uipc_socket.c revision 1.208 1 /* $NetBSD: uipc_socket.c,v 1.208 2012/01/27 19:48:40 para Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.208 2012/01/27 19:48:40 para Exp $");
67
68 #include "opt_compat_netbsd.h"
69 #include "opt_sock_counters.h"
70 #include "opt_sosend_loan.h"
71 #include "opt_mbuftrace.h"
72 #include "opt_somaxkva.h"
73 #include "opt_multiprocessor.h" /* XXX */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/file.h>
79 #include <sys/filedesc.h>
80 #include <sys/kmem.h>
81 #include <sys/mbuf.h>
82 #include <sys/domain.h>
83 #include <sys/kernel.h>
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/signalvar.h>
88 #include <sys/resourcevar.h>
89 #include <sys/uidinfo.h>
90 #include <sys/event.h>
91 #include <sys/poll.h>
92 #include <sys/kauth.h>
93 #include <sys/mutex.h>
94 #include <sys/condvar.h>
95 #include <sys/kthread.h>
96
97 #ifdef COMPAT_50
98 #include <compat/sys/time.h>
99 #include <compat/sys/socket.h>
100 #endif
101
102 #include <uvm/uvm_extern.h>
103 #include <uvm/uvm_loan.h>
104 #include <uvm/uvm_page.h>
105
106 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
107 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
108
109 extern const struct fileops socketops;
110
111 extern int somaxconn; /* patchable (XXX sysctl) */
112 int somaxconn = SOMAXCONN;
113 kmutex_t *softnet_lock;
114
115 #ifdef SOSEND_COUNTERS
116 #include <sys/device.h>
117
118 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
119 NULL, "sosend", "loan big");
120 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
121 NULL, "sosend", "copy big");
122 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
123 NULL, "sosend", "copy small");
124 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
125 NULL, "sosend", "kva limit");
126
127 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
128
129 EVCNT_ATTACH_STATIC(sosend_loan_big);
130 EVCNT_ATTACH_STATIC(sosend_copy_big);
131 EVCNT_ATTACH_STATIC(sosend_copy_small);
132 EVCNT_ATTACH_STATIC(sosend_kvalimit);
133 #else
134
135 #define SOSEND_COUNTER_INCR(ev) /* nothing */
136
137 #endif /* SOSEND_COUNTERS */
138
139 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
140 int sock_loan_thresh = -1;
141 #else
142 int sock_loan_thresh = 4096;
143 #endif
144
145 static kmutex_t so_pendfree_lock;
146 static struct mbuf *so_pendfree = NULL;
147
148 #ifndef SOMAXKVA
149 #define SOMAXKVA (16 * 1024 * 1024)
150 #endif
151 int somaxkva = SOMAXKVA;
152 static int socurkva;
153 static kcondvar_t socurkva_cv;
154
155 static kauth_listener_t socket_listener;
156
157 #define SOCK_LOAN_CHUNK 65536
158
159 static void sopendfree_thread(void *);
160 static kcondvar_t pendfree_thread_cv;
161 static lwp_t *sopendfree_lwp;
162
163 static void sysctl_kern_somaxkva_setup(void);
164 static struct sysctllog *socket_sysctllog;
165
166 static vsize_t
167 sokvareserve(struct socket *so, vsize_t len)
168 {
169 int error;
170
171 mutex_enter(&so_pendfree_lock);
172 while (socurkva + len > somaxkva) {
173 SOSEND_COUNTER_INCR(&sosend_kvalimit);
174 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
175 if (error) {
176 len = 0;
177 break;
178 }
179 }
180 socurkva += len;
181 mutex_exit(&so_pendfree_lock);
182 return len;
183 }
184
185 static void
186 sokvaunreserve(vsize_t len)
187 {
188
189 mutex_enter(&so_pendfree_lock);
190 socurkva -= len;
191 cv_broadcast(&socurkva_cv);
192 mutex_exit(&so_pendfree_lock);
193 }
194
195 /*
196 * sokvaalloc: allocate kva for loan.
197 */
198
199 vaddr_t
200 sokvaalloc(vsize_t len, struct socket *so)
201 {
202 vaddr_t lva;
203
204 /*
205 * reserve kva.
206 */
207
208 if (sokvareserve(so, len) == 0)
209 return 0;
210
211 /*
212 * allocate kva.
213 */
214
215 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA);
216 if (lva == 0) {
217 sokvaunreserve(len);
218 return (0);
219 }
220
221 return lva;
222 }
223
224 /*
225 * sokvafree: free kva for loan.
226 */
227
228 void
229 sokvafree(vaddr_t sva, vsize_t len)
230 {
231
232 /*
233 * free kva.
234 */
235
236 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
237
238 /*
239 * unreserve kva.
240 */
241
242 sokvaunreserve(len);
243 }
244
245 static void
246 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
247 {
248 vaddr_t sva, eva;
249 vsize_t len;
250 int npgs;
251
252 KASSERT(pgs != NULL);
253
254 eva = round_page((vaddr_t) buf + size);
255 sva = trunc_page((vaddr_t) buf);
256 len = eva - sva;
257 npgs = len >> PAGE_SHIFT;
258
259 pmap_kremove(sva, len);
260 pmap_update(pmap_kernel());
261 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
262 sokvafree(sva, len);
263 }
264
265 /*
266 * sopendfree_thread: free mbufs on "pendfree" list.
267 * unlock and relock so_pendfree_lock when freeing mbufs.
268 */
269
270 static void
271 sopendfree_thread(void *v)
272 {
273 struct mbuf *m, *next;
274 size_t rv;
275
276 mutex_enter(&so_pendfree_lock);
277
278 for (;;) {
279 rv = 0;
280 while (so_pendfree != NULL) {
281 m = so_pendfree;
282 so_pendfree = NULL;
283 mutex_exit(&so_pendfree_lock);
284
285 for (; m != NULL; m = next) {
286 next = m->m_next;
287 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
288 KASSERT(m->m_ext.ext_refcnt == 0);
289
290 rv += m->m_ext.ext_size;
291 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
292 m->m_ext.ext_size);
293 pool_cache_put(mb_cache, m);
294 }
295
296 mutex_enter(&so_pendfree_lock);
297 }
298 if (rv)
299 cv_broadcast(&socurkva_cv);
300 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
301 }
302 panic("sopendfree_thread");
303 /* NOTREACHED */
304 }
305
306 void
307 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
308 {
309
310 KASSERT(m != NULL);
311
312 /*
313 * postpone freeing mbuf.
314 *
315 * we can't do it in interrupt context
316 * because we need to put kva back to kernel_map.
