Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.204
      1 /*	$NetBSD: uipc_socket.c,v 1.204 2011/06/26 16:42:42 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.204 2011/06/26 16:42:42 christos Exp $");
     67 
     68 #include "opt_compat_netbsd.h"
     69 #include "opt_sock_counters.h"
     70 #include "opt_sosend_loan.h"
     71 #include "opt_mbuftrace.h"
     72 #include "opt_somaxkva.h"
     73 #include "opt_multiprocessor.h"	/* XXX */
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/proc.h>
     78 #include <sys/file.h>
     79 #include <sys/filedesc.h>
     80 #include <sys/kmem.h>
     81 #include <sys/mbuf.h>
     82 #include <sys/domain.h>
     83 #include <sys/kernel.h>
     84 #include <sys/protosw.h>
     85 #include <sys/socket.h>
     86 #include <sys/socketvar.h>
     87 #include <sys/signalvar.h>
     88 #include <sys/resourcevar.h>
     89 #include <sys/uidinfo.h>
     90 #include <sys/event.h>
     91 #include <sys/poll.h>
     92 #include <sys/kauth.h>
     93 #include <sys/mutex.h>
     94 #include <sys/condvar.h>
     95 
     96 #ifdef COMPAT_50
     97 #include <compat/sys/time.h>
     98 #include <compat/sys/socket.h>
     99 #endif
    100 
    101 #include <uvm/uvm_extern.h>
    102 #include <uvm/uvm_loan.h>
    103 #include <uvm/uvm_page.h>
    104 
    105 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
    106 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    107 
    108 extern const struct fileops socketops;
    109 
    110 extern int	somaxconn;			/* patchable (XXX sysctl) */
    111 int		somaxconn = SOMAXCONN;
    112 kmutex_t	*softnet_lock;
    113 
    114 #ifdef SOSEND_COUNTERS
    115 #include <sys/device.h>
    116 
    117 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    118     NULL, "sosend", "loan big");
    119 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    120     NULL, "sosend", "copy big");
    121 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    122     NULL, "sosend", "copy small");
    123 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    124     NULL, "sosend", "kva limit");
    125 
    126 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    127 
    128 EVCNT_ATTACH_STATIC(sosend_loan_big);
    129 EVCNT_ATTACH_STATIC(sosend_copy_big);
    130 EVCNT_ATTACH_STATIC(sosend_copy_small);
    131 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    132 #else
    133 
    134 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    135 
    136 #endif /* SOSEND_COUNTERS */
    137 
    138 static struct callback_entry sokva_reclaimerentry;
    139 
    140 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    141 int sock_loan_thresh = -1;
    142 #else
    143 int sock_loan_thresh = 4096;
    144 #endif
    145 
    146 static kmutex_t so_pendfree_lock;
    147 static struct mbuf *so_pendfree;
    148 
    149 #ifndef SOMAXKVA
    150 #define	SOMAXKVA (16 * 1024 * 1024)
    151 #endif
    152 int somaxkva = SOMAXKVA;
    153 static int socurkva;
    154 static kcondvar_t socurkva_cv;
    155 
    156 static kauth_listener_t socket_listener;
    157 
    158 #define	SOCK_LOAN_CHUNK		65536
    159 
    160 static size_t sodopendfree(void);
    161 static size_t sodopendfreel(void);
    162 
    163 static void sysctl_kern_somaxkva_setup(void);
    164 static struct sysctllog *socket_sysctllog;
    165 
    166 static vsize_t
    167 sokvareserve(struct socket *so, vsize_t len)
    168 {
    169 	int error;
    170 
    171 	mutex_enter(&so_pendfree_lock);
    172 	while (socurkva + len > somaxkva) {
    173 		size_t freed;
    174 
    175 		/*
    176 		 * try to do pendfree.
    177 		 */
    178 
    179 		freed = sodopendfreel();
    180 
    181 		/*
    182 		 * if some kva was freed, try again.
    183 		 */
    184 
    185 		if (freed)
    186 			continue;
    187 
    188 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    189 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    190 		if (error) {
    191 			len = 0;
    192 			break;
    193 		}
    194 	}
    195 	socurkva += len;
    196 	mutex_exit(&so_pendfree_lock);
    197 	return len;
    198 }
    199 
    200 static void
    201 sokvaunreserve(vsize_t len)
    202 {
    203 
    204 	mutex_enter(&so_pendfree_lock);
    205 	socurkva -= len;
    206 	cv_broadcast(&socurkva_cv);
    207 	mutex_exit(&so_pendfree_lock);
    208 }
    209 
    210 /*
    211  * sokvaalloc: allocate kva for loan.
    212  */
    213 
    214 vaddr_t
    215 sokvaalloc(vsize_t len, struct socket *so)
    216 {
    217 	vaddr_t lva;
    218 
    219 	/*
    220 	 * reserve kva.
    221 	 */
    222 
    223 	if (sokvareserve(so, len) == 0)
    224 		return 0;
    225 
    226 	/*
    227 	 * allocate kva.
    228 	 */
    229 
    230 	lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    231 	if (lva == 0) {
    232 		sokvaunreserve(len);
    233 		return (0);
    234 	}
    235 
    236 	return lva;
    237 }
    238 
    239 /*
    240  * sokvafree: free kva for loan.
    241  */
    242 
    243 void
    244 sokvafree(vaddr_t sva, vsize_t len)
    245 {
    246 
    247 	/*
    248 	 * free kva.
    249 	 */
    250 
    251 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    252 
    253 	/*
    254 	 * unreserve kva.
    255 	 */
    256 
    257 	sokvaunreserve(len);
    258 }
    259 
    260 static void
    261 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    262 {
    263 	vaddr_t sva, eva;
    264 	vsize_t len;
    265 	int npgs;
    266 
    267 	KASSERT(pgs != NULL);
    268 
    269 	eva = round_page((vaddr_t) buf + size);
    270 	sva = trunc_page((vaddr_t) buf);
    271 	len = eva - sva;
    272 	npgs = len >> PAGE_SHIFT;
    273 
    274 	pmap_kremove(sva, len);
    275 	pmap_update(pmap_kernel());
    276 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    277 	sokvafree(sva, len);
    278 }
    279 
    280 static size_t
    281 sodopendfree(void)
    282 {
    283 	size_t rv;
    284 
    285 	if (__predict_true(so_pendfree == NULL))
    286 		return 0;
    287 
    288 	mutex_enter(&so_pendfree_lock);
    289 	rv = sodopendfreel();
    290 	mutex_exit(&so_pendfree_lock);
    291 
    292 	return rv;
    293 }
    294 
    295 /*
    296  * sodopendfreel: free mbufs on "pendfree" list.
    297  * unlock and relock so_pendfree_lock when freeing mbufs.
    298  *
    299  * => called with so_pendfree_lock held.
    300  */
    301 
    302 static size_t
    303 sodopendfreel(void)
    304 {
    305 	struct mbuf *m, *next;
    306 	size_t rv = 0;
    307 
    308 	KASSERT(mutex_owned(&so_pendfree_lock));
    309 
    310 	while (so_pendfree != NULL) {
    311 		m = so_pendfree;
    312 		so_pendfree = NULL;
    313 		mutex_exit(&so_pendfree_lock);
    314 
    315 		for (; m != NULL; m = next) {
    316 			next = m->m_next;
    317 			KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
    318 			KASSERT(m->m_ext.ext_refcnt == 0);
    319 
    320 			rv += m->m_ext.ext_size;
    321 			sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    322 			    m->m_ext.ext_size);
    323 			pool_cache_put(mb_cache, m);
    324 		}
    325 
    326 		mutex_enter(&so_pendfree_lock);
    327 	}
    328 
    329 	return (rv);
    330 }
    331 
    332 void
    333 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    334 {
    335 
    336 	KASSERT(m != NULL);
    337 
    338 	/*
    339 	 * postpone freeing mbuf.
    340 	 *
    341 	 * we can't do it in interrupt context
    342 	 * because we need to put kva back to kernel_map.
