Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.205
      1 /*	$NetBSD: uipc_socket.c,v 1.205 2011/07/02 17:53:50 bouyer Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.205 2011/07/02 17:53:50 bouyer Exp $");
     67 
     68 #include "opt_compat_netbsd.h"
     69 #include "opt_sock_counters.h"
     70 #include "opt_sosend_loan.h"
     71 #include "opt_mbuftrace.h"
     72 #include "opt_somaxkva.h"
     73 #include "opt_multiprocessor.h"	/* XXX */
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/proc.h>
     78 #include <sys/file.h>
     79 #include <sys/filedesc.h>
     80 #include <sys/kmem.h>
     81 #include <sys/mbuf.h>
     82 #include <sys/domain.h>
     83 #include <sys/kernel.h>
     84 #include <sys/protosw.h>
     85 #include <sys/socket.h>
     86 #include <sys/socketvar.h>
     87 #include <sys/signalvar.h>
     88 #include <sys/resourcevar.h>
     89 #include <sys/uidinfo.h>
     90 #include <sys/event.h>
     91 #include <sys/poll.h>
     92 #include <sys/kauth.h>
     93 #include <sys/mutex.h>
     94 #include <sys/condvar.h>
     95 #include <sys/kthread.h>
     96 
     97 #ifdef COMPAT_50
     98 #include <compat/sys/time.h>
     99 #include <compat/sys/socket.h>
    100 #endif
    101 
    102 #include <uvm/uvm_extern.h>
    103 #include <uvm/uvm_loan.h>
    104 #include <uvm/uvm_page.h>
    105 
    106 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
    107 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    108 
    109 extern const struct fileops socketops;
    110 
    111 extern int	somaxconn;			/* patchable (XXX sysctl) */
    112 int		somaxconn = SOMAXCONN;
    113 kmutex_t	*softnet_lock;
    114 
    115 #ifdef SOSEND_COUNTERS
    116 #include <sys/device.h>
    117 
    118 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    119     NULL, "sosend", "loan big");
    120 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    121     NULL, "sosend", "copy big");
    122 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    123     NULL, "sosend", "copy small");
    124 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    125     NULL, "sosend", "kva limit");
    126 
    127 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    128 
    129 EVCNT_ATTACH_STATIC(sosend_loan_big);
    130 EVCNT_ATTACH_STATIC(sosend_copy_big);
    131 EVCNT_ATTACH_STATIC(sosend_copy_small);
    132 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    133 #else
    134 
    135 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    136 
    137 #endif /* SOSEND_COUNTERS */
    138 
    139 static struct callback_entry sokva_reclaimerentry;
    140 
    141 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    142 int sock_loan_thresh = -1;
    143 #else
    144 int sock_loan_thresh = 4096;
    145 #endif
    146 
    147 static kmutex_t so_pendfree_lock;
    148 static struct mbuf *so_pendfree = NULL;
    149 
    150 #ifndef SOMAXKVA
    151 #define	SOMAXKVA (16 * 1024 * 1024)
    152 #endif
    153 int somaxkva = SOMAXKVA;
    154 static int socurkva;
    155 static kcondvar_t socurkva_cv;
    156 
    157 static kauth_listener_t socket_listener;
    158 
    159 #define	SOCK_LOAN_CHUNK		65536
    160 
    161 static void sopendfree_thread(void *);
    162 static kcondvar_t pendfree_thread_cv;
    163 static lwp_t *sopendfree_lwp;
    164 
    165 static void sysctl_kern_somaxkva_setup(void);
    166 static struct sysctllog *socket_sysctllog;
    167 
    168 static vsize_t
    169 sokvareserve(struct socket *so, vsize_t len)
    170 {
    171 	int error;
    172 
    173 	mutex_enter(&so_pendfree_lock);
    174 	while (socurkva + len > somaxkva) {
    175 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    176 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    177 		if (error) {
    178 			len = 0;
    179 			break;
    180 		}
    181 	}
    182 	socurkva += len;
    183 	mutex_exit(&so_pendfree_lock);
    184 	return len;
    185 }
    186 
    187 static void
    188 sokvaunreserve(vsize_t len)
    189 {
    190 
    191 	mutex_enter(&so_pendfree_lock);
    192 	socurkva -= len;
    193 	cv_broadcast(&socurkva_cv);
    194 	mutex_exit(&so_pendfree_lock);
    195 }
    196 
    197 /*
    198  * sokvaalloc: allocate kva for loan.
    199  */
    200 
    201 vaddr_t
    202 sokvaalloc(vsize_t len, struct socket *so)
    203 {
    204 	vaddr_t lva;
    205 
    206 	/*
    207 	 * reserve kva.
    208 	 */
    209 
    210 	if (sokvareserve(so, len) == 0)
    211 		return 0;
    212 
    213 	/*
    214 	 * allocate kva.
    215 	 */
    216 
    217 	lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    218 	if (lva == 0) {
    219 		sokvaunreserve(len);
    220 		return (0);
    221 	}
    222 
    223 	return lva;
    224 }
    225 
    226 /*
    227  * sokvafree: free kva for loan.
    228  */
    229 
    230 void
    231 sokvafree(vaddr_t sva, vsize_t len)
    232 {
    233 
    234 	/*
    235 	 * free kva.
    236 	 */
    237 
    238 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    239 
    240 	/*
    241 	 * unreserve kva.
    242 	 */
    243 
    244 	sokvaunreserve(len);
    245 }
    246 
    247 static void
    248 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    249 {
    250 	vaddr_t sva, eva;
    251 	vsize_t len;
    252 	int npgs;
    253 
    254 	KASSERT(pgs != NULL);
    255 
    256 	eva = round_page((vaddr_t) buf + size);
    257 	sva = trunc_page((vaddr_t) buf);
    258 	len = eva - sva;
    259 	npgs = len >> PAGE_SHIFT;
    260 
    261 	pmap_kremove(sva, len);
    262 	pmap_update(pmap_kernel());
    263 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    264 	sokvafree(sva, len);
    265 }
    266 
    267 /*
    268  * sopendfree_thread: free mbufs on "pendfree" list.
    269  * unlock and relock so_pendfree_lock when freeing mbufs.
    270  */
    271 
    272 static void
    273 sopendfree_thread(void *v)
    274 {
    275 	struct mbuf *m, *next;
    276 	size_t rv;
    277 
    278 	mutex_enter(&so_pendfree_lock);
    279 
    280 	for (;;) {
    281 		rv = 0;
    282 		while (so_pendfree != NULL) {
    283 			m = so_pendfree;
    284 			so_pendfree = NULL;
    285 			mutex_exit(&so_pendfree_lock);
    286 
    287 			for (; m != NULL; m = next) {
    288 				next = m->m_next;
    289 				KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
    290 				KASSERT(m->m_ext.ext_refcnt == 0);
    291 
    292 				rv += m->m_ext.ext_size;
    293 				sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    294 				    m->m_ext.ext_size);
    295 				pool_cache_put(mb_cache, m);
    296 			}
    297 
    298 			mutex_enter(&so_pendfree_lock);
    299 		}
    300 		if (rv)
    301 			cv_broadcast(&socurkva_cv);
    302 		cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
    303 	}
    304 	panic("sopendfree_thread");
    305 	/* NOTREACHED */
    306 }
    307 
    308 void
    309 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    310 {
    311 
    312 	KASSERT(m != NULL);
    313 
    314 	/*
    315 	 * postpone freeing mbuf.
    316 	 *
    317 	 * we can't do it in interrupt context
    318 	 * because we need to put kva back to kernel_map.
