uipc_socket.c revision 1.205 1 /* $NetBSD: uipc_socket.c,v 1.205 2011/07/02 17:53:50 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.205 2011/07/02 17:53:50 bouyer Exp $");
67
68 #include "opt_compat_netbsd.h"
69 #include "opt_sock_counters.h"
70 #include "opt_sosend_loan.h"
71 #include "opt_mbuftrace.h"
72 #include "opt_somaxkva.h"
73 #include "opt_multiprocessor.h" /* XXX */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/file.h>
79 #include <sys/filedesc.h>
80 #include <sys/kmem.h>
81 #include <sys/mbuf.h>
82 #include <sys/domain.h>
83 #include <sys/kernel.h>
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/signalvar.h>
88 #include <sys/resourcevar.h>
89 #include <sys/uidinfo.h>
90 #include <sys/event.h>
91 #include <sys/poll.h>
92 #include <sys/kauth.h>
93 #include <sys/mutex.h>
94 #include <sys/condvar.h>
95 #include <sys/kthread.h>
96
97 #ifdef COMPAT_50
98 #include <compat/sys/time.h>
99 #include <compat/sys/socket.h>
100 #endif
101
102 #include <uvm/uvm_extern.h>
103 #include <uvm/uvm_loan.h>
104 #include <uvm/uvm_page.h>
105
106 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
107 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
108
109 extern const struct fileops socketops;
110
111 extern int somaxconn; /* patchable (XXX sysctl) */
112 int somaxconn = SOMAXCONN;
113 kmutex_t *softnet_lock;
114
115 #ifdef SOSEND_COUNTERS
116 #include <sys/device.h>
117
118 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
119 NULL, "sosend", "loan big");
120 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
121 NULL, "sosend", "copy big");
122 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
123 NULL, "sosend", "copy small");
124 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
125 NULL, "sosend", "kva limit");
126
127 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
128
129 EVCNT_ATTACH_STATIC(sosend_loan_big);
130 EVCNT_ATTACH_STATIC(sosend_copy_big);
131 EVCNT_ATTACH_STATIC(sosend_copy_small);
132 EVCNT_ATTACH_STATIC(sosend_kvalimit);
133 #else
134
135 #define SOSEND_COUNTER_INCR(ev) /* nothing */
136
137 #endif /* SOSEND_COUNTERS */
138
139 static struct callback_entry sokva_reclaimerentry;
140
141 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
142 int sock_loan_thresh = -1;
143 #else
144 int sock_loan_thresh = 4096;
145 #endif
146
147 static kmutex_t so_pendfree_lock;
148 static struct mbuf *so_pendfree = NULL;
149
150 #ifndef SOMAXKVA
151 #define SOMAXKVA (16 * 1024 * 1024)
152 #endif
153 int somaxkva = SOMAXKVA;
154 static int socurkva;
155 static kcondvar_t socurkva_cv;
156
157 static kauth_listener_t socket_listener;
158
159 #define SOCK_LOAN_CHUNK 65536
160
161 static void sopendfree_thread(void *);
162 static kcondvar_t pendfree_thread_cv;
163 static lwp_t *sopendfree_lwp;
164
165 static void sysctl_kern_somaxkva_setup(void);
166 static struct sysctllog *socket_sysctllog;
167
168 static vsize_t
169 sokvareserve(struct socket *so, vsize_t len)
170 {
171 int error;
172
173 mutex_enter(&so_pendfree_lock);
174 while (socurkva + len > somaxkva) {
175 SOSEND_COUNTER_INCR(&sosend_kvalimit);
176 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
177 if (error) {
178 len = 0;
179 break;
180 }
181 }
182 socurkva += len;
183 mutex_exit(&so_pendfree_lock);
184 return len;
185 }
186
187 static void
188 sokvaunreserve(vsize_t len)
189 {
190
191 mutex_enter(&so_pendfree_lock);
192 socurkva -= len;
193 cv_broadcast(&socurkva_cv);
194 mutex_exit(&so_pendfree_lock);
195 }
196
197 /*
198 * sokvaalloc: allocate kva for loan.
199 */
200
201 vaddr_t
202 sokvaalloc(vsize_t len, struct socket *so)
203 {
204 vaddr_t lva;
205
206 /*
207 * reserve kva.
208 */
209
210 if (sokvareserve(so, len) == 0)
211 return 0;
212
213 /*
214 * allocate kva.
215 */
216
217 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
218 if (lva == 0) {
219 sokvaunreserve(len);
220 return (0);
221 }
222
223 return lva;
224 }
225
226 /*
227 * sokvafree: free kva for loan.
228 */
229
230 void
231 sokvafree(vaddr_t sva, vsize_t len)
232 {
233
234 /*
235 * free kva.
236 */
237
238 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
239
240 /*
241 * unreserve kva.
242 */
243
244 sokvaunreserve(len);
245 }
246
247 static void
248 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
249 {
250 vaddr_t sva, eva;
251 vsize_t len;
252 int npgs;
253
254 KASSERT(pgs != NULL);
255
256 eva = round_page((vaddr_t) buf + size);
257 sva = trunc_page((vaddr_t) buf);
258 len = eva - sva;
259 npgs = len >> PAGE_SHIFT;
260
261 pmap_kremove(sva, len);
262 pmap_update(pmap_kernel());
263 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
264 sokvafree(sva, len);
265 }
266
267 /*
268 * sopendfree_thread: free mbufs on "pendfree" list.
269 * unlock and relock so_pendfree_lock when freeing mbufs.
270 */
271
272 static void
273 sopendfree_thread(void *v)
274 {
275 struct mbuf *m, *next;
276 size_t rv;
277
278 mutex_enter(&so_pendfree_lock);
279
280 for (;;) {
281 rv = 0;
282 while (so_pendfree != NULL) {
283 m = so_pendfree;
284 so_pendfree = NULL;
285 mutex_exit(&so_pendfree_lock);
286
287 for (; m != NULL; m = next) {
288 next = m->m_next;
289 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
290 KASSERT(m->m_ext.ext_refcnt == 0);
291
292 rv += m->m_ext.ext_size;
293 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
294 m->m_ext.ext_size);
295 pool_cache_put(mb_cache, m);
296 }
297
298 mutex_enter(&so_pendfree_lock);
299 }
300 if (rv)
301 cv_broadcast(&socurkva_cv);
302 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
303 }
304 panic("sopendfree_thread");
305 /* NOTREACHED */
306 }
307
308 void
309 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
310 {
311
312 KASSERT(m != NULL);
313
314 /*
315 * postpone freeing mbuf.
316 *
317 * we can't do it in interrupt context
318 * because we need to put kva back to kernel_map.