317 */
318
319 mutex_enter(&so_pendfree_lock);
320 m->m_next = so_pendfree;
321 so_pendfree = m;
322 cv_signal(&pendfree_thread_cv);
323 mutex_exit(&so_pendfree_lock);
324 }
325
326 static long
327 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
328 {
329 struct iovec *iov = uio->uio_iov;
330 vaddr_t sva, eva;
331 vsize_t len;
332 vaddr_t lva;
333 int npgs, error;
334 vaddr_t va;
335 int i;
336
337 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
338 return (0);
339
340 if (iov->iov_len < (size_t) space)
341 space = iov->iov_len;
342 if (space > SOCK_LOAN_CHUNK)
343 space = SOCK_LOAN_CHUNK;
344
345 eva = round_page((vaddr_t) iov->iov_base + space);
346 sva = trunc_page((vaddr_t) iov->iov_base);
347 len = eva - sva;
348 npgs = len >> PAGE_SHIFT;
349
350 KASSERT(npgs <= M_EXT_MAXPAGES);
351
352 lva = sokvaalloc(len, so);
353 if (lva == 0)
354 return 0;
355
356 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
357 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
358 if (error) {
359 sokvafree(lva, len);
360 return (0);
361 }
362
363 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
364 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
365 VM_PROT_READ, 0);
366 pmap_update(pmap_kernel());
367
368 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
369
370 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
371 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
372
373 uio->uio_resid -= space;
374 /* uio_offset not updated, not set/used for write(2) */
375 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
376 uio->uio_iov->iov_len -= space;
377 if (uio->uio_iov->iov_len == 0) {
378 uio->uio_iov++;
379 uio->uio_iovcnt--;
380 }
381
382 return (space);
383 }
384
385 struct mbuf *
386 getsombuf(struct socket *so, int type)
387 {
388 struct mbuf *m;
389
390 m = m_get(M_WAIT, type);
391 MCLAIM(m, so->so_mowner);
392 return m;
393 }
394
395 static int
396 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
397 void *arg0, void *arg1, void *arg2, void *arg3)
398 {
399 int result;
400 enum kauth_network_req req;
401
402 result = KAUTH_RESULT_DEFER;
403 req = (enum kauth_network_req)arg0;
404
405 if ((action != KAUTH_NETWORK_SOCKET) &&
406 (action != KAUTH_NETWORK_BIND))
407 return result;
408
409 switch (req) {
410 case KAUTH_REQ_NETWORK_BIND_PORT:
411 result = KAUTH_RESULT_ALLOW;
412 break;
413
414 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
415 /* Normal users can only drop their own connections. */
416 struct socket *so = (struct socket *)arg1;
417
418 if (proc_uidmatch(cred, so->so_cred))
419 result = KAUTH_RESULT_ALLOW;
420
421 break;
422 }
423
424 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
425 /* We allow "raw" routing/bluetooth sockets to anyone. */
426 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
427 || (u_long)arg1 == PF_BLUETOOTH) {
428 result = KAUTH_RESULT_ALLOW;
429 } else {
430 /* Privileged, let secmodel handle this. */
431 if ((u_long)arg2 == SOCK_RAW)
432 break;
433 }
434
435 result = KAUTH_RESULT_ALLOW;
436
437 break;
438
439 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
440 result = KAUTH_RESULT_ALLOW;
441
442 break;
443
444 default:
445 break;
446 }
447
448 return result;
449 }
450
451 void
452 soinit(void)
453 {
454
455 sysctl_kern_somaxkva_setup();
456
457 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
458 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
459 cv_init(&socurkva_cv, "sokva");
460 cv_init(&pendfree_thread_cv, "sopendfr");
461 soinit2();
462
463 /* Set the initial adjusted socket buffer size. */
464 if (sb_max_set(sb_max))
465 panic("bad initial sb_max value: %lu", sb_max);
466
467 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
468 socket_listener_cb, NULL);
469 }
470
471 void
472 soinit1(void)
473 {
474 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
475 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
476 if (error)
477 panic("soinit1 %d", error);
478 }
479
480 /*
481 * Socket operation routines.
482 * These routines are called by the routines in
483 * sys_socket.c or from a system process, and
484 * implement the semantics of socket operations by
485 * switching out to the protocol specific routines.
486 */
487 /*ARGSUSED*/
488 int
489 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
490 struct socket *lockso)
491 {
492 const struct protosw *prp;
493 struct socket *so;
494 uid_t uid;
495 int error;
496 kmutex_t *lock;
497
498 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
499 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
500 KAUTH_ARG(proto));
501 if (error != 0)
502 return error;
503
504 if (proto)
505 prp = pffindproto(dom, proto, type);
506 else
507 prp = pffindtype(dom, type);
508 if (prp == NULL) {
509 /* no support for domain */
510 if (pffinddomain(dom) == 0)
511 return EAFNOSUPPORT;
512 /* no support for socket type */
513 if (proto == 0 && type != 0)
514 return EPROTOTYPE;
515 return EPROTONOSUPPORT;
516 }
517 if (prp->pr_usrreq == NULL)
518 return EPROTONOSUPPORT;
519 if (prp->pr_type != type)
520 return EPROTOTYPE;
521
522 so = soget(true);
523 so->so_type = type;
524 so->so_proto = prp;
525 so->so_send = sosend;
526 so->so_receive = soreceive;
527 #ifdef MBUFTRACE
528 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
529 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
530 so->so_mowner = &prp->pr_domain->dom_mowner;
531 #endif
532 uid = kauth_cred_geteuid(l->l_cred);
533 so->so_uidinfo = uid_find(uid);
534 so->so_cpid = l->l_proc->p_pid;
535 if (lockso != NULL) {
536 /* Caller wants us to share a lock. */
537 lock = lockso->so_lock;
538 so->so_lock = lock;
539 mutex_obj_hold(lock);
540 mutex_enter(lock);
541 } else {
542 /* Lock assigned and taken during PRU_ATTACH. */
543 }
544 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
545 (struct mbuf *)(long)proto, NULL, l);
546 KASSERT(solocked(so));
547 if (error != 0) {
548 so->so_state |= SS_NOFDREF;
549 sofree(so);
550 return error;
551 }
552 so->so_cred = kauth_cred_dup(l->l_cred);
553 sounlock(so);
554 *aso = so;
555 return 0;
556 }
557
558 /* On success, write file descriptor to fdout and return zero. On
559 * failure, return non-zero; *fdout will be undefined.
560 */
561 int
562 fsocreate(int domain, struct socket **sop, int type, int protocol,
563 struct lwp *l, int *fdout)
564 {
565 struct socket *so;
566 struct file *fp;
567 int fd, error;
568 int flags = type & SOCK_FLAGS_MASK;
569
570 type &= ~SOCK_FLAGS_MASK;
571 if ((error = fd_allocfile(&fp, &fd)) != 0)
572 return error;
573 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
574 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
575 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
576 fp->f_type = DTYPE_SOCKET;
577 fp->f_ops = &socketops;
578 error = socreate(domain, &so, type, protocol, l, NULL);
579 if (error != 0) {
580 fd_abort(curproc, fp, fd);
581 } else {
582 if (sop != NULL)
583 *sop = so;
584 fp->f_data = so;
585 fd_affix(curproc, fp, fd);
586 *fdout = fd;
587 }
588 return error;
589 }
590
591 int
592 sofamily(const struct socket *so)
593 {
594 const struct protosw *pr;
595 const struct domain *dom;
596
597 if ((pr = so->so_proto) == NULL)
598 return AF_UNSPEC;
599 if ((dom = pr->pr_domain) == NULL)
600 return AF_UNSPEC;
601 return dom->dom_family;
602 }
603
604 int
605 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
606 {
607 int error;
608
609 solock(so);
610 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
611 sounlock(so);
612 return error;
613 }
614
615 int
616 solisten(struct socket *so, int backlog, struct lwp *l)
617 {
618 int error;
619
620 solock(so);
621 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
622 SS_ISDISCONNECTING)) != 0) {
623 sounlock(so);
624 return (EOPNOTSUPP);
625 }
626 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
627 NULL, NULL, l);
628 if (error != 0) {
629 sounlock(so);
630 return error;
631 }
632 if (TAILQ_EMPTY(&so->so_q))
633 so->so_options |= SO_ACCEPTCONN;
634 if (backlog < 0)
635 backlog = 0;
636 so->so_qlimit = min(backlog, somaxconn);
637 sounlock(so);
638 return 0;
639 }
640
641 void
642 sofree(struct socket *so)
643 {
644 u_int refs;
645
646 KASSERT(solocked(so));
647
648 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
649 sounlock(so);
650 return;
651 }
652 if (so->so_head) {
653 /*
654 * We must not decommission a socket that's on the accept(2)
655 * queue. If we do, then accept(2) may hang after select(2)
656 * indicated that the listening socket was ready.
657 */
658 if (!soqremque(so, 0)) {
659 sounlock(so);
660 return;
661 }
662 }
663 if (so->so_rcv.sb_hiwat)
664 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
665 RLIM_INFINITY);
666 if (so->so_snd.sb_hiwat)
667 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
668 RLIM_INFINITY);
669 sbrelease(&so->so_snd, so);
670 KASSERT(!cv_has_waiters(&so->so_cv));
671 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
672 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
673 sorflush(so);
674 refs = so->so_aborting; /* XXX */
675 /* Remove acccept filter if one is present. */
676 if (so->so_accf != NULL)
677 (void)accept_filt_clear(so);
678 sounlock(so);
679 if (refs == 0) /* XXX */
680 soput(so);
681 }
682
683 /*
684 * Close a socket on last file table reference removal.
685 * Initiate disconnect if connected.
686 * Free socket when disconnect complete.
