uipc_socket.c revision 1.209.2.1.4.1 1 /* $NetBSD: uipc_socket.c,v 1.209.2.1.4.1 2013/08/02 20:23:11 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.209.2.1.4.1 2013/08/02 20:23:11 martin Exp $");
67
68 #include "opt_compat_netbsd.h"
69 #include "opt_sock_counters.h"
70 #include "opt_sosend_loan.h"
71 #include "opt_mbuftrace.h"
72 #include "opt_somaxkva.h"
73 #include "opt_multiprocessor.h" /* XXX */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/file.h>
79 #include <sys/filedesc.h>
80 #include <sys/kmem.h>
81 #include <sys/mbuf.h>
82 #include <sys/domain.h>
83 #include <sys/kernel.h>
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/signalvar.h>
88 #include <sys/resourcevar.h>
89 #include <sys/uidinfo.h>
90 #include <sys/event.h>
91 #include <sys/poll.h>
92 #include <sys/kauth.h>
93 #include <sys/mutex.h>
94 #include <sys/condvar.h>
95 #include <sys/kthread.h>
96
97 #ifdef COMPAT_50
98 #include <compat/sys/time.h>
99 #include <compat/sys/socket.h>
100 #endif
101
102 #include <uvm/uvm_extern.h>
103 #include <uvm/uvm_loan.h>
104 #include <uvm/uvm_page.h>
105
106 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
107 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
108
109 extern const struct fileops socketops;
110
111 extern int somaxconn; /* patchable (XXX sysctl) */
112 int somaxconn = SOMAXCONN;
113 kmutex_t *softnet_lock;
114
115 #ifdef SOSEND_COUNTERS
116 #include <sys/device.h>
117
118 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
119 NULL, "sosend", "loan big");
120 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
121 NULL, "sosend", "copy big");
122 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
123 NULL, "sosend", "copy small");
124 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
125 NULL, "sosend", "kva limit");
126
127 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
128
129 EVCNT_ATTACH_STATIC(sosend_loan_big);
130 EVCNT_ATTACH_STATIC(sosend_copy_big);
131 EVCNT_ATTACH_STATIC(sosend_copy_small);
132 EVCNT_ATTACH_STATIC(sosend_kvalimit);
133 #else
134
135 #define SOSEND_COUNTER_INCR(ev) /* nothing */
136
137 #endif /* SOSEND_COUNTERS */
138
139 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
140 int sock_loan_thresh = -1;
141 #else
142 int sock_loan_thresh = 4096;
143 #endif
144
145 static kmutex_t so_pendfree_lock;
146 static struct mbuf *so_pendfree = NULL;
147
148 #ifndef SOMAXKVA
149 #define SOMAXKVA (16 * 1024 * 1024)
150 #endif
151 int somaxkva = SOMAXKVA;
152 static int socurkva;
153 static kcondvar_t socurkva_cv;
154
155 static kauth_listener_t socket_listener;
156
157 #define SOCK_LOAN_CHUNK 65536
158
159 static void sopendfree_thread(void *);
160 static kcondvar_t pendfree_thread_cv;
161 static lwp_t *sopendfree_lwp;
162
163 static void sysctl_kern_somaxkva_setup(void);
164 static struct sysctllog *socket_sysctllog;
165
166 static vsize_t
167 sokvareserve(struct socket *so, vsize_t len)
168 {
169 int error;
170
171 mutex_enter(&so_pendfree_lock);
172 while (socurkva + len > somaxkva) {
173 SOSEND_COUNTER_INCR(&sosend_kvalimit);
174 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
175 if (error) {
176 len = 0;
177 break;
178 }
179 }
180 socurkva += len;
181 mutex_exit(&so_pendfree_lock);
182 return len;
183 }
184
185 static void
186 sokvaunreserve(vsize_t len)
187 {
188
189 mutex_enter(&so_pendfree_lock);
190 socurkva -= len;
191 cv_broadcast(&socurkva_cv);
192 mutex_exit(&so_pendfree_lock);
193 }
194
195 /*
196 * sokvaalloc: allocate kva for loan.
