if (atomic && top == 0 && len < mlen)
1048 MH_ALIGN(m, len);
1049 }
1050 error = uiomove(mtod(m, void *), (int)len, uio);
1051 have_data:
1052 resid = uio->uio_resid;
1053 m->m_len = len;
1054 *mp = m;
1055 top->m_pkthdr.len += len;
1056 s = splsoftnet();
1057 solock(so);
1058 if (error != 0)
1059 goto release;
1060 mp = &m->m_next;
1061 if (resid <= 0) {
1062 if (flags & MSG_EOR)
1063 top->m_flags |= M_EOR;
1064 break;
1065 }
1066 } while (space > 0 && atomic);
1067
1068 if (so->so_state & SS_CANTSENDMORE) {
1069 error = EPIPE;
1070 goto release;
1071 }
1072 if (dontroute)
1073 so->so_options |= SO_DONTROUTE;
1074 if (resid > 0)
1075 so->so_state |= SS_MORETOCOME;
1076 error = (*so->so_proto->pr_usrreq)(so,
1077 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
1078 top, addr, control, curlwp);
1079 if (dontroute)
1080 so->so_options &= ~SO_DONTROUTE;
1081 if (resid > 0)
1082 so->so_state &= ~SS_MORETOCOME;
1083 clen = 0;
1084 control = NULL;
1085 top = NULL;
1086 mp = ⊤
1087 if (error != 0)
1088 goto release;
1089 } while (resid && space > 0);
1090 } while (resid);
1091
1092 release:
1093 sbunlock(&so->so_snd);
1094 out:
1095 sounlock(so);
1096 splx(s);
1097 if (top)
1098 m_freem(top);
1099 if (control)
1100 m_freem(control);
1101 return (error);
1102 }
1103
1104 /*
1105 * Following replacement or removal of the first mbuf on the first
1106 * mbuf chain of a socket buffer, push necessary state changes back
1107 * into the socket buffer so that other consumers see the values
1108 * consistently. 'nextrecord' is the callers locally stored value of
1109 * the original value of sb->sb_mb->m_nextpkt which must be restored
1110 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1111 */
1112 static void
1113 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1114 {
1115
1116 KASSERT(solocked(sb->sb_so));
1117
1118 /*
1119 * First, update for the new value of nextrecord. If necessary,
1120 * make it the first record.
1121 */
1122 if (sb->sb_mb != NULL)
1123 sb->sb_mb->m_nextpkt = nextrecord;
1124 else
1125 sb->sb_mb = nextrecord;
1126
1127 /*
1128 * Now update any dependent socket buffer fields to reflect
1129 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1130 * the addition of a second clause that takes care of the
1131 * case where sb_mb has been updated, but remains the last
1132 * record.
1133 */
1134 if (sb->sb_mb == NULL) {
1135 sb->sb_mbtail = NULL;
1136 sb->sb_lastrecord = NULL;
1137 } else if (sb->sb_mb->m_nextpkt == NULL)
1138 sb->sb_lastrecord = sb->sb_mb;
1139 }
1140
1141 /*
1142 * Implement receive operations on a socket.
1143 * We depend on the way that records are added to the sockbuf
1144 * by sbappend*. In particular, each record (mbufs linked through m_next)
1145 * must begin with an address if the protocol so specifies,
1146 * followed by an optional mbuf or mbufs containing ancillary data,
1147 * and then zero or more mbufs of data.
1148 * In order to avoid blocking network interrupts for the entire time here,
1149 * we splx() while doing the actual copy to user space.
1150 * Although the sockbuf is locked, new data may still be appended,
1151 * and thus we must maintain consistency of the sockbuf during that time.
1152 *
1153 * The caller may receive the data as a single mbuf chain by supplying
1154 * an mbuf **mp0 for use in returning the chain. The uio is then used
1155 * only for the count in uio_resid.
1156 */
1157 int
1158 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1159 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1160 {
1161 struct lwp *l = curlwp;
1162 struct mbuf *m, **mp, *mt;
1163 int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1164 const struct protosw *pr;
1165 struct mbuf *nextrecord;
1166 int mbuf_removed = 0;
1167 const struct domain *dom;
1168 short wakeup_state = 0;
1169
1170 pr = so->so_proto;
1171 atomic = pr->pr_flags & PR_ATOMIC;
1172 dom = pr->pr_domain;
1173 mp = mp0;
1174 type = 0;
1175 orig_resid = uio->uio_resid;
1176
1177 if (paddr != NULL)
1178 *paddr = NULL;
1179 if (controlp != NULL)
1180 *controlp = NULL;
1181 if (flagsp != NULL)
1182 flags = *flagsp &~ MSG_EOR;
1183 else
1184 flags = 0;
1185
1186 if ((flags & MSG_DONTWAIT) == 0)
1187 sodopendfree();
1188
1189 if (flags & MSG_OOB) {
1190 m = m_get(M_WAIT, MT_DATA);
1191 solock(so);
1192 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1193 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1194 sounlock(so);
1195 if (error)
1196 goto bad;
1197 do {
1198 error = uiomove(mtod(m, void *),
1199 (int) min(uio->uio_resid, m->m_len), uio);
1200 m = m_free(m);
1201 } while (uio->uio_resid > 0 && error == 0 && m);
1202 bad:
1203 if (m != NULL)
1204 m_freem(m);
1205 return error;
1206 }
1207 if (mp != NULL)
1208 *mp = NULL;
1209
1210 /*
1211 * solock() provides atomicity of access. splsoftnet() prevents
1212 * protocol processing soft interrupts from interrupting us and
1213 * blocking (expensive).
