Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.202
      1 /*	$NetBSD: uipc_socket.c,v 1.202 2011/01/17 07:13:32 uebayasi Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.202 2011/01/17 07:13:32 uebayasi Exp $");
     67 
     68 #include "opt_compat_netbsd.h"
     69 #include "opt_sock_counters.h"
     70 #include "opt_sosend_loan.h"
     71 #include "opt_mbuftrace.h"
     72 #include "opt_somaxkva.h"
     73 #include "opt_multiprocessor.h"	/* XXX */
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/proc.h>
     78 #include <sys/file.h>
     79 #include <sys/filedesc.h>
     80 #include <sys/kmem.h>
     81 #include <sys/mbuf.h>
     82 #include <sys/domain.h>
     83 #include <sys/kernel.h>
     84 #include <sys/protosw.h>
     85 #include <sys/socket.h>
     86 #include <sys/socketvar.h>
     87 #include <sys/signalvar.h>
     88 #include <sys/resourcevar.h>
     89 #include <sys/uidinfo.h>
     90 #include <sys/event.h>
     91 #include <sys/poll.h>
     92 #include <sys/kauth.h>
     93 #include <sys/mutex.h>
     94 #include <sys/condvar.h>
     95 
     96 #ifdef COMPAT_50
     97 #include <compat/sys/time.h>
     98 #include <compat/sys/socket.h>
     99 #endif
    100 
    101 #include <uvm/uvm_extern.h>
    102 #include <uvm/uvm_loan.h>
    103 #include <uvm/uvm_page.h>
    104 
    105 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
    106 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    107 
    108 extern const struct fileops socketops;
    109 
    110 extern int	somaxconn;			/* patchable (XXX sysctl) */
    111 int		somaxconn = SOMAXCONN;
    112 kmutex_t	*softnet_lock;
    113 
    114 #ifdef SOSEND_COUNTERS
    115 #include <sys/device.h>
    116 
    117 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    118     NULL, "sosend", "loan big");
    119 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    120     NULL, "sosend", "copy big");
    121 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    122     NULL, "sosend", "copy small");
    123 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    124     NULL, "sosend", "kva limit");
    125 
    126 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    127 
    128 EVCNT_ATTACH_STATIC(sosend_loan_big);
    129 EVCNT_ATTACH_STATIC(sosend_copy_big);
    130 EVCNT_ATTACH_STATIC(sosend_copy_small);
    131 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    132 #else
    133 
    134 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    135 
    136 #endif /* SOSEND_COUNTERS */
    137 
    138 static struct callback_entry sokva_reclaimerentry;
    139 
    140 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    141 int sock_loan_thresh = -1;
    142 #else
    143 int sock_loan_thresh = 4096;
    144 #endif
    145 
    146 static kmutex_t so_pendfree_lock;
    147 static struct mbuf *so_pendfree;
    148 
    149 #ifndef SOMAXKVA
    150 #define	SOMAXKVA (16 * 1024 * 1024)
    151 #endif
    152 int somaxkva = SOMAXKVA;
    153 static int socurkva;
    154 static kcondvar_t socurkva_cv;
    155 
    156 static kauth_listener_t socket_listener;
    157 
    158 #define	SOCK_LOAN_CHUNK		65536
    159 
    160 static size_t sodopendfree(void);
    161 static size_t sodopendfreel(void);
    162 
    163 static void sysctl_kern_somaxkva_setup(void);
    164 static struct sysctllog *socket_sysctllog;
    165 
    166 static vsize_t
    167 sokvareserve(struct socket *so, vsize_t len)
    168 {
    169 	int error;
    170 
    171 	mutex_enter(&so_pendfree_lock);
    172 	while (socurkva + len > somaxkva) {
    173 		size_t freed;
    174 
    175 		/*
    176 		 * try to do pendfree.
    177 		 */
    178 
    179 		freed = sodopendfreel();
    180 
    181 		/*
    182 		 * if some kva was freed, try again.
    183 		 */
    184 
    185 		if (freed)
    186 			continue;
    187 
    188 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    189 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    190 		if (error) {
    191 			len = 0;
    192 			break;
    193 		}
    194 	}
    195 	socurkva += len;
    196 	mutex_exit(&so_pendfree_lock);
    197 	return len;
    198 }
    199 
    200 static void
    201 sokvaunreserve(vsize_t len)
    202 {
    203 
    204 	mutex_enter(&so_pendfree_lock);
    205 	socurkva -= len;
    206 	cv_broadcast(&socurkva_cv);
    207 	mutex_exit(&so_pendfree_lock);
    208 }
    209 
    210 /*
    211  * sokvaalloc: allocate kva for loan.
    212  */
    213 
    214 vaddr_t
    215 sokvaalloc(vsize_t len, struct socket *so)
    216 {
    217 	vaddr_t lva;
    218 
    219 	/*
    220 	 * reserve kva.
    221 	 */
    222 
    223 	if (sokvareserve(so, len) == 0)
    224 		return 0;
    225 
    226 	/*
    227 	 * allocate kva.
    228 	 */
    229 
    230 	lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    231 	if (lva == 0) {
    232 		sokvaunreserve(len);
    233 		return (0);
    234 	}
    235 
    236 	return lva;
    237 }
    238 
    239 /*
    240  * sokvafree: free kva for loan.
    241  */
    242 
    243 void
    244 sokvafree(vaddr_t sva, vsize_t len)
    245 {
    246 
    247 	/*
    248 	 * free kva.
    249 	 */
    250 
    251 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    252 
    253 	/*
    254 	 * unreserve kva.
    255 	 */
    256 
    257 	sokvaunreserve(len);
    258 }
    259 
    260 static void
    261 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    262 {
    263 	vaddr_t sva, eva;
    264 	vsize_t len;
    265 	int npgs;
    266 
    267 	KASSERT(pgs != NULL);
    268 
    269 	eva = round_page((vaddr_t) buf + size);
    270 	sva = trunc_page((vaddr_t) buf);
    271 	len = eva - sva;
    272 	npgs = len >> PAGE_SHIFT;
    273 
    274 	pmap_kremove(sva, len);
    275 	pmap_update(pmap_kernel());
    276 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    277 	sokvafree(sva, len);
    278 }
    279 
    280 static size_t
    281 sodopendfree(void)
    282 {
    283 	size_t rv;
    284 
    285 	if (__predict_true(so_pendfree == NULL))
    286 		return 0;
    287 
    288 	mutex_enter(&so_pendfree_lock);
    289 	rv = sodopendfreel();
    290 	mutex_exit(&so_pendfree_lock);
    291 
    292 	return rv;
    293 }
    294 
    295 /*
    296  * sodopendfreel: free mbufs on "pendfree" list.
    297  * unlock and relock so_pendfree_lock when freeing mbufs.
    298  *
    299  * => called with so_pendfree_lock held.
    300  */
    301 
    302 static size_t
    303 sodopendfreel(void)
    304 {
    305 	struct mbuf *m, *next;
    306 	size_t rv = 0;
    307 
    308 	KASSERT(mutex_owned(&so_pendfree_lock));
    309 
    310 	while (so_pendfree != NULL) {
    311 		m = so_pendfree;
    312 		so_pendfree = NULL;
    313 		mutex_exit(&so_pendfree_lock);
    314 
    315 		for (; m != NULL; m = next) {
    316 			next = m->m_next;
    317 			KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
    318 			KASSERT(m->m_ext.ext_refcnt == 0);
    319 
    320 			rv += m->m_ext.ext_size;
    321 			sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    322 			    m->m_ext.ext_size);
    323 			pool_cache_put(mb_cache, m);
    324 		}
    325 
    326 		mutex_enter(&so_pendfree_lock);
    327 	}
    328 
    329 	return (rv);
    330 }
    331 
    332 void
    333 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    334 {
    335 
    336 	KASSERT(m != NULL);
    337 
    338 	/*
    339 	 * postpone freeing mbuf.
    340 	 *
    341 	 * we can't do it in interrupt context
    342 	 * because we need to put kva back to kernel_map.