319 */
320
321 mutex_enter(&so_pendfree_lock);
322 m->m_next = so_pendfree;
323 so_pendfree = m;
324 cv_signal(&pendfree_thread_cv);
325 mutex_exit(&so_pendfree_lock);
326 }
327
328 static long
329 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
330 {
331 struct iovec *iov = uio->uio_iov;
332 vaddr_t sva, eva;
333 vsize_t len;
334 vaddr_t lva;
335 int npgs, error;
336 vaddr_t va;
337 int i;
338
339 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
340 return (0);
341
342 if (iov->iov_len < (size_t) space)
343 space = iov->iov_len;
344 if (space > SOCK_LOAN_CHUNK)
345 space = SOCK_LOAN_CHUNK;
346
347 eva = round_page((vaddr_t) iov->iov_base + space);
348 sva = trunc_page((vaddr_t) iov->iov_base);
349 len = eva - sva;
350 npgs = len >> PAGE_SHIFT;
351
352 KASSERT(npgs <= M_EXT_MAXPAGES);
353
354 lva = sokvaalloc(len, so);
355 if (lva == 0)
356 return 0;
357
358 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
359 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
360 if (error) {
361 sokvafree(lva, len);
362 return (0);
363 }
364
365 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
366 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
367 VM_PROT_READ, 0);
368 pmap_update(pmap_kernel());
369
370 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
371
372 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
373 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
374
375 uio->uio_resid -= space;
376 /* uio_offset not updated, not set/used for write(2) */
377 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
378 uio->uio_iov->iov_len -= space;
379 if (uio->uio_iov->iov_len == 0) {
380 uio->uio_iov++;
381 uio->uio_iovcnt--;
382 }
383
384 return (space);
385 }
386
387 static int
388 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
389 {
390
391 KASSERT(ce == &sokva_reclaimerentry);
392 KASSERT(obj == NULL);
393
394 if (!vm_map_starved_p(kernel_map)) {
395 return CALLBACK_CHAIN_ABORT;
396 }
397 return CALLBACK_CHAIN_CONTINUE;
398 }
399
400 struct mbuf *
401 getsombuf(struct socket *so, int type)
402 {
403 struct mbuf *m;
404
405 m = m_get(M_WAIT, type);
406 MCLAIM(m, so->so_mowner);
407 return m;
408 }
409
410 static int
411 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
412 void *arg0, void *arg1, void *arg2, void *arg3)
413 {
414 int result;
415 enum kauth_network_req req;
416
417 result = KAUTH_RESULT_DEFER;
418 req = (enum kauth_network_req)arg0;
419
420 if ((action != KAUTH_NETWORK_SOCKET) &&
421 (action != KAUTH_NETWORK_BIND))
422 return result;
423
424 switch (req) {
425 case KAUTH_REQ_NETWORK_BIND_PORT:
426 result = KAUTH_RESULT_ALLOW;
427 break;
428
429 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
430 /* Normal users can only drop their own connections. */
431 struct socket *so = (struct socket *)arg1;
432
433 if (proc_uidmatch(cred, so->so_cred))
434 result = KAUTH_RESULT_ALLOW;
435
436 break;
437 }
438
439 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
440 /* We allow "raw" routing/bluetooth sockets to anyone. */
441 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
442 || (u_long)arg1 == PF_BLUETOOTH) {
443 result = KAUTH_RESULT_ALLOW;
444 } else {
445 /* Privileged, let secmodel handle this. */
446 if ((u_long)arg2 == SOCK_RAW)
447 break;
448 }
449
450 result = KAUTH_RESULT_ALLOW;
451
452 break;
453
454 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
455 result = KAUTH_RESULT_ALLOW;
456
457 break;
458
459 default:
460 break;
461 }
462
463 return result;
464 }
465
466 void
467 soinit(void)
468 {
469
470 sysctl_kern_somaxkva_setup();
471
472 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
473 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
474 cv_init(&socurkva_cv, "sokva");
475 cv_init(&pendfree_thread_cv, "sopendfr");
476 soinit2();
477
478 /* Set the initial adjusted socket buffer size. */
479 if (sb_max_set(sb_max))
480 panic("bad initial sb_max value: %lu", sb_max);
481
482 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
483 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
484
485 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
486 socket_listener_cb, NULL);
487 }
488
489 void
490 soinit1(void)
491 {
492 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
493 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
494 if (error)
495 panic("soinit1 %d", error);
496 }
497
498 /*
499 * Socket operation routines.
500 * These routines are called by the routines in
501 * sys_socket.c or from a system process, and
502 * implement the semantics of socket operations by
503 * switching out to the protocol specific routines.
504 */
505 /*ARGSUSED*/
506 int
507 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
508 struct socket *lockso)
509 {
510 const struct protosw *prp;
511 struct socket *so;
512 uid_t uid;
513 int error;
514 kmutex_t *lock;
515
516 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
517 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
518 KAUTH_ARG(proto));
519 if (error != 0)
520 return error;
521
522 if (proto)
523 prp = pffindproto(dom, proto, type);
524 else
525 prp = pffindtype(dom, type);
526 if (prp == NULL) {
527 /* no support for domain */
528 if (pffinddomain(dom) == 0)
529 return EAFNOSUPPORT;
530 /* no support for socket type */
531 if (proto == 0 && type != 0)
532 return EPROTOTYPE;
533 return EPROTONOSUPPORT;
534 }
535 if (prp->pr_usrreq == NULL)
536 return EPROTONOSUPPORT;
537 if (prp->pr_type != type)
538 return EPROTOTYPE;
539
540 so = soget(true);
541 so->so_type = type;
542 so->so_proto = prp;
543 so->so_send = sosend;
544 so->so_receive = soreceive;
545 #ifdef MBUFTRACE
546 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
547 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
548 so->so_mowner = &prp->pr_domain->dom_mowner;
549 #endif
550 uid = kauth_cred_geteuid(l->l_cred);
551 so->so_uidinfo = uid_find(uid);
552 so->so_cpid = l->l_proc->p_pid;
553 if (lockso != NULL) {
554 /* Caller wants us to share a lock. */
555 lock = lockso->so_lock;
556 so->so_lock = lock;
557 mutex_obj_hold(lock);
558 mutex_enter(lock);
559 } else {
560 /* Lock assigned and taken during PRU_ATTACH. */
561 }
562 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
563 (struct mbuf *)(long)proto, NULL, l);
564 KASSERT(solocked(so));
565 if (error != 0) {
566 so->so_state |= SS_NOFDREF;
567 sofree(so);
568 return error;
569 }
570 so->so_cred = kauth_cred_dup(l->l_cred);
571 sounlock(so);
572 *aso = so;
573 return 0;
574 }
575
576 /* On success, write file descriptor to fdout and return zero. On
577 * failure, return non-zero; *fdout will be undefined.
578 */
579 int
580 fsocreate(int domain, struct socket **sop, int type, int protocol,
581 struct lwp *l, int *fdout)
582 {
583 struct socket *so;
584 struct file *fp;
585 int fd, error;
586 int flags = type & SOCK_FLAGS_MASK;
587
588 type &= ~SOCK_FLAGS_MASK;
589 if ((error = fd_allocfile(&fp, &fd)) != 0)
590 return error;
591 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
592 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0);
593 fp->f_type = DTYPE_SOCKET;
594 fp->f_ops = &socketops;
595 error = socreate(domain, &so, type, protocol, l, NULL);
596 if (error != 0) {
597 fd_abort(curproc, fp, fd);
598 } else {
599 if (sop != NULL)
600 *sop = so;
601 fp->f_data = so;
602 fd_affix(curproc, fp, fd);
603 *fdout = fd;
604 }
605 return error;
606 }
607
608 int
609 sofamily(const struct socket *so)
610 {
611 const struct protosw *pr;
612 const struct domain *dom;
613
614 if ((pr = so->so_proto) == NULL)
615 return AF_UNSPEC;
616 if ((dom = pr->pr_domain) == NULL)
617 return AF_UNSPEC;
618 return dom->dom_family;
619 }
620
621 int
622 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
623 {
624 int error;
625
626 solock(so);
627 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
628 sounlock(so);
629 return error;
630 }
631
632 int
633 solisten(struct socket *so, int backlog, struct lwp *l)
634 {
635 int error;
636
637 solock(so);
638 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
639 SS_ISDISCONNECTING)) != 0) {
640 sounlock(so);
641 return (EOPNOTSUPP);
642 }
643 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
644 NULL, NULL, l);
645 if (error != 0) {
646 sounlock(so);
647 return error;
648 }
649 if (TAILQ_EMPTY(&so->so_q))
650 so->so_options |= SO_ACCEPTCONN;
651 if (backlog < 0)
652 backlog = 0;
653 so->so_qlimit = min(backlog, somaxconn);
654 sounlock(so);
655 return 0;
656 }
657
658 void
659 sofree(struct socket *so)
660 {
661 u_int refs;
662
663 KASSERT(solocked(so));
664
665 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
666 sounlock(so);
667 return;
668 }
669 if (so->so_head) {
670 /*
671 * We must not decommission a socket that's on the accept(2)
672 * queue. If we do, then accept(2) may hang after select(2)
673 * indicated that the listening socket was ready.
674 */
675 if (!soqremque(so, 0)) {
676 sounlock(so);
677 return;
678 }
679 }
680 if (so->so_rcv.sb_hiwat)
681 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
682 RLIM_INFINITY);
683 if (so->so_snd.sb_hiwat)
684 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
685 RLIM_INFINITY);
686 sbrelease(&so->so_snd, so);
687 KASSERT(!cv_has_waiters(&so->so_cv));
688 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
689 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
690 sorflush(so);
691 refs = so->so_aborting; /* XXX */
692 /* Remove acccept filter if one is present. */
693 if (so->so_accf != NULL)
694 (void)accept_filt_clear(so);
695 sounlock(so);
696 if (refs == 0) /* XXX */
697 soput(so);
698 }
699
700 /*
701 * Close a socket on last file table reference removal.
702 * Initiate disconnect if connected.
703 * Free socket when disconnect complete.