687 */
688 int
689 soclose(struct socket *so)
690 {
691 struct socket *so2;
692 int error;
693 int error2;
694
695 error = 0;
696 solock(so);
697 if (so->so_options & SO_ACCEPTCONN) {
698 for (;;) {
699 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
700 KASSERT(solocked2(so, so2));
701 (void) soqremque(so2, 0);
702 /* soabort drops the lock. */
703 (void) soabort(so2);
704 solock(so);
705 continue;
706 }
707 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
708 KASSERT(solocked2(so, so2));
709 (void) soqremque(so2, 1);
710 /* soabort drops the lock. */
711 (void) soabort(so2);
712 solock(so);
713 continue;
714 }
715 break;
716 }
717 }
718 if (so->so_pcb == 0)
719 goto discard;
720 if (so->so_state & SS_ISCONNECTED) {
721 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
722 error = sodisconnect(so);
723 if (error)
724 goto drop;
725 }
726 if (so->so_options & SO_LINGER) {
727 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
728 (SS_ISDISCONNECTING|SS_NBIO))
729 goto drop;
730 while (so->so_state & SS_ISCONNECTED) {
731 error = sowait(so, true, so->so_linger * hz);
732 if (error)
733 break;
734 }
735 }
736 }
737 drop:
738 if (so->so_pcb) {
739 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
740 NULL, NULL, NULL, NULL);
741 if (error == 0)
742 error = error2;
743 }
744 discard:
745 if (so->so_state & SS_NOFDREF)
746 panic("soclose: NOFDREF");
747 kauth_cred_free(so->so_cred);
748 so->so_state |= SS_NOFDREF;
749 sofree(so);
750 return (error);
751 }
752
753 /*
754 * Must be called with the socket locked.. Will return with it unlocked.
755 */
756 int
757 soabort(struct socket *so)
758 {
759 u_int refs;
760 int error;
761
762 KASSERT(solocked(so));
763 KASSERT(so->so_head == NULL);
764
765 so->so_aborting++; /* XXX */
766 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
767 NULL, NULL, NULL);
768 refs = --so->so_aborting; /* XXX */
769 if (error || (refs == 0)) {
770 sofree(so);
771 } else {
772 sounlock(so);
773 }
774 return error;
775 }
776
777 int
778 soaccept(struct socket *so, struct mbuf *nam)
779 {
780 int error;
781
782 KASSERT(solocked(so));
783
784 error = 0;
785 if ((so->so_state & SS_NOFDREF) == 0)
786 panic("soaccept: !NOFDREF");
787 so->so_state &= ~SS_NOFDREF;
788 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
789 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
790 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
791 NULL, nam, NULL, NULL);
792 else
793 error = ECONNABORTED;
794
795 return (error);
796 }
797
798 int
799 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
800 {
801 int error;
802
803 KASSERT(solocked(so));
804
805 if (so->so_options & SO_ACCEPTCONN)
806 return (EOPNOTSUPP);
807 /*
808 * If protocol is connection-based, can only connect once.
809 * Otherwise, if connected, try to disconnect first.
810 * This allows user to disconnect by connecting to, e.g.,
811 * a null address.
812 */
813 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
814 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
815 (error = sodisconnect(so))))
816 error = EISCONN;
817 else
818 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
819 NULL, nam, NULL, l);
820 return (error);
821 }
822
823 int
824 soconnect2(struct socket *so1, struct socket *so2)
825 {
826 int error;
827
828 KASSERT(solocked2(so1, so2));
829
830 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
831 NULL, (struct mbuf *)so2, NULL, NULL);
832 return (error);
833 }
834
835 int
836 sodisconnect(struct socket *so)
837 {
838 int error;
839
840 KASSERT(solocked(so));
841
842 if ((so->so_state & SS_ISCONNECTED) == 0) {
843 error = ENOTCONN;
844 } else if (so->so_state & SS_ISDISCONNECTING) {
845 error = EALREADY;
846 } else {
847 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
848 NULL, NULL, NULL, NULL);
849 }
850 return (error);
851 }
852
853 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
854 /*
855 * Send on a socket.
856 * If send must go all at once and message is larger than
857 * send buffering, then hard error.
858 * Lock against other senders.
859 * If must go all at once and not enough room now, then
860 * inform user that this would block and do nothing.
861 * Otherwise, if nonblocking, send as much as possible.
862 * The data to be sent is described by "uio" if nonzero,
863 * otherwise by the mbuf chain "top" (which must be null
864 * if uio is not). Data provided in mbuf chain must be small
865 * enough to send all at once.
866 *
867 * Returns nonzero on error, timeout or signal; callers
868 * must check for short counts if EINTR/ERESTART are returned.
869 * Data and control buffers are freed on return.
870 */
871 int
872 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
873 struct mbuf *control, int flags, struct lwp *l)
874 {
875 struct mbuf **mp, *m;
876 struct proc *p;
877 long space, len, resid, clen, mlen;
878 int error, s, dontroute, atomic;
879 short wakeup_state = 0;
880
881 p = l->l_proc;
882 clen = 0;
883
884 /*
885 * solock() provides atomicity of access. splsoftnet() prevents
886 * protocol processing soft interrupts from interrupting us and
887 * blocking (expensive).
888 */
889 s = splsoftnet();
890 solock(so);
891 atomic = sosendallatonce(so) || top;
892 if (uio)
893 resid = uio->uio_resid;
894 else
895 resid = top->m_pkthdr.len;
896 /*
897 * In theory resid should be unsigned.
898 * However, space must be signed, as it might be less than 0
899 * if we over-committed, and we must use a signed comparison
900 * of space and resid. On the other hand, a negative resid
901 * causes us to loop sending 0-length segments to the protocol.
902 */
903 if (resid < 0) {
904 error = EINVAL;
905 goto out;
906 }
907 dontroute =
908 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
909 (so->so_proto->pr_flags & PR_ATOMIC);
910 l->l_ru.ru_msgsnd++;
911 if (control)
912 clen = control->m_len;
913 restart:
914 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
915 goto out;
916 do {
917 if (so->so_state & SS_CANTSENDMORE) {
918 error = EPIPE;
919 goto release;
920 }
921 if (so->so_error) {
922 error = so->so_error;
923 so->so_error = 0;
924 goto release;
925 }
926 if ((so->so_state & SS_ISCONNECTED) == 0) {
927 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
928 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
929 !(resid == 0 && clen != 0)) {
930 error = ENOTCONN;
931 goto release;
932 }
933 } else if (addr == 0) {
934 error = EDESTADDRREQ;
935 goto release;
936 }
937 }
938 space = sbspace(&so->so_snd);
939 if (flags & MSG_OOB)
940 space += 1024;
941 if ((atomic && resid > so->so_snd.sb_hiwat) ||
942 clen > so->so_snd.sb_hiwat) {
943 error = EMSGSIZE;
944 goto release;
945 }
946 if (space < resid + clen &&
947 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
948 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
949 error = EWOULDBLOCK;
950 goto release;
951 }
952 sbunlock(&so->so_snd);
953 if (wakeup_state & SS_RESTARTSYS) {
954 error = ERESTART;
955 goto out;
956 }
957 error = sbwait(&so->so_snd);
958 if (error)
959 goto out;
960 wakeup_state = so->so_state;
961 goto restart;
962 }
963 wakeup_state = 0;
964 mp = ⊤
965 space -= clen;
966 do {
967 if (uio == NULL) {
968 /*
969 * Data is prepackaged in "top".
970 */
971 resid = 0;
972 if (flags & MSG_EOR)
973 top->m_flags |= M_EOR;
974 } else do {
975 sounlock(so);
976 splx(s);
977 if (top == NULL) {
978 m = m_gethdr(M_WAIT, MT_DATA);
979 mlen = MHLEN;
980 m->m_pkthdr.len = 0;
981 m->m_pkthdr.rcvif = NULL;
982 } else {
983 m = m_get(M_WAIT, MT_DATA);
984 mlen = MLEN;
985 }
986 MCLAIM(m, so->so_snd.sb_mowner);
987 if (sock_loan_thresh >= 0 &&
988 uio->uio_iov->iov_len >= sock_loan_thresh &&
989 space >= sock_loan_thresh &&
990 (len = sosend_loan(so, uio, m,
991 space)) != 0) {
992 SOSEND_COUNTER_INCR(&sosend_loan_big);
993 space -= len;
994 goto have_data;
995 }
996 if (resid >= MINCLSIZE && space >= MCLBYTES) {
997 SOSEND_COUNTER_INCR(&sosend_copy_big);
998 m_clget(m, M_DONTWAIT);
999 if ((m->m_flags & M_EXT) == 0)
1000 goto nopages;
1001 mlen = MCLBYTES;
1002 if (atomic && top == 0) {
1003 len = lmin(MCLBYTES - max_hdr,
1004 resid);
1005 m->m_data += max_hdr;
1006 } else
1007 len = lmin(MCLBYTES, resid);
1008 space -= len;
1009 } else {
1010 nopages:
1011 SOSEND_COUNTER_INCR(&sosend_copy_small);
1012 len = lmin(lmin(mlen, resid), space);
1013 space -= len;
1014 /*
1015 * For datagram protocols, leave room
1016 * for protocol headers in first mbuf.