    343 	 */
    344 
    345 	mutex_enter(&so_pendfree_lock);
    346 	m->m_next = so_pendfree;
    347 	so_pendfree = m;
    348 	cv_broadcast(&socurkva_cv);
    349 	mutex_exit(&so_pendfree_lock);
    350 }
    351 
    352 static long
    353 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    354 {
    355 	struct iovec *iov = uio->uio_iov;
    356 	vaddr_t sva, eva;
    357 	vsize_t len;
    358 	vaddr_t lva;
    359 	int npgs, error;
    360 	vaddr_t va;
    361 	int i;
    362 
    363 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    364 		return (0);
    365 
    366 	if (iov->iov_len < (size_t) space)
    367 		space = iov->iov_len;
    368 	if (space > SOCK_LOAN_CHUNK)
    369 		space = SOCK_LOAN_CHUNK;
    370 
    371 	eva = round_page((vaddr_t) iov->iov_base + space);
    372 	sva = trunc_page((vaddr_t) iov->iov_base);
    373 	len = eva - sva;
    374 	npgs = len >> PAGE_SHIFT;
    375 
    376 	KASSERT(npgs <= M_EXT_MAXPAGES);
    377 
    378 	lva = sokvaalloc(len, so);
    379 	if (lva == 0)
    380 		return 0;
    381 
    382 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    383 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    384 	if (error) {
    385 		sokvafree(lva, len);
    386 		return (0);
    387 	}
    388 
    389 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    390 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    391 		    VM_PROT_READ, 0);
    392 	pmap_update(pmap_kernel());
    393 
    394 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    395 
    396 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    397 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    398 
    399 	uio->uio_resid -= space;
    400 	/* uio_offset not updated, not set/used for write(2) */
    401 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    402 	uio->uio_iov->iov_len -= space;
    403 	if (uio->uio_iov->iov_len == 0) {
    404 		uio->uio_iov++;
    405 		uio->uio_iovcnt--;
    406 	}
    407 
    408 	return (space);
    409 }
    410 
    411 static int
    412 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    413 {
    414 
    415 	KASSERT(ce == &sokva_reclaimerentry);
    416 	KASSERT(obj == NULL);
    417 
    418 	sodopendfree();
    419 	if (!vm_map_starved_p(kernel_map)) {
    420 		return CALLBACK_CHAIN_ABORT;
    421 	}
    422 	return CALLBACK_CHAIN_CONTINUE;
    423 }
    424 
    425 struct mbuf *
    426 getsombuf(struct socket *so, int type)
    427 {
    428 	struct mbuf *m;
    429 
    430 	m = m_get(M_WAIT, type);
    431 	MCLAIM(m, so->so_mowner);
    432 	return m;
    433 }
    434 
    435 static int
    436 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    437     void *arg0, void *arg1, void *arg2, void *arg3)
    438 {
    439 	int result;
    440 	enum kauth_network_req req;
    441 
    442 	result = KAUTH_RESULT_DEFER;
    443 	req = (enum kauth_network_req)arg0;
    444 
    445 	if ((action != KAUTH_NETWORK_SOCKET) &&
    446 	    (action != KAUTH_NETWORK_BIND))
    447 		return result;
    448 
    449 	switch (req) {
    450 	case KAUTH_REQ_NETWORK_BIND_PORT:
    451 		result = KAUTH_RESULT_ALLOW;
    452 		break;
    453 
    454 	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
    455 		/* Normal users can only drop their own connections. */
    456 		struct socket *so = (struct socket *)arg1;
    457 
    458 		if (proc_uidmatch(cred, so->so_cred))
    459 			result = KAUTH_RESULT_ALLOW;
    460 
    461 		break;
    462 		}
    463 
    464 	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
    465 		/* We allow "raw" routing/bluetooth sockets to anyone. */
    466 		if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_BLUETOOTH)
    467 			result = KAUTH_RESULT_ALLOW;
    468 		else {
    469 			/* Privileged, let secmodel handle this. */
    470 			if ((u_long)arg2 == SOCK_RAW)
    471 				break;
    472 		}
    473 
    474 		result = KAUTH_RESULT_ALLOW;
    475 
    476 		break;
    477 
    478 	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
    479 		result = KAUTH_RESULT_ALLOW;
    480 
    481 		break;
    482 
    483 	default:
    484 		break;
    485 	}
    486 
    487 	return result;
    488 }
    489 
    490 void
    491 soinit(void)
    492 {
    493 
    494 	sysctl_kern_somaxkva_setup();
    495 
    496 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    497 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    498 	cv_init(&socurkva_cv, "sokva");
    499 	soinit2();
    500 
    501 	/* Set the initial adjusted socket buffer size. */
    502 	if (sb_max_set(sb_max))
    503 		panic("bad initial sb_max value: %lu", sb_max);
    504 
    505 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    506 	    &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
    507 
    508 	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    509 	    socket_listener_cb, NULL);
    510 }
    511 
    512 /*
    513  * Socket operation routines.
    514  * These routines are called by the routines in
    515  * sys_socket.c or from a system process, and
    516  * implement the semantics of socket operations by
    517  * switching out to the protocol specific routines.
    518  */
    519 /*ARGSUSED*/
    520 int
    521 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    522 	 struct socket *lockso)
    523 {
    524 	const struct protosw	*prp;
    525 	struct socket	*so;
    526 	uid_t		uid;
    527 	int		error;
    528 	kmutex_t	*lock;
    529 
    530 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    531 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    532 	    KAUTH_ARG(proto));
    533 	if (error != 0)
    534 		return error;
    535 
    536 	if (proto)
    537 		prp = pffindproto(dom, proto, type);
    538 	else
    539 		prp = pffindtype(dom, type);
    540 	if (prp == NULL) {
    541 		/* no support for domain */
    542 		if (pffinddomain(dom) == 0)
    543 			return EAFNOSUPPORT;
    544 		/* no support for socket type */
    545 		if (proto == 0 && type != 0)
    546 			return EPROTOTYPE;
    547 		return EPROTONOSUPPORT;
    548 	}
    549 	if (prp->pr_usrreq == NULL)
    550 		return EPROTONOSUPPORT;
    551 	if (prp->pr_type != type)
    552 		return EPROTOTYPE;
    553 
    554 	so = soget(true);
    555 	so->so_type = type;
    556 	so->so_proto = prp;
    557 	so->so_send = sosend;
    558 	so->so_receive = soreceive;
    559 #ifdef MBUFTRACE
    560 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    561 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    562 	so->so_mowner = &prp->pr_domain->dom_mowner;
    563 #endif
    564 	uid = kauth_cred_geteuid(l->l_cred);
    565 	so->so_uidinfo = uid_find(uid);
    566 	so->so_cpid = l->l_proc->p_pid;
    567 	if (lockso != NULL) {
    568 		/* Caller wants us to share a lock. */
    569 		lock = lockso->so_lock;
    570 		so->so_lock = lock;
    571 		mutex_obj_hold(lock);
    572 		mutex_enter(lock);
    573 	} else {
    574 		/* Lock assigned and taken during PRU_ATTACH. */
    575 	}
    576 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
    577 	    (struct mbuf *)(long)proto, NULL, l);
    578 	KASSERT(solocked(so));
    579 	if (error != 0) {
    580 		so->so_state |= SS_NOFDREF;
    581 		sofree(so);
    582 		return error;
    583 	}
    584 	so->so_cred = kauth_cred_dup(l->l_cred);
    585 	sounlock(so);
    586 	*aso = so;
    587 	return 0;
    588 }
    589 
    590 /* On success, write file descriptor to fdout and return zero.  On
    591  * failure, return non-zero; *fdout will be undefined.
    592  */
    593 int
    594 fsocreate(int domain, struct socket **sop, int type, int protocol,
    595     struct lwp *l, int *fdout)
    596 {
    597 	struct socket	*so;
    598 	struct file	*fp;
    599 	int		fd, error;
    600 
    601 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    602 		return (error);
    603 	fp->f_flag = FREAD|FWRITE;
    604 	fp->f_type = DTYPE_SOCKET;
    605 	fp->f_ops = &socketops;
    606 	error = socreate(domain, &so, type, protocol, l, NULL);
    607 	if (error != 0) {
    608 		fd_abort(curproc, fp, fd);
    609 	} else {
    610 		if (sop != NULL)
    611 			*sop = so;
    612 		fp->f_data = so;
    613 		fd_affix(curproc, fp, fd);
    614 		*fdout = fd;
    615 	}
    616 	return error;
    617 }
    618 
    619 int
    620 sofamily(const struct socket *so)
    621 {
    622 	const struct protosw *pr;
    623 	const struct domain *dom;
    624 
    625 	if ((pr = so->so_proto) == NULL)
    626 		return AF_UNSPEC;
    627 	if ((dom = pr->pr_domain) == NULL)
    628 		return AF_UNSPEC;
    629 	return dom->dom_family;
    630 }
    631 
    632 int
    633 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    634 {
    635 	int	error;
    636 
    637 	solock(so);
    638 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
    639 	sounlock(so);
    640 	return error;
    641 }
    642 
    643 int
    644 solisten(struct socket *so, int backlog, struct lwp *l)
    645 {
    646 	int	error;
    647 
    648 	solock(so);
    649 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    650 	    SS_ISDISCONNECTING)) != 0) {
    651 	    	sounlock(so);
    652 		return (EOPNOTSUPP);
    653 	}
    654 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
    655 	    NULL, NULL, l);
    656 	if (error != 0) {
    657 		sounlock(so);
    658 		return error;
    659 	}
    660 	if (TAILQ_EMPTY(&so->so_q))
    661 		so->so_options |= SO_ACCEPTCONN;
    662 	if (backlog < 0)
    663 		backlog = 0;
    664 	so->so_qlimit = min(backlog, somaxconn);
    665 	sounlock(so);
    666 	return 0;
    667 }
    668 
    669 void
    670 sofree(struct socket *so)
    671 {
    672 	u_int refs;
    673 
    674 	KASSERT(solocked(so));
    675 
    676 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    677 		sounlock(so);
    678 		return;
    679 	}
    680 	if (so->so_head) {
    681 		/*
    682 		 * We must not decommission a socket that's on the accept(2)
    683 		 * queue.  If we do, then accept(2) may hang after select(2)
    684 		 * indicated that the listening socket was ready.
    685 		 */
    686 		if (!soqremque(so, 0)) {
    687 			sounlock(so);
    688 			return;
    689 		}
    690 	}
    691 	if (so->so_rcv.sb_hiwat)
    692 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    693 		    RLIM_INFINITY);
    694 	if (so->so_snd.sb_hiwat)
    695 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    696 		    RLIM_INFINITY);
    697 	sbrelease(&so->so_snd, so);
    698 	KASSERT(!cv_has_waiters(&so->so_cv));
    699 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    700 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    701 	sorflush(so);
    702 	refs = so->so_aborting;	/* XXX */
    703 	/* Remove acccept filter if one is present. */
    704 	if (so->so_accf != NULL)
    705 		(void)accept_filt_clear(so);
    706 	sounlock(so);
    707 	if (refs == 0)		/* XXX */
    708 		soput(so);
    709 }
    710 
    711 /*
    712  * Close a socket on last file table reference removal.
