uipc_socket.c revision 1.207 1 /* $NetBSD: uipc_socket.c,v 1.207 2012/01/25 00:28:36 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.207 2012/01/25 00:28:36 christos Exp $");
67
68 #include "opt_compat_netbsd.h"
69 #include "opt_sock_counters.h"
70 #include "opt_sosend_loan.h"
71 #include "opt_mbuftrace.h"
72 #include "opt_somaxkva.h"
73 #include "opt_multiprocessor.h" /* XXX */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/file.h>
79 #include <sys/filedesc.h>
80 #include <sys/kmem.h>
81 #include <sys/mbuf.h>
82 #include <sys/domain.h>
83 #include <sys/kernel.h>
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/signalvar.h>
88 #include <sys/resourcevar.h>
89 #include <sys/uidinfo.h>
90 #include <sys/event.h>
91 #include <sys/poll.h>
92 #include <sys/kauth.h>
93 #include <sys/mutex.h>
94 #include <sys/condvar.h>
95 #include <sys/kthread.h>
96
97 #ifdef COMPAT_50
98 #include <compat/sys/time.h>
99 #include <compat/sys/socket.h>
100 #endif
101
102 #include <uvm/uvm_extern.h>
103 #include <uvm/uvm_loan.h>
104 #include <uvm/uvm_page.h>
105
106 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
107 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
108
109 extern const struct fileops socketops;
110
111 extern int somaxconn; /* patchable (XXX sysctl) */
112 int somaxconn = SOMAXCONN;
113 kmutex_t *softnet_lock;
114
115 #ifdef SOSEND_COUNTERS
116 #include <sys/device.h>
117
118 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
119 NULL, "sosend", "loan big");
120 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
121 NULL, "sosend", "copy big");
122 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
123 NULL, "sosend", "copy small");
124 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
125 NULL, "sosend", "kva limit");
126
127 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
128
129 EVCNT_ATTACH_STATIC(sosend_loan_big);
130 EVCNT_ATTACH_STATIC(sosend_copy_big);
131 EVCNT_ATTACH_STATIC(sosend_copy_small);
132 EVCNT_ATTACH_STATIC(sosend_kvalimit);
133 #else
134
135 #define SOSEND_COUNTER_INCR(ev) /* nothing */
136
137 #endif /* SOSEND_COUNTERS */
138
139 static struct callback_entry sokva_reclaimerentry;
140
141 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
142 int sock_loan_thresh = -1;
143 #else
144 int sock_loan_thresh = 4096;
145 #endif
146
147 static kmutex_t so_pendfree_lock;
148 static struct mbuf *so_pendfree = NULL;
149
150 #ifndef SOMAXKVA
151 #define SOMAXKVA (16 * 1024 * 1024)
152 #endif
153 int somaxkva = SOMAXKVA;
154 static int socurkva;
155 static kcondvar_t socurkva_cv;
156
157 static kauth_listener_t socket_listener;
158
159 #define SOCK_LOAN_CHUNK 65536
160
161 static void sopendfree_thread(void *);
162 static kcondvar_t pendfree_thread_cv;
163 static lwp_t *sopendfree_lwp;
164
165 static void sysctl_kern_somaxkva_setup(void);
166 static struct sysctllog *socket_sysctllog;
167
168 static vsize_t
169 sokvareserve(struct socket *so, vsize_t len)
170 {
171 int error;
172
173 mutex_enter(&so_pendfree_lock);
174 while (socurkva + len > somaxkva) {
175 SOSEND_COUNTER_INCR(&sosend_kvalimit);
176 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
177 if (error) {
178 len = 0;
179 break;
180 }
181 }
182 socurkva += len;
183 mutex_exit(&so_pendfree_lock);
184 return len;
185 }
186
187 static void
188 sokvaunreserve(vsize_t len)
189 {
190
191 mutex_enter(&so_pendfree_lock);
192 socurkva -= len;
193 cv_broadcast(&socurkva_cv);
194 mutex_exit(&so_pendfree_lock);
195 }
196
197 /*
198 * sokvaalloc: allocate kva for loan.
199 */
200
201 vaddr_t
202 sokvaalloc(vsize_t len, struct socket *so)
203 {
204 vaddr_t lva;
205
206 /*
207 * reserve kva.
208 */
209
210 if (sokvareserve(so, len) == 0)
211 return 0;
212
213 /*
214 * allocate kva.
215 */
216
217 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
218 if (lva == 0) {
219 sokvaunreserve(len);
220 return (0);
221 }
222
223 return lva;
224 }
225
226 /*
227 * sokvafree: free kva for loan.
228 */
229
230 void
231 sokvafree(vaddr_t sva, vsize_t len)
232 {
233
234 /*
235 * free kva.
236 */
237
238 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
239
240 /*
241 * unreserve kva.
242 */
243
244 sokvaunreserve(len);
245 }
246
247 static void
248 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
249 {
250 vaddr_t sva, eva;
251 vsize_t len;
252 int npgs;
253
254 KASSERT(pgs != NULL);
255
256 eva = round_page((vaddr_t) buf + size);
257 sva = trunc_page((vaddr_t) buf);
258 len = eva - sva;
259 npgs = len >> PAGE_SHIFT;
260
261 pmap_kremove(sva, len);
262 pmap_update(pmap_kernel());
263 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
264 sokvafree(sva, len);
265 }
266
267 /*
268 * sopendfree_thread: free mbufs on "pendfree" list.
269 * unlock and relock so_pendfree_lock when freeing mbufs.
270 */
271
272 static void
273 sopendfree_thread(void *v)
274 {
275 struct mbuf *m, *next;
276 size_t rv;
277
278 mutex_enter(&so_pendfree_lock);
279
280 for (;;) {
281 rv = 0;
282 while (so_pendfree != NULL) {
283 m = so_pendfree;
284 so_pendfree = NULL;
285 mutex_exit(&so_pendfree_lock);
286
287 for (; m != NULL; m = next) {
288 next = m->m_next;
289 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
290 KASSERT(m->m_ext.ext_refcnt == 0);
291
292 rv += m->m_ext.ext_size;
293 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
294 m->m_ext.ext_size);
295 pool_cache_put(mb_cache, m);
296 }
297
298 mutex_enter(&so_pendfree_lock);
299 }
300 if (rv)
301 cv_broadcast(&socurkva_cv);
302 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
303 }
304 panic("sopendfree_thread");
305 /* NOTREACHED */
306 }
307
308 void
309 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
310 {
311
312 KASSERT(m != NULL);
313
314 /*
315 * postpone freeing mbuf.
316 *
317 * we can't do it in interrupt context
318 * because we need to put kva back to kernel_map.