    319 	 */
    320 
    321 	mutex_enter(&so_pendfree_lock);
    322 	m->m_next = so_pendfree;
    323 	so_pendfree = m;
    324 	cv_signal(&pendfree_thread_cv);
    325 	mutex_exit(&so_pendfree_lock);
    326 }
    327 
    328 static long
    329 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    330 {
    331 	struct iovec *iov = uio->uio_iov;
    332 	vaddr_t sva, eva;
    333 	vsize_t len;
    334 	vaddr_t lva;
    335 	int npgs, error;
    336 	vaddr_t va;
    337 	int i;
    338 
    339 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    340 		return (0);
    341 
    342 	if (iov->iov_len < (size_t) space)
    343 		space = iov->iov_len;
    344 	if (space > SOCK_LOAN_CHUNK)
    345 		space = SOCK_LOAN_CHUNK;
    346 
    347 	eva = round_page((vaddr_t) iov->iov_base + space);
    348 	sva = trunc_page((vaddr_t) iov->iov_base);
    349 	len = eva - sva;
    350 	npgs = len >> PAGE_SHIFT;
    351 
    352 	KASSERT(npgs <= M_EXT_MAXPAGES);
    353 
    354 	lva = sokvaalloc(len, so);
    355 	if (lva == 0)
    356 		return 0;
    357 
    358 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    359 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    360 	if (error) {
    361 		sokvafree(lva, len);
    362 		return (0);
    363 	}
    364 
    365 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    366 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    367 		    VM_PROT_READ, 0);
    368 	pmap_update(pmap_kernel());
    369 
    370 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    371 
    372 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    373 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    374 
    375 	uio->uio_resid -= space;
    376 	/* uio_offset not updated, not set/used for write(2) */
    377 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    378 	uio->uio_iov->iov_len -= space;
    379 	if (uio->uio_iov->iov_len == 0) {
    380 		uio->uio_iov++;
    381 		uio->uio_iovcnt--;
    382 	}
    383 
    384 	return (space);
    385 }
    386 
    387 static int
    388 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
    389 {
    390 
    391 	KASSERT(ce == &sokva_reclaimerentry);
    392 	KASSERT(obj == NULL);
    393 
    394 	if (!vm_map_starved_p(kernel_map)) {
    395 		return CALLBACK_CHAIN_ABORT;
    396 	}
    397 	return CALLBACK_CHAIN_CONTINUE;
    398 }
    399 
    400 struct mbuf *
    401 getsombuf(struct socket *so, int type)
    402 {
    403 	struct mbuf *m;
    404 
    405 	m = m_get(M_WAIT, type);
    406 	MCLAIM(m, so->so_mowner);
    407 	return m;
    408 }
    409 
    410 static int
    411 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    412     void *arg0, void *arg1, void *arg2, void *arg3)
    413 {
    414 	int result;
    415 	enum kauth_network_req req;
    416 
    417 	result = KAUTH_RESULT_DEFER;
    418 	req = (enum kauth_network_req)arg0;
    419 
    420 	if ((action != KAUTH_NETWORK_SOCKET) &&
    421 	    (action != KAUTH_NETWORK_BIND))
    422 		return result;
    423 
    424 	switch (req) {
    425 	case KAUTH_REQ_NETWORK_BIND_PORT:
    426 		result = KAUTH_RESULT_ALLOW;
    427 		break;
    428 
    429 	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
    430 		/* Normal users can only drop their own connections. */
    431 		struct socket *so = (struct socket *)arg1;
    432 
    433 		if (proc_uidmatch(cred, so->so_cred))
    434 			result = KAUTH_RESULT_ALLOW;
    435 
    436 		break;
    437 		}
    438 
    439 	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
    440 		/* We allow "raw" routing/bluetooth sockets to anyone. */
    441 		if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
    442 		    || (u_long)arg1 == PF_BLUETOOTH) {
    443 			result = KAUTH_RESULT_ALLOW;
    444 		} else {
    445 			/* Privileged, let secmodel handle this. */
    446 			if ((u_long)arg2 == SOCK_RAW)
    447 				break;
    448 		}
    449 
    450 		result = KAUTH_RESULT_ALLOW;
    451 
    452 		break;
    453 
    454 	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
    455 		result = KAUTH_RESULT_ALLOW;
    456 
    457 		break;
    458 
    459 	default:
    460 		break;
    461 	}
    462 
    463 	return result;
    464 }
    465 
    466 void
    467 soinit(void)
    468 {
    469 
    470 	sysctl_kern_somaxkva_setup();
    471 
    472 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    473 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    474 	cv_init(&socurkva_cv, "sokva");
    475 	cv_init(&pendfree_thread_cv, "sopendfr");
    476 	soinit2();
    477 
    478 	/* Set the initial adjusted socket buffer size. */
    479 	if (sb_max_set(sb_max))
    480 		panic("bad initial sb_max value: %lu", sb_max);
    481 
    482 	callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
    483 	    &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
    484 
    485 	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    486 	    socket_listener_cb, NULL);
    487 }
    488 
    489 void
    490 soinit1(void)
    491 {
    492 	int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    493 	    sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
    494 	if (error)
    495 		panic("soinit1 %d", error);
    496 }
    497 
    498 /*
    499  * Socket operation routines.
    500  * These routines are called by the routines in
    501  * sys_socket.c or from a system process, and
    502  * implement the semantics of socket operations by
    503  * switching out to the protocol specific routines.
    504  */
    505 /*ARGSUSED*/
    506 int
    507 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    508 	 struct socket *lockso)
    509 {
    510 	const struct protosw	*prp;
    511 	struct socket	*so;
    512 	uid_t		uid;
    513 	int		error;
    514 	kmutex_t	*lock;
    515 
    516 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    517 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    518 	    KAUTH_ARG(proto));
    519 	if (error != 0)
    520 		return error;
    521 
    522 	if (proto)
    523 		prp = pffindproto(dom, proto, type);
    524 	else
    525 		prp = pffindtype(dom, type);
    526 	if (prp == NULL) {
    527 		/* no support for domain */
    528 		if (pffinddomain(dom) == 0)
    529 			return EAFNOSUPPORT;
    530 		/* no support for socket type */
    531 		if (proto == 0 && type != 0)
    532 			return EPROTOTYPE;
    533 		return EPROTONOSUPPORT;
    534 	}
    535 	if (prp->pr_usrreq == NULL)
    536 		return EPROTONOSUPPORT;
    537 	if (prp->pr_type != type)
    538 		return EPROTOTYPE;
    539 
    540 	so = soget(true);
    541 	so->so_type = type;
    542 	so->so_proto = prp;
    543 	so->so_send = sosend;
    544 	so->so_receive = soreceive;
    545 #ifdef MBUFTRACE
    546 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    547 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    548 	so->so_mowner = &prp->pr_domain->dom_mowner;
    549 #endif
    550 	uid = kauth_cred_geteuid(l->l_cred);
    551 	so->so_uidinfo = uid_find(uid);
    552 	so->so_cpid = l->l_proc->p_pid;
    553 	if (lockso != NULL) {
    554 		/* Caller wants us to share a lock. */
    555 		lock = lockso->so_lock;
    556 		so->so_lock = lock;
    557 		mutex_obj_hold(lock);
    558 		mutex_enter(lock);
    559 	} else {
    560 		/* Lock assigned and taken during PRU_ATTACH. */
    561 	}
    562 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
    563 	    (struct mbuf *)(long)proto, NULL, l);
    564 	KASSERT(solocked(so));
    565 	if (error != 0) {
    566 		so->so_state |= SS_NOFDREF;
    567 		sofree(so);
    568 		return error;
    569 	}
    570 	so->so_cred = kauth_cred_dup(l->l_cred);
    571 	sounlock(so);
    572 	*aso = so;
    573 	return 0;
    574 }
    575 
    576 /* On success, write file descriptor to fdout and return zero.  On
    577  * failure, return non-zero; *fdout will be undefined.
    578  */
    579 int
    580 fsocreate(int domain, struct socket **sop, int type, int protocol,
    581     struct lwp *l, int *fdout)
    582 {
    583 	struct socket	*so;
    584 	struct file	*fp;
    585 	int		fd, error;
    586 	int		flags = type & SOCK_FLAGS_MASK;
    587 
    588 	type &= ~SOCK_FLAGS_MASK;
    589 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    590 		return error;
    591 	fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
    592 	fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0);
    593 	fp->f_type = DTYPE_SOCKET;
    594 	fp->f_ops = &socketops;
    595 	error = socreate(domain, &so, type, protocol, l, NULL);
    596 	if (error != 0) {
    597 		fd_abort(curproc, fp, fd);
    598 	} else {
    599 		if (sop != NULL)
    600 			*sop = so;
    601 		fp->f_data = so;
    602 		fd_affix(curproc, fp, fd);
    603 		*fdout = fd;
    604 	}
    605 	return error;
    606 }
    607 
    608 int
    609 sofamily(const struct socket *so)
    610 {
    611 	const struct protosw *pr;
    612 	const struct domain *dom;
    613 
    614 	if ((pr = so->so_proto) == NULL)
    615 		return AF_UNSPEC;
    616 	if ((dom = pr->pr_domain) == NULL)
    617 		return AF_UNSPEC;
    618 	return dom->dom_family;
    619 }
    620 
    621 int
    622 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    623 {
    624 	int	error;
    625 
    626 	solock(so);
    627 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
    628 	sounlock(so);
    629 	return error;
    630 }
    631 
    632 int
    633 solisten(struct socket *so, int backlog, struct lwp *l)
    634 {
    635 	int	error;
    636 
    637 	solock(so);
    638 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    639 	    SS_ISDISCONNECTING)) != 0) {
    640 	    	sounlock(so);
    641 		return (EOPNOTSUPP);
    642 	}
    643 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
    644 	    NULL, NULL, l);
    645 	if (error != 0) {
    646 		sounlock(so);
    647 		return error;
    648 	}
    649 	if (TAILQ_EMPTY(&so->so_q))
    650 		so->so_options |= SO_ACCEPTCONN;
    651 	if (backlog < 0)
    652 		backlog = 0;
    653 	so->so_qlimit = min(backlog, somaxconn);
    654 	sounlock(so);
    655 	return 0;
    656 }
    657 
    658 void
    659 sofree(struct socket *so)
    660 {
    661 	u_int refs;
    662 
    663 	KASSERT(solocked(so));
    664 
    665 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    666 		sounlock(so);
    667 		return;
    668 	}
    669 	if (so->so_head) {
    670 		/*
    671 		 * We must not decommission a socket that's on the accept(2)
    672 		 * queue.  If we do, then accept(2) may hang after select(2)
    673 		 * indicated that the listening socket was ready.
    674 		 */
    675 		if (!soqremque(so, 0)) {
    676 			sounlock(so);
    677 			return;
    678 		}
    679 	}
    680 	if (so->so_rcv.sb_hiwat)
    681 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    682 		    RLIM_INFINITY);
    683 	if (so->so_snd.sb_hiwat)
    684 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    685 		    RLIM_INFINITY);
    686 	sbrelease(&so->so_snd, so);
    687 	KASSERT(!cv_has_waiters(&so->so_cv));
    688 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    689 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    690 	sorflush(so);
    691 	refs = so->so_aborting;	/* XXX */
    692 	/* Remove acccept filter if one is present. */
    693 	if (so->so_accf != NULL)
    694 		(void)accept_filt_clear(so);
    695 	sounlock(so);
    696 	if (refs == 0)		/* XXX */
    697 		soput(so);
    698 }
    699 
    700 /*
    701  * Close a socket on last file table reference removal.