1017 */
1018 if (atomic && top == 0 && len < mlen)
1019 MH_ALIGN(m, len);
1020 }
1021 error = uiomove(mtod(m, void *), (int)len, uio);
1022 have_data:
1023 resid = uio->uio_resid;
1024 m->m_len = len;
1025 *mp = m;
1026 top->m_pkthdr.len += len;
1027 s = splsoftnet();
1028 solock(so);
1029 if (error != 0)
1030 goto release;
1031 mp = &m->m_next;
1032 if (resid <= 0) {
1033 if (flags & MSG_EOR)
1034 top->m_flags |= M_EOR;
1035 break;
1036 }
1037 } while (space > 0 && atomic);
1038
1039 if (so->so_state & SS_CANTSENDMORE) {
1040 error = EPIPE;
1041 goto release;
1042 }
1043 if (dontroute)
1044 so->so_options |= SO_DONTROUTE;
1045 if (resid > 0)
1046 so->so_state |= SS_MORETOCOME;
1047 error = (*so->so_proto->pr_usrreq)(so,
1048 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
1049 top, addr, control, curlwp);
1050 if (dontroute)
1051 so->so_options &= ~SO_DONTROUTE;
1052 if (resid > 0)
1053 so->so_state &= ~SS_MORETOCOME;
1054 clen = 0;
1055 control = NULL;
1056 top = NULL;
1057 mp = ⊤
1058 if (error != 0)
1059 goto release;
1060 } while (resid && space > 0);
1061 } while (resid);
1062
1063 release:
1064 sbunlock(&so->so_snd);
1065 out:
1066 sounlock(so);
1067 splx(s);
1068 if (top)
1069 m_freem(top);
1070 if (control)
1071 m_freem(control);
1072 return (error);
1073 }
1074
1075 /*
1076 * Following replacement or removal of the first mbuf on the first
1077 * mbuf chain of a socket buffer, push necessary state changes back
1078 * into the socket buffer so that other consumers see the values
1079 * consistently. 'nextrecord' is the callers locally stored value of
1080 * the original value of sb->sb_mb->m_nextpkt which must be restored
1081 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1082 */
1083 static void
1084 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1085 {
1086
1087 KASSERT(solocked(sb->sb_so));
1088
1089 /*
1090 * First, update for the new value of nextrecord. If necessary,
1091 * make it the first record.
1092 */
1093 if (sb->sb_mb != NULL)
1094 sb->sb_mb->m_nextpkt = nextrecord;
1095 else
1096 sb->sb_mb = nextrecord;
1097
1098 /*
1099 * Now update any dependent socket buffer fields to reflect
1100 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1101 * the addition of a second clause that takes care of the
1102 * case where sb_mb has been updated, but remains the last
1103 * record.
1104 */
1105 if (sb->sb_mb == NULL) {
1106 sb->sb_mbtail = NULL;
1107 sb->sb_lastrecord = NULL;
1108 } else if (sb->sb_mb->m_nextpkt == NULL)
1109 sb->sb_lastrecord = sb->sb_mb;
1110 }
1111
1112 /*
1113 * Implement receive operations on a socket.
1114 * We depend on the way that records are added to the sockbuf
1115 * by sbappend*. In particular, each record (mbufs linked through m_next)
1116 * must begin with an address if the protocol so specifies,
1117 * followed by an optional mbuf or mbufs containing ancillary data,
1118 * and then zero or more mbufs of data.
1119 * In order to avoid blocking network interrupts for the entire time here,
1120 * we splx() while doing the actual copy to user space.
1121 * Although the sockbuf is locked, new data may still be appended,
1122 * and thus we must maintain consistency of the sockbuf during that time.
1123 *
1124 * The caller may receive the data as a single mbuf chain by supplying
1125 * an mbuf **mp0 for use in returning the chain. The uio is then used
1126 * only for the count in uio_resid.
1127 */
1128 int
1129 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1130 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1131 {
1132 struct lwp *l = curlwp;
1133 struct mbuf *m, **mp, *mt;
1134 int atomic, flags, len, error, s, offset, moff, type, orig_resid;
1135 const struct protosw *pr;
1136 struct mbuf *nextrecord;
1137 int mbuf_removed = 0;
1138 const struct domain *dom;
1139 short wakeup_state = 0;
1140
1141 pr = so->so_proto;
1142 atomic = pr->pr_flags & PR_ATOMIC;
1143 dom = pr->pr_domain;
1144 mp = mp0;
1145 type = 0;
1146 orig_resid = uio->uio_resid;
1147
1148 if (paddr != NULL)
1149 *paddr = NULL;
1150 if (controlp != NULL)
1151 *controlp = NULL;
1152 if (flagsp != NULL)
1153 flags = *flagsp &~ MSG_EOR;
1154 else
1155 flags = 0;
1156
1157 if (flags & MSG_OOB) {
1158 m = m_get(M_WAIT, MT_DATA);
1159 solock(so);
1160 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1161 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1162 sounlock(so);
1163 if (error)
1164 goto bad;
1165 do {
1166 error = uiomove(mtod(m, void *),
1167 (int) min(uio->uio_resid, m->m_len), uio);
1168 m = m_free(m);
1169 } while (uio->uio_resid > 0 && error == 0 && m);
1170 bad:
1171 if (m != NULL)
1172 m_freem(m);
1173 return error;
1174 }
1175 if (mp != NULL)
1176 *mp = NULL;
1177
1178 /*
1179 * solock() provides atomicity of access. splsoftnet() prevents
1180 * protocol processing soft interrupts from interrupting us and
1181 * blocking (expensive).
1182 */
1183 s = splsoftnet();
1184 solock(so);
1185 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1186 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1187
1188 restart:
1189 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1190 sounlock(so);
1191 splx(s);
1192 return error;
1193 }
1194
1195 m = so->so_rcv.sb_mb;
1196 /*
1197 * If we have less data than requested, block awaiting more
1198 * (subject to any timeout) if:
1199 * 1. the current count is less than the low water mark,
1200 * 2. MSG_WAITALL is set, and it is possible to do the entire
1201 * receive operation at once if we block (resid <= hiwat), or
1202 * 3. MSG_DONTWAIT is not set.
1203 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1204 * we have to do the receive in sections, and thus risk returning
1205 * a short count if a timeout or signal occurs after we start.
1206 */
1207 if (m == NULL ||
1208 ((flags & MSG_DONTWAIT) == 0 &&
1209 so->so_rcv.sb_cc < uio->uio_resid &&
1210 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1211 ((flags & MSG_WAITALL) &&
1212 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1213 m->m_nextpkt == NULL && !atomic)) {
1214 #ifdef DIAGNOSTIC
1215 if (m == NULL && so->so_rcv.sb_cc)
1216 panic("receive 1");
1217 #endif
1218 if (so->so_error) {
1219 if (m != NULL)
1220 goto dontblock;
1221 error = so->so_error;
1222 if ((flags & MSG_PEEK) == 0)
1223 so->so_error = 0;
1224 goto release;
1225 }
1226 if (so->so_state & SS_CANTRCVMORE) {
1227 if (m != NULL)
1228 goto dontblock;
1229 else
1230 goto release;
1231 }
1232 for (; m != NULL; m = m->m_next)
1233 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1234 m = so->so_rcv.sb_mb;
1235 goto dontblock;
1236 }
1237 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1238 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1239 error = ENOTCONN;
1240 goto release;
1241 }
1242 if (uio->uio_resid == 0)
1243 goto release;
1244 if ((so->so_state & SS_NBIO) ||
1245 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1246 error = EWOULDBLOCK;
1247 goto release;
1248 }
1249 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1250 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1251 sbunlock(&so->so_rcv);
1252 if (wakeup_state & SS_RESTARTSYS)
1253 error = ERESTART;
1254 else
1255 error = sbwait(&so->so_rcv);
1256 if (error != 0) {
1257 sounlock(so);
1258 splx(s);
1259 return error;
1260 }
1261 wakeup_state = so->so_state;
1262 goto restart;
1263 }
1264 dontblock:
1265 /*
1266 * On entry here, m points to the first record of the socket buffer.
1267 * From this point onward, we maintain 'nextrecord' as a cache of the
1268 * pointer to the next record in the socket buffer. We must keep the
1269 * various socket buffer pointers and local stack versions of the
1270 * pointers in sync, pushing out modifications before dropping the
1271 * socket lock, and re-reading them when picking it up.
