uipc_socket.c revision 1.204 1 /* $NetBSD: uipc_socket.c,v 1.204 2011/06/26 16:42:42 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.204 2011/06/26 16:42:42 christos Exp $");
67
68 #include "opt_compat_netbsd.h"
69 #include "opt_sock_counters.h"
70 #include "opt_sosend_loan.h"
71 #include "opt_mbuftrace.h"
72 #include "opt_somaxkva.h"
73 #include "opt_multiprocessor.h" /* XXX */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/file.h>
79 #include <sys/filedesc.h>
80 #include <sys/kmem.h>
81 #include <sys/mbuf.h>
82 #include <sys/domain.h>
83 #include <sys/kernel.h>
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/signalvar.h>
88 #include <sys/resourcevar.h>
89 #include <sys/uidinfo.h>
90 #include <sys/event.h>
91 #include <sys/poll.h>
92 #include <sys/kauth.h>
93 #include <sys/mutex.h>
94 #include <sys/condvar.h>
95
96 #ifdef COMPAT_50
97 #include <compat/sys/time.h>
98 #include <compat/sys/socket.h>
99 #endif
100
101 #include <uvm/uvm_extern.h>
102 #include <uvm/uvm_loan.h>
103 #include <uvm/uvm_page.h>
104
105 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
106 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
107
108 extern const struct fileops socketops;
109
110 extern int somaxconn; /* patchable (XXX sysctl) */
111 int somaxconn = SOMAXCONN;
112 kmutex_t *softnet_lock;
113
114 #ifdef SOSEND_COUNTERS
115 #include <sys/device.h>
116
117 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
118 NULL, "sosend", "loan big");
119 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
120 NULL, "sosend", "copy big");
121 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
122 NULL, "sosend", "copy small");
123 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
124 NULL, "sosend", "kva limit");
125
126 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
127
128 EVCNT_ATTACH_STATIC(sosend_loan_big);
129 EVCNT_ATTACH_STATIC(sosend_copy_big);
130 EVCNT_ATTACH_STATIC(sosend_copy_small);
131 EVCNT_ATTACH_STATIC(sosend_kvalimit);
132 #else
133
134 #define SOSEND_COUNTER_INCR(ev) /* nothing */
135
136 #endif /* SOSEND_COUNTERS */
137
138 static struct callback_entry sokva_reclaimerentry;
139
140 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
141 int sock_loan_thresh = -1;
142 #else
143 int sock_loan_thresh = 4096;
144 #endif
145
146 static kmutex_t so_pendfree_lock;
147 static struct mbuf *so_pendfree;
148
149 #ifndef SOMAXKVA
150 #define SOMAXKVA (16 * 1024 * 1024)
151 #endif
152 int somaxkva = SOMAXKVA;
153 static int socurkva;
154 static kcondvar_t socurkva_cv;
155
156 static kauth_listener_t socket_listener;
157
158 #define SOCK_LOAN_CHUNK 65536
159
160 static size_t sodopendfree(void);
161 static size_t sodopendfreel(void);
162
163 static void sysctl_kern_somaxkva_setup(void);
164 static struct sysctllog *socket_sysctllog;
165
166 static vsize_t
167 sokvareserve(struct socket *so, vsize_t len)
168 {
169 int error;
170
171 mutex_enter(&so_pendfree_lock);
172 while (socurkva + len > somaxkva) {
173 size_t freed;
174
175 /*
176 * try to do pendfree.
177 */
178
179 freed = sodopendfreel();
180
181 /*
182 * if some kva was freed, try again.
183 */
184
185 if (freed)
186 continue;
187
188 SOSEND_COUNTER_INCR(&sosend_kvalimit);
189 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
190 if (error) {
191 len = 0;
192 break;
193 }
194 }
195 socurkva += len;
196 mutex_exit(&so_pendfree_lock);
197 return len;
198 }
199
200 static void
201 sokvaunreserve(vsize_t len)
202 {
203
204 mutex_enter(&so_pendfree_lock);
205 socurkva -= len;
206 cv_broadcast(&socurkva_cv);
207 mutex_exit(&so_pendfree_lock);
208 }
209
210 /*
211 * sokvaalloc: allocate kva for loan.
212 */
213
214 vaddr_t
215 sokvaalloc(vsize_t len, struct socket *so)
216 {
217 vaddr_t lva;
218
219 /*
220 * reserve kva.
221 */
222
223 if (sokvareserve(so, len) == 0)
224 return 0;
225
226 /*
227 * allocate kva.
228 */
229
230 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
231 if (lva == 0) {
232 sokvaunreserve(len);
233 return (0);
234 }
235
236 return lva;
237 }
238
239 /*
240 * sokvafree: free kva for loan.
241 */
242
243 void
244 sokvafree(vaddr_t sva, vsize_t len)
245 {
246
247 /*
248 * free kva.
249 */
250
251 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
252
253 /*
254 * unreserve kva.
255 */
256
257 sokvaunreserve(len);
258 }
259
260 static void
261 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
262 {
263 vaddr_t sva, eva;
264 vsize_t len;
265 int npgs;
266
267 KASSERT(pgs != NULL);
268
269 eva = round_page((vaddr_t) buf + size);
270 sva = trunc_page((vaddr_t) buf);
271 len = eva - sva;
272 npgs = len >> PAGE_SHIFT;
273
274 pmap_kremove(sva, len);
275 pmap_update(pmap_kernel());
276 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
277 sokvafree(sva, len);
278 }
279
280 static size_t
281 sodopendfree(void)
282 {
283 size_t rv;
284
285 if (__predict_true(so_pendfree == NULL))
286 return 0;
287
288 mutex_enter(&so_pendfree_lock);
289 rv = sodopendfreel();
290 mutex_exit(&so_pendfree_lock);
291
292 return rv;
293 }
294
295 /*
296 * sodopendfreel: free mbufs on "pendfree" list.
297 * unlock and relock so_pendfree_lock when freeing mbufs.
298 *
299 * => called with so_pendfree_lock held.
300 */
301
302 static size_t
303 sodopendfreel(void)
304 {
305 struct mbuf *m, *next;
306 size_t rv = 0;
307
308 KASSERT(mutex_owned(&so_pendfree_lock));
309
310 while (so_pendfree != NULL) {
311 m = so_pendfree;
312 so_pendfree = NULL;
313 mutex_exit(&so_pendfree_lock);
314
315 for (; m != NULL; m = next) {
316 next = m->m_next;
317 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
318 KASSERT(m->m_ext.ext_refcnt == 0);
319
320 rv += m->m_ext.ext_size;
321 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
322 m->m_ext.ext_size);
323 pool_cache_put(mb_cache, m);
324 }
325
326 mutex_enter(&so_pendfree_lock);
327 }
328
329 return (rv);
330 }
331
332 void
333 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
334 {
335
336 KASSERT(m != NULL);
337
338 /*
339 * postpone freeing mbuf.
340 *
341 * we can't do it in interrupt context
342 * because we need to put kva back to kernel_map.