319 */
320
321 mutex_enter(&so_pendfree_lock);
322 m->m_next = so_pendfree;
323 so_pendfree = m;
324 cv_signal(&pendfree_thread_cv);
325 mutex_exit(&so_pendfree_lock);
326 }
327
328 static long
329 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
330 {
331 struct iovec *iov = uio->uio_iov;
332 vaddr_t sva, eva;
333 vsize_t len;
334 vaddr_t lva;
335 int npgs, error;
336 vaddr_t va;
337 int i;
338
339 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
340 return (0);
341
342 if (iov->iov_len < (size_t) space)
343 space = iov->iov_len;
344 if (space > SOCK_LOAN_CHUNK)
345 space = SOCK_LOAN_CHUNK;
346
347 eva = round_page((vaddr_t) iov->iov_base + space);
348 sva = trunc_page((vaddr_t) iov->iov_base);
349 len = eva - sva;
350 npgs = len >> PAGE_SHIFT;
351
352 KASSERT(npgs <= M_EXT_MAXPAGES);
353
354 lva = sokvaalloc(len, so);
355 if (lva == 0)
356 return 0;
357
358 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
359 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
360 if (error) {
361 sokvafree(lva, len);
362 return (0);
363 }
364
365 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
366 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
367 VM_PROT_READ, 0);
368 pmap_update(pmap_kernel());
369
370 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
371
372 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
373 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
374
375 uio->uio_resid -= space;
376 /* uio_offset not updated, not set/used for write(2) */
377 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
378 uio->uio_iov->iov_len -= space;
379 if (uio->uio_iov->iov_len == 0) {
380 uio->uio_iov++;
381 uio->uio_iovcnt--;
382 }
383
384 return (space);
385 }
386
387 static int
388 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
389 {
390
391 KASSERT(ce == &sokva_reclaimerentry);
392 KASSERT(obj == NULL);
393
394 if (!vm_map_starved_p(kernel_map)) {
395 return CALLBACK_CHAIN_ABORT;
396 }
397 return CALLBACK_CHAIN_CONTINUE;
398 }
399
400 struct mbuf *
401 getsombuf(struct socket *so, int type)
402 {
403 struct mbuf *m;
404
405 m = m_get(M_WAIT, type);
406 MCLAIM(m, so->so_mowner);
407 return m;
408 }
409
410 static int
411 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
412 void *arg0, void *arg1, void *arg2, void *arg3)
413 {
414 int result;
415 enum kauth_network_req req;
416
417 result = KAUTH_RESULT_DEFER;
418 req = (enum kauth_network_req)arg0;
419
420 if ((action != KAUTH_NETWORK_SOCKET) &&
421 (action != KAUTH_NETWORK_BIND))
422 return result;
423
424 switch (req) {
425 case KAUTH_REQ_NETWORK_BIND_PORT:
426 result = KAUTH_RESULT_ALLOW;
427 break;
428
429 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
430 /* Normal users can only drop their own connections. */
431 struct socket *so = (struct socket *)arg1;
432
433 if (proc_uidmatch(cred, so->so_cred))
434 result = KAUTH_RESULT_ALLOW;
435
436 break;
437 }
438
439 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
440 /* We allow "raw" routing/bluetooth sockets to anyone. */
441 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
442 || (u_long)arg1 == PF_BLUETOOTH) {
443 result = KAUTH_RESULT_ALLOW;
444 } else {
445 /* Privileged, let secmodel handle this. */
446 if ((u_long)arg2 == SOCK_RAW)
447 break;
448 }
449
450 result = KAUTH_RESULT_ALLOW;
451
452 break;
453
454 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
455 result = KAUTH_RESULT_ALLOW;
456
457 break;
458
459 default:
460 break;
461 }
462
463 return result;
464 }
465
466 void
467 soinit(void)
468 {
469
470 sysctl_kern_somaxkva_setup();
471
472 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
473 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
474 cv_init(&socurkva_cv, "sokva");
475 cv_init(&pendfree_thread_cv, "sopendfr");
476 soinit2();
477
478 /* Set the initial adjusted socket buffer size. */
479 if (sb_max_set(sb_max))
480 panic("bad initial sb_max value: %lu", sb_max);
481
482 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
483 &sokva_reclaimerentry, NULL, sokva_reclaim_callback);
484
485 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
486 socket_listener_cb, NULL);
487 }
488
489 void
490 soinit1(void)
491 {
492 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
493 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
494 if (error)
495 panic("soinit1 %d", error);
496 }
497
498 /*
499 * Socket operation routines.
500 * These routines are called by the routines in
501 * sys_socket.c or from a system process, and
502 * implement the semantics of socket operations by
503 * switching out to the protocol specific routines.
504 */
505 /*ARGSUSED*/
506 int
507 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
508 struct socket *lockso)
509 {
510 const struct protosw *prp;
511 struct socket *so;
512 uid_t uid;
513 int error;
514 kmutex_t *lock;
515
516 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
517 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
518 KAUTH_ARG(proto));
519 if (error != 0)
520 return error;
521
522 if (proto)
523 prp = pffindproto(dom, proto, type);
524 else
525 prp = pffindtype(dom, type);
526 if (prp == NULL) {
527 /* no support for domain */
528 if (pffinddomain(dom) == 0)
529 return EAFNOSUPPORT;
530 /* no support for socket type */
531 if (proto == 0 && type != 0)
532 return EPROTOTYPE;
533 return EPROTONOSUPPORT;
534 }
535 if (prp->pr_usrreq == NULL)
536 return EPROTONOSUPPORT;
537 if (prp->pr_type != type)
538 return EPROTOTYPE;
539
540 so = soget(true);
541 so->so_type = type;
542 so->so_proto = prp;
543 so->so_send = sosend;
544 so->so_receive = soreceive;
545 #ifdef MBUFTRACE
546 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
547 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
548 so->so_mowner = &prp->pr_domain->dom_mowner;
549 #endif
550 uid = kauth_cred_geteuid(l->l_cred);
551 so->so_uidinfo = uid_find(uid);
552 so->so_cpid = l->l_proc->p_pid;
553 if (lockso != NULL) {
554 /* Caller wants us to share a lock. */
555 lock = lockso->so_lock;
556 so->so_lock = lock;
557 mutex_obj_hold(lock);
558 mutex_enter(lock);
559 } else {
560 /* Lock assigned and taken during PRU_ATTACH. */
561 }
562 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
563 (struct mbuf *)(long)proto, NULL, l);
564 KASSERT(solocked(so));
565 if (error != 0) {
566 so->so_state |= SS_NOFDREF;
567 sofree(so);
568 return error;
569 }
570 so->so_cred = kauth_cred_dup(l->l_cred);
571 sounlock(so);
572 *aso = so;
573 return 0;
574 }
575
576 /* On success, write file descriptor to fdout and return zero. On
577 * failure, return non-zero; *fdout will be undefined.
578 */
579 int
580 fsocreate(int domain, struct socket **sop, int type, int protocol,
581 struct lwp *l, int *fdout)
582 {
583 struct socket *so;
584 struct file *fp;
585 int fd, error;
586 int flags = type & SOCK_FLAGS_MASK;
587
588 type &= ~SOCK_FLAGS_MASK;
589 if ((error = fd_allocfile(&fp, &fd)) != 0)
590 return error;
591 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
592 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
593 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
594 fp->f_type = DTYPE_SOCKET;
595 fp->f_ops = &socketops;
596 error = socreate(domain, &so, type, protocol, l, NULL);
597 if (error != 0) {
598 fd_abort(curproc, fp, fd);
599 } else {
600 if (sop != NULL)
601 *sop = so;
602 fp->f_data = so;
603 fd_affix(curproc, fp, fd);
604 *fdout = fd;
605 }
606 return error;
607 }
608
609 int
610 sofamily(const struct socket *so)
611 {
612 const struct protosw *pr;
613 const struct domain *dom;
614
615 if ((pr = so->so_proto) == NULL)
616 return AF_UNSPEC;
617 if ((dom = pr->pr_domain) == NULL)
618 return AF_UNSPEC;
619 return dom->dom_family;
620 }
621
622 int
623 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
624 {
625 int error;
626
627 solock(so);
628 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
629 sounlock(so);
630 return error;
631 }
632
633 int
634 solisten(struct socket *so, int backlog, struct lwp *l)
635 {
636 int error;
637
638 solock(so);
639 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
640 SS_ISDISCONNECTING)) != 0) {
641 sounlock(so);
642 return (EOPNOTSUPP);
643 }
644 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
645 NULL, NULL, l);
646 if (error != 0) {
647 sounlock(so);
648 return error;
649 }
650 if (TAILQ_EMPTY(&so->so_q))
651 so->so_options |= SO_ACCEPTCONN;
652 if (backlog < 0)
653 backlog = 0;
654 so->so_qlimit = min(backlog, somaxconn);
655 sounlock(so);
656 return 0;
657 }
658
659 void
660 sofree(struct socket *so)
661 {
662 u_int refs;
663
664 KASSERT(solocked(so));
665
666 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
667 sounlock(so);
668 return;
669 }
670 if (so->so_head) {
671 /*
672 * We must not decommission a socket that's on the accept(2)
673 * queue. If we do, then accept(2) may hang after select(2)
674 * indicated that the listening socket was ready.
675 */
676 if (!soqremque(so, 0)) {
677 sounlock(so);
678 return;
679 }
680 }
681 if (so->so_rcv.sb_hiwat)
682 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
683 RLIM_INFINITY);
684 if (so->so_snd.sb_hiwat)
685 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
686 RLIM_INFINITY);
687 sbrelease(&so->so_snd, so);
688 KASSERT(!cv_has_waiters(&so->so_cv));
689 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
690 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
691 sorflush(so);
692 refs = so->so_aborting; /* XXX */
693 /* Remove acccept filter if one is present. */
694 if (so->so_accf != NULL)
695 (void)accept_filt_clear(so);
696 sounlock(so);
697 if (refs == 0) /* XXX */
698 soput(so);
699 }
700
701 /*
702 * Close a socket on last file table reference removal.
703 * Initiate disconnect if connected.
704 * Free socket when disconnect complete.