1214 */
1215 s = splsoftnet();
1216 solock(so);
1217 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1218 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1219
1220 restart:
1221 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1222 sounlock(so);
1223 splx(s);
1224 return error;
1225 }
1226
1227 m = so->so_rcv.sb_mb;
1228 /*
1229 * If we have less data than requested, block awaiting more
1230 * (subject to any timeout) if:
1231 * 1. the current count is less than the low water mark,
1232 * 2. MSG_WAITALL is set, and it is possible to do the entire
1233 * receive operation at once if we block (resid <= hiwat), or
1234 * 3. MSG_DONTWAIT is not set.
1235 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1236 * we have to do the receive in sections, and thus risk returning
1237 * a short count if a timeout or signal occurs after we start.
1238 */
1239 if (m == NULL ||
1240 ((flags & MSG_DONTWAIT) == 0 &&
1241 so->so_rcv.sb_cc < uio->uio_resid &&
1242 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1243 ((flags & MSG_WAITALL) &&
1244 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1245 m->m_nextpkt == NULL && !atomic)) {
1246 #ifdef DIAGNOSTIC
1247 if (m == NULL && so->so_rcv.sb_cc)
1248 panic("receive 1");
1249 #endif
1250 if (so->so_error) {
1251 if (m != NULL)
1252 goto dontblock;
1253 error = so->so_error;
1254 if ((flags & MSG_PEEK) == 0)
1255 so->so_error = 0;
1256 goto release;
1257 }
1258 if (so->so_state & SS_CANTRCVMORE) {
1259 if (m != NULL)
1260 goto dontblock;
1261 else
1262 goto release;
1263 }
1264 for (; m != NULL; m = m->m_next)
1265 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1266 m = so->so_rcv.sb_mb;
1267 goto dontblock;
1268 }
1269 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1270 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1271 error = ENOTCONN;
1272 goto release;
1273 }
1274 if (uio->uio_resid == 0)
1275 goto release;
1276 if (so->so_nbio || (flags & MSG_DONTWAIT)) {
1277 error = EWOULDBLOCK;
1278 goto release;
1279 }
1280 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1281 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1282 sbunlock(&so->so_rcv);
1283 if (wakeup_state & SS_RESTARTSYS)
1284 error = ERESTART;
1285 else
1286 error = sbwait(&so->so_rcv);
1287 if (error != 0) {
1288 sounlock(so);
1289 splx(s);
1290 return error;
1291 }
1292 wakeup_state = so->so_state;
1293 goto restart;
1294 }
1295 dontblock:
1296 /*
1297 * On entry here, m points to the first record of the socket buffer.
1298 * From this point onward, we maintain 'nextrecord' as a cache of the
1299 * pointer to the next record in the socket buffer. We must keep the
1300 * various socket buffer pointers and local stack versions of the
1301 * pointers in sync, pushing out modifications before dropping the
1302 * socket lock, and re-reading them when picking it up.
1303 *
1304 * Otherwise, we will race with the network stack appending new data
1305 * or records onto the socket buffer by using inconsistent/stale
1306 * versions of the field, possibly resulting in socket buffer
1307 * corruption.
1308 *
1309 * By holding the high-level sblock(), we prevent simultaneous
1310 * readers from pulling off the front of the socket buffer.
1311 */
1312 if (l != NULL)
1313 l->l_ru.ru_msgrcv++;
1314 KASSERT(m == so->so_rcv.sb_mb);
1315 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1316 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1317 nextrecord = m->m_nextpkt;
1318 if (pr->pr_flags & PR_ADDR) {
1319 #ifdef DIAGNOSTIC
1320 if (m->m_type != MT_SONAME)
1321 panic("receive 1a");
1322 #endif
1323 orig_resid = 0;
1324 if (flags & MSG_PEEK) {
1325 if (paddr)
1326 *paddr = m_copy(m, 0, m->m_len);
1327 m = m->m_next;
1328 } else {
1329 sbfree(&so->so_rcv, m);
1330 mbuf_removed = 1;
1331 if (paddr != NULL) {
1332 *paddr = m;
1333 so->so_rcv.sb_mb = m->m_next;
1334 m->m_next = NULL;
1335 m = so->so_rcv.sb_mb;
1336 } else {
1337 MFREE(m, so->so_rcv.sb_mb);
1338 m = so->so_rcv.sb_mb;
1339 }
1340 sbsync(&so->so_rcv, nextrecord);
1341 }
1342 }
1343
1344 /*
1345 * Process one or more MT_CONTROL mbufs present before any data mbufs
1346 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1347 * just copy the data; if !MSG_PEEK, we call into the protocol to
1348 * perform externalization (or freeing if controlp == NULL).