1272 *
1273 * Otherwise, we will race with the network stack appending new data
1274 * or records onto the socket buffer by using inconsistent/stale
1275 * versions of the field, possibly resulting in socket buffer
1276 * corruption.
1277 *
1278 * By holding the high-level sblock(), we prevent simultaneous
1279 * readers from pulling off the front of the socket buffer.
1280 */
1281 if (l != NULL)
1282 l->l_ru.ru_msgrcv++;
1283 KASSERT(m == so->so_rcv.sb_mb);
1284 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1285 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1286 nextrecord = m->m_nextpkt;
1287 if (pr->pr_flags & PR_ADDR) {
1288 #ifdef DIAGNOSTIC
1289 if (m->m_type != MT_SONAME)
1290 panic("receive 1a");
1291 #endif
1292 orig_resid = 0;
1293 if (flags & MSG_PEEK) {
1294 if (paddr)
1295 *paddr = m_copy(m, 0, m->m_len);
1296 m = m->m_next;
1297 } else {
1298 sbfree(&so->so_rcv, m);
1299 mbuf_removed = 1;
1300 if (paddr != NULL) {
1301 *paddr = m;
1302 so->so_rcv.sb_mb = m->m_next;
1303 m->m_next = NULL;
1304 m = so->so_rcv.sb_mb;
1305 } else {
1306 MFREE(m, so->so_rcv.sb_mb);
1307 m = so->so_rcv.sb_mb;
1308 }
1309 sbsync(&so->so_rcv, nextrecord);
1310 }
1311 }
1312
1313 /*
1314 * Process one or more MT_CONTROL mbufs present before any data mbufs
1315 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1316 * just copy the data; if !MSG_PEEK, we call into the protocol to
1317 * perform externalization (or freeing if controlp == NULL).
1318 */
1319 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1320 struct mbuf *cm = NULL, *cmn;
1321 struct mbuf **cme = &cm;
1322
1323 do {
1324 if (flags & MSG_PEEK) {
1325 if (controlp != NULL) {
1326 *controlp = m_copy(m, 0, m->m_len);
1327 controlp = &(*controlp)->m_next;
1328 }
1329 m = m->m_next;
1330 } else {
1331 sbfree(&so->so_rcv, m);
1332 so->so_rcv.sb_mb = m->m_next;
1333 m->m_next = NULL;
1334 *cme = m;
1335 cme = &(*cme)->m_next;
1336 m = so->so_rcv.sb_mb;
1337 }
1338 } while (m != NULL && m->m_type == MT_CONTROL);
1339 if ((flags & MSG_PEEK) == 0)
1340 sbsync(&so->so_rcv, nextrecord);
1341 for (; cm != NULL; cm = cmn) {
1342 cmn = cm->m_next;
1343 cm->m_next = NULL;
1344 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1345 if (controlp != NULL) {
1346 if (dom->dom_externalize != NULL &&
1347 type == SCM_RIGHTS) {
1348 sounlock(so);
1349 splx(s);
1350 error = (*dom->dom_externalize)(cm, l,
1351 (flags & MSG_CMSG_CLOEXEC) ?
1352 O_CLOEXEC : 0);
1353 s = splsoftnet();
1354 solock(so);
1355 }
1356 *controlp = cm;
1357 while (*controlp != NULL)
1358 controlp = &(*controlp)->m_next;
1359 } else {
1360 /*
1361 * Dispose of any SCM_RIGHTS message that went
1362 * through the read path rather than recv.
1363 */
1364 if (dom->dom_dispose != NULL &&
1365 type == SCM_RIGHTS) {
1366 sounlock(so);
1367 (*dom->dom_dispose)(cm);
1368 solock(so);
1369 }
1370 m_freem(cm);
1371 }
1372 }
1373 if (m != NULL)
1374 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1375 else
1376 nextrecord = so->so_rcv.sb_mb;
1377 orig_resid = 0;
1378 }
1379
1380 /* If m is non-NULL, we have some data to read. */
1381 if (__predict_true(m != NULL)) {
1382 type = m->m_type;
1383 if (type == MT_OOBDATA)
1384 flags |= MSG_OOB;
1385 }
1386 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1387 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1388
1389 moff = 0;
1390 offset = 0;
1391 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1392 if (m->m_type == MT_OOBDATA) {
1393 if (type != MT_OOBDATA)
1394 break;
1395 } else if (type == MT_OOBDATA)
1396 break;
1397 #ifdef DIAGNOSTIC
1398 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1399 panic("receive 3");
1400 #endif
1401 so->so_state &= ~SS_RCVATMARK;
1402 wakeup_state = 0;
1403 len = uio->uio_resid;
1404 if (so->so_oobmark && len > so->so_oobmark - offset)
1405 len = so->so_oobmark - offset;
1406 if (len > m->m_len - moff)
1407 len = m->m_len - moff;
1408 /*
1409 * If mp is set, just pass back the mbufs.
1410 * Otherwise copy them out via the uio, then free.
1411 * Sockbuf must be consistent here (points to current mbuf,
1412 * it points to next record) when we drop priority;
1413 * we must note any additions to the sockbuf when we
1414 * block interrupts again.
1415 */
1416 if (mp == NULL) {
1417 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1418 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1419 sounlock(so);
1420 splx(s);
1421 error = uiomove(mtod(m, char *) + moff, (int)len, uio);
1422 s = splsoftnet();
1423 solock(so);
1424 if (error != 0) {
1425 /*
1426 * If any part of the record has been removed
1427 * (such as the MT_SONAME mbuf, which will
1428 * happen when PR_ADDR, and thus also
1429 * PR_ATOMIC, is set), then drop the entire
1430 * record to maintain the atomicity of the
1431 * receive operation.
1432 *
1433 * This avoids a later panic("receive 1a")
1434 * when compiled with DIAGNOSTIC.
1435 */
1436 if (m && mbuf_removed && atomic)
1437 (void) sbdroprecord(&so->so_rcv);
1438
1439 goto release;
1440 }
1441 } else
1442 uio->uio_resid -= len;
1443 if (len == m->m_len - moff) {
1444 if (m->m_flags & M_EOR)
1445 flags |= MSG_EOR;
1446 if (flags & MSG_PEEK) {
1447 m = m->m_next;
1448 moff = 0;
1449 } else {
1450 nextrecord = m->m_nextpkt;
1451 sbfree(&so->so_rcv, m);
1452 if (mp) {
1453 *mp = m;
1454 mp = &m->m_next;
1455 so->so_rcv.sb_mb = m = m->m_next;
1456 *mp = NULL;
1457 } else {
1458 MFREE(m, so->so_rcv.sb_mb);
1459 m = so->so_rcv.sb_mb;
1460 }
1461 /*
1462 * If m != NULL, we also know that
1463 * so->so_rcv.sb_mb != NULL.
1464 */
1465 KASSERT(so->so_rcv.sb_mb == m);
1466 if (m) {
1467 m->m_nextpkt = nextrecord;
1468 if (nextrecord == NULL)
1469 so->so_rcv.sb_lastrecord = m;
1470 } else {
1471 so->so_rcv.sb_mb = nextrecord;
1472 SB_EMPTY_FIXUP(&so->so_rcv);
1473 }
1474 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1475 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1476 }
1477 } else if (flags & MSG_PEEK)
1478 moff += len;
1479 else {
1480 if (mp != NULL) {
1481 mt = m_copym(m, 0, len, M_NOWAIT);
1482 if (__predict_false(mt == NULL)) {
1483 sounlock(so);
1484 mt = m_copym(m, 0, len, M_WAIT);
1485 solock(so);
1486 }
1487 *mp = mt;
1488 }
1489 m->m_data += len;
1490 m->m_len -= len;
1491 so->so_rcv.sb_cc -= len;
1492 }
1493 if (so->so_oobmark) {
1494 if ((flags & MSG_PEEK) == 0) {
1495 so->so_oobmark -= len;
1496 if (so->so_oobmark == 0) {
1497 so->so_state |= SS_RCVATMARK;
1498 break;
1499 }
1500 } else {
1501 offset += len;
1502 if (offset == so->so_oobmark)
1503 break;
1504 }
1505 }
1506 if (flags & MSG_EOR)
1507 break;
1508 /*
1509 * If the MSG_WAITALL flag is set (for non-atomic socket),
1510 * we must not quit until "uio->uio_resid == 0" or an error
1511 * termination. If a signal/timeout occurs, return
1512 * with a short count but without error.
1513 * Keep sockbuf locked against other readers.