    702  * Initiate disconnect if connected.
    703  * Free socket when disconnect complete.
    704  */
    705 int
    706 soclose(struct socket *so)
    707 {
    708 	struct socket	*so2;
    709 	int		error;
    710 	int		error2;
    711 
    712 	error = 0;
    713 	solock(so);
    714 	if (so->so_options & SO_ACCEPTCONN) {
    715 		for (;;) {
    716 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    717 				KASSERT(solocked2(so, so2));
    718 				(void) soqremque(so2, 0);
    719 				/* soabort drops the lock. */
    720 				(void) soabort(so2);
    721 				solock(so);
    722 				continue;
    723 			}
    724 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    725 				KASSERT(solocked2(so, so2));
    726 				(void) soqremque(so2, 1);
    727 				/* soabort drops the lock. */
    728 				(void) soabort(so2);
    729 				solock(so);
    730 				continue;
    731 			}
    732 			break;
    733 		}
    734 	}
    735 	if (so->so_pcb == 0)
    736 		goto discard;
    737 	if (so->so_state & SS_ISCONNECTED) {
    738 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    739 			error = sodisconnect(so);
    740 			if (error)
    741 				goto drop;
    742 		}
    743 		if (so->so_options & SO_LINGER) {
    744 			if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio)
    745 				goto drop;
    746 			while (so->so_state & SS_ISCONNECTED) {
    747 				error = sowait(so, true, so->so_linger * hz);
    748 				if (error)
    749 					break;
    750 			}
    751 		}
    752 	}
    753  drop:
    754 	if (so->so_pcb) {
    755 		error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    756 		    NULL, NULL, NULL, NULL);
    757 		if (error == 0)
    758 			error = error2;
    759 	}
    760  discard:
    761 	if (so->so_state & SS_NOFDREF)
    762 		panic("soclose: NOFDREF");
    763 	kauth_cred_free(so->so_cred);
    764 	so->so_state |= SS_NOFDREF;
    765 	sofree(so);
    766 	return (error);
    767 }
    768 
    769 /*
    770  * Must be called with the socket locked..  Will return with it unlocked.
    771  */
    772 int
    773 soabort(struct socket *so)
    774 {
    775 	u_int refs;
    776 	int error;
    777 
    778 	KASSERT(solocked(so));
    779 	KASSERT(so->so_head == NULL);
    780 
    781 	so->so_aborting++;		/* XXX */
    782 	error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
    783 	    NULL, NULL, NULL);
    784 	refs = --so->so_aborting;	/* XXX */
    785 	if (error || (refs == 0)) {
    786 		sofree(so);
    787 	} else {
    788 		sounlock(so);
    789 	}
    790 	return error;
    791 }
    792 
    793 int
    794 soaccept(struct socket *so, struct mbuf *nam)
    795 {
    796 	int	error;
    797 
    798 	KASSERT(solocked(so));
    799 
    800 	error = 0;
    801 	if ((so->so_state & SS_NOFDREF) == 0)
    802 		panic("soaccept: !NOFDREF");
    803 	so->so_state &= ~SS_NOFDREF;
    804 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    805 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    806 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    807 		    NULL, nam, NULL, NULL);
    808 	else
    809 		error = ECONNABORTED;
    810 
    811 	return (error);
    812 }
    813 
    814 int
    815 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    816 {
    817 	int		error;
    818 
    819 	KASSERT(solocked(so));
    820 
    821 	if (so->so_options & SO_ACCEPTCONN)
    822 		return (EOPNOTSUPP);
    823 	/*
    824 	 * If protocol is connection-based, can only connect once.
    825 	 * Otherwise, if connected, try to disconnect first.
    826 	 * This allows user to disconnect by connecting to, e.g.,
    827 	 * a null address.
    828 	 */
    829 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    830 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    831 	    (error = sodisconnect(so))))
    832 		error = EISCONN;
    833 	else
    834 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    835 		    NULL, nam, NULL, l);
    836 	return (error);
    837 }
    838 
    839 int
    840 soconnect2(struct socket *so1, struct socket *so2)
    841 {
    842 	int	error;
    843 
    844 	KASSERT(solocked2(so1, so2));
    845 
    846 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    847 	    NULL, (struct mbuf *)so2, NULL, NULL);
    848 	return (error);
    849 }
    850 
    851 int
    852 sodisconnect(struct socket *so)
    853 {
    854 	int	error;
    855 
    856 	KASSERT(solocked(so));
    857 
    858 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    859 		error = ENOTCONN;
    860 	} else if (so->so_state & SS_ISDISCONNECTING) {
    861 		error = EALREADY;
    862 	} else {
    863 		error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    864 		    NULL, NULL, NULL, NULL);
    865 	}
    866 	return (error);
    867 }
    868 
    869 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    870 /*
    871  * Send on a socket.
    872  * If send must go all at once and message is larger than
    873  * send buffering, then hard error.
    874  * Lock against other senders.
    875  * If must go all at once and not enough room now, then
    876  * inform user that this would block and do nothing.
    877  * Otherwise, if nonblocking, send as much as possible.
    878  * The data to be sent is described by "uio" if nonzero,
    879  * otherwise by the mbuf chain "top" (which must be null
    880  * if uio is not).  Data provided in mbuf chain must be small
    881  * enough to send all at once.
    882  *
    883  * Returns nonzero on error, timeout or signal; callers
    884  * must check for short counts if EINTR/ERESTART are returned.
    885  * Data and control buffers are freed on return.
    886  */
    887 int
    888 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    889 	struct mbuf *control, int flags, struct lwp *l)
    890 {
    891 	struct mbuf	**mp, *m;
    892 	struct proc	*p;
    893 	long		space, len, resid, clen, mlen;
    894 	int		error, s, dontroute, atomic;
    895 	short		wakeup_state = 0;
    896 
    897 	p = l->l_proc;
    898 	clen = 0;
    899 
    900 	/*
    901 	 * solock() provides atomicity of access.  splsoftnet() prevents
    902 	 * protocol processing soft interrupts from interrupting us and
    903 	 * blocking (expensive).
    904 	 */
    905 	s = splsoftnet();
    906 	solock(so);
    907 	atomic = sosendallatonce(so) || top;
    908 	if (uio)
    909 		resid = uio->uio_resid;
    910 	else
    911 		resid = top->m_pkthdr.len;
    912 	/*
    913 	 * In theory resid should be unsigned.
    914 	 * However, space must be signed, as it might be less than 0
    915 	 * if we over-committed, and we must use a signed comparison
    916 	 * of space and resid.  On the other hand, a negative resid
    917 	 * causes us to loop sending 0-length segments to the protocol.
    918 	 */
    919 	if (resid < 0) {
    920 		error = EINVAL;
    921 		goto out;
    922 	}
    923 	dontroute =
    924 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    925 	    (so->so_proto->pr_flags & PR_ATOMIC);
    926 	l->l_ru.ru_msgsnd++;
    927 	if (control)
    928 		clen = control->m_len;
    929  restart:
    930 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    931 		goto out;
    932 	do {
    933 		if (so->so_state & SS_CANTSENDMORE) {
    934 			error = EPIPE;
    935 			goto release;
    936 		}
    937 		if (so->so_error) {
    938 			error = so->so_error;
    939 			so->so_error = 0;
    940 			goto release;
    941 		}
    942 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    943 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    944 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    945 				    !(resid == 0 && clen != 0)) {
    946 					error = ENOTCONN;
    947 					goto release;
    948 				}
    949 			} else if (addr == 0) {
    950 				error = EDESTADDRREQ;
    951 				goto release;
    952 			}
    953 		}
    954 		space = sbspace(&so->so_snd);
    955 		if (flags & MSG_OOB)
    956 			space += 1024;
    957 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    958 		    clen > so->so_snd.sb_hiwat) {
    959 			error = EMSGSIZE;
    960 			goto release;
    961 		}
    962 		if (space < resid + clen &&
    963 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    964 			if (so->so_nbio) {
    965 				error = EWOULDBLOCK;
    966 				goto release;
    967 			}
    968 			sbunlock(&so->so_snd);
    969 			if (wakeup_state & SS_RESTARTSYS) {
    970 				error = ERESTART;
    971 				goto out;
    972 			}
    973 			error = sbwait(&so->so_snd);
    974 			if (error)
    975 				goto out;
    976 			wakeup_state = so->so_state;
    977 			goto restart;
    978 		}
    979 		wakeup_state = 0;
    980 		mp = &top;
    981 		space -= clen;
    982 		do {
    983 			if (uio == NULL) {
    984 				/*
    985 				 * Data is prepackaged in "top".
    986 				 */
    987 				resid = 0;
    988 				if (flags & MSG_EOR)
    989 					top->m_flags |= M_EOR;
    990 			} else do {
    991 				sounlock(so);
    992 				splx(s);
    993 				if (top == NULL) {
    994 					m = m_gethdr(M_WAIT, MT_DATA);
    995 					mlen = MHLEN;
    996 					m->m_pkthdr.len = 0;
    997 					m->m_pkthdr.rcvif = NULL;
    998 				} else {
    999 					m = m_get(M_WAIT, MT_DATA);
   1000 					mlen = MLEN;
   1001 				}
   1002 				MCLAIM(m, so->so_snd.sb_mowner);
   1003 				if (sock_loan_thresh >= 0 &&
   1004 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
   1005 				    space >= sock_loan_thresh &&
   1006 				    (len = sosend_loan(so, uio, m,
   1007 						       space)) != 0) {
   1008 					SOSEND_COUNTER_INCR(&sosend_loan_big);
   1009 					space -= len;
   1010 					goto have_data;
   1011 				}
   1012 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
   1013 					SOSEND_COUNTER_INCR(&sosend_copy_big);
   1014 					m_clget(m, M_DONTWAIT);
   1015 					if ((m->m_flags & M_EXT) == 0)
   1016 						goto nopages;
   1017 					mlen = MCLBYTES;
   1018 					if (atomic && top == 0) {
   1019 						len = lmin(MCLBYTES - max_hdr,
   1020 						    resid);
   1021 						m->m_data += max_hdr;
   1022 					} else
   1023 						len = lmin(MCLBYTES, resid);
   1024 					space -= len;
   1025 				} else {
   1026  nopages:
   1027 					SOSEND_COUNTER_INCR(&sosend_copy_small);
   1028 					len = lmin(lmin(mlen, resid), space);
   1029 					space -= len;
   1030 					/*
   1031 					 * For datagram protocols, leave room
   1032 					 * for protocol headers in first mbuf.