705 */
706 int
707 soclose(struct socket *so)
708 {
709 struct socket *so2;
710 int error;
711 int error2;
712
713 error = 0;
714 solock(so);
715 if (so->so_options & SO_ACCEPTCONN) {
716 for (;;) {
717 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
718 KASSERT(solocked2(so, so2));
719 (void) soqremque(so2, 0);
720 /* soabort drops the lock. */
721 (void) soabort(so2);
722 solock(so);
723 continue;
724 }
725 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
726 KASSERT(solocked2(so, so2));
727 (void) soqremque(so2, 1);
728 /* soabort drops the lock. */
729 (void) soabort(so2);
730 solock(so);
731 continue;
732 }
733 break;
734 }
735 }
736 if (so->so_pcb == 0)
737 goto discard;
738 if (so->so_state & SS_ISCONNECTED) {
739 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
740 error = sodisconnect(so);
741 if (error)
742 goto drop;
743 }
744 if (so->so_options & SO_LINGER) {
745 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
746 (SS_ISDISCONNECTING|SS_NBIO))
747 goto drop;
748 while (so->so_state & SS_ISCONNECTED) {
749 error = sowait(so, true, so->so_linger * hz);
750 if (error)
751 break;
752 }
753 }
754 }
755 drop:
756 if (so->so_pcb) {
757 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
758 NULL, NULL, NULL, NULL);
759 if (error == 0)
760 error = error2;
761 }
762 discard:
763 if (so->so_state & SS_NOFDREF)
764 panic("soclose: NOFDREF");
765 kauth_cred_free(so->so_cred);
766 so->so_state |= SS_NOFDREF;
767 sofree(so);
768 return (error);
769 }
770
771 /*
772 * Must be called with the socket locked.. Will return with it unlocked.
773 */
774 int
775 soabort(struct socket *so)
776 {
777 u_int refs;
778 int error;
779
780 KASSERT(solocked(so));
781 KASSERT(so->so_head == NULL);
782
783 so->so_aborting++; /* XXX */
784 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
785 NULL, NULL, NULL);
786 refs = --so->so_aborting; /* XXX */
787 if (error || (refs == 0)) {
788 sofree(so);
789 } else {
790 sounlock(so);
791 }
792 return error;
793 }
794
795 int
796 soaccept(struct socket *so, struct mbuf *nam)
797 {
798 int error;
799
800 KASSERT(solocked(so));
801
802 error = 0;
803 if ((so->so_state & SS_NOFDREF) == 0)
804 panic("soaccept: !NOFDREF");
805 so->so_state &= ~SS_NOFDREF;
806 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
807 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
808 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
809 NULL, nam, NULL, NULL);
810 else
811 error = ECONNABORTED;
812
813 return (error);
814 }
815
816 int
817 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
818 {
819 int error;
820
821 KASSERT(solocked(so));
822
823 if (so->so_options & SO_ACCEPTCONN)
824 return (EOPNOTSUPP);
825 /*
826 * If protocol is connection-based, can only connect once.
827 * Otherwise, if connected, try to disconnect first.
828 * This allows user to disconnect by connecting to, e.g.,
829 * a null address.
830 */
831 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
832 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
833 (error = sodisconnect(so))))
834 error = EISCONN;
835 else
836 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
837 NULL, nam, NULL, l);
838 return (error);
839 }
840
841 int
842 soconnect2(struct socket *so1, struct socket *so2)
843 {
844 int error;
845
846 KASSERT(solocked2(so1, so2));
847
848 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
849 NULL, (struct mbuf *)so2, NULL, NULL);
850 return (error);
851 }
852
853 int
854 sodisconnect(struct socket *so)
855 {
856 int error;
857
858 KASSERT(solocked(so));
859
860 if ((so->so_state & SS_ISCONNECTED) == 0) {
861 error = ENOTCONN;
862 } else if (so->so_state & SS_ISDISCONNECTING) {
863 error = EALREADY;
864 } else {
865 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
866 NULL, NULL, NULL, NULL);
867 }
868 return (error);
869 }
870
871 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
872 /*
873 * Send on a socket.
874 * If send must go all at once and message is larger than
875 * send buffering, then hard error.
876 * Lock against other senders.
877 * If must go all at once and not enough room now, then
878 * inform user that this would block and do nothing.
879 * Otherwise, if nonblocking, send as much as possible.
880 * The data to be sent is described by "uio" if nonzero,
881 * otherwise by the mbuf chain "top" (which must be null
882 * if uio is not). Data provided in mbuf chain must be small
883 * enough to send all at once.
884 *
885 * Returns nonzero on error, timeout or signal; callers
886 * must check for short counts if EINTR/ERESTART are returned.
887 * Data and control buffers are freed on return.
888 */
889 int
890 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
891 struct mbuf *control, int flags, struct lwp *l)
892 {
893 struct mbuf **mp, *m;
894 struct proc *p;
895 long space, len, resid, clen, mlen;
896 int error, s, dontroute, atomic;
897 short wakeup_state = 0;
898
899 p = l->l_proc;
900 clen = 0;
901
902 /*
903 * solock() provides atomicity of access. splsoftnet() prevents
904 * protocol processing soft interrupts from interrupting us and
905 * blocking (expensive).
906 */
907 s = splsoftnet();
908 solock(so);
909 atomic = sosendallatonce(so) || top;
910 if (uio)
911 resid = uio->uio_resid;
912 else
913 resid = top->m_pkthdr.len;
914 /*
915 * In theory resid should be unsigned.
916 * However, space must be signed, as it might be less than 0
917 * if we over-committed, and we must use a signed comparison
918 * of space and resid. On the other hand, a negative resid
919 * causes us to loop sending 0-length segments to the protocol.
920 */
921 if (resid < 0) {
922 error = EINVAL;
923 goto out;
924 }
925 dontroute =
926 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
927 (so->so_proto->pr_flags & PR_ATOMIC);
928 l->l_ru.ru_msgsnd++;
929 if (control)
930 clen = control->m_len;
931 restart:
932 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
933 goto out;
934 do {
935 if (so->so_state & SS_CANTSENDMORE) {
936 error = EPIPE;
937 goto release;
938 }
939 if (so->so_error) {
940 error = so->so_error;
941 so->so_error = 0;
942 goto release;
943 }
944 if ((so->so_state & SS_ISCONNECTED) == 0) {
945 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
946 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
947 !(resid == 0 && clen != 0)) {
948 error = ENOTCONN;
949 goto release;
950 }
951 } else if (addr == 0) {
952 error = EDESTADDRREQ;
953 goto release;
954 }
955 }
956 space = sbspace(&so->so_snd);
957 if (flags & MSG_OOB)
958 space += 1024;
959 if ((atomic && resid > so->so_snd.sb_hiwat) ||
960 clen > so->so_snd.sb_hiwat) {
961 error = EMSGSIZE;
962 goto release;
963 }
964 if (space < resid + clen &&
965 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
966 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
967 error = EWOULDBLOCK;
968 goto release;
969 }
970 sbunlock(&so->so_snd);
971 if (wakeup_state & SS_RESTARTSYS) {
972 error = ERESTART;
973 goto out;
974 }
975 error = sbwait(&so->so_snd);
976 if (error)
977 goto out;
978 wakeup_state = so->so_state;
979 goto restart;
980 }
981 wakeup_state = 0;
982 mp = ⊤
983 space -= clen;
984 do {
985 if (uio == NULL) {
986 /*
987 * Data is prepackaged in "top".
988 */
989 resid = 0;
990 if (flags & MSG_EOR)
991 top->m_flags |= M_EOR;
992 } else do {
993 sounlock(so);
994 splx(s);
995 if (top == NULL) {
996 m = m_gethdr(M_WAIT, MT_DATA);
997 mlen = MHLEN;
998 m->m_pkthdr.len = 0;
999 m->m_pkthdr.rcvif = NULL;
1000 } else {
1001 m = m_get(M_WAIT, MT_DATA);
1002 mlen = MLEN;
1003 }
1004 MCLAIM(m, so->so_snd.sb_mowner);
1005 if (sock_loan_thresh >= 0 &&
1006 uio->uio_iov->iov_len >= sock_loan_thresh &&
1007 space >= sock_loan_thresh &&
1008 (len = sosend_loan(so, uio, m,
1009 space)) != 0) {
1010 SOSEND_COUNTER_INCR(&sosend_loan_big);
1011 space -= len;
1012 goto have_data;
1013 }
1014 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1015 SOSEND_COUNTER_INCR(&sosend_copy_big);
1016 m_clget(m, M_DONTWAIT);
1017 if ((m->m_flags & M_EXT) == 0)
1018 goto nopages;
1019 mlen = MCLBYTES;
1020 if (atomic && top == 0) {
1021 len = lmin(MCLBYTES - max_hdr,
1022 resid);
1023 m->m_data += max_hdr;
1024 } else
1025 len = lmin(MCLBYTES, resid);
1026 space -= len;
1027 } else {
1028 nopages:
1029 SOSEND_COUNTER_INCR(&sosend_copy_small);
1030 len = lmin(lmin(mlen, resid), space);
1031 space -= len;
1032 /*
1033 * For datagram protocols, leave room
1034 * for protocol headers in first mbuf.