1514 */
1515 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1516 !sosendallatonce(so) && !nextrecord) {
1517 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1518 break;
1519 /*
1520 * If we are peeking and the socket receive buffer is
1521 * full, stop since we can't get more data to peek at.
1522 */
1523 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1524 break;
1525 /*
1526 * If we've drained the socket buffer, tell the
1527 * protocol in case it needs to do something to
1528 * get it filled again.
1529 */
1530 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1531 (*pr->pr_usrreq)(so, PRU_RCVD,
1532 NULL, (struct mbuf *)(long)flags, NULL, l);
1533 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1534 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1535 if (wakeup_state & SS_RESTARTSYS)
1536 error = ERESTART;
1537 else
1538 error = sbwait(&so->so_rcv);
1539 if (error != 0) {
1540 sbunlock(&so->so_rcv);
1541 sounlock(so);
1542 splx(s);
1543 return 0;
1544 }
1545 if ((m = so->so_rcv.sb_mb) != NULL)
1546 nextrecord = m->m_nextpkt;
1547 wakeup_state = so->so_state;
1548 }
1549 }
1550
1551 if (m && atomic) {
1552 flags |= MSG_TRUNC;
1553 if ((flags & MSG_PEEK) == 0)
1554 (void) sbdroprecord(&so->so_rcv);
1555 }
1556 if ((flags & MSG_PEEK) == 0) {
1557 if (m == NULL) {
1558 /*
1559 * First part is an inline SB_EMPTY_FIXUP(). Second
1560 * part makes sure sb_lastrecord is up-to-date if
1561 * there is still data in the socket buffer.
1562 */
1563 so->so_rcv.sb_mb = nextrecord;
1564 if (so->so_rcv.sb_mb == NULL) {
1565 so->so_rcv.sb_mbtail = NULL;
1566 so->so_rcv.sb_lastrecord = NULL;
1567 } else if (nextrecord->m_nextpkt == NULL)
1568 so->so_rcv.sb_lastrecord = nextrecord;
1569 }
1570 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1571 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1572 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1573 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1574 (struct mbuf *)(long)flags, NULL, l);
1575 }
1576 if (orig_resid == uio->uio_resid && orig_resid &&
1577 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1578 sbunlock(&so->so_rcv);
1579 goto restart;
1580 }
1581
1582 if (flagsp != NULL)
1583 *flagsp |= flags;
1584 release:
1585 sbunlock(&so->so_rcv);
1586 sounlock(so);
1587 splx(s);
1588 return error;
1589 }
1590
1591 int
1592 soshutdown(struct socket *so, int how)
1593 {
1594 const struct protosw *pr;
1595 int error;
1596
1597 KASSERT(solocked(so));
1598
1599 pr = so->so_proto;
1600 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1601 return (EINVAL);
1602
1603 if (how == SHUT_RD || how == SHUT_RDWR) {
1604 sorflush(so);
1605 error = 0;
1606 }
1607 if (how == SHUT_WR || how == SHUT_RDWR)
1608 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1609 NULL, NULL, NULL);
1610
1611 return error;
1612 }
1613
1614 void
1615 sorestart(struct socket *so)
1616 {
1617 /*
1618 * An application has called close() on an fd on which another
1619 * of its threads has called a socket system call.
1620 * Mark this and wake everyone up, and code that would block again
1621 * instead returns ERESTART.
1622 * On system call re-entry the fd is validated and EBADF returned.
1623 * Any other fd will block again on the 2nd syscall.
1624 */
1625 solock(so);
1626 so->so_state |= SS_RESTARTSYS;
1627 cv_broadcast(&so->so_cv);
1628 cv_broadcast(&so->so_snd.sb_cv);
1629 cv_broadcast(&so->so_rcv.sb_cv);
1630 sounlock(so);
1631 }
1632
1633 void
1634 sorflush(struct socket *so)
1635 {
1636 struct sockbuf *sb, asb;
1637 const struct protosw *pr;
1638
1639 KASSERT(solocked(so));
1640
1641 sb = &so->so_rcv;
1642 pr = so->so_proto;
1643 socantrcvmore(so);
1644 sb->sb_flags |= SB_NOINTR;
1645 (void )sblock(sb, M_WAITOK);
1646 sbunlock(sb);
1647 asb = *sb;
1648 /*
1649 * Clear most of the sockbuf structure, but leave some of the
1650 * fields valid.
1651 */
1652 memset(&sb->sb_startzero, 0,
1653 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1654 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1655 sounlock(so);
1656 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1657 solock(so);
1658 }
1659 sbrelease(&asb, so);
1660 }
1661
1662 /*
1663 * internal set SOL_SOCKET options
1664 */
1665 static int
1666 sosetopt1(struct socket *so, const struct sockopt *sopt)
1667 {
1668 int error = EINVAL, optval, opt;
1669 struct linger l;
1670 struct timeval tv;
1671
1672 switch ((opt = sopt->sopt_name)) {
1673
1674 case SO_ACCEPTFILTER:
1675 error = accept_filt_setopt(so, sopt);
1676 KASSERT(solocked(so));
1677 break;
1678
1679 case SO_LINGER:
1680 error = sockopt_get(sopt, &l, sizeof(l));
1681 solock(so);
1682 if (error)
1683 break;
1684 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1685 l.l_linger > (INT_MAX / hz)) {
1686 error = EDOM;
1687 break;
1688 }
1689 so->so_linger = l.l_linger;
1690 if (l.l_onoff)
1691 so->so_options |= SO_LINGER;
1692 else
1693 so->so_options &= ~SO_LINGER;
1694 break;
1695
1696 case SO_DEBUG:
1697 case SO_KEEPALIVE:
1698 case SO_DONTROUTE:
1699 case SO_USELOOPBACK:
1700 case SO_BROADCAST:
1701 case SO_REUSEADDR:
1702 case SO_REUSEPORT:
1703 case SO_OOBINLINE:
1704 case SO_TIMESTAMP:
1705 case SO_NOSIGPIPE:
1706 #ifdef SO_OTIMESTAMP
1707 case SO_OTIMESTAMP:
1708 #endif
1709 error = sockopt_getint(sopt, &optval);
1710 solock(so);
1711 if (error)
1712 break;
1713 if (optval)
1714 so->so_options |= opt;
1715 else
1716 so->so_options &= ~opt;
1717 break;
1718
1719 case SO_SNDBUF:
1720 case SO_RCVBUF:
1721 case SO_SNDLOWAT:
1722 case SO_RCVLOWAT:
1723 error = sockopt_getint(sopt, &optval);
1724 solock(so);
1725 if (error)
1726 break;
1727
1728 /*
1729 * Values < 1 make no sense for any of these
1730 * options, so disallow them.
1731 */
1732 if (optval < 1) {
1733 error = EINVAL;
1734 break;
1735 }
1736
1737 switch (opt) {
1738 case SO_SNDBUF:
1739 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1740 error = ENOBUFS;
1741 break;
1742 }
1743 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1744 break;
1745
1746 case SO_RCVBUF:
1747 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1748 error = ENOBUFS;
1749 break;
1750 }
1751 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1752 break;
1753
1754 /*
1755 * Make sure the low-water is never greater than
1756 * the high-water.