343 */
344
345 mutex_enter(&so_pendfree_lock);
346 m->m_next = so_pendfree;
347 so_pendfree = m;
348 cv_broadcast(&socurkva_cv);
349 mutex_exit(&so_pendfree_lock);
350 }
351
352 static long
353 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
354 {
355 struct iovec *iov = uio->uio_iov;
356 vaddr_t sva, eva;
357 vsize_t len;
358 vaddr_t lva;
359 int npgs, error;
360 vaddr_t va;
361 int i;
362
363 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
364 return (0);
365
366 if (iov->iov_len < (size_t) space)
367 space = iov->iov_len;
368 if (space > SOCK_LOAN_CHUNK)
369 space = SOCK_LOAN_CHUNK;
370
371 eva = round_page((vaddr_t) iov->iov_base + space);
372 sva = trunc_page((vaddr_t) iov->iov_base);
373 len = eva - sva;
374 npgs = len >> PAGE_SHIFT;
375
376 KASSERT(npgs <= M_EXT_MAXPAGES);
377
378 lva = sokvaalloc(len, so);
379 if (lva == 0)
380 return 0;
381
382 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
383 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
384 if (error) {
385 sokvafree(lva, len);
386 return (0);
387 }
388
389 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
390 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
391 VM_PROT_READ, 0);
392 pmap_update(pmap_kernel());
393
394 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
395
396 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
397 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
398
399 uio->uio_resid -= space;
400 /* uio_offset not updated, not set/used for write(2) */
401 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
402 uio->uio_iov->iov_len -= space;
403 if (uio->uio_iov->iov_len == 0) {
404 uio->uio_iov++;
405 uio->uio_iovcnt--;
406 }
407
408 return (space);
409 }
410
411 static int
412 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
413 {
414
415 KASSERT(ce == &sokva_reclaimerentry);
416 KASSERT(obj == NULL);
417
418 sodopendfree();
419 if (!vm_map_starved_p(kernel_map)) {
420 return CALLBACK_CHAIN_ABORT;
421 }
422 return CALLBACK_CHAIN_CONTINUE;
423 }
424
425 struct mbuf *
426 getsombuf(struct socket *so, int type)
427 {
428 struct mbuf *m;
429
430 m = m_get(M_WAIT, type);
431 MCLAIM(m, so->so_mowner);
432 return m;
433 }
434
435 static int
436 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
437 void *arg0, void *arg1, void *arg2, void *arg3)
438 {
439 int result;
440 enum kauth_network_req req;
441
442 result = KAUTH_RESULT_DEFER;
443 req = (enum kauth_network_req)arg0;
444
445 if ((action != KAUTH_NETWORK_SOCKET) &&
446 (action != KAUTH_NETWORK_BIND))
447 return result;
448
449 switch (req) {
450 case KAUTH_REQ_NETWORK_BIND_PORT:
451 result = KAUTH_RESULT_ALLOW;
452 break;
453
454 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
455 /* Normal users can only drop their own connections. */
456 struct socket *so = (struct socket *)arg1;
457
458 if (proc_uidmatch(cred, so->so_cred))
459 result = KAUTH_RESULT_ALLOW;
460
461 break;
462 }
463
464 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
465 /* We allow "raw" routing/bluetooth sockets to anyone. */
466 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
467 || (u_long)arg1 == PF_BLUETOOTH) {
468 result = KAUTH_RESULT_ALLOW;
469 } else {
470 /* Privileged, let secmodel handle this. */
471 if ((u_long)arg2 == SOCK_RAW)
472 break;
473 }
474
475 result = KAUTH_RESULT_ALLOW;
476
477 break;
478
479 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
480 result = KAUTH_RESULT_ALLOW;
481
482 break;
483
484 default:
485 break;
486 }
487
488 return result;
489 }
490
491 void
492 soinit(void)
493 {
494
495 sysctl_kern_somaxkva_setup();
496
497 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
498 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
499 cv_init(&socurkva_cv, "sokva");
500 soinit2();
501
502 /* Set the initial adjusted socket buffer size. */
503 if (sb_max_set(sb_max))
504 panic("bad initial sb_max value: %lu", sb_max);
505
506 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
507 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
508
509 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
510 socket_listener_cb, NULL);
511 }
512
513 /*
514 * Socket operation routines.
515 * These routines are called by the routines in
516 * sys_socket.c or from a system process, and
517 * implement the semantics of socket operations by
518 * switching out to the protocol specific routines.
519 */
520 /*ARGSUSED*/
521 int
522 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
523 struct socket *lockso)
524 {
525 const struct protosw *prp;
526 struct socket *so;
527 uid_t uid;
528 int error;
529 kmutex_t *lock;
530
531 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
532 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
533 KAUTH_ARG(proto));
534 if (error != 0)
535 return error;
536
537 if (proto)
538 prp = pffindproto(dom, proto, type);
539 else
540 prp = pffindtype(dom, type);
541 if (prp == NULL) {
542 /* no support for domain */
543 if (pffinddomain(dom) == 0)
544 return EAFNOSUPPORT;
545 /* no support for socket type */
546 if (proto == 0 && type != 0)
547 return EPROTOTYPE;
548 return EPROTONOSUPPORT;
549 }
550 if (prp->pr_usrreq == NULL)
551 return EPROTONOSUPPORT;
552 if (prp->pr_type != type)
553 return EPROTOTYPE;
554
555 so = soget(true);
556 so->so_type = type;
557 so->so_proto = prp;
558 so->so_send = sosend;
559 so->so_receive = soreceive;
560 #ifdef MBUFTRACE
561 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
562 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
563 so->so_mowner = &prp->pr_domain->dom_mowner;
564 #endif
565 uid = kauth_cred_geteuid(l->l_cred);
566 so->so_uidinfo = uid_find(uid);
567 so->so_cpid = l->l_proc->p_pid;
568 if (lockso != NULL) {
569 /* Caller wants us to share a lock. */
570 lock = lockso->so_lock;
571 so->so_lock = lock;
572 mutex_obj_hold(lock);
573 mutex_enter(lock);
574 } else {
575 /* Lock assigned and taken during PRU_ATTACH. */
576 }
577 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
578 (struct mbuf *)(long)proto, NULL, l);
579 KASSERT(solocked(so));
580 if (error != 0) {
581 so->so_state |= SS_NOFDREF;
582 sofree(so);
583 return error;
584 }
585 so->so_cred = kauth_cred_dup(l->l_cred);
586 sounlock(so);
587 *aso = so;
588 return 0;
589 }
590
591 /* On success, write file descriptor to fdout and return zero. On
592 * failure, return non-zero; *fdout will be undefined.
593 */
594 int
595 fsocreate(int domain, struct socket **sop, int type, int protocol,
596 struct lwp *l, int *fdout)
597 {
598 struct socket *so;
599 struct file *fp;
600 int fd, error;
601 int flags = type & SOCK_FLAGS_MASK;
602
603 type &= ~SOCK_FLAGS_MASK;
604 if ((error = fd_allocfile(&fp, &fd)) != 0)
605 return error;
606 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
607 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0);
608 fp->f_type = DTYPE_SOCKET;
609 fp->f_ops = &socketops;
610 error = socreate(domain, &so, type, protocol, l, NULL);
611 if (error != 0) {
612 fd_abort(curproc, fp, fd);
613 } else {
614 if (sop != NULL)
615 *sop = so;
616 fp->f_data = so;
617 fd_affix(curproc, fp, fd);
618 *fdout = fd;
619 }
620 return error;
621 }
622
623 int
624 sofamily(const struct socket *so)
625 {
626 const struct protosw *pr;
627 const struct domain *dom;
628
629 if ((pr = so->so_proto) == NULL)
630 return AF_UNSPEC;
631 if ((dom = pr->pr_domain) == NULL)
632 return AF_UNSPEC;
633 return dom->dom_family;
634 }
635
636 int
637 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
638 {
639 int error;
640
641 solock(so);
642 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
643 sounlock(so);
644 return error;
645 }
646
647 int
648 solisten(struct socket *so, int backlog, struct lwp *l)
649 {
650 int error;
651
652 solock(so);
653 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
654 SS_ISDISCONNECTING)) != 0) {
655 sounlock(so);
656 return (EOPNOTSUPP);
657 }
658 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
659 NULL, NULL, l);
660 if (error != 0) {
661 sounlock(so);
662 return error;
663 }
664 if (TAILQ_EMPTY(&so->so_q))
665 so->so_options |= SO_ACCEPTCONN;
666 if (backlog < 0)
667 backlog = 0;
668 so->so_qlimit = min(backlog, somaxconn);
669 sounlock(so);
670 return 0;
671 }
672
673 void
674 sofree(struct socket *so)
675 {
676 u_int refs;
677
678 KASSERT(solocked(so));
679
680 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
681 sounlock(so);
682 return;
683 }
684 if (so->so_head) {
685 /*
686 * We must not decommission a socket that's on the accept(2)
687 * queue. If we do, then accept(2) may hang after select(2)
688 * indicated that the listening socket was ready.
689 */
690 if (!soqremque(so, 0)) {
691 sounlock(so);
692 return;
693 }
694 }
695 if (so->so_rcv.sb_hiwat)
696 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
697 RLIM_INFINITY);
698 if (so->so_snd.sb_hiwat)
699 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
700 RLIM_INFINITY);
701 sbrelease(&so->so_snd, so);
702 KASSERT(!cv_has_waiters(&so->so_cv));
703 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
704 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
705 sorflush(so);
706 refs = so->so_aborting; /* XXX */
707 /* Remove acccept filter if one is present. */
708 if (so->so_accf != NULL)
709 (void)accept_filt_clear(so);
710 sounlock(so);
711 if (refs == 0) /* XXX */
712 soput(so);
713 }
714
715 /*
716 * Close a socket on last file table reference removal.
717 * Initiate disconnect if connected.
718 * Free socket when disconnect complete.