   1033 					 */
   1034 					if (atomic && top == 0 && len < mlen)
   1035 						MH_ALIGN(m, len);
   1036 				}
   1037 				error = uiomove(mtod(m, void *), (int)len, uio);
   1038  have_data:
   1039 				resid = uio->uio_resid;
   1040 				m->m_len = len;
   1041 				*mp = m;
   1042 				top->m_pkthdr.len += len;
   1043 				s = splsoftnet();
   1044 				solock(so);
   1045 				if (error != 0)
   1046 					goto release;
   1047 				mp = &m->m_next;
   1048 				if (resid <= 0) {
   1049 					if (flags & MSG_EOR)
   1050 						top->m_flags |= M_EOR;
   1051 					break;
   1052 				}
   1053 			} while (space > 0 && atomic);
   1054 
   1055 			if (so->so_state & SS_CANTSENDMORE) {
   1056 				error = EPIPE;
   1057 				goto release;
   1058 			}
   1059 			if (dontroute)
   1060 				so->so_options |= SO_DONTROUTE;
   1061 			if (resid > 0)
   1062 				so->so_state |= SS_MORETOCOME;
   1063 			error = (*so->so_proto->pr_usrreq)(so,
   1064 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
   1065 			    top, addr, control, curlwp);
   1066 			if (dontroute)
   1067 				so->so_options &= ~SO_DONTROUTE;
   1068 			if (resid > 0)
   1069 				so->so_state &= ~SS_MORETOCOME;
   1070 			clen = 0;
   1071 			control = NULL;
   1072 			top = NULL;
   1073 			mp = &top;
   1074 			if (error != 0)
   1075 				goto release;
   1076 		} while (resid && space > 0);
   1077 	} while (resid);
   1078 
   1079  release:
   1080 	sbunlock(&so->so_snd);
   1081  out:
   1082 	sounlock(so);
   1083 	splx(s);
   1084 	if (top)
   1085 		m_freem(top);
   1086 	if (control)
   1087 		m_freem(control);
   1088 	return (error);
   1089 }
   1090 
   1091 /*
   1092  * Following replacement or removal of the first mbuf on the first
   1093  * mbuf chain of a socket buffer, push necessary state changes back
   1094  * into the socket buffer so that other consumers see the values
   1095  * consistently.  'nextrecord' is the callers locally stored value of
   1096  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1097  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1098  */
   1099 static void
   1100 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1101 {
   1102 
   1103 	KASSERT(solocked(sb->sb_so));
   1104 
   1105 	/*
   1106 	 * First, update for the new value of nextrecord.  If necessary,
   1107 	 * make it the first record.
   1108 	 */
   1109 	if (sb->sb_mb != NULL)
   1110 		sb->sb_mb->m_nextpkt = nextrecord;
   1111 	else
   1112 		sb->sb_mb = nextrecord;
   1113 
   1114         /*
   1115          * Now update any dependent socket buffer fields to reflect
   1116          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1117          * the addition of a second clause that takes care of the
   1118          * case where sb_mb has been updated, but remains the last
   1119          * record.
   1120          */
   1121         if (sb->sb_mb == NULL) {
   1122                 sb->sb_mbtail = NULL;
   1123                 sb->sb_lastrecord = NULL;
   1124         } else if (sb->sb_mb->m_nextpkt == NULL)
   1125                 sb->sb_lastrecord = sb->sb_mb;
   1126 }
   1127 
   1128 /*
   1129  * Implement receive operations on a socket.
   1130  * We depend on the way that records are added to the sockbuf
   1131  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1132  * must begin with an address if the protocol so specifies,
   1133  * followed by an optional mbuf or mbufs containing ancillary data,
   1134  * and then zero or more mbufs of data.
   1135  * In order to avoid blocking network interrupts for the entire time here,
   1136  * we splx() while doing the actual copy to user space.
   1137  * Although the sockbuf is locked, new data may still be appended,
   1138  * and thus we must maintain consistency of the sockbuf during that time.
   1139  *
   1140  * The caller may receive the data as a single mbuf chain by supplying
   1141  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1142  * only for the count in uio_resid.
   1143  */
   1144 int
   1145 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1146 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1147 {
   1148 	struct lwp *l = curlwp;
   1149 	struct mbuf	*m, **mp, *mt;
   1150 	int atomic, flags, len, error, s, offset, moff, type, orig_resid;
   1151 	const struct protosw	*pr;
   1152 	struct mbuf	*nextrecord;
   1153 	int		mbuf_removed = 0;
   1154 	const struct domain *dom;
   1155 	short		wakeup_state = 0;
   1156 
   1157 	pr = so->so_proto;
   1158 	atomic = pr->pr_flags & PR_ATOMIC;
   1159 	dom = pr->pr_domain;
   1160 	mp = mp0;
   1161 	type = 0;
   1162 	orig_resid = uio->uio_resid;
   1163 
   1164 	if (paddr != NULL)
   1165 		*paddr = NULL;
   1166 	if (controlp != NULL)
   1167 		*controlp = NULL;
   1168 	if (flagsp != NULL)
   1169 		flags = *flagsp &~ MSG_EOR;
   1170 	else
   1171 		flags = 0;
   1172 
   1173 	if (flags & MSG_OOB) {
   1174 		m = m_get(M_WAIT, MT_DATA);
   1175 		solock(so);
   1176 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
   1177 		    (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
   1178 		sounlock(so);
   1179 		if (error)
   1180 			goto bad;
   1181 		do {
   1182 			error = uiomove(mtod(m, void *),
   1183 			    (int) min(uio->uio_resid, m->m_len), uio);
   1184 			m = m_free(m);
   1185 		} while (uio->uio_resid > 0 && error == 0 && m);
   1186  bad:
   1187 		if (m != NULL)
   1188 			m_freem(m);
   1189 		return error;
   1190 	}
   1191 	if (mp != NULL)
   1192 		*mp = NULL;
   1193 
   1194 	/*
   1195 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1196 	 * protocol processing soft interrupts from interrupting us and
   1197 	 * blocking (expensive).
   1198 	 */
   1199 	s = splsoftnet();
   1200 	solock(so);
   1201 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
   1202 		(*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
   1203 
   1204  restart:
   1205 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1206 		sounlock(so);
   1207 		splx(s);
   1208 		return error;
   1209 	}
   1210 
   1211 	m = so->so_rcv.sb_mb;
   1212 	/*
   1213 	 * If we have less data than requested, block awaiting more
   1214 	 * (subject to any timeout) if:
   1215 	 *   1. the current count is less than the low water mark,
   1216 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1217 	 *	receive operation at once if we block (resid <= hiwat), or
   1218 	 *   3. MSG_DONTWAIT is not set.
   1219 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1220 	 * we have to do the receive in sections, and thus risk returning
   1221 	 * a short count if a timeout or signal occurs after we start.
   1222 	 */
   1223 	if (m == NULL ||
   1224 	    ((flags & MSG_DONTWAIT) == 0 &&
   1225 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1226 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1227 	      ((flags & MSG_WAITALL) &&
   1228 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1229 	     m->m_nextpkt == NULL && !atomic)) {
   1230 #ifdef DIAGNOSTIC
   1231 		if (m == NULL && so->so_rcv.sb_cc)
   1232 			panic("receive 1");
   1233 #endif
   1234 		if (so->so_error) {
   1235 			if (m != NULL)
   1236 				goto dontblock;
   1237 			error = so->so_error;
   1238 			if ((flags & MSG_PEEK) == 0)
   1239 				so->so_error = 0;
   1240 			goto release;
   1241 		}
   1242 		if (so->so_state & SS_CANTRCVMORE) {
   1243 			if (m != NULL)
   1244 				goto dontblock;
   1245 			else
   1246 				goto release;
   1247 		}
   1248 		for (; m != NULL; m = m->m_next)
   1249 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1250 				m = so->so_rcv.sb_mb;
   1251 				goto dontblock;
   1252 			}
   1253 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1254 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1255 			error = ENOTCONN;
   1256 			goto release;
   1257 		}
   1258 		if (uio->uio_resid == 0)
   1259 			goto release;
   1260 		if (so->so_nbio || (flags & MSG_DONTWAIT)) {
   1261 			error = EWOULDBLOCK;
   1262 			goto release;
   1263 		}
   1264 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1265 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1266 		sbunlock(&so->so_rcv);
   1267 		if (wakeup_state & SS_RESTARTSYS)
   1268 			error = ERESTART;
   1269 		else
   1270 			error = sbwait(&so->so_rcv);
   1271 		if (error != 0) {
   1272 			sounlock(so);
   1273 			splx(s);
   1274 			return error;
   1275 		}
   1276 		wakeup_state = so->so_state;
   1277 		goto restart;
   1278 	}
   1279  dontblock:
   1280 	/*
   1281 	 * On entry here, m points to the first record of the socket buffer.