    343 	 */
    344 
    345 	mutex_enter(&so_pendfree_lock);
    346 	m->m_next = so_pendfree;
    347 	so_pendfree = m;
    348 	cv_broadcast(&socurkva_cv);
    349 	mutex_exit(&so_pendfree_lock);
    350 }
    351 
    352 static long
    353 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    354 {
    355 	struct iovec *iov = uio->uio_iov;
    356 	vaddr_t sva, eva;
    357 	vsize_t len;
    358 	vaddr_t lva;
    359 	int npgs, error;
    360 	vaddr_t va;
    361 	int i;
    362 
    363 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    364 		return (0);
    365 
    366 	if (iov->iov_len < (size_t) space)
    367 		space = iov->iov_len;
    368 	if (space > SOCK_LOAN_CHUNK)
    369 		space = SOCK_LOAN_CHUNK;
    370 
    371 	eva = round_page((vaddr_t) iov->iov_base + space);
    372 	sva = trunc_page((vaddr_t) iov->iov_base);
    373 	len = eva - sva;
    374 	npgs = len >> PAGE_SHIFT;
    375 
    376 	KASSERT(npgs <= M_EXT_MAXPAGES);
    377 
    378 	lva = sokvaalloc(len, so);
    379 	if (lva == 0)
    380 		return 0;
    381 
    382 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    383 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    384 	if (error) {
    385 		sokvafree(lva, len);
    386 		return (0);
    387 	}
    388 
    389 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    390 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    391 		    VM_PROT_READ, 0);
    392 	pmap_update(pmap_kernel());
    393 
    394 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    395 
    396 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    397 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    398 
    399 	uio->uio_resid -= space;
    400 	/* uio_offset not updated, not set/used for write(2) */
    401 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    402 	uio->uio_iov->iov_len -= space;
    403 	if (uio->uio_iov->iov_len == 0) {
    404 		uio->uio_iov++;
    405 		uio->uio_iovcnt--;
    406 	}
    407 
    408 	return (space);
    409 }
    410 
    411 static int
    412 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    413 {
    414 
    415 	KASSERT(ce == &sokva_reclaimerentry);
    416 	KASSERT(obj == NULL);
    417 
    418 	sodopendfree();
    419 	if (!vm_map_starved_p(kernel_map)) {
    420 		return CALLBACK_CHAIN_ABORT;
    421 	}
    422 	return CALLBACK_CHAIN_CONTINUE;
    423 }
    424 
    425 struct mbuf *
    426 getsombuf(struct socket *so, int type)
    427 {
    428 	struct mbuf *m;
    429 
    430 	m = m_get(M_WAIT, type);
    431 	MCLAIM(m, so->so_mowner);
    432 	return m;
    433 }
    434 
    435 static int
    436 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    437     void *arg0, void *arg1, void *arg2, void *arg3)
    438 {
    439 	int result;
    440 	enum kauth_network_req req;
    441 
    442 	result = KAUTH_RESULT_DEFER;
    443 	req = (enum kauth_network_req)arg0;
    444 
    445 	if ((action != KAUTH_NETWORK_SOCKET) &&
    446 	    (action != KAUTH_NETWORK_BIND))
    447 		return result;
    448 
    449 	switch (req) {
    450 	case KAUTH_REQ_NETWORK_BIND_PORT:
    451 		result = KAUTH_RESULT_ALLOW;
    452 		break;
    453 
    454 	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
    455 		/* Normal users can only drop their own connections. */
    456 		struct socket *so = (struct socket *)arg1;
    457 
    458 		if (proc_uidmatch(cred, so->so_cred))
    459 			result = KAUTH_RESULT_ALLOW;
    460 
    461 		break;
    462 		}
    463 
    464 	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
    465 		/* We allow "raw" routing/bluetooth sockets to anyone. */
    466 		if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
    467 		    || (u_long)arg1 == PF_BLUETOOTH) {
    468 			result = KAUTH_RESULT_ALLOW;
    469 		} else {
    470 			/* Privileged, let secmodel handle this. */
    471 			if ((u_long)arg2 == SOCK_RAW)
    472 				break;
    473 		}
    474 
    475 		result = KAUTH_RESULT_ALLOW;
    476 
    477 		break;
    478 
    479 	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
    480 		result = KAUTH_RESULT_ALLOW;
    481 
    482 		break;
    483 
    484 	default:
    485 		break;
    486 	}
    487 
    488 	return result;
    489 }
    490 
    491 void
    492 soinit(void)
    493 {
    494 
    495 	sysctl_kern_somaxkva_setup();
    496 
    497 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    498 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    499 	cv_init(&socurkva_cv, "sokva");
    500 	soinit2();
    501 
    502 	/* Set the initial adjusted socket buffer size. */
    503 	if (sb_max_set(sb_max))
    504 		panic("bad initial sb_max value: %lu", sb_max);
    505 
    506 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    507 	    &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
    508 
    509 	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    510 	    socket_listener_cb, NULL);
    511 }
    512 
    513 /*
    514  * Socket operation routines.
    515  * These routines are called by the routines in
    516  * sys_socket.c or from a system process, and
    517  * implement the semantics of socket operations by
    518  * switching out to the protocol specific routines.
    519  */
    520 /*ARGSUSED*/
    521 int
    522 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    523 	 struct socket *lockso)
    524 {
    525 	const struct protosw	*prp;
    526 	struct socket	*so;
    527 	uid_t		uid;
    528 	int		error;
    529 	kmutex_t	*lock;
    530 
    531 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    532 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    533 	    KAUTH_ARG(proto));
    534 	if (error != 0)
    535 		return error;
    536 
    537 	if (proto)
    538 		prp = pffindproto(dom, proto, type);
    539 	else
    540 		prp = pffindtype(dom, type);
    541 	if (prp == NULL) {
    542 		/* no support for domain */
    543 		if (pffinddomain(dom) == 0)
    544 			return EAFNOSUPPORT;
    545 		/* no support for socket type */
    546 		if (proto == 0 && type != 0)
    547 			return EPROTOTYPE;
    548 		return EPROTONOSUPPORT;
    549 	}
    550 	if (prp->pr_usrreq == NULL)
    551 		return EPROTONOSUPPORT;
    552 	if (prp->pr_type != type)
    553 		return EPROTOTYPE;
    554 
    555 	so = soget(true);
    556 	so->so_type = type;
    557 	so->so_proto = prp;
    558 	so->so_send = sosend;
    559 	so->so_receive = soreceive;
    560 #ifdef MBUFTRACE
    561 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    562 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    563 	so->so_mowner = &prp->pr_domain->dom_mowner;
    564 #endif
    565 	uid = kauth_cred_geteuid(l->l_cred);
    566 	so->so_uidinfo = uid_find(uid);
    567 	so->so_cpid = l->l_proc->p_pid;
    568 	if (lockso != NULL) {
    569 		/* Caller wants us to share a lock. */
    570 		lock = lockso->so_lock;
    571 		so->so_lock = lock;
    572 		mutex_obj_hold(lock);
    573 		mutex_enter(lock);
    574 	} else {
    575 		/* Lock assigned and taken during PRU_ATTACH. */
    576 	}
    577 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
    578 	    (struct mbuf *)(long)proto, NULL, l);
    579 	KASSERT(solocked(so));
    580 	if (error != 0) {
    581 		so->so_state |= SS_NOFDREF;
    582 		sofree(so);
    583 		return error;
    584 	}
    585 	so->so_cred = kauth_cred_dup(l->l_cred);
    586 	sounlock(so);
    587 	*aso = so;
    588 	return 0;
    589 }
    590 
    591 /* On success, write file descriptor to fdout and return zero.  On
    592  * failure, return non-zero; *fdout will be undefined.
    593  */
    594 int
    595 fsocreate(int domain, struct socket **sop, int type, int protocol,
    596     struct lwp *l, int *fdout)
    597 {
    598 	struct socket	*so;
    599 	struct file	*fp;
    600 	int		fd, error;
    601 	int		flags = type & SOCK_FLAGS_MASK;
    602 
    603 	type &= ~SOCK_FLAGS_MASK;
    604 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    605 		return error;
    606 	fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
    607 	fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0);
    608 	fp->f_type = DTYPE_SOCKET;
    609 	fp->f_ops = &socketops;
    610 	error = socreate(domain, &so, type, protocol, l, NULL);
    611 	if (error != 0) {
    612 		fd_abort(curproc, fp, fd);
    613 	} else {
    614 		if (sop != NULL)
    615 			*sop = so;
    616 		fp->f_data = so;
    617 		fd_affix(curproc, fp, fd);
    618 		*fdout = fd;
    619 	}
    620 	return error;
    621 }
    622 
    623 int
    624 sofamily(const struct socket *so)
    625 {
    626 	const struct protosw *pr;
    627 	const struct domain *dom;
    628 
    629 	if ((pr = so->so_proto) == NULL)
    630 		return AF_UNSPEC;
    631 	if ((dom = pr->pr_domain) == NULL)
    632 		return AF_UNSPEC;
    633 	return dom->dom_family;
    634 }
    635 
    636 int
    637 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    638 {
    639 	int	error;
    640 
    641 	solock(so);
    642 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
    643 	sounlock(so);
    644 	return error;
    645 }
    646 
    647 int
    648 solisten(struct socket *so, int backlog, struct lwp *l)
    649 {
    650 	int	error;
    651 
    652 	solock(so);
    653 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    654 	    SS_ISDISCONNECTING)) != 0) {
    655 	    	sounlock(so);
    656 		return (EOPNOTSUPP);
    657 	}
    658 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
    659 	    NULL, NULL, l);
    660 	if (error != 0) {
    661 		sounlock(so);
    662 		return error;
    663 	}
    664 	if (TAILQ_EMPTY(&so->so_q))
    665 		so->so_options |= SO_ACCEPTCONN;
    666 	if (backlog < 0)
    667 		backlog = 0;
    668 	so->so_qlimit = min(backlog, somaxconn);
    669 	sounlock(so);
    670 	return 0;
    671 }
    672 
    673 void
    674 sofree(struct socket *so)
    675 {
    676 	u_int refs;
    677 
    678 	KASSERT(solocked(so));
    679 
    680 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    681 		sounlock(so);
    682 		return;
    683 	}
    684 	if (so->so_head) {
    685 		/*
    686 		 * We must not decommission a socket that's on the accept(2)
    687 		 * queue.  If we do, then accept(2) may hang after select(2)
    688 		 * indicated that the listening socket was ready.
    689 		 */
    690 		if (!soqremque(so, 0)) {
    691 			sounlock(so);
    692 			return;
    693 		}
    694 	}
    695 	if (so->so_rcv.sb_hiwat)
    696 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    697 		    RLIM_INFINITY);
    698 	if (so->so_snd.sb_hiwat)
    699 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    700 		    RLIM_INFINITY);
    701 	sbrelease(&so->so_snd, so);
    702 	KASSERT(!cv_has_waiters(&so->so_cv));
    703 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    704 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    705 	sorflush(so);
    706 	refs = so->so_aborting;	/* XXX */
    707 	/* Remove acccept filter if one is present. */
    708 	if (so->so_accf != NULL)
    709 		(void)accept_filt_clear(so);
    710 	sounlock(so);
    711 	if (refs == 0)		/* XXX */
    712 		soput(so);
    713 }
    714 
    715 /*
    716  * Close a socket on last file table reference removal.