704 */
705 int
706 soclose(struct socket *so)
707 {
708 struct socket *so2;
709 int error;
710 int error2;
711
712 error = 0;
713 solock(so);
714 if (so->so_options & SO_ACCEPTCONN) {
715 for (;;) {
716 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
717 KASSERT(solocked2(so, so2));
718 (void) soqremque(so2, 0);
719 /* soabort drops the lock. */
720 (void) soabort(so2);
721 solock(so);
722 continue;
723 }
724 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
725 KASSERT(solocked2(so, so2));
726 (void) soqremque(so2, 1);
727 /* soabort drops the lock. */
728 (void) soabort(so2);
729 solock(so);
730 continue;
731 }
732 break;
733 }
734 }
735 if (so->so_pcb == 0)
736 goto discard;
737 if (so->so_state & SS_ISCONNECTED) {
738 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
739 error = sodisconnect(so);
740 if (error)
741 goto drop;
742 }
743 if (so->so_options & SO_LINGER) {
744 if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
745 goto drop;
746 while (so->so_state & SS_ISCONNECTED) {
747 error = sowait(so, true, so->so_linger * hz);
748 if (error)
749 break;
750 }
751 }
752 }
753 drop:
754 if (so->so_pcb) {
755 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
756 NULL, NULL, NULL, NULL);
757 if (error == 0)
758 error = error2;
759 }
760 discard:
761 if (so->so_state & SS_NOFDREF)
762 panic("soclose: NOFDREF");
763 kauth_cred_free(so->so_cred);
764 so->so_state |= SS_NOFDREF;
765 sofree(so);
766 return (error);
767 }
768
769 /*
770 * Must be called with the socket locked.. Will return with it unlocked.
771 */
772 int
773 soabort(struct socket *so)
774 {
775 u_int refs;
776 int error;
777
778 KASSERT(solocked(so));
779 KASSERT(so->so_head == NULL);
780
781 so->so_aborting++; /* XXX */
782 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
783 NULL, NULL, NULL);
784 refs = --so->so_aborting; /* XXX */
785 if (error || (refs == 0)) {
786 sofree(so);
787 } else {
788 sounlock(so);
789 }
790 return error;
791 }
792
793 int
794 soaccept(struct socket *so, struct mbuf *nam)
795 {
796 int error;
797
798 KASSERT(solocked(so));
799
800 error = 0;
801 if ((so->so_state & SS_NOFDREF) == 0)
802 panic("soaccept: !NOFDREF");
803 so->so_state &= ~SS_NOFDREF;
804 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
805 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
806 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
807 NULL, nam, NULL, NULL);
808 else
809 error = ECONNABORTED;
810
811 return (error);
812 }
813
814 int
815 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
816 {
817 int error;
818
819 KASSERT(solocked(so));
820
821 if (so->so_options & SO_ACCEPTCONN)
822 return (EOPNOTSUPP);
823 /*
824 * If protocol is connection-based, can only connect once.
825 * Otherwise, if connected, try to disconnect first.
826 * This allows user to disconnect by connecting to, e.g.,
827 * a null address.
828 */
829 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
830 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
831 (error = sodisconnect(so))))
832 error = EISCONN;
833 else
834 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
835 NULL, nam, NULL, l);
836 return (error);
837 }
838
839 int
840 soconnect2(struct socket *so1, struct socket *so2)
841 {
842 int error;
843
844 KASSERT(solocked2(so1, so2));
845
846 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
847 NULL, (struct mbuf *)so2, NULL, NULL);
848 return (error);
849 }
850
851 int
852 sodisconnect(struct socket *so)
853 {
854 int error;
855
856 KASSERT(solocked(so));
857
858 if ((so->so_state & SS_ISCONNECTED) == 0) {
859 error = ENOTCONN;
860 } else if (so->so_state & SS_ISDISCONNECTING) {
861 error = EALREADY;
862 } else {
863 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
864 NULL, NULL, NULL, NULL);
865 }
866 return (error);
867 }
868
869 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
870 /*
871 * Send on a socket.
872 * If send must go all at once and message is larger than
873 * send buffering, then hard error.
874 * Lock against other senders.
875 * If must go all at once and not enough room now, then
876 * inform user that this would block and do nothing.
877 * Otherwise, if nonblocking, send as much as possible.
878 * The data to be sent is described by "uio" if nonzero,
879 * otherwise by the mbuf chain "top" (which must be null
880 * if uio is not). Data provided in mbuf chain must be small
881 * enough to send all at once.
882 *
883 * Returns nonzero on error, timeout or signal; callers
884 * must check for short counts if EINTR/ERESTART are returned.
885 * Data and control buffers are freed on return.
886 */
887 int
888 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
889 struct mbuf *control, int flags, struct lwp *l)
890 {
891 struct mbuf **mp, *m;
892 struct proc *p;
893 long space, len, resid, clen, mlen;
894 int error, s, dontroute, atomic;
895 short wakeup_state = 0;
896
897 p = l->l_proc;
898 clen = 0;
899
900 /*
901 * solock() provides atomicity of access. splsoftnet() prevents
902 * protocol processing soft interrupts from interrupting us and
903 * blocking (expensive).
904 */
905 s = splsoftnet();
906 solock(so);
907 atomic = sosendallatonce(so) || top;
908 if (uio)
909 resid = uio->uio_resid;
910 else
911 resid = top->m_pkthdr.len;
912 /*
913 * In theory resid should be unsigned.
914 * However, space must be signed, as it might be less than 0
915 * if we over-committed, and we must use a signed comparison
916 * of space and resid. On the other hand, a negative resid
917 * causes us to loop sending 0-length segments to the protocol.
918 */
919 if (resid < 0) {
920 error = EINVAL;
921 goto out;
922 }
923 dontroute =
924 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
925 (so->so_proto->pr_flags & PR_ATOMIC);
926 l->l_ru.ru_msgsnd++;
927 if (control)
928 clen = control->m_len;
929 restart:
930 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
931 goto out;
932 do {
933 if (so->so_state & SS_CANTSENDMORE) {
934 error = EPIPE;
935 goto release;
936 }
937 if (so->so_error) {
938 error = so->so_error;
939 so->so_error = 0;
940 goto release;
941 }
942 if ((so->so_state & SS_ISCONNECTED) == 0) {
943 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
944 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
945 !(resid == 0 && clen != 0)) {
946 error = ENOTCONN;
947 goto release;
948 }
949 } else if (addr == 0) {
950 error = EDESTADDRREQ;
951 goto release;
952 }
953 }
954 space = sbspace(&so->so_snd);
955 if (flags & MSG_OOB)
956 space += 1024;
957 if ((atomic && resid > so->so_snd.sb_hiwat) ||
958 clen > so->so_snd.sb_hiwat) {
959 error = EMSGSIZE;
960 goto release;
961 }
962 if (space < resid + clen &&
963 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
964 if (so->so_nbio) {
965 error = EWOULDBLOCK;
966 goto release;
967 }
968 sbunlock(&so->so_snd);
969 if (wakeup_state & SS_RESTARTSYS) {
970 error = ERESTART;
971 goto out;
972 }
973 error = sbwait(&so->so_snd);
974 if (error)
975 goto out;
976 wakeup_state = so->so_state;
977 goto restart;
978 }
979 wakeup_state = 0;
980 mp = ⊤
981 space -= clen;
982 do {
983 if (uio == NULL) {
984 /*
985 * Data is prepackaged in "top".
986 */
987 resid = 0;
988 if (flags & MSG_EOR)
989 top->m_flags |= M_EOR;
990 } else do {
991 sounlock(so);
992 splx(s);
993 if (top == NULL) {
994 m = m_gethdr(M_WAIT, MT_DATA);
995 mlen = MHLEN;
996 m->m_pkthdr.len = 0;
997 m->m_pkthdr.rcvif = NULL;
998 } else {
999 m = m_get(M_WAIT, MT_DATA);
1000 mlen = MLEN;
1001 }
1002 MCLAIM(m, so->so_snd.sb_mowner);
1003 if (sock_loan_thresh >= 0 &&
1004 uio->uio_iov->iov_len >= sock_loan_thresh &&
1005 space >= sock_loan_thresh &&
1006 (len = sosend_loan(so, uio, m,
1007 space)) != 0) {
1008 SOSEND_COUNTER_INCR(&sosend_loan_big);
1009 space -= len;
1010 goto have_data;
1011 }
1012 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1013 SOSEND_COUNTER_INCR(&sosend_copy_big);
1014 m_clget(m, M_DONTWAIT);
1015 if ((m->m_flags & M_EXT) == 0)
1016 goto nopages;
1017 mlen = MCLBYTES;
1018 if (atomic && top == 0) {
1019 len = lmin(MCLBYTES - max_hdr,
1020 resid);
1021 m->m_data += max_hdr;
1022 } else
1023 len = lmin(MCLBYTES, resid);
1024 space -= len;
1025 } else {
1026 nopages:
1027 SOSEND_COUNTER_INCR(&sosend_copy_small);
1028 len = lmin(lmin(mlen, resid), space);
1029 space -= len;
1030 /*
1031 * For datagram protocols, leave room
1032 * for protocol headers in first mbuf.