197 */
198
199 vaddr_t
200 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
201 {
202 vaddr_t lva;
203
204 /*
205 * reserve kva.
206 */
207
208 if (sokvareserve(so, len) == 0)
209 return 0;
210
211 /*
212 * allocate kva.
213 */
214
215 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
216 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
217 if (lva == 0) {
218 sokvaunreserve(len);
219 return (0);
220 }
221
222 return lva;
223 }
224
225 /*
226 * sokvafree: free kva for loan.
227 */
228
229 void
230 sokvafree(vaddr_t sva, vsize_t len)
231 {
232
233 /*
234 * free kva.
235 */
236
237 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
238
239 /*
240 * unreserve kva.
241 */
242
243 sokvaunreserve(len);
244 }
245
246 static void
247 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
248 {
249 vaddr_t sva, eva;
250 vsize_t len;
251 int npgs;
252
253 KASSERT(pgs != NULL);
254
255 eva = round_page((vaddr_t) buf + size);
256 sva = trunc_page((vaddr_t) buf);
257 len = eva - sva;
258 npgs = len >> PAGE_SHIFT;
259
260 pmap_kremove(sva, len);
261 pmap_update(pmap_kernel());
262 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
263 sokvafree(sva, len);
264 }
265
266 /*
267 * sopendfree_thread: free mbufs on "pendfree" list.
268 * unlock and relock so_pendfree_lock when freeing mbufs.
269 */
270
271 static void
272 sopendfree_thread(void *v)
273 {
274 struct mbuf *m, *next;
275 size_t rv;
276
277 mutex_enter(&so_pendfree_lock);
278
279 for (;;) {
280 rv = 0;
281 while (so_pendfree != NULL) {
282 m = so_pendfree;
283 so_pendfree = NULL;
284 mutex_exit(&so_pendfree_lock);
285
286 for (; m != NULL; m = next) {
287 next = m->m_next;
288 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
289 KASSERT(m->m_ext.ext_refcnt == 0);
290
291 rv += m->m_ext.ext_size;
292 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
293 m->m_ext.ext_size);
294 pool_cache_put(mb_cache, m);
295 }
296
297 mutex_enter(&so_pendfree_lock);
298 }
299 if (rv)
300 cv_broadcast(&socurkva_cv);
301 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
302 }
303 panic("sopendfree_thread");
304 /* NOTREACHED */
305 }
306
307 void
308 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
309 {
310
311 KASSERT(m != NULL);
312
313 /*
314 * postpone freeing mbuf.
315 *
316 * we can't do it in interrupt context
317 * because we need to put kva back to kernel_map.