    717  * Initiate disconnect if connected.
    718  * Free socket when disconnect complete.
    719  */
    720 int
    721 soclose(struct socket *so)
    722 {
    723 	struct socket	*so2;
    724 	int		error;
    725 	int		error2;
    726 
    727 	error = 0;
    728 	solock(so);
    729 	if (so->so_options & SO_ACCEPTCONN) {
    730 		for (;;) {
    731 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    732 				KASSERT(solocked2(so, so2));
    733 				(void) soqremque(so2, 0);
    734 				/* soabort drops the lock. */
    735 				(void) soabort(so2);
    736 				solock(so);
    737 				continue;
    738 			}
    739 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    740 				KASSERT(solocked2(so, so2));
    741 				(void) soqremque(so2, 1);
    742 				/* soabort drops the lock. */
    743 				(void) soabort(so2);
    744 				solock(so);
    745 				continue;
    746 			}
    747 			break;
    748 		}
    749 	}
    750 	if (so->so_pcb == 0)
    751 		goto discard;
    752 	if (so->so_state & SS_ISCONNECTED) {
    753 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    754 			error = sodisconnect(so);
    755 			if (error)
    756 				goto drop;
    757 		}
    758 		if (so->so_options & SO_LINGER) {
    759 			if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
    760 				goto drop;
    761 			while (so->so_state & SS_ISCONNECTED) {
    762 				error = sowait(so, true, so->so_linger * hz);
    763 				if (error)
    764 					break;
    765 			}
    766 		}
    767 	}
    768  drop:
    769 	if (so->so_pcb) {
    770 		error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    771 		    NULL, NULL, NULL, NULL);
    772 		if (error == 0)
    773 			error = error2;
    774 	}
    775  discard:
    776 	if (so->so_state & SS_NOFDREF)
    777 		panic("soclose: NOFDREF");
    778 	kauth_cred_free(so->so_cred);
    779 	so->so_state |= SS_NOFDREF;
    780 	sofree(so);
    781 	return (error);
    782 }
    783 
    784 /*
    785  * Must be called with the socket locked..  Will return with it unlocked.
    786  */
    787 int
    788 soabort(struct socket *so)
    789 {
    790 	u_int refs;
    791 	int error;
    792 
    793 	KASSERT(solocked(so));
    794 	KASSERT(so->so_head == NULL);
    795 
    796 	so->so_aborting++;		/* XXX */
    797 	error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
    798 	    NULL, NULL, NULL);
    799 	refs = --so->so_aborting;	/* XXX */
    800 	if (error || (refs == 0)) {
    801 		sofree(so);
    802 	} else {
    803 		sounlock(so);
    804 	}
    805 	return error;
    806 }
    807 
    808 int
    809 soaccept(struct socket *so, struct mbuf *nam)
    810 {
    811 	int	error;
    812 
    813 	KASSERT(solocked(so));
    814 
    815 	error = 0;
    816 	if ((so->so_state & SS_NOFDREF) == 0)
    817 		panic("soaccept: !NOFDREF");
    818 	so->so_state &= ~SS_NOFDREF;
    819 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    820 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    821 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    822 		    NULL, nam, NULL, NULL);
    823 	else
    824 		error = ECONNABORTED;
    825 
    826 	return (error);
    827 }
    828 
    829 int
    830 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    831 {
    832 	int		error;
    833 
    834 	KASSERT(solocked(so));
    835 
    836 	if (so->so_options & SO_ACCEPTCONN)
    837 		return (EOPNOTSUPP);
    838 	/*
    839 	 * If protocol is connection-based, can only connect once.
    840 	 * Otherwise, if connected, try to disconnect first.
    841 	 * This allows user to disconnect by connecting to, e.g.,
    842 	 * a null address.
    843 	 */
    844 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    845 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    846 	    (error = sodisconnect(so))))
    847 		error = EISCONN;
    848 	else
    849 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    850 		    NULL, nam, NULL, l);
    851 	return (error);
    852 }
    853 
    854 int
    855 soconnect2(struct socket *so1, struct socket *so2)
    856 {
    857 	int	error;
    858 
    859 	KASSERT(solocked2(so1, so2));
    860 
    861 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    862 	    NULL, (struct mbuf *)so2, NULL, NULL);
    863 	return (error);
    864 }
    865 
    866 int
    867 sodisconnect(struct socket *so)
    868 {
    869 	int	error;
    870 
    871 	KASSERT(solocked(so));
    872 
    873 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    874 		error = ENOTCONN;
    875 	} else if (so->so_state & SS_ISDISCONNECTING) {
    876 		error = EALREADY;
    877 	} else {
    878 		error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    879 		    NULL, NULL, NULL, NULL);
    880 	}
    881 	sodopendfree();
    882 	return (error);
    883 }
    884 
    885 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    886 /*
    887  * Send on a socket.
    888  * If send must go all at once and message is larger than
    889  * send buffering, then hard error.
    890  * Lock against other senders.
    891  * If must go all at once and not enough room now, then
    892  * inform user that this would block and do nothing.
    893  * Otherwise, if nonblocking, send as much as possible.
    894  * The data to be sent is described by "uio" if nonzero,
    895  * otherwise by the mbuf chain "top" (which must be null
    896  * if uio is not).  Data provided in mbuf chain must be small
    897  * enough to send all at once.
    898  *
    899  * Returns nonzero on error, timeout or signal; callers
    900  * must check for short counts if EINTR/ERESTART are returned.
    901  * Data and control buffers are freed on return.
    902  */
    903 int
    904 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    905 	struct mbuf *control, int flags, struct lwp *l)
    906 {
    907 	struct mbuf	**mp, *m;
    908 	struct proc	*p;
    909 	long		space, len, resid, clen, mlen;
    910 	int		error, s, dontroute, atomic;
    911 	short		wakeup_state = 0;
    912 
    913 	p = l->l_proc;
    914 	sodopendfree();
    915 	clen = 0;
    916 
    917 	/*
    918 	 * solock() provides atomicity of access.  splsoftnet() prevents
    919 	 * protocol processing soft interrupts from interrupting us and
    920 	 * blocking (expensive).
    921 	 */
    922 	s = splsoftnet();
    923 	solock(so);
    924 	atomic = sosendallatonce(so) || top;
    925 	if (uio)
    926 		resid = uio->uio_resid;
    927 	else
    928 		resid = top->m_pkthdr.len;
    929 	/*
    930 	 * In theory resid should be unsigned.
    931 	 * However, space must be signed, as it might be less than 0
    932 	 * if we over-committed, and we must use a signed comparison
    933 	 * of space and resid.  On the other hand, a negative resid
    934 	 * causes us to loop sending 0-length segments to the protocol.
    935 	 */
    936 	if (resid < 0) {
    937 		error = EINVAL;
    938 		goto out;
    939 	}
    940 	dontroute =
    941 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    942 	    (so->so_proto->pr_flags & PR_ATOMIC);
    943 	l->l_ru.ru_msgsnd++;
    944 	if (control)
    945 		clen = control->m_len;
    946  restart:
    947 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    948 		goto out;
    949 	do {
    950 		if (so->so_state & SS_CANTSENDMORE) {
    951 			error = EPIPE;
    952 			goto release;
    953 		}
    954 		if (so->so_error) {
    955 			error = so->so_error;
    956 			so->so_error = 0;
    957 			goto release;
    958 		}
    959 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    960 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    961 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    962 				    !(resid == 0 && clen != 0)) {
    963 					error = ENOTCONN;
    964 					goto release;
    965 				}
    966 			} else if (addr == 0) {
    967 				error = EDESTADDRREQ;
    968 				goto release;
    969 			}
    970 		}
    971 		space = sbspace(&so->so_snd);
    972 		if (flags & MSG_OOB)
    973 			space += 1024;
    974 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    975 		    clen > so->so_snd.sb_hiwat) {
    976 			error = EMSGSIZE;
    977 			goto release;
    978 		}
    979 		if (space < resid + clen &&
    980 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    981 			if (so->so_nbio) {
    982 				error = EWOULDBLOCK;
    983 				goto release;
    984 			}
    985 			sbunlock(&so->so_snd);
    986 			if (wakeup_state & SS_RESTARTSYS) {
    987 				error = ERESTART;
    988 				goto out;
    989 			}
    990 			error = sbwait(&so->so_snd);
    991 			if (error)
    992 				goto out;
    993 			wakeup_state = so->so_state;
    994 			goto restart;
    995 		}
    996 		wakeup_state = 0;
    997 		mp = &top;
    998 		space -= clen;
    999 		do {
   1000 			if (uio == NULL) {
   1001 				/*
   1002 				 * Data is prepackaged in "top".