   1282 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1283 	 * pointer to the next record in the socket buffer.  We must keep the
   1284 	 * various socket buffer pointers and local stack versions of the
   1285 	 * pointers in sync, pushing out modifications before dropping the
   1286 	 * socket lock, and re-reading them when picking it up.
   1287 	 *
   1288 	 * Otherwise, we will race with the network stack appending new data
   1289 	 * or records onto the socket buffer by using inconsistent/stale
   1290 	 * versions of the field, possibly resulting in socket buffer
   1291 	 * corruption.
   1292 	 *
   1293 	 * By holding the high-level sblock(), we prevent simultaneous
   1294 	 * readers from pulling off the front of the socket buffer.
   1295 	 */
   1296 	if (l != NULL)
   1297 		l->l_ru.ru_msgrcv++;
   1298 	KASSERT(m == so->so_rcv.sb_mb);
   1299 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1300 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1301 	nextrecord = m->m_nextpkt;
   1302 	if (pr->pr_flags & PR_ADDR) {
   1303 #ifdef DIAGNOSTIC
   1304 		if (m->m_type != MT_SONAME)
   1305 			panic("receive 1a");
   1306 #endif
   1307 		orig_resid = 0;
   1308 		if (flags & MSG_PEEK) {
   1309 			if (paddr)
   1310 				*paddr = m_copy(m, 0, m->m_len);
   1311 			m = m->m_next;
   1312 		} else {
   1313 			sbfree(&so->so_rcv, m);
   1314 			mbuf_removed = 1;
   1315 			if (paddr != NULL) {
   1316 				*paddr = m;
   1317 				so->so_rcv.sb_mb = m->m_next;
   1318 				m->m_next = NULL;
   1319 				m = so->so_rcv.sb_mb;
   1320 			} else {
   1321 				MFREE(m, so->so_rcv.sb_mb);
   1322 				m = so->so_rcv.sb_mb;
   1323 			}
   1324 			sbsync(&so->so_rcv, nextrecord);
   1325 		}
   1326 	}
   1327 
   1328 	/*
   1329 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1330 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1331 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1332 	 * perform externalization (or freeing if controlp == NULL).
   1333 	 */
   1334 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1335 		struct mbuf *cm = NULL, *cmn;
   1336 		struct mbuf **cme = &cm;
   1337 
   1338 		do {
   1339 			if (flags & MSG_PEEK) {
   1340 				if (controlp != NULL) {
   1341 					*controlp = m_copy(m, 0, m->m_len);
   1342 					controlp = &(*controlp)->m_next;
   1343 				}
   1344 				m = m->m_next;
   1345 			} else {
   1346 				sbfree(&so->so_rcv, m);
   1347 				so->so_rcv.sb_mb = m->m_next;
   1348 				m->m_next = NULL;
   1349 				*cme = m;
   1350 				cme = &(*cme)->m_next;
   1351 				m = so->so_rcv.sb_mb;
   1352 			}
   1353 		} while (m != NULL && m->m_type == MT_CONTROL);
   1354 		if ((flags & MSG_PEEK) == 0)
   1355 			sbsync(&so->so_rcv, nextrecord);
   1356 		for (; cm != NULL; cm = cmn) {
   1357 			cmn = cm->m_next;
   1358 			cm->m_next = NULL;
   1359 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1360 			if (controlp != NULL) {
   1361 				if (dom->dom_externalize != NULL &&
   1362 				    type == SCM_RIGHTS) {
   1363 					sounlock(so);
   1364 					splx(s);
   1365 					error = (*dom->dom_externalize)(cm, l,
   1366 					    (flags & MSG_CMSG_CLOEXEC) ?
   1367 					    O_CLOEXEC : 0);
   1368 					s = splsoftnet();
   1369 					solock(so);
   1370 				}
   1371 				*controlp = cm;
   1372 				while (*controlp != NULL)
   1373 					controlp = &(*controlp)->m_next;
   1374 			} else {
   1375 				/*
   1376 				 * Dispose of any SCM_RIGHTS message that went
   1377 				 * through the read path rather than recv.
   1378 				 */
   1379 				if (dom->dom_dispose != NULL &&
   1380 				    type == SCM_RIGHTS) {
   1381 				    	sounlock(so);
   1382 					(*dom->dom_dispose)(cm);
   1383 					solock(so);
   1384 				}
   1385 				m_freem(cm);
   1386 			}
   1387 		}
   1388 		if (m != NULL)
   1389 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1390 		else
   1391 			nextrecord = so->so_rcv.sb_mb;
   1392 		orig_resid = 0;
   1393 	}
   1394 
   1395 	/* If m is non-NULL, we have some data to read. */
   1396 	if (__predict_true(m != NULL)) {
   1397 		type = m->m_type;
   1398 		if (type == MT_OOBDATA)
   1399 			flags |= MSG_OOB;
   1400 	}
   1401 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1402 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1403 
   1404 	moff = 0;
   1405 	offset = 0;
   1406 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1407 		if (m->m_type == MT_OOBDATA) {
   1408 			if (type != MT_OOBDATA)
   1409 				break;
   1410 		} else if (type == MT_OOBDATA)
   1411 			break;
   1412 #ifdef DIAGNOSTIC
   1413 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1414 			panic("receive 3");
   1415 #endif
   1416 		so->so_state &= ~SS_RCVATMARK;
   1417 		wakeup_state = 0;
   1418 		len = uio->uio_resid;
   1419 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1420 			len = so->so_oobmark - offset;
   1421 		if (len > m->m_len - moff)
   1422 			len = m->m_len - moff;
   1423 		/*
   1424 		 * If mp is set, just pass back the mbufs.
   1425 		 * Otherwise copy them out via the uio, then free.
   1426 		 * Sockbuf must be consistent here (points to current mbuf,
   1427 		 * it points to next record) when we drop priority;
   1428 		 * we must note any additions to the sockbuf when we
   1429 		 * block interrupts again.
   1430 		 */
   1431 		if (mp == NULL) {
   1432 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1433 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1434 			sounlock(so);
   1435 			splx(s);
   1436 			error = uiomove(mtod(m, char *) + moff, (int)len, uio);
   1437 			s = splsoftnet();
   1438 			solock(so);
   1439 			if (error != 0) {
   1440 				/*
   1441 				 * If any part of the record has been removed
   1442 				 * (such as the MT_SONAME mbuf, which will
   1443 				 * happen when PR_ADDR, and thus also
   1444 				 * PR_ATOMIC, is set), then drop the entire
   1445 				 * record to maintain the atomicity of the
   1446 				 * receive operation.
   1447 				 *
   1448 				 * This avoids a later panic("receive 1a")
   1449 				 * when compiled with DIAGNOSTIC.
   1450 				 */
   1451 				if (m && mbuf_removed && atomic)
   1452 					(void) sbdroprecord(&so->so_rcv);
   1453 
   1454 				goto release;
   1455 			}
   1456 		} else
   1457 			uio->uio_resid -= len;
   1458 		if (len == m->m_len - moff) {
   1459 			if (m->m_flags & M_EOR)
   1460 				flags |= MSG_EOR;
   1461 			if (flags & MSG_PEEK) {
   1462 				m = m->m_next;
   1463 				moff = 0;
   1464 			} else {
   1465 				nextrecord = m->m_nextpkt;
   1466 				sbfree(&so->so_rcv, m);
   1467 				if (mp) {
   1468 					*mp = m;
   1469 					mp = &m->m_next;
   1470 					so->so_rcv.sb_mb = m = m->m_next;
   1471 					*mp = NULL;
   1472 				} else {
   1473 					MFREE(m, so->so_rcv.sb_mb);
   1474 					m = so->so_rcv.sb_mb;
   1475 				}
   1476 				/*
   1477 				 * If m != NULL, we also know that
   1478 				 * so->so_rcv.sb_mb != NULL.
   1479 				 */
   1480 				KASSERT(so->so_rcv.sb_mb == m);
   1481 				if (m) {
   1482 					m->m_nextpkt = nextrecord;
   1483 					if (nextrecord == NULL)
   1484 						so->so_rcv.sb_lastrecord = m;
   1485 				} else {
   1486 					so->so_rcv.sb_mb = nextrecord;
   1487 					SB_EMPTY_FIXUP(&so->so_rcv);
   1488 				}
   1489 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1490 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1491 			}
   1492 		} else if (flags & MSG_PEEK)
   1493 			moff += len;
   1494 		else {
   1495 			if (mp != NULL) {
   1496 				mt = m_copym(m, 0, len, M_NOWAIT);
   1497 				if (__predict_false(mt == NULL)) {
   1498 					sounlock(so);
   1499 					mt = m_copym(m, 0, len, M_WAIT);
   1500 					solock(so);
   1501 				}
   1502 				*mp = mt;
   1503 			}
   1504 			m->m_data += len;
   1505 			m->m_len -= len;
   1506 			so->so_rcv.sb_cc -= len;
   1507 		}
   1508 		if (so->so_oobmark) {
   1509 			if ((flags & MSG_PEEK) == 0) {
   1510 				so->so_oobmark -= len;
   1511 				if (so->so_oobmark == 0) {
   1512 					so->so_state |= SS_RCVATMARK;
   1513 					break;
   1514 				}
   1515 			} else {
   1516 				offset += len;
   1517 				if (offset == so->so_oobmark)
   1518 					break;
   1519 			}
   1520 		}
   1521 		if (flags & MSG_EOR)
   1522 			break;
   1523 		/*
   1524 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1525 		 * we must not quit until "uio->uio_resid == 0" or an error
   1526 		 * termination.  If a signal/timeout occurs, return
   1527 		 * with a short count but without error.