318 */
319
320 mutex_enter(&so_pendfree_lock);
321 m->m_next = so_pendfree;
322 so_pendfree = m;
323 cv_signal(&pendfree_thread_cv);
324 mutex_exit(&so_pendfree_lock);
325 }
326
327 static long
328 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
329 {
330 struct iovec *iov = uio->uio_iov;
331 vaddr_t sva, eva;
332 vsize_t len;
333 vaddr_t lva;
334 int npgs, error;
335 vaddr_t va;
336 int i;
337
338 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
339 return (0);
340
341 if (iov->iov_len < (size_t) space)
342 space = iov->iov_len;
343 if (space > SOCK_LOAN_CHUNK)
344 space = SOCK_LOAN_CHUNK;
345
346 eva = round_page((vaddr_t) iov->iov_base + space);
347 sva = trunc_page((vaddr_t) iov->iov_base);
348 len = eva - sva;
349 npgs = len >> PAGE_SHIFT;
350
351 KASSERT(npgs <= M_EXT_MAXPAGES);
352
353 lva = sokvaalloc(sva, len, so);
354 if (lva == 0)
355 return 0;
356
357 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
358 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
359 if (error) {
360 sokvafree(lva, len);
361 return (0);
362 }
363
364 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
365 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
366 VM_PROT_READ, 0);
367 pmap_update(pmap_kernel());
368
369 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
370
371 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
372 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
373
374 uio->uio_resid -= space;
375 /* uio_offset not updated, not set/used for write(2) */
376 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
377 uio->uio_iov->iov_len -= space;
378 if (uio->uio_iov->iov_len == 0) {
379 uio->uio_iov++;
380 uio->uio_iovcnt--;
381 }
382
383 return (space);
384 }
385
386 struct mbuf *
387 getsombuf(struct socket *so, int type)
388 {
389 struct mbuf *m;
390
391 m = m_get(M_WAIT, type);
392 MCLAIM(m, so->so_mowner);
393 return m;
394 }
395
396 static int
397 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
398 void *arg0, void *arg1, void *arg2, void *arg3)
399 {
400 int result;
401 enum kauth_network_req req;
402
403 result = KAUTH_RESULT_DEFER;
404 req = (enum kauth_network_req)arg0;
405
406 if ((action != KAUTH_NETWORK_SOCKET) &&
407 (action != KAUTH_NETWORK_BIND))
408 return result;
409
410 switch (req) {
411 case KAUTH_REQ_NETWORK_BIND_PORT:
412 result = KAUTH_RESULT_ALLOW;
413 break;
414
415 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
416 /* Normal users can only drop their own connections. */
417 struct socket *so = (struct socket *)arg1;
418
419 if (proc_uidmatch(cred, so->so_cred) == 0)
420 result = KAUTH_RESULT_ALLOW;
421
422 break;
423 }
424
425 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
426 /* We allow "raw" routing/bluetooth sockets to anyone. */
427 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
428 || (u_long)arg1 == PF_BLUETOOTH) {
429 result = KAUTH_RESULT_ALLOW;
430 } else {
431 /* Privileged, let secmodel handle this. */
432 if ((u_long)arg2 == SOCK_RAW)
433 break;
434 }
435
436 result = KAUTH_RESULT_ALLOW;
437
438 break;
439
440 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
441 result = KAUTH_RESULT_ALLOW;
442
443 break;
444
445 default:
446 break;
447 }
448
449 return result;
450 }
451
452 void
453 soinit(void)
454 {
455
456 sysctl_kern_somaxkva_setup();
457
458 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
459 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
460 cv_init(&socurkva_cv, "sokva");
461 cv_init(&pendfree_thread_cv, "sopendfr");
462 soinit2();
463
464 /* Set the initial adjusted socket buffer size. */
465 if (sb_max_set(sb_max))
466 panic("bad initial sb_max value: %lu", sb_max);
467
468 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
469 socket_listener_cb, NULL);
470 }
471
472 void
473 soinit1(void)
474 {
475 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
476 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
477 if (error)
478 panic("soinit1 %d", error);
479 }
480
481 /*
482 * Socket operation routines.
483 * These routines are called by the routines in
484 * sys_socket.c or from a system process, and
485 * implement the semantics of socket operations by
486 * switching out to the protocol specific routines.