   1003 				 */
   1004 				resid = 0;
   1005 				if (flags & MSG_EOR)
   1006 					top->m_flags |= M_EOR;
   1007 			} else do {
   1008 				sounlock(so);
   1009 				splx(s);
   1010 				if (top == NULL) {
   1011 					m = m_gethdr(M_WAIT, MT_DATA);
   1012 					mlen = MHLEN;
   1013 					m->m_pkthdr.len = 0;
   1014 					m->m_pkthdr.rcvif = NULL;
   1015 				} else {
   1016 					m = m_get(M_WAIT, MT_DATA);
   1017 					mlen = MLEN;
   1018 				}
   1019 				MCLAIM(m, so->so_snd.sb_mowner);
   1020 				if (sock_loan_thresh >= 0 &&
   1021 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
   1022 				    space >= sock_loan_thresh &&
   1023 				    (len = sosend_loan(so, uio, m,
   1024 						       space)) != 0) {
   1025 					SOSEND_COUNTER_INCR(&sosend_loan_big);
   1026 					space -= len;
   1027 					goto have_data;
   1028 				}
   1029 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
   1030 					SOSEND_COUNTER_INCR(&sosend_copy_big);
   1031 					m_clget(m, M_DONTWAIT);
   1032 					if ((m->m_flags & M_EXT) == 0)
   1033 						goto nopages;
   1034 					mlen = MCLBYTES;
   1035 					if (atomic && top == 0) {
   1036 						len = lmin(MCLBYTES - max_hdr,
   1037 						    resid);
   1038 						m->m_data += max_hdr;
   1039 					} else
   1040 						len = lmin(MCLBYTES, resid);
   1041 					space -= len;
   1042 				} else {
   1043  nopages:
   1044 					SOSEND_COUNTER_INCR(&sosend_copy_small);
   1045 					len = lmin(lmin(mlen, resid), space);
   1046 					space -= len;
   1047 					/*
   1048 					 * For datagram protocols, leave room
   1049 					 * for protocol headers in first mbuf.
   1050 					 */
   1051 					if (atomic && top == 0 && len < mlen)
   1052 						MH_ALIGN(m, len);
   1053 				}
   1054 				error = uiomove(mtod(m, void *), (int)len, uio);
   1055  have_data:
   1056 				resid = uio->uio_resid;
   1057 				m->m_len = len;
   1058 				*mp = m;
   1059 				top->m_pkthdr.len += len;
   1060 				s = splsoftnet();
   1061 				solock(so);
   1062 				if (error != 0)
   1063 					goto release;
   1064 				mp = &m->m_next;
   1065 				if (resid <= 0) {
   1066 					if (flags & MSG_EOR)
   1067 						top->m_flags |= M_EOR;
   1068 					break;
   1069 				}
   1070 			} while (space > 0 && atomic);
   1071 
   1072 			if (so->so_state & SS_CANTSENDMORE) {
   1073 				error = EPIPE;
   1074 				goto release;
   1075 			}
   1076 			if (dontroute)
   1077 				so->so_options |= SO_DONTROUTE;
   1078 			if (resid > 0)
   1079 				so->so_state |= SS_MORETOCOME;
   1080 			error = (*so->so_proto->pr_usrreq)(so,
   1081 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
   1082 			    top, addr, control, curlwp);
   1083 			if (dontroute)
   1084 				so->so_options &= ~SO_DONTROUTE;
   1085 			if (resid > 0)
   1086 				so->so_state &= ~SS_MORETOCOME;
   1087 			clen = 0;
   1088 			control = NULL;
   1089 			top = NULL;
   1090 			mp = &top;
   1091 			if (error != 0)
   1092 				goto release;
   1093 		} while (resid && space > 0);
   1094 	} while (resid);
   1095 
   1096  release:
   1097 	sbunlock(&so->so_snd);
   1098  out:
   1099 	sounlock(so);
   1100 	splx(s);
   1101 	if (top)
   1102 		m_freem(top);
   1103 	if (control)
   1104 		m_freem(control);
   1105 	return (error);
   1106 }
   1107 
   1108 /*
   1109  * Following replacement or removal of the first mbuf on the first
   1110  * mbuf chain of a socket buffer, push necessary state changes back
   1111  * into the socket buffer so that other consumers see the values
   1112  * consistently.  'nextrecord' is the callers locally stored value of
   1113  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1114  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1115  */
   1116 static void
   1117 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1118 {
   1119 
   1120 	KASSERT(solocked(sb->sb_so));
   1121 
   1122 	/*
   1123 	 * First, update for the new value of nextrecord.  If necessary,
   1124 	 * make it the first record.
   1125 	 */
   1126 	if (sb->sb_mb != NULL)
   1127 		sb->sb_mb->m_nextpkt = nextrecord;
   1128 	else
   1129 		sb->sb_mb = nextrecord;
   1130 
   1131         /*
   1132          * Now update any dependent socket buffer fields to reflect
   1133          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1134          * the addition of a second clause that takes care of the
   1135          * case where sb_mb has been updated, but remains the last
   1136          * record.
   1137          */
   1138         if (sb->sb_mb == NULL) {
   1139                 sb->sb_mbtail = NULL;
   1140                 sb->sb_lastrecord = NULL;
   1141         } else if (sb->sb_mb->m_nextpkt == NULL)
   1142                 sb->sb_lastrecord = sb->sb_mb;
   1143 }
   1144 
   1145 /*
   1146  * Implement receive operations on a socket.
   1147  * We depend on the way that records are added to the sockbuf
   1148  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1149  * must begin with an address if the protocol so specifies,
   1150  * followed by an optional mbuf or mbufs containing ancillary data,
   1151  * and then zero or more mbufs of data.
   1152  * In order to avoid blocking network interrupts for the entire time here,
   1153  * we splx() while doing the actual copy to user space.
   1154  * Although the sockbuf is locked, new data may still be appended,
   1155  * and thus we must maintain consistency of the sockbuf during that time.
   1156  *
   1157  * The caller may receive the data as a single mbuf chain by supplying
   1158  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1159  * only for the count in uio_resid.
   1160  */
   1161 int
   1162 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1163 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1164 {
   1165 	struct lwp *l = curlwp;
   1166 	struct mbuf	*m, **mp, *mt;
   1167 	int atomic, flags, len, error, s, offset, moff, type, orig_resid;
   1168 	const struct protosw	*pr;
   1169 	struct mbuf	*nextrecord;
   1170 	int		mbuf_removed = 0;
   1171 	const struct domain *dom;
   1172 	short		wakeup_state = 0;
   1173 
   1174 	pr = so->so_proto;
   1175 	atomic = pr->pr_flags & PR_ATOMIC;
   1176 	dom = pr->pr_domain;
   1177 	mp = mp0;
   1178 	type = 0;
   1179 	orig_resid = uio->uio_resid;
   1180 
   1181 	if (paddr != NULL)
   1182 		*paddr = NULL;
   1183 	if (controlp != NULL)
   1184 		*controlp = NULL;
   1185 	if (flagsp != NULL)
   1186 		flags = *flagsp &~ MSG_EOR;
   1187 	else
   1188 		flags = 0;
   1189 
   1190 	if ((flags & MSG_DONTWAIT) == 0)
   1191 		sodopendfree();
   1192 
   1193 	if (flags & MSG_OOB) {
   1194 		m = m_get(M_WAIT, MT_DATA);
   1195 		solock(so);
   1196 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
   1197 		    (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
   1198 		sounlock(so);
   1199 		if (error)
   1200 			goto bad;
   1201 		do {
   1202 			error = uiomove(mtod(m, void *),
   1203 			    (int) min(uio->uio_resid, m->m_len), uio);
   1204 			m = m_free(m);
   1205 		} while (uio->uio_resid > 0 && error == 0 && m);
   1206  bad:
   1207 		if (m != NULL)
   1208 			m_freem(m);
   1209 		return error;
   1210 	}
   1211 	if (mp != NULL)
   1212 		*mp = NULL;
   1213 
   1214 	/*
   1215 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1216 	 * protocol processing soft interrupts from interrupting us and
   1217 	 * blocking (expensive).
   1218 	 */
   1219 	s = splsoftnet();
   1220 	solock(so);
   1221 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
   1222 		(*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
   1223 
   1224  restart:
   1225 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1226 		sounlock(so);
   1227 		splx(s);
   1228 		return error;
   1229 	}
   1230 
   1231 	m = so->so_rcv.sb_mb;
   1232 	/*
   1233 	 * If we have less data than requested, block awaiting more
   1234 	 * (subject to any timeout) if:
   1235 	 *   1. the current count is less than the low water mark,
   1236 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1237 	 *	receive operation at once if we block (resid <= hiwat), or
   1238 	 *   3. MSG_DONTWAIT is not set.
   1239 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1240 	 * we have to do the receive in sections, and thus risk returning
   1241 	 * a short count if a timeout or signal occurs after we start.
   1242 	 */
   1243 	if (m == NULL ||
   1244 	    ((flags & MSG_DONTWAIT) == 0 &&
   1245 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1246 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1247 	      ((flags & MSG_WAITALL) &&
   1248 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1249 	     m->m_nextpkt == NULL && !atomic)) {
   1250 #ifdef DIAGNOSTIC
   1251 		if (m == NULL && so->so_rcv.sb_cc)
   1252 			panic("receive 1");
   1253 #endif
   1254 		if (so->so_error) {
   1255 			if (m != NULL)
   1256 				goto dontblock;
   1257 			error = so->so_error;
   1258 			if ((flags & MSG_PEEK) == 0)
   1259 				so->so_error = 0;
   1260 			goto release;
   1261 		}
   1262 		if (so->so_state & SS_CANTRCVMORE) {
   1263 			if (m != NULL)
   1264 				goto dontblock;
   1265 			else
   1266 				goto release;
   1267 		}
   1268 		for (; m != NULL; m = m->m_next)
   1269 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1270 				m = so->so_rcv.sb_mb;
   1271 				goto dontblock;
   1272 			}
   1273 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1274 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1275 			error = ENOTCONN;
   1276 			goto release;
   1277 		}
   1278 		if (uio->uio_resid == 0)
   1279 			goto release;
   1280 		if (so->so_nbio || (flags & MSG_DONTWAIT)) {
   1281 			error = EWOULDBLOCK;
   1282 			goto release;
   1283 		}
   1284 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1285 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1286 		sbunlock(&so->so_rcv);
   1287 		if (wakeup_state & SS_RESTARTSYS)
   1288 			error = ERESTART;
   1289 		else
   1290 			error = sbwait(&so->so_rcv);
   1291 		if (error != 0) {
   1292 			sounlock(so);
   1293 			splx(s);
   1294 			return error;
   1295 		}
   1296 		wakeup_state = so->so_state;
   1297 		goto restart;
   1298 	}
   1299  dontblock:
   1300 	/*
   1301 	 * On entry here, m points to the first record of the socket buffer.