719 */
720 int
721 soclose(struct socket *so)
722 {
723 struct socket *so2;
724 int error;
725 int error2;
726
727 error = 0;
728 solock(so);
729 if (so->so_options & SO_ACCEPTCONN) {
730 for (;;) {
731 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
732 KASSERT(solocked2(so, so2));
733 (void) soqremque(so2, 0);
734 /* soabort drops the lock. */
735 (void) soabort(so2);
736 solock(so);
737 continue;
738 }
739 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
740 KASSERT(solocked2(so, so2));
741 (void) soqremque(so2, 1);
742 /* soabort drops the lock. */
743 (void) soabort(so2);
744 solock(so);
745 continue;
746 }
747 break;
748 }
749 }
750 if (so->so_pcb == 0)
751 goto discard;
752 if (so->so_state & SS_ISCONNECTED) {
753 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
754 error = sodisconnect(so);
755 if (error)
756 goto drop;
757 }
758 if (so->so_options & SO_LINGER) {
759 if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
760 goto drop;
761 while (so->so_state & SS_ISCONNECTED) {
762 error = sowait(so, true, so->so_linger * hz);
763 if (error)
764 break;
765 }
766 }
767 }
768 drop:
769 if (so->so_pcb) {
770 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
771 NULL, NULL, NULL, NULL);
772 if (error == 0)
773 error = error2;
774 }
775 discard:
776 if (so->so_state & SS_NOFDREF)
777 panic("soclose: NOFDREF");
778 kauth_cred_free(so->so_cred);
779 so->so_state |= SS_NOFDREF;
780 sofree(so);
781 return (error);
782 }
783
784 /*
785 * Must be called with the socket locked.. Will return with it unlocked.
786 */
787 int
788 soabort(struct socket *so)
789 {
790 u_int refs;
791 int error;
792
793 KASSERT(solocked(so));
794 KASSERT(so->so_head == NULL);
795
796 so->so_aborting++; /* XXX */
797 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
798 NULL, NULL, NULL);
799 refs = --so->so_aborting; /* XXX */
800 if (error || (refs == 0)) {
801 sofree(so);
802 } else {
803 sounlock(so);
804 }
805 return error;
806 }
807
808 int
809 soaccept(struct socket *so, struct mbuf *nam)
810 {
811 int error;
812
813 KASSERT(solocked(so));
814
815 error = 0;
816 if ((so->so_state & SS_NOFDREF) == 0)
817 panic("soaccept: !NOFDREF");
818 so->so_state &= ~SS_NOFDREF;
819 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
820 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
821 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
822 NULL, nam, NULL, NULL);
823 else
824 error = ECONNABORTED;
825
826 return (error);
827 }
828
829 int
830 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
831 {
832 int error;
833
834 KASSERT(solocked(so));
835
836 if (so->so_options & SO_ACCEPTCONN)
837 return (EOPNOTSUPP);
838 /*
839 * If protocol is connection-based, can only connect once.
840 * Otherwise, if connected, try to disconnect first.
841 * This allows user to disconnect by connecting to, e.g.,
842 * a null address.
843 */
844 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
845 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
846 (error = sodisconnect(so))))
847 error = EISCONN;
848 else
849 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
850 NULL, nam, NULL, l);
851 return (error);
852 }
853
854 int
855 soconnect2(struct socket *so1, struct socket *so2)
856 {
857 int error;
858
859 KASSERT(solocked2(so1, so2));
860
861 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
862 NULL, (struct mbuf *)so2, NULL, NULL);
863 return (error);
864 }
865
866 int
867 sodisconnect(struct socket *so)
868 {
869 int error;
870
871 KASSERT(solocked(so));
872
873 if ((so->so_state & SS_ISCONNECTED) == 0) {
874 error = ENOTCONN;
875 } else if (so->so_state & SS_ISDISCONNECTING) {
876 error = EALREADY;
877 } else {
878 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
879 NULL, NULL, NULL, NULL);
880 }
881 sodopendfree();
882 return (error);
883 }
884
885 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
886 /*
887 * Send on a socket.
888 * If send must go all at once and message is larger than
889 * send buffering, then hard error.
890 * Lock against other senders.
891 * If must go all at once and not enough room now, then
892 * inform user that this would block and do nothing.
893 * Otherwise, if nonblocking, send as much as possible.
894 * The data to be sent is described by "uio" if nonzero,
895 * otherwise by the mbuf chain "top" (which must be null
896 * if uio is not). Data provided in mbuf chain must be small
897 * enough to send all at once.
898 *
899 * Returns nonzero on error, timeout or signal; callers
900 * must check for short counts if EINTR/ERESTART are returned.
901 * Data and control buffers are freed on return.
902 */
903 int
904 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
905 struct mbuf *control, int flags, struct lwp *l)
906 {
907 struct mbuf **mp, *m;
908 struct proc *p;
909 long space, len, resid, clen, mlen;
910 int error, s, dontroute, atomic;
911 short wakeup_state = 0;
912
913 p = l->l_proc;
914 sodopendfree();
915 clen = 0;
916
917 /*
918 * solock() provides atomicity of access. splsoftnet() prevents
919 * protocol processing soft interrupts from interrupting us and
920 * blocking (expensive).
921 */
922 s = splsoftnet();
923 solock(so);
924 atomic = sosendallatonce(so) || top;
925 if (uio)
926 resid = uio->uio_resid;
927 else
928 resid = top->m_pkthdr.len;
929 /*
930 * In theory resid should be unsigned.
931 * However, space must be signed, as it might be less than 0
932 * if we over-committed, and we must use a signed comparison
933 * of space and resid. On the other hand, a negative resid
934 * causes us to loop sending 0-length segments to the protocol.
935 */
936 if (resid < 0) {
937 error = EINVAL;
938 goto out;
939 }
940 dontroute =
941 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
942 (so->so_proto->pr_flags & PR_ATOMIC);
943 l->l_ru.ru_msgsnd++;
944 if (control)
945 clen = control->m_len;
946 restart:
947 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
948 goto out;
949 do {
950 if (so->so_state & SS_CANTSENDMORE) {
951 error = EPIPE;
952 goto release;
953 }
954 if (so->so_error) {
955 error = so->so_error;
956 so->so_error = 0;
957 goto release;
958 }
959 if ((so->so_state & SS_ISCONNECTED) == 0) {
960 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
961 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
962 !(resid == 0 && clen != 0)) {
963 error = ENOTCONN;
964 goto release;
965 }
966 } else if (addr == 0) {
967 error = EDESTADDRREQ;
968 goto release;
969 }
970 }
971 space = sbspace(&so->so_snd);
972 if (flags & MSG_OOB)
973 space += 1024;
974 if ((atomic && resid > so->so_snd.sb_hiwat) ||
975 clen > so->so_snd.sb_hiwat) {
976 error = EMSGSIZE;
977 goto release;
978 }
979 if (space < resid + clen &&
980 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
981 if (so->so_nbio) {
982 error = EWOULDBLOCK;
983 goto release;
984 }
985 sbunlock(&so->so_snd);
986 if (wakeup_state & SS_RESTARTSYS) {
987 error = ERESTART;
988 goto out;
989 }
990 error = sbwait(&so->so_snd);
991 if (error)
992 goto out;
993 wakeup_state = so->so_state;
994 goto restart;
995 }
996 wakeup_state = 0;
997 mp = ⊤
998 space -= clen;
999 do {
1000 if (uio == NULL) {
1001 /*
1002 * Data is prepackaged in "top".
1003 */
1004 resid = 0;
1005 if (flags & MSG_EOR)
1006 top->m_flags |= M_EOR;
1007 } else do {
1008 sounlock(so);
1009 splx(s);
1010 if (top == NULL) {
1011 m = m_gethdr(M_WAIT, MT_DATA);
1012 mlen = MHLEN;
1013 m->m_pkthdr.len = 0;
1014 m->m_pkthdr.rcvif = NULL;
1015 } else {
1016 m = m_get(M_WAIT, MT_DATA);
1017 mlen = MLEN;
1018 }
1019 MCLAIM(m, so->so_snd.sb_mowner);
1020 if (sock_loan_thresh >= 0 &&
1021 uio->uio_iov->iov_len >= sock_loan_thresh &&
1022 space >= sock_loan_thresh &&
1023 (len = sosend_loan(so, uio, m,
1024 space)) != 0) {
1025 SOSEND_COUNTER_INCR(&sosend_loan_big);
1026 space -= len;
1027 goto have_data;
1028 }
1029 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1030 SOSEND_COUNTER_INCR(&sosend_copy_big);
1031 m_clget(m, M_DONTWAIT);
1032 if ((m->m_flags & M_EXT) == 0)
1033 goto nopages;
1034 mlen = MCLBYTES;
1035 if (atomic && top == 0) {
1036 len = lmin(MCLBYTES - max_hdr,
1037 resid);
1038 m->m_data += max_hdr;
1039 } else
1040 len = lmin(MCLBYTES, resid);
1041 space -= len;
1042 } else {
1043 nopages:
1044 SOSEND_COUNTER_INCR(&sosend_copy_small);
1045 len = lmin(lmin(mlen, resid), space);
1046 space -= len;
1047 /*
1048 * For datagram protocols, leave room
1049 * for protocol headers in first mbuf.