487 */
488 /*ARGSUSED*/
489 int
490 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
491 struct socket *lockso)
492 {
493 const struct protosw *prp;
494 struct socket *so;
495 uid_t uid;
496 int error;
497 kmutex_t *lock;
498
499 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
500 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
501 KAUTH_ARG(proto));
502 if (error != 0)
503 return error;
504
505 if (proto)
506 prp = pffindproto(dom, proto, type);
507 else
508 prp = pffindtype(dom, type);
509 if (prp == NULL) {
510 /* no support for domain */
511 if (pffinddomain(dom) == 0)
512 return EAFNOSUPPORT;
513 /* no support for socket type */
514 if (proto == 0 && type != 0)
515 return EPROTOTYPE;
516 return EPROTONOSUPPORT;
517 }
518 if (prp->pr_usrreq == NULL)
519 return EPROTONOSUPPORT;
520 if (prp->pr_type != type)
521 return EPROTOTYPE;
522
523 so = soget(true);
524 so->so_type = type;
525 so->so_proto = prp;
526 so->so_send = sosend;
527 so->so_receive = soreceive;
528 #ifdef MBUFTRACE
529 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
530 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
531 so->so_mowner = &prp->pr_domain->dom_mowner;
532 #endif
533 uid = kauth_cred_geteuid(l->l_cred);
534 so->so_uidinfo = uid_find(uid);
535 so->so_cpid = l->l_proc->p_pid;
536 if (lockso != NULL) {
537 /* Caller wants us to share a lock. */
538 lock = lockso->so_lock;
539 so->so_lock = lock;
540 mutex_obj_hold(lock);
541 mutex_enter(lock);
542 } else {
543 /* Lock assigned and taken during PRU_ATTACH. */
544 }
545 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
546 (struct mbuf *)(long)proto, NULL, l);
547 KASSERT(solocked(so));
548 if (error != 0) {
549 so->so_state |= SS_NOFDREF;
550 sofree(so);
551 return error;
552 }
553 so->so_cred = kauth_cred_dup(l->l_cred);
554 sounlock(so);
555 *aso = so;
556 return 0;
557 }
558
559 /* On success, write file descriptor to fdout and return zero. On
560 * failure, return non-zero; *fdout will be undefined.
561 */
562 int
563 fsocreate(int domain, struct socket **sop, int type, int protocol,
564 struct lwp *l, int *fdout)
565 {
566 struct socket *so;
567 struct file *fp;
568 int fd, error;
569 int flags = type & SOCK_FLAGS_MASK;
570
571 type &= ~SOCK_FLAGS_MASK;
572 if ((error = fd_allocfile(&fp, &fd)) != 0)
573 return error;
574 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
575 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
576 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
577 fp->f_type = DTYPE_SOCKET;
578 fp->f_ops = &socketops;
579 error = socreate(domain, &so, type, protocol, l, NULL);
580 if (error != 0) {
581 fd_abort(curproc, fp, fd);
582 } else {
583 if (sop != NULL)
584 *sop = so;
585 fp->f_data = so;
586 fd_affix(curproc, fp, fd);
587 *fdout = fd;
588 }
589 return error;
590 }
591
592 int
593 sofamily(const struct socket *so)
594 {
595 const struct protosw *pr;
596 const struct domain *dom;
597
598 if ((pr = so->so_proto) == NULL)
599 return AF_UNSPEC;
600 if ((dom = pr->pr_domain) == NULL)
601 return AF_UNSPEC;
602 return dom->dom_family;
603 }
604
605 int
606 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
607 {
608 int error;
609
610 solock(so);
611 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
612 sounlock(so);
613 return error;
614 }
615
616 int
617 solisten(struct socket *so, int backlog, struct lwp *l)
618 {
619 int error;
620
621 solock(so);
622 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
623 SS_ISDISCONNECTING)) != 0) {
624 sounlock(so);
625 return (EOPNOTSUPP);
626 }
627 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
628 NULL, NULL, l);
629 if (error != 0) {
630 sounlock(so);
631 return error;
632 }
633 if (TAILQ_EMPTY(&so->so_q))
634 so->so_options |= SO_ACCEPTCONN;
635 if (backlog < 0)
636 backlog = 0;
637 so->so_qlimit = min(backlog, somaxconn);
638 sounlock(so);
639 return 0;
640 }
641
642 void
643 sofree(struct socket *so)
644 {
645 u_int refs;
646
647 KASSERT(solocked(so));
648
649 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
650 sounlock(so);
651 return;
652 }
653 if (so->so_head) {
654 /*
655 * We must not decommission a socket that's on the accept(2)
656 * queue. If we do, then accept(2) may hang after select(2)
657 * indicated that the listening socket was ready.
