Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.203
      1 /*	$NetBSD: uipc_socket.c,v 1.203 2011/02/01 01:39:20 matt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.203 2011/02/01 01:39:20 matt Exp $");
     67 
     68 #include "opt_compat_netbsd.h"
     69 #include "opt_sock_counters.h"
     70 #include "opt_sosend_loan.h"
     71 #include "opt_mbuftrace.h"
     72 #include "opt_somaxkva.h"
     73 #include "opt_multiprocessor.h"	/* XXX */
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/proc.h>
     78 #include <sys/file.h>
     79 #include <sys/filedesc.h>
     80 #include <sys/kmem.h>
     81 #include <sys/mbuf.h>
     82 #include <sys/domain.h>
     83 #include <sys/kernel.h>
     84 #include <sys/protosw.h>
     85 #include <sys/socket.h>
     86 #include <sys/socketvar.h>
     87 #include <sys/signalvar.h>
     88 #include <sys/resourcevar.h>
     89 #include <sys/uidinfo.h>
     90 #include <sys/event.h>
     91 #include <sys/poll.h>
     92 #include <sys/kauth.h>
     93 #include <sys/mutex.h>
     94 #include <sys/condvar.h>
     95 
     96 #ifdef COMPAT_50
     97 #include <compat/sys/time.h>
     98 #include <compat/sys/socket.h>
     99 #endif
    100 
    101 #include <uvm/uvm_extern.h>
    102 #include <uvm/uvm_loan.h>
    103 #include <uvm/uvm_page.h>
    104 
    105 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
    106 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    107 
    108 extern const struct fileops socketops;
    109 
    110 extern int	somaxconn;			/* patchable (XXX sysctl) */
    111 int		somaxconn = SOMAXCONN;
    112 kmutex_t	*softnet_lock;
    113 
    114 #ifdef SOSEND_COUNTERS
    115 #include <sys/device.h>
    116 
    117 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    118     NULL, "sosend", "loan big");
    119 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    120     NULL, "sosend", "copy big");
    121 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    122     NULL, "sosend", "copy small");
    123 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    124     NULL, "sosend", "kva limit");
    125 
    126 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    127 
    128 EVCNT_ATTACH_STATIC(sosend_loan_big);
    129 EVCNT_ATTACH_STATIC(sosend_copy_big);
    130 EVCNT_ATTACH_STATIC(sosend_copy_small);
    131 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    132 #else
    133 
    134 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    135 
    136 #endif /* SOSEND_COUNTERS */
    137 
    138 static struct callback_entry sokva_reclaimerentry;
    139 
    140 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    141 int sock_loan_thresh = -1;
    142 #else
    143 int sock_loan_thresh = 4096;
    144 #endif
    145 
    146 static kmutex_t so_pendfree_lock;
    147 static struct mbuf *so_pendfree;
    148 
    149 #ifndef SOMAXKVA
    150 #define	SOMAXKVA (16 * 1024 * 1024)
    151 #endif
    152 int somaxkva = SOMAXKVA;
    153 static int socurkva;
    154 static kcondvar_t socurkva_cv;
    155 
    156 static kauth_listener_t socket_listener;
    157 
    158 #define	SOCK_LOAN_CHUNK		65536
    159 
    160 static size_t sodopendfree(void);
    161 static size_t sodopendfreel(void);
    162 
    163 static void sysctl_kern_somaxkva_setup(void);
    164 static struct sysctllog *socket_sysctllog;
    165 
    166 static vsize_t
    167 sokvareserve(struct socket *so, vsize_t len)
    168 {
    169 	int error;
    170 
    171 	mutex_enter(&so_pendfree_lock);
    172 	while (socurkva + len > somaxkva) {
    173 		size_t freed;
    174 
    175 		/*
    176 		 * try to do pendfree.
    177 		 */
    178 
    179 		freed = sodopendfreel();
    180 
    181 		/*
    182 		 * if some kva was freed, try again.
    183 		 */
    184 
    185 		if (freed)
    186 			continue;
    187 
    188 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    189 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    190 		if (error) {
    191 			len = 0;
    192 			break;
    193 		}
    194 	}
    195 	socurkva += len;
    196 	mutex_exit(&so_pendfree_lock);
    197 	return len;
    198 }
    199 
    200 static void
    201 sokvaunreserve(vsize_t len)
    202 {
    203 
    204 	mutex_enter(&so_pendfree_lock);
    205 	socurkva -= len;
    206 	cv_broadcast(&socurkva_cv);
    207 	mutex_exit(&so_pendfree_lock);
    208 }
    209 
    210 /*
    211  * sokvaalloc: allocate kva for loan.
    212  */
    213 
    214 vaddr_t
    215 sokvaalloc(vsize_t len, struct socket *so)
    216 {
    217 	vaddr_t lva;
    218 
    219 	/*
    220 	 * reserve kva.
    221 	 */
    222 
    223 	if (sokvareserve(so, len) == 0)
    224 		return 0;
    225 
    226 	/*
    227 	 * allocate kva.
    228 	 */
    229 
    230 	lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    231 	if (lva == 0) {
    232 		sokvaunreserve(len);
    233 		return (0);
    234 	}
    235 
    236 	return lva;
    237 }
    238 
    239 /*
    240  * sokvafree: free kva for loan.
    241  */
    242 
    243 void
    244 sokvafree(vaddr_t sva, vsize_t len)
    245 {
    246 
    247 	/*
    248 	 * free kva.
    249 	 */
    250 
    251 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    252 
    253 	/*
    254 	 * unreserve kva.
    255 	 */
    256 
    257 	sokvaunreserve(len);
    258 }
    259 
    260 static void
    261 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    262 {
    263 	vaddr_t sva, eva;
    264 	vsize_t len;
    265 	int npgs;
    266 
    267 	KASSERT(pgs != NULL);
    268 
    269 	eva = round_page((vaddr_t) buf + size);
    270 	sva = trunc_page((vaddr_t) buf);
    271 	len = eva - sva;
    272 	npgs = len >> PAGE_SHIFT;
    273 
    274 	pmap_kremove(sva, len);
    275 	pmap_update(pmap_kernel());
    276 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    277 	sokvafree(sva, len);
    278 }
    279 
    280 static size_t
    281 sodopendfree(void)
    282 {
    283 	size_t rv;
    284 
    285 	if (__predict_true(so_pendfree == NULL))
    286 		return 0;
    287 
    288 	mutex_enter(&so_pendfree_lock);
    289 	rv = sodopendfreel();
    290 	mutex_exit(&so_pendfree_lock);
    291 
    292 	return rv;
    293 }
    294 
    295 /*
    296  * sodopendfreel: free mbufs on "pendfree" list.
    297  * unlock and relock so_pendfree_lock when freeing mbufs.
    298  *
    299  * => called with so_pendfree_lock held.
    300  */
    301 
    302 static size_t
    303 sodopendfreel(void)
    304 {
    305 	struct mbuf *m, *next;
    306 	size_t rv = 0;
    307 
    308 	KASSERT(mutex_owned(&so_pendfree_lock));
    309 
    310 	while (so_pendfree != NULL) {
    311 		m = so_pendfree;
    312 		so_pendfree = NULL;
    313 		mutex_exit(&so_pendfree_lock);
    314 
    315 		for (; m != NULL; m = next) {
    316 			next = m->m_next;
    317 			KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
    318 			KASSERT(m->m_ext.ext_refcnt == 0);
    319 
    320 			rv += m->m_ext.ext_size;
    321 			sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    322 			    m->m_ext.ext_size);
    323 			pool_cache_put(mb_cache, m);
    324 		}
    325 
    326 		mutex_enter(&so_pendfree_lock);
    327 	}
    328 
    329 	return (rv);
    330 }
    331 
    332 void
    333 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    334 {
    335 
    336 	KASSERT(m != NULL);
    337 
    338 	/*
    339 	 * postpone freeing mbuf.
    340 	 *
    341 	 * we can't do it in interrupt context
    342 	 * because we need to put kva back to kernel_map.