    713  * Initiate disconnect if connected.
    714  * Free socket when disconnect complete.
    715  */
    716 int
    717 soclose(struct socket *so)
    718 {
    719 	struct socket	*so2;
    720 	int		error;
    721 	int		error2;
    722 
    723 	error = 0;
    724 	solock(so);
    725 	if (so->so_options & SO_ACCEPTCONN) {
    726 		for (;;) {
    727 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    728 				KASSERT(solocked2(so, so2));
    729 				(void) soqremque(so2, 0);
    730 				/* soabort drops the lock. */
    731 				(void) soabort(so2);
    732 				solock(so);
    733 				continue;
    734 			}
    735 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    736 				KASSERT(solocked2(so, so2));
    737 				(void) soqremque(so2, 1);
    738 				/* soabort drops the lock. */
    739 				(void) soabort(so2);
    740 				solock(so);
    741 				continue;
    742 			}
    743 			break;
    744 		}
    745 	}
    746 	if (so->so_pcb == 0)
    747 		goto discard;
    748 	if (so->so_state & SS_ISCONNECTED) {
    749 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    750 			error = sodisconnect(so);
    751 			if (error)
    752 				goto drop;
    753 		}
    754 		if (so->so_options & SO_LINGER) {
    755 			if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
    756 				goto drop;
    757 			while (so->so_state & SS_ISCONNECTED) {
    758 				error = sowait(so, true, so->so_linger * hz);
    759 				if (error)
    760 					break;
    761 			}
    762 		}
    763 	}
    764  drop:
    765 	if (so->so_pcb) {
    766 		error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    767 		    NULL, NULL, NULL, NULL);
    768 		if (error == 0)
    769 			error = error2;
    770 	}
    771  discard:
    772 	if (so->so_state & SS_NOFDREF)
    773 		panic("soclose: NOFDREF");
    774 	kauth_cred_free(so->so_cred);
    775 	so->so_state |= SS_NOFDREF;
    776 	sofree(so);
    777 	return (error);
    778 }
    779 
    780 /*
    781  * Must be called with the socket locked..  Will return with it unlocked.
    782  */
    783 int
    784 soabort(struct socket *so)
    785 {
    786 	u_int refs;
    787 	int error;
    788 
    789 	KASSERT(solocked(so));
    790 	KASSERT(so->so_head == NULL);
    791 
    792 	so->so_aborting++;		/* XXX */
    793 	error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
    794 	    NULL, NULL, NULL);
    795 	refs = --so->so_aborting;	/* XXX */
    796 	if (error || (refs == 0)) {
    797 		sofree(so);
    798 	} else {
    799 		sounlock(so);
    800 	}
    801 	return error;
    802 }
    803 
    804 int
    805 soaccept(struct socket *so, struct mbuf *nam)
    806 {
    807 	int	error;
    808 
    809 	KASSERT(solocked(so));
    810 
    811 	error = 0;
    812 	if ((so->so_state & SS_NOFDREF) == 0)
    813 		panic("soaccept: !NOFDREF");
    814 	so->so_state &= ~SS_NOFDREF;
    815 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    816 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    817 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    818 		    NULL, nam, NULL, NULL);
    819 	else
    820 		error = ECONNABORTED;
    821 
    822 	return (error);
    823 }
    824 
    825 int
    826 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    827 {
    828 	int		error;
    829 
    830 	KASSERT(solocked(so));
    831 
    832 	if (so->so_options & SO_ACCEPTCONN)
    833 		return (EOPNOTSUPP);
    834 	/*
    835 	 * If protocol is connection-based, can only connect once.
    836 	 * Otherwise, if connected, try to disconnect first.
    837 	 * This allows user to disconnect by connecting to, e.g.,
    838 	 * a null address.
    839 	 */
    840 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    841 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    842 	    (error = sodisconnect(so))))
    843 		error = EISCONN;
    844 	else
    845 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    846 		    NULL, nam, NULL, l);
    847 	return (error);
    848 }
    849 
    850 int
    851 soconnect2(struct socket *so1, struct socket *so2)
    852 {
    853 	int	error;
    854 
    855 	KASSERT(solocked2(so1, so2));
    856 
    857 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    858 	    NULL, (struct mbuf *)so2, NULL, NULL);
    859 	return (error);
    860 }
    861 
    862 int
    863 sodisconnect(struct socket *so)
    864 {
    865 	int	error;
    866 
    867 	KASSERT(solocked(so));
    868 
    869 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    870 		error = ENOTCONN;
    871 	} else if (so->so_state & SS_ISDISCONNECTING) {
    872 		error = EALREADY;
    873 	} else {
    874 		error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    875 		    NULL, NULL, NULL, NULL);
    876 	}
    877 	sodopendfree();
    878 	return (error);
    879 }
    880 
    881 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    882 /*
    883  * Send on a socket.
    884  * If send must go all at once and message is larger than
    885  * send buffering, then hard error.
    886  * Lock against other senders.
    887  * If must go all at once and not enough room now, then
    888  * inform user that this would block and do nothing.
    889  * Otherwise, if nonblocking, send as much as possible.
    890  * The data to be sent is described by "uio" if nonzero,
    891  * otherwise by the mbuf chain "top" (which must be null
    892  * if uio is not).  Data provided in mbuf chain must be small
    893  * enough to send all at once.
    894  *
    895  * Returns nonzero on error, timeout or signal; callers
    896  * must check for short counts if EINTR/ERESTART are returned.
    897  * Data and control buffers are freed on return.
    898  */
    899 int
    900 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    901 	struct mbuf *control, int flags, struct lwp *l)
    902 {
    903 	struct mbuf	**mp, *m;
    904 	struct proc	*p;
    905 	long		space, len, resid, clen, mlen;
    906 	int		error, s, dontroute, atomic;
    907 	short		wakeup_state = 0;
    908 
    909 	p = l->l_proc;
    910 	sodopendfree();
    911 	clen = 0;
    912 
    913 	/*
    914 	 * solock() provides atomicity of access.  splsoftnet() prevents
    915 	 * protocol processing soft interrupts from interrupting us and
    916 	 * blocking (expensive).
    917 	 */
    918 	s = splsoftnet();
    919 	solock(so);
    920 	atomic = sosendallatonce(so) || top;
    921 	if (uio)
    922 		resid = uio->uio_resid;
    923 	else
    924 		resid = top->m_pkthdr.len;
    925 	/*
    926 	 * In theory resid should be unsigned.
    927 	 * However, space must be signed, as it might be less than 0
    928 	 * if we over-committed, and we must use a signed comparison
    929 	 * of space and resid.  On the other hand, a negative resid
    930 	 * causes us to loop sending 0-length segments to the protocol.
    931 	 */
    932 	if (resid < 0) {
    933 		error = EINVAL;
    934 		goto out;
    935 	}
    936 	dontroute =
    937 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    938 	    (so->so_proto->pr_flags & PR_ATOMIC);
    939 	l->l_ru.ru_msgsnd++;
    940 	if (control)
    941 		clen = control->m_len;
    942  restart:
    943 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    944 		goto out;
    945 	do {
    946 		if (so->so_state & SS_CANTSENDMORE) {
    947 			error = EPIPE;
    948 			goto release;
    949 		}
    950 		if (so->so_error) {
    951 			error = so->so_error;
    952 			so->so_error = 0;
    953 			goto release;
    954 		}
    955 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    956 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    957 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    958 				    !(resid == 0 && clen != 0)) {
    959 					error = ENOTCONN;
    960 					goto release;
    961 				}
    962 			} else if (addr == 0) {
    963 				error = EDESTADDRREQ;
    964 				goto release;
    965 			}
    966 		}
    967 		space = sbspace(&so->so_snd);
    968 		if (flags & MSG_OOB)
    969 			space += 1024;
    970 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    971 		    clen > so->so_snd.sb_hiwat) {
    972 			error = EMSGSIZE;
    973 			goto release;
    974 		}
    975 		if (space < resid + clen &&
    976 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    977 			if (so->so_nbio) {
    978 				error = EWOULDBLOCK;
    979 				goto release;
    980 			}
    981 			sbunlock(&so->so_snd);
    982 			if (wakeup_state & SS_RESTARTSYS) {
    983 				error = ERESTART;
    984 				goto out;
    985 			}
    986 			error = sbwait(&so->so_snd);
    987 			if (error)
    988 				goto out;
    989 			wakeup_state = so->so_state;
    990 			goto restart;
    991 		}
    992 		wakeup_state = 0;
    993 		mp = &top;
    994 		space -= clen;
    995 		do {
    996 			if (uio == NULL) {
    997 				/*
    998 				 * Data is prepackaged in "top".