   1302 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1303 	 * pointer to the next record in the socket buffer.  We must keep the
   1304 	 * various socket buffer pointers and local stack versions of the
   1305 	 * pointers in sync, pushing out modifications before dropping the
   1306 	 * socket lock, and re-reading them when picking it up.
   1307 	 *
   1308 	 * Otherwise, we will race with the network stack appending new data
   1309 	 * or records onto the socket buffer by using inconsistent/stale
   1310 	 * versions of the field, possibly resulting in socket buffer
   1311 	 * corruption.
   1312 	 *
   1313 	 * By holding the high-level sblock(), we prevent simultaneous
   1314 	 * readers from pulling off the front of the socket buffer.
   1315 	 */
   1316 	if (l != NULL)
   1317 		l->l_ru.ru_msgrcv++;
   1318 	KASSERT(m == so->so_rcv.sb_mb);
   1319 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1320 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1321 	nextrecord = m->m_nextpkt;
   1322 	if (pr->pr_flags & PR_ADDR) {
   1323 #ifdef DIAGNOSTIC
   1324 		if (m->m_type != MT_SONAME)
   1325 			panic("receive 1a");
   1326 #endif
   1327 		orig_resid = 0;
   1328 		if (flags & MSG_PEEK) {
   1329 			if (paddr)
   1330 				*paddr = m_copy(m, 0, m->m_len);
   1331 			m = m->m_next;
   1332 		} else {
   1333 			sbfree(&so->so_rcv, m);
   1334 			mbuf_removed = 1;
   1335 			if (paddr != NULL) {
   1336 				*paddr = m;
   1337 				so->so_rcv.sb_mb = m->m_next;
   1338 				m->m_next = NULL;
   1339 				m = so->so_rcv.sb_mb;
   1340 			} else {
   1341 				MFREE(m, so->so_rcv.sb_mb);
   1342 				m = so->so_rcv.sb_mb;
   1343 			}
   1344 			sbsync(&so->so_rcv, nextrecord);
   1345 		}
   1346 	}
   1347 
   1348 	/*
   1349 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1350 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1351 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1352 	 * perform externalization (or freeing if controlp == NULL).
   1353 	 */
   1354 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1355 		struct mbuf *cm = NULL, *cmn;
   1356 		struct mbuf **cme = &cm;
   1357 
   1358 		do {
   1359 			if (flags & MSG_PEEK) {
   1360 				if (controlp != NULL) {
   1361 					*controlp = m_copy(m, 0, m->m_len);
   1362 					controlp = &(*controlp)->m_next;
   1363 				}
   1364 				m = m->m_next;
   1365 			} else {
   1366 				sbfree(&so->so_rcv, m);
   1367 				so->so_rcv.sb_mb = m->m_next;
   1368 				m->m_next = NULL;
   1369 				*cme = m;
   1370 				cme = &(*cme)->m_next;
   1371 				m = so->so_rcv.sb_mb;
   1372 			}
   1373 		} while (m != NULL && m->m_type == MT_CONTROL);
   1374 		if ((flags & MSG_PEEK) == 0)
   1375 			sbsync(&so->so_rcv, nextrecord);
   1376 		for (; cm != NULL; cm = cmn) {
   1377 			cmn = cm->m_next;
   1378 			cm->m_next = NULL;
   1379 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1380 			if (controlp != NULL) {
   1381 				if (dom->dom_externalize != NULL &&
   1382 				    type == SCM_RIGHTS) {
   1383 					sounlock(so);
   1384 					splx(s);
   1385 					error = (*dom->dom_externalize)(cm, l,
   1386 					    (flags & MSG_CMSG_CLOEXEC) ?
   1387 					    O_CLOEXEC : 0);
   1388 					s = splsoftnet();
   1389 					solock(so);
   1390 				}
   1391 				*controlp = cm;
   1392 				while (*controlp != NULL)
   1393 					controlp = &(*controlp)->m_next;
   1394 			} else {
   1395 				/*
   1396 				 * Dispose of any SCM_RIGHTS message that went
   1397 				 * through the read path rather than recv.
   1398 				 */
   1399 				if (dom->dom_dispose != NULL &&
   1400 				    type == SCM_RIGHTS) {
   1401 				    	sounlock(so);
   1402 					(*dom->dom_dispose)(cm);
   1403 					solock(so);
   1404 				}
   1405 				m_freem(cm);
   1406 			}
   1407 		}
   1408 		if (m != NULL)
   1409 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1410 		else
   1411 			nextrecord = so->so_rcv.sb_mb;
   1412 		orig_resid = 0;
   1413 	}
   1414 
   1415 	/* If m is non-NULL, we have some data to read. */
   1416 	if (__predict_true(m != NULL)) {
   1417 		type = m->m_type;
   1418 		if (type == MT_OOBDATA)
   1419 			flags |= MSG_OOB;
   1420 	}
   1421 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1422 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1423 
   1424 	moff = 0;
   1425 	offset = 0;
   1426 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1427 		if (m->m_type == MT_OOBDATA) {
   1428 			if (type != MT_OOBDATA)
   1429 				break;
   1430 		} else if (type == MT_OOBDATA)
   1431 			break;
   1432 #ifdef DIAGNOSTIC
   1433 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1434 			panic("receive 3");
   1435 #endif
   1436 		so->so_state &= ~SS_RCVATMARK;
   1437 		wakeup_state = 0;
   1438 		len = uio->uio_resid;
   1439 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1440 			len = so->so_oobmark - offset;
   1441 		if (len > m->m_len - moff)
   1442 			len = m->m_len - moff;
   1443 		/*
   1444 		 * If mp is set, just pass back the mbufs.
   1445 		 * Otherwise copy them out via the uio, then free.
   1446 		 * Sockbuf must be consistent here (points to current mbuf,
   1447 		 * it points to next record) when we drop priority;
   1448 		 * we must note any additions to the sockbuf when we
   1449 		 * block interrupts again.
   1450 		 */
   1451 		if (mp == NULL) {
   1452 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1453 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1454 			sounlock(so);
   1455 			splx(s);
   1456 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
   1457 			s = splsoftnet();
   1458 			solock(so);
   1459 			if (error != 0) {
   1460 				/*
   1461 				 * If any part of the record has been removed
   1462 				 * (such as the MT_SONAME mbuf, which will
   1463 				 * happen when PR_ADDR, and thus also
   1464 				 * PR_ATOMIC, is set), then drop the entire
   1465 				 * record to maintain the atomicity of the
   1466 				 * receive operation.
   1467 				 *
   1468 				 * This avoids a later panic("receive 1a")
   1469 				 * when compiled with DIAGNOSTIC.
   1470 				 */
   1471 				if (m && mbuf_removed && atomic)
   1472 					(void) sbdroprecord(&so->so_rcv);
   1473 
   1474 				goto release;
   1475 			}
   1476 		} else
   1477 			uio->uio_resid -= len;
   1478 		if (len == m->m_len - moff) {
   1479 			if (m->m_flags & M_EOR)
   1480 				flags |= MSG_EOR;
   1481 			if (flags & MSG_PEEK) {
   1482 				m = m->m_next;
   1483 				moff = 0;
   1484 			} else {
   1485 				nextrecord = m->m_nextpkt;
   1486 				sbfree(&so->so_rcv, m);
   1487 				if (mp) {
   1488 					*mp = m;
   1489 					mp = &m->m_next;
   1490 					so->so_rcv.sb_mb = m = m->m_next;
   1491 					*mp = NULL;
   1492 				} else {
   1493 					MFREE(m, so->so_rcv.sb_mb);
   1494 					m = so->so_rcv.sb_mb;
   1495 				}
   1496 				/*
   1497 				 * If m != NULL, we also know that
   1498 				 * so->so_rcv.sb_mb != NULL.
   1499 				 */
   1500 				KASSERT(so->so_rcv.sb_mb == m);
   1501 				if (m) {
   1502 					m->m_nextpkt = nextrecord;
   1503 					if (nextrecord == NULL)
   1504 						so->so_rcv.sb_lastrecord = m;
   1505 				} else {
   1506 					so->so_rcv.sb_mb = nextrecord;
   1507 					SB_EMPTY_FIXUP(&so->so_rcv);
   1508 				}
   1509 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1510 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1511 			}
   1512 		} else if (flags & MSG_PEEK)
   1513 			moff += len;
   1514 		else {
   1515 			if (mp != NULL) {
   1516 				mt = m_copym(m, 0, len, M_NOWAIT);
   1517 				if (__predict_false(mt == NULL)) {
   1518 					sounlock(so);
   1519 					mt = m_copym(m, 0, len, M_WAIT);
   1520 					solock(so);
   1521 				}
   1522 				*mp = mt;
   1523 			}
   1524 			m->m_data += len;
   1525 			m->m_len -= len;
   1526 			so->so_rcv.sb_cc -= len;
   1527 		}
   1528 		if (so->so_oobmark) {
   1529 			if ((flags & MSG_PEEK) == 0) {
   1530 				so->so_oobmark -= len;
   1531 				if (so->so_oobmark == 0) {
   1532 					so->so_state |= SS_RCVATMARK;
   1533 					break;
   1534 				}
   1535 			} else {
   1536 				offset += len;
   1537 				if (offset == so->so_oobmark)
   1538 					break;
   1539 			}
   1540 		}
   1541 		if (flags & MSG_EOR)
   1542 			break;
   1543 		/*
   1544 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1545 		 * we must not quit until "uio->uio_resid == 0" or an error
   1546 		 * termination.  If a signal/timeout occurs, return
   1547 		 * with a short count but without error.