1033 */
1034 if (atomic && top == 0 && len < mlen)
1035 MH_ALIGN(m, len);
1036 }
1037 error = uiomove(mtod(m, void *), (int)len, uio);
1038 have_data:
1039 resid = uio->uio_resid;
1040 m->m_len = len;
1041 *mp = m;
1042 top->m_pkthdr.len += len;
1043 s = splsoftnet();
1044 solock(so);
1045 if (error != 0)
1046 goto release;
1047 mp = &m->m_next;
1048 if (resid <= 0) {
1049 if (flags & MSG_EOR)
1050 top->m_flags |= M_EOR;
1051 break;
1052 }
1053 } while (space > 0 && atomic);
1054
1055 if (so->so_state & SS_CANTSENDMORE) {
1056 error = EPIPE;
1057 goto release;
1058 }
1059 if (dontroute)
1060 so->so_options |= SO_DONTROUTE;
1061 if (resid > 0)
1062 so->so_state |= SS_MORETOCOME;
1063 error = (*so->so_proto->pr_usrreq)(so,
1064 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
1065 top, addr, control, curlwp);
1066 if (dontroute)
1067 so->so_options &= ~SO_DONTROUTE;
1068 if (resid > 0)
1069 so->so_state &= ~SS_MORETOCOME;
1070 clen = 0;
1071 control = NULL;
1072 top = NULL;
1073 mp = ⊤
1074 if (error != 0)
1075 goto release;
1076 } while (resid && space > 0);
1077 } while (resid);
1078
1079 release:
1080 sbunlock(&so->so_snd);
1081 out:
1082 sounlock(so);
1083 splx(s);
1084 if (top)
1085 m_freem(top);
1086 if (control)
1087 m_freem(control);
1088 return (error);
1089 }
1090
1091 /*
1092 * Following replacement or removal of the first mbuf on the first
1093 * mbuf chain of a socket buffer, push necessary state changes back
1094 * into the socket buffer so that other consumers see the values
1095 * consistently. 'nextrecord' is the callers locally stored value of
1096 * the original value of sb->sb_mb->m_nextpkt which must be restored
1097 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1098 */
1099 static void
1100 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1101 {
1102
1103 KASSERT(solocked(sb->sb_so));
1104
1105 /*
1106 * First, update for the new value of nextrecord. If necessary,
1107 * make it the first record.
1108 */
1109 if (sb->sb_mb != NULL)
1110 sb->sb_mb->m_nextpkt = nextrecord;
1111 else
1112 sb->sb_mb = nextrecord;
1113
1114 /*
1115 * Now update any dependent socket buffer fields to reflect
1116 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1117 * the addition of a second clause that takes care of the
1118 * case where sb_mb has been updated, but remains the last
1119 * record.
1120 */
1121 if (sb->sb_mb == NULL) {
1122 sb->sb_mbtail = NULL;
1123 sb->sb_lastrecord = NULL;
1124 } else if (sb->sb_mb->m_nextpkt == NULL)
1125 sb->sb_lastrecord = sb->sb_mb;
1126 }
1127
1128 /*
1129 * Implement receive operations on a socket.
1130 * We depend on the way that records are added to the sockbuf
1131 * by sbappend*. In particular, each record (mbufs linked through m_next)
1132 * must begin with an address if the protocol so specifies,
1133 * followed by an optional mbuf or mbufs containing ancillary data,
1134 * and then zero or more mbufs of data.
1135 * In order to avoid blocking network interrupts for the entire time here,
1136 * we splx() while doing the actual copy to user space.
1137 * Although the sockbuf is locked, new data may still be appended,
1138 * and thus we must maintain consistency of the sockbuf during that time.
1139 *
1140 * The caller may receive the data as a single mbuf chain by supplying
1141 * an mbuf **mp0 for use in returning the chain. The uio is then used
1142 * only for the count in uio_resid.
1143 */
1144 int
1145 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1146 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1147 {
1148 struct lwp *l = curlwp;
1149 struct mbuf *m, **mp, *mt;
1150 int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1151 const struct protosw *pr;
1152 struct mbuf *nextrecord;
1153 int mbuf_removed = 0;
1154 const struct domain *dom;
1155 short wakeup_state = 0;
1156
1157 pr = so->so_proto;
1158 atomic = pr->pr_flags & PR_ATOMIC;
1159 dom = pr->pr_domain;
1160 mp = mp0;
1161 type = 0;
1162 orig_resid = uio->uio_resid;
1163
1164 if (paddr != NULL)
1165 *paddr = NULL;
1166 if (controlp != NULL)
1167 *controlp = NULL;
1168 if (flagsp != NULL)
1169 flags = *flagsp &~ MSG_EOR;
1170 else
1171 flags = 0;
1172
1173 if (flags & MSG_OOB) {
1174 m = m_get(M_WAIT, MT_DATA);
1175 solock(so);
1176 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1177 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1178 sounlock(so);
1179 if (error)
1180 goto bad;
1181 do {
1182 error = uiomove(mtod(m, void *),
1183 (int) min(uio->uio_resid, m->m_len), uio);
1184 m = m_free(m);
1185 } while (uio->uio_resid > 0 && error == 0 && m);
1186 bad:
1187 if (m != NULL)
1188 m_freem(m);
1189 return error;
1190 }
1191 if (mp != NULL)
1192 *mp = NULL;
1193
1194 /*
1195 * solock() provides atomicity of access. splsoftnet() prevents
1196 * protocol processing soft interrupts from interrupting us and
1197 * blocking (expensive).
1198 */
1199 s = splsoftnet();
1200 solock(so);
1201 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1202 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1203
1204 restart:
1205 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1206 sounlock(so);
1207 splx(s);
1208 return error;
1209 }
1210
1211 m = so->so_rcv.sb_mb;
1212 /*
1213 * If we have less data than requested, block awaiting more
1214 * (subject to any timeout) if:
1215 * 1. the current count is less than the low water mark,
1216 * 2. MSG_WAITALL is set, and it is possible to do the entire
1217 * receive operation at once if we block (resid <= hiwat), or
1218 * 3. MSG_DONTWAIT is not set.
1219 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1220 * we have to do the receive in sections, and thus risk returning
1221 * a short count if a timeout or signal occurs after we start.
1222 */
1223 if (m == NULL ||
1224 ((flags & MSG_DONTWAIT) == 0 &&
1225 so->so_rcv.sb_cc < uio->uio_resid &&
1226 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1227 ((flags & MSG_WAITALL) &&
1228 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1229 m->m_nextpkt == NULL && !atomic)) {
1230 #ifdef DIAGNOSTIC
1231 if (m == NULL && so->so_rcv.sb_cc)
1232 panic("receive 1");
1233 #endif
1234 if (so->so_error) {
1235 if (m != NULL)
1236 goto dontblock;
1237 error = so->so_error;
1238 if ((flags & MSG_PEEK) == 0)
1239 so->so_error = 0;
1240 goto release;
1241 }
1242 if (so->so_state & SS_CANTRCVMORE) {
1243 if (m != NULL)
1244 goto dontblock;
1245 else
1246 goto release;
1247 }
1248 for (; m != NULL; m = m->m_next)
1249 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1250 m = so->so_rcv.sb_mb;
1251 goto dontblock;
1252 }
1253 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1254 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1255 error = ENOTCONN;
1256 goto release;
1257 }
1258 if (uio->uio_resid == 0)
1259 goto release;
1260 if (so->so_nbio || (flags & MSG_DONTWAIT)) {
1261 error = EWOULDBLOCK;
1262 goto release;
1263 }
1264 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1265 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1266 sbunlock(&so->so_rcv);
1267 if (wakeup_state & SS_RESTARTSYS)
1268 error = ERESTART;
1269 else
1270 error = sbwait(&so->so_rcv);
1271 if (error != 0) {
1272 sounlock(so);
1273 splx(s);
1274 return error;
1275 }
1276 wakeup_state = so->so_state;
1277 goto restart;
1278 }
1279 dontblock:
1280 /*
1281 * On entry here, m points to the first record of the socket buffer.
1282 * From this point onward, we maintain 'nextrecord' as a cache of the
1283 * pointer to the next record in the socket buffer. We must keep the
1284 * various socket buffer pointers and local stack versions of the
1285 * pointers in sync, pushing out modifications before dropping the
1286 * socket lock, and re-reading them when picking it up.