1035 */
1036 if (atomic && top == 0 && len < mlen)
1037 MH_ALIGN(m, len);
1038 }
1039 error = uiomove(mtod(m, void *), (int)len, uio);
1040 have_data:
1041 resid = uio->uio_resid;
1042 m->m_len = len;
1043 *mp = m;
1044 top->m_pkthdr.len += len;
1045 s = splsoftnet();
1046 solock(so);
1047 if (error != 0)
1048 goto release;
1049 mp = &m->m_next;
1050 if (resid <= 0) {
1051 if (flags & MSG_EOR)
1052 top->m_flags |= M_EOR;
1053 break;
1054 }
1055 } while (space > 0 && atomic);
1056
1057 if (so->so_state & SS_CANTSENDMORE) {
1058 error = EPIPE;
1059 goto release;
1060 }
1061 if (dontroute)
1062 so->so_options |= SO_DONTROUTE;
1063 if (resid > 0)
1064 so->so_state |= SS_MORETOCOME;
1065 error = (*so->so_proto->pr_usrreq)(so,
1066 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
1067 top, addr, control, curlwp);
1068 if (dontroute)
1069 so->so_options &= ~SO_DONTROUTE;
1070 if (resid > 0)
1071 so->so_state &= ~SS_MORETOCOME;
1072 clen = 0;
1073 control = NULL;
1074 top = NULL;
1075 mp = ⊤
1076 if (error != 0)
1077 goto release;
1078 } while (resid && space > 0);
1079 } while (resid);
1080
1081 release:
1082 sbunlock(&so->so_snd);
1083 out:
1084 sounlock(so);
1085 splx(s);
1086 if (top)
1087 m_freem(top);
1088 if (control)
1089 m_freem(control);
1090 return (error);
1091 }
1092
1093 /*
1094 * Following replacement or removal of the first mbuf on the first
1095 * mbuf chain of a socket buffer, push necessary state changes back
1096 * into the socket buffer so that other consumers see the values
1097 * consistently. 'nextrecord' is the callers locally stored value of
1098 * the original value of sb->sb_mb->m_nextpkt which must be restored
1099 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1100 */
1101 static void
1102 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1103 {
1104
1105 KASSERT(solocked(sb->sb_so));
1106
1107 /*
1108 * First, update for the new value of nextrecord. If necessary,
1109 * make it the first record.
1110 */
1111 if (sb->sb_mb != NULL)
1112 sb->sb_mb->m_nextpkt = nextrecord;
1113 else
1114 sb->sb_mb = nextrecord;
1115
1116 /*
1117 * Now update any dependent socket buffer fields to reflect
1118 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1119 * the addition of a second clause that takes care of the
1120 * case where sb_mb has been updated, but remains the last
1121 * record.
1122 */
1123 if (sb->sb_mb == NULL) {
1124 sb->sb_mbtail = NULL;
1125 sb->sb_lastrecord = NULL;
1126 } else if (sb->sb_mb->m_nextpkt == NULL)
1127 sb->sb_lastrecord = sb->sb_mb;
1128 }
1129
1130 /*
1131 * Implement receive operations on a socket.
1132 * We depend on the way that records are added to the sockbuf
1133 * by sbappend*. In particular, each record (mbufs linked through m_next)
1134 * must begin with an address if the protocol so specifies,
1135 * followed by an optional mbuf or mbufs containing ancillary data,
1136 * and then zero or more mbufs of data.
1137 * In order to avoid blocking network interrupts for the entire time here,
1138 * we splx() while doing the actual copy to user space.
1139 * Although the sockbuf is locked, new data may still be appended,
1140 * and thus we must maintain consistency of the sockbuf during that time.
1141 *
1142 * The caller may receive the data as a single mbuf chain by supplying
1143 * an mbuf **mp0 for use in returning the chain. The uio is then used
1144 * only for the count in uio_resid.
1145 */
1146 int
1147 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1148 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1149 {
1150 struct lwp *l = curlwp;
1151 struct mbuf *m, **mp, *mt;
1152 int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1153 const struct protosw *pr;
1154 struct mbuf *nextrecord;
1155 int mbuf_removed = 0;
1156 const struct domain *dom;
1157 short wakeup_state = 0;
1158
1159 pr = so->so_proto;
1160 atomic = pr->pr_flags & PR_ATOMIC;
1161 dom = pr->pr_domain;
1162 mp = mp0;
1163 type = 0;
1164 orig_resid = uio->uio_resid;
1165
1166 if (paddr != NULL)
1167 *paddr = NULL;
1168 if (controlp != NULL)
1169 *controlp = NULL;
1170 if (flagsp != NULL)
1171 flags = *flagsp &~ MSG_EOR;
1172 else
1173 flags = 0;
1174
1175 if (flags & MSG_OOB) {
1176 m = m_get(M_WAIT, MT_DATA);
1177 solock(so);
1178 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1179 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1180 sounlock(so);
1181 if (error)
1182 goto bad;
1183 do {
1184 error = uiomove(mtod(m, void *),
1185 (int) min(uio->uio_resid, m->m_len), uio);
1186 m = m_free(m);
1187 } while (uio->uio_resid > 0 && error == 0 && m);
1188 bad:
1189 if (m != NULL)
1190 m_freem(m);
1191 return error;
1192 }
1193 if (mp != NULL)
1194 *mp = NULL;
1195
1196 /*
1197 * solock() provides atomicity of access. splsoftnet() prevents
1198 * protocol processing soft interrupts from interrupting us and
1199 * blocking (expensive).
1200 */
1201 s = splsoftnet();
1202 solock(so);
1203 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1204 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1205
1206 restart:
1207 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1208 sounlock(so);
1209 splx(s);
1210 return error;
1211 }
1212
1213 m = so->so_rcv.sb_mb;
1214 /*
1215 * If we have less data than requested, block awaiting more
1216 * (subject to any timeout) if:
1217 * 1. the current count is less than the low water mark,
1218 * 2. MSG_WAITALL is set, and it is possible to do the entire
1219 * receive operation at once if we block (resid <= hiwat), or
1220 * 3. MSG_DONTWAIT is not set.
1221 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1222 * we have to do the receive in sections, and thus risk returning
1223 * a short count if a timeout or signal occurs after we start.
1224 */
1225 if (m == NULL ||
1226 ((flags & MSG_DONTWAIT) == 0 &&
1227 so->so_rcv.sb_cc < uio->uio_resid &&
1228 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1229 ((flags & MSG_WAITALL) &&
1230 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1231 m->m_nextpkt == NULL && !atomic)) {
1232 #ifdef DIAGNOSTIC
1233 if (m == NULL && so->so_rcv.sb_cc)
1234 panic("receive 1");
1235 #endif
1236 if (so->so_error) {
1237 if (m != NULL)
1238 goto dontblock;
1239 error = so->so_error;
1240 if ((flags & MSG_PEEK) == 0)
1241 so->so_error = 0;
1242 goto release;
1243 }
1244 if (so->so_state & SS_CANTRCVMORE) {
1245 if (m != NULL)
1246 goto dontblock;
1247 else
1248 goto release;
1249 }
1250 for (; m != NULL; m = m->m_next)
1251 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1252 m = so->so_rcv.sb_mb;
1253 goto dontblock;
1254 }
1255 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1256 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1257 error = ENOTCONN;
1258 goto release;
1259 }
1260 if (uio->uio_resid == 0)
1261 goto release;
1262 if ((so->so_state & SS_NBIO) ||
1263 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1264 error = EWOULDBLOCK;
1265 goto release;
1266 }
1267 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1268 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1269 sbunlock(&so->so_rcv);
1270 if (wakeup_state & SS_RESTARTSYS)
1271 error = ERESTART;
1272 else
1273 error = sbwait(&so->so_rcv);
1274 if (error != 0) {
1275 sounlock(so);
1276 splx(s);
1277 return error;
1278 }
1279 wakeup_state = so->so_state;
1280 goto restart;
1281 }
1282 dontblock:
1283 /*
1284 * On entry here, m points to the first record of the socket buffer.