1349 */
1350 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1351 struct mbuf *cm = NULL, *cmn;
1352 struct mbuf **cme = &cm;
1353
1354 do {
1355 if (flags & MSG_PEEK) {
1356 if (controlp != NULL) {
1357 *controlp = m_copy(m, 0, m->m_len);
1358 controlp = &(*controlp)->m_next;
1359 }
1360 m = m->m_next;
1361 } else {
1362 sbfree(&so->so_rcv, m);
1363 so->so_rcv.sb_mb = m->m_next;
1364 m->m_next = NULL;
1365 *cme = m;
1366 cme = &(*cme)->m_next;
1367 m = so->so_rcv.sb_mb;
1368 }
1369 } while (m != NULL && m->m_type == MT_CONTROL);
1370 if ((flags & MSG_PEEK) == 0)
1371 sbsync(&so->so_rcv, nextrecord);
1372 for (; cm != NULL; cm = cmn) {
1373 cmn = cm->m_next;
1374 cm->m_next = NULL;
1375 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1376 if (controlp != NULL) {
1377 if (dom->dom_externalize != NULL &&
1378 type == SCM_RIGHTS) {
1379 sounlock(so);
1380 splx(s);
1381 error = (*dom->dom_externalize)(cm, l);
1382 s = splsoftnet();
1383 solock(so);
1384 }
1385 *controlp = cm;
1386 while (*controlp != NULL)
1387 controlp = &(*controlp)->m_next;
1388 } else {
1389 /*
1390 * Dispose of any SCM_RIGHTS message that went
1391 * through the read path rather than recv.
1392 */
1393 if (dom->dom_dispose != NULL &&
1394 type == SCM_RIGHTS) {
1395 sounlock(so);
1396 (*dom->dom_dispose)(cm);
1397 solock(so);
1398 }
1399 m_freem(cm);
1400 }
1401 }
1402 if (m != NULL)
1403 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1404 else
1405 nextrecord = so->so_rcv.sb_mb;
1406 orig_resid = 0;
1407 }
1408
1409 /* If m is non-NULL, we have some data to read. */
1410 if (__predict_true(m != NULL)) {
1411 type = m->m_type;
1412 if (type == MT_OOBDATA)
1413 flags |= MSG_OOB;
1414 }
1415 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1416 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1417
1418 moff = 0;
1419 offset = 0;
1420 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1421 if (m->m_type == MT_OOBDATA) {
1422 if (type != MT_OOBDATA)
1423 break;
1424 } else if (type == MT_OOBDATA)
1425 break;
1426 #ifdef DIAGNOSTIC
1427 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1428 panic("receive 3");
1429 #endif
1430 so->so_state &= ~SS_RCVATMARK;
1431 wakeup_state = 0;
1432 len = uio->uio_resid;
1433 if (so->so_oobmark && len > so->so_oobmark - offset)
1434 len = so->so_oobmark - offset;
1435 if (len > m->m_len - moff)
1436 len = m->m_len - moff;
1437 /*
1438 * If mp is set, just pass back the mbufs.
1439 * Otherwise copy them out via the uio, then free.
1440 * Sockbuf must be consistent here (points to current mbuf,
1441 * it points to next record) when we drop priority;
1442 * we must note any additions to the sockbuf when we
1443 * block interrupts again.
1444 */
1445 if (mp == NULL) {
1446 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1447 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1448 sounlock(so);
1449 splx(s);
1450 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1451 s = splsoftnet();
1452 solock(so);
1453 if (error != 0) {
1454 /*
1455 * If any part of the record has been removed
1456 * (such as the MT_SONAME mbuf, which will
1457 * happen when PR_ADDR, and thus also
1458 * PR_ATOMIC, is set), then drop the entire
1459 * record to maintain the atomicity of the
1460 * receive operation.
1461 *
1462 * This avoids a later panic("receive 1a")
1463 * when compiled with DIAGNOSTIC.
1464 */
1465 if (m && mbuf_removed && atomic)
1466 (void) sbdroprecord(&so->so_rcv);
1467
1468 goto release;
1469 }
1470 } else
1471 uio->uio_resid -= len;
1472 if (len == m->m_len - moff) {
1473 if (m->m_flags & M_EOR)
1474 flags |= MSG_EOR;
1475 if (flags & MSG_PEEK) {
1476 m = m->m_next;
1477 moff = 0;
1478 } else {
1479 nextrecord = m->m_nextpkt;
1480 sbfree(&so->so_rcv, m);
1481 if (mp) {
1482 *mp = m;
1483 mp = &m->m_next;
1484 so->so_rcv.sb_mb = m = m->m_next;
1485 *mp = NULL;
1486 } else {
1487 MFREE(m, so->so_rcv.sb_mb);
1488 m = so->so_rcv.sb_mb;
1489 }
1490 /*
1491 * If m != NULL, we also know that
1492 * so->so_rcv.sb_mb != NULL.