1050 */
1051 if (atomic && top == 0 && len < mlen)
1052 MH_ALIGN(m, len);
1053 }
1054 error = uiomove(mtod(m, void *), (int)len, uio);
1055 have_data:
1056 resid = uio->uio_resid;
1057 m->m_len = len;
1058 *mp = m;
1059 top->m_pkthdr.len += len;
1060 s = splsoftnet();
1061 solock(so);
1062 if (error != 0)
1063 goto release;
1064 mp = &m->m_next;
1065 if (resid <= 0) {
1066 if (flags & MSG_EOR)
1067 top->m_flags |= M_EOR;
1068 break;
1069 }
1070 } while (space > 0 && atomic);
1071
1072 if (so->so_state & SS_CANTSENDMORE) {
1073 error = EPIPE;
1074 goto release;
1075 }
1076 if (dontroute)
1077 so->so_options |= SO_DONTROUTE;
1078 if (resid > 0)
1079 so->so_state |= SS_MORETOCOME;
1080 error = (*so->so_proto->pr_usrreq)(so,
1081 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
1082 top, addr, control, curlwp);
1083 if (dontroute)
1084 so->so_options &= ~SO_DONTROUTE;
1085 if (resid > 0)
1086 so->so_state &= ~SS_MORETOCOME;
1087 clen = 0;
1088 control = NULL;
1089 top = NULL;
1090 mp = ⊤
1091 if (error != 0)
1092 goto release;
1093 } while (resid && space > 0);
1094 } while (resid);
1095
1096 release:
1097 sbunlock(&so->so_snd);
1098 out:
1099 sounlock(so);
1100 splx(s);
1101 if (top)
1102 m_freem(top);
1103 if (control)
1104 m_freem(control);
1105 return (error);
1106 }
1107
1108 /*
1109 * Following replacement or removal of the first mbuf on the first
1110 * mbuf chain of a socket buffer, push necessary state changes back
1111 * into the socket buffer so that other consumers see the values
1112 * consistently. 'nextrecord' is the callers locally stored value of
1113 * the original value of sb->sb_mb->m_nextpkt which must be restored
1114 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1115 */
1116 static void
1117 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1118 {
1119
1120 KASSERT(solocked(sb->sb_so));
1121
1122 /*
1123 * First, update for the new value of nextrecord. If necessary,
1124 * make it the first record.
1125 */
1126 if (sb->sb_mb != NULL)
1127 sb->sb_mb->m_nextpkt = nextrecord;
1128 else
1129 sb->sb_mb = nextrecord;
1130
1131 /*
1132 * Now update any dependent socket buffer fields to reflect
1133 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1134 * the addition of a second clause that takes care of the
1135 * case where sb_mb has been updated, but remains the last
1136 * record.
1137 */
1138 if (sb->sb_mb == NULL) {
1139 sb->sb_mbtail = NULL;
1140 sb->sb_lastrecord = NULL;
1141 } else if (sb->sb_mb->m_nextpkt == NULL)
1142 sb->sb_lastrecord = sb->sb_mb;
1143 }
1144
1145 /*
1146 * Implement receive operations on a socket.
1147 * We depend on the way that records are added to the sockbuf
1148 * by sbappend*. In particular, each record (mbufs linked through m_next)
1149 * must begin with an address if the protocol so specifies,
1150 * followed by an optional mbuf or mbufs containing ancillary data,
1151 * and then zero or more mbufs of data.
1152 * In order to avoid blocking network interrupts for the entire time here,
1153 * we splx() while doing the actual copy to user space.
1154 * Although the sockbuf is locked, new data may still be appended,
1155 * and thus we must maintain consistency of the sockbuf during that time.
1156 *
1157 * The caller may receive the data as a single mbuf chain by supplying
1158 * an mbuf **mp0 for use in returning the chain. The uio is then used
1159 * only for the count in uio_resid.
1160 */
1161 int
1162 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1163 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1164 {
1165 struct lwp *l = curlwp;
1166 struct mbuf *m, **mp, *mt;
1167 int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1168 const struct protosw *pr;
1169 struct mbuf *nextrecord;
1170 int mbuf_removed = 0;
1171 const struct domain *dom;
1172 short wakeup_state = 0;
1173
1174 pr = so->so_proto;
1175 atomic = pr->pr_flags & PR_ATOMIC;
1176 dom = pr->pr_domain;
1177 mp = mp0;
1178 type = 0;
1179 orig_resid = uio->uio_resid;
1180
1181 if (paddr != NULL)
1182 *paddr = NULL;
1183 if (controlp != NULL)
1184 *controlp = NULL;
1185 if (flagsp != NULL)
1186 flags = *flagsp &~ MSG_EOR;
1187 else
1188 flags = 0;
1189
1190 if ((flags & MSG_DONTWAIT) == 0)
1191 sodopendfree();
1192
1193 if (flags & MSG_OOB) {
1194 m = m_get(M_WAIT, MT_DATA);
1195 solock(so);
1196 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1197 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1198 sounlock(so);
1199 if (error)
1200 goto bad;
1201 do {
1202 error = uiomove(mtod(m, void *),
1203 (int) min(uio->uio_resid, m->m_len), uio);
1204 m = m_free(m);
1205 } while (uio->uio_resid > 0 && error == 0 && m);
1206 bad:
1207 if (m != NULL)
1208 m_freem(m);
1209 return error;
1210 }
1211 if (mp != NULL)
1212 *mp = NULL;
1213
1214 /*
1215 * solock() provides atomicity of access. splsoftnet() prevents
1216 * protocol processing soft interrupts from interrupting us and
1217 * blocking (expensive).
1218 */
1219 s = splsoftnet();
1220 solock(so);
1221 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1222 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1223
1224 restart:
1225 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1226 sounlock(so);
1227 splx(s);
1228 return error;
1229 }
1230
1231 m = so->so_rcv.sb_mb;
1232 /*
1233 * If we have less data than requested, block awaiting more
1234 * (subject to any timeout) if:
1235 * 1. the current count is less than the low water mark,
1236 * 2. MSG_WAITALL is set, and it is possible to do the entire
1237 * receive operation at once if we block (resid <= hiwat), or
1238 * 3. MSG_DONTWAIT is not set.
1239 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1240 * we have to do the receive in sections, and thus risk returning
1241 * a short count if a timeout or signal occurs after we start.
1242 */
1243 if (m == NULL ||
1244 ((flags & MSG_DONTWAIT) == 0 &&
1245 so->so_rcv.sb_cc < uio->uio_resid &&
1246 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1247 ((flags & MSG_WAITALL) &&
1248 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1249 m->m_nextpkt == NULL && !atomic)) {
1250 #ifdef DIAGNOSTIC
1251 if (m == NULL && so->so_rcv.sb_cc)
1252 panic("receive 1");
1253 #endif
1254 if (so->so_error) {
1255 if (m != NULL)
1256 goto dontblock;
1257 error = so->so_error;
1258 if ((flags & MSG_PEEK) == 0)
1259 so->so_error = 0;
1260 goto release;
1261 }
1262 if (so->so_state & SS_CANTRCVMORE) {
1263 if (m != NULL)
1264 goto dontblock;
1265 else
1266 goto release;
1267 }
1268 for (; m != NULL; m = m->m_next)
1269 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1270 m = so->so_rcv.sb_mb;
1271 goto dontblock;
1272 }
1273 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1274 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1275 error = ENOTCONN;
1276 goto release;
1277 }
1278 if (uio->uio_resid == 0)
1279 goto release;
1280 if (so->so_nbio || (flags & MSG_DONTWAIT)) {
1281 error = EWOULDBLOCK;
1282 goto release;
1283 }
1284 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1285 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1286 sbunlock(&so->so_rcv);
1287 if (wakeup_state & SS_RESTARTSYS)
1288 error = ERESTART;
1289 else
1290 error = sbwait(&so->so_rcv);
1291 if (error != 0) {
1292 sounlock(so);
1293 splx(s);
1294 return error;
1295 }
1296 wakeup_state = so->so_state;
1297 goto restart;
1298 }
1299 dontblock:
1300 /*
1301 * On entry here, m points to the first record of the socket buffer.