1287 *
1288 * Otherwise, we will race with the network stack appending new data
1289 * or records onto the socket buffer by using inconsistent/stale
1290 * versions of the field, possibly resulting in socket buffer
1291 * corruption.
1292 *
1293 * By holding the high-level sblock(), we prevent simultaneous
1294 * readers from pulling off the front of the socket buffer.
1295 */
1296 if (l != NULL)
1297 l->l_ru.ru_msgrcv++;
1298 KASSERT(m == so->so_rcv.sb_mb);
1299 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1300 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1301 nextrecord = m->m_nextpkt;
1302 if (pr->pr_flags & PR_ADDR) {
1303 #ifdef DIAGNOSTIC
1304 if (m->m_type != MT_SONAME)
1305 panic("receive 1a");
1306 #endif
1307 orig_resid = 0;
1308 if (flags & MSG_PEEK) {
1309 if (paddr)
1310 *paddr = m_copy(m, 0, m->m_len);
1311 m = m->m_next;
1312 } else {
1313 sbfree(&so->so_rcv, m);
1314 mbuf_removed = 1;
1315 if (paddr != NULL) {
1316 *paddr = m;
1317 so->so_rcv.sb_mb = m->m_next;
1318 m->m_next = NULL;
1319 m = so->so_rcv.sb_mb;
1320 } else {
1321 MFREE(m, so->so_rcv.sb_mb);
1322 m = so->so_rcv.sb_mb;
1323 }
1324 sbsync(&so->so_rcv, nextrecord);
1325 }
1326 }
1327
1328 /*
1329 * Process one or more MT_CONTROL mbufs present before any data mbufs
1330 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1331 * just copy the data; if !MSG_PEEK, we call into the protocol to
1332 * perform externalization (or freeing if controlp == NULL).
1333 */
1334 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1335 struct mbuf *cm = NULL, *cmn;
1336 struct mbuf **cme = &cm;
1337
1338 do {
1339 if (flags & MSG_PEEK) {
1340 if (controlp != NULL) {
1341 *controlp = m_copy(m, 0, m->m_len);
1342 controlp = &(*controlp)->m_next;
1343 }
1344 m = m->m_next;
1345 } else {
1346 sbfree(&so->so_rcv, m);
1347 so->so_rcv.sb_mb = m->m_next;
1348 m->m_next = NULL;
1349 *cme = m;
1350 cme = &(*cme)->m_next;
1351 m = so->so_rcv.sb_mb;
1352 }
1353 } while (m != NULL && m->m_type == MT_CONTROL);
1354 if ((flags & MSG_PEEK) == 0)
1355 sbsync(&so->so_rcv, nextrecord);
1356 for (; cm != NULL; cm = cmn) {
1357 cmn = cm->m_next;
1358 cm->m_next = NULL;
1359 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1360 if (controlp != NULL) {
1361 if (dom->dom_externalize != NULL &&
1362 type == SCM_RIGHTS) {
1363 sounlock(so);
1364 splx(s);
1365 error = (*dom->dom_externalize)(cm, l,
1366 (flags & MSG_CMSG_CLOEXEC) ?
1367 O_CLOEXEC : 0);
1368 s = splsoftnet();
1369 solock(so);
1370 }
1371 *controlp = cm;
1372 while (*controlp != NULL)
1373 controlp = &(*controlp)->m_next;
1374 } else {
1375 /*
1376 * Dispose of any SCM_RIGHTS message that went
1377 * through the read path rather than recv.
1378 */
1379 if (dom->dom_dispose != NULL &&
1380 type == SCM_RIGHTS) {
1381 sounlock(so);
1382 (*dom->dom_dispose)(cm);
1383 solock(so);
1384 }
1385 m_freem(cm);
1386 }
1387 }
1388 if (m != NULL)
1389 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1390 else
1391 nextrecord = so->so_rcv.sb_mb;
1392 orig_resid = 0;
1393 }
1394
1395 /* If m is non-NULL, we have some data to read. */
1396 if (__predict_true(m != NULL)) {
1397 type = m->m_type;
1398 if (type == MT_OOBDATA)
1399 flags |= MSG_OOB;
1400 }
1401 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1402 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1403
1404 moff = 0;
1405 offset = 0;
1406 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1407 if (m->m_type == MT_OOBDATA) {
1408 if (type != MT_OOBDATA)
1409 break;
1410 } else if (type == MT_OOBDATA)
1411 break;
1412 #ifdef DIAGNOSTIC
1413 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1414 panic("receive 3");
1415 #endif
1416 so->so_state &= ~SS_RCVATMARK;
1417 wakeup_state = 0;
1418 len = uio->uio_resid;
1419 if (so->so_oobmark && len > so->so_oobmark - offset)
1420 len = so->so_oobmark - offset;
1421 if (len > m->m_len - moff)
1422 len = m->m_len - moff;
1423 /*
1424 * If mp is set, just pass back the mbufs.
1425 * Otherwise copy them out via the uio, then free.
1426 * Sockbuf must be consistent here (points to current mbuf,
1427 * it points to next record) when we drop priority;
1428 * we must note any additions to the sockbuf when we
1429 * block interrupts again.
1430 */
1431 if (mp == NULL) {
1432 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1433 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1434 sounlock(so);
1435 splx(s);
1436 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1437 s = splsoftnet();
1438 solock(so);
1439 if (error != 0) {
1440 /*
1441 * If any part of the record has been removed
1442 * (such as the MT_SONAME mbuf, which will
1443 * happen when PR_ADDR, and thus also
1444 * PR_ATOMIC, is set), then drop the entire
1445 * record to maintain the atomicity of the
1446 * receive operation.
1447 *
1448 * This avoids a later panic("receive 1a")
1449 * when compiled with DIAGNOSTIC.
1450 */
1451 if (m && mbuf_removed && atomic)
1452 (void) sbdroprecord(&so->so_rcv);
1453
1454 goto release;
1455 }
1456 } else
1457 uio->uio_resid -= len;
1458 if (len == m->m_len - moff) {
1459 if (m->m_flags & M_EOR)
1460 flags |= MSG_EOR;
1461 if (flags & MSG_PEEK) {
1462 m = m->m_next;
1463 moff = 0;
1464 } else {
1465 nextrecord = m->m_nextpkt;
1466 sbfree(&so->so_rcv, m);
1467 if (mp) {
1468 *mp = m;
1469 mp = &m->m_next;
1470 so->so_rcv.sb_mb = m = m->m_next;
1471 *mp = NULL;
1472 } else {
1473 MFREE(m, so->so_rcv.sb_mb);
1474 m = so->so_rcv.sb_mb;
1475 }
1476 /*
1477 * If m != NULL, we also know that
1478 * so->so_rcv.sb_mb != NULL.
1479 */
1480 KASSERT(so->so_rcv.sb_mb == m);
1481 if (m) {
1482 m->m_nextpkt = nextrecord;
1483 if (nextrecord == NULL)
1484 so->so_rcv.sb_lastrecord = m;
1485 } else {
1486 so->so_rcv.sb_mb = nextrecord;
1487 SB_EMPTY_FIXUP(&so->so_rcv);
1488 }
1489 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1490 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1491 }
1492 } else if (flags & MSG_PEEK)
1493 moff += len;
1494 else {
1495 if (mp != NULL) {
1496 mt = m_copym(m, 0, len, M_NOWAIT);
1497 if (__predict_false(mt == NULL)) {
1498 sounlock(so);
1499 mt = m_copym(m, 0, len, M_WAIT);
1500 solock(so);
1501 }
1502 *mp = mt;
1503 }
1504 m->m_data += len;
1505 m->m_len -= len;
1506 so->so_rcv.sb_cc -= len;
1507 }
1508 if (so->so_oobmark) {
1509 if ((flags & MSG_PEEK) == 0) {
1510 so->so_oobmark -= len;
1511 if (so->so_oobmark == 0) {
1512 so->so_state |= SS_RCVATMARK;
1513 break;
1514 }
1515 } else {
1516 offset += len;
1517 if (offset == so->so_oobmark)
1518 break;
1519 }
1520 }
1521 if (flags & MSG_EOR)
1522 break;
1523 /*
1524 * If the MSG_WAITALL flag is set (for non-atomic socket),
1525 * we must not quit until "uio->uio_resid == 0" or an error
1526 * termination. If a signal/timeout occurs, return
1527 * with a short count but without error.