1493 */
1494 KASSERT(so->so_rcv.sb_mb == m);
1495 if (m) {
1496 m->m_nextpkt = nextrecord;
1497 if (nextrecord == NULL)
1498 so->so_rcv.sb_lastrecord = m;
1499 } else {
1500 so->so_rcv.sb_mb = nextrecord;
1501 SB_EMPTY_FIXUP(&so->so_rcv);
1502 }
1503 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1504 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1505 }
1506 } else if (flags & MSG_PEEK)
1507 moff += len;
1508 else {
1509 if (mp != NULL) {
1510 mt = m_copym(m, 0, len, M_NOWAIT);
1511 if (__predict_false(mt == NULL)) {
1512 sounlock(so);
1513 mt = m_copym(m, 0, len, M_WAIT);
1514 solock(so);
1515 }
1516 *mp = mt;
1517 }
1518 m->m_data += len;
1519 m->m_len -= len;
1520 so->so_rcv.sb_cc -= len;
1521 }
1522 if (so->so_oobmark) {
1523 if ((flags & MSG_PEEK) == 0) {
1524 so->so_oobmark -= len;
1525 if (so->so_oobmark == 0) {
1526 so->so_state |= SS_RCVATMARK;
1527 break;
1528 }
1529 } else {
1530 offset += len;
1531 if (offset == so->so_oobmark)
1532 break;
1533 }
1534 }
1535 if (flags & MSG_EOR)
1536 break;
1537 /*
1538 * If the MSG_WAITALL flag is set (for non-atomic socket),
1539 * we must not quit until "uio->uio_resid == 0" or an error
1540 * termination. If a signal/timeout occurs, return
1541 * with a short count but without error.
1542 * Keep sockbuf locked against other readers.
1543 */
1544 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1545 !sosendallatonce(so) && !nextrecord) {
1546 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1547 break;
1548 /*
1549 * If we are peeking and the socket receive buffer is
1550 * full, stop since we can't get more data to peek at.
1551 */
1552 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1553 break;
1554 /*
1555 * If we've drained the socket buffer, tell the
1556 * protocol in case it needs to do something to
1557 * get it filled again.
1558 */
1559 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1560 (*pr->pr_usrreq)(so, PRU_RCVD,
1561 NULL, (struct mbuf *)(long)flags, NULL, l);
1562 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1563 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1564 if (wakeup_state & SS_RESTARTSYS)
1565 error = ERESTART;
1566 else
1567 error = sbwait(&so->so_rcv);
1568 if (error != 0) {
1569 sbunlock(&so->so_rcv);
1570 sounlock(so);
1571 splx(s);
1572 return 0;
1573 }
1574 if ((m = so->so_rcv.sb_mb) != NULL)
1575 nextrecord = m->m_nextpkt;
1576 wakeup_state = so->so_state;
1577 }
1578 }
1579
1580 if (m && atomic) {
1581 flags |= MSG_TRUNC;
1582 if ((flags & MSG_PEEK) == 0)
1583 (void) sbdroprecord(&so->so_rcv);
1584 }
1585 if ((flags & MSG_PEEK) == 0) {
1586 if (m == NULL) {
1587 /*
1588 * First part is an inline SB_EMPTY_FIXUP(). Second
1589 * part makes sure sb_lastrecord is up-to-date if
1590 * there is still data in the socket buffer.
1591 */
1592 so->so_rcv.sb_mb = nextrecord;
1593 if (so->so_rcv.sb_mb == NULL) {
1594 so->so_rcv.sb_mbtail = NULL;
1595 so->so_rcv.sb_lastrecord = NULL;
1596 } else if (nextrecord->m_nextpkt == NULL)
1597 so->so_rcv.sb_lastrecord = nextrecord;
1598 }
1599 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1600 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1601 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1602 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1603 (struct mbuf *)(long)flags, NULL, l);
1604 }
1605 if (orig_resid == uio->uio_resid && orig_resid &&
1606 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1607 sbunlock(&so->so_rcv);
1608 goto restart;
1609 }
1610
1611 if (flagsp != NULL)
1612 *flagsp |= flags;
1613 release:
1614 sbunlock(&so->so_rcv);
1615 sounlock(so);
1616 splx(s);
1617 return error;
1618 }
1619
1620 int
1621 soshutdown(struct socket *so, int how)
1622 {
1623 const struct protosw *pr;
1624 int error;
1625
1626 KASSERT(solocked(so));
1627
1628 pr = so->so_proto;
1629 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1630 return (EINVAL);
1631
1632 if (how == SHUT_RD || how == SHUT_RDWR) {
1633 sorflush(so);
1634 error = 0;
1635 }
1636 if (how == SHUT_WR || how == SHUT_RDWR)
1637 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1638 NULL, NULL, NULL);
1639
1640 return error;
1641 }
1642
1643 void
1644 sorestart(struct socket *so)
1645 {
1646 /*
1647 * An application has called close() on an fd on which another
1648 * of its threads has called a socket system call.
1649 * Mark this and wake everyone up, and code that would block again
1650 * instead returns ERESTART.
1651 * On system call re-entry the fd is validated and EBADF returned.
1652 * Any other fd will block again on the 2nd syscall.
1653 */
1654 solock(so);
1655 so->so_state |= SS_RESTARTSYS;
1656 cv_broadcast(&so->so_cv);
1657 cv_broadcast(&so->so_snd.sb_cv);
1658 cv_broadcast(&so->so_rcv.sb_cv);
1659 sounlock(so);
1660 }
1661
1662 void
1663 sorflush(struct socket *so)
1664 {
1665 struct sockbuf *sb, asb;
1666 const struct protosw *pr;
1667
1668 KASSERT(solocked(so));
1669
1670 sb = &so->so_rcv;
1671 pr = so->so_proto;
1672 socantrcvmore(so);
1673 sb->sb_flags |= SB_NOINTR;
1674 (void )sblock(sb, M_WAITOK);
1675 sbunlock(sb);
1676 asb = *sb;
1677 /*
1678 * Clear most of the sockbuf structure, but leave some of the
1679 * fields valid.