658 */
659 if (!soqremque(so, 0)) {
660 sounlock(so);
661 return;
662 }
663 }
664 if (so->so_rcv.sb_hiwat)
665 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
666 RLIM_INFINITY);
667 if (so->so_snd.sb_hiwat)
668 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
669 RLIM_INFINITY);
670 sbrelease(&so->so_snd, so);
671 KASSERT(!cv_has_waiters(&so->so_cv));
672 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
673 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
674 sorflush(so);
675 refs = so->so_aborting; /* XXX */
676 /* Remove acccept filter if one is present. */
677 if (so->so_accf != NULL)
678 (void)accept_filt_clear(so);
679 sounlock(so);
680 if (refs == 0) /* XXX */
681 soput(so);
682 }
683
684 /*
685 * Close a socket on last file table reference removal.
686 * Initiate disconnect if connected.
687 * Free socket when disconnect complete.
688 */
689 int
690 soclose(struct socket *so)
691 {
692 struct socket *so2;
693 int error;
694 int error2;
695
696 error = 0;
697 solock(so);
698 if (so->so_options & SO_ACCEPTCONN) {
699 for (;;) {
700 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
701 KASSERT(solocked2(so, so2));
702 (void) soqremque(so2, 0);
703 /* soabort drops the lock. */
704 (void) soabort(so2);
705 solock(so);
706 continue;
707 }
708 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
709 KASSERT(solocked2(so, so2));
710 (void) soqremque(so2, 1);
711 /* soabort drops the lock. */
712 (void) soabort(so2);
713 solock(so);
714 continue;
715 }
716 break;
717 }
718 }
719 if (so->so_pcb == 0)
720 goto discard;
721 if (so->so_state & SS_ISCONNECTED) {
722 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
723 error = sodisconnect(so);
724 if (error)
725 goto drop;
726 }
727 if (so->so_options & SO_LINGER) {
728 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
729 (SS_ISDISCONNECTING|SS_NBIO))
730 goto drop;
731 while (so->so_state & SS_ISCONNECTED) {
732 error = sowait(so, true, so->so_linger * hz);
733 if (error)
734 break;
735 }
736 }
737 }
738 drop:
739 if (so->so_pcb) {
740 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
741 NULL, NULL, NULL, NULL);
742 if (error == 0)
743 error = error2;
744 }
745 discard:
746 if (so->so_state & SS_NOFDREF)
747 panic("soclose: NOFDREF");
748 kauth_cred_free(so->so_cred);
749 so->so_state |= SS_NOFDREF;
750 sofree(so);
751 return (error);
752 }
753
754 /*
755 * Must be called with the socket locked.. Will return with it unlocked.
756 */
757 int
758 soabort(struct socket *so)
759 {
760 u_int refs;
761 int error;
762
763 KASSERT(solocked(so));
764 KASSERT(so->so_head == NULL);
765
766 so->so_aborting++; /* XXX */
767 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
768 NULL, NULL, NULL);
769 refs = --so->so_aborting; /* XXX */
770 if (error || (refs == 0)) {
771 sofree(so);
772 } else {
773 sounlock(so);
774 }
775 return error;
776 }
777
778 int
779 soaccept(struct socket *so, struct mbuf *nam)
780 {
781 int error;
782
783 KASSERT(solocked(so));
784
785 error = 0;
786 if ((so->so_state & SS_NOFDREF) == 0)
787 panic("soaccept: !NOFDREF");
788 so->so_state &= ~SS_NOFDREF;
789 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
790 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
791 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
792 NULL, nam, NULL, NULL);
793 else
794 error = ECONNABORTED;
795
796 return (error);
797 }
798
799 int
800 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
801 {
802 int error;
803
804 KASSERT(solocked(so));
805
806 if (so->so_options & SO_ACCEPTCONN)
807 return (EOPNOTSUPP);
808 /*
809 * If protocol is connection-based, can only connect once.