1302 * From this point onward, we maintain 'nextrecord' as a cache of the
1303 * pointer to the next record in the socket buffer. We must keep the
1304 * various socket buffer pointers and local stack versions of the
1305 * pointers in sync, pushing out modifications before dropping the
1306 * socket lock, and re-reading them when picking it up.
1307 *
1308 * Otherwise, we will race with the network stack appending new data
1309 * or records onto the socket buffer by using inconsistent/stale
1310 * versions of the field, possibly resulting in socket buffer
1311 * corruption.
1312 *
1313 * By holding the high-level sblock(), we prevent simultaneous
1314 * readers from pulling off the front of the socket buffer.
1315 */
1316 if (l != NULL)
1317 l->l_ru.ru_msgrcv++;
1318 KASSERT(m == so->so_rcv.sb_mb);
1319 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1320 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1321 nextrecord = m->m_nextpkt;
1322 if (pr->pr_flags & PR_ADDR) {
1323 #ifdef DIAGNOSTIC
1324 if (m->m_type != MT_SONAME)
1325 panic("receive 1a");
1326 #endif
1327 orig_resid = 0;
1328 if (flags & MSG_PEEK) {
1329 if (paddr)
1330 *paddr = m_copy(m, 0, m->m_len);
1331 m = m->m_next;
1332 } else {
1333 sbfree(&so->so_rcv, m);
1334 mbuf_removed = 1;
1335 if (paddr != NULL) {
1336 *paddr = m;
1337 so->so_rcv.sb_mb = m->m_next;
1338 m->m_next = NULL;
1339 m = so->so_rcv.sb_mb;
1340 } else {
1341 MFREE(m, so->so_rcv.sb_mb);
1342 m = so->so_rcv.sb_mb;
1343 }
1344 sbsync(&so->so_rcv, nextrecord);
1345 }
1346 }
1347
1348 /*
1349 * Process one or more MT_CONTROL mbufs present before any data mbufs
1350 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1351 * just copy the data; if !MSG_PEEK, we call into the protocol to
1352 * perform externalization (or freeing if controlp == NULL).
1353 */
1354 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1355 struct mbuf *cm = NULL, *cmn;
1356 struct mbuf **cme = &cm;
1357
1358 do {
1359 if (flags & MSG_PEEK) {
1360 if (controlp != NULL) {
1361 *controlp = m_copy(m, 0, m->m_len);
1362 controlp = &(*controlp)->m_next;
1363 }
1364 m = m->m_next;
1365 } else {
1366 sbfree(&so->so_rcv, m);
1367 so->so_rcv.sb_mb = m->m_next;
1368 m->m_next = NULL;
1369 *cme = m;
1370 cme = &(*cme)->m_next;
1371 m = so->so_rcv.sb_mb;
1372 }
1373 } while (m != NULL && m->m_type == MT_CONTROL);
1374 if ((flags & MSG_PEEK) == 0)
1375 sbsync(&so->so_rcv, nextrecord);
1376 for (; cm != NULL; cm = cmn) {
1377 cmn = cm->m_next;
1378 cm->m_next = NULL;
1379 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1380 if (controlp != NULL) {
1381 if (dom->dom_externalize != NULL &&
1382 type == SCM_RIGHTS) {
1383 sounlock(so);
1384 splx(s);
1385 error = (*dom->dom_externalize)(cm, l,
1386 (flags & MSG_CMSG_CLOEXEC) ?
1387 O_CLOEXEC : 0);
1388 s = splsoftnet();
1389 solock(so);
1390 }
1391 *controlp = cm;
1392 while (*controlp != NULL)
1393 controlp = &(*controlp)->m_next;
1394 } else {
1395 /*
1396 * Dispose of any SCM_RIGHTS message that went
1397 * through the read path rather than recv.
1398 */
1399 if (dom->dom_dispose != NULL &&
1400 type == SCM_RIGHTS) {
1401 sounlock(so);
1402 (*dom->dom_dispose)(cm);
1403 solock(so);
1404 }
1405 m_freem(cm);
1406 }
1407 }
1408 if (m != NULL)
1409 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1410 else
1411 nextrecord = so->so_rcv.sb_mb;
1412 orig_resid = 0;
1413 }
1414
1415 /* If m is non-NULL, we have some data to read. */
1416 if (__predict_true(m != NULL)) {
1417 type = m->m_type;
1418 if (type == MT_OOBDATA)
1419 flags |= MSG_OOB;
1420 }
1421 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1422 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1423
1424 moff = 0;
1425 offset = 0;
1426 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1427 if (m->m_type == MT_OOBDATA) {
1428 if (type != MT_OOBDATA)
1429 break;
1430 } else if (type == MT_OOBDATA)
1431 break;
1432 #ifdef DIAGNOSTIC
1433 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1434 panic("receive 3");
1435 #endif
1436 so->so_state &= ~SS_RCVATMARK;
1437 wakeup_state = 0;
1438 len = uio->uio_resid;
1439 if (so->so_oobmark && len > so->so_oobmark - offset)
1440 len = so->so_oobmark - offset;
1441 if (len > m->m_len - moff)
1442 len = m->m_len - moff;
1443 /*
1444 * If mp is set, just pass back the mbufs.
1445 * Otherwise copy them out via the uio, then free.
1446 * Sockbuf must be consistent here (points to current mbuf,
1447 * it points to next record) when we drop priority;
1448 * we must note any additions to the sockbuf when we
1449 * block interrupts again.
1450 */
1451 if (mp == NULL) {
1452 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1453 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1454 sounlock(so);
1455 splx(s);
1456 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1457 s = splsoftnet();
1458 solock(so);
1459 if (error != 0) {
1460 /*
1461 * If any part of the record has been removed
1462 * (such as the MT_SONAME mbuf, which will
1463 * happen when PR_ADDR, and thus also
1464 * PR_ATOMIC, is set), then drop the entire
1465 * record to maintain the atomicity of the
1466 * receive operation.
1467 *
1468 * This avoids a later panic("receive 1a")
1469 * when compiled with DIAGNOSTIC.
1470 */
1471 if (m && mbuf_removed && atomic)
1472 (void) sbdroprecord(&so->so_rcv);
1473
1474 goto release;
1475 }
1476 } else
1477 uio->uio_resid -= len;
1478 if (len == m->m_len - moff) {
1479 if (m->m_flags & M_EOR)
1480 flags |= MSG_EOR;
1481 if (flags & MSG_PEEK) {
1482 m = m->m_next;
1483 moff = 0;
1484 } else {
1485 nextrecord = m->m_nextpkt;
1486 sbfree(&so->so_rcv, m);
1487 if (mp) {
1488 *mp = m;
1489 mp = &m->m_next;
1490 so->so_rcv.sb_mb = m = m->m_next;
1491 *mp = NULL;
1492 } else {
1493 MFREE(m, so->so_rcv.sb_mb);
1494 m = so->so_rcv.sb_mb;
1495 }
1496 /*
1497 * If m != NULL, we also know that
1498 * so->so_rcv.sb_mb != NULL.
1499 */
1500 KASSERT(so->so_rcv.sb_mb == m);
1501 if (m) {
1502 m->m_nextpkt = nextrecord;
1503 if (nextrecord == NULL)
1504 so->so_rcv.sb_lastrecord = m;
1505 } else {
1506 so->so_rcv.sb_mb = nextrecord;
1507 SB_EMPTY_FIXUP(&so->so_rcv);
1508 }
1509 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1510 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1511 }
1512 } else if (flags & MSG_PEEK)
1513 moff += len;
1514 else {
1515 if (mp != NULL) {
1516 mt = m_copym(m, 0, len, M_NOWAIT);
1517 if (__predict_false(mt == NULL)) {
1518 sounlock(so);
1519 mt = m_copym(m, 0, len, M_WAIT);
1520 solock(so);
1521 }
1522 *mp = mt;
1523 }
1524 m->m_data += len;
1525 m->m_len -= len;
1526 so->so_rcv.sb_cc -= len;
1527 }
1528 if (so->so_oobmark) {
1529 if ((flags & MSG_PEEK) == 0) {
1530 so->so_oobmark -= len;
1531 if (so->so_oobmark == 0) {
1532 so->so_state |= SS_RCVATMARK;
1533 break;
1534 }
1535 } else {
1536 offset += len;
1537 if (offset == so->so_oobmark)
1538 break;
1539 }
1540 }
1541 if (flags & MSG_EOR)
1542 break;
1543 /*
1544 * If the MSG_WAITALL flag is set (for non-atomic socket),
1545 * we must not quit until "uio->uio_resid == 0" or an error
1546 * termination. If a signal/timeout occurs, return
1547 * with a short count but without error.