1680 */
1681 memset(&sb->sb_startzero, 0,
1682 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1683 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1684 sounlock(so);
1685 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1686 solock(so);
1687 }
1688 sbrelease(&asb, so);
1689 }
1690
1691 /*
1692 * internal set SOL_SOCKET options
1693 */
1694 static int
1695 sosetopt1(struct socket *so, const struct sockopt *sopt)
1696 {
1697 int error = EINVAL, optval, opt;
1698 struct linger l;
1699 struct timeval tv;
1700
1701 switch ((opt = sopt->sopt_name)) {
1702
1703 case SO_ACCEPTFILTER:
1704 error = accept_filt_setopt(so, sopt);
1705 KASSERT(solocked(so));
1706 break;
1707
1708 case SO_LINGER:
1709 error = sockopt_get(sopt, &l, sizeof(l));
1710 solock(so);
1711 if (error)
1712 break;
1713 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1714 l.l_linger > (INT_MAX / hz)) {
1715 error = EDOM;
1716 break;
1717 }
1718 so->so_linger = l.l_linger;
1719 if (l.l_onoff)
1720 so->so_options |= SO_LINGER;
1721 else
1722 so->so_options &= ~SO_LINGER;
1723 break;
1724
1725 case SO_DEBUG:
1726 case SO_KEEPALIVE:
1727 case SO_DONTROUTE:
1728 case SO_USELOOPBACK:
1729 case SO_BROADCAST:
1730 case SO_REUSEADDR:
1731 case SO_REUSEPORT:
1732 case SO_OOBINLINE:
1733 case SO_TIMESTAMP:
1734 #ifdef SO_OTIMESTAMP
1735 case SO_OTIMESTAMP:
1736 #endif
1737 error = sockopt_getint(sopt, &optval);
1738 solock(so);
1739 if (error)
1740 break;
1741 if (optval)
1742 so->so_options |= opt;
1743 else
1744 so->so_options &= ~opt;
1745 break;
1746
1747 case SO_SNDBUF:
1748 case SO_RCVBUF:
1749 case SO_SNDLOWAT:
1750 case SO_RCVLOWAT:
1751 error = sockopt_getint(sopt, &optval);
1752 solock(so);
1753 if (error)
1754 break;
1755
1756 /*
1757 * Values < 1 make no sense for any of these
1758 * options, so disallow them.
1759 */
1760 if (optval < 1) {
1761 error = EINVAL;
1762 break;
1763 }
1764
1765 switch (opt) {
1766 case SO_SNDBUF:
1767 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1768 error = ENOBUFS;
1769 break;
1770 }
1771 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1772 break;
1773
1774 case SO_RCVBUF:
1775 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1776 error = ENOBUFS;
1777 break;
1778 }
1779 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1780 break;
1781
1782 /*
1783 * Make sure the low-water is never greater than
1784 * the high-water.
1785 */
1786 case SO_SNDLOWAT:
1787 if (optval > so->so_snd.sb_hiwat)
1788 optval = so->so_snd.sb_hiwat;
1789
1790 so->so_snd.sb_lowat = optval;
1791 break;
1792
1793 case SO_RCVLOWAT:
1794 if (optval > so->so_rcv.sb_hiwat)
1795 optval = so->so_rcv.sb_hiwat;
1796
1797 so->so_rcv.sb_lowat = optval;
1798 break;
1799 }
1800 break;
1801
1802 #ifdef COMPAT_50
1803 case SO_OSNDTIMEO:
1804 case SO_ORCVTIMEO: {
1805 struct timeval50 otv;
1806 error = sockopt_get(sopt, &otv, sizeof(otv));
1807 if (error) {
1808 solock(so);
1809 break;
1810 }
1811 timeval50_to_timeval(&otv, &tv);
1812 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1813 error = 0;
1814 /*FALLTHROUGH*/
1815 }
1816 #endif /* COMPAT_50 */
1817
1818 case SO_SNDTIMEO:
1819 case SO_RCVTIMEO:
1820 if (error)
1821 error = sockopt_get(sopt, &tv, sizeof(tv));
1822 solock(so);
1823 if (error)
1824 break;
1825
1826 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1827 error = EDOM;
1828 break;
1829 }
1830
1831 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1832 if (optval == 0 && tv.tv_usec != 0)
1833 optval = 1;
1834
1835 switch (opt) {
1836 case SO_SNDTIMEO:
1837 so->so_snd.sb_timeo = optval;
1838 break;
1839 case SO_RCVTIMEO:
1840 so->so_rcv.sb_timeo = optval;
1841 break;
1842 }
1843 break;
1844
1845 default:
1846 solock(so);
1847 error = ENOPROTOOPT;
1848 break;
1849 }
1850 KASSERT(solocked(so));
1851 return error;
1852 }
1853
1854 int
1855 sosetopt(struct socket *so, struct sockopt *sopt)
1856 {
1857 int error, prerr;
1858
1859 if (sopt->sopt_level == SOL_SOCKET) {
1860 error = sosetopt1(so, sopt);
1861 KASSERT(solocked(so));
1862 } else {
1863 error = ENOPROTOOPT;
1864 solock(so);
1865 }
1866
1867 if ((error == 0 || error == ENOPROTOOPT) &&
1868 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1869 /* give the protocol stack a shot */
1870 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1871 if (prerr == 0)
1872 error = 0;
1873 else if (prerr != ENOPROTOOPT)
1874 error = prerr;
1875 }
1876 sounlock(so);
1877 return error;
1878 }
1879
1880 /*
1881 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1882 */
1883 int
1884 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1885 const void *val, size_t valsize)