810 * Otherwise, if connected, try to disconnect first.
811 * This allows user to disconnect by connecting to, e.g.,
812 * a null address.
813 */
814 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
815 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
816 (error = sodisconnect(so))))
817 error = EISCONN;
818 else
819 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
820 NULL, nam, NULL, l);
821 return (error);
822 }
823
824 int
825 soconnect2(struct socket *so1, struct socket *so2)
826 {
827 int error;
828
829 KASSERT(solocked2(so1, so2));
830
831 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
832 NULL, (struct mbuf *)so2, NULL, NULL);
833 return (error);
834 }
835
836 int
837 sodisconnect(struct socket *so)
838 {
839 int error;
840
841 KASSERT(solocked(so));
842
843 if ((so->so_state & SS_ISCONNECTED) == 0) {
844 error = ENOTCONN;
845 } else if (so->so_state & SS_ISDISCONNECTING) {
846 error = EALREADY;
847 } else {
848 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
849 NULL, NULL, NULL, NULL);
850 }
851 return (error);
852 }
853
854 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
855 /*
856 * Send on a socket.
857 * If send must go all at once and message is larger than
858 * send buffering, then hard error.
859 * Lock against other senders.
860 * If must go all at once and not enough room now, then
861 * inform user that this would block and do nothing.
862 * Otherwise, if nonblocking, send as much as possible.
863 * The data to be sent is described by "uio" if nonzero,
864 * otherwise by the mbuf chain "top" (which must be null
865 * if uio is not). Data provided in mbuf chain must be small
866 * enough to send all at once.
867 *
868 * Returns nonzero on error, timeout or signal; callers
869 * must check for short counts if EINTR/ERESTART are returned.
870 * Data and control buffers are freed on return.
871 */
872 int
873 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
874 struct mbuf *control, int flags, struct lwp *l)
875 {
876 struct mbuf **mp, *m;
877 struct proc *p;
878 long space, len, resid, clen, mlen;
879 int error, s, dontroute, atomic;
880 short wakeup_state = 0;
881
882 p = l->l_proc;
883 clen = 0;
884
885 /*
886 * solock() provides atomicity of access. splsoftnet() prevents
887 * protocol processing soft interrupts from interrupting us and
888 * blocking (expensive).
889 */
890 s = splsoftnet();
891 solock(so);
892 atomic = sosendallatonce(so) || top;
893 if (uio)
894 resid = uio->uio_resid;
895 else
896 resid = top->m_pkthdr.len;
897 /*
898 * In theory resid should be unsigned.
899 * However, space must be signed, as it might be less than 0
900 * if we over-committed, and we must use a signed comparison
901 * of space and resid. On the other hand, a negative resid
902 * causes us to loop sending 0-length segments to the protocol.
903 */
904 if (resid < 0) {
905 error = EINVAL;
906 goto out;
907 }
908 dontroute =
909 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
910 (so->so_proto->pr_flags & PR_ATOMIC);
911 l->l_ru.ru_msgsnd++;
912 if (control)
913 clen = control->m_len;
914 restart:
915 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
916 goto out;
917 do {
918 if (so->so_state & SS_CANTSENDMORE) {
919 error = EPIPE;
920 goto release;
921 }
922 if (so->so_error) {
923 error = so->so_error;
924 so->so_error = 0;
925 goto release;
926 }
927 if ((so->so_state & SS_ISCONNECTED) == 0) {
928 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
929 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
930 !(resid == 0 && clen != 0)) {
931 error = ENOTCONN;
932 goto release;
933 }
934 } else if (addr == 0) {
935 error = EDESTADDRREQ;
936 goto release;
937 }
938 }
939 space = sbspace(&so->so_snd);
940 if (flags & MSG_OOB)
941 space += 1024;
942 if ((atomic && resid > so->so_snd.sb_hiwat) ||
943 clen > so->so_snd.sb_hiwat) {
944 error = EMSGSIZE;
945 goto release;
946 }
947 if (space < resid + clen &&
948 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
949 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
950 error = EWOULDBLOCK;
951 goto release;
952 }
953 sbunlock(&so->so_snd);
954 if (wakeup_state & SS_RESTARTSYS) {
955 error = ERESTART;
956 goto out;
957 }
958 error = sbwait(&so->so_snd);
959 if (error)
960 goto out;
961 wakeup_state = so->so_state;
962 goto restart;
963 }
964 wakeup_state = 0;
965 mp = ⊤
966 space -= clen;
967 do {
968 if (uio == NULL) {
969 /*
970 * Data is prepackaged in "top".