1548 * Keep sockbuf locked against other readers.
1549 */
1550 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1551 !sosendallatonce(so) && !nextrecord) {
1552 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1553 break;
1554 /*
1555 * If we are peeking and the socket receive buffer is
1556 * full, stop since we can't get more data to peek at.
1557 */
1558 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1559 break;
1560 /*
1561 * If we've drained the socket buffer, tell the
1562 * protocol in case it needs to do something to
1563 * get it filled again.
1564 */
1565 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1566 (*pr->pr_usrreq)(so, PRU_RCVD,
1567 NULL, (struct mbuf *)(long)flags, NULL, l);
1568 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1569 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1570 if (wakeup_state & SS_RESTARTSYS)
1571 error = ERESTART;
1572 else
1573 error = sbwait(&so->so_rcv);
1574 if (error != 0) {
1575 sbunlock(&so->so_rcv);
1576 sounlock(so);
1577 splx(s);
1578 return 0;
1579 }
1580 if ((m = so->so_rcv.sb_mb) != NULL)
1581 nextrecord = m->m_nextpkt;
1582 wakeup_state = so->so_state;
1583 }
1584 }
1585
1586 if (m && atomic) {
1587 flags |= MSG_TRUNC;
1588 if ((flags & MSG_PEEK) == 0)
1589 (void) sbdroprecord(&so->so_rcv);
1590 }
1591 if ((flags & MSG_PEEK) == 0) {
1592 if (m == NULL) {
1593 /*
1594 * First part is an inline SB_EMPTY_FIXUP(). Second
1595 * part makes sure sb_lastrecord is up-to-date if
1596 * there is still data in the socket buffer.
1597 */
1598 so->so_rcv.sb_mb = nextrecord;
1599 if (so->so_rcv.sb_mb == NULL) {
1600 so->so_rcv.sb_mbtail = NULL;
1601 so->so_rcv.sb_lastrecord = NULL;
1602 } else if (nextrecord->m_nextpkt == NULL)
1603 so->so_rcv.sb_lastrecord = nextrecord;
1604 }
1605 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1606 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1607 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1608 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1609 (struct mbuf *)(long)flags, NULL, l);
1610 }
1611 if (orig_resid == uio->uio_resid && orig_resid &&
1612 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1613 sbunlock(&so->so_rcv);
1614 goto restart;
1615 }
1616
1617 if (flagsp != NULL)
1618 *flagsp |= flags;
1619 release:
1620 sbunlock(&so->so_rcv);
1621 sounlock(so);
1622 splx(s);
1623 return error;
1624 }
1625
1626 int
1627 soshutdown(struct socket *so, int how)
1628 {
1629 const struct protosw *pr;
1630 int error;
1631
1632 KASSERT(solocked(so));
1633
1634 pr = so->so_proto;
1635 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1636 return (EINVAL);
1637
1638 if (how == SHUT_RD || how == SHUT_RDWR) {
1639 sorflush(so);
1640 error = 0;
1641 }
1642 if (how == SHUT_WR || how == SHUT_RDWR)
1643 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1644 NULL, NULL, NULL);
1645
1646 return error;
1647 }
1648
1649 void
1650 sorestart(struct socket *so)
1651 {
1652 /*
1653 * An application has called close() on an fd on which another
1654 * of its threads has called a socket system call.
1655 * Mark this and wake everyone up, and code that would block again
1656 * instead returns ERESTART.
1657 * On system call re-entry the fd is validated and EBADF returned.
1658 * Any other fd will block again on the 2nd syscall.
1659 */
1660 solock(so);
1661 so->so_state |= SS_RESTARTSYS;
1662 cv_broadcast(&so->so_cv);
1663 cv_broadcast(&so->so_snd.sb_cv);
1664 cv_broadcast(&so->so_rcv.sb_cv);
1665 sounlock(so);
1666 }
1667
1668 void
1669 sorflush(struct socket *so)
1670 {
1671 struct sockbuf *sb, asb;
1672 const struct protosw *pr;
1673
1674 KASSERT(solocked(so));
1675
1676 sb = &so->so_rcv;
1677 pr = so->so_proto;
1678 socantrcvmore(so);
1679 sb->sb_flags |= SB_NOINTR;
1680 (void )sblock(sb, M_WAITOK);
1681 sbunlock(sb);
1682 asb = *sb;
1683 /*
1684 * Clear most of the sockbuf structure, but leave some of the
1685 * fields valid.
1686 */
1687 memset(&sb->sb_startzero, 0,
1688 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1689 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1690 sounlock(so);
1691 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1692 solock(so);
1693 }
1694 sbrelease(&asb, so);
1695 }
1696
1697 /*
1698 * internal set SOL_SOCKET options
1699 */
1700 static int
1701 sosetopt1(struct socket *so, const struct sockopt *sopt)
1702 {
1703 int error = EINVAL, optval, opt;
1704 struct linger l;
1705 struct timeval tv;
1706
1707 switch ((opt = sopt->sopt_name)) {
1708
1709 case SO_ACCEPTFILTER:
1710 error = accept_filt_setopt(so, sopt);
1711 KASSERT(solocked(so));
1712 break;
1713
1714 case SO_LINGER:
1715 error = sockopt_get(sopt, &l, sizeof(l));
1716 solock(so);
1717 if (error)
1718 break;
1719 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1720 l.l_linger > (INT_MAX / hz)) {
1721 error = EDOM;
1722 break;
1723 }
1724 so->so_linger = l.l_linger;
1725 if (l.l_onoff)
1726 so->so_options |= SO_LINGER;
1727 else
1728 so->so_options &= ~SO_LINGER;
1729 break;
1730
1731 case SO_DEBUG:
1732 case SO_KEEPALIVE:
1733 case SO_DONTROUTE:
1734 case SO_USELOOPBACK:
1735 case SO_BROADCAST:
1736 case SO_REUSEADDR:
1737 case SO_REUSEPORT:
1738 case SO_OOBINLINE:
1739 case SO_TIMESTAMP:
1740 #ifdef SO_OTIMESTAMP
1741 case SO_OTIMESTAMP:
1742 #endif
1743 error = sockopt_getint(sopt, &optval);
1744 solock(so);
1745 if (error)
1746 break;
1747 if (optval)
1748 so->so_options |= opt;
1749 else
1750 so->so_options &= ~opt;
1751 break;
1752
1753 case SO_SNDBUF:
1754 case SO_RCVBUF:
1755 case SO_SNDLOWAT:
1756 case SO_RCVLOWAT:
1757 error = sockopt_getint(sopt, &optval);
1758 solock(so);
1759 if (error)
1760 break;
1761
1762 /*
1763 * Values < 1 make no sense for any of these
1764 * options, so disallow them.
1765 */
1766 if (optval < 1) {
1767 error = EINVAL;
1768 break;
1769 }
1770
1771 switch (opt) {
1772 case SO_SNDBUF:
1773 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1774 error = ENOBUFS;
1775 break;
1776 }
1777 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1778 break;
1779
1780 case SO_RCVBUF:
1781 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1782 error = ENOBUFS;
1783 break;
1784 }
1785 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1786 break;
1787
1788 /*
1789 * Make sure the low-water is never greater than
1790 * the high-water.