1528 * Keep sockbuf locked against other readers.
1529 */
1530 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1531 !sosendallatonce(so) && !nextrecord) {
1532 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1533 break;
1534 /*
1535 * If we are peeking and the socket receive buffer is
1536 * full, stop since we can't get more data to peek at.
1537 */
1538 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1539 break;
1540 /*
1541 * If we've drained the socket buffer, tell the
1542 * protocol in case it needs to do something to
1543 * get it filled again.
1544 */
1545 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1546 (*pr->pr_usrreq)(so, PRU_RCVD,
1547 NULL, (struct mbuf *)(long)flags, NULL, l);
1548 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1549 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1550 if (wakeup_state & SS_RESTARTSYS)
1551 error = ERESTART;
1552 else
1553 error = sbwait(&so->so_rcv);
1554 if (error != 0) {
1555 sbunlock(&so->so_rcv);
1556 sounlock(so);
1557 splx(s);
1558 return 0;
1559 }
1560 if ((m = so->so_rcv.sb_mb) != NULL)
1561 nextrecord = m->m_nextpkt;
1562 wakeup_state = so->so_state;
1563 }
1564 }
1565
1566 if (m && atomic) {
1567 flags |= MSG_TRUNC;
1568 if ((flags & MSG_PEEK) == 0)
1569 (void) sbdroprecord(&so->so_rcv);
1570 }
1571 if ((flags & MSG_PEEK) == 0) {
1572 if (m == NULL) {
1573 /*
1574 * First part is an inline SB_EMPTY_FIXUP(). Second
1575 * part makes sure sb_lastrecord is up-to-date if
1576 * there is still data in the socket buffer.
1577 */
1578 so->so_rcv.sb_mb = nextrecord;
1579 if (so->so_rcv.sb_mb == NULL) {
1580 so->so_rcv.sb_mbtail = NULL;
1581 so->so_rcv.sb_lastrecord = NULL;
1582 } else if (nextrecord->m_nextpkt == NULL)
1583 so->so_rcv.sb_lastrecord = nextrecord;
1584 }
1585 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1586 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1587 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1588 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1589 (struct mbuf *)(long)flags, NULL, l);
1590 }
1591 if (orig_resid == uio->uio_resid && orig_resid &&
1592 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1593 sbunlock(&so->so_rcv);
1594 goto restart;
1595 }
1596
1597 if (flagsp != NULL)
1598 *flagsp |= flags;
1599 release:
1600 sbunlock(&so->so_rcv);
1601 sounlock(so);
1602 splx(s);
1603 return error;
1604 }
1605
1606 int
1607 soshutdown(struct socket *so, int how)
1608 {
1609 const struct protosw *pr;
1610 int error;
1611
1612 KASSERT(solocked(so));
1613
1614 pr = so->so_proto;
1615 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1616 return (EINVAL);
1617
1618 if (how == SHUT_RD || how == SHUT_RDWR) {
1619 sorflush(so);
1620 error = 0;
1621 }
1622 if (how == SHUT_WR || how == SHUT_RDWR)
1623 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1624 NULL, NULL, NULL);
1625
1626 return error;
1627 }
1628
1629 void
1630 sorestart(struct socket *so)
1631 {
1632 /*
1633 * An application has called close() on an fd on which another
1634 * of its threads has called a socket system call.
1635 * Mark this and wake everyone up, and code that would block again
1636 * instead returns ERESTART.
1637 * On system call re-entry the fd is validated and EBADF returned.
1638 * Any other fd will block again on the 2nd syscall.
1639 */
1640 solock(so);
1641 so->so_state |= SS_RESTARTSYS;
1642 cv_broadcast(&so->so_cv);
1643 cv_broadcast(&so->so_snd.sb_cv);
1644 cv_broadcast(&so->so_rcv.sb_cv);
1645 sounlock(so);
1646 }
1647
1648 void
1649 sorflush(struct socket *so)
1650 {
1651 struct sockbuf *sb, asb;
1652 const struct protosw *pr;
1653
1654 KASSERT(solocked(so));
1655
1656 sb = &so->so_rcv;
1657 pr = so->so_proto;
1658 socantrcvmore(so);
1659 sb->sb_flags |= SB_NOINTR;
1660 (void )sblock(sb, M_WAITOK);
1661 sbunlock(sb);
1662 asb = *sb;
1663 /*
1664 * Clear most of the sockbuf structure, but leave some of the
1665 * fields valid.
1666 */
1667 memset(&sb->sb_startzero, 0,
1668 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1669 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1670 sounlock(so);
1671 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1672 solock(so);
1673 }
1674 sbrelease(&asb, so);
1675 }
1676
1677 /*
1678 * internal set SOL_SOCKET options
1679 */
1680 static int
1681 sosetopt1(struct socket *so, const struct sockopt *sopt)
1682 {
1683 int error = EINVAL, optval, opt;
1684 struct linger l;
1685 struct timeval tv;
1686
1687 switch ((opt = sopt->sopt_name)) {
1688
1689 case SO_ACCEPTFILTER:
1690 error = accept_filt_setopt(so, sopt);
1691 KASSERT(solocked(so));
1692 break;
1693
1694 case SO_LINGER:
1695 error = sockopt_get(sopt, &l, sizeof(l));
1696 solock(so);
1697 if (error)
1698 break;
1699 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1700 l.l_linger > (INT_MAX / hz)) {
1701 error = EDOM;
1702 break;
1703 }
1704 so->so_linger = l.l_linger;
1705 if (l.l_onoff)
1706 so->so_options |= SO_LINGER;
1707 else
1708 so->so_options &= ~SO_LINGER;
1709 break;
1710
1711 case SO_DEBUG:
1712 case SO_KEEPALIVE:
1713 case SO_DONTROUTE:
1714 case SO_USELOOPBACK:
1715 case SO_BROADCAST:
1716 case SO_REUSEADDR:
1717 case SO_REUSEPORT:
1718 case SO_OOBINLINE:
1719 case SO_TIMESTAMP:
1720 #ifdef SO_OTIMESTAMP
1721 case SO_OTIMESTAMP:
1722 #endif
1723 error = sockopt_getint(sopt, &optval);
1724 solock(so);
1725 if (error)
1726 break;
1727 if (optval)
1728 so->so_options |= opt;
1729 else
1730 so->so_options &= ~opt;
1731 break;
1732
1733 case SO_SNDBUF:
1734 case SO_RCVBUF:
1735 case SO_SNDLOWAT:
1736 case SO_RCVLOWAT:
1737 error = sockopt_getint(sopt, &optval);
1738 solock(so);
1739 if (error)
1740 break;
1741
1742 /*
1743 * Values < 1 make no sense for any of these
1744 * options, so disallow them.
1745 */
1746 if (optval < 1) {
1747 error = EINVAL;
1748 break;
1749 }
1750
1751 switch (opt) {
1752 case SO_SNDBUF:
1753 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1754 error = ENOBUFS;
1755 break;
1756 }
1757 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1758 break;
1759
1760 case SO_RCVBUF:
1761 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1762 error = ENOBUFS;
1763 break;
1764 }
1765 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1766 break;
1767
1768 /*
1769 * Make sure the low-water is never greater than
1770 * the high-water.