   1548 		 * Keep sockbuf locked against other readers.
   1549 		 */
   1550 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1551 		    !sosendallatonce(so) && !nextrecord) {
   1552 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1553 				break;
   1554 			/*
   1555 			 * If we are peeking and the socket receive buffer is
   1556 			 * full, stop since we can't get more data to peek at.
   1557 			 */
   1558 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1559 				break;
   1560 			/*
   1561 			 * If we've drained the socket buffer, tell the
   1562 			 * protocol in case it needs to do something to
   1563 			 * get it filled again.
   1564 			 */
   1565 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1566 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1567 				    NULL, (struct mbuf *)(long)flags, NULL, l);
   1568 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1569 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1570 			if (wakeup_state & SS_RESTARTSYS)
   1571 				error = ERESTART;
   1572 			else
   1573 				error = sbwait(&so->so_rcv);
   1574 			if (error != 0) {
   1575 				sbunlock(&so->so_rcv);
   1576 				sounlock(so);
   1577 				splx(s);
   1578 				return 0;
   1579 			}
   1580 			if ((m = so->so_rcv.sb_mb) != NULL)
   1581 				nextrecord = m->m_nextpkt;
   1582 			wakeup_state = so->so_state;
   1583 		}
   1584 	}
   1585 
   1586 	if (m && atomic) {
   1587 		flags |= MSG_TRUNC;
   1588 		if ((flags & MSG_PEEK) == 0)
   1589 			(void) sbdroprecord(&so->so_rcv);
   1590 	}
   1591 	if ((flags & MSG_PEEK) == 0) {
   1592 		if (m == NULL) {
   1593 			/*
   1594 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1595 			 * part makes sure sb_lastrecord is up-to-date if
   1596 			 * there is still data in the socket buffer.
   1597 			 */
   1598 			so->so_rcv.sb_mb = nextrecord;
   1599 			if (so->so_rcv.sb_mb == NULL) {
   1600 				so->so_rcv.sb_mbtail = NULL;
   1601 				so->so_rcv.sb_lastrecord = NULL;
   1602 			} else if (nextrecord->m_nextpkt == NULL)
   1603 				so->so_rcv.sb_lastrecord = nextrecord;
   1604 		}
   1605 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1606 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1607 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1608 			(*pr->pr_usrreq)(so, PRU_RCVD, NULL,
   1609 			    (struct mbuf *)(long)flags, NULL, l);
   1610 	}
   1611 	if (orig_resid == uio->uio_resid && orig_resid &&
   1612 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1613 		sbunlock(&so->so_rcv);
   1614 		goto restart;
   1615 	}
   1616 
   1617 	if (flagsp != NULL)
   1618 		*flagsp |= flags;
   1619  release:
   1620 	sbunlock(&so->so_rcv);
   1621 	sounlock(so);
   1622 	splx(s);
   1623 	return error;
   1624 }
   1625 
   1626 int
   1627 soshutdown(struct socket *so, int how)
   1628 {
   1629 	const struct protosw	*pr;
   1630 	int	error;
   1631 
   1632 	KASSERT(solocked(so));
   1633 
   1634 	pr = so->so_proto;
   1635 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1636 		return (EINVAL);
   1637 
   1638 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1639 		sorflush(so);
   1640 		error = 0;
   1641 	}
   1642 	if (how == SHUT_WR || how == SHUT_RDWR)
   1643 		error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
   1644 		    NULL, NULL, NULL);
   1645 
   1646 	return error;
   1647 }
   1648 
   1649 void
   1650 sorestart(struct socket *so)
   1651 {
   1652 	/*
   1653 	 * An application has called close() on an fd on which another
   1654 	 * of its threads has called a socket system call.
   1655 	 * Mark this and wake everyone up, and code that would block again
   1656 	 * instead returns ERESTART.
   1657 	 * On system call re-entry the fd is validated and EBADF returned.
   1658 	 * Any other fd will block again on the 2nd syscall.
   1659 	 */
   1660 	solock(so);
   1661 	so->so_state |= SS_RESTARTSYS;
   1662 	cv_broadcast(&so->so_cv);
   1663 	cv_broadcast(&so->so_snd.sb_cv);
   1664 	cv_broadcast(&so->so_rcv.sb_cv);
   1665 	sounlock(so);
   1666 }
   1667 
   1668 void
   1669 sorflush(struct socket *so)
   1670 {
   1671 	struct sockbuf	*sb, asb;
   1672 	const struct protosw	*pr;
   1673 
   1674 	KASSERT(solocked(so));
   1675 
   1676 	sb = &so->so_rcv;
   1677 	pr = so->so_proto;
   1678 	socantrcvmore(so);
   1679 	sb->sb_flags |= SB_NOINTR;
   1680 	(void )sblock(sb, M_WAITOK);
   1681 	sbunlock(sb);
   1682 	asb = *sb;
   1683 	/*
   1684 	 * Clear most of the sockbuf structure, but leave some of the
   1685 	 * fields valid.
   1686 	 */
   1687 	memset(&sb->sb_startzero, 0,
   1688 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1689 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1690 		sounlock(so);
   1691 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1692 		solock(so);
   1693 	}
   1694 	sbrelease(&asb, so);
   1695 }
   1696 
   1697 /*
   1698  * internal set SOL_SOCKET options
   1699  */
   1700 static int
   1701 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1702 {
   1703 	int error = EINVAL, optval, opt;
   1704 	struct linger l;
   1705 	struct timeval tv;
   1706 
   1707 	switch ((opt = sopt->sopt_name)) {
   1708 
   1709 	case SO_ACCEPTFILTER:
   1710 		error = accept_filt_setopt(so, sopt);
   1711 		KASSERT(solocked(so));
   1712 		break;
   1713 
   1714   	case SO_LINGER:
   1715  		error = sockopt_get(sopt, &l, sizeof(l));
   1716 		solock(so);
   1717  		if (error)
   1718  			break;
   1719  		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1720  		    l.l_linger > (INT_MAX / hz)) {
   1721 			error = EDOM;
   1722 			break;
   1723 		}
   1724  		so->so_linger = l.l_linger;
   1725  		if (l.l_onoff)
   1726  			so->so_options |= SO_LINGER;
   1727  		else
   1728  			so->so_options &= ~SO_LINGER;
   1729    		break;
   1730 
   1731 	case SO_DEBUG:
   1732 	case SO_KEEPALIVE:
   1733 	case SO_DONTROUTE:
   1734 	case SO_USELOOPBACK:
   1735 	case SO_BROADCAST:
   1736 	case SO_REUSEADDR:
   1737 	case SO_REUSEPORT:
   1738 	case SO_OOBINLINE:
   1739 	case SO_TIMESTAMP:
   1740 #ifdef SO_OTIMESTAMP
   1741 	case SO_OTIMESTAMP:
   1742 #endif
   1743 		error = sockopt_getint(sopt, &optval);
   1744 		solock(so);
   1745 		if (error)
   1746 			break;
   1747 		if (optval)
   1748 			so->so_options |= opt;
   1749 		else
   1750 			so->so_options &= ~opt;
   1751 		break;
   1752 
   1753 	case SO_SNDBUF:
   1754 	case SO_RCVBUF:
   1755 	case SO_SNDLOWAT:
   1756 	case SO_RCVLOWAT:
   1757 		error = sockopt_getint(sopt, &optval);
   1758 		solock(so);
   1759 		if (error)
   1760 			break;
   1761 
   1762 		/*
   1763 		 * Values < 1 make no sense for any of these
   1764 		 * options, so disallow them.
   1765 		 */
   1766 		if (optval < 1) {
   1767 			error = EINVAL;
   1768 			break;
   1769 		}
   1770 
   1771 		switch (opt) {
   1772 		case SO_SNDBUF:
   1773 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
   1774 				error = ENOBUFS;
   1775 				break;
   1776 			}
   1777 			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1778 			break;
   1779 
   1780 		case SO_RCVBUF:
   1781 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
   1782 				error = ENOBUFS;
   1783 				break;
   1784 			}
   1785 			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1786 			break;
   1787 
   1788 		/*
   1789 		 * Make sure the low-water is never greater than
   1790 		 * the high-water.