1285 * From this point onward, we maintain 'nextrecord' as a cache of the
1286 * pointer to the next record in the socket buffer. We must keep the
1287 * various socket buffer pointers and local stack versions of the
1288 * pointers in sync, pushing out modifications before dropping the
1289 * socket lock, and re-reading them when picking it up.
1290 *
1291 * Otherwise, we will race with the network stack appending new data
1292 * or records onto the socket buffer by using inconsistent/stale
1293 * versions of the field, possibly resulting in socket buffer
1294 * corruption.
1295 *
1296 * By holding the high-level sblock(), we prevent simultaneous
1297 * readers from pulling off the front of the socket buffer.
1298 */
1299 if (l != NULL)
1300 l->l_ru.ru_msgrcv++;
1301 KASSERT(m == so->so_rcv.sb_mb);
1302 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1303 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1304 nextrecord = m->m_nextpkt;
1305 if (pr->pr_flags & PR_ADDR) {
1306 #ifdef DIAGNOSTIC
1307 if (m->m_type != MT_SONAME)
1308 panic("receive 1a");
1309 #endif
1310 orig_resid = 0;
1311 if (flags & MSG_PEEK) {
1312 if (paddr)
1313 *paddr = m_copy(m, 0, m->m_len);
1314 m = m->m_next;
1315 } else {
1316 sbfree(&so->so_rcv, m);
1317 mbuf_removed = 1;
1318 if (paddr != NULL) {
1319 *paddr = m;
1320 so->so_rcv.sb_mb = m->m_next;
1321 m->m_next = NULL;
1322 m = so->so_rcv.sb_mb;
1323 } else {
1324 MFREE(m, so->so_rcv.sb_mb);
1325 m = so->so_rcv.sb_mb;
1326 }
1327 sbsync(&so->so_rcv, nextrecord);
1328 }
1329 }
1330
1331 /*
1332 * Process one or more MT_CONTROL mbufs present before any data mbufs
1333 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1334 * just copy the data; if !MSG_PEEK, we call into the protocol to
1335 * perform externalization (or freeing if controlp == NULL).
1336 */
1337 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1338 struct mbuf *cm = NULL, *cmn;
1339 struct mbuf **cme = &cm;
1340
1341 do {
1342 if (flags & MSG_PEEK) {
1343 if (controlp != NULL) {
1344 *controlp = m_copy(m, 0, m->m_len);
1345 controlp = &(*controlp)->m_next;
1346 }
1347 m = m->m_next;
1348 } else {
1349 sbfree(&so->so_rcv, m);
1350 so->so_rcv.sb_mb = m->m_next;
1351 m->m_next = NULL;
1352 *cme = m;
1353 cme = &(*cme)->m_next;
1354 m = so->so_rcv.sb_mb;
1355 }
1356 } while (m != NULL && m->m_type == MT_CONTROL);
1357 if ((flags & MSG_PEEK) == 0)
1358 sbsync(&so->so_rcv, nextrecord);
1359 for (; cm != NULL; cm = cmn) {
1360 cmn = cm->m_next;
1361 cm->m_next = NULL;
1362 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1363 if (controlp != NULL) {
1364 if (dom->dom_externalize != NULL &&
1365 type == SCM_RIGHTS) {
1366 sounlock(so);
1367 splx(s);
1368 error = (*dom->dom_externalize)(cm, l,
1369 (flags & MSG_CMSG_CLOEXEC) ?
1370 O_CLOEXEC : 0);
1371 s = splsoftnet();
1372 solock(so);
1373 }
1374 *controlp = cm;
1375 while (*controlp != NULL)
1376 controlp = &(*controlp)->m_next;
1377 } else {
1378 /*
1379 * Dispose of any SCM_RIGHTS message that went
1380 * through the read path rather than recv.
1381 */
1382 if (dom->dom_dispose != NULL &&
1383 type == SCM_RIGHTS) {
1384 sounlock(so);
1385 (*dom->dom_dispose)(cm);
1386 solock(so);
1387 }
1388 m_freem(cm);
1389 }
1390 }
1391 if (m != NULL)
1392 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1393 else
1394 nextrecord = so->so_rcv.sb_mb;
1395 orig_resid = 0;
1396 }
1397
1398 /* If m is non-NULL, we have some data to read. */
1399 if (__predict_true(m != NULL)) {
1400 type = m->m_type;
1401 if (type == MT_OOBDATA)
1402 flags |= MSG_OOB;
1403 }
1404 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1405 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1406
1407 moff = 0;
1408 offset = 0;
1409 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1410 if (m->m_type == MT_OOBDATA) {
1411 if (type != MT_OOBDATA)
1412 break;
1413 } else if (type == MT_OOBDATA)
1414 break;
1415 #ifdef DIAGNOSTIC
1416 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1417 panic("receive 3");
1418 #endif
1419 so->so_state &= ~SS_RCVATMARK;
1420 wakeup_state = 0;
1421 len = uio->uio_resid;
1422 if (so->so_oobmark && len > so->so_oobmark - offset)
1423 len = so->so_oobmark - offset;
1424 if (len > m->m_len - moff)
1425 len = m->m_len - moff;
1426 /*
1427 * If mp is set, just pass back the mbufs.
1428 * Otherwise copy them out via the uio, then free.
1429 * Sockbuf must be consistent here (points to current mbuf,
1430 * it points to next record) when we drop priority;
1431 * we must note any additions to the sockbuf when we
1432 * block interrupts again.
1433 */
1434 if (mp == NULL) {
1435 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1436 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1437 sounlock(so);
1438 splx(s);
1439 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1440 s = splsoftnet();
1441 solock(so);
1442 if (error != 0) {
1443 /*
1444 * If any part of the record has been removed
1445 * (such as the MT_SONAME mbuf, which will
1446 * happen when PR_ADDR, and thus also
1447 * PR_ATOMIC, is set), then drop the entire
1448 * record to maintain the atomicity of the
1449 * receive operation.
1450 *
1451 * This avoids a later panic("receive 1a")
1452 * when compiled with DIAGNOSTIC.
1453 */
1454 if (m && mbuf_removed && atomic)
1455 (void) sbdroprecord(&so->so_rcv);
1456
1457 goto release;
1458 }
1459 } else
1460 uio->uio_resid -= len;
1461 if (len == m->m_len - moff) {
1462 if (m->m_flags & M_EOR)
1463 flags |= MSG_EOR;
1464 if (flags & MSG_PEEK) {
1465 m = m->m_next;
1466 moff = 0;
1467 } else {
1468 nextrecord = m->m_nextpkt;
1469 sbfree(&so->so_rcv, m);
1470 if (mp) {
1471 *mp = m;
1472 mp = &m->m_next;
1473 so->so_rcv.sb_mb = m = m->m_next;
1474 *mp = NULL;
1475 } else {
1476 MFREE(m, so->so_rcv.sb_mb);
1477 m = so->so_rcv.sb_mb;
1478 }
1479 /*
1480 * If m != NULL, we also know that
1481 * so->so_rcv.sb_mb != NULL.
1482 */
1483 KASSERT(so->so_rcv.sb_mb == m);
1484 if (m) {
1485 m->m_nextpkt = nextrecord;
1486 if (nextrecord == NULL)
1487 so->so_rcv.sb_lastrecord = m;
1488 } else {
1489 so->so_rcv.sb_mb = nextrecord;
1490 SB_EMPTY_FIXUP(&so->so_rcv);
1491 }
1492 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1493 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1494 }
1495 } else if (flags & MSG_PEEK)
1496 moff += len;
1497 else {
1498 if (mp != NULL) {
1499 mt = m_copym(m, 0, len, M_NOWAIT);
1500 if (__predict_false(mt == NULL)) {
1501 sounlock(so);
1502 mt = m_copym(m, 0, len, M_WAIT);
1503 solock(so);
1504 }
1505 *mp = mt;
1506 }
1507 m->m_data += len;
1508 m->m_len -= len;
1509 so->so_rcv.sb_cc -= len;
1510 }
1511 if (so->so_oobmark) {
1512 if ((flags & MSG_PEEK) == 0) {
1513 so->so_oobmark -= len;
1514 if (so->so_oobmark == 0) {
1515 so->so_state |= SS_RCVATMARK;
1516 break;
1517 }
1518 } else {
1519 offset += len;
1520 if (offset == so->so_oobmark)
1521 break;
1522 }
1523 }
1524 if (flags & MSG_EOR)
1525 break;
1526 /*
1527 * If the MSG_WAITALL flag is set (for non-atomic socket),
1528 * we must not quit until "uio->uio_resid == 0" or an error
1529 * termination. If a signal/timeout occurs, return
1530 * with a short count but without error.
1531 * Keep sockbuf locked against other readers.