    999 				 */
   1000 				resid = 0;
   1001 				if (flags & MSG_EOR)
   1002 					top->m_flags |= M_EOR;
   1003 			} else do {
   1004 				sounlock(so);
   1005 				splx(s);
   1006 				if (top == NULL) {
   1007 					m = m_gethdr(M_WAIT, MT_DATA);
   1008 					mlen = MHLEN;
   1009 					m->m_pkthdr.len = 0;
   1010 					m->m_pkthdr.rcvif = NULL;
   1011 				} else {
   1012 					m = m_get(M_WAIT, MT_DATA);
   1013 					mlen = MLEN;
   1014 				}
   1015 				MCLAIM(m, so->so_snd.sb_mowner);
   1016 				if (sock_loan_thresh >= 0 &&
   1017 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
   1018 				    space >= sock_loan_thresh &&
   1019 				    (len = sosend_loan(so, uio, m,
   1020 						       space)) != 0) {
   1021 					SOSEND_COUNTER_INCR(&sosend_loan_big);
   1022 					space -= len;
   1023 					goto have_data;
   1024 				}
   1025 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
   1026 					SOSEND_COUNTER_INCR(&sosend_copy_big);
   1027 					m_clget(m, M_DONTWAIT);
   1028 					if ((m->m_flags & M_EXT) == 0)
   1029 						goto nopages;
   1030 					mlen = MCLBYTES;
   1031 					if (atomic && top == 0) {
   1032 						len = lmin(MCLBYTES - max_hdr,
   1033 						    resid);
   1034 						m->m_data += max_hdr;
   1035 					} else
   1036 						len = lmin(MCLBYTES, resid);
   1037 					space -= len;
   1038 				} else {
   1039  nopages:
   1040 					SOSEND_COUNTER_INCR(&sosend_copy_small);
   1041 					len = lmin(lmin(mlen, resid), space);
   1042 					space -= len;
   1043 					/*
   1044 					 * For datagram protocols, leave room
   1045 					 * for protocol headers in first mbuf.
   1046 					 */
   1047 					if (atomic && top == 0 && len < mlen)
   1048 						MH_ALIGN(m, len);
   1049 				}
   1050 				error = uiomove(mtod(m, void *), (int)len, uio);
   1051  have_data:
   1052 				resid = uio->uio_resid;
   1053 				m->m_len = len;
   1054 				*mp = m;
   1055 				top->m_pkthdr.len += len;
   1056 				s = splsoftnet();
   1057 				solock(so);
   1058 				if (error != 0)
   1059 					goto release;
   1060 				mp = &m->m_next;
   1061 				if (resid <= 0) {
   1062 					if (flags & MSG_EOR)
   1063 						top->m_flags |= M_EOR;
   1064 					break;
   1065 				}
   1066 			} while (space > 0 && atomic);
   1067 
   1068 			if (so->so_state & SS_CANTSENDMORE) {
   1069 				error = EPIPE;
   1070 				goto release;
   1071 			}
   1072 			if (dontroute)
   1073 				so->so_options |= SO_DONTROUTE;
   1074 			if (resid > 0)
   1075 				so->so_state |= SS_MORETOCOME;
   1076 			error = (*so->so_proto->pr_usrreq)(so,
   1077 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
   1078 			    top, addr, control, curlwp);
   1079 			if (dontroute)
   1080 				so->so_options &= ~SO_DONTROUTE;
   1081 			if (resid > 0)
   1082 				so->so_state &= ~SS_MORETOCOME;
   1083 			clen = 0;
   1084 			control = NULL;
   1085 			top = NULL;
   1086 			mp = &top;
   1087 			if (error != 0)
   1088 				goto release;
   1089 		} while (resid && space > 0);
   1090 	} while (resid);
   1091 
   1092  release:
   1093 	sbunlock(&so->so_snd);
   1094  out:
   1095 	sounlock(so);
   1096 	splx(s);
   1097 	if (top)
   1098 		m_freem(top);
   1099 	if (control)
   1100 		m_freem(control);
   1101 	return (error);
   1102 }
   1103 
   1104 /*
   1105  * Following replacement or removal of the first mbuf on the first
   1106  * mbuf chain of a socket buffer, push necessary state changes back
   1107  * into the socket buffer so that other consumers see the values
   1108  * consistently.  'nextrecord' is the callers locally stored value of
   1109  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1110  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1111  */
   1112 static void
   1113 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1114 {
   1115 
   1116 	KASSERT(solocked(sb->sb_so));
   1117 
   1118 	/*
   1119 	 * First, update for the new value of nextrecord.  If necessary,
   1120 	 * make it the first record.
   1121 	 */
   1122 	if (sb->sb_mb != NULL)
   1123 		sb->sb_mb->m_nextpkt = nextrecord;
   1124 	else
   1125 		sb->sb_mb = nextrecord;
   1126 
   1127         /*
   1128          * Now update any dependent socket buffer fields to reflect
   1129          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1130          * the addition of a second clause that takes care of the
   1131          * case where sb_mb has been updated, but remains the last
   1132          * record.
   1133          */
   1134         if (sb->sb_mb == NULL) {
   1135                 sb->sb_mbtail = NULL;
   1136                 sb->sb_lastrecord = NULL;
   1137         } else if (sb->sb_mb->m_nextpkt == NULL)
   1138                 sb->sb_lastrecord = sb->sb_mb;
   1139 }
   1140 
   1141 /*
   1142  * Implement receive operations on a socket.
   1143  * We depend on the way that records are added to the sockbuf
   1144  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1145  * must begin with an address if the protocol so specifies,
   1146  * followed by an optional mbuf or mbufs containing ancillary data,
   1147  * and then zero or more mbufs of data.
   1148  * In order to avoid blocking network interrupts for the entire time here,
   1149  * we splx() while doing the actual copy to user space.
   1150  * Although the sockbuf is locked, new data may still be appended,
   1151  * and thus we must maintain consistency of the sockbuf during that time.
   1152  *
   1153  * The caller may receive the data as a single mbuf chain by supplying
   1154  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1155  * only for the count in uio_resid.
   1156  */
   1157 int
   1158 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1159 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1160 {
   1161 	struct lwp *l = curlwp;
   1162 	struct mbuf	*m, **mp, *mt;
   1163 	int atomic, flags, len, error, s, offset, moff, type, orig_resid;
   1164 	const struct protosw	*pr;
   1165 	struct mbuf	*nextrecord;
   1166 	int		mbuf_removed = 0;
   1167 	const struct domain *dom;
   1168 	short		wakeup_state = 0;
   1169 
   1170 	pr = so->so_proto;
   1171 	atomic = pr->pr_flags & PR_ATOMIC;
   1172 	dom = pr->pr_domain;
   1173 	mp = mp0;
   1174 	type = 0;
   1175 	orig_resid = uio->uio_resid;
   1176 
   1177 	if (paddr != NULL)
   1178 		*paddr = NULL;
   1179 	if (controlp != NULL)
   1180 		*controlp = NULL;
   1181 	if (flagsp != NULL)
   1182 		flags = *flagsp &~ MSG_EOR;
   1183 	else
   1184 		flags = 0;
   1185 
   1186 	if ((flags & MSG_DONTWAIT) == 0)
   1187 		sodopendfree();
   1188 
   1189 	if (flags & MSG_OOB) {
   1190 		m = m_get(M_WAIT, MT_DATA);
   1191 		solock(so);
   1192 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
   1193 		    (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
   1194 		sounlock(so);
   1195 		if (error)
   1196 			goto bad;
   1197 		do {
   1198 			error = uiomove(mtod(m, void *),
   1199 			    (int) min(uio->uio_resid, m->m_len), uio);
   1200 			m = m_free(m);
   1201 		} while (uio->uio_resid > 0 && error == 0 && m);
   1202  bad:
   1203 		if (m != NULL)
   1204 			m_freem(m);
   1205 		return error;
   1206 	}
   1207 	if (mp != NULL)
   1208 		*mp = NULL;
   1209 
   1210 	/*
   1211 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1212 	 * protocol processing soft interrupts from interrupting us and
   1213 	 * blocking (expensive).
   1214 	 */
   1215 	s = splsoftnet();
   1216 	solock(so);
   1217 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
   1218 		(*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
   1219 
   1220  restart:
   1221 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1222 		sounlock(so);
   1223 		splx(s);
   1224 		return error;
   1225 	}
   1226 
   1227 	m = so->so_rcv.sb_mb;
   1228 	/*
   1229 	 * If we have less data than requested, block awaiting more
   1230 	 * (subject to any timeout) if:
   1231 	 *   1. the current count is less than the low water mark,
   1232 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1233 	 *	receive operation at once if we block (resid <= hiwat), or
   1234 	 *   3. MSG_DONTWAIT is not set.
   1235 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1236 	 * we have to do the receive in sections, and thus risk returning
   1237 	 * a short count if a timeout or signal occurs after we start.
   1238 	 */
   1239 	if (m == NULL ||
   1240 	    ((flags & MSG_DONTWAIT) == 0 &&
   1241 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1242 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1243 	      ((flags & MSG_WAITALL) &&
   1244 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1245 	     m->m_nextpkt == NULL && !atomic)) {
   1246 #ifdef DIAGNOSTIC
   1247 		if (m == NULL && so->so_rcv.sb_cc)
   1248 			panic("receive 1");
   1249 #endif
   1250 		if (so->so_error) {
   1251 			if (m != NULL)
   1252 				goto dontblock;
   1253 			error = so->so_error;
   1254 			if ((flags & MSG_PEEK) == 0)
   1255 				so->so_error = 0;
   1256 			goto release;
   1257 		}
   1258 		if (so->so_state & SS_CANTRCVMORE) {
   1259 			if (m != NULL)
   1260 				goto dontblock;
   1261 			else
   1262 				goto release;
   1263 		}
   1264 		for (; m != NULL; m = m->m_next)
   1265 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1266 				m = so->so_rcv.sb_mb;
   1267 				goto dontblock;
   1268 			}
   1269 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1270 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1271 			error = ENOTCONN;
   1272 			goto release;
   1273 		}
   1274 		if (uio->uio_resid == 0)
   1275 			goto release;
   1276 		if (so->so_nbio || (flags & MSG_DONTWAIT)) {
   1277 			error = EWOULDBLOCK;
   1278 			goto release;
   1279 		}
   1280 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1281 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1282 		sbunlock(&so->so_rcv);
   1283 		if (wakeup_state & SS_RESTARTSYS)
   1284 			error = ERESTART;
   1285 		else
   1286 			error = sbwait(&so->so_rcv);
   1287 		if (error != 0) {
   1288 			sounlock(so);
   1289 			splx(s);
   1290 			return error;
   1291 		}
   1292 		wakeup_state = so->so_state;
   1293 		goto restart;
   1294 	}
   1295  dontblock:
   1296 	/*
   1297 	 * On entry here, m points to the first record of the socket buffer.