    343 	 */
    344 
    345 	mutex_enter(&so_pendfree_lock);
    346 	m->m_next = so_pendfree;
    347 	so_pendfree = m;
    348 	cv_broadcast(&socurkva_cv);
    349 	mutex_exit(&so_pendfree_lock);
    350 }
    351 
    352 static long
    353 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    354 {
    355 	struct iovec *iov = uio->uio_iov;
    356 	vaddr_t sva, eva;
    357 	vsize_t len;
    358 	vaddr_t lva;
    359 	int npgs, error;
    360 	vaddr_t va;
    361 	int i;
    362 
    363 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    364 		return (0);
    365 
    366 	if (iov->iov_len < (size_t) space)
    367 		space = iov->iov_len;
    368 	if (space > SOCK_LOAN_CHUNK)
    369 		space = SOCK_LOAN_CHUNK;
    370 
    371 	eva = round_page((vaddr_t) iov->iov_base + space);
    372 	sva = trunc_page((vaddr_t) iov->iov_base);
    373 	len = eva - sva;
    374 	npgs = len >> PAGE_SHIFT;
    375 
    376 	KASSERT(npgs <= M_EXT_MAXPAGES);
    377 
    378 	lva = sokvaalloc(len, so);
    379 	if (lva == 0)
    380 		return 0;
    381 
    382 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    383 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    384 	if (error) {
    385 		sokvafree(lva, len);
    386 		return (0);
    387 	}
    388 
    389 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    390 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    391 		    VM_PROT_READ, 0);
    392 	pmap_update(pmap_kernel());
    393 
    394 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    395 
    396 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    397 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    398 
    399 	uio->uio_resid -= space;
    400 	/* uio_offset not updated, not set/used for write(2) */
    401 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    402 	uio->uio_iov->iov_len -= space;
    403 	if (uio->uio_iov->iov_len == 0) {
    404 		uio->uio_iov++;
    405 		uio->uio_iovcnt--;
    406 	}
    407 
    408 	return (space);
    409 }
    410 
    411 static int
    412 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    413 {
    414 
    415 	KASSERT(ce == &sokva_reclaimerentry);
    416 	KASSERT(obj == NULL);
    417 
    418 	sodopendfree();
    419 	if (!vm_map_starved_p(kernel_map)) {
    420 		return CALLBACK_CHAIN_ABORT;
    421 	}
    422 	return CALLBACK_CHAIN_CONTINUE;
    423 }
    424 
    425 struct mbuf *
    426 getsombuf(struct socket *so, int type)
    427 {
    428 	struct mbuf *m;
    429 
    430 	m = m_get(M_WAIT, type);
    431 	MCLAIM(m, so->so_mowner);
    432 	return m;
    433 }
    434 
    435 static int
    436 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    437     void *arg0, void *arg1, void *arg2, void *arg3)
    438 {
    439 	int result;
    440 	enum kauth_network_req req;
    441 
    442 	result = KAUTH_RESULT_DEFER;
    443 	req = (enum kauth_network_req)arg0;
    444 
    445 	if ((action != KAUTH_NETWORK_SOCKET) &&
    446 	    (action != KAUTH_NETWORK_BIND))
    447 		return result;
    448 
    449 	switch (req) {
    450 	case KAUTH_REQ_NETWORK_BIND_PORT:
    451 		result = KAUTH_RESULT_ALLOW;
    452 		break;
    453 
    454 	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
    455 		/* Normal users can only drop their own connections. */
    456 		struct socket *so = (struct socket *)arg1;
    457 
    458 		if (proc_uidmatch(cred, so->so_cred))
    459 			result = KAUTH_RESULT_ALLOW;
    460 
    461 		break;
    462 		}
    463 
    464 	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
    465 		/* We allow "raw" routing/bluetooth sockets to anyone. */
    466 		if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
    467 		    || (u_long)arg1 == PF_BLUETOOTH) {
    468 			result = KAUTH_RESULT_ALLOW;
    469 		} else {
    470 			/* Privileged, let secmodel handle this. */
    471 			if ((u_long)arg2 == SOCK_RAW)
    472 				break;
    473 		}
    474 
    475 		result = KAUTH_RESULT_ALLOW;
    476 
    477 		break;
    478 
    479 	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
    480 		result = KAUTH_RESULT_ALLOW;
    481 
    482 		break;
    483 
    484 	default:
    485 		break;
    486 	}
    487 
    488 	return result;
    489 }
    490 
    491 void
    492 soinit(void)
    493 {
    494 
    495 	sysctl_kern_somaxkva_setup();
    496 
    497 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    498 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    499 	cv_init(&socurkva_cv, "sokva");
    500 	soinit2();
    501 
    502 	/* Set the initial adjusted socket buffer size. */
    503 	if (sb_max_set(sb_max))
    504 		panic("bad initial sb_max value: %lu", sb_max);
    505 
    506 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    507 	    &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
    508 
    509 	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    510 	    socket_listener_cb, NULL);
    511 }
    512 
    513 /*
    514  * Socket operation routines.
    515  * These routines are called by the routines in
    516  * sys_socket.c or from a system process, and
    517  * implement the semantics of socket operations by
    518  * switching out to the protocol specific routines.
    519  */
    520 /*ARGSUSED*/
    521 int
    522 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    523 	 struct socket *lockso)
    524 {
    525 	const struct protosw	*prp;
    526 	struct socket	*so;
    527 	uid_t		uid;
    528 	int		error;
    529 	kmutex_t	*lock;
    530 
    531 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    532 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    533 	    KAUTH_ARG(proto));
    534 	if (error != 0)
    535 		return error;
    536 
    537 	if (proto)
    538 		prp = pffindproto(dom, proto, type);
    539 	else
    540 		prp = pffindtype(dom, type);
    541 	if (prp == NULL) {
    542 		/* no support for domain */
    543 		if (pffinddomain(dom) == 0)
    544 			return EAFNOSUPPORT;
    545 		/* no support for socket type */
    546 		if (proto == 0 && type != 0)
    547 			return EPROTOTYPE;
    548 		return EPROTONOSUPPORT;
    549 	}
    550 	if (prp->pr_usrreq == NULL)
    551 		return EPROTONOSUPPORT;
    552 	if (prp->pr_type != type)
    553 		return EPROTOTYPE;
    554 
    555 	so = soget(true);
    556 	so->so_type = type;
    557 	so->so_proto = prp;
    558 	so->so_send = sosend;
    559 	so->so_receive = soreceive;
    560 #ifdef MBUFTRACE
    561 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    562 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    563 	so->so_mowner = &prp->pr_domain->dom_mowner;
    564 #endif
    565 	uid = kauth_cred_geteuid(l->l_cred);
    566 	so->so_uidinfo = uid_find(uid);
    567 	so->so_cpid = l->l_proc->p_pid;
    568 	if (lockso != NULL) {
    569 		/* Caller wants us to share a lock. */
    570 		lock = lockso->so_lock;
    571 		so->so_lock = lock;
    572 		mutex_obj_hold(lock);
    573 		mutex_enter(lock);
    574 	} else {
    575 		/* Lock assigned and taken during PRU_ATTACH. */
    576 	}
    577 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
    578 	    (struct mbuf *)(long)proto, NULL, l);
    579 	KASSERT(solocked(so));
    580 	if (error != 0) {
    581 		so->so_state |= SS_NOFDREF;
    582 		sofree(so);
    583 		return error;
    584 	}
    585 	so->so_cred = kauth_cred_dup(l->l_cred);
    586 	sounlock(so);
    587 	*aso = so;
    588 	return 0;
    589 }
    590 
    591 /* On success, write file descriptor to fdout and return zero.  On
    592  * failure, return non-zero; *fdout will be undefined.
    593  */
    594 int
    595 fsocreate(int domain, struct socket **sop, int type, int protocol,
    596     struct lwp *l, int *fdout)
    597 {
    598 	struct socket	*so;
    599 	struct file	*fp;
    600 	int		fd, error;
    601 
    602 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    603 		return (error);
    604 	fp->f_flag = FREAD|FWRITE;
    605 	fp->f_type = DTYPE_SOCKET;
    606 	fp->f_ops = &socketops;
    607 	error = socreate(domain, &so, type, protocol, l, NULL);
    608 	if (error != 0) {
    609 		fd_abort(curproc, fp, fd);
    610 	} else {
    611 		if (sop != NULL)
    612 			*sop = so;
    613 		fp->f_data = so;
    614 		fd_affix(curproc, fp, fd);
    615 		*fdout = fd;
    616 	}
    617 	return error;
    618 }
    619 
    620 int
    621 sofamily(const struct socket *so)
    622 {
    623 	const struct protosw *pr;
    624 	const struct domain *dom;
    625 
    626 	if ((pr = so->so_proto) == NULL)
    627 		return AF_UNSPEC;
    628 	if ((dom = pr->pr_domain) == NULL)
    629 		return AF_UNSPEC;
    630 	return dom->dom_family;
    631 }
    632 
    633 int
    634 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    635 {
    636 	int	error;
    637 
    638 	solock(so);
    639 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
    640 	sounlock(so);
    641 	return error;
    642 }
    643 
    644 int
    645 solisten(struct socket *so, int backlog, struct lwp *l)
    646 {
    647 	int	error;
    648 
    649 	solock(so);
    650 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    651 	    SS_ISDISCONNECTING)) != 0) {
    652 	    	sounlock(so);
    653 		return (EOPNOTSUPP);
    654 	}
    655 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
    656 	    NULL, NULL, l);
    657 	if (error != 0) {
    658 		sounlock(so);
    659 		return error;
    660 	}
    661 	if (TAILQ_EMPTY(&so->so_q))
    662 		so->so_options |= SO_ACCEPTCONN;
    663 	if (backlog < 0)
    664 		backlog = 0;
    665 	so->so_qlimit = min(backlog, somaxconn);
    666 	sounlock(so);
    667 	return 0;
    668 }
    669 
    670 void
    671 sofree(struct socket *so)
    672 {
    673 	u_int refs;
    674 
    675 	KASSERT(solocked(so));
    676 
    677 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    678 		sounlock(so);
    679 		return;
    680 	}
    681 	if (so->so_head) {
    682 		/*
    683 		 * We must not decommission a socket that's on the accept(2)
    684 		 * queue.  If we do, then accept(2) may hang after select(2)
    685 		 * indicated that the listening socket was ready.
    686 		 */
    687 		if (!soqremque(so, 0)) {
    688 			sounlock(so);
    689 			return;
    690 		}
    691 	}
    692 	if (so->so_rcv.sb_hiwat)
    693 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    694 		    RLIM_INFINITY);
    695 	if (so->so_snd.sb_hiwat)
    696 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    697 		    RLIM_INFINITY);
    698 	sbrelease(&so->so_snd, so);
    699 	KASSERT(!cv_has_waiters(&so->so_cv));
    700 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    701 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    702 	sorflush(so);
    703 	refs = so->so_aborting;	/* XXX */
    704 	/* Remove acccept filter if one is present. */
    705 	if (so->so_accf != NULL)
    706 		(void)accept_filt_clear(so);
    707 	sounlock(so);
    708 	if (refs == 0)		/* XXX */
    709 		soput(so);
    710 }
    711 
    712 /*
    713  * Close a socket on last file table reference removal.