1532 */
1533 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1534 !sosendallatonce(so) && !nextrecord) {
1535 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1536 break;
1537 /*
1538 * If we are peeking and the socket receive buffer is
1539 * full, stop since we can't get more data to peek at.
1540 */
1541 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1542 break;
1543 /*
1544 * If we've drained the socket buffer, tell the
1545 * protocol in case it needs to do something to
1546 * get it filled again.
1547 */
1548 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1549 (*pr->pr_usrreq)(so, PRU_RCVD,
1550 NULL, (struct mbuf *)(long)flags, NULL, l);
1551 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1552 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1553 if (wakeup_state & SS_RESTARTSYS)
1554 error = ERESTART;
1555 else
1556 error = sbwait(&so->so_rcv);
1557 if (error != 0) {
1558 sbunlock(&so->so_rcv);
1559 sounlock(so);
1560 splx(s);
1561 return 0;
1562 }
1563 if ((m = so->so_rcv.sb_mb) != NULL)
1564 nextrecord = m->m_nextpkt;
1565 wakeup_state = so->so_state;
1566 }
1567 }
1568
1569 if (m && atomic) {
1570 flags |= MSG_TRUNC;
1571 if ((flags & MSG_PEEK) == 0)
1572 (void) sbdroprecord(&so->so_rcv);
1573 }
1574 if ((flags & MSG_PEEK) == 0) {
1575 if (m == NULL) {
1576 /*
1577 * First part is an inline SB_EMPTY_FIXUP(). Second
1578 * part makes sure sb_lastrecord is up-to-date if
1579 * there is still data in the socket buffer.
1580 */
1581 so->so_rcv.sb_mb = nextrecord;
1582 if (so->so_rcv.sb_mb == NULL) {
1583 so->so_rcv.sb_mbtail = NULL;
1584 so->so_rcv.sb_lastrecord = NULL;
1585 } else if (nextrecord->m_nextpkt == NULL)
1586 so->so_rcv.sb_lastrecord = nextrecord;
1587 }
1588 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1589 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1590 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1591 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1592 (struct mbuf *)(long)flags, NULL, l);
1593 }
1594 if (orig_resid == uio->uio_resid && orig_resid &&
1595 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1596 sbunlock(&so->so_rcv);
1597 goto restart;
1598 }
1599
1600 if (flagsp != NULL)
1601 *flagsp |= flags;
1602 release:
1603 sbunlock(&so->so_rcv);
1604 sounlock(so);
1605 splx(s);
1606 return error;
1607 }
1608
1609 int
1610 soshutdown(struct socket *so, int how)
1611 {
1612 const struct protosw *pr;
1613 int error;
1614
1615 KASSERT(solocked(so));
1616
1617 pr = so->so_proto;
1618 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1619 return (EINVAL);
1620
1621 if (how == SHUT_RD || how == SHUT_RDWR) {
1622 sorflush(so);
1623 error = 0;
1624 }
1625 if (how == SHUT_WR || how == SHUT_RDWR)
1626 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1627 NULL, NULL, NULL);
1628
1629 return error;
1630 }
1631
1632 void
1633 sorestart(struct socket *so)
1634 {
1635 /*
1636 * An application has called close() on an fd on which another
1637 * of its threads has called a socket system call.
1638 * Mark this and wake everyone up, and code that would block again
1639 * instead returns ERESTART.
1640 * On system call re-entry the fd is validated and EBADF returned.
1641 * Any other fd will block again on the 2nd syscall.
1642 */
1643 solock(so);
1644 so->so_state |= SS_RESTARTSYS;
1645 cv_broadcast(&so->so_cv);
1646 cv_broadcast(&so->so_snd.sb_cv);
1647 cv_broadcast(&so->so_rcv.sb_cv);
1648 sounlock(so);
1649 }
1650
1651 void
1652 sorflush(struct socket *so)
1653 {
1654 struct sockbuf *sb, asb;
1655 const struct protosw *pr;
1656
1657 KASSERT(solocked(so));
1658
1659 sb = &so->so_rcv;
1660 pr = so->so_proto;
1661 socantrcvmore(so);
1662 sb->sb_flags |= SB_NOINTR;
1663 (void )sblock(sb, M_WAITOK);
1664 sbunlock(sb);
1665 asb = *sb;
1666 /*
1667 * Clear most of the sockbuf structure, but leave some of the
1668 * fields valid.
1669 */
1670 memset(&sb->sb_startzero, 0,
1671 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1672 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1673 sounlock(so);
1674 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1675 solock(so);
1676 }
1677 sbrelease(&asb, so);
1678 }
1679
1680 /*
1681 * internal set SOL_SOCKET options
1682 */
1683 static int
1684 sosetopt1(struct socket *so, const struct sockopt *sopt)
1685 {
1686 int error = EINVAL, optval, opt;
1687 struct linger l;
1688 struct timeval tv;
1689
1690 switch ((opt = sopt->sopt_name)) {
1691
1692 case SO_ACCEPTFILTER:
1693 error = accept_filt_setopt(so, sopt);
1694 KASSERT(solocked(so));
1695 break;
1696
1697 case SO_LINGER:
1698 error = sockopt_get(sopt, &l, sizeof(l));
1699 solock(so);
1700 if (error)
1701 break;
1702 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1703 l.l_linger > (INT_MAX / hz)) {
1704 error = EDOM;
1705 break;
1706 }
1707 so->so_linger = l.l_linger;
1708 if (l.l_onoff)
1709 so->so_options |= SO_LINGER;
1710 else
1711 so->so_options &= ~SO_LINGER;
1712 break;
1713
1714 case SO_DEBUG:
1715 case SO_KEEPALIVE:
1716 case SO_DONTROUTE:
1717 case SO_USELOOPBACK:
1718 case SO_BROADCAST:
1719 case SO_REUSEADDR:
1720 case SO_REUSEPORT:
1721 case SO_OOBINLINE:
1722 case SO_TIMESTAMP:
1723 case SO_NOSIGPIPE:
1724 #ifdef SO_OTIMESTAMP
1725 case SO_OTIMESTAMP:
1726 #endif
1727 error = sockopt_getint(sopt, &optval);
1728 solock(so);
1729 if (error)
1730 break;
1731 if (optval)
1732 so->so_options |= opt;
1733 else
1734 so->so_options &= ~opt;
1735 break;
1736
1737 case SO_SNDBUF:
1738 case SO_RCVBUF:
1739 case SO_SNDLOWAT:
1740 case SO_RCVLOWAT:
1741 error = sockopt_getint(sopt, &optval);
1742 solock(so);
1743 if (error)
1744 break;
1745
1746 /*
1747 * Values < 1 make no sense for any of these
1748 * options, so disallow them.
1749 */
1750 if (optval < 1) {
1751 error = EINVAL;
1752 break;
1753 }
1754
1755 switch (opt) {
1756 case SO_SNDBUF:
1757 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1758 error = ENOBUFS;
1759 break;
1760 }
1761 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1762 break;
1763
1764 case SO_RCVBUF:
1765 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1766 error = ENOBUFS;
1767 break;
1768 }
1769 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1770 break;
1771
1772 /*
1773 * Make sure the low-water is never greater than
1774 * the high-water.