1886 {
1887 struct sockopt sopt;
1888 int error;
1889
1890 KASSERT(valsize == 0 || val != NULL);
1891
1892 sockopt_init(&sopt, level, name, valsize);
1893 sockopt_set(&sopt, val, valsize);
1894
1895 error = sosetopt(so, &sopt);
1896
1897 sockopt_destroy(&sopt);
1898
1899 return error;
1900 }
1901
1902 /*
1903 * internal get SOL_SOCKET options
1904 */
1905 static int
1906 sogetopt1(struct socket *so, struct sockopt *sopt)
1907 {
1908 int error, optval, opt;
1909 struct linger l;
1910 struct timeval tv;
1911
1912 switch ((opt = sopt->sopt_name)) {
1913
1914 case SO_ACCEPTFILTER:
1915 error = accept_filt_getopt(so, sopt);
1916 break;
1917
1918 case SO_LINGER:
1919 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1920 l.l_linger = so->so_linger;
1921
1922 error = sockopt_set(sopt, &l, sizeof(l));
1923 break;
1924
1925 case SO_USELOOPBACK:
1926 case SO_DONTROUTE:
1927 case SO_DEBUG:
1928 case SO_KEEPALIVE:
1929 case SO_REUSEADDR:
1930 case SO_REUSEPORT:
1931 case SO_BROADCAST:
1932 case SO_OOBINLINE:
1933 case SO_TIMESTAMP:
1934 #ifdef SO_OTIMESTAMP
1935 case SO_OTIMESTAMP:
1936 #endif
1937 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1938 break;
1939
1940 case SO_TYPE:
1941 error = sockopt_setint(sopt, so->so_type);
1942 break;
1943
1944 case SO_ERROR:
1945 error = sockopt_setint(sopt, so->so_error);
1946 so->so_error = 0;
1947 break;
1948
1949 case SO_SNDBUF:
1950 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1951 break;
1952
1953 case SO_RCVBUF:
1954 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1955 break;
1956
1957 case SO_SNDLOWAT:
1958 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1959 break;
1960
1961 case SO_RCVLOWAT:
1962 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1963 break;
1964
1965 #ifdef COMPAT_50
1966 case SO_OSNDTIMEO:
1967 case SO_ORCVTIMEO: {
1968 struct timeval50 otv;
1969
1970 optval = (opt == SO_OSNDTIMEO ?
1971 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1972
1973 otv.tv_sec = optval / hz;
1974 otv.tv_usec = (optval % hz) * tick;
1975
1976 error = sockopt_set(sopt, &otv, sizeof(otv));
1977 break;
1978 }
1979 #endif /* COMPAT_50 */
1980
1981 case SO_SNDTIMEO:
1982 case SO_RCVTIMEO:
1983 optval = (opt == SO_SNDTIMEO ?
1984 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1985
1986 tv.tv_sec = optval / hz;
1987 tv.tv_usec = (optval % hz) * tick;
1988
1989 error = sockopt_set(sopt, &tv, sizeof(tv));
1990 break;
1991
1992 case SO_OVERFLOWED:
1993 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1994 break;
1995
1996 default:
1997 error = ENOPROTOOPT;
1998 break;
1999 }
2000
2001 return (error);
2002 }
2003
2004 int
2005 sogetopt(struct socket *so, struct sockopt *sopt)
2006 {
2007 int error;
2008
2009 solock(so);
2010 if (sopt->sopt_level != SOL_SOCKET) {
2011 if (so->so_proto && so->so_proto->pr_ctloutput) {
2012 error = ((*so->so_proto->pr_ctloutput)
2013 (PRCO_GETOPT, so, sopt));
2014 } else
2015 error = (ENOPROTOOPT);
2016 } else {
2017 error = sogetopt1(so, sopt);
2018 }
2019 sounlock(so);
2020 return (error);
2021 }
2022
2023 /*
2024 * alloc sockopt data buffer buffer
2025 * - will be released at destroy
2026 */
2027 static int
2028 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2029 {
2030
2031 KASSERT(sopt->sopt_size == 0);
2032
2033 if (len > sizeof(sopt->sopt_buf)) {
2034 sopt->sopt_data = kmem_zalloc(len, kmflag);
2035 if (sopt->sopt_data == NULL)
2036 return ENOMEM;
2037 } else
2038 sopt->sopt_data = sopt->sopt_buf;
2039
2040 sopt->sopt_size = len;
2041 return 0;
2042 }
2043
2044 /*
2045 * initialise sockopt storage
2046 * - MAY sleep during allocation
2047 */
2048 void
2049 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2050 {
2051
2052 memset(sopt, 0, sizeof(*sopt));
2053
2054 sopt->sopt_level = level;
2055 sopt->sopt_name = name;
2056 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2057 }
2058
2059 /*
2060 * destroy sockopt storage
2061 * - will release any held memory references
2062 */
2063 void
2064 sockopt_destroy(struct sockopt *sopt)
2065 {
2066
2067 if (sopt->sopt_data != sopt->sopt_buf)
2068 kmem_free(sopt->sopt_data, sopt->sopt_size);
2069
2070 memset(sopt, 0, sizeof(*sopt));
2071 }
2072
2073 /*
2074 * set sockopt value
2075 * - value is copied into sockopt
2076 * - memory is allocated when necessary, will not sleep
2077 */
2078 int
2079 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2080 {
2081 int error;
2082
2083 if (sopt->sopt_size == 0) {
2084 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2085 if (error)
2086 return error;
2087 }
2088
2089 KASSERT(sopt->sopt_size == len);