    714  * Initiate disconnect if connected.
    715  * Free socket when disconnect complete.
    716  */
    717 int
    718 soclose(struct socket *so)
    719 {
    720 	struct socket	*so2;
    721 	int		error;
    722 	int		error2;
    723 
    724 	error = 0;
    725 	solock(so);
    726 	if (so->so_options & SO_ACCEPTCONN) {
    727 		for (;;) {
    728 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    729 				KASSERT(solocked2(so, so2));
    730 				(void) soqremque(so2, 0);
    731 				/* soabort drops the lock. */
    732 				(void) soabort(so2);
    733 				solock(so);
    734 				continue;
    735 			}
    736 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    737 				KASSERT(solocked2(so, so2));
    738 				(void) soqremque(so2, 1);
    739 				/* soabort drops the lock. */
    740 				(void) soabort(so2);
    741 				solock(so);
    742 				continue;
    743 			}
    744 			break;
    745 		}
    746 	}
    747 	if (so->so_pcb == 0)
    748 		goto discard;
    749 	if (so->so_state & SS_ISCONNECTED) {
    750 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    751 			error = sodisconnect(so);
    752 			if (error)
    753 				goto drop;
    754 		}
    755 		if (so->so_options & SO_LINGER) {
    756 			if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
    757 				goto drop;
    758 			while (so->so_state & SS_ISCONNECTED) {
    759 				error = sowait(so, true, so->so_linger * hz);
    760 				if (error)
    761 					break;
    762 			}
    763 		}
    764 	}
    765  drop:
    766 	if (so->so_pcb) {
    767 		error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    768 		    NULL, NULL, NULL, NULL);
    769 		if (error == 0)
    770 			error = error2;
    771 	}
    772  discard:
    773 	if (so->so_state & SS_NOFDREF)
    774 		panic("soclose: NOFDREF");
    775 	kauth_cred_free(so->so_cred);
    776 	so->so_state |= SS_NOFDREF;
    777 	sofree(so);
    778 	return (error);
    779 }
    780 
    781 /*
    782  * Must be called with the socket locked..  Will return with it unlocked.
    783  */
    784 int
    785 soabort(struct socket *so)
    786 {
    787 	u_int refs;
    788 	int error;
    789 
    790 	KASSERT(solocked(so));
    791 	KASSERT(so->so_head == NULL);
    792 
    793 	so->so_aborting++;		/* XXX */
    794 	error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
    795 	    NULL, NULL, NULL);
    796 	refs = --so->so_aborting;	/* XXX */
    797 	if (error || (refs == 0)) {
    798 		sofree(so);
    799 	} else {
    800 		sounlock(so);
    801 	}
    802 	return error;
    803 }
    804 
    805 int
    806 soaccept(struct socket *so, struct mbuf *nam)
    807 {
    808 	int	error;
    809 
    810 	KASSERT(solocked(so));
    811 
    812 	error = 0;
    813 	if ((so->so_state & SS_NOFDREF) == 0)
    814 		panic("soaccept: !NOFDREF");
    815 	so->so_state &= ~SS_NOFDREF;
    816 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    817 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    818 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    819 		    NULL, nam, NULL, NULL);
    820 	else
    821 		error = ECONNABORTED;
    822 
    823 	return (error);
    824 }
    825 
    826 int
    827 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    828 {
    829 	int		error;
    830 
    831 	KASSERT(solocked(so));
    832 
    833 	if (so->so_options & SO_ACCEPTCONN)
    834 		return (EOPNOTSUPP);
    835 	/*
    836 	 * If protocol is connection-based, can only connect once.
    837 	 * Otherwise, if connected, try to disconnect first.
    838 	 * This allows user to disconnect by connecting to, e.g.,
    839 	 * a null address.
    840 	 */
    841 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    842 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    843 	    (error = sodisconnect(so))))
    844 		error = EISCONN;
    845 	else
    846 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    847 		    NULL, nam, NULL, l);
    848 	return (error);
    849 }
    850 
    851 int
    852 soconnect2(struct socket *so1, struct socket *so2)
    853 {
    854 	int	error;
    855 
    856 	KASSERT(solocked2(so1, so2));
    857 
    858 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    859 	    NULL, (struct mbuf *)so2, NULL, NULL);
    860 	return (error);
    861 }
    862 
    863 int
    864 sodisconnect(struct socket *so)
    865 {
    866 	int	error;
    867 
    868 	KASSERT(solocked(so));
    869 
    870 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    871 		error = ENOTCONN;
    872 	} else if (so->so_state & SS_ISDISCONNECTING) {
    873 		error = EALREADY;
    874 	} else {
    875 		error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    876 		    NULL, NULL, NULL, NULL);
    877 	}
    878 	sodopendfree();
    879 	return (error);
    880 }
    881 
    882 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    883 /*
    884  * Send on a socket.
    885  * If send must go all at once and message is larger than
    886  * send buffering, then hard error.
    887  * Lock against other senders.
    888  * If must go all at once and not enough room now, then
    889  * inform user that this would block and do nothing.
    890  * Otherwise, if nonblocking, send as much as possible.
    891  * The data to be sent is described by "uio" if nonzero,
    892  * otherwise by the mbuf chain "top" (which must be null
    893  * if uio is not).  Data provided in mbuf chain must be small
    894  * enough to send all at once.
    895  *
    896  * Returns nonzero on error, timeout or signal; callers
    897  * must check for short counts if EINTR/ERESTART are returned.
    898  * Data and control buffers are freed on return.
    899  */
    900 int
    901 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    902 	struct mbuf *control, int flags, struct lwp *l)
    903 {
    904 	struct mbuf	**mp, *m;
    905 	struct proc	*p;
    906 	long		space, len, resid, clen, mlen;
    907 	int		error, s, dontroute, atomic;
    908 	short		wakeup_state = 0;
    909 
    910 	p = l->l_proc;
    911 	sodopendfree();
    912 	clen = 0;
    913 
    914 	/*
    915 	 * solock() provides atomicity of access.  splsoftnet() prevents
    916 	 * protocol processing soft interrupts from interrupting us and
    917 	 * blocking (expensive).
    918 	 */
    919 	s = splsoftnet();
    920 	solock(so);
    921 	atomic = sosendallatonce(so) || top;
    922 	if (uio)
    923 		resid = uio->uio_resid;
    924 	else
    925 		resid = top->m_pkthdr.len;
    926 	/*
    927 	 * In theory resid should be unsigned.
    928 	 * However, space must be signed, as it might be less than 0
    929 	 * if we over-committed, and we must use a signed comparison
    930 	 * of space and resid.  On the other hand, a negative resid
    931 	 * causes us to loop sending 0-length segments to the protocol.
    932 	 */
    933 	if (resid < 0) {
    934 		error = EINVAL;
    935 		goto out;
    936 	}
    937 	dontroute =
    938 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    939 	    (so->so_proto->pr_flags & PR_ATOMIC);
    940 	l->l_ru.ru_msgsnd++;
    941 	if (control)
    942 		clen = control->m_len;
    943  restart:
    944 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    945 		goto out;
    946 	do {
    947 		if (so->so_state & SS_CANTSENDMORE) {
    948 			error = EPIPE;
    949 			goto release;
    950 		}
    951 		if (so->so_error) {
    952 			error = so->so_error;
    953 			so->so_error = 0;
    954 			goto release;
    955 		}
    956 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    957 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    958 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    959 				    !(resid == 0 && clen != 0)) {
    960 					error = ENOTCONN;
    961 					goto release;
    962 				}
    963 			} else if (addr == 0) {
    964 				error = EDESTADDRREQ;
    965 				goto release;
    966 			}
    967 		}
    968 		space = sbspace(&so->so_snd);
    969 		if (flags & MSG_OOB)
    970 			space += 1024;
    971 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    972 		    clen > so->so_snd.sb_hiwat) {
    973 			error = EMSGSIZE;
    974 			goto release;
    975 		}
    976 		if (space < resid + clen &&
    977 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    978 			if (so->so_nbio) {
    979 				error = EWOULDBLOCK;
    980 				goto release;
    981 			}
    982 			sbunlock(&so->so_snd);
    983 			if (wakeup_state & SS_RESTARTSYS) {
    984 				error = ERESTART;
    985 				goto out;
    986 			}
    987 			error = sbwait(&so->so_snd);
    988 			if (error)
    989 				goto out;
    990 			wakeup_state = so->so_state;
    991 			goto restart;
    992 		}
    993 		wakeup_state = 0;
    994 		mp = &top;
    995 		space -= clen;
    996 		do {
    997 			if (uio == NULL) {
    998 				/*
    999 				 * Data is prepackaged in "top".