1775 */
1776 case SO_SNDLOWAT:
1777 if (optval > so->so_snd.sb_hiwat)
1778 optval = so->so_snd.sb_hiwat;
1779
1780 so->so_snd.sb_lowat = optval;
1781 break;
1782
1783 case SO_RCVLOWAT:
1784 if (optval > so->so_rcv.sb_hiwat)
1785 optval = so->so_rcv.sb_hiwat;
1786
1787 so->so_rcv.sb_lowat = optval;
1788 break;
1789 }
1790 break;
1791
1792 #ifdef COMPAT_50
1793 case SO_OSNDTIMEO:
1794 case SO_ORCVTIMEO: {
1795 struct timeval50 otv;
1796 error = sockopt_get(sopt, &otv, sizeof(otv));
1797 if (error) {
1798 solock(so);
1799 break;
1800 }
1801 timeval50_to_timeval(&otv, &tv);
1802 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1803 error = 0;
1804 /*FALLTHROUGH*/
1805 }
1806 #endif /* COMPAT_50 */
1807
1808 case SO_SNDTIMEO:
1809 case SO_RCVTIMEO:
1810 if (error)
1811 error = sockopt_get(sopt, &tv, sizeof(tv));
1812 solock(so);
1813 if (error)
1814 break;
1815
1816 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1817 error = EDOM;
1818 break;
1819 }
1820
1821 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1822 if (optval == 0 && tv.tv_usec != 0)
1823 optval = 1;
1824
1825 switch (opt) {
1826 case SO_SNDTIMEO:
1827 so->so_snd.sb_timeo = optval;
1828 break;
1829 case SO_RCVTIMEO:
1830 so->so_rcv.sb_timeo = optval;
1831 break;
1832 }
1833 break;
1834
1835 default:
1836 solock(so);
1837 error = ENOPROTOOPT;
1838 break;
1839 }
1840 KASSERT(solocked(so));
1841 return error;
1842 }
1843
1844 int
1845 sosetopt(struct socket *so, struct sockopt *sopt)
1846 {
1847 int error, prerr;
1848
1849 if (sopt->sopt_level == SOL_SOCKET) {
1850 error = sosetopt1(so, sopt);
1851 KASSERT(solocked(so));
1852 } else {
1853 error = ENOPROTOOPT;
1854 solock(so);
1855 }
1856
1857 if ((error == 0 || error == ENOPROTOOPT) &&
1858 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1859 /* give the protocol stack a shot */
1860 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1861 if (prerr == 0)
1862 error = 0;
1863 else if (prerr != ENOPROTOOPT)
1864 error = prerr;
1865 }
1866 sounlock(so);
1867 return error;
1868 }
1869
1870 /*
1871 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1872 */
1873 int
1874 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1875 const void *val, size_t valsize)
1876 {
1877 struct sockopt sopt;
1878 int error;
1879
1880 KASSERT(valsize == 0 || val != NULL);
1881
1882 sockopt_init(&sopt, level, name, valsize);
1883 sockopt_set(&sopt, val, valsize);
1884
1885 error = sosetopt(so, &sopt);
1886
1887 sockopt_destroy(&sopt);
1888
1889 return error;
1890 }
1891
1892 /*
1893 * internal get SOL_SOCKET options
1894 */
1895 static int
1896 sogetopt1(struct socket *so, struct sockopt *sopt)
1897 {
1898 int error, optval, opt;
1899 struct linger l;
1900 struct timeval tv;
1901
1902 switch ((opt = sopt->sopt_name)) {
1903
1904 case SO_ACCEPTFILTER:
1905 error = accept_filt_getopt(so, sopt);
1906 break;
1907
1908 case SO_LINGER:
1909 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1910 l.l_linger = so->so_linger;
1911
1912 error = sockopt_set(sopt, &l, sizeof(l));
1913 break;
1914
1915 case SO_USELOOPBACK:
1916 case SO_DONTROUTE:
1917 case SO_DEBUG:
1918 case SO_KEEPALIVE:
1919 case SO_REUSEADDR:
1920 case SO_REUSEPORT:
1921 case SO_BROADCAST:
1922 case SO_OOBINLINE:
1923 case SO_TIMESTAMP:
1924 case SO_NOSIGPIPE:
1925 #ifdef SO_OTIMESTAMP
1926 case SO_OTIMESTAMP:
1927 #endif
1928 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1929 break;
1930
1931 case SO_TYPE:
1932 error = sockopt_setint(sopt, so->so_type);
1933 break;
1934
1935 case SO_ERROR:
1936 error = sockopt_setint(sopt, so->so_error);
1937 so->so_error = 0;
1938 break;
1939
1940 case SO_SNDBUF:
1941 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1942 break;
1943
1944 case SO_RCVBUF:
1945 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1946 break;
1947
1948 case SO_SNDLOWAT:
1949 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1950 break;
1951
1952 case SO_RCVLOWAT:
1953 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1954 break;
1955
1956 #ifdef COMPAT_50
1957 case SO_OSNDTIMEO:
1958 case SO_ORCVTIMEO: {
1959 struct timeval50 otv;
1960
1961 optval = (opt == SO_OSNDTIMEO ?
1962 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1963
1964 otv.tv_sec = optval / hz;
1965 otv.tv_usec = (optval % hz) * tick;
1966
1967 error = sockopt_set(sopt, &otv, sizeof(otv));
1968 break;
1969 }
1970 #endif /* COMPAT_50 */
1971
1972 case SO_SNDTIMEO:
1973 case SO_RCVTIMEO:
1974 optval = (opt == SO_SNDTIMEO ?
1975 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1976
1977 tv.tv_sec = optval / hz;
1978 tv.tv_usec = (optval % hz) * tick;
1979
1980 error = sockopt_set(sopt, &tv, sizeof(tv));
1981 break;
1982
1983 case SO_OVERFLOWED:
1984 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1985 break;
1986
1987 default:
1988 error = ENOPROTOOPT;
1989 break;
1990 }
1991
1992 return (error);
1993 }
1994
1995 int
1996 sogetopt(struct socket *so, struct sockopt *sopt)
1997 {
1998 int error;
1999
2000 solock(so);
2001 if (sopt->sopt_level != SOL_SOCKET) {
2002 if (so->so_proto && so->so_proto->pr_ctloutput) {
2003 error = ((*so->so_proto->pr_ctloutput)
2004 (PRCO_GETOPT, so, sopt));
2005 } else
2006 error = (ENOPROTOOPT);
2007 } else {
2008 error = sogetopt1(so, sopt);
2009 }
2010 sounlock(so);
2011 return (error);
2012 }
2013
2014 /*
2015 * alloc sockopt data buffer buffer
2016 * - will be released at destroy
2017 */
2018 static int
2019 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2020 {
2021
2022 KASSERT(sopt->sopt_size == 0);
2023
2024 if (len > sizeof(sopt->sopt_buf)) {
2025 sopt->sopt_data = kmem_zalloc(len, kmflag);
2026 if (sopt->sopt_data == NULL)
2027 return ENOMEM;
2028 } else
2029 sopt->sopt_data = sopt->sopt_buf;
2030
2031 sopt->sopt_size = len;
2032 return 0;
2033 }
2034
2035 /*
2036 * initialise sockopt storage
2037 * - MAY sleep during allocation
2038 */
2039 void
2040 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2041 {
2042
2043 memset(sopt, 0, sizeof(*sopt));
2044
2045 sopt->sopt_level = level;
2046 sopt->sopt_name = name;
2047 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2048 }
2049
2050 /*
2051 * destroy sockopt storage
2052 * - will release any held memory references
2053 */
2054 void
2055 sockopt_destroy(struct sockopt *sopt)
2056 {
2057
2058 if (sopt->sopt_data != sopt->sopt_buf)
2059 kmem_free(sopt->sopt_data, sopt->sopt_size);
2060
2061 memset(sopt, 0, sizeof(*sopt));
2062 }
2063
2064 /*
2065 * set sockopt value
2066 * - value is copied into sockopt
2067 * - memory is allocated when necessary, will not sleep
2068 */
2069 int
2070 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2071 {
2072 int error;
2073
2074 if (sopt->sopt_size == 0) {
2075 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2076 if (error)
2077 return error;
2078 }
2079
2080 KASSERT(sopt->sopt_size == len);
2081 memcpy(sopt->sopt_data, buf, len);
2082 return 0;
2083 }
2084
2085 /*
2086 * common case of set sockopt integer value
2087 */
2088 int
2089 sockopt_setint(struct sockopt *sopt, int val)
2090 {
2091
2092 return sockopt_set(sopt, &val, sizeof(int));
2093 }
2094
2095 /*
2096 * get sockopt value
2097 * - correct size must be given
2098 */
2099 int
2100 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2101 {
2102
2103 if (sopt->sopt_size != len)
2104 return EINVAL;
2105
2106 memcpy(buf, sopt->sopt_data, len);
2107 return 0;
2108 }
2109
2110 /*
2111 * common case of get sockopt integer value
2112 */
2113 int
2114 sockopt_getint(const struct sockopt *sopt, int *valp)
2115 {
2116
2117 return sockopt_get(sopt, valp, sizeof(int));
2118 }
2119
2120 /*
2121 * set sockopt value from mbuf
2122 * - ONLY for legacy code
2123 * - mbuf is released by sockopt
2124 * - will not sleep
2125 */
2126 int