   1298 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1299 	 * pointer to the next record in the socket buffer.  We must keep the
   1300 	 * various socket buffer pointers and local stack versions of the
   1301 	 * pointers in sync, pushing out modifications before dropping the
   1302 	 * socket lock, and re-reading them when picking it up.
   1303 	 *
   1304 	 * Otherwise, we will race with the network stack appending new data
   1305 	 * or records onto the socket buffer by using inconsistent/stale
   1306 	 * versions of the field, possibly resulting in socket buffer
   1307 	 * corruption.
   1308 	 *
   1309 	 * By holding the high-level sblock(), we prevent simultaneous
   1310 	 * readers from pulling off the front of the socket buffer.
   1311 	 */
   1312 	if (l != NULL)
   1313 		l->l_ru.ru_msgrcv++;
   1314 	KASSERT(m == so->so_rcv.sb_mb);
   1315 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1316 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1317 	nextrecord = m->m_nextpkt;
   1318 	if (pr->pr_flags & PR_ADDR) {
   1319 #ifdef DIAGNOSTIC
   1320 		if (m->m_type != MT_SONAME)
   1321 			panic("receive 1a");
   1322 #endif
   1323 		orig_resid = 0;
   1324 		if (flags & MSG_PEEK) {
   1325 			if (paddr)
   1326 				*paddr = m_copy(m, 0, m->m_len);
   1327 			m = m->m_next;
   1328 		} else {
   1329 			sbfree(&so->so_rcv, m);
   1330 			mbuf_removed = 1;
   1331 			if (paddr != NULL) {
   1332 				*paddr = m;
   1333 				so->so_rcv.sb_mb = m->m_next;
   1334 				m->m_next = NULL;
   1335 				m = so->so_rcv.sb_mb;
   1336 			} else {
   1337 				MFREE(m, so->so_rcv.sb_mb);
   1338 				m = so->so_rcv.sb_mb;
   1339 			}
   1340 			sbsync(&so->so_rcv, nextrecord);
   1341 		}
   1342 	}
   1343 
   1344 	/*
   1345 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1346 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1347 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1348 	 * perform externalization (or freeing if controlp == NULL).
   1349 	 */
   1350 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1351 		struct mbuf *cm = NULL, *cmn;
   1352 		struct mbuf **cme = &cm;
   1353 
   1354 		do {
   1355 			if (flags & MSG_PEEK) {
   1356 				if (controlp != NULL) {
   1357 					*controlp = m_copy(m, 0, m->m_len);
   1358 					controlp = &(*controlp)->m_next;
   1359 				}
   1360 				m = m->m_next;
   1361 			} else {
   1362 				sbfree(&so->so_rcv, m);
   1363 				so->so_rcv.sb_mb = m->m_next;
   1364 				m->m_next = NULL;
   1365 				*cme = m;
   1366 				cme = &(*cme)->m_next;
   1367 				m = so->so_rcv.sb_mb;
   1368 			}
   1369 		} while (m != NULL && m->m_type == MT_CONTROL);
   1370 		if ((flags & MSG_PEEK) == 0)
   1371 			sbsync(&so->so_rcv, nextrecord);
   1372 		for (; cm != NULL; cm = cmn) {
   1373 			cmn = cm->m_next;
   1374 			cm->m_next = NULL;
   1375 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1376 			if (controlp != NULL) {
   1377 				if (dom->dom_externalize != NULL &&
   1378 				    type == SCM_RIGHTS) {
   1379 					sounlock(so);
   1380 					splx(s);
   1381 					error = (*dom->dom_externalize)(cm, l);
   1382 					s = splsoftnet();
   1383 					solock(so);
   1384 				}
   1385 				*controlp = cm;
   1386 				while (*controlp != NULL)
   1387 					controlp = &(*controlp)->m_next;
   1388 			} else {
   1389 				/*
   1390 				 * Dispose of any SCM_RIGHTS message that went
   1391 				 * through the read path rather than recv.
   1392 				 */
   1393 				if (dom->dom_dispose != NULL &&
   1394 				    type == SCM_RIGHTS) {
   1395 				    	sounlock(so);
   1396 					(*dom->dom_dispose)(cm);
   1397 					solock(so);
   1398 				}
   1399 				m_freem(cm);
   1400 			}
   1401 		}
   1402 		if (m != NULL)
   1403 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1404 		else
   1405 			nextrecord = so->so_rcv.sb_mb;
   1406 		orig_resid = 0;
   1407 	}
   1408 
   1409 	/* If m is non-NULL, we have some data to read. */
   1410 	if (__predict_true(m != NULL)) {
   1411 		type = m->m_type;
   1412 		if (type == MT_OOBDATA)
   1413 			flags |= MSG_OOB;
   1414 	}
   1415 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1416 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1417 
   1418 	moff = 0;
   1419 	offset = 0;
   1420 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1421 		if (m->m_type == MT_OOBDATA) {
   1422 			if (type != MT_OOBDATA)
   1423 				break;
   1424 		} else if (type == MT_OOBDATA)
   1425 			break;
   1426 #ifdef DIAGNOSTIC
   1427 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1428 			panic("receive 3");
   1429 #endif
   1430 		so->so_state &= ~SS_RCVATMARK;
   1431 		wakeup_state = 0;
   1432 		len = uio->uio_resid;
   1433 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1434 			len = so->so_oobmark - offset;
   1435 		if (len > m->m_len - moff)
   1436 			len = m->m_len - moff;
   1437 		/*
   1438 		 * If mp is set, just pass back the mbufs.
   1439 		 * Otherwise copy them out via the uio, then free.
   1440 		 * Sockbuf must be consistent here (points to current mbuf,
   1441 		 * it points to next record) when we drop priority;
   1442 		 * we must note any additions to the sockbuf when we
   1443 		 * block interrupts again.
   1444 		 */
   1445 		if (mp == NULL) {
   1446 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1447 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1448 			sounlock(so);
   1449 			splx(s);
   1450 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
   1451 			s = splsoftnet();
   1452 			solock(so);
   1453 			if (error != 0) {
   1454 				/*
   1455 				 * If any part of the record has been removed
   1456 				 * (such as the MT_SONAME mbuf, which will
   1457 				 * happen when PR_ADDR, and thus also
   1458 				 * PR_ATOMIC, is set), then drop the entire
   1459 				 * record to maintain the atomicity of the
   1460 				 * receive operation.
   1461 				 *
   1462 				 * This avoids a later panic("receive 1a")
   1463 				 * when compiled with DIAGNOSTIC.
   1464 				 */
   1465 				if (m && mbuf_removed && atomic)
   1466 					(void) sbdroprecord(&so->so_rcv);
   1467 
   1468 				goto release;
   1469 			}
   1470 		} else
   1471 			uio->uio_resid -= len;
   1472 		if (len == m->m_len - moff) {
   1473 			if (m->m_flags & M_EOR)
   1474 				flags |= MSG_EOR;
   1475 			if (flags & MSG_PEEK) {
   1476 				m = m->m_next;
   1477 				moff = 0;
   1478 			} else {
   1479 				nextrecord = m->m_nextpkt;
   1480 				sbfree(&so->so_rcv, m);
   1481 				if (mp) {
   1482 					*mp = m;
   1483 					mp = &m->m_next;
   1484 					so->so_rcv.sb_mb = m = m->m_next;
   1485 					*mp = NULL;
   1486 				} else {
   1487 					MFREE(m, so->so_rcv.sb_mb);
   1488 					m = so->so_rcv.sb_mb;
   1489 				}
   1490 				/*
   1491 				 * If m != NULL, we also know that
   1492 				 * so->so_rcv.sb_mb != NULL.
   1493 				 */
   1494 				KASSERT(so->so_rcv.sb_mb == m);
   1495 				if (m) {
   1496 					m->m_nextpkt = nextrecord;
   1497 					if (nextrecord == NULL)
   1498 						so->so_rcv.sb_lastrecord = m;
   1499 				} else {
   1500 					so->so_rcv.sb_mb = nextrecord;
   1501 					SB_EMPTY_FIXUP(&so->so_rcv);
   1502 				}
   1503 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1504 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1505 			}
   1506 		} else if (flags & MSG_PEEK)
   1507 			moff += len;
   1508 		else {
   1509 			if (mp != NULL) {
   1510 				mt = m_copym(m, 0, len, M_NOWAIT);
   1511 				if (__predict_false(mt == NULL)) {
   1512 					sounlock(so);
   1513 					mt = m_copym(m, 0, len, M_WAIT);
   1514 					solock(so);
   1515 				}
   1516 				*mp = mt;
   1517 			}
   1518 			m->m_data += len;
   1519 			m->m_len -= len;
   1520 			so->so_rcv.sb_cc -= len;
   1521 		}
   1522 		if (so->so_oobmark) {
   1523 			if ((flags & MSG_PEEK) == 0) {
   1524 				so->so_oobmark -= len;
   1525 				if (so->so_oobmark == 0) {
   1526 					so->so_state |= SS_RCVATMARK;
   1527 					break;
   1528 				}
   1529 			} else {
   1530 				offset += len;
   1531 				if (offset == so->so_oobmark)
   1532 					break;
   1533 			}
   1534 		}
   1535 		if (flags & MSG_EOR)
   1536 			break;
   1537 		/*
   1538 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1539 		 * we must not quit until "uio->uio_resid == 0" or an error
   1540 		 * termination.  If a signal/timeout occurs, return
   1541 		 * with a short count but without error.