1757 */
1758 case SO_SNDLOWAT:
1759 if (optval > so->so_snd.sb_hiwat)
1760 optval = so->so_snd.sb_hiwat;
1761
1762 so->so_snd.sb_lowat = optval;
1763 break;
1764
1765 case SO_RCVLOWAT:
1766 if (optval > so->so_rcv.sb_hiwat)
1767 optval = so->so_rcv.sb_hiwat;
1768
1769 so->so_rcv.sb_lowat = optval;
1770 break;
1771 }
1772 break;
1773
1774 #ifdef COMPAT_50
1775 case SO_OSNDTIMEO:
1776 case SO_ORCVTIMEO: {
1777 struct timeval50 otv;
1778 error = sockopt_get(sopt, &otv, sizeof(otv));
1779 if (error) {
1780 solock(so);
1781 break;
1782 }
1783 timeval50_to_timeval(&otv, &tv);
1784 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1785 error = 0;
1786 /*FALLTHROUGH*/
1787 }
1788 #endif /* COMPAT_50 */
1789
1790 case SO_SNDTIMEO:
1791 case SO_RCVTIMEO:
1792 if (error)
1793 error = sockopt_get(sopt, &tv, sizeof(tv));
1794 solock(so);
1795 if (error)
1796 break;
1797
1798 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1799 error = EDOM;
1800 break;
1801 }
1802
1803 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1804 if (optval == 0 && tv.tv_usec != 0)
1805 optval = 1;
1806
1807 switch (opt) {
1808 case SO_SNDTIMEO:
1809 so->so_snd.sb_timeo = optval;
1810 break;
1811 case SO_RCVTIMEO:
1812 so->so_rcv.sb_timeo = optval;
1813 break;
1814 }
1815 break;
1816
1817 default:
1818 solock(so);
1819 error = ENOPROTOOPT;
1820 break;
1821 }
1822 KASSERT(solocked(so));
1823 return error;
1824 }
1825
1826 int
1827 sosetopt(struct socket *so, struct sockopt *sopt)
1828 {
1829 int error, prerr;
1830
1831 if (sopt->sopt_level == SOL_SOCKET) {
1832 error = sosetopt1(so, sopt);
1833 KASSERT(solocked(so));
1834 } else {
1835 error = ENOPROTOOPT;
1836 solock(so);
1837 }
1838
1839 if ((error == 0 || error == ENOPROTOOPT) &&
1840 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1841 /* give the protocol stack a shot */
1842 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1843 if (prerr == 0)
1844 error = 0;
1845 else if (prerr != ENOPROTOOPT)
1846 error = prerr;
1847 }
1848 sounlock(so);
1849 return error;
1850 }
1851
1852 /*
1853 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1854 */
1855 int
1856 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1857 const void *val, size_t valsize)
1858 {
1859 struct sockopt sopt;
1860 int error;
1861
1862 KASSERT(valsize == 0 || val != NULL);
1863
1864 sockopt_init(&sopt, level, name, valsize);
1865 sockopt_set(&sopt, val, valsize);
1866
1867 error = sosetopt(so, &sopt);
1868
1869 sockopt_destroy(&sopt);
1870
1871 return error;
1872 }
1873
1874 /*
1875 * internal get SOL_SOCKET options
1876 */
1877 static int
1878 sogetopt1(struct socket *so, struct sockopt *sopt)
1879 {
1880 int error, optval, opt;
1881 struct linger l;
1882 struct timeval tv;
1883
1884 switch ((opt = sopt->sopt_name)) {
1885
1886 case SO_ACCEPTFILTER:
1887 error = accept_filt_getopt(so, sopt);
1888 break;
1889
1890 case SO_LINGER:
1891 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1892 l.l_linger = so->so_linger;
1893
1894 error = sockopt_set(sopt, &l, sizeof(l));
1895 break;
1896
1897 case SO_USELOOPBACK:
1898 case SO_DONTROUTE:
1899 case SO_DEBUG:
1900 case SO_KEEPALIVE:
1901 case SO_REUSEADDR:
1902 case SO_REUSEPORT:
1903 case SO_BROADCAST:
1904 case SO_OOBINLINE:
1905 case SO_TIMESTAMP:
1906 case SO_NOSIGPIPE:
1907 #ifdef SO_OTIMESTAMP
1908 case SO_OTIMESTAMP:
1909 #endif
1910 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1911 break;
1912
1913 case SO_TYPE:
1914 error = sockopt_setint(sopt, so->so_type);
1915 break;
1916
1917 case SO_ERROR:
1918 error = sockopt_setint(sopt, so->so_error);
1919 so->so_error = 0;
1920 break;
1921
1922 case SO_SNDBUF:
1923 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1924 break;
1925
1926 case SO_RCVBUF:
1927 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1928 break;
1929
1930 case SO_SNDLOWAT:
1931 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1932 break;
1933
1934 case SO_RCVLOWAT:
1935 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1936 break;
1937
1938 #ifdef COMPAT_50
1939 case SO_OSNDTIMEO:
1940 case SO_ORCVTIMEO: {
1941 struct timeval50 otv;
1942
1943 optval = (opt == SO_OSNDTIMEO ?
1944 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1945
1946 otv.tv_sec = optval / hz;
1947 otv.tv_usec = (optval % hz) * tick;
1948
1949 error = sockopt_set(sopt, &otv, sizeof(otv));
1950 break;
1951 }
1952 #endif /* COMPAT_50 */
1953
1954 case SO_SNDTIMEO:
1955 case SO_RCVTIMEO:
1956 optval = (opt == SO_SNDTIMEO ?
1957 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1958
1959 tv.tv_sec = optval / hz;
1960 tv.tv_usec = (optval % hz) * tick;
1961
1962 error = sockopt_set(sopt, &tv, sizeof(tv));
1963 break;
1964
1965 case SO_OVERFLOWED:
1966 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1967 break;
1968
1969 default:
1970 error = ENOPROTOOPT;
1971 break;
1972 }
1973
1974 return (error);
1975 }
1976
1977 int
1978 sogetopt(struct socket *so, struct sockopt *sopt)
1979 {
1980 int error;
1981
1982 solock(so);
1983 if (sopt->sopt_level != SOL_SOCKET) {
1984 if (so->so_proto && so->so_proto->pr_ctloutput) {
1985 error = ((*so->so_proto->pr_ctloutput)
1986 (PRCO_GETOPT, so, sopt));
1987 } else
1988 error = (ENOPROTOOPT);
1989 } else {
1990 error = sogetopt1(so, sopt);
1991 }
1992 sounlock(so);
1993 return (error);
1994 }
1995
1996 /*
1997 * alloc sockopt data buffer buffer
1998 * - will be released at destroy
1999 */
2000 static int
2001 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2002 {
2003
2004 KASSERT(sopt->sopt_size == 0);
2005
2006 if (len > sizeof(sopt->sopt_buf)) {
2007 sopt->sopt_data = kmem_zalloc(len, kmflag);
2008 if (sopt->sopt_data == NULL)
2009 return ENOMEM;
2010 } else
2011 sopt->sopt_data = sopt->sopt_buf;
2012
2013 sopt->sopt_size = len;
2014 return 0;
2015 }
2016
2017 /*
2018 * initialise sockopt storage
2019 * - MAY sleep during allocation
2020 */
2021 void
2022 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2023 {
2024
2025 memset(sopt, 0, sizeof(*sopt));
2026
2027 sopt->sopt_level = level;
2028 sopt->sopt_name = name;
2029 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2030 }
2031
2032 /*
2033 * destroy sockopt storage
2034 * - will release any held memory references
2035 */
2036 void
2037 sockopt_destroy(struct sockopt *sopt)
2038 {
2039
2040 if (sopt->sopt_data != sopt->sopt_buf)
2041 kmem_free(sopt->sopt_data, sopt->sopt_size);
2042
2043 memset(sopt, 0, sizeof(*sopt));
2044 }
2045
2046 /*
2047 * set sockopt value
2048 * - value is copied into sockopt
2049 * - memory is allocated when necessary, will not sleep
2050 */
2051 int
2052 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2053 {
2054 int error;
2055
2056 if (sopt->sopt_size == 0) {
2057 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2058 if (error)
2059 return error;
2060 }
2061
2062 KASSERT(sopt->sopt_size == len);
2063 memcpy(sopt->sopt_data, buf, len);
2064 return 0;
2065 }
2066
2067 /*
2068 * common case of set sockopt integer value
2069 */
2070 int
2071 sockopt_setint(struct sockopt *sopt, int val)
2072 {
2073
2074 return sockopt_set(sopt, &val, sizeof(int));
2075 }
2076
2077 /*
2078 * get sockopt value
2079 * - correct size must be given
2080 */
2081 int
2082 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2083 {
2084
2085 if (sopt->sopt_size != len)
2086 return EINVAL;
2087
2088 memcpy(buf, sopt->sopt_data, len);
2089 return 0;
2090 }
2091
2092 /*
2093 * common case of get sockopt integer value
2094 */
2095 int
2096 sockopt_getint(const struct sockopt *sopt, int *valp)
2097 {
2098
2099 return sockopt_get(sopt, valp, sizeof(int));
2100 }
2101
2102 /*
2103 * set sockopt value from mbuf
2104 * - ONLY for legacy code
2105 * - mbuf is released by sockopt
2106 * - will not sleep
2107 */
2108 int