   1000 				 */
   1001 				resid = 0;
   1002 				if (flags & MSG_EOR)
   1003 					top->m_flags |= M_EOR;
   1004 			} else do {
   1005 				sounlock(so);
   1006 				splx(s);
   1007 				if (top == NULL) {
   1008 					m = m_gethdr(M_WAIT, MT_DATA);
   1009 					mlen = MHLEN;
   1010 					m->m_pkthdr.len = 0;
   1011 					m->m_pkthdr.rcvif = NULL;
   1012 				} else {
   1013 					m = m_get(M_WAIT, MT_DATA);
   1014 					mlen = MLEN;
   1015 				}
   1016 				MCLAIM(m, so->so_snd.sb_mowner);
   1017 				if (sock_loan_thresh >= 0 &&
   1018 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
   1019 				    space >= sock_loan_thresh &&
   1020 				    (len = sosend_loan(so, uio, m,
   1021 						       space)) != 0) {
   1022 					SOSEND_COUNTER_INCR(&sosend_loan_big);
   1023 					space -= len;
   1024 					goto have_data;
   1025 				}
   1026 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
   1027 					SOSEND_COUNTER_INCR(&sosend_copy_big);
   1028 					m_clget(m, M_DONTWAIT);
   1029 					if ((m->m_flags & M_EXT) == 0)
   1030 						goto nopages;
   1031 					mlen = MCLBYTES;
   1032 					if (atomic && top == 0) {
   1033 						len = lmin(MCLBYTES - max_hdr,
   1034 						    resid);
   1035 						m->m_data += max_hdr;
   1036 					} else
   1037 						len = lmin(MCLBYTES, resid);
   1038 					space -= len;
   1039 				} else {
   1040  nopages:
   1041 					SOSEND_COUNTER_INCR(&sosend_copy_small);
   1042 					len = lmin(lmin(mlen, resid), space);
   1043 					space -= len;
   1044 					/*
   1045 					 * For datagram protocols, leave room
   1046 					 * for protocol headers in first mbuf.
   1047 					 */
   1048 					if (atomic && top == 0 && len < mlen)
   1049 						MH_ALIGN(m, len);
   1050 				}
   1051 				error = uiomove(mtod(m, void *), (int)len, uio);
   1052  have_data:
   1053 				resid = uio->uio_resid;
   1054 				m->m_len = len;
   1055 				*mp = m;
   1056 				top->m_pkthdr.len += len;
   1057 				s = splsoftnet();
   1058 				solock(so);
   1059 				if (error != 0)
   1060 					goto release;
   1061 				mp = &m->m_next;
   1062 				if (resid <= 0) {
   1063 					if (flags & MSG_EOR)
   1064 						top->m_flags |= M_EOR;
   1065 					break;
   1066 				}
   1067 			} while (space > 0 && atomic);
   1068 
   1069 			if (so->so_state & SS_CANTSENDMORE) {
   1070 				error = EPIPE;
   1071 				goto release;
   1072 			}
   1073 			if (dontroute)
   1074 				so->so_options |= SO_DONTROUTE;
   1075 			if (resid > 0)
   1076 				so->so_state |= SS_MORETOCOME;
   1077 			error = (*so->so_proto->pr_usrreq)(so,
   1078 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
   1079 			    top, addr, control, curlwp);
   1080 			if (dontroute)
   1081 				so->so_options &= ~SO_DONTROUTE;
   1082 			if (resid > 0)
   1083 				so->so_state &= ~SS_MORETOCOME;
   1084 			clen = 0;
   1085 			control = NULL;
   1086 			top = NULL;
   1087 			mp = &top;
   1088 			if (error != 0)
   1089 				goto release;
   1090 		} while (resid && space > 0);
   1091 	} while (resid);
   1092 
   1093  release:
   1094 	sbunlock(&so->so_snd);
   1095  out:
   1096 	sounlock(so);
   1097 	splx(s);
   1098 	if (top)
   1099 		m_freem(top);
   1100 	if (control)
   1101 		m_freem(control);
   1102 	return (error);
   1103 }
   1104 
   1105 /*
   1106  * Following replacement or removal of the first mbuf on the first
   1107  * mbuf chain of a socket buffer, push necessary state changes back
   1108  * into the socket buffer so that other consumers see the values
   1109  * consistently.  'nextrecord' is the callers locally stored value of
   1110  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1111  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1112  */
   1113 static void
   1114 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1115 {
   1116 
   1117 	KASSERT(solocked(sb->sb_so));
   1118 
   1119 	/*
   1120 	 * First, update for the new value of nextrecord.  If necessary,
   1121 	 * make it the first record.
   1122 	 */
   1123 	if (sb->sb_mb != NULL)
   1124 		sb->sb_mb->m_nextpkt = nextrecord;
   1125 	else
   1126 		sb->sb_mb = nextrecord;
   1127 
   1128         /*
   1129          * Now update any dependent socket buffer fields to reflect
   1130          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1131          * the addition of a second clause that takes care of the
   1132          * case where sb_mb has been updated, but remains the last
   1133          * record.
   1134          */
   1135         if (sb->sb_mb == NULL) {
   1136                 sb->sb_mbtail = NULL;
   1137                 sb->sb_lastrecord = NULL;
   1138         } else if (sb->sb_mb->m_nextpkt == NULL)
   1139                 sb->sb_lastrecord = sb->sb_mb;
   1140 }
   1141 
   1142 /*
   1143  * Implement receive operations on a socket.
   1144  * We depend on the way that records are added to the sockbuf
   1145  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1146  * must begin with an address if the protocol so specifies,
   1147  * followed by an optional mbuf or mbufs containing ancillary data,
   1148  * and then zero or more mbufs of data.
   1149  * In order to avoid blocking network interrupts for the entire time here,
   1150  * we splx() while doing the actual copy to user space.
   1151  * Although the sockbuf is locked, new data may still be appended,
   1152  * and thus we must maintain consistency of the sockbuf during that time.
   1153  *
   1154  * The caller may receive the data as a single mbuf chain by supplying
   1155  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1156  * only for the count in uio_resid.
   1157  */
   1158 int
   1159 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1160 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1161 {
   1162 	struct lwp *l = curlwp;
   1163 	struct mbuf	*m, **mp, *mt;
   1164 	int atomic, flags, len, error, s, offset, moff, type, orig_resid;
   1165 	const struct protosw	*pr;
   1166 	struct mbuf	*nextrecord;
   1167 	int		mbuf_removed = 0;
   1168 	const struct domain *dom;
   1169 	short		wakeup_state = 0;
   1170 
   1171 	pr = so->so_proto;
   1172 	atomic = pr->pr_flags & PR_ATOMIC;
   1173 	dom = pr->pr_domain;
   1174 	mp = mp0;
   1175 	type = 0;
   1176 	orig_resid = uio->uio_resid;
   1177 
   1178 	if (paddr != NULL)
   1179 		*paddr = NULL;
   1180 	if (controlp != NULL)
   1181 		*controlp = NULL;
   1182 	if (flagsp != NULL)
   1183 		flags = *flagsp &~ MSG_EOR;
   1184 	else
   1185 		flags = 0;
   1186 
   1187 	if ((flags & MSG_DONTWAIT) == 0)
   1188 		sodopendfree();
   1189 
   1190 	if (flags & MSG_OOB) {
   1191 		m = m_get(M_WAIT, MT_DATA);
   1192 		solock(so);
   1193 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
   1194 		    (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
   1195 		sounlock(so);
   1196 		if (error)
   1197 			goto bad;
   1198 		do {
   1199 			error = uiomove(mtod(m, void *),
   1200 			    (int) min(uio->uio_resid, m->m_len), uio);
   1201 			m = m_free(m);
   1202 		} while (uio->uio_resid > 0 && error == 0 && m);
   1203  bad:
   1204 		if (m != NULL)
   1205 			m_freem(m);
   1206 		return error;
   1207 	}
   1208 	if (mp != NULL)
   1209 		*mp = NULL;
   1210 
   1211 	/*
   1212 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1213 	 * protocol processing soft interrupts from interrupting us and
   1214 	 * blocking (expensive).
   1215 	 */
   1216 	s = splsoftnet();
   1217 	solock(so);
   1218 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
   1219 		(*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
   1220 
   1221  restart:
   1222 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1223 		sounlock(so);
   1224 		splx(s);
   1225 		return error;
   1226 	}
   1227 
   1228 	m = so->so_rcv.sb_mb;
   1229 	/*
   1230 	 * If we have less data than requested, block awaiting more
   1231 	 * (subject to any timeout) if:
   1232 	 *   1. the current count is less than the low water mark,
   1233 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1234 	 *	receive operation at once if we block (resid <= hiwat), or
   1235 	 *   3. MSG_DONTWAIT is not set.
   1236 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1237 	 * we have to do the receive in sections, and thus risk returning
   1238 	 * a short count if a timeout or signal occurs after we start.
   1239 	 */
   1240 	if (m == NULL ||
   1241 	    ((flags & MSG_DONTWAIT) == 0 &&
   1242 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1243 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1244 	      ((flags & MSG_WAITALL) &&
   1245 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1246 	     m->m_nextpkt == NULL && !atomic)) {
   1247 #ifdef DIAGNOSTIC
   1248 		if (m == NULL && so->so_rcv.sb_cc)
   1249 			panic("receive 1");
   1250 #endif
   1251 		if (so->so_error) {
   1252 			if (m != NULL)
   1253 				goto dontblock;
   1254 			error = so->so_error;
   1255 			if ((flags & MSG_PEEK) == 0)
   1256 				so->so_error = 0;
   1257 			goto release;
   1258 		}
   1259 		if (so->so_state & SS_CANTRCVMORE) {
   1260 			if (m != NULL)
   1261 				goto dontblock;
   1262 			else
   1263 				goto release;
   1264 		}
   1265 		for (; m != NULL; m = m->m_next)
   1266 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1267 				m = so->so_rcv.sb_mb;
   1268 				goto dontblock;
   1269 			}
   1270 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1271 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1272 			error = ENOTCONN;
   1273 			goto release;
   1274 		}
   1275 		if (uio->uio_resid == 0)
   1276 			goto release;
   1277 		if (so->so_nbio || (flags & MSG_DONTWAIT)) {
   1278 			error = EWOULDBLOCK;
   1279 			goto release;
   1280 		}
   1281 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1282 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1283 		sbunlock(&so->so_rcv);
   1284 		if (wakeup_state & SS_RESTARTSYS)
   1285 			error = ERESTART;
   1286 		else
   1287 			error = sbwait(&so->so_rcv);
   1288 		if (error != 0) {
   1289 			sounlock(so);
   1290 			splx(s);
   1291 			return error;
   1292 		}
   1293 		wakeup_state = so->so_state;
   1294 		goto restart;
   1295 	}
   1296  dontblock:
   1297 	/*
   1298 	 * On entry here, m points to the first record of the socket buffer.