   1542 		 * Keep sockbuf locked against other readers.
   1543 		 */
   1544 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1545 		    !sosendallatonce(so) && !nextrecord) {
   1546 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1547 				break;
   1548 			/*
   1549 			 * If we are peeking and the socket receive buffer is
   1550 			 * full, stop since we can't get more data to peek at.
   1551 			 */
   1552 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1553 				break;
   1554 			/*
   1555 			 * If we've drained the socket buffer, tell the
   1556 			 * protocol in case it needs to do something to
   1557 			 * get it filled again.
   1558 			 */
   1559 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1560 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1561 				    NULL, (struct mbuf *)(long)flags, NULL, l);
   1562 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1563 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1564 			if (wakeup_state & SS_RESTARTSYS)
   1565 				error = ERESTART;
   1566 			else
   1567 				error = sbwait(&so->so_rcv);
   1568 			if (error != 0) {
   1569 				sbunlock(&so->so_rcv);
   1570 				sounlock(so);
   1571 				splx(s);
   1572 				return 0;
   1573 			}
   1574 			if ((m = so->so_rcv.sb_mb) != NULL)
   1575 				nextrecord = m->m_nextpkt;
   1576 			wakeup_state = so->so_state;
   1577 		}
   1578 	}
   1579 
   1580 	if (m && atomic) {
   1581 		flags |= MSG_TRUNC;
   1582 		if ((flags & MSG_PEEK) == 0)
   1583 			(void) sbdroprecord(&so->so_rcv);
   1584 	}
   1585 	if ((flags & MSG_PEEK) == 0) {
   1586 		if (m == NULL) {
   1587 			/*
   1588 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1589 			 * part makes sure sb_lastrecord is up-to-date if
   1590 			 * there is still data in the socket buffer.
   1591 			 */
   1592 			so->so_rcv.sb_mb = nextrecord;
   1593 			if (so->so_rcv.sb_mb == NULL) {
   1594 				so->so_rcv.sb_mbtail = NULL;
   1595 				so->so_rcv.sb_lastrecord = NULL;
   1596 			} else if (nextrecord->m_nextpkt == NULL)
   1597 				so->so_rcv.sb_lastrecord = nextrecord;
   1598 		}
   1599 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1600 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1601 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1602 			(*pr->pr_usrreq)(so, PRU_RCVD, NULL,
   1603 			    (struct mbuf *)(long)flags, NULL, l);
   1604 	}
   1605 	if (orig_resid == uio->uio_resid && orig_resid &&
   1606 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1607 		sbunlock(&so->so_rcv);
   1608 		goto restart;
   1609 	}
   1610 
   1611 	if (flagsp != NULL)
   1612 		*flagsp |= flags;
   1613  release:
   1614 	sbunlock(&so->so_rcv);
   1615 	sounlock(so);
   1616 	splx(s);
   1617 	return error;
   1618 }
   1619 
   1620 int
   1621 soshutdown(struct socket *so, int how)
   1622 {
   1623 	const struct protosw	*pr;
   1624 	int	error;
   1625 
   1626 	KASSERT(solocked(so));
   1627 
   1628 	pr = so->so_proto;
   1629 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1630 		return (EINVAL);
   1631 
   1632 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1633 		sorflush(so);
   1634 		error = 0;
   1635 	}
   1636 	if (how == SHUT_WR || how == SHUT_RDWR)
   1637 		error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
   1638 		    NULL, NULL, NULL);
   1639 
   1640 	return error;
   1641 }
   1642 
   1643 void
   1644 sorestart(struct socket *so)
   1645 {
   1646 	/*
   1647 	 * An application has called close() on an fd on which another
   1648 	 * of its threads has called a socket system call.
   1649 	 * Mark this and wake everyone up, and code that would block again
   1650 	 * instead returns ERESTART.
   1651 	 * On system call re-entry the fd is validated and EBADF returned.
   1652 	 * Any other fd will block again on the 2nd syscall.
   1653 	 */
   1654 	solock(so);
   1655 	so->so_state |= SS_RESTARTSYS;
   1656 	cv_broadcast(&so->so_cv);
   1657 	cv_broadcast(&so->so_snd.sb_cv);
   1658 	cv_broadcast(&so->so_rcv.sb_cv);
   1659 	sounlock(so);
   1660 }
   1661 
   1662 void
   1663 sorflush(struct socket *so)
   1664 {
   1665 	struct sockbuf	*sb, asb;
   1666 	const struct protosw	*pr;
   1667 
   1668 	KASSERT(solocked(so));
   1669 
   1670 	sb = &so->so_rcv;
   1671 	pr = so->so_proto;
   1672 	socantrcvmore(so);
   1673 	sb->sb_flags |= SB_NOINTR;
   1674 	(void )sblock(sb, M_WAITOK);
   1675 	sbunlock(sb);
   1676 	asb = *sb;
   1677 	/*
   1678 	 * Clear most of the sockbuf structure, but leave some of the
   1679 	 * fields valid.
   1680 	 */
   1681 	memset(&sb->sb_startzero, 0,
   1682 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1683 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1684 		sounlock(so);
   1685 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1686 		solock(so);
   1687 	}
   1688 	sbrelease(&asb, so);
   1689 }
   1690 
   1691 /*
   1692  * internal set SOL_SOCKET options
   1693  */
   1694 static int
   1695 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1696 {
   1697 	int error = EINVAL, optval, opt;
   1698 	struct linger l;
   1699 	struct timeval tv;
   1700 
   1701 	switch ((opt = sopt->sopt_name)) {
   1702 
   1703 	case SO_ACCEPTFILTER:
   1704 		error = accept_filt_setopt(so, sopt);
   1705 		KASSERT(solocked(so));
   1706 		break;
   1707 
   1708   	case SO_LINGER:
   1709  		error = sockopt_get(sopt, &l, sizeof(l));
   1710 		solock(so);
   1711  		if (error)
   1712  			break;
   1713  		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1714  		    l.l_linger > (INT_MAX / hz)) {
   1715 			error = EDOM;
   1716 			break;
   1717 		}
   1718  		so->so_linger = l.l_linger;
   1719  		if (l.l_onoff)
   1720  			so->so_options |= SO_LINGER;
   1721  		else
   1722  			so->so_options &= ~SO_LINGER;
   1723    		break;
   1724 
   1725 	case SO_DEBUG:
   1726 	case SO_KEEPALIVE:
   1727 	case SO_DONTROUTE:
   1728 	case SO_USELOOPBACK:
   1729 	case SO_BROADCAST:
   1730 	case SO_REUSEADDR:
   1731 	case SO_REUSEPORT:
   1732 	case SO_OOBINLINE:
   1733 	case SO_TIMESTAMP:
   1734 #ifdef SO_OTIMESTAMP
   1735 	case SO_OTIMESTAMP:
   1736 #endif
   1737 		error = sockopt_getint(sopt, &optval);
   1738 		solock(so);
   1739 		if (error)
   1740 			break;
   1741 		if (optval)
   1742 			so->so_options |= opt;
   1743 		else
   1744 			so->so_options &= ~opt;
   1745 		break;
   1746 
   1747 	case SO_SNDBUF:
   1748 	case SO_RCVBUF:
   1749 	case SO_SNDLOWAT:
   1750 	case SO_RCVLOWAT:
   1751 		error = sockopt_getint(sopt, &optval);
   1752 		solock(so);
   1753 		if (error)
   1754 			break;
   1755 
   1756 		/*
   1757 		 * Values < 1 make no sense for any of these
   1758 		 * options, so disallow them.
   1759 		 */
   1760 		if (optval < 1) {
   1761 			error = EINVAL;
   1762 			break;
   1763 		}
   1764 
   1765 		switch (opt) {
   1766 		case SO_SNDBUF:
   1767 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
   1768 				error = ENOBUFS;
   1769 				break;
   1770 			}
   1771 			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1772 			break;
   1773 
   1774 		case SO_RCVBUF:
   1775 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
   1776 				error = ENOBUFS;
   1777 				break;
   1778 			}
   1779 			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1780 			break;
   1781 
   1782 		/*
   1783 		 * Make sure the low-water is never greater than
   1784 		 * the high-water.