2090 memcpy(sopt->sopt_data, buf, len);
2091 return 0;
2092 }
2093
2094 /*
2095 * common case of set sockopt integer value
2096 */
2097 int
2098 sockopt_setint(struct sockopt *sopt, int val)
2099 {
2100
2101 return sockopt_set(sopt, &val, sizeof(int));
2102 }
2103
2104 /*
2105 * get sockopt value
2106 * - correct size must be given
2107 */
2108 int
2109 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2110 {
2111
2112 if (sopt->sopt_size != len)
2113 return EINVAL;
2114
2115 memcpy(buf, sopt->sopt_data, len);
2116 return 0;
2117 }
2118
2119 /*
2120 * common case of get sockopt integer value
2121 */
2122 int
2123 sockopt_getint(const struct sockopt *sopt, int *valp)
2124 {
2125
2126 return sockopt_get(sopt, valp, sizeof(int));
2127 }
2128
2129 /*
2130 * set sockopt value from mbuf
2131 * - ONLY for legacy code
2132 * - mbuf is released by sockopt
2133 * - will not sleep
2134 */
2135 int
2136 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2137 {
2138 size_t len;
2139 int error;
2140
2141 len = m_length(m);
2142
2143 if (sopt->sopt_size == 0) {
2144 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2145 if (error)
2146 return error;
2147 }
2148
2149 KASSERT(sopt->sopt_size == len);
2150 m_copydata(m, 0, len, sopt->sopt_data);
2151 m_freem(m);
2152
2153 return 0;
2154 }
2155
2156 /*
2157 * get sockopt value into mbuf
2158 * - ONLY for legacy code
2159 * - mbuf to be released by the caller
2160 * - will not sleep
2161 */
2162 struct mbuf *
2163 sockopt_getmbuf(const struct sockopt *sopt)
2164 {
2165 struct mbuf *m;
2166
2167 if (sopt->sopt_size > MCLBYTES)
2168 return NULL;
2169
2170 m = m_get(M_DONTWAIT, MT_SOOPTS);
2171 if (m == NULL)
2172 return NULL;
2173
2174 if (sopt->sopt_size > MLEN) {
2175 MCLGET(m, M_DONTWAIT);
2176 if ((m->m_flags & M_EXT) == 0) {
2177 m_free(m);
2178 return NULL;
2179 }
2180 }
2181
2182 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2183 m->m_len = sopt->sopt_size;
2184
2185 return m;
2186 }
2187
2188 void
2189 sohasoutofband(struct socket *so)
2190 {
2191
2192 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2193 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2194 }
2195
2196 static void
2197 filt_sordetach(struct knote *kn)
2198 {
2199 struct socket *so;
2200
2201 so = ((file_t *)kn->kn_obj)->f_data;
2202 solock(so);
2203 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2204 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2205 so->so_rcv.sb_flags &= ~SB_KNOTE;
2206 sounlock(so);
2207 }
2208
2209 /*ARGSUSED*/
2210 static int
2211 filt_soread(struct knote *kn, long hint)
2212 {
2213 struct socket *so;
2214 int rv;
2215
2216 so = ((file_t *)kn->kn_obj)->f_data;
2217 if (hint != NOTE_SUBMIT)
2218 solock(so);
2219 kn->kn_data = so->so_rcv.sb_cc;
2220 if (so->so_state & SS_CANTRCVMORE) {
2221 kn->kn_flags |= EV_EOF;
2222 kn->kn_fflags = so->so_error;
2223 rv = 1;
2224 } else if (so->so_error) /* temporary udp error */
2225 rv = 1;
2226 else if (kn->kn_sfflags & NOTE_LOWAT)
2227 rv = (kn->kn_data >= kn->kn_sdata);
2228 else
2229 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2230 if (hint != NOTE_SUBMIT)
2231 sounlock(so);
2232 return rv;
2233 }
2234
2235 static void
2236 filt_sowdetach(struct knote *kn)
2237 {
2238 struct socket *so;
2239
2240 so = ((file_t *)kn->kn_obj)->f_data;
2241 solock(so);
2242 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2243 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2244 so->so_snd.sb_flags &= ~SB_KNOTE;
2245 sounlock(so);
2246 }
2247
2248 /*ARGSUSED*/
2249 static int
2250 filt_sowrite(struct knote *kn, long hint)
2251 {
2252 struct socket *so;
2253 int rv;
2254
2255 so = ((file_t *)kn->kn_obj)->f_data;
2256 if (hint != NOTE_SUBMIT)
2257 solock(so);
2258 kn->kn_data = sbspace(&so->so_snd);
2259 if (so->so_state & SS_CANTSENDMORE) {
2260 kn->kn_flags |= EV_EOF;
2261 kn->kn_fflags = so->so_error;
2262 rv = 1;
2263 } else if (so->so_error) /* temporary udp error */
2264 rv = 1;
2265 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2266 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2267 rv = 0;
2268 else if (kn->kn_sfflags & NOTE_LOWAT)
2269 rv = (kn->kn_data >= kn->kn_sdata);
2270 else
2271 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2272 if (hint != NOTE_SUBMIT)
2273 sounlock(so);
2274 return rv;
2275 }
2276
2277 /*ARGSUSED*/
2278 static int
2279 filt_solisten(struct knote *kn, long hint)
2280 {
2281 struct socket *so;
2282 int rv;
2283
2284 so = ((file_t *)kn->kn_obj)->f_data;
2285
2286 /*
2287 * Set kn_data to number of incoming connections, not
2288 * counting partial (incomplete) connections.