   1299 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1300 	 * pointer to the next record in the socket buffer.  We must keep the
   1301 	 * various socket buffer pointers and local stack versions of the
   1302 	 * pointers in sync, pushing out modifications before dropping the
   1303 	 * socket lock, and re-reading them when picking it up.
   1304 	 *
   1305 	 * Otherwise, we will race with the network stack appending new data
   1306 	 * or records onto the socket buffer by using inconsistent/stale
   1307 	 * versions of the field, possibly resulting in socket buffer
   1308 	 * corruption.
   1309 	 *
   1310 	 * By holding the high-level sblock(), we prevent simultaneous
   1311 	 * readers from pulling off the front of the socket buffer.
   1312 	 */
   1313 	if (l != NULL)
   1314 		l->l_ru.ru_msgrcv++;
   1315 	KASSERT(m == so->so_rcv.sb_mb);
   1316 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1317 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1318 	nextrecord = m->m_nextpkt;
   1319 	if (pr->pr_flags & PR_ADDR) {
   1320 #ifdef DIAGNOSTIC
   1321 		if (m->m_type != MT_SONAME)
   1322 			panic("receive 1a");
   1323 #endif
   1324 		orig_resid = 0;
   1325 		if (flags & MSG_PEEK) {
   1326 			if (paddr)
   1327 				*paddr = m_copy(m, 0, m->m_len);
   1328 			m = m->m_next;
   1329 		} else {
   1330 			sbfree(&so->so_rcv, m);
   1331 			mbuf_removed = 1;
   1332 			if (paddr != NULL) {
   1333 				*paddr = m;
   1334 				so->so_rcv.sb_mb = m->m_next;
   1335 				m->m_next = NULL;
   1336 				m = so->so_rcv.sb_mb;
   1337 			} else {
   1338 				MFREE(m, so->so_rcv.sb_mb);
   1339 				m = so->so_rcv.sb_mb;
   1340 			}
   1341 			sbsync(&so->so_rcv, nextrecord);
   1342 		}
   1343 	}
   1344 
   1345 	/*
   1346 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1347 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1348 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1349 	 * perform externalization (or freeing if controlp == NULL).
   1350 	 */
   1351 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1352 		struct mbuf *cm = NULL, *cmn;
   1353 		struct mbuf **cme = &cm;
   1354 
   1355 		do {
   1356 			if (flags & MSG_PEEK) {
   1357 				if (controlp != NULL) {
   1358 					*controlp = m_copy(m, 0, m->m_len);
   1359 					controlp = &(*controlp)->m_next;
   1360 				}
   1361 				m = m->m_next;
   1362 			} else {
   1363 				sbfree(&so->so_rcv, m);
   1364 				so->so_rcv.sb_mb = m->m_next;
   1365 				m->m_next = NULL;
   1366 				*cme = m;
   1367 				cme = &(*cme)->m_next;
   1368 				m = so->so_rcv.sb_mb;
   1369 			}
   1370 		} while (m != NULL && m->m_type == MT_CONTROL);
   1371 		if ((flags & MSG_PEEK) == 0)
   1372 			sbsync(&so->so_rcv, nextrecord);
   1373 		for (; cm != NULL; cm = cmn) {
   1374 			cmn = cm->m_next;
   1375 			cm->m_next = NULL;
   1376 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1377 			if (controlp != NULL) {
   1378 				if (dom->dom_externalize != NULL &&
   1379 				    type == SCM_RIGHTS) {
   1380 					sounlock(so);
   1381 					splx(s);
   1382 					error = (*dom->dom_externalize)(cm, l);
   1383 					s = splsoftnet();
   1384 					solock(so);
   1385 				}
   1386 				*controlp = cm;
   1387 				while (*controlp != NULL)
   1388 					controlp = &(*controlp)->m_next;
   1389 			} else {
   1390 				/*
   1391 				 * Dispose of any SCM_RIGHTS message that went
   1392 				 * through the read path rather than recv.
   1393 				 */
   1394 				if (dom->dom_dispose != NULL &&
   1395 				    type == SCM_RIGHTS) {
   1396 				    	sounlock(so);
   1397 					(*dom->dom_dispose)(cm);
   1398 					solock(so);
   1399 				}
   1400 				m_freem(cm);
   1401 			}
   1402 		}
   1403 		if (m != NULL)
   1404 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1405 		else
   1406 			nextrecord = so->so_rcv.sb_mb;
   1407 		orig_resid = 0;
   1408 	}
   1409 
   1410 	/* If m is non-NULL, we have some data to read. */
   1411 	if (__predict_true(m != NULL)) {
   1412 		type = m->m_type;
   1413 		if (type == MT_OOBDATA)
   1414 			flags |= MSG_OOB;
   1415 	}
   1416 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1417 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1418 
   1419 	moff = 0;
   1420 	offset = 0;
   1421 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1422 		if (m->m_type == MT_OOBDATA) {
   1423 			if (type != MT_OOBDATA)
   1424 				break;
   1425 		} else if (type == MT_OOBDATA)
   1426 			break;
   1427 #ifdef DIAGNOSTIC
   1428 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1429 			panic("receive 3");
   1430 #endif
   1431 		so->so_state &= ~SS_RCVATMARK;
   1432 		wakeup_state = 0;
   1433 		len = uio->uio_resid;
   1434 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1435 			len = so->so_oobmark - offset;
   1436 		if (len > m->m_len - moff)
   1437 			len = m->m_len - moff;
   1438 		/*
   1439 		 * If mp is set, just pass back the mbufs.
   1440 		 * Otherwise copy them out via the uio, then free.
   1441 		 * Sockbuf must be consistent here (points to current mbuf,
   1442 		 * it points to next record) when we drop priority;
   1443 		 * we must note any additions to the sockbuf when we
   1444 		 * block interrupts again.
   1445 		 */
   1446 		if (mp == NULL) {
   1447 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1448 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1449 			sounlock(so);
   1450 			splx(s);
   1451 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
   1452 			s = splsoftnet();
   1453 			solock(so);
   1454 			if (error != 0) {
   1455 				/*
   1456 				 * If any part of the record has been removed
   1457 				 * (such as the MT_SONAME mbuf, which will
   1458 				 * happen when PR_ADDR, and thus also
   1459 				 * PR_ATOMIC, is set), then drop the entire
   1460 				 * record to maintain the atomicity of the
   1461 				 * receive operation.
   1462 				 *
   1463 				 * This avoids a later panic("receive 1a")
   1464 				 * when compiled with DIAGNOSTIC.
   1465 				 */
   1466 				if (m && mbuf_removed && atomic)
   1467 					(void) sbdroprecord(&so->so_rcv);
   1468 
   1469 				goto release;
   1470 			}
   1471 		} else
   1472 			uio->uio_resid -= len;
   1473 		if (len == m->m_len - moff) {
   1474 			if (m->m_flags & M_EOR)
   1475 				flags |= MSG_EOR;
   1476 			if (flags & MSG_PEEK) {
   1477 				m = m->m_next;
   1478 				moff = 0;
   1479 			} else {
   1480 				nextrecord = m->m_nextpkt;
   1481 				sbfree(&so->so_rcv, m);
   1482 				if (mp) {
   1483 					*mp = m;
   1484 					mp = &m->m_next;
   1485 					so->so_rcv.sb_mb = m = m->m_next;
   1486 					*mp = NULL;
   1487 				} else {
   1488 					MFREE(m, so->so_rcv.sb_mb);
   1489 					m = so->so_rcv.sb_mb;
   1490 				}
   1491 				/*
   1492 				 * If m != NULL, we also know that
   1493 				 * so->so_rcv.sb_mb != NULL.
   1494 				 */
   1495 				KASSERT(so->so_rcv.sb_mb == m);
   1496 				if (m) {
   1497 					m->m_nextpkt = nextrecord;
   1498 					if (nextrecord == NULL)
   1499 						so->so_rcv.sb_lastrecord = m;
   1500 				} else {
   1501 					so->so_rcv.sb_mb = nextrecord;
   1502 					SB_EMPTY_FIXUP(&so->so_rcv);
   1503 				}
   1504 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1505 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1506 			}
   1507 		} else if (flags & MSG_PEEK)
   1508 			moff += len;
   1509 		else {
   1510 			if (mp != NULL) {
   1511 				mt = m_copym(m, 0, len, M_NOWAIT);
   1512 				if (__predict_false(mt == NULL)) {
   1513 					sounlock(so);
   1514 					mt = m_copym(m, 0, len, M_WAIT);
   1515 					solock(so);
   1516 				}
   1517 				*mp = mt;
   1518 			}
   1519 			m->m_data += len;
   1520 			m->m_len -= len;
   1521 			so->so_rcv.sb_cc -= len;
   1522 		}
   1523 		if (so->so_oobmark) {
   1524 			if ((flags & MSG_PEEK) == 0) {
   1525 				so->so_oobmark -= len;
   1526 				if (so->so_oobmark == 0) {
   1527 					so->so_state |= SS_RCVATMARK;
   1528 					break;
   1529 				}
   1530 			} else {
   1531 				offset += len;
   1532 				if (offset == so->so_oobmark)
   1533 					break;
   1534 			}
   1535 		}
   1536 		if (flags & MSG_EOR)
   1537 			break;
   1538 		/*
   1539 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1540 		 * we must not quit until "uio->uio_resid == 0" or an error
   1541 		 * termination.  If a signal/timeout occurs, return
   1542 		 * with a short count but without error.