1791 */
1792 case SO_SNDLOWAT:
1793 if (optval > so->so_snd.sb_hiwat)
1794 optval = so->so_snd.sb_hiwat;
1795
1796 so->so_snd.sb_lowat = optval;
1797 break;
1798
1799 case SO_RCVLOWAT:
1800 if (optval > so->so_rcv.sb_hiwat)
1801 optval = so->so_rcv.sb_hiwat;
1802
1803 so->so_rcv.sb_lowat = optval;
1804 break;
1805 }
1806 break;
1807
1808 #ifdef COMPAT_50
1809 case SO_OSNDTIMEO:
1810 case SO_ORCVTIMEO: {
1811 struct timeval50 otv;
1812 error = sockopt_get(sopt, &otv, sizeof(otv));
1813 if (error) {
1814 solock(so);
1815 break;
1816 }
1817 timeval50_to_timeval(&otv, &tv);
1818 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1819 error = 0;
1820 /*FALLTHROUGH*/
1821 }
1822 #endif /* COMPAT_50 */
1823
1824 case SO_SNDTIMEO:
1825 case SO_RCVTIMEO:
1826 if (error)
1827 error = sockopt_get(sopt, &tv, sizeof(tv));
1828 solock(so);
1829 if (error)
1830 break;
1831
1832 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1833 error = EDOM;
1834 break;
1835 }
1836
1837 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1838 if (optval == 0 && tv.tv_usec != 0)
1839 optval = 1;
1840
1841 switch (opt) {
1842 case SO_SNDTIMEO:
1843 so->so_snd.sb_timeo = optval;
1844 break;
1845 case SO_RCVTIMEO:
1846 so->so_rcv.sb_timeo = optval;
1847 break;
1848 }
1849 break;
1850
1851 default:
1852 solock(so);
1853 error = ENOPROTOOPT;
1854 break;
1855 }
1856 KASSERT(solocked(so));
1857 return error;
1858 }
1859
1860 int
1861 sosetopt(struct socket *so, struct sockopt *sopt)
1862 {
1863 int error, prerr;
1864
1865 if (sopt->sopt_level == SOL_SOCKET) {
1866 error = sosetopt1(so, sopt);
1867 KASSERT(solocked(so));
1868 } else {
1869 error = ENOPROTOOPT;
1870 solock(so);
1871 }
1872
1873 if ((error == 0 || error == ENOPROTOOPT) &&
1874 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1875 /* give the protocol stack a shot */
1876 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1877 if (prerr == 0)
1878 error = 0;
1879 else if (prerr != ENOPROTOOPT)
1880 error = prerr;
1881 }
1882 sounlock(so);
1883 return error;
1884 }
1885
1886 /*
1887 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1888 */
1889 int
1890 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1891 const void *val, size_t valsize)
1892 {
1893 struct sockopt sopt;
1894 int error;
1895
1896 KASSERT(valsize == 0 || val != NULL);
1897
1898 sockopt_init(&sopt, level, name, valsize);
1899 sockopt_set(&sopt, val, valsize);
1900
1901 error = sosetopt(so, &sopt);
1902
1903 sockopt_destroy(&sopt);
1904
1905 return error;
1906 }
1907
1908 /*
1909 * internal get SOL_SOCKET options
1910 */
1911 static int
1912 sogetopt1(struct socket *so, struct sockopt *sopt)
1913 {
1914 int error, optval, opt;
1915 struct linger l;
1916 struct timeval tv;
1917
1918 switch ((opt = sopt->sopt_name)) {
1919
1920 case SO_ACCEPTFILTER:
1921 error = accept_filt_getopt(so, sopt);
1922 break;
1923
1924 case SO_LINGER:
1925 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1926 l.l_linger = so->so_linger;
1927
1928 error = sockopt_set(sopt, &l, sizeof(l));
1929 break;
1930
1931 case SO_USELOOPBACK:
1932 case SO_DONTROUTE:
1933 case SO_DEBUG:
1934 case SO_KEEPALIVE:
1935 case SO_REUSEADDR:
1936 case SO_REUSEPORT:
1937 case SO_BROADCAST:
1938 case SO_OOBINLINE:
1939 case SO_TIMESTAMP:
1940 #ifdef SO_OTIMESTAMP
1941 case SO_OTIMESTAMP:
1942 #endif
1943 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1944 break;
1945
1946 case SO_TYPE:
1947 error = sockopt_setint(sopt, so->so_type);
1948 break;
1949
1950 case SO_ERROR:
1951 error = sockopt_setint(sopt, so->so_error);
1952 so->so_error = 0;
1953 break;
1954
1955 case SO_SNDBUF:
1956 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1957 break;
1958
1959 case SO_RCVBUF:
1960 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1961 break;
1962
1963 case SO_SNDLOWAT:
1964 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1965 break;
1966
1967 case SO_RCVLOWAT:
1968 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1969 break;
1970
1971 #ifdef COMPAT_50
1972 case SO_OSNDTIMEO:
1973 case SO_ORCVTIMEO: {
1974 struct timeval50 otv;
1975
1976 optval = (opt == SO_OSNDTIMEO ?
1977 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1978
1979 otv.tv_sec = optval / hz;
1980 otv.tv_usec = (optval % hz) * tick;
1981
1982 error = sockopt_set(sopt, &otv, sizeof(otv));
1983 break;
1984 }
1985 #endif /* COMPAT_50 */
1986
1987 case SO_SNDTIMEO:
1988 case SO_RCVTIMEO:
1989 optval = (opt == SO_SNDTIMEO ?
1990 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1991
1992 tv.tv_sec = optval / hz;
1993 tv.tv_usec = (optval % hz) * tick;
1994
1995 error = sockopt_set(sopt, &tv, sizeof(tv));
1996 break;
1997
1998 case SO_OVERFLOWED:
1999 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
2000 break;
2001
2002 default:
2003 error = ENOPROTOOPT;
2004 break;
2005 }
2006
2007 return (error);
2008 }
2009
2010 int
2011 sogetopt(struct socket *so, struct sockopt *sopt)
2012 {
2013 int error;
2014
2015 solock(so);
2016 if (sopt->sopt_level != SOL_SOCKET) {
2017 if (so->so_proto && so->so_proto->pr_ctloutput) {
2018 error = ((*so->so_proto->pr_ctloutput)
2019 (PRCO_GETOPT, so, sopt));
2020 } else
2021 error = (ENOPROTOOPT);
2022 } else {
2023 error = sogetopt1(so, sopt);
2024 }
2025 sounlock(so);
2026 return (error);
2027 }
2028
2029 /*
2030 * alloc sockopt data buffer buffer
2031 * - will be released at destroy
2032 */
2033 static int
2034 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2035 {
2036
2037 KASSERT(sopt->sopt_size == 0);
2038
2039 if (len > sizeof(sopt->sopt_buf)) {
2040 sopt->sopt_data = kmem_zalloc(len, kmflag);
2041 if (sopt->sopt_data == NULL)
2042 return ENOMEM;
2043 } else
2044 sopt->sopt_data = sopt->sopt_buf;
2045
2046 sopt->sopt_size = len;
2047 return 0;
2048 }
2049
2050 /*
2051 * initialise sockopt storage
2052 * - MAY sleep during allocation
2053 */
2054 void
2055 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2056 {
2057
2058 memset(sopt, 0, sizeof(*sopt));
2059
2060 sopt->sopt_level = level;
2061 sopt->sopt_name = name;
2062 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2063 }
2064
2065 /*
2066 * destroy sockopt storage
2067 * - will release any held memory references
2068 */
2069 void
2070 sockopt_destroy(struct sockopt *sopt)
2071 {
2072
2073 if (sopt->sopt_data != sopt->sopt_buf)
2074 kmem_free(sopt->sopt_data, sopt->sopt_size);
2075
2076 memset(sopt, 0, sizeof(*sopt));
2077 }
2078
2079 /*
2080 * set sockopt value
2081 * - value is copied into sockopt
2082 * - memory is allocated when necessary, will not sleep
2083 */
2084 int
2085 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2086 {
2087 int error;
2088
2089 if (sopt->sopt_size == 0) {
2090 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2091 if (error)
2092 return error;
2093 }
2094
2095 KASSERT(sopt->sopt_size == len);
2096 memcpy(sopt->sopt_data, buf, len);
2097 return 0;
2098 }
2099
2100 /*
2101 * common case of set sockopt integer value
2102 */
2103 int
2104 sockopt_setint(struct sockopt *sopt, int val)
2105 {
2106
2107 return sockopt_set(sopt, &val, sizeof(int));
2108 }
2109
2110 /*
2111 * get sockopt value
2112 * - correct size must be given
2113 */
2114 int
2115 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2116 {
2117
2118 if (sopt->sopt_size != len)
2119 return EINVAL;
2120
2121 memcpy(buf, sopt->sopt_data, len);
2122 return 0;
2123 }
2124
2125 /*
2126 * common case of get sockopt integer value
2127 */
2128 int
2129 sockopt_getint(const struct sockopt *sopt, int *valp)
2130 {
2131
2132 return sockopt_get(sopt, valp, sizeof(int));
2133 }
2134
2135 /*
2136 * set sockopt value from mbuf
2137 * - ONLY for legacy code
2138 * - mbuf is released by sockopt
2139 * - will not sleep
2140 */
2141 int