   1785 		 */
   1786 		case SO_SNDLOWAT:
   1787 			if (optval > so->so_snd.sb_hiwat)
   1788 				optval = so->so_snd.sb_hiwat;
   1789 
   1790 			so->so_snd.sb_lowat = optval;
   1791 			break;
   1792 
   1793 		case SO_RCVLOWAT:
   1794 			if (optval > so->so_rcv.sb_hiwat)
   1795 				optval = so->so_rcv.sb_hiwat;
   1796 
   1797 			so->so_rcv.sb_lowat = optval;
   1798 			break;
   1799 		}
   1800 		break;
   1801 
   1802 #ifdef COMPAT_50
   1803 	case SO_OSNDTIMEO:
   1804 	case SO_ORCVTIMEO: {
   1805 		struct timeval50 otv;
   1806 		error = sockopt_get(sopt, &otv, sizeof(otv));
   1807 		if (error) {
   1808 			solock(so);
   1809 			break;
   1810 		}
   1811 		timeval50_to_timeval(&otv, &tv);
   1812 		opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
   1813 		error = 0;
   1814 		/*FALLTHROUGH*/
   1815 	}
   1816 #endif /* COMPAT_50 */
   1817 
   1818 	case SO_SNDTIMEO:
   1819 	case SO_RCVTIMEO:
   1820 		if (error)
   1821 			error = sockopt_get(sopt, &tv, sizeof(tv));
   1822 		solock(so);
   1823 		if (error)
   1824 			break;
   1825 
   1826 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
   1827 			error = EDOM;
   1828 			break;
   1829 		}
   1830 
   1831 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1832 		if (optval == 0 && tv.tv_usec != 0)
   1833 			optval = 1;
   1834 
   1835 		switch (opt) {
   1836 		case SO_SNDTIMEO:
   1837 			so->so_snd.sb_timeo = optval;
   1838 			break;
   1839 		case SO_RCVTIMEO:
   1840 			so->so_rcv.sb_timeo = optval;
   1841 			break;
   1842 		}
   1843 		break;
   1844 
   1845 	default:
   1846 		solock(so);
   1847 		error = ENOPROTOOPT;
   1848 		break;
   1849 	}
   1850 	KASSERT(solocked(so));
   1851 	return error;
   1852 }
   1853 
   1854 int
   1855 sosetopt(struct socket *so, struct sockopt *sopt)
   1856 {
   1857 	int error, prerr;
   1858 
   1859 	if (sopt->sopt_level == SOL_SOCKET) {
   1860 		error = sosetopt1(so, sopt);
   1861 		KASSERT(solocked(so));
   1862 	} else {
   1863 		error = ENOPROTOOPT;
   1864 		solock(so);
   1865 	}
   1866 
   1867 	if ((error == 0 || error == ENOPROTOOPT) &&
   1868 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1869 		/* give the protocol stack a shot */
   1870 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1871 		if (prerr == 0)
   1872 			error = 0;
   1873 		else if (prerr != ENOPROTOOPT)
   1874 			error = prerr;
   1875 	}
   1876 	sounlock(so);
   1877 	return error;
   1878 }
   1879 
   1880 /*
   1881  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1882  */
   1883 int
   1884 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1885     const void *val, size_t valsize)
   1886 {
   1887 	struct sockopt sopt;
   1888 	int error;
   1889 
   1890 	KASSERT(valsize == 0 || val != NULL);
   1891 
   1892 	sockopt_init(&sopt, level, name, valsize);
   1893 	sockopt_set(&sopt, val, valsize);
   1894 
   1895 	error = sosetopt(so, &sopt);
   1896 
   1897 	sockopt_destroy(&sopt);
   1898 
   1899 	return error;
   1900 }
   1901 
   1902 /*
   1903  * internal get SOL_SOCKET options
   1904  */
   1905 static int
   1906 sogetopt1(struct socket *so, struct sockopt *sopt)
   1907 {
   1908 	int error, optval, opt;
   1909 	struct linger l;
   1910 	struct timeval tv;
   1911 
   1912 	switch ((opt = sopt->sopt_name)) {
   1913 
   1914 	case SO_ACCEPTFILTER:
   1915 		error = accept_filt_getopt(so, sopt);
   1916 		break;
   1917 
   1918 	case SO_LINGER:
   1919 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1920 		l.l_linger = so->so_linger;
   1921 
   1922 		error = sockopt_set(sopt, &l, sizeof(l));
   1923 		break;
   1924 
   1925 	case SO_USELOOPBACK:
   1926 	case SO_DONTROUTE:
   1927 	case SO_DEBUG:
   1928 	case SO_KEEPALIVE:
   1929 	case SO_REUSEADDR:
   1930 	case SO_REUSEPORT:
   1931 	case SO_BROADCAST:
   1932 	case SO_OOBINLINE:
   1933 	case SO_TIMESTAMP:
   1934 #ifdef SO_OTIMESTAMP
   1935 	case SO_OTIMESTAMP:
   1936 #endif
   1937 		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
   1938 		break;
   1939 
   1940 	case SO_TYPE:
   1941 		error = sockopt_setint(sopt, so->so_type);
   1942 		break;
   1943 
   1944 	case SO_ERROR:
   1945 		error = sockopt_setint(sopt, so->so_error);
   1946 		so->so_error = 0;
   1947 		break;
   1948 
   1949 	case SO_SNDBUF:
   1950 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1951 		break;
   1952 
   1953 	case SO_RCVBUF:
   1954 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1955 		break;
   1956 
   1957 	case SO_SNDLOWAT:
   1958 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1959 		break;
   1960 
   1961 	case SO_RCVLOWAT:
   1962 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1963 		break;
   1964 
   1965 #ifdef COMPAT_50
   1966 	case SO_OSNDTIMEO:
   1967 	case SO_ORCVTIMEO: {
   1968 		struct timeval50 otv;
   1969 
   1970 		optval = (opt == SO_OSNDTIMEO ?
   1971 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1972 
   1973 		otv.tv_sec = optval / hz;
   1974 		otv.tv_usec = (optval % hz) * tick;
   1975 
   1976 		error = sockopt_set(sopt, &otv, sizeof(otv));
   1977 		break;
   1978 	}
   1979 #endif /* COMPAT_50 */
   1980 
   1981 	case SO_SNDTIMEO:
   1982 	case SO_RCVTIMEO:
   1983 		optval = (opt == SO_SNDTIMEO ?
   1984 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1985 
   1986 		tv.tv_sec = optval / hz;
   1987 		tv.tv_usec = (optval % hz) * tick;
   1988 
   1989 		error = sockopt_set(sopt, &tv, sizeof(tv));
   1990 		break;
   1991 
   1992 	case SO_OVERFLOWED:
   1993 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   1994 		break;
   1995 
   1996 	default:
   1997 		error = ENOPROTOOPT;
   1998 		break;
   1999 	}
   2000 
   2001 	return (error);
   2002 }
   2003 
   2004 int
   2005 sogetopt(struct socket *so, struct sockopt *sopt)
   2006 {
   2007 	int		error;
   2008 
   2009 	solock(so);
   2010 	if (sopt->sopt_level != SOL_SOCKET) {
   2011 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   2012 			error = ((*so->so_proto->pr_ctloutput)
   2013 			    (PRCO_GETOPT, so, sopt));
   2014 		} else
   2015 			error = (ENOPROTOOPT);
   2016 	} else {
   2017 		error = sogetopt1(so, sopt);
   2018 	}
   2019 	sounlock(so);
   2020 	return (error);
   2021 }
   2022 
   2023 /*
   2024  * alloc sockopt data buffer buffer
   2025  *	- will be released at destroy
   2026  */
   2027 static int
   2028 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
   2029 {
   2030 
   2031 	KASSERT(sopt->sopt_size == 0);
   2032 
   2033 	if (len > sizeof(sopt->sopt_buf)) {
   2034 		sopt->sopt_data = kmem_zalloc(len, kmflag);
   2035 		if (sopt->sopt_data == NULL)
   2036 			return ENOMEM;
   2037 	} else
   2038 		sopt->sopt_data = sopt->sopt_buf;
   2039 
   2040 	sopt->sopt_size = len;
   2041 	return 0;
   2042 }
   2043 
   2044 /*
   2045  * initialise sockopt storage
   2046  *	- MAY sleep during allocation
   2047  */
   2048 void
   2049 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   2050 {
   2051 
   2052 	memset(sopt, 0, sizeof(*sopt));
   2053 
   2054 	sopt->sopt_level = level;
   2055 	sopt->sopt_name = name;
   2056 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
   2057 }
   2058 
   2059 /*
   2060  * destroy sockopt storage
   2061  *	- will release any held memory references
   2062  */
   2063 void
   2064 sockopt_destroy(struct sockopt *sopt)
   2065 {
   2066 
   2067 	if (sopt->sopt_data != sopt->sopt_buf)
   2068 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   2069 
   2070 	memset(sopt, 0, sizeof(*sopt));
   2071 }
   2072 
   2073 /*
   2074  * set sockopt value
   2075  *	- value is copied into sockopt
   2076  * 	- memory is allocated when necessary, will not sleep
   2077  */
   2078 int
   2079 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   2080 {
   2081 	int error;
   2082 
   2083 	if (sopt->sopt_size == 0) {
   2084 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2085 		if (error)
   2086 			return error;
   2087 	}
   2088 
   2089 	KASSERT(sopt->sopt_size == len);
   2090 	memcpy(sopt->sopt_data, buf, len);
   2091 	return 0;
   2092 }
   2093 
   2094 /*
   2095  * common case of set sockopt integer value
   2096  */
   2097 int
   2098 sockopt_setint(struct sockopt *sopt, int val)
   2099 {
   2100 
   2101 	return sockopt_set(sopt, &val, sizeof(int));
   2102 }
   2103 
   2104 /*
   2105  * get sockopt value
   2106  *	- correct size must be given
   2107  */
   2108 int
   2109 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   2110 {
   2111 
   2112 	if (sopt->sopt_size != len)
   2113 		return EINVAL;
   2114 
   2115 	memcpy(buf, sopt->sopt_data, len);
   2116 	return 0;
   2117 }
   2118 
   2119 /*
   2120  * common case of get sockopt integer value
   2121  */
   2122 int
   2123 sockopt_getint(const struct sockopt *sopt, int *valp)
   2124 {
   2125 
   2126 	return sockopt_get(sopt, valp, sizeof(int));
   2127 }
   2128 
   2129 /*
   2130  * set sockopt value from mbuf
   2131  *	- ONLY for legacy code
   2132  *	- mbuf is released by sockopt