1771 */
1772 case SO_SNDLOWAT:
1773 if (optval > so->so_snd.sb_hiwat)
1774 optval = so->so_snd.sb_hiwat;
1775
1776 so->so_snd.sb_lowat = optval;
1777 break;
1778
1779 case SO_RCVLOWAT:
1780 if (optval > so->so_rcv.sb_hiwat)
1781 optval = so->so_rcv.sb_hiwat;
1782
1783 so->so_rcv.sb_lowat = optval;
1784 break;
1785 }
1786 break;
1787
1788 #ifdef COMPAT_50
1789 case SO_OSNDTIMEO:
1790 case SO_ORCVTIMEO: {
1791 struct timeval50 otv;
1792 error = sockopt_get(sopt, &otv, sizeof(otv));
1793 if (error) {
1794 solock(so);
1795 break;
1796 }
1797 timeval50_to_timeval(&otv, &tv);
1798 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1799 error = 0;
1800 /*FALLTHROUGH*/
1801 }
1802 #endif /* COMPAT_50 */
1803
1804 case SO_SNDTIMEO:
1805 case SO_RCVTIMEO:
1806 if (error)
1807 error = sockopt_get(sopt, &tv, sizeof(tv));
1808 solock(so);
1809 if (error)
1810 break;
1811
1812 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1813 error = EDOM;
1814 break;
1815 }
1816
1817 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1818 if (optval == 0 && tv.tv_usec != 0)
1819 optval = 1;
1820
1821 switch (opt) {
1822 case SO_SNDTIMEO:
1823 so->so_snd.sb_timeo = optval;
1824 break;
1825 case SO_RCVTIMEO:
1826 so->so_rcv.sb_timeo = optval;
1827 break;
1828 }
1829 break;
1830
1831 default:
1832 solock(so);
1833 error = ENOPROTOOPT;
1834 break;
1835 }
1836 KASSERT(solocked(so));
1837 return error;
1838 }
1839
1840 int
1841 sosetopt(struct socket *so, struct sockopt *sopt)
1842 {
1843 int error, prerr;
1844
1845 if (sopt->sopt_level == SOL_SOCKET) {
1846 error = sosetopt1(so, sopt);
1847 KASSERT(solocked(so));
1848 } else {
1849 error = ENOPROTOOPT;
1850 solock(so);
1851 }
1852
1853 if ((error == 0 || error == ENOPROTOOPT) &&
1854 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1855 /* give the protocol stack a shot */
1856 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1857 if (prerr == 0)
1858 error = 0;
1859 else if (prerr != ENOPROTOOPT)
1860 error = prerr;
1861 }
1862 sounlock(so);
1863 return error;
1864 }
1865
1866 /*
1867 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1868 */
1869 int
1870 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1871 const void *val, size_t valsize)
1872 {
1873 struct sockopt sopt;
1874 int error;
1875
1876 KASSERT(valsize == 0 || val != NULL);
1877
1878 sockopt_init(&sopt, level, name, valsize);
1879 sockopt_set(&sopt, val, valsize);
1880
1881 error = sosetopt(so, &sopt);
1882
1883 sockopt_destroy(&sopt);
1884
1885 return error;
1886 }
1887
1888 /*
1889 * internal get SOL_SOCKET options
1890 */
1891 static int
1892 sogetopt1(struct socket *so, struct sockopt *sopt)
1893 {
1894 int error, optval, opt;
1895 struct linger l;
1896 struct timeval tv;
1897
1898 switch ((opt = sopt->sopt_name)) {
1899
1900 case SO_ACCEPTFILTER:
1901 error = accept_filt_getopt(so, sopt);
1902 break;
1903
1904 case SO_LINGER:
1905 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1906 l.l_linger = so->so_linger;
1907
1908 error = sockopt_set(sopt, &l, sizeof(l));
1909 break;
1910
1911 case SO_USELOOPBACK:
1912 case SO_DONTROUTE:
1913 case SO_DEBUG:
1914 case SO_KEEPALIVE:
1915 case SO_REUSEADDR:
1916 case SO_REUSEPORT:
1917 case SO_BROADCAST:
1918 case SO_OOBINLINE:
1919 case SO_TIMESTAMP:
1920 #ifdef SO_OTIMESTAMP
1921 case SO_OTIMESTAMP:
1922 #endif
1923 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1924 break;
1925
1926 case SO_TYPE:
1927 error = sockopt_setint(sopt, so->so_type);
1928 break;
1929
1930 case SO_ERROR:
1931 error = sockopt_setint(sopt, so->so_error);
1932 so->so_error = 0;
1933 break;
1934
1935 case SO_SNDBUF:
1936 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1937 break;
1938
1939 case SO_RCVBUF:
1940 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1941 break;
1942
1943 case SO_SNDLOWAT:
1944 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1945 break;
1946
1947 case SO_RCVLOWAT:
1948 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1949 break;
1950
1951 #ifdef COMPAT_50
1952 case SO_OSNDTIMEO:
1953 case SO_ORCVTIMEO: {
1954 struct timeval50 otv;
1955
1956 optval = (opt == SO_OSNDTIMEO ?
1957 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1958
1959 otv.tv_sec = optval / hz;
1960 otv.tv_usec = (optval % hz) * tick;
1961
1962 error = sockopt_set(sopt, &otv, sizeof(otv));
1963 break;
1964 }
1965 #endif /* COMPAT_50 */
1966
1967 case SO_SNDTIMEO:
1968 case SO_RCVTIMEO:
1969 optval = (opt == SO_SNDTIMEO ?
1970 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1971
1972 tv.tv_sec = optval / hz;
1973 tv.tv_usec = (optval % hz) * tick;
1974
1975 error = sockopt_set(sopt, &tv, sizeof(tv));
1976 break;
1977
1978 case SO_OVERFLOWED:
1979 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1980 break;
1981
1982 default:
1983 error = ENOPROTOOPT;
1984 break;
1985 }
1986
1987 return (error);
1988 }
1989
1990 int
1991 sogetopt(struct socket *so, struct sockopt *sopt)
1992 {
1993 int error;
1994
1995 solock(so);
1996 if (sopt->sopt_level != SOL_SOCKET) {
1997 if (so->so_proto && so->so_proto->pr_ctloutput) {
1998 error = ((*so->so_proto->pr_ctloutput)
1999 (PRCO_GETOPT, so, sopt));
2000 } else
2001 error = (ENOPROTOOPT);
2002 } else {
2003 error = sogetopt1(so, sopt);
2004 }
2005 sounlock(so);
2006 return (error);
2007 }
2008
2009 /*
2010 * alloc sockopt data buffer buffer
2011 * - will be released at destroy
2012 */
2013 static int
2014 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2015 {
2016
2017 KASSERT(sopt->sopt_size == 0);
2018
2019 if (len > sizeof(sopt->sopt_buf)) {
2020 sopt->sopt_data = kmem_zalloc(len, kmflag);
2021 if (sopt->sopt_data == NULL)
2022 return ENOMEM;
2023 } else
2024 sopt->sopt_data = sopt->sopt_buf;
2025
2026 sopt->sopt_size = len;
2027 return 0;
2028 }
2029
2030 /*
2031 * initialise sockopt storage
2032 * - MAY sleep during allocation
2033 */
2034 void
2035 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2036 {
2037
2038 memset(sopt, 0, sizeof(*sopt));
2039
2040 sopt->sopt_level = level;
2041 sopt->sopt_name = name;
2042 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2043 }
2044
2045 /*
2046 * destroy sockopt storage
2047 * - will release any held memory references
2048 */
2049 void
2050 sockopt_destroy(struct sockopt *sopt)
2051 {
2052
2053 if (sopt->sopt_data != sopt->sopt_buf)
2054 kmem_free(sopt->sopt_data, sopt->sopt_size);
2055
2056 memset(sopt, 0, sizeof(*sopt));
2057 }
2058
2059 /*
2060 * set sockopt value
2061 * - value is copied into sockopt
2062 * - memory is allocated when necessary, will not sleep
2063 */
2064 int
2065 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2066 {
2067 int error;
2068
2069 if (sopt->sopt_size == 0) {
2070 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2071 if (error)
2072 return error;
2073 }
2074
2075 KASSERT(sopt->sopt_size == len);
2076 memcpy(sopt->sopt_data, buf, len);
2077 return 0;
2078 }
2079
2080 /*
2081 * common case of set sockopt integer value
2082 */
2083 int
2084 sockopt_setint(struct sockopt *sopt, int val)
2085 {
2086
2087 return sockopt_set(sopt, &val, sizeof(int));
2088 }
2089
2090 /*
2091 * get sockopt value
2092 * - correct size must be given
2093 */
2094 int
2095 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2096 {
2097
2098 if (sopt->sopt_size != len)
2099 return EINVAL;
2100
2101 memcpy(buf, sopt->sopt_data, len);
2102 return 0;
2103 }
2104
2105 /*
2106 * common case of get sockopt integer value
2107 */
2108 int
2109 sockopt_getint(const struct sockopt *sopt, int *valp)
2110 {
2111
2112 return sockopt_get(sopt, valp, sizeof(int));
2113 }
2114
2115 /*
2116 * set sockopt value from mbuf
2117 * - ONLY for legacy code
2118 * - mbuf is released by sockopt
2119 * - will not sleep
2120 */
2121 int