   1528 		 * Keep sockbuf locked against other readers.
   1529 		 */
   1530 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1531 		    !sosendallatonce(so) && !nextrecord) {
   1532 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1533 				break;
   1534 			/*
   1535 			 * If we are peeking and the socket receive buffer is
   1536 			 * full, stop since we can't get more data to peek at.
   1537 			 */
   1538 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1539 				break;
   1540 			/*
   1541 			 * If we've drained the socket buffer, tell the
   1542 			 * protocol in case it needs to do something to
   1543 			 * get it filled again.
   1544 			 */
   1545 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1546 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1547 				    NULL, (struct mbuf *)(long)flags, NULL, l);
   1548 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1549 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1550 			if (wakeup_state & SS_RESTARTSYS)
   1551 				error = ERESTART;
   1552 			else
   1553 				error = sbwait(&so->so_rcv);
   1554 			if (error != 0) {
   1555 				sbunlock(&so->so_rcv);
   1556 				sounlock(so);
   1557 				splx(s);
   1558 				return 0;
   1559 			}
   1560 			if ((m = so->so_rcv.sb_mb) != NULL)
   1561 				nextrecord = m->m_nextpkt;
   1562 			wakeup_state = so->so_state;
   1563 		}
   1564 	}
   1565 
   1566 	if (m && atomic) {
   1567 		flags |= MSG_TRUNC;
   1568 		if ((flags & MSG_PEEK) == 0)
   1569 			(void) sbdroprecord(&so->so_rcv);
   1570 	}
   1571 	if ((flags & MSG_PEEK) == 0) {
   1572 		if (m == NULL) {
   1573 			/*
   1574 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1575 			 * part makes sure sb_lastrecord is up-to-date if
   1576 			 * there is still data in the socket buffer.
   1577 			 */
   1578 			so->so_rcv.sb_mb = nextrecord;
   1579 			if (so->so_rcv.sb_mb == NULL) {
   1580 				so->so_rcv.sb_mbtail = NULL;
   1581 				so->so_rcv.sb_lastrecord = NULL;
   1582 			} else if (nextrecord->m_nextpkt == NULL)
   1583 				so->so_rcv.sb_lastrecord = nextrecord;
   1584 		}
   1585 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1586 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1587 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1588 			(*pr->pr_usrreq)(so, PRU_RCVD, NULL,
   1589 			    (struct mbuf *)(long)flags, NULL, l);
   1590 	}
   1591 	if (orig_resid == uio->uio_resid && orig_resid &&
   1592 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1593 		sbunlock(&so->so_rcv);
   1594 		goto restart;
   1595 	}
   1596 
   1597 	if (flagsp != NULL)
   1598 		*flagsp |= flags;
   1599  release:
   1600 	sbunlock(&so->so_rcv);
   1601 	sounlock(so);
   1602 	splx(s);
   1603 	return error;
   1604 }
   1605 
   1606 int
   1607 soshutdown(struct socket *so, int how)
   1608 {
   1609 	const struct protosw	*pr;
   1610 	int	error;
   1611 
   1612 	KASSERT(solocked(so));
   1613 
   1614 	pr = so->so_proto;
   1615 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1616 		return (EINVAL);
   1617 
   1618 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1619 		sorflush(so);
   1620 		error = 0;
   1621 	}
   1622 	if (how == SHUT_WR || how == SHUT_RDWR)
   1623 		error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
   1624 		    NULL, NULL, NULL);
   1625 
   1626 	return error;
   1627 }
   1628 
   1629 void
   1630 sorestart(struct socket *so)
   1631 {
   1632 	/*
   1633 	 * An application has called close() on an fd on which another
   1634 	 * of its threads has called a socket system call.
   1635 	 * Mark this and wake everyone up, and code that would block again
   1636 	 * instead returns ERESTART.
   1637 	 * On system call re-entry the fd is validated and EBADF returned.
   1638 	 * Any other fd will block again on the 2nd syscall.
   1639 	 */
   1640 	solock(so);
   1641 	so->so_state |= SS_RESTARTSYS;
   1642 	cv_broadcast(&so->so_cv);
   1643 	cv_broadcast(&so->so_snd.sb_cv);
   1644 	cv_broadcast(&so->so_rcv.sb_cv);
   1645 	sounlock(so);
   1646 }
   1647 
   1648 void
   1649 sorflush(struct socket *so)
   1650 {
   1651 	struct sockbuf	*sb, asb;
   1652 	const struct protosw	*pr;
   1653 
   1654 	KASSERT(solocked(so));
   1655 
   1656 	sb = &so->so_rcv;
   1657 	pr = so->so_proto;
   1658 	socantrcvmore(so);
   1659 	sb->sb_flags |= SB_NOINTR;
   1660 	(void )sblock(sb, M_WAITOK);
   1661 	sbunlock(sb);
   1662 	asb = *sb;
   1663 	/*
   1664 	 * Clear most of the sockbuf structure, but leave some of the
   1665 	 * fields valid.
   1666 	 */
   1667 	memset(&sb->sb_startzero, 0,
   1668 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1669 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1670 		sounlock(so);
   1671 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1672 		solock(so);
   1673 	}
   1674 	sbrelease(&asb, so);
   1675 }
   1676 
   1677 /*
   1678  * internal set SOL_SOCKET options
   1679  */
   1680 static int
   1681 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1682 {
   1683 	int error = EINVAL, optval, opt;
   1684 	struct linger l;
   1685 	struct timeval tv;
   1686 
   1687 	switch ((opt = sopt->sopt_name)) {
   1688 
   1689 	case SO_ACCEPTFILTER:
   1690 		error = accept_filt_setopt(so, sopt);
   1691 		KASSERT(solocked(so));
   1692 		break;
   1693 
   1694   	case SO_LINGER:
   1695  		error = sockopt_get(sopt, &l, sizeof(l));
   1696 		solock(so);
   1697  		if (error)
   1698  			break;
   1699  		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1700  		    l.l_linger > (INT_MAX / hz)) {
   1701 			error = EDOM;
   1702 			break;
   1703 		}
   1704  		so->so_linger = l.l_linger;
   1705  		if (l.l_onoff)
   1706  			so->so_options |= SO_LINGER;
   1707  		else
   1708  			so->so_options &= ~SO_LINGER;
   1709    		break;
   1710 
   1711 	case SO_DEBUG:
   1712 	case SO_KEEPALIVE:
   1713 	case SO_DONTROUTE:
   1714 	case SO_USELOOPBACK:
   1715 	case SO_BROADCAST:
   1716 	case SO_REUSEADDR:
   1717 	case SO_REUSEPORT:
   1718 	case SO_OOBINLINE:
   1719 	case SO_TIMESTAMP:
   1720 #ifdef SO_OTIMESTAMP
   1721 	case SO_OTIMESTAMP:
   1722 #endif
   1723 		error = sockopt_getint(sopt, &optval);
   1724 		solock(so);
   1725 		if (error)
   1726 			break;
   1727 		if (optval)
   1728 			so->so_options |= opt;
   1729 		else
   1730 			so->so_options &= ~opt;
   1731 		break;
   1732 
   1733 	case SO_SNDBUF:
   1734 	case SO_RCVBUF:
   1735 	case SO_SNDLOWAT:
   1736 	case SO_RCVLOWAT:
   1737 		error = sockopt_getint(sopt, &optval);
   1738 		solock(so);
   1739 		if (error)
   1740 			break;
   1741 
   1742 		/*
   1743 		 * Values < 1 make no sense for any of these
   1744 		 * options, so disallow them.
   1745 		 */
   1746 		if (optval < 1) {
   1747 			error = EINVAL;
   1748 			break;
   1749 		}
   1750 
   1751 		switch (opt) {
   1752 		case SO_SNDBUF:
   1753 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
   1754 				error = ENOBUFS;
   1755 				break;
   1756 			}
   1757 			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1758 			break;
   1759 
   1760 		case SO_RCVBUF:
   1761 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
   1762 				error = ENOBUFS;
   1763 				break;
   1764 			}
   1765 			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1766 			break;
   1767 
   1768 		/*
   1769 		 * Make sure the low-water is never greater than
   1770 		 * the high-water.