   1791 		 */
   1792 		case SO_SNDLOWAT:
   1793 			if (optval > so->so_snd.sb_hiwat)
   1794 				optval = so->so_snd.sb_hiwat;
   1795 
   1796 			so->so_snd.sb_lowat = optval;
   1797 			break;
   1798 
   1799 		case SO_RCVLOWAT:
   1800 			if (optval > so->so_rcv.sb_hiwat)
   1801 				optval = so->so_rcv.sb_hiwat;
   1802 
   1803 			so->so_rcv.sb_lowat = optval;
   1804 			break;
   1805 		}
   1806 		break;
   1807 
   1808 #ifdef COMPAT_50
   1809 	case SO_OSNDTIMEO:
   1810 	case SO_ORCVTIMEO: {
   1811 		struct timeval50 otv;
   1812 		error = sockopt_get(sopt, &otv, sizeof(otv));
   1813 		if (error) {
   1814 			solock(so);
   1815 			break;
   1816 		}
   1817 		timeval50_to_timeval(&otv, &tv);
   1818 		opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
   1819 		error = 0;
   1820 		/*FALLTHROUGH*/
   1821 	}
   1822 #endif /* COMPAT_50 */
   1823 
   1824 	case SO_SNDTIMEO:
   1825 	case SO_RCVTIMEO:
   1826 		if (error)
   1827 			error = sockopt_get(sopt, &tv, sizeof(tv));
   1828 		solock(so);
   1829 		if (error)
   1830 			break;
   1831 
   1832 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
   1833 			error = EDOM;
   1834 			break;
   1835 		}
   1836 
   1837 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1838 		if (optval == 0 && tv.tv_usec != 0)
   1839 			optval = 1;
   1840 
   1841 		switch (opt) {
   1842 		case SO_SNDTIMEO:
   1843 			so->so_snd.sb_timeo = optval;
   1844 			break;
   1845 		case SO_RCVTIMEO:
   1846 			so->so_rcv.sb_timeo = optval;
   1847 			break;
   1848 		}
   1849 		break;
   1850 
   1851 	default:
   1852 		solock(so);
   1853 		error = ENOPROTOOPT;
   1854 		break;
   1855 	}
   1856 	KASSERT(solocked(so));
   1857 	return error;
   1858 }
   1859 
   1860 int
   1861 sosetopt(struct socket *so, struct sockopt *sopt)
   1862 {
   1863 	int error, prerr;
   1864 
   1865 	if (sopt->sopt_level == SOL_SOCKET) {
   1866 		error = sosetopt1(so, sopt);
   1867 		KASSERT(solocked(so));
   1868 	} else {
   1869 		error = ENOPROTOOPT;
   1870 		solock(so);
   1871 	}
   1872 
   1873 	if ((error == 0 || error == ENOPROTOOPT) &&
   1874 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1875 		/* give the protocol stack a shot */
   1876 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1877 		if (prerr == 0)
   1878 			error = 0;
   1879 		else if (prerr != ENOPROTOOPT)
   1880 			error = prerr;
   1881 	}
   1882 	sounlock(so);
   1883 	return error;
   1884 }
   1885 
   1886 /*
   1887  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1888  */
   1889 int
   1890 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1891     const void *val, size_t valsize)
   1892 {
   1893 	struct sockopt sopt;
   1894 	int error;
   1895 
   1896 	KASSERT(valsize == 0 || val != NULL);
   1897 
   1898 	sockopt_init(&sopt, level, name, valsize);
   1899 	sockopt_set(&sopt, val, valsize);
   1900 
   1901 	error = sosetopt(so, &sopt);
   1902 
   1903 	sockopt_destroy(&sopt);
   1904 
   1905 	return error;
   1906 }
   1907 
   1908 /*
   1909  * internal get SOL_SOCKET options
   1910  */
   1911 static int
   1912 sogetopt1(struct socket *so, struct sockopt *sopt)
   1913 {
   1914 	int error, optval, opt;
   1915 	struct linger l;
   1916 	struct timeval tv;
   1917 
   1918 	switch ((opt = sopt->sopt_name)) {
   1919 
   1920 	case SO_ACCEPTFILTER:
   1921 		error = accept_filt_getopt(so, sopt);
   1922 		break;
   1923 
   1924 	case SO_LINGER:
   1925 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1926 		l.l_linger = so->so_linger;
   1927 
   1928 		error = sockopt_set(sopt, &l, sizeof(l));
   1929 		break;
   1930 
   1931 	case SO_USELOOPBACK:
   1932 	case SO_DONTROUTE:
   1933 	case SO_DEBUG:
   1934 	case SO_KEEPALIVE:
   1935 	case SO_REUSEADDR:
   1936 	case SO_REUSEPORT:
   1937 	case SO_BROADCAST:
   1938 	case SO_OOBINLINE:
   1939 	case SO_TIMESTAMP:
   1940 #ifdef SO_OTIMESTAMP
   1941 	case SO_OTIMESTAMP:
   1942 #endif
   1943 		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
   1944 		break;
   1945 
   1946 	case SO_TYPE:
   1947 		error = sockopt_setint(sopt, so->so_type);
   1948 		break;
   1949 
   1950 	case SO_ERROR:
   1951 		error = sockopt_setint(sopt, so->so_error);
   1952 		so->so_error = 0;
   1953 		break;
   1954 
   1955 	case SO_SNDBUF:
   1956 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1957 		break;
   1958 
   1959 	case SO_RCVBUF:
   1960 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1961 		break;
   1962 
   1963 	case SO_SNDLOWAT:
   1964 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1965 		break;
   1966 
   1967 	case SO_RCVLOWAT:
   1968 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1969 		break;
   1970 
   1971 #ifdef COMPAT_50
   1972 	case SO_OSNDTIMEO:
   1973 	case SO_ORCVTIMEO: {
   1974 		struct timeval50 otv;
   1975 
   1976 		optval = (opt == SO_OSNDTIMEO ?
   1977 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1978 
   1979 		otv.tv_sec = optval / hz;
   1980 		otv.tv_usec = (optval % hz) * tick;
   1981 
   1982 		error = sockopt_set(sopt, &otv, sizeof(otv));
   1983 		break;
   1984 	}
   1985 #endif /* COMPAT_50 */
   1986 
   1987 	case SO_SNDTIMEO:
   1988 	case SO_RCVTIMEO:
   1989 		optval = (opt == SO_SNDTIMEO ?
   1990 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1991 
   1992 		tv.tv_sec = optval / hz;
   1993 		tv.tv_usec = (optval % hz) * tick;
   1994 
   1995 		error = sockopt_set(sopt, &tv, sizeof(tv));
   1996 		break;
   1997 
   1998 	case SO_OVERFLOWED:
   1999 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   2000 		break;
   2001 
   2002 	default:
   2003 		error = ENOPROTOOPT;
   2004 		break;
   2005 	}
   2006 
   2007 	return (error);
   2008 }
   2009 
   2010 int
   2011 sogetopt(struct socket *so, struct sockopt *sopt)
   2012 {
   2013 	int		error;
   2014 
   2015 	solock(so);
   2016 	if (sopt->sopt_level != SOL_SOCKET) {
   2017 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   2018 			error = ((*so->so_proto->pr_ctloutput)
   2019 			    (PRCO_GETOPT, so, sopt));
   2020 		} else
   2021 			error = (ENOPROTOOPT);
   2022 	} else {
   2023 		error = sogetopt1(so, sopt);
   2024 	}
   2025 	sounlock(so);
   2026 	return (error);
   2027 }
   2028 
   2029 /*
   2030  * alloc sockopt data buffer buffer
   2031  *	- will be released at destroy
   2032  */
   2033 static int
   2034 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
   2035 {
   2036 
   2037 	KASSERT(sopt->sopt_size == 0);
   2038 
   2039 	if (len > sizeof(sopt->sopt_buf)) {
   2040 		sopt->sopt_data = kmem_zalloc(len, kmflag);
   2041 		if (sopt->sopt_data == NULL)
   2042 			return ENOMEM;
   2043 	} else
   2044 		sopt->sopt_data = sopt->sopt_buf;
   2045 
   2046 	sopt->sopt_size = len;
   2047 	return 0;
   2048 }
   2049 
   2050 /*
   2051  * initialise sockopt storage
   2052  *	- MAY sleep during allocation
   2053  */
   2054 void
   2055 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   2056 {
   2057 
   2058 	memset(sopt, 0, sizeof(*sopt));
   2059 
   2060 	sopt->sopt_level = level;
   2061 	sopt->sopt_name = name;
   2062 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
   2063 }
   2064 
   2065 /*
   2066  * destroy sockopt storage
   2067  *	- will release any held memory references
   2068  */
   2069 void
   2070 sockopt_destroy(struct sockopt *sopt)
   2071 {
   2072 
   2073 	if (sopt->sopt_data != sopt->sopt_buf)
   2074 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   2075 
   2076 	memset(sopt, 0, sizeof(*sopt));
   2077 }
   2078 
   2079 /*
   2080  * set sockopt value
   2081  *	- value is copied into sockopt
   2082  * 	- memory is allocated when necessary, will not sleep
   2083  */
   2084 int
   2085 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   2086 {
   2087 	int error;
   2088 
   2089 	if (sopt->sopt_size == 0) {
   2090 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2091 		if (error)
   2092 			return error;
   2093 	}
   2094 
   2095 	KASSERT(sopt->sopt_size == len);
   2096 	memcpy(sopt->sopt_data, buf, len);
   2097 	return 0;
   2098 }
   2099 
   2100 /*
   2101  * common case of set sockopt integer value
   2102  */
   2103 int
   2104 sockopt_setint(struct sockopt *sopt, int val)
   2105 {
   2106 
   2107 	return sockopt_set(sopt, &val, sizeof(int));
   2108 }
   2109 
   2110 /*
   2111  * get sockopt value
   2112  *	- correct size must be given
   2113  */
   2114 int
   2115 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   2116 {
   2117 
   2118 	if (sopt->sopt_size != len)
   2119 		return EINVAL;
   2120 
   2121 	memcpy(buf, sopt->sopt_data, len);
   2122 	return 0;
   2123 }
   2124 
   2125 /*
   2126  * common case of get sockopt integer value
   2127  */
   2128 int
   2129 sockopt_getint(const struct sockopt *sopt, int *valp)
   2130 {
   2131 
   2132 	return sockopt_get(sopt, valp, sizeof(int));
   2133 }
   2134 
   2135 /*
   2136  * set sockopt value from mbuf
   2137  *	- ONLY for legacy code
   2138  *	- mbuf is released by sockopt