2122 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2123 {
2124 size_t len;
2125 int error;
2126
2127 len = m_length(m);
2128
2129 if (sopt->sopt_size == 0) {
2130 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2131 if (error)
2132 return error;
2133 }
2134
2135 KASSERT(sopt->sopt_size == len);
2136 m_copydata(m, 0, len, sopt->sopt_data);
2137 m_freem(m);
2138
2139 return 0;
2140 }
2141
2142 /*
2143 * get sockopt value into mbuf
2144 * - ONLY for legacy code
2145 * - mbuf to be released by the caller
2146 * - will not sleep
2147 */
2148 struct mbuf *
2149 sockopt_getmbuf(const struct sockopt *sopt)
2150 {
2151 struct mbuf *m;
2152
2153 if (sopt->sopt_size > MCLBYTES)
2154 return NULL;
2155
2156 m = m_get(M_DONTWAIT, MT_SOOPTS);
2157 if (m == NULL)
2158 return NULL;
2159
2160 if (sopt->sopt_size > MLEN) {
2161 MCLGET(m, M_DONTWAIT);
2162 if ((m->m_flags & M_EXT) == 0) {
2163 m_free(m);
2164 return NULL;
2165 }
2166 }
2167
2168 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2169 m->m_len = sopt->sopt_size;
2170
2171 return m;
2172 }
2173
2174 void
2175 sohasoutofband(struct socket *so)
2176 {
2177
2178 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2179 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2180 }
2181
2182 static void
2183 filt_sordetach(struct knote *kn)
2184 {
2185 struct socket *so;
2186
2187 so = ((file_t *)kn->kn_obj)->f_data;
2188 solock(so);
2189 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2190 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2191 so->so_rcv.sb_flags &= ~SB_KNOTE;
2192 sounlock(so);
2193 }
2194
2195 /*ARGSUSED*/
2196 static int
2197 filt_soread(struct knote *kn, long hint)
2198 {
2199 struct socket *so;
2200 int rv;
2201
2202 so = ((file_t *)kn->kn_obj)->f_data;
2203 if (hint != NOTE_SUBMIT)
2204 solock(so);
2205 kn->kn_data = so->so_rcv.sb_cc;
2206 if (so->so_state & SS_CANTRCVMORE) {
2207 kn->kn_flags |= EV_EOF;
2208 kn->kn_fflags = so->so_error;
2209 rv = 1;
2210 } else if (so->so_error) /* temporary udp error */
2211 rv = 1;
2212 else if (kn->kn_sfflags & NOTE_LOWAT)
2213 rv = (kn->kn_data >= kn->kn_sdata);
2214 else
2215 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2216 if (hint != NOTE_SUBMIT)
2217 sounlock(so);
2218 return rv;
2219 }
2220
2221 static void
2222 filt_sowdetach(struct knote *kn)
2223 {
2224 struct socket *so;
2225
2226 so = ((file_t *)kn->kn_obj)->f_data;
2227 solock(so);
2228 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2229 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2230 so->so_snd.sb_flags &= ~SB_KNOTE;
2231 sounlock(so);
2232 }
2233
2234 /*ARGSUSED*/
2235 static int
2236 filt_sowrite(struct knote *kn, long hint)
2237 {
2238 struct socket *so;
2239 int rv;
2240
2241 so = ((file_t *)kn->kn_obj)->f_data;
2242 if (hint != NOTE_SUBMIT)
2243 solock(so);
2244 kn->kn_data = sbspace(&so->so_snd);
2245 if (so->so_state & SS_CANTSENDMORE) {
2246 kn->kn_flags |= EV_EOF;
2247 kn->kn_fflags = so->so_error;
2248 rv = 1;
2249 } else if (so->so_error) /* temporary udp error */
2250 rv = 1;
2251 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2252 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2253 rv = 0;
2254 else if (kn->kn_sfflags & NOTE_LOWAT)
2255 rv = (kn->kn_data >= kn->kn_sdata);
2256 else
2257 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2258 if (hint != NOTE_SUBMIT)
2259 sounlock(so);
2260 return rv;
2261 }
2262
2263 /*ARGSUSED*/
2264 static int
2265 filt_solisten(struct knote *kn, long hint)
2266 {
2267 struct socket *so;
2268 int rv;
2269
2270 so = ((file_t *)kn->kn_obj)->f_data;
2271
2272 /*
2273 * Set kn_data to number of incoming connections, not
2274 * counting partial (incomplete) connections.
2275 */
2276 if (hint != NOTE_SUBMIT)
2277 solock(so);
2278 kn->kn_data = so->so_qlen;
2279 rv = (kn->kn_data > 0);
2280 if (hint != NOTE_SUBMIT)
2281 sounlock(so);
2282 return rv;
2283 }
2284
2285 static const struct filterops solisten_filtops =
2286 { 1, NULL, filt_sordetach, filt_solisten };
2287 static const struct filterops soread_filtops =
2288 { 1, NULL, filt_sordetach, filt_soread };
2289 static const struct filterops sowrite_filtops =
2290 { 1, NULL, filt_sowdetach, filt_sowrite };
2291
2292 int
2293 soo_kqfilter(struct file *fp, struct knote *kn)
2294 {
2295 struct socket *so;
2296 struct sockbuf *sb;
2297
2298 so = ((file_t *)kn->kn_obj)->f_data;
2299 solock(so);
2300 switch (kn->kn_filter) {
2301 case EVFILT_READ:
2302 if (so->so_options & SO_ACCEPTCONN)
2303 kn->kn_fop = &solisten_filtops;
2304 else
2305 kn->kn_fop = &soread_filtops;
2306 sb = &so->so_rcv;
2307 break;
2308 case EVFILT_WRITE:
2309 kn->kn_fop = &sowrite_filtops;
2310 sb = &so->so_snd;
2311 break;
2312 default:
2313 sounlock(so);
2314 return (EINVAL);
2315 }
2316 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2317 sb->sb_flags |= SB_KNOTE;
2318 sounlock(so);
2319 return (0);
2320 }
2321
2322 static int
2323 sodopoll(struct socket *so, int events)
2324 {
2325 int revents;
2326
2327 revents = 0;
2328
2329 if (events & (POLLIN | POLLRDNORM))
2330 if (soreadable(so))
2331 revents |= events & (POLLIN | POLLRDNORM);
2332
2333 if (events & (POLLOUT | POLLWRNORM))
2334 if (sowritable(so))
2335 revents |= events & (POLLOUT | POLLWRNORM);
2336
2337 if (events & (POLLPRI | POLLRDBAND))
2338 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2339 revents |= events & (POLLPRI | POLLRDBAND);
2340
2341 return revents;
2342 }
2343
2344 int
2345 sopoll(struct socket *so, int events)
2346 {
2347 int revents = 0;
2348
2349 #ifndef DIAGNOSTIC
2350 /*
2351 * Do a quick, unlocked check in expectation that the socket
2352 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2353 * as the solocked() assertions will fail.
2354 */
2355 if ((revents = sodopoll(so, events)) != 0)
2356 return revents;
2357 #endif
2358
2359 solock(so);
2360 if ((revents = sodopoll(so, events)) == 0) {
2361 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2362 selrecord(curlwp, &so->so_rcv.sb_sel);
2363 so->so_rcv.sb_flags |= SB_NOTIFY;
2364 }
2365
2366 if (events & (POLLOUT | POLLWRNORM)) {
2367 selrecord(curlwp, &so->so_snd.sb_sel);
2368 so->so_snd.sb_flags |= SB_NOTIFY;
2369 }
2370 }
2371 sounlock(so);
2372
2373 return revents;
2374 }
2375
2376
2377 #include <sys/sysctl.h>
2378
2379 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2380
2381 /*
2382 * sysctl helper routine for kern.somaxkva. ensures that the given
2383 * value is not too small.
2384 * (XXX should we maybe make sure it's not too large as well?)
2385 */
2386 static int
2387 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2388 {
2389 int error, new_somaxkva;
2390 struct sysctlnode node;
2391
2392 new_somaxkva = somaxkva;
2393 node = *rnode;
2394 node.sysctl_data = &new_somaxkva;
2395 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2396 if (error || newp == NULL)
2397 return (error);
2398
2399 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2400 return (EINVAL);
2401
2402 mutex_enter(&so_pendfree_lock);
2403 somaxkva = new_somaxkva;
2404 cv_broadcast(&socurkva_cv);
2405 mutex_exit(&so_pendfree_lock);
2406
2407 return (error);
2408 }
2409
2410 static void
2411 sysctl_kern_somaxkva_setup(void)
2412 {
2413
2414 KASSERT(socket_sysctllog == NULL);
2415 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2416 CTLFLAG_PERMANENT,
2417 CTLTYPE_NODE, "kern", NULL,
2418 NULL, 0, NULL, 0,
2419 CTL_KERN, CTL_EOL);
2420
2421 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2422 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2423 CTLTYPE_INT, "somaxkva",
2424 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2425 "used for socket buffers"),
2426 sysctl_kern_somaxkva, 0, NULL, 0,
2427 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2428 }
2429