   1543 		 * Keep sockbuf locked against other readers.
   1544 		 */
   1545 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1546 		    !sosendallatonce(so) && !nextrecord) {
   1547 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1548 				break;
   1549 			/*
   1550 			 * If we are peeking and the socket receive buffer is
   1551 			 * full, stop since we can't get more data to peek at.
   1552 			 */
   1553 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1554 				break;
   1555 			/*
   1556 			 * If we've drained the socket buffer, tell the
   1557 			 * protocol in case it needs to do something to
   1558 			 * get it filled again.
   1559 			 */
   1560 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1561 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1562 				    NULL, (struct mbuf *)(long)flags, NULL, l);
   1563 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1564 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1565 			if (wakeup_state & SS_RESTARTSYS)
   1566 				error = ERESTART;
   1567 			else
   1568 				error = sbwait(&so->so_rcv);
   1569 			if (error != 0) {
   1570 				sbunlock(&so->so_rcv);
   1571 				sounlock(so);
   1572 				splx(s);
   1573 				return 0;
   1574 			}
   1575 			if ((m = so->so_rcv.sb_mb) != NULL)
   1576 				nextrecord = m->m_nextpkt;
   1577 			wakeup_state = so->so_state;
   1578 		}
   1579 	}
   1580 
   1581 	if (m && atomic) {
   1582 		flags |= MSG_TRUNC;
   1583 		if ((flags & MSG_PEEK) == 0)
   1584 			(void) sbdroprecord(&so->so_rcv);
   1585 	}
   1586 	if ((flags & MSG_PEEK) == 0) {
   1587 		if (m == NULL) {
   1588 			/*
   1589 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1590 			 * part makes sure sb_lastrecord is up-to-date if
   1591 			 * there is still data in the socket buffer.
   1592 			 */
   1593 			so->so_rcv.sb_mb = nextrecord;
   1594 			if (so->so_rcv.sb_mb == NULL) {
   1595 				so->so_rcv.sb_mbtail = NULL;
   1596 				so->so_rcv.sb_lastrecord = NULL;
   1597 			} else if (nextrecord->m_nextpkt == NULL)
   1598 				so->so_rcv.sb_lastrecord = nextrecord;
   1599 		}
   1600 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1601 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1602 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1603 			(*pr->pr_usrreq)(so, PRU_RCVD, NULL,
   1604 			    (struct mbuf *)(long)flags, NULL, l);
   1605 	}
   1606 	if (orig_resid == uio->uio_resid && orig_resid &&
   1607 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1608 		sbunlock(&so->so_rcv);
   1609 		goto restart;
   1610 	}
   1611 
   1612 	if (flagsp != NULL)
   1613 		*flagsp |= flags;
   1614  release:
   1615 	sbunlock(&so->so_rcv);
   1616 	sounlock(so);
   1617 	splx(s);
   1618 	return error;
   1619 }
   1620 
   1621 int
   1622 soshutdown(struct socket *so, int how)
   1623 {
   1624 	const struct protosw	*pr;
   1625 	int	error;
   1626 
   1627 	KASSERT(solocked(so));
   1628 
   1629 	pr = so->so_proto;
   1630 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1631 		return (EINVAL);
   1632 
   1633 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1634 		sorflush(so);
   1635 		error = 0;
   1636 	}
   1637 	if (how == SHUT_WR || how == SHUT_RDWR)
   1638 		error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
   1639 		    NULL, NULL, NULL);
   1640 
   1641 	return error;
   1642 }
   1643 
   1644 void
   1645 sorestart(struct socket *so)
   1646 {
   1647 	/*
   1648 	 * An application has called close() on an fd on which another
   1649 	 * of its threads has called a socket system call.
   1650 	 * Mark this and wake everyone up, and code that would block again
   1651 	 * instead returns ERESTART.
   1652 	 * On system call re-entry the fd is validated and EBADF returned.
   1653 	 * Any other fd will block again on the 2nd syscall.
   1654 	 */
   1655 	solock(so);
   1656 	so->so_state |= SS_RESTARTSYS;
   1657 	cv_broadcast(&so->so_cv);
   1658 	cv_broadcast(&so->so_snd.sb_cv);
   1659 	cv_broadcast(&so->so_rcv.sb_cv);
   1660 	sounlock(so);
   1661 }
   1662 
   1663 void
   1664 sorflush(struct socket *so)
   1665 {
   1666 	struct sockbuf	*sb, asb;
   1667 	const struct protosw	*pr;
   1668 
   1669 	KASSERT(solocked(so));
   1670 
   1671 	sb = &so->so_rcv;
   1672 	pr = so->so_proto;
   1673 	socantrcvmore(so);
   1674 	sb->sb_flags |= SB_NOINTR;
   1675 	(void )sblock(sb, M_WAITOK);
   1676 	sbunlock(sb);
   1677 	asb = *sb;
   1678 	/*
   1679 	 * Clear most of the sockbuf structure, but leave some of the
   1680 	 * fields valid.
   1681 	 */
   1682 	memset(&sb->sb_startzero, 0,
   1683 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1684 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1685 		sounlock(so);
   1686 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1687 		solock(so);
   1688 	}
   1689 	sbrelease(&asb, so);
   1690 }
   1691 
   1692 /*
   1693  * internal set SOL_SOCKET options
   1694  */
   1695 static int
   1696 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1697 {
   1698 	int error = EINVAL, optval, opt;
   1699 	struct linger l;
   1700 	struct timeval tv;
   1701 
   1702 	switch ((opt = sopt->sopt_name)) {
   1703 
   1704 	case SO_ACCEPTFILTER:
   1705 		error = accept_filt_setopt(so, sopt);
   1706 		KASSERT(solocked(so));
   1707 		break;
   1708 
   1709   	case SO_LINGER:
   1710  		error = sockopt_get(sopt, &l, sizeof(l));
   1711 		solock(so);
   1712  		if (error)
   1713  			break;
   1714  		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1715  		    l.l_linger > (INT_MAX / hz)) {
   1716 			error = EDOM;
   1717 			break;
   1718 		}
   1719  		so->so_linger = l.l_linger;
   1720  		if (l.l_onoff)
   1721  			so->so_options |= SO_LINGER;
   1722  		else
   1723  			so->so_options &= ~SO_LINGER;
   1724    		break;
   1725 
   1726 	case SO_DEBUG:
   1727 	case SO_KEEPALIVE:
   1728 	case SO_DONTROUTE:
   1729 	case SO_USELOOPBACK:
   1730 	case SO_BROADCAST:
   1731 	case SO_REUSEADDR:
   1732 	case SO_REUSEPORT:
   1733 	case SO_OOBINLINE:
   1734 	case SO_TIMESTAMP:
   1735 #ifdef SO_OTIMESTAMP
   1736 	case SO_OTIMESTAMP:
   1737 #endif
   1738 		error = sockopt_getint(sopt, &optval);
   1739 		solock(so);
   1740 		if (error)
   1741 			break;
   1742 		if (optval)
   1743 			so->so_options |= opt;
   1744 		else
   1745 			so->so_options &= ~opt;
   1746 		break;
   1747 
   1748 	case SO_SNDBUF:
   1749 	case SO_RCVBUF:
   1750 	case SO_SNDLOWAT:
   1751 	case SO_RCVLOWAT:
   1752 		error = sockopt_getint(sopt, &optval);
   1753 		solock(so);
   1754 		if (error)
   1755 			break;
   1756 
   1757 		/*
   1758 		 * Values < 1 make no sense for any of these
   1759 		 * options, so disallow them.
   1760 		 */
   1761 		if (optval < 1) {
   1762 			error = EINVAL;
   1763 			break;
   1764 		}
   1765 
   1766 		switch (opt) {
   1767 		case SO_SNDBUF:
   1768 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
   1769 				error = ENOBUFS;
   1770 				break;
   1771 			}
   1772 			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1773 			break;
   1774 
   1775 		case SO_RCVBUF:
   1776 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
   1777 				error = ENOBUFS;
   1778 				break;
   1779 			}
   1780 			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1781 			break;
   1782 
   1783 		/*
   1784 		 * Make sure the low-water is never greater than
   1785 		 * the high-water.