   2139  *	- will not sleep
   2140  */
   2141 int
   2142 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   2143 {
   2144 	size_t len;
   2145 	int error;
   2146 
   2147 	len = m_length(m);
   2148 
   2149 	if (sopt->sopt_size == 0) {
   2150 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2151 		if (error)
   2152 			return error;
   2153 	}
   2154 
   2155 	KASSERT(sopt->sopt_size == len);
   2156 	m_copydata(m, 0, len, sopt->sopt_data);
   2157 	m_freem(m);
   2158 
   2159 	return 0;
   2160 }
   2161 
   2162 /*
   2163  * get sockopt value into mbuf
   2164  *	- ONLY for legacy code
   2165  *	- mbuf to be released by the caller
   2166  *	- will not sleep
   2167  */
   2168 struct mbuf *
   2169 sockopt_getmbuf(const struct sockopt *sopt)
   2170 {
   2171 	struct mbuf *m;
   2172 
   2173 	if (sopt->sopt_size > MCLBYTES)
   2174 		return NULL;
   2175 
   2176 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   2177 	if (m == NULL)
   2178 		return NULL;
   2179 
   2180 	if (sopt->sopt_size > MLEN) {
   2181 		MCLGET(m, M_DONTWAIT);
   2182 		if ((m->m_flags & M_EXT) == 0) {
   2183 			m_free(m);
   2184 			return NULL;
   2185 		}
   2186 	}
   2187 
   2188 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
   2189 	m->m_len = sopt->sopt_size;
   2190 
   2191 	return m;
   2192 }
   2193 
   2194 void
   2195 sohasoutofband(struct socket *so)
   2196 {
   2197 
   2198 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2199 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
   2200 }
   2201 
   2202 static void
   2203 filt_sordetach(struct knote *kn)
   2204 {
   2205 	struct socket	*so;
   2206 
   2207 	so = ((file_t *)kn->kn_obj)->f_data;
   2208 	solock(so);
   2209 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   2210 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   2211 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2212 	sounlock(so);
   2213 }
   2214 
   2215 /*ARGSUSED*/
   2216 static int
   2217 filt_soread(struct knote *kn, long hint)
   2218 {
   2219 	struct socket	*so;
   2220 	int rv;
   2221 
   2222 	so = ((file_t *)kn->kn_obj)->f_data;
   2223 	if (hint != NOTE_SUBMIT)
   2224 		solock(so);
   2225 	kn->kn_data = so->so_rcv.sb_cc;
   2226 	if (so->so_state & SS_CANTRCVMORE) {
   2227 		kn->kn_flags |= EV_EOF;
   2228 		kn->kn_fflags = so->so_error;
   2229 		rv = 1;
   2230 	} else if (so->so_error)	/* temporary udp error */
   2231 		rv = 1;
   2232 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2233 		rv = (kn->kn_data >= kn->kn_sdata);
   2234 	else
   2235 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2236 	if (hint != NOTE_SUBMIT)
   2237 		sounlock(so);
   2238 	return rv;
   2239 }
   2240 
   2241 static void
   2242 filt_sowdetach(struct knote *kn)
   2243 {
   2244 	struct socket	*so;
   2245 
   2246 	so = ((file_t *)kn->kn_obj)->f_data;
   2247 	solock(so);
   2248 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   2249 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   2250 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2251 	sounlock(so);
   2252 }
   2253 
   2254 /*ARGSUSED*/
   2255 static int
   2256 filt_sowrite(struct knote *kn, long hint)
   2257 {
   2258 	struct socket	*so;
   2259 	int rv;
   2260 
   2261 	so = ((file_t *)kn->kn_obj)->f_data;
   2262 	if (hint != NOTE_SUBMIT)
   2263 		solock(so);
   2264 	kn->kn_data = sbspace(&so->so_snd);
   2265 	if (so->so_state & SS_CANTSENDMORE) {
   2266 		kn->kn_flags |= EV_EOF;
   2267 		kn->kn_fflags = so->so_error;
   2268 		rv = 1;
   2269 	} else if (so->so_error)	/* temporary udp error */
   2270 		rv = 1;
   2271 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2272 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2273 		rv = 0;
   2274 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2275 		rv = (kn->kn_data >= kn->kn_sdata);
   2276 	else
   2277 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2278 	if (hint != NOTE_SUBMIT)
   2279 		sounlock(so);
   2280 	return rv;
   2281 }
   2282 
   2283 /*ARGSUSED*/
   2284 static int
   2285 filt_solisten(struct knote *kn, long hint)
   2286 {
   2287 	struct socket	*so;
   2288 	int rv;
   2289 
   2290 	so = ((file_t *)kn->kn_obj)->f_data;
   2291 
   2292 	/*
   2293 	 * Set kn_data to number of incoming connections, not
   2294 	 * counting partial (incomplete) connections.
   2295 	 */
   2296 	if (hint != NOTE_SUBMIT)
   2297 		solock(so);
   2298 	kn->kn_data = so->so_qlen;
   2299 	rv = (kn->kn_data > 0);
   2300 	if (hint != NOTE_SUBMIT)
   2301 		sounlock(so);
   2302 	return rv;
   2303 }
   2304 
   2305 static const struct filterops solisten_filtops =
   2306 	{ 1, NULL, filt_sordetach, filt_solisten };
   2307 static const struct filterops soread_filtops =
   2308 	{ 1, NULL, filt_sordetach, filt_soread };
   2309 static const struct filterops sowrite_filtops =
   2310 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   2311 
   2312 int
   2313 soo_kqfilter(struct file *fp, struct knote *kn)
   2314 {
   2315 	struct socket	*so;
   2316 	struct sockbuf	*sb;
   2317 
   2318 	so = ((file_t *)kn->kn_obj)->f_data;
   2319 	solock(so);
   2320 	switch (kn->kn_filter) {
   2321 	case EVFILT_READ:
   2322 		if (so->so_options & SO_ACCEPTCONN)
   2323 			kn->kn_fop = &solisten_filtops;
   2324 		else
   2325 			kn->kn_fop = &soread_filtops;
   2326 		sb = &so->so_rcv;
   2327 		break;
   2328 	case EVFILT_WRITE:
   2329 		kn->kn_fop = &sowrite_filtops;
   2330 		sb = &so->so_snd;
   2331 		break;
   2332 	default:
   2333 		sounlock(so);
   2334 		return (EINVAL);
   2335 	}
   2336 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   2337 	sb->sb_flags |= SB_KNOTE;
   2338 	sounlock(so);
   2339 	return (0);
   2340 }
   2341 
   2342 static int
   2343 sodopoll(struct socket *so, int events)
   2344 {
   2345 	int revents;
   2346 
   2347 	revents = 0;
   2348 
   2349 	if (events & (POLLIN | POLLRDNORM))
   2350 		if (soreadable(so))
   2351 			revents |= events & (POLLIN | POLLRDNORM);
   2352 
   2353 	if (events & (POLLOUT | POLLWRNORM))
   2354 		if (sowritable(so))
   2355 			revents |= events & (POLLOUT | POLLWRNORM);
   2356 
   2357 	if (events & (POLLPRI | POLLRDBAND))
   2358 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   2359 			revents |= events & (POLLPRI | POLLRDBAND);
   2360 
   2361 	return revents;
   2362 }
   2363 
   2364 int
   2365 sopoll(struct socket *so, int events)
   2366 {
   2367 	int revents = 0;
   2368 
   2369 #ifndef DIAGNOSTIC
   2370 	/*
   2371 	 * Do a quick, unlocked check in expectation that the socket
   2372 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2373 	 * as the solocked() assertions will fail.
   2374 	 */
   2375 	if ((revents = sodopoll(so, events)) != 0)
   2376 		return revents;
   2377 #endif
   2378 
   2379 	solock(so);
   2380 	if ((revents = sodopoll(so, events)) == 0) {
   2381 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2382 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2383 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2384 		}
   2385 
   2386 		if (events & (POLLOUT | POLLWRNORM)) {
   2387 			selrecord(curlwp, &so->so_snd.sb_sel);
   2388 			so->so_snd.sb_flags |= SB_NOTIFY;
   2389 		}
   2390 	}
   2391 	sounlock(so);
   2392 
   2393 	return revents;
   2394 }
   2395 
   2396 
   2397 #include <sys/sysctl.h>
   2398 
   2399 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2400 
   2401 /*
   2402  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2403  * value is not too small.
   2404  * (XXX should we maybe make sure it's not too large as well?)
   2405  */
   2406 static int
   2407 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2408 {
   2409 	int error, new_somaxkva;
   2410 	struct sysctlnode node;
   2411 
   2412 	new_somaxkva = somaxkva;
   2413 	node = *rnode;
   2414 	node.sysctl_data = &new_somaxkva;
   2415 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2416 	if (error || newp == NULL)
   2417 		return (error);
   2418 
   2419 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2420 		return (EINVAL);
   2421 
   2422 	mutex_enter(&so_pendfree_lock);
   2423 	somaxkva = new_somaxkva;
   2424 	cv_broadcast(&socurkva_cv);
   2425 	mutex_exit(&so_pendfree_lock);
   2426 
   2427 	return (error);
   2428 }
   2429 
   2430 static void
   2431 sysctl_kern_somaxkva_setup(void)
   2432 {
   2433 
   2434 	KASSERT(socket_sysctllog == NULL);
   2435 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2436 		       CTLFLAG_PERMANENT,
   2437 		       CTLTYPE_NODE, "kern", NULL,
   2438 		       NULL, 0, NULL, 0,
   2439 		       CTL_KERN, CTL_EOL);
   2440 
   2441 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2442 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2443 		       CTLTYPE_INT, "somaxkva",
   2444 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2445 				    "used for socket buffers"),
   2446 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2447 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2448 }
   2449