   1771 		 */
   1772 		case SO_SNDLOWAT:
   1773 			if (optval > so->so_snd.sb_hiwat)
   1774 				optval = so->so_snd.sb_hiwat;
   1775 
   1776 			so->so_snd.sb_lowat = optval;
   1777 			break;
   1778 
   1779 		case SO_RCVLOWAT:
   1780 			if (optval > so->so_rcv.sb_hiwat)
   1781 				optval = so->so_rcv.sb_hiwat;
   1782 
   1783 			so->so_rcv.sb_lowat = optval;
   1784 			break;
   1785 		}
   1786 		break;
   1787 
   1788 #ifdef COMPAT_50
   1789 	case SO_OSNDTIMEO:
   1790 	case SO_ORCVTIMEO: {
   1791 		struct timeval50 otv;
   1792 		error = sockopt_get(sopt, &otv, sizeof(otv));
   1793 		if (error) {
   1794 			solock(so);
   1795 			break;
   1796 		}
   1797 		timeval50_to_timeval(&otv, &tv);
   1798 		opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
   1799 		error = 0;
   1800 		/*FALLTHROUGH*/
   1801 	}
   1802 #endif /* COMPAT_50 */
   1803 
   1804 	case SO_SNDTIMEO:
   1805 	case SO_RCVTIMEO:
   1806 		if (error)
   1807 			error = sockopt_get(sopt, &tv, sizeof(tv));
   1808 		solock(so);
   1809 		if (error)
   1810 			break;
   1811 
   1812 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
   1813 			error = EDOM;
   1814 			break;
   1815 		}
   1816 
   1817 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1818 		if (optval == 0 && tv.tv_usec != 0)
   1819 			optval = 1;
   1820 
   1821 		switch (opt) {
   1822 		case SO_SNDTIMEO:
   1823 			so->so_snd.sb_timeo = optval;
   1824 			break;
   1825 		case SO_RCVTIMEO:
   1826 			so->so_rcv.sb_timeo = optval;
   1827 			break;
   1828 		}
   1829 		break;
   1830 
   1831 	default:
   1832 		solock(so);
   1833 		error = ENOPROTOOPT;
   1834 		break;
   1835 	}
   1836 	KASSERT(solocked(so));
   1837 	return error;
   1838 }
   1839 
   1840 int
   1841 sosetopt(struct socket *so, struct sockopt *sopt)
   1842 {
   1843 	int error, prerr;
   1844 
   1845 	if (sopt->sopt_level == SOL_SOCKET) {
   1846 		error = sosetopt1(so, sopt);
   1847 		KASSERT(solocked(so));
   1848 	} else {
   1849 		error = ENOPROTOOPT;
   1850 		solock(so);
   1851 	}
   1852 
   1853 	if ((error == 0 || error == ENOPROTOOPT) &&
   1854 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1855 		/* give the protocol stack a shot */
   1856 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1857 		if (prerr == 0)
   1858 			error = 0;
   1859 		else if (prerr != ENOPROTOOPT)
   1860 			error = prerr;
   1861 	}
   1862 	sounlock(so);
   1863 	return error;
   1864 }
   1865 
   1866 /*
   1867  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1868  */
   1869 int
   1870 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1871     const void *val, size_t valsize)
   1872 {
   1873 	struct sockopt sopt;
   1874 	int error;
   1875 
   1876 	KASSERT(valsize == 0 || val != NULL);
   1877 
   1878 	sockopt_init(&sopt, level, name, valsize);
   1879 	sockopt_set(&sopt, val, valsize);
   1880 
   1881 	error = sosetopt(so, &sopt);
   1882 
   1883 	sockopt_destroy(&sopt);
   1884 
   1885 	return error;
   1886 }
   1887 
   1888 /*
   1889  * internal get SOL_SOCKET options
   1890  */
   1891 static int
   1892 sogetopt1(struct socket *so, struct sockopt *sopt)
   1893 {
   1894 	int error, optval, opt;
   1895 	struct linger l;
   1896 	struct timeval tv;
   1897 
   1898 	switch ((opt = sopt->sopt_name)) {
   1899 
   1900 	case SO_ACCEPTFILTER:
   1901 		error = accept_filt_getopt(so, sopt);
   1902 		break;
   1903 
   1904 	case SO_LINGER:
   1905 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1906 		l.l_linger = so->so_linger;
   1907 
   1908 		error = sockopt_set(sopt, &l, sizeof(l));
   1909 		break;
   1910 
   1911 	case SO_USELOOPBACK:
   1912 	case SO_DONTROUTE:
   1913 	case SO_DEBUG:
   1914 	case SO_KEEPALIVE:
   1915 	case SO_REUSEADDR:
   1916 	case SO_REUSEPORT:
   1917 	case SO_BROADCAST:
   1918 	case SO_OOBINLINE:
   1919 	case SO_TIMESTAMP:
   1920 #ifdef SO_OTIMESTAMP
   1921 	case SO_OTIMESTAMP:
   1922 #endif
   1923 		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
   1924 		break;
   1925 
   1926 	case SO_TYPE:
   1927 		error = sockopt_setint(sopt, so->so_type);
   1928 		break;
   1929 
   1930 	case SO_ERROR:
   1931 		error = sockopt_setint(sopt, so->so_error);
   1932 		so->so_error = 0;
   1933 		break;
   1934 
   1935 	case SO_SNDBUF:
   1936 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1937 		break;
   1938 
   1939 	case SO_RCVBUF:
   1940 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1941 		break;
   1942 
   1943 	case SO_SNDLOWAT:
   1944 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1945 		break;
   1946 
   1947 	case SO_RCVLOWAT:
   1948 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1949 		break;
   1950 
   1951 #ifdef COMPAT_50
   1952 	case SO_OSNDTIMEO:
   1953 	case SO_ORCVTIMEO: {
   1954 		struct timeval50 otv;
   1955 
   1956 		optval = (opt == SO_OSNDTIMEO ?
   1957 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1958 
   1959 		otv.tv_sec = optval / hz;
   1960 		otv.tv_usec = (optval % hz) * tick;
   1961 
   1962 		error = sockopt_set(sopt, &otv, sizeof(otv));
   1963 		break;
   1964 	}
   1965 #endif /* COMPAT_50 */
   1966 
   1967 	case SO_SNDTIMEO:
   1968 	case SO_RCVTIMEO:
   1969 		optval = (opt == SO_SNDTIMEO ?
   1970 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1971 
   1972 		tv.tv_sec = optval / hz;
   1973 		tv.tv_usec = (optval % hz) * tick;
   1974 
   1975 		error = sockopt_set(sopt, &tv, sizeof(tv));
   1976 		break;
   1977 
   1978 	case SO_OVERFLOWED:
   1979 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   1980 		break;
   1981 
   1982 	default:
   1983 		error = ENOPROTOOPT;
   1984 		break;
   1985 	}
   1986 
   1987 	return (error);
   1988 }
   1989 
   1990 int
   1991 sogetopt(struct socket *so, struct sockopt *sopt)
   1992 {
   1993 	int		error;
   1994 
   1995 	solock(so);
   1996 	if (sopt->sopt_level != SOL_SOCKET) {
   1997 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1998 			error = ((*so->so_proto->pr_ctloutput)
   1999 			    (PRCO_GETOPT, so, sopt));
   2000 		} else
   2001 			error = (ENOPROTOOPT);
   2002 	} else {
   2003 		error = sogetopt1(so, sopt);
   2004 	}
   2005 	sounlock(so);
   2006 	return (error);
   2007 }
   2008 
   2009 /*
   2010  * alloc sockopt data buffer buffer
   2011  *	- will be released at destroy
   2012  */
   2013 static int
   2014 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
   2015 {
   2016 
   2017 	KASSERT(sopt->sopt_size == 0);
   2018 
   2019 	if (len > sizeof(sopt->sopt_buf)) {
   2020 		sopt->sopt_data = kmem_zalloc(len, kmflag);
   2021 		if (sopt->sopt_data == NULL)
   2022 			return ENOMEM;
   2023 	} else
   2024 		sopt->sopt_data = sopt->sopt_buf;
   2025 
   2026 	sopt->sopt_size = len;
   2027 	return 0;
   2028 }
   2029 
   2030 /*
   2031  * initialise sockopt storage
   2032  *	- MAY sleep during allocation
   2033  */
   2034 void
   2035 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   2036 {
   2037 
   2038 	memset(sopt, 0, sizeof(*sopt));
   2039 
   2040 	sopt->sopt_level = level;
   2041 	sopt->sopt_name = name;
   2042 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
   2043 }
   2044 
   2045 /*
   2046  * destroy sockopt storage
   2047  *	- will release any held memory references
   2048  */
   2049 void
   2050 sockopt_destroy(struct sockopt *sopt)
   2051 {
   2052 
   2053 	if (sopt->sopt_data != sopt->sopt_buf)
   2054 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   2055 
   2056 	memset(sopt, 0, sizeof(*sopt));
   2057 }
   2058 
   2059 /*
   2060  * set sockopt value
   2061  *	- value is copied into sockopt
   2062  * 	- memory is allocated when necessary, will not sleep
   2063  */
   2064 int
   2065 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   2066 {
   2067 	int error;
   2068 
   2069 	if (sopt->sopt_size == 0) {
   2070 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2071 		if (error)
   2072 			return error;
   2073 	}
   2074 
   2075 	KASSERT(sopt->sopt_size == len);
   2076 	memcpy(sopt->sopt_data, buf, len);
   2077 	return 0;
   2078 }
   2079 
   2080 /*
   2081  * common case of set sockopt integer value
   2082  */
   2083 int
   2084 sockopt_setint(struct sockopt *sopt, int val)
   2085 {
   2086 
   2087 	return sockopt_set(sopt, &val, sizeof(int));
   2088 }
   2089 
   2090 /*
   2091  * get sockopt value
   2092  *	- correct size must be given
   2093  */
   2094 int
   2095 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   2096 {
   2097 
   2098 	if (sopt->sopt_size != len)
   2099 		return EINVAL;
   2100 
   2101 	memcpy(buf, sopt->sopt_data, len);
   2102 	return 0;
   2103 }
   2104 
   2105 /*
   2106  * common case of get sockopt integer value
   2107  */
   2108 int
   2109 sockopt_getint(const struct sockopt *sopt, int *valp)
   2110 {
   2111 
   2112 	return sockopt_get(sopt, valp, sizeof(int));
   2113 }
   2114 
   2115 /*
   2116  * set sockopt value from mbuf
   2117  *	- ONLY for legacy code
   2118  *	- mbuf is released by sockopt