   1786 		 */
   1787 		case SO_SNDLOWAT:
   1788 			if (optval > so->so_snd.sb_hiwat)
   1789 				optval = so->so_snd.sb_hiwat;
   1790 
   1791 			so->so_snd.sb_lowat = optval;
   1792 			break;
   1793 
   1794 		case SO_RCVLOWAT:
   1795 			if (optval > so->so_rcv.sb_hiwat)
   1796 				optval = so->so_rcv.sb_hiwat;
   1797 
   1798 			so->so_rcv.sb_lowat = optval;
   1799 			break;
   1800 		}
   1801 		break;
   1802 
   1803 #ifdef COMPAT_50
   1804 	case SO_OSNDTIMEO:
   1805 	case SO_ORCVTIMEO: {
   1806 		struct timeval50 otv;
   1807 		error = sockopt_get(sopt, &otv, sizeof(otv));
   1808 		if (error) {
   1809 			solock(so);
   1810 			break;
   1811 		}
   1812 		timeval50_to_timeval(&otv, &tv);
   1813 		opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
   1814 		error = 0;
   1815 		/*FALLTHROUGH*/
   1816 	}
   1817 #endif /* COMPAT_50 */
   1818 
   1819 	case SO_SNDTIMEO:
   1820 	case SO_RCVTIMEO:
   1821 		if (error)
   1822 			error = sockopt_get(sopt, &tv, sizeof(tv));
   1823 		solock(so);
   1824 		if (error)
   1825 			break;
   1826 
   1827 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
   1828 			error = EDOM;
   1829 			break;
   1830 		}
   1831 
   1832 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1833 		if (optval == 0 && tv.tv_usec != 0)
   1834 			optval = 1;
   1835 
   1836 		switch (opt) {
   1837 		case SO_SNDTIMEO:
   1838 			so->so_snd.sb_timeo = optval;
   1839 			break;
   1840 		case SO_RCVTIMEO:
   1841 			so->so_rcv.sb_timeo = optval;
   1842 			break;
   1843 		}
   1844 		break;
   1845 
   1846 	default:
   1847 		solock(so);
   1848 		error = ENOPROTOOPT;
   1849 		break;
   1850 	}
   1851 	KASSERT(solocked(so));
   1852 	return error;
   1853 }
   1854 
   1855 int
   1856 sosetopt(struct socket *so, struct sockopt *sopt)
   1857 {
   1858 	int error, prerr;
   1859 
   1860 	if (sopt->sopt_level == SOL_SOCKET) {
   1861 		error = sosetopt1(so, sopt);
   1862 		KASSERT(solocked(so));
   1863 	} else {
   1864 		error = ENOPROTOOPT;
   1865 		solock(so);
   1866 	}
   1867 
   1868 	if ((error == 0 || error == ENOPROTOOPT) &&
   1869 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1870 		/* give the protocol stack a shot */
   1871 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1872 		if (prerr == 0)
   1873 			error = 0;
   1874 		else if (prerr != ENOPROTOOPT)
   1875 			error = prerr;
   1876 	}
   1877 	sounlock(so);
   1878 	return error;
   1879 }
   1880 
   1881 /*
   1882  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1883  */
   1884 int
   1885 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1886     const void *val, size_t valsize)
   1887 {
   1888 	struct sockopt sopt;
   1889 	int error;
   1890 
   1891 	KASSERT(valsize == 0 || val != NULL);
   1892 
   1893 	sockopt_init(&sopt, level, name, valsize);
   1894 	sockopt_set(&sopt, val, valsize);
   1895 
   1896 	error = sosetopt(so, &sopt);
   1897 
   1898 	sockopt_destroy(&sopt);
   1899 
   1900 	return error;
   1901 }
   1902 
   1903 /*
   1904  * internal get SOL_SOCKET options
   1905  */
   1906 static int
   1907 sogetopt1(struct socket *so, struct sockopt *sopt)
   1908 {
   1909 	int error, optval, opt;
   1910 	struct linger l;
   1911 	struct timeval tv;
   1912 
   1913 	switch ((opt = sopt->sopt_name)) {
   1914 
   1915 	case SO_ACCEPTFILTER:
   1916 		error = accept_filt_getopt(so, sopt);
   1917 		break;
   1918 
   1919 	case SO_LINGER:
   1920 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1921 		l.l_linger = so->so_linger;
   1922 
   1923 		error = sockopt_set(sopt, &l, sizeof(l));
   1924 		break;
   1925 
   1926 	case SO_USELOOPBACK:
   1927 	case SO_DONTROUTE:
   1928 	case SO_DEBUG:
   1929 	case SO_KEEPALIVE:
   1930 	case SO_REUSEADDR:
   1931 	case SO_REUSEPORT:
   1932 	case SO_BROADCAST:
   1933 	case SO_OOBINLINE:
   1934 	case SO_TIMESTAMP:
   1935 #ifdef SO_OTIMESTAMP
   1936 	case SO_OTIMESTAMP:
   1937 #endif
   1938 		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
   1939 		break;
   1940 
   1941 	case SO_TYPE:
   1942 		error = sockopt_setint(sopt, so->so_type);
   1943 		break;
   1944 
   1945 	case SO_ERROR:
   1946 		error = sockopt_setint(sopt, so->so_error);
   1947 		so->so_error = 0;
   1948 		break;
   1949 
   1950 	case SO_SNDBUF:
   1951 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1952 		break;
   1953 
   1954 	case SO_RCVBUF:
   1955 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1956 		break;
   1957 
   1958 	case SO_SNDLOWAT:
   1959 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1960 		break;
   1961 
   1962 	case SO_RCVLOWAT:
   1963 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1964 		break;
   1965 
   1966 #ifdef COMPAT_50
   1967 	case SO_OSNDTIMEO:
   1968 	case SO_ORCVTIMEO: {
   1969 		struct timeval50 otv;
   1970 
   1971 		optval = (opt == SO_OSNDTIMEO ?
   1972 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1973 
   1974 		otv.tv_sec = optval / hz;
   1975 		otv.tv_usec = (optval % hz) * tick;
   1976 
   1977 		error = sockopt_set(sopt, &otv, sizeof(otv));
   1978 		break;
   1979 	}
   1980 #endif /* COMPAT_50 */
   1981 
   1982 	case SO_SNDTIMEO:
   1983 	case SO_RCVTIMEO:
   1984 		optval = (opt == SO_SNDTIMEO ?
   1985 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1986 
   1987 		tv.tv_sec = optval / hz;
   1988 		tv.tv_usec = (optval % hz) * tick;
   1989 
   1990 		error = sockopt_set(sopt, &tv, sizeof(tv));
   1991 		break;
   1992 
   1993 	case SO_OVERFLOWED:
   1994 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   1995 		break;
   1996 
   1997 	default:
   1998 		error = ENOPROTOOPT;
   1999 		break;
   2000 	}
   2001 
   2002 	return (error);
   2003 }
   2004 
   2005 int
   2006 sogetopt(struct socket *so, struct sockopt *sopt)
   2007 {
   2008 	int		error;
   2009 
   2010 	solock(so);
   2011 	if (sopt->sopt_level != SOL_SOCKET) {
   2012 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   2013 			error = ((*so->so_proto->pr_ctloutput)
   2014 			    (PRCO_GETOPT, so, sopt));
   2015 		} else
   2016 			error = (ENOPROTOOPT);
   2017 	} else {
   2018 		error = sogetopt1(so, sopt);
   2019 	}
   2020 	sounlock(so);
   2021 	return (error);
   2022 }
   2023 
   2024 /*
   2025  * alloc sockopt data buffer buffer
   2026  *	- will be released at destroy
   2027  */
   2028 static int
   2029 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
   2030 {
   2031 
   2032 	KASSERT(sopt->sopt_size == 0);
   2033 
   2034 	if (len > sizeof(sopt->sopt_buf)) {
   2035 		sopt->sopt_data = kmem_zalloc(len, kmflag);
   2036 		if (sopt->sopt_data == NULL)
   2037 			return ENOMEM;
   2038 	} else
   2039 		sopt->sopt_data = sopt->sopt_buf;
   2040 
   2041 	sopt->sopt_size = len;
   2042 	return 0;
   2043 }
   2044 
   2045 /*
   2046  * initialise sockopt storage
   2047  *	- MAY sleep during allocation
   2048  */
   2049 void
   2050 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   2051 {
   2052 
   2053 	memset(sopt, 0, sizeof(*sopt));
   2054 
   2055 	sopt->sopt_level = level;
   2056 	sopt->sopt_name = name;
   2057 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
   2058 }
   2059 
   2060 /*
   2061  * destroy sockopt storage
   2062  *	- will release any held memory references
   2063  */
   2064 void
   2065 sockopt_destroy(struct sockopt *sopt)
   2066 {
   2067 
   2068 	if (sopt->sopt_data != sopt->sopt_buf)
   2069 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   2070 
   2071 	memset(sopt, 0, sizeof(*sopt));
   2072 }
   2073 
   2074 /*
   2075  * set sockopt value
   2076  *	- value is copied into sockopt
   2077  * 	- memory is allocated when necessary, will not sleep
   2078  */
   2079 int
   2080 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   2081 {
   2082 	int error;
   2083 
   2084 	if (sopt->sopt_size == 0) {
   2085 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2086 		if (error)
   2087 			return error;
   2088 	}
   2089 
   2090 	KASSERT(sopt->sopt_size == len);
   2091 	memcpy(sopt->sopt_data, buf, len);
   2092 	return 0;
   2093 }
   2094 
   2095 /*
   2096  * common case of set sockopt integer value
   2097  */
   2098 int
   2099 sockopt_setint(struct sockopt *sopt, int val)
   2100 {
   2101 
   2102 	return sockopt_set(sopt, &val, sizeof(int));
   2103 }
   2104 
   2105 /*
   2106  * get sockopt value
   2107  *	- correct size must be given
   2108  */
   2109 int
   2110 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   2111 {
   2112 
   2113 	if (sopt->sopt_size != len)
   2114 		return EINVAL;
   2115 
   2116 	memcpy(buf, sopt->sopt_data, len);
   2117 	return 0;
   2118 }
   2119 
   2120 /*
   2121  * common case of get sockopt integer value
   2122  */
   2123 int
   2124 sockopt_getint(const struct sockopt *sopt, int *valp)
   2125 {
   2126 
   2127 	return sockopt_get(sopt, valp, sizeof(int));
   2128 }
   2129 
   2130 /*
   2131  * set sockopt value from mbuf
   2132  *	- ONLY for legacy code
   2133  *	- mbuf is released by sockopt