2109 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2110 {
2111 size_t len;
2112 int error;
2113
2114 len = m_length(m);
2115
2116 if (sopt->sopt_size == 0) {
2117 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2118 if (error)
2119 return error;
2120 }
2121
2122 KASSERT(sopt->sopt_size == len);
2123 m_copydata(m, 0, len, sopt->sopt_data);
2124 m_freem(m);
2125
2126 return 0;
2127 }
2128
2129 /*
2130 * get sockopt value into mbuf
2131 * - ONLY for legacy code
2132 * - mbuf to be released by the caller
2133 * - will not sleep
2134 */
2135 struct mbuf *
2136 sockopt_getmbuf(const struct sockopt *sopt)
2137 {
2138 struct mbuf *m;
2139
2140 if (sopt->sopt_size > MCLBYTES)
2141 return NULL;
2142
2143 m = m_get(M_DONTWAIT, MT_SOOPTS);
2144 if (m == NULL)
2145 return NULL;
2146
2147 if (sopt->sopt_size > MLEN) {
2148 MCLGET(m, M_DONTWAIT);
2149 if ((m->m_flags & M_EXT) == 0) {
2150 m_free(m);
2151 return NULL;
2152 }
2153 }
2154
2155 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2156 m->m_len = sopt->sopt_size;
2157
2158 return m;
2159 }
2160
2161 void
2162 sohasoutofband(struct socket *so)
2163 {
2164
2165 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2166 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2167 }
2168
2169 static void
2170 filt_sordetach(struct knote *kn)
2171 {
2172 struct socket *so;
2173
2174 so = ((file_t *)kn->kn_obj)->f_data;
2175 solock(so);
2176 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2177 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2178 so->so_rcv.sb_flags &= ~SB_KNOTE;
2179 sounlock(so);
2180 }
2181
2182 /*ARGSUSED*/
2183 static int
2184 filt_soread(struct knote *kn, long hint)
2185 {
2186 struct socket *so;
2187 int rv;
2188
2189 so = ((file_t *)kn->kn_obj)->f_data;
2190 if (hint != NOTE_SUBMIT)
2191 solock(so);
2192 kn->kn_data = so->so_rcv.sb_cc;
2193 if (so->so_state & SS_CANTRCVMORE) {
2194 kn->kn_flags |= EV_EOF;
2195 kn->kn_fflags = so->so_error;
2196 rv = 1;
2197 } else if (so->so_error) /* temporary udp error */
2198 rv = 1;
2199 else if (kn->kn_sfflags & NOTE_LOWAT)
2200 rv = (kn->kn_data >= kn->kn_sdata);
2201 else
2202 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2203 if (hint != NOTE_SUBMIT)
2204 sounlock(so);
2205 return rv;
2206 }
2207
2208 static void
2209 filt_sowdetach(struct knote *kn)
2210 {
2211 struct socket *so;
2212
2213 so = ((file_t *)kn->kn_obj)->f_data;
2214 solock(so);
2215 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2216 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2217 so->so_snd.sb_flags &= ~SB_KNOTE;
2218 sounlock(so);
2219 }
2220
2221 /*ARGSUSED*/
2222 static int
2223 filt_sowrite(struct knote *kn, long hint)
2224 {
2225 struct socket *so;
2226 int rv;
2227
2228 so = ((file_t *)kn->kn_obj)->f_data;
2229 if (hint != NOTE_SUBMIT)
2230 solock(so);
2231 kn->kn_data = sbspace(&so->so_snd);
2232 if (so->so_state & SS_CANTSENDMORE) {
2233 kn->kn_flags |= EV_EOF;
2234 kn->kn_fflags = so->so_error;
2235 rv = 1;
2236 } else if (so->so_error) /* temporary udp error */
2237 rv = 1;
2238 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2239 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2240 rv = 0;
2241 else if (kn->kn_sfflags & NOTE_LOWAT)
2242 rv = (kn->kn_data >= kn->kn_sdata);
2243 else
2244 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2245 if (hint != NOTE_SUBMIT)
2246 sounlock(so);
2247 return rv;
2248 }
2249
2250 /*ARGSUSED*/
2251 static int
2252 filt_solisten(struct knote *kn, long hint)
2253 {
2254 struct socket *so;
2255 int rv;
2256
2257 so = ((file_t *)kn->kn_obj)->f_data;
2258
2259 /*
2260 * Set kn_data to number of incoming connections, not
2261 * counting partial (incomplete) connections.
2262 */
2263 if (hint != NOTE_SUBMIT)
2264 solock(so);
2265 kn->kn_data = so->so_qlen;
2266 rv = (kn->kn_data > 0);
2267 if (hint != NOTE_SUBMIT)
2268 sounlock(so);
2269 return rv;
2270 }
2271
2272 static const struct filterops solisten_filtops =
2273 { 1, NULL, filt_sordetach, filt_solisten };
2274 static const struct filterops soread_filtops =
2275 { 1, NULL, filt_sordetach, filt_soread };
2276 static const struct filterops sowrite_filtops =
2277 { 1, NULL, filt_sowdetach, filt_sowrite };
2278
2279 int
2280 soo_kqfilter(struct file *fp, struct knote *kn)
2281 {
2282 struct socket *so;
2283 struct sockbuf *sb;
2284
2285 so = ((file_t *)kn->kn_obj)->f_data;
2286 solock(so);
2287 switch (kn->kn_filter) {
2288 case EVFILT_READ:
2289 if (so->so_options & SO_ACCEPTCONN)
2290 kn->kn_fop = &solisten_filtops;
2291 else
2292 kn->kn_fop = &soread_filtops;
2293 sb = &so->so_rcv;
2294 break;
2295 case EVFILT_WRITE:
2296 kn->kn_fop = &sowrite_filtops;
2297 sb = &so->so_snd;
2298 break;
2299 default:
2300 sounlock(so);
2301 return (EINVAL);
2302 }
2303 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2304 sb->sb_flags |= SB_KNOTE;
2305 sounlock(so);
2306 return (0);
2307 }
2308
2309 static int
2310 sodopoll(struct socket *so, int events)
2311 {
2312 int revents;
2313
2314 revents = 0;
2315
2316 if (events & (POLLIN | POLLRDNORM))
2317 if (soreadable(so))
2318 revents |= events & (POLLIN | POLLRDNORM);
2319
2320 if (events & (POLLOUT | POLLWRNORM))
2321 if (sowritable(so))
2322 revents |= events & (POLLOUT | POLLWRNORM);
2323
2324 if (events & (POLLPRI | POLLRDBAND))
2325 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2326 revents |= events & (POLLPRI | POLLRDBAND);
2327
2328 return revents;
2329 }
2330
2331 int
2332 sopoll(struct socket *so, int events)
2333 {
2334 int revents = 0;
2335
2336 #ifndef DIAGNOSTIC
2337 /*
2338 * Do a quick, unlocked check in expectation that the socket
2339 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2340 * as the solocked() assertions will fail.
2341 */
2342 if ((revents = sodopoll(so, events)) != 0)
2343 return revents;
2344 #endif
2345
2346 solock(so);
2347 if ((revents = sodopoll(so, events)) == 0) {
2348 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2349 selrecord(curlwp, &so->so_rcv.sb_sel);
2350 so->so_rcv.sb_flags |= SB_NOTIFY;
2351 }
2352
2353 if (events & (POLLOUT | POLLWRNORM)) {
2354 selrecord(curlwp, &so->so_snd.sb_sel);
2355 so->so_snd.sb_flags |= SB_NOTIFY;
2356 }
2357 }
2358 sounlock(so);
2359
2360 return revents;
2361 }
2362
2363
2364 #include <sys/sysctl.h>
2365
2366 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2367
2368 /*
2369 * sysctl helper routine for kern.somaxkva. ensures that the given
2370 * value is not too small.
2371 * (XXX should we maybe make sure it's not too large as well?)
2372 */
2373 static int
2374 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2375 {
2376 int error, new_somaxkva;
2377 struct sysctlnode node;
2378
2379 new_somaxkva = somaxkva;
2380 node = *rnode;
2381 node.sysctl_data = &new_somaxkva;
2382 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2383 if (error || newp == NULL)
2384 return (error);
2385
2386 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2387 return (EINVAL);
2388
2389 mutex_enter(&so_pendfree_lock);
2390 somaxkva = new_somaxkva;
2391 cv_broadcast(&socurkva_cv);
2392 mutex_exit(&so_pendfree_lock);
2393
2394 return (error);
2395 }
2396
2397 static void
2398 sysctl_kern_somaxkva_setup(void)
2399 {
2400
2401 KASSERT(socket_sysctllog == NULL);
2402 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2403 CTLFLAG_PERMANENT,
2404 CTLTYPE_NODE, "kern", NULL,
2405 NULL, 0, NULL, 0,
2406 CTL_KERN, CTL_EOL);
2407
2408 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2409 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2410 CTLTYPE_INT, "somaxkva",
2411 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2412 "used for socket buffers"),
2413 sysctl_kern_somaxkva, 0, NULL, 0,
2414 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2415 }
2416