2127 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2128 {
2129 size_t len;
2130 int error;
2131
2132 len = m_length(m);
2133
2134 if (sopt->sopt_size == 0) {
2135 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2136 if (error)
2137 return error;
2138 }
2139
2140 KASSERT(sopt->sopt_size == len);
2141 m_copydata(m, 0, len, sopt->sopt_data);
2142 m_freem(m);
2143
2144 return 0;
2145 }
2146
2147 /*
2148 * get sockopt value into mbuf
2149 * - ONLY for legacy code
2150 * - mbuf to be released by the caller
2151 * - will not sleep
2152 */
2153 struct mbuf *
2154 sockopt_getmbuf(const struct sockopt *sopt)
2155 {
2156 struct mbuf *m;
2157
2158 if (sopt->sopt_size > MCLBYTES)
2159 return NULL;
2160
2161 m = m_get(M_DONTWAIT, MT_SOOPTS);
2162 if (m == NULL)
2163 return NULL;
2164
2165 if (sopt->sopt_size > MLEN) {
2166 MCLGET(m, M_DONTWAIT);
2167 if ((m->m_flags & M_EXT) == 0) {
2168 m_free(m);
2169 return NULL;
2170 }
2171 }
2172
2173 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2174 m->m_len = sopt->sopt_size;
2175
2176 return m;
2177 }
2178
2179 void
2180 sohasoutofband(struct socket *so)
2181 {
2182
2183 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2184 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2185 }
2186
2187 static void
2188 filt_sordetach(struct knote *kn)
2189 {
2190 struct socket *so;
2191
2192 so = ((file_t *)kn->kn_obj)->f_data;
2193 solock(so);
2194 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2195 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2196 so->so_rcv.sb_flags &= ~SB_KNOTE;
2197 sounlock(so);
2198 }
2199
2200 /*ARGSUSED*/
2201 static int
2202 filt_soread(struct knote *kn, long hint)
2203 {
2204 struct socket *so;
2205 int rv;
2206
2207 so = ((file_t *)kn->kn_obj)->f_data;
2208 if (hint != NOTE_SUBMIT)
2209 solock(so);
2210 kn->kn_data = so->so_rcv.sb_cc;
2211 if (so->so_state & SS_CANTRCVMORE) {
2212 kn->kn_flags |= EV_EOF;
2213 kn->kn_fflags = so->so_error;
2214 rv = 1;
2215 } else if (so->so_error) /* temporary udp error */
2216 rv = 1;
2217 else if (kn->kn_sfflags & NOTE_LOWAT)
2218 rv = (kn->kn_data >= kn->kn_sdata);
2219 else
2220 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2221 if (hint != NOTE_SUBMIT)
2222 sounlock(so);
2223 return rv;
2224 }
2225
2226 static void
2227 filt_sowdetach(struct knote *kn)
2228 {
2229 struct socket *so;
2230
2231 so = ((file_t *)kn->kn_obj)->f_data;
2232 solock(so);
2233 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2234 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2235 so->so_snd.sb_flags &= ~SB_KNOTE;
2236 sounlock(so);
2237 }
2238
2239 /*ARGSUSED*/
2240 static int
2241 filt_sowrite(struct knote *kn, long hint)
2242 {
2243 struct socket *so;
2244 int rv;
2245
2246 so = ((file_t *)kn->kn_obj)->f_data;
2247 if (hint != NOTE_SUBMIT)
2248 solock(so);
2249 kn->kn_data = sbspace(&so->so_snd);
2250 if (so->so_state & SS_CANTSENDMORE) {
2251 kn->kn_flags |= EV_EOF;
2252 kn->kn_fflags = so->so_error;
2253 rv = 1;
2254 } else if (so->so_error) /* temporary udp error */
2255 rv = 1;
2256 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2257 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2258 rv = 0;
2259 else if (kn->kn_sfflags & NOTE_LOWAT)
2260 rv = (kn->kn_data >= kn->kn_sdata);
2261 else
2262 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2263 if (hint != NOTE_SUBMIT)
2264 sounlock(so);
2265 return rv;
2266 }
2267
2268 /*ARGSUSED*/
2269 static int
2270 filt_solisten(struct knote *kn, long hint)
2271 {
2272 struct socket *so;
2273 int rv;
2274
2275 so = ((file_t *)kn->kn_obj)->f_data;
2276
2277 /*
2278 * Set kn_data to number of incoming connections, not
2279 * counting partial (incomplete) connections.
2280 */
2281 if (hint != NOTE_SUBMIT)
2282 solock(so);
2283 kn->kn_data = so->so_qlen;
2284 rv = (kn->kn_data > 0);
2285 if (hint != NOTE_SUBMIT)
2286 sounlock(so);
2287 return rv;
2288 }
2289
2290 static const struct filterops solisten_filtops =
2291 { 1, NULL, filt_sordetach, filt_solisten };
2292 static const struct filterops soread_filtops =
2293 { 1, NULL, filt_sordetach, filt_soread };
2294 static const struct filterops sowrite_filtops =
2295 { 1, NULL, filt_sowdetach, filt_sowrite };
2296
2297 int
2298 soo_kqfilter(struct file *fp, struct knote *kn)
2299 {
2300 struct socket *so;
2301 struct sockbuf *sb;
2302
2303 so = ((file_t *)kn->kn_obj)->f_data;
2304 solock(so);
2305 switch (kn->kn_filter) {
2306 case EVFILT_READ:
2307 if (so->so_options & SO_ACCEPTCONN)
2308 kn->kn_fop = &solisten_filtops;
2309 else
2310 kn->kn_fop = &soread_filtops;
2311 sb = &so->so_rcv;
2312 break;
2313 case EVFILT_WRITE:
2314 kn->kn_fop = &sowrite_filtops;
2315 sb = &so->so_snd;
2316 break;
2317 default:
2318 sounlock(so);
2319 return (EINVAL);
2320 }
2321 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2322 sb->sb_flags |= SB_KNOTE;
2323 sounlock(so);
2324 return (0);
2325 }
2326
2327 static int
2328 sodopoll(struct socket *so, int events)
2329 {
2330 int revents;
2331
2332 revents = 0;
2333
2334 if (events & (POLLIN | POLLRDNORM))
2335 if (soreadable(so))
2336 revents |= events & (POLLIN | POLLRDNORM);
2337
2338 if (events & (POLLOUT | POLLWRNORM))
2339 if (sowritable(so))
2340 revents |= events & (POLLOUT | POLLWRNORM);
2341
2342 if (events & (POLLPRI | POLLRDBAND))
2343 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2344 revents |= events & (POLLPRI | POLLRDBAND);
2345
2346 return revents;
2347 }
2348
2349 int
2350 sopoll(struct socket *so, int events)
2351 {
2352 int revents = 0;
2353
2354 #ifndef DIAGNOSTIC
2355 /*
2356 * Do a quick, unlocked check in expectation that the socket
2357 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2358 * as the solocked() assertions will fail.
2359 */
2360 if ((revents = sodopoll(so, events)) != 0)
2361 return revents;
2362 #endif
2363
2364 solock(so);
2365 if ((revents = sodopoll(so, events)) == 0) {
2366 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2367 selrecord(curlwp, &so->so_rcv.sb_sel);
2368 so->so_rcv.sb_flags |= SB_NOTIFY;
2369 }
2370
2371 if (events & (POLLOUT | POLLWRNORM)) {
2372 selrecord(curlwp, &so->so_snd.sb_sel);
2373 so->so_snd.sb_flags |= SB_NOTIFY;
2374 }
2375 }
2376 sounlock(so);
2377
2378 return revents;
2379 }
2380
2381
2382 #include <sys/sysctl.h>
2383
2384 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2385
2386 /*
2387 * sysctl helper routine for kern.somaxkva. ensures that the given
2388 * value is not too small.
2389 * (XXX should we maybe make sure it's not too large as well?)
2390 */
2391 static int
2392 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2393 {
2394 int error, new_somaxkva;
2395 struct sysctlnode node;
2396
2397 new_somaxkva = somaxkva;
2398 node = *rnode;
2399 node.sysctl_data = &new_somaxkva;
2400 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2401 if (error || newp == NULL)
2402 return (error);
2403
2404 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2405 return (EINVAL);
2406
2407 mutex_enter(&so_pendfree_lock);
2408 somaxkva = new_somaxkva;
2409 cv_broadcast(&socurkva_cv);
2410 mutex_exit(&so_pendfree_lock);
2411
2412 return (error);
2413 }
2414
2415 static void
2416 sysctl_kern_somaxkva_setup(void)
2417 {
2418
2419 KASSERT(socket_sysctllog == NULL);
2420 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2421 CTLFLAG_PERMANENT,
2422 CTLTYPE_NODE, "kern", NULL,
2423 NULL, 0, NULL, 0,
2424 CTL_KERN, CTL_EOL);
2425
2426 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2427 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2428 CTLTYPE_INT, "somaxkva",
2429 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2430 "used for socket buffers"),
2431 sysctl_kern_somaxkva, 0, NULL, 0,
2432 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2433 }
2434