   2134  *	- will not sleep
   2135  */
   2136 int
   2137 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   2138 {
   2139 	size_t len;
   2140 	int error;
   2141 
   2142 	len = m_length(m);
   2143 
   2144 	if (sopt->sopt_size == 0) {
   2145 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2146 		if (error)
   2147 			return error;
   2148 	}
   2149 
   2150 	KASSERT(sopt->sopt_size == len);
   2151 	m_copydata(m, 0, len, sopt->sopt_data);
   2152 	m_freem(m);
   2153 
   2154 	return 0;
   2155 }
   2156 
   2157 /*
   2158  * get sockopt value into mbuf
   2159  *	- ONLY for legacy code
   2160  *	- mbuf to be released by the caller
   2161  *	- will not sleep
   2162  */
   2163 struct mbuf *
   2164 sockopt_getmbuf(const struct sockopt *sopt)
   2165 {
   2166 	struct mbuf *m;
   2167 
   2168 	if (sopt->sopt_size > MCLBYTES)
   2169 		return NULL;
   2170 
   2171 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   2172 	if (m == NULL)
   2173 		return NULL;
   2174 
   2175 	if (sopt->sopt_size > MLEN) {
   2176 		MCLGET(m, M_DONTWAIT);
   2177 		if ((m->m_flags & M_EXT) == 0) {
   2178 			m_free(m);
   2179 			return NULL;
   2180 		}
   2181 	}
   2182 
   2183 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
   2184 	m->m_len = sopt->sopt_size;
   2185 
   2186 	return m;
   2187 }
   2188 
   2189 void
   2190 sohasoutofband(struct socket *so)
   2191 {
   2192 
   2193 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2194 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
   2195 }
   2196 
   2197 static void
   2198 filt_sordetach(struct knote *kn)
   2199 {
   2200 	struct socket	*so;
   2201 
   2202 	so = ((file_t *)kn->kn_obj)->f_data;
   2203 	solock(so);
   2204 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   2205 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   2206 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2207 	sounlock(so);
   2208 }
   2209 
   2210 /*ARGSUSED*/
   2211 static int
   2212 filt_soread(struct knote *kn, long hint)
   2213 {
   2214 	struct socket	*so;
   2215 	int rv;
   2216 
   2217 	so = ((file_t *)kn->kn_obj)->f_data;
   2218 	if (hint != NOTE_SUBMIT)
   2219 		solock(so);
   2220 	kn->kn_data = so->so_rcv.sb_cc;
   2221 	if (so->so_state & SS_CANTRCVMORE) {
   2222 		kn->kn_flags |= EV_EOF;
   2223 		kn->kn_fflags = so->so_error;
   2224 		rv = 1;
   2225 	} else if (so->so_error)	/* temporary udp error */
   2226 		rv = 1;
   2227 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2228 		rv = (kn->kn_data >= kn->kn_sdata);
   2229 	else
   2230 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2231 	if (hint != NOTE_SUBMIT)
   2232 		sounlock(so);
   2233 	return rv;
   2234 }
   2235 
   2236 static void
   2237 filt_sowdetach(struct knote *kn)
   2238 {
   2239 	struct socket	*so;
   2240 
   2241 	so = ((file_t *)kn->kn_obj)->f_data;
   2242 	solock(so);
   2243 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   2244 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   2245 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2246 	sounlock(so);
   2247 }
   2248 
   2249 /*ARGSUSED*/
   2250 static int
   2251 filt_sowrite(struct knote *kn, long hint)
   2252 {
   2253 	struct socket	*so;
   2254 	int rv;
   2255 
   2256 	so = ((file_t *)kn->kn_obj)->f_data;
   2257 	if (hint != NOTE_SUBMIT)
   2258 		solock(so);
   2259 	kn->kn_data = sbspace(&so->so_snd);
   2260 	if (so->so_state & SS_CANTSENDMORE) {
   2261 		kn->kn_flags |= EV_EOF;
   2262 		kn->kn_fflags = so->so_error;
   2263 		rv = 1;
   2264 	} else if (so->so_error)	/* temporary udp error */
   2265 		rv = 1;
   2266 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2267 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2268 		rv = 0;
   2269 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2270 		rv = (kn->kn_data >= kn->kn_sdata);
   2271 	else
   2272 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2273 	if (hint != NOTE_SUBMIT)
   2274 		sounlock(so);
   2275 	return rv;
   2276 }
   2277 
   2278 /*ARGSUSED*/
   2279 static int
   2280 filt_solisten(struct knote *kn, long hint)
   2281 {
   2282 	struct socket	*so;
   2283 	int rv;
   2284 
   2285 	so = ((file_t *)kn->kn_obj)->f_data;
   2286 
   2287 	/*
   2288 	 * Set kn_data to number of incoming connections, not
   2289 	 * counting partial (incomplete) connections.
   2290 	 */
   2291 	if (hint != NOTE_SUBMIT)
   2292 		solock(so);
   2293 	kn->kn_data = so->so_qlen;
   2294 	rv = (kn->kn_data > 0);
   2295 	if (hint != NOTE_SUBMIT)
   2296 		sounlock(so);
   2297 	return rv;
   2298 }
   2299 
   2300 static const struct filterops solisten_filtops =
   2301 	{ 1, NULL, filt_sordetach, filt_solisten };
   2302 static const struct filterops soread_filtops =
   2303 	{ 1, NULL, filt_sordetach, filt_soread };
   2304 static const struct filterops sowrite_filtops =
   2305 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   2306 
   2307 int
   2308 soo_kqfilter(struct file *fp, struct knote *kn)
   2309 {
   2310 	struct socket	*so;
   2311 	struct sockbuf	*sb;
   2312 
   2313 	so = ((file_t *)kn->kn_obj)->f_data;
   2314 	solock(so);
   2315 	switch (kn->kn_filter) {
   2316 	case EVFILT_READ:
   2317 		if (so->so_options & SO_ACCEPTCONN)
   2318 			kn->kn_fop = &solisten_filtops;
   2319 		else
   2320 			kn->kn_fop = &soread_filtops;
   2321 		sb = &so->so_rcv;
   2322 		break;
   2323 	case EVFILT_WRITE:
   2324 		kn->kn_fop = &sowrite_filtops;
   2325 		sb = &so->so_snd;
   2326 		break;
   2327 	default:
   2328 		sounlock(so);
   2329 		return (EINVAL);
   2330 	}
   2331 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   2332 	sb->sb_flags |= SB_KNOTE;
   2333 	sounlock(so);
   2334 	return (0);
   2335 }
   2336 
   2337 static int
   2338 sodopoll(struct socket *so, int events)
   2339 {
   2340 	int revents;
   2341 
   2342 	revents = 0;
   2343 
   2344 	if (events & (POLLIN | POLLRDNORM))
   2345 		if (soreadable(so))
   2346 			revents |= events & (POLLIN | POLLRDNORM);
   2347 
   2348 	if (events & (POLLOUT | POLLWRNORM))
   2349 		if (sowritable(so))
   2350 			revents |= events & (POLLOUT | POLLWRNORM);
   2351 
   2352 	if (events & (POLLPRI | POLLRDBAND))
   2353 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   2354 			revents |= events & (POLLPRI | POLLRDBAND);
   2355 
   2356 	return revents;
   2357 }
   2358 
   2359 int
   2360 sopoll(struct socket *so, int events)
   2361 {
   2362 	int revents = 0;
   2363 
   2364 #ifndef DIAGNOSTIC
   2365 	/*
   2366 	 * Do a quick, unlocked check in expectation that the socket
   2367 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2368 	 * as the solocked() assertions will fail.
   2369 	 */
   2370 	if ((revents = sodopoll(so, events)) != 0)
   2371 		return revents;
   2372 #endif
   2373 
   2374 	solock(so);
   2375 	if ((revents = sodopoll(so, events)) == 0) {
   2376 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2377 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2378 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2379 		}
   2380 
   2381 		if (events & (POLLOUT | POLLWRNORM)) {
   2382 			selrecord(curlwp, &so->so_snd.sb_sel);
   2383 			so->so_snd.sb_flags |= SB_NOTIFY;
   2384 		}
   2385 	}
   2386 	sounlock(so);
   2387 
   2388 	return revents;
   2389 }
   2390 
   2391 
   2392 #include <sys/sysctl.h>
   2393 
   2394 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2395 
   2396 /*
   2397  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2398  * value is not too small.
   2399  * (XXX should we maybe make sure it's not too large as well?)
   2400  */
   2401 static int
   2402 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2403 {
   2404 	int error, new_somaxkva;
   2405 	struct sysctlnode node;
   2406 
   2407 	new_somaxkva = somaxkva;
   2408 	node = *rnode;
   2409 	node.sysctl_data = &new_somaxkva;
   2410 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2411 	if (error || newp == NULL)
   2412 		return (error);
   2413 
   2414 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2415 		return (EINVAL);
   2416 
   2417 	mutex_enter(&so_pendfree_lock);
   2418 	somaxkva = new_somaxkva;
   2419 	cv_broadcast(&socurkva_cv);
   2420 	mutex_exit(&so_pendfree_lock);
   2421 
   2422 	return (error);
   2423 }
   2424 
   2425 static void
   2426 sysctl_kern_somaxkva_setup(void)
   2427 {
   2428 
   2429 	KASSERT(socket_sysctllog == NULL);
   2430 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2431 		       CTLFLAG_PERMANENT,
   2432 		       CTLTYPE_NODE, "kern", NULL,
   2433 		       NULL, 0, NULL, 0,
   2434 		       CTL_KERN, CTL_EOL);
   2435 
   2436 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2437 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2438 		       CTLTYPE_INT, "somaxkva",
   2439 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2440 				    "used for socket buffers"),
   2441 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2442 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2443 }
   2444