2142 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2143 {
2144 size_t len;
2145 int error;
2146
2147 len = m_length(m);
2148
2149 if (sopt->sopt_size == 0) {
2150 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2151 if (error)
2152 return error;
2153 }
2154
2155 KASSERT(sopt->sopt_size == len);
2156 m_copydata(m, 0, len, sopt->sopt_data);
2157 m_freem(m);
2158
2159 return 0;
2160 }
2161
2162 /*
2163 * get sockopt value into mbuf
2164 * - ONLY for legacy code
2165 * - mbuf to be released by the caller
2166 * - will not sleep
2167 */
2168 struct mbuf *
2169 sockopt_getmbuf(const struct sockopt *sopt)
2170 {
2171 struct mbuf *m;
2172
2173 if (sopt->sopt_size > MCLBYTES)
2174 return NULL;
2175
2176 m = m_get(M_DONTWAIT, MT_SOOPTS);
2177 if (m == NULL)
2178 return NULL;
2179
2180 if (sopt->sopt_size > MLEN) {
2181 MCLGET(m, M_DONTWAIT);
2182 if ((m->m_flags & M_EXT) == 0) {
2183 m_free(m);
2184 return NULL;
2185 }
2186 }
2187
2188 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2189 m->m_len = sopt->sopt_size;
2190
2191 return m;
2192 }
2193
2194 void
2195 sohasoutofband(struct socket *so)
2196 {
2197
2198 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2199 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2200 }
2201
2202 static void
2203 filt_sordetach(struct knote *kn)
2204 {
2205 struct socket *so;
2206
2207 so = ((file_t *)kn->kn_obj)->f_data;
2208 solock(so);
2209 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2210 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2211 so->so_rcv.sb_flags &= ~SB_KNOTE;
2212 sounlock(so);
2213 }
2214
2215 /*ARGSUSED*/
2216 static int
2217 filt_soread(struct knote *kn, long hint)
2218 {
2219 struct socket *so;
2220 int rv;
2221
2222 so = ((file_t *)kn->kn_obj)->f_data;
2223 if (hint != NOTE_SUBMIT)
2224 solock(so);
2225 kn->kn_data = so->so_rcv.sb_cc;
2226 if (so->so_state & SS_CANTRCVMORE) {
2227 kn->kn_flags |= EV_EOF;
2228 kn->kn_fflags = so->so_error;
2229 rv = 1;
2230 } else if (so->so_error) /* temporary udp error */
2231 rv = 1;
2232 else if (kn->kn_sfflags & NOTE_LOWAT)
2233 rv = (kn->kn_data >= kn->kn_sdata);
2234 else
2235 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2236 if (hint != NOTE_SUBMIT)
2237 sounlock(so);
2238 return rv;
2239 }
2240
2241 static void
2242 filt_sowdetach(struct knote *kn)
2243 {
2244 struct socket *so;
2245
2246 so = ((file_t *)kn->kn_obj)->f_data;
2247 solock(so);
2248 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2249 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2250 so->so_snd.sb_flags &= ~SB_KNOTE;
2251 sounlock(so);
2252 }
2253
2254 /*ARGSUSED*/
2255 static int
2256 filt_sowrite(struct knote *kn, long hint)
2257 {
2258 struct socket *so;
2259 int rv;
2260
2261 so = ((file_t *)kn->kn_obj)->f_data;
2262 if (hint != NOTE_SUBMIT)
2263 solock(so);
2264 kn->kn_data = sbspace(&so->so_snd);
2265 if (so->so_state & SS_CANTSENDMORE) {
2266 kn->kn_flags |= EV_EOF;
2267 kn->kn_fflags = so->so_error;
2268 rv = 1;
2269 } else if (so->so_error) /* temporary udp error */
2270 rv = 1;
2271 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2272 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2273 rv = 0;
2274 else if (kn->kn_sfflags & NOTE_LOWAT)
2275 rv = (kn->kn_data >= kn->kn_sdata);
2276 else
2277 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2278 if (hint != NOTE_SUBMIT)
2279 sounlock(so);
2280 return rv;
2281 }
2282
2283 /*ARGSUSED*/
2284 static int
2285 filt_solisten(struct knote *kn, long hint)
2286 {
2287 struct socket *so;
2288 int rv;
2289
2290 so = ((file_t *)kn->kn_obj)->f_data;
2291
2292 /*
2293 * Set kn_data to number of incoming connections, not
2294 * counting partial (incomplete) connections.
2295 */
2296 if (hint != NOTE_SUBMIT)
2297 solock(so);
2298 kn->kn_data = so->so_qlen;
2299 rv = (kn->kn_data > 0);
2300 if (hint != NOTE_SUBMIT)
2301 sounlock(so);
2302 return rv;
2303 }
2304
2305 static const struct filterops solisten_filtops =
2306 { 1, NULL, filt_sordetach, filt_solisten };
2307 static const struct filterops soread_filtops =
2308 { 1, NULL, filt_sordetach, filt_soread };
2309 static const struct filterops sowrite_filtops =
2310 { 1, NULL, filt_sowdetach, filt_sowrite };
2311
2312 int
2313 soo_kqfilter(struct file *fp, struct knote *kn)
2314 {
2315 struct socket *so;
2316 struct sockbuf *sb;
2317
2318 so = ((file_t *)kn->kn_obj)->f_data;
2319 solock(so);
2320 switch (kn->kn_filter) {
2321 case EVFILT_READ:
2322 if (so->so_options & SO_ACCEPTCONN)
2323 kn->kn_fop = &solisten_filtops;
2324 else
2325 kn->kn_fop = &soread_filtops;
2326 sb = &so->so_rcv;
2327 break;
2328 case EVFILT_WRITE:
2329 kn->kn_fop = &sowrite_filtops;
2330 sb = &so->so_snd;
2331 break;
2332 default:
2333 sounlock(so);
2334 return (EINVAL);
2335 }
2336 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2337 sb->sb_flags |= SB_KNOTE;
2338 sounlock(so);
2339 return (0);
2340 }
2341
2342 static int
2343 sodopoll(struct socket *so, int events)
2344 {
2345 int revents;
2346
2347 revents = 0;
2348
2349 if (events & (POLLIN | POLLRDNORM))
2350 if (soreadable(so))
2351 revents |= events & (POLLIN | POLLRDNORM);
2352
2353 if (events & (POLLOUT | POLLWRNORM))
2354 if (sowritable(so))
2355 revents |= events & (POLLOUT | POLLWRNORM);
2356
2357 if (events & (POLLPRI | POLLRDBAND))
2358 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2359 revents |= events & (POLLPRI | POLLRDBAND);
2360
2361 return revents;
2362 }
2363
2364 int
2365 sopoll(struct socket *so, int events)
2366 {
2367 int revents = 0;
2368
2369 #ifndef DIAGNOSTIC
2370 /*
2371 * Do a quick, unlocked check in expectation that the socket
2372 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2373 * as the solocked() assertions will fail.
2374 */
2375 if ((revents = sodopoll(so, events)) != 0)
2376 return revents;
2377 #endif
2378
2379 solock(so);
2380 if ((revents = sodopoll(so, events)) == 0) {
2381 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2382 selrecord(curlwp, &so->so_rcv.sb_sel);
2383 so->so_rcv.sb_flags |= SB_NOTIFY;
2384 }
2385
2386 if (events & (POLLOUT | POLLWRNORM)) {
2387 selrecord(curlwp, &so->so_snd.sb_sel);
2388 so->so_snd.sb_flags |= SB_NOTIFY;
2389 }
2390 }
2391 sounlock(so);
2392
2393 return revents;
2394 }
2395
2396
2397 #include <sys/sysctl.h>
2398
2399 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2400
2401 /*
2402 * sysctl helper routine for kern.somaxkva. ensures that the given
2403 * value is not too small.
2404 * (XXX should we maybe make sure it's not too large as well?)
2405 */
2406 static int
2407 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2408 {
2409 int error, new_somaxkva;
2410 struct sysctlnode node;
2411
2412 new_somaxkva = somaxkva;
2413 node = *rnode;
2414 node.sysctl_data = &new_somaxkva;
2415 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2416 if (error || newp == NULL)
2417 return (error);
2418
2419 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2420 return (EINVAL);
2421
2422 mutex_enter(&so_pendfree_lock);
2423 somaxkva = new_somaxkva;
2424 cv_broadcast(&socurkva_cv);
2425 mutex_exit(&so_pendfree_lock);
2426
2427 return (error);
2428 }
2429
2430 static void
2431 sysctl_kern_somaxkva_setup(void)
2432 {
2433
2434 KASSERT(socket_sysctllog == NULL);
2435 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2436 CTLFLAG_PERMANENT,
2437 CTLTYPE_NODE, "kern", NULL,
2438 NULL, 0, NULL, 0,
2439 CTL_KERN, CTL_EOL);
2440
2441 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2442 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2443 CTLTYPE_INT, "somaxkva",
2444 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2445 "used for socket buffers"),
2446 sysctl_kern_somaxkva, 0, NULL, 0,
2447 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2448 }
2449