   2133  *	- will not sleep
   2134  */
   2135 int
   2136 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   2137 {
   2138 	size_t len;
   2139 	int error;
   2140 
   2141 	len = m_length(m);
   2142 
   2143 	if (sopt->sopt_size == 0) {
   2144 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2145 		if (error)
   2146 			return error;
   2147 	}
   2148 
   2149 	KASSERT(sopt->sopt_size == len);
   2150 	m_copydata(m, 0, len, sopt->sopt_data);
   2151 	m_freem(m);
   2152 
   2153 	return 0;
   2154 }
   2155 
   2156 /*
   2157  * get sockopt value into mbuf
   2158  *	- ONLY for legacy code
   2159  *	- mbuf to be released by the caller
   2160  *	- will not sleep
   2161  */
   2162 struct mbuf *
   2163 sockopt_getmbuf(const struct sockopt *sopt)
   2164 {
   2165 	struct mbuf *m;
   2166 
   2167 	if (sopt->sopt_size > MCLBYTES)
   2168 		return NULL;
   2169 
   2170 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   2171 	if (m == NULL)
   2172 		return NULL;
   2173 
   2174 	if (sopt->sopt_size > MLEN) {
   2175 		MCLGET(m, M_DONTWAIT);
   2176 		if ((m->m_flags & M_EXT) == 0) {
   2177 			m_free(m);
   2178 			return NULL;
   2179 		}
   2180 	}
   2181 
   2182 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
   2183 	m->m_len = sopt->sopt_size;
   2184 
   2185 	return m;
   2186 }
   2187 
   2188 void
   2189 sohasoutofband(struct socket *so)
   2190 {
   2191 
   2192 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2193 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
   2194 }
   2195 
   2196 static void
   2197 filt_sordetach(struct knote *kn)
   2198 {
   2199 	struct socket	*so;
   2200 
   2201 	so = ((file_t *)kn->kn_obj)->f_data;
   2202 	solock(so);
   2203 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   2204 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   2205 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2206 	sounlock(so);
   2207 }
   2208 
   2209 /*ARGSUSED*/
   2210 static int
   2211 filt_soread(struct knote *kn, long hint)
   2212 {
   2213 	struct socket	*so;
   2214 	int rv;
   2215 
   2216 	so = ((file_t *)kn->kn_obj)->f_data;
   2217 	if (hint != NOTE_SUBMIT)
   2218 		solock(so);
   2219 	kn->kn_data = so->so_rcv.sb_cc;
   2220 	if (so->so_state & SS_CANTRCVMORE) {
   2221 		kn->kn_flags |= EV_EOF;
   2222 		kn->kn_fflags = so->so_error;
   2223 		rv = 1;
   2224 	} else if (so->so_error)	/* temporary udp error */
   2225 		rv = 1;
   2226 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2227 		rv = (kn->kn_data >= kn->kn_sdata);
   2228 	else
   2229 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2230 	if (hint != NOTE_SUBMIT)
   2231 		sounlock(so);
   2232 	return rv;
   2233 }
   2234 
   2235 static void
   2236 filt_sowdetach(struct knote *kn)
   2237 {
   2238 	struct socket	*so;
   2239 
   2240 	so = ((file_t *)kn->kn_obj)->f_data;
   2241 	solock(so);
   2242 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   2243 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   2244 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2245 	sounlock(so);
   2246 }
   2247 
   2248 /*ARGSUSED*/
   2249 static int
   2250 filt_sowrite(struct knote *kn, long hint)
   2251 {
   2252 	struct socket	*so;
   2253 	int rv;
   2254 
   2255 	so = ((file_t *)kn->kn_obj)->f_data;
   2256 	if (hint != NOTE_SUBMIT)
   2257 		solock(so);
   2258 	kn->kn_data = sbspace(&so->so_snd);
   2259 	if (so->so_state & SS_CANTSENDMORE) {
   2260 		kn->kn_flags |= EV_EOF;
   2261 		kn->kn_fflags = so->so_error;
   2262 		rv = 1;
   2263 	} else if (so->so_error)	/* temporary udp error */
   2264 		rv = 1;
   2265 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2266 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2267 		rv = 0;
   2268 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2269 		rv = (kn->kn_data >= kn->kn_sdata);
   2270 	else
   2271 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2272 	if (hint != NOTE_SUBMIT)
   2273 		sounlock(so);
   2274 	return rv;
   2275 }
   2276 
   2277 /*ARGSUSED*/
   2278 static int
   2279 filt_solisten(struct knote *kn, long hint)
   2280 {
   2281 	struct socket	*so;
   2282 	int rv;
   2283 
   2284 	so = ((file_t *)kn->kn_obj)->f_data;
   2285 
   2286 	/*
   2287 	 * Set kn_data to number of incoming connections, not
   2288 	 * counting partial (incomplete) connections.
   2289 	 */
   2290 	if (hint != NOTE_SUBMIT)
   2291 		solock(so);
   2292 	kn->kn_data = so->so_qlen;
   2293 	rv = (kn->kn_data > 0);
   2294 	if (hint != NOTE_SUBMIT)
   2295 		sounlock(so);
   2296 	return rv;
   2297 }
   2298 
   2299 static const struct filterops solisten_filtops =
   2300 	{ 1, NULL, filt_sordetach, filt_solisten };
   2301 static const struct filterops soread_filtops =
   2302 	{ 1, NULL, filt_sordetach, filt_soread };
   2303 static const struct filterops sowrite_filtops =
   2304 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   2305 
   2306 int
   2307 soo_kqfilter(struct file *fp, struct knote *kn)
   2308 {
   2309 	struct socket	*so;
   2310 	struct sockbuf	*sb;
   2311 
   2312 	so = ((file_t *)kn->kn_obj)->f_data;
   2313 	solock(so);
   2314 	switch (kn->kn_filter) {
   2315 	case EVFILT_READ:
   2316 		if (so->so_options & SO_ACCEPTCONN)
   2317 			kn->kn_fop = &solisten_filtops;
   2318 		else
   2319 			kn->kn_fop = &soread_filtops;
   2320 		sb = &so->so_rcv;
   2321 		break;
   2322 	case EVFILT_WRITE:
   2323 		kn->kn_fop = &sowrite_filtops;
   2324 		sb = &so->so_snd;
   2325 		break;
   2326 	default:
   2327 		sounlock(so);
   2328 		return (EINVAL);
   2329 	}
   2330 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   2331 	sb->sb_flags |= SB_KNOTE;
   2332 	sounlock(so);
   2333 	return (0);
   2334 }
   2335 
   2336 static int
   2337 sodopoll(struct socket *so, int events)
   2338 {
   2339 	int revents;
   2340 
   2341 	revents = 0;
   2342 
   2343 	if (events & (POLLIN | POLLRDNORM))
   2344 		if (soreadable(so))
   2345 			revents |= events & (POLLIN | POLLRDNORM);
   2346 
   2347 	if (events & (POLLOUT | POLLWRNORM))
   2348 		if (sowritable(so))
   2349 			revents |= events & (POLLOUT | POLLWRNORM);
   2350 
   2351 	if (events & (POLLPRI | POLLRDBAND))
   2352 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   2353 			revents |= events & (POLLPRI | POLLRDBAND);
   2354 
   2355 	return revents;
   2356 }
   2357 
   2358 int
   2359 sopoll(struct socket *so, int events)
   2360 {
   2361 	int revents = 0;
   2362 
   2363 #ifndef DIAGNOSTIC
   2364 	/*
   2365 	 * Do a quick, unlocked check in expectation that the socket
   2366 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2367 	 * as the solocked() assertions will fail.
   2368 	 */
   2369 	if ((revents = sodopoll(so, events)) != 0)
   2370 		return revents;
   2371 #endif
   2372 
   2373 	solock(so);
   2374 	if ((revents = sodopoll(so, events)) == 0) {
   2375 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2376 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2377 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2378 		}
   2379 
   2380 		if (events & (POLLOUT | POLLWRNORM)) {
   2381 			selrecord(curlwp, &so->so_snd.sb_sel);
   2382 			so->so_snd.sb_flags |= SB_NOTIFY;
   2383 		}
   2384 	}
   2385 	sounlock(so);
   2386 
   2387 	return revents;
   2388 }
   2389 
   2390 
   2391 #include <sys/sysctl.h>
   2392 
   2393 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2394 
   2395 /*
   2396  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2397  * value is not too small.
   2398  * (XXX should we maybe make sure it's not too large as well?)
   2399  */
   2400 static int
   2401 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2402 {
   2403 	int error, new_somaxkva;
   2404 	struct sysctlnode node;
   2405 
   2406 	new_somaxkva = somaxkva;
   2407 	node = *rnode;
   2408 	node.sysctl_data = &new_somaxkva;
   2409 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2410 	if (error || newp == NULL)
   2411 		return (error);
   2412 
   2413 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2414 		return (EINVAL);
   2415 
   2416 	mutex_enter(&so_pendfree_lock);
   2417 	somaxkva = new_somaxkva;
   2418 	cv_broadcast(&socurkva_cv);
   2419 	mutex_exit(&so_pendfree_lock);
   2420 
   2421 	return (error);
   2422 }
   2423 
   2424 static void
   2425 sysctl_kern_somaxkva_setup(void)
   2426 {
   2427 
   2428 	KASSERT(socket_sysctllog == NULL);
   2429 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2430 		       CTLFLAG_PERMANENT,
   2431 		       CTLTYPE_NODE, "kern", NULL,
   2432 		       NULL, 0, NULL, 0,
   2433 		       CTL_KERN, CTL_EOL);
   2434 
   2435 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2436 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2437 		       CTLTYPE_INT, "somaxkva",
   2438 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2439 				    "used for socket buffers"),
   2440 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2441 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2442 }
   2443