   2119  *	- will not sleep
   2120  */
   2121 int
   2122 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   2123 {
   2124 	size_t len;
   2125 	int error;
   2126 
   2127 	len = m_length(m);
   2128 
   2129 	if (sopt->sopt_size == 0) {
   2130 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2131 		if (error)
   2132 			return error;
   2133 	}
   2134 
   2135 	KASSERT(sopt->sopt_size == len);
   2136 	m_copydata(m, 0, len, sopt->sopt_data);
   2137 	m_freem(m);
   2138 
   2139 	return 0;
   2140 }
   2141 
   2142 /*
   2143  * get sockopt value into mbuf
   2144  *	- ONLY for legacy code
   2145  *	- mbuf to be released by the caller
   2146  *	- will not sleep
   2147  */
   2148 struct mbuf *
   2149 sockopt_getmbuf(const struct sockopt *sopt)
   2150 {
   2151 	struct mbuf *m;
   2152 
   2153 	if (sopt->sopt_size > MCLBYTES)
   2154 		return NULL;
   2155 
   2156 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   2157 	if (m == NULL)
   2158 		return NULL;
   2159 
   2160 	if (sopt->sopt_size > MLEN) {
   2161 		MCLGET(m, M_DONTWAIT);
   2162 		if ((m->m_flags & M_EXT) == 0) {
   2163 			m_free(m);
   2164 			return NULL;
   2165 		}
   2166 	}
   2167 
   2168 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
   2169 	m->m_len = sopt->sopt_size;
   2170 
   2171 	return m;
   2172 }
   2173 
   2174 void
   2175 sohasoutofband(struct socket *so)
   2176 {
   2177 
   2178 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2179 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
   2180 }
   2181 
   2182 static void
   2183 filt_sordetach(struct knote *kn)
   2184 {
   2185 	struct socket	*so;
   2186 
   2187 	so = ((file_t *)kn->kn_obj)->f_data;
   2188 	solock(so);
   2189 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   2190 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   2191 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2192 	sounlock(so);
   2193 }
   2194 
   2195 /*ARGSUSED*/
   2196 static int
   2197 filt_soread(struct knote *kn, long hint)
   2198 {
   2199 	struct socket	*so;
   2200 	int rv;
   2201 
   2202 	so = ((file_t *)kn->kn_obj)->f_data;
   2203 	if (hint != NOTE_SUBMIT)
   2204 		solock(so);
   2205 	kn->kn_data = so->so_rcv.sb_cc;
   2206 	if (so->so_state & SS_CANTRCVMORE) {
   2207 		kn->kn_flags |= EV_EOF;
   2208 		kn->kn_fflags = so->so_error;
   2209 		rv = 1;
   2210 	} else if (so->so_error)	/* temporary udp error */
   2211 		rv = 1;
   2212 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2213 		rv = (kn->kn_data >= kn->kn_sdata);
   2214 	else
   2215 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2216 	if (hint != NOTE_SUBMIT)
   2217 		sounlock(so);
   2218 	return rv;
   2219 }
   2220 
   2221 static void
   2222 filt_sowdetach(struct knote *kn)
   2223 {
   2224 	struct socket	*so;
   2225 
   2226 	so = ((file_t *)kn->kn_obj)->f_data;
   2227 	solock(so);
   2228 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   2229 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   2230 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2231 	sounlock(so);
   2232 }
   2233 
   2234 /*ARGSUSED*/
   2235 static int
   2236 filt_sowrite(struct knote *kn, long hint)
   2237 {
   2238 	struct socket	*so;
   2239 	int rv;
   2240 
   2241 	so = ((file_t *)kn->kn_obj)->f_data;
   2242 	if (hint != NOTE_SUBMIT)
   2243 		solock(so);
   2244 	kn->kn_data = sbspace(&so->so_snd);
   2245 	if (so->so_state & SS_CANTSENDMORE) {
   2246 		kn->kn_flags |= EV_EOF;
   2247 		kn->kn_fflags = so->so_error;
   2248 		rv = 1;
   2249 	} else if (so->so_error)	/* temporary udp error */
   2250 		rv = 1;
   2251 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2252 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2253 		rv = 0;
   2254 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2255 		rv = (kn->kn_data >= kn->kn_sdata);
   2256 	else
   2257 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2258 	if (hint != NOTE_SUBMIT)
   2259 		sounlock(so);
   2260 	return rv;
   2261 }
   2262 
   2263 /*ARGSUSED*/
   2264 static int
   2265 filt_solisten(struct knote *kn, long hint)
   2266 {
   2267 	struct socket	*so;
   2268 	int rv;
   2269 
   2270 	so = ((file_t *)kn->kn_obj)->f_data;
   2271 
   2272 	/*
   2273 	 * Set kn_data to number of incoming connections, not
   2274 	 * counting partial (incomplete) connections.
   2275 	 */
   2276 	if (hint != NOTE_SUBMIT)
   2277 		solock(so);
   2278 	kn->kn_data = so->so_qlen;
   2279 	rv = (kn->kn_data > 0);
   2280 	if (hint != NOTE_SUBMIT)
   2281 		sounlock(so);
   2282 	return rv;
   2283 }
   2284 
   2285 static const struct filterops solisten_filtops =
   2286 	{ 1, NULL, filt_sordetach, filt_solisten };
   2287 static const struct filterops soread_filtops =
   2288 	{ 1, NULL, filt_sordetach, filt_soread };
   2289 static const struct filterops sowrite_filtops =
   2290 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   2291 
   2292 int
   2293 soo_kqfilter(struct file *fp, struct knote *kn)
   2294 {
   2295 	struct socket	*so;
   2296 	struct sockbuf	*sb;
   2297 
   2298 	so = ((file_t *)kn->kn_obj)->f_data;
   2299 	solock(so);
   2300 	switch (kn->kn_filter) {
   2301 	case EVFILT_READ:
   2302 		if (so->so_options & SO_ACCEPTCONN)
   2303 			kn->kn_fop = &solisten_filtops;
   2304 		else
   2305 			kn->kn_fop = &soread_filtops;
   2306 		sb = &so->so_rcv;
   2307 		break;
   2308 	case EVFILT_WRITE:
   2309 		kn->kn_fop = &sowrite_filtops;
   2310 		sb = &so->so_snd;
   2311 		break;
   2312 	default:
   2313 		sounlock(so);
   2314 		return (EINVAL);
   2315 	}
   2316 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   2317 	sb->sb_flags |= SB_KNOTE;
   2318 	sounlock(so);
   2319 	return (0);
   2320 }
   2321 
   2322 static int
   2323 sodopoll(struct socket *so, int events)
   2324 {
   2325 	int revents;
   2326 
   2327 	revents = 0;
   2328 
   2329 	if (events & (POLLIN | POLLRDNORM))
   2330 		if (soreadable(so))
   2331 			revents |= events & (POLLIN | POLLRDNORM);
   2332 
   2333 	if (events & (POLLOUT | POLLWRNORM))
   2334 		if (sowritable(so))
   2335 			revents |= events & (POLLOUT | POLLWRNORM);
   2336 
   2337 	if (events & (POLLPRI | POLLRDBAND))
   2338 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   2339 			revents |= events & (POLLPRI | POLLRDBAND);
   2340 
   2341 	return revents;
   2342 }
   2343 
   2344 int
   2345 sopoll(struct socket *so, int events)
   2346 {
   2347 	int revents = 0;
   2348 
   2349 #ifndef DIAGNOSTIC
   2350 	/*
   2351 	 * Do a quick, unlocked check in expectation that the socket
   2352 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2353 	 * as the solocked() assertions will fail.
   2354 	 */
   2355 	if ((revents = sodopoll(so, events)) != 0)
   2356 		return revents;
   2357 #endif
   2358 
   2359 	solock(so);
   2360 	if ((revents = sodopoll(so, events)) == 0) {
   2361 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2362 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2363 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2364 		}
   2365 
   2366 		if (events & (POLLOUT | POLLWRNORM)) {
   2367 			selrecord(curlwp, &so->so_snd.sb_sel);
   2368 			so->so_snd.sb_flags |= SB_NOTIFY;
   2369 		}
   2370 	}
   2371 	sounlock(so);
   2372 
   2373 	return revents;
   2374 }
   2375 
   2376 
   2377 #include <sys/sysctl.h>
   2378 
   2379 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2380 
   2381 /*
   2382  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2383  * value is not too small.
   2384  * (XXX should we maybe make sure it's not too large as well?)
   2385  */
   2386 static int
   2387 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2388 {
   2389 	int error, new_somaxkva;
   2390 	struct sysctlnode node;
   2391 
   2392 	new_somaxkva = somaxkva;
   2393 	node = *rnode;
   2394 	node.sysctl_data = &new_somaxkva;
   2395 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2396 	if (error || newp == NULL)
   2397 		return (error);
   2398 
   2399 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2400 		return (EINVAL);
   2401 
   2402 	mutex_enter(&so_pendfree_lock);
   2403 	somaxkva = new_somaxkva;
   2404 	cv_broadcast(&socurkva_cv);
   2405 	mutex_exit(&so_pendfree_lock);
   2406 
   2407 	return (error);
   2408 }
   2409 
   2410 static void
   2411 sysctl_kern_somaxkva_setup(void)
   2412 {
   2413 
   2414 	KASSERT(socket_sysctllog == NULL);
   2415 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2416 		       CTLFLAG_PERMANENT,
   2417 		       CTLTYPE_NODE, "kern", NULL,
   2418 		       NULL, 0, NULL, 0,
   2419 		       CTL_KERN, CTL_EOL);
   2420 
   2421 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2422 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2423 		       CTLTYPE_INT, "somaxkva",
   2424 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2425 				    "used for socket buffers"),
   2426 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2427 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2428 }
   2429