2289 */
2290 if (hint != NOTE_SUBMIT)
2291 solock(so);
2292 kn->kn_data = so->so_qlen;
2293 rv = (kn->kn_data > 0);
2294 if (hint != NOTE_SUBMIT)
2295 sounlock(so);
2296 return rv;
2297 }
2298
2299 static const struct filterops solisten_filtops =
2300 { 1, NULL, filt_sordetach, filt_solisten };
2301 static const struct filterops soread_filtops =
2302 { 1, NULL, filt_sordetach, filt_soread };
2303 static const struct filterops sowrite_filtops =
2304 { 1, NULL, filt_sowdetach, filt_sowrite };
2305
2306 int
2307 soo_kqfilter(struct file *fp, struct knote *kn)
2308 {
2309 struct socket *so;
2310 struct sockbuf *sb;
2311
2312 so = ((file_t *)kn->kn_obj)->f_data;
2313 solock(so);
2314 switch (kn->kn_filter) {
2315 case EVFILT_READ:
2316 if (so->so_options & SO_ACCEPTCONN)
2317 kn->kn_fop = &solisten_filtops;
2318 else
2319 kn->kn_fop = &soread_filtops;
2320 sb = &so->so_rcv;
2321 break;
2322 case EVFILT_WRITE:
2323 kn->kn_fop = &sowrite_filtops;
2324 sb = &so->so_snd;
2325 break;
2326 default:
2327 sounlock(so);
2328 return (EINVAL);
2329 }
2330 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2331 sb->sb_flags |= SB_KNOTE;
2332 sounlock(so);
2333 return (0);
2334 }
2335
2336 static int
2337 sodopoll(struct socket *so, int events)
2338 {
2339 int revents;
2340
2341 revents = 0;
2342
2343 if (events & (POLLIN | POLLRDNORM))
2344 if (soreadable(so))
2345 revents |= events & (POLLIN | POLLRDNORM);
2346
2347 if (events & (POLLOUT | POLLWRNORM))
2348 if (sowritable(so))
2349 revents |= events & (POLLOUT | POLLWRNORM);
2350
2351 if (events & (POLLPRI | POLLRDBAND))
2352 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2353 revents |= events & (POLLPRI | POLLRDBAND);
2354
2355 return revents;
2356 }
2357
2358 int
2359 sopoll(struct socket *so, int events)
2360 {
2361 int revents = 0;
2362
2363 #ifndef DIAGNOSTIC
2364 /*
2365 * Do a quick, unlocked check in expectation that the socket
2366 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2367 * as the solocked() assertions will fail.
2368 */
2369 if ((revents = sodopoll(so, events)) != 0)
2370 return revents;
2371 #endif
2372
2373 solock(so);
2374 if ((revents = sodopoll(so, events)) == 0) {
2375 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2376 selrecord(curlwp, &so->so_rcv.sb_sel);
2377 so->so_rcv.sb_flags |= SB_NOTIFY;
2378 }
2379
2380 if (events & (POLLOUT | POLLWRNORM)) {
2381 selrecord(curlwp, &so->so_snd.sb_sel);
2382 so->so_snd.sb_flags |= SB_NOTIFY;
2383 }
2384 }
2385 sounlock(so);
2386
2387 return revents;
2388 }
2389
2390
2391 #include <sys/sysctl.h>
2392
2393 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2394
2395 /*
2396 * sysctl helper routine for kern.somaxkva. ensures that the given
2397 * value is not too small.
2398 * (XXX should we maybe make sure it's not too large as well?)
2399 */
2400 static int
2401 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2402 {
2403 int error, new_somaxkva;
2404 struct sysctlnode node;
2405
2406 new_somaxkva = somaxkva;
2407 node = *rnode;
2408 node.sysctl_data = &new_somaxkva;
2409 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2410 if (error || newp == NULL)
2411 return (error);
2412
2413 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2414 return (EINVAL);
2415
2416 mutex_enter(&so_pendfree_lock);
2417 somaxkva = new_somaxkva;
2418 cv_broadcast(&socurkva_cv);
2419 mutex_exit(&so_pendfree_lock);
2420
2421 return (error);
2422 }
2423
2424 static void
2425 sysctl_kern_somaxkva_setup(void)
2426 {
2427
2428 KASSERT(socket_sysctllog == NULL);
2429 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2430 CTLFLAG_PERMANENT,
2431 CTLTYPE_NODE, "kern", NULL,
2432 NULL, 0, NULL, 0,
2433 CTL_KERN, CTL_EOL);
2434
2435 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2436 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2437 CTLTYPE_INT, "somaxkva",
2438 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2439 "used for socket buffers"),
2440 sysctl_kern_somaxkva, 0, NULL, 0,
2441 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2442 }
2443