971 */
972 resid = 0;
973 if (flags & MSG_EOR)
974 top->m_flags |= M_EOR;
975 } else do {
976 sounlock(so);
977 splx(s);
978 if (top == NULL) {
979 m = m_gethdr(M_WAIT, MT_DATA);
980 mlen = MHLEN;
981 m->m_pkthdr.len = 0;
982 m->m_pkthdr.rcvif = NULL;
983 } else {
984 m = m_get(M_WAIT, MT_DATA);
985 mlen = MLEN;
986 }
987 MCLAIM(m, so->so_snd.sb_mowner);
988 if (sock_loan_thresh >= 0 &&
989 uio->uio_iov->iov_len >= sock_loan_thresh &&
990 space >= sock_loan_thresh &&
991 (len = sosend_loan(so, uio, m,
992 space)) != 0) {
993 SOSEND_COUNTER_INCR(&sosend_loan_big);
994 space -= len;
995 goto have_data;
996 }
997 if (resid >= MINCLSIZE && space >= MCLBYTES) {
998 SOSEND_COUNTER_INCR(&sosend_copy_big);
999 m_clget(m, M_DONTWAIT);
1000 if ((m->m_flags & M_EXT) == 0)
1001 goto nopages;
1002 mlen = MCLBYTES;
1003 if (atomic && top == 0) {
1004 len = lmin(MCLBYTES - max_hdr,
1005 resid);
1006 m->m_data += max_hdr;
1007 } else
1008 len = lmin(MCLBYTES, resid);
1009 space -= len;
1010 } else {
1011 nopages:
1012 SOSEND_COUNTER_INCR(&sosend_copy_small);
1013 len = lmin(lmin(mlen, resid), space);
1014 space -= len;
1015 /*
1016 * For datagram protocols, leave room
1017 * for protocol headers in first mbuf.
1018 */
1019 if (atomic && top == 0 && len < mlen)
1020 MH_ALIGN(m, len);
1021 }
1022 error = uiomove(mtod(m, void *), (int)len, uio);
1023 have_data:
1024 resid = uio->uio_resid;
1025 m->m_len = len;
1026 *mp = m;
1027 top->m_pkthdr.len += len;
1028 s = splsoftnet();
1029 solock(so);
1030 if (error != 0)
1031 goto release;
1032 mp = &m->m_next;
1033 if (resid <= 0) {
1034 if (flags & MSG_EOR)
1035 top->m_flags |= M_EOR;
1036 break;
1037 }
1038 } while (space > 0 && atomic);
1039
1040 if (so->so_state & SS_CANTSENDMORE) {
1041 error = EPIPE;
1042 goto release;
1043 }
1044 if (dontroute)
1045 so->so_options |= SO_DONTROUTE;
1046 if (resid > 0)
1047 so->so_state |= SS_MORETOCOME;
1048 error = (*so->so_proto->pr_usrreq)(so,
1049 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
1050 top, addr, control, curlwp);
1051 if (dontroute)
1052 so->so_options &= ~SO_DONTROUTE;
1053 if (resid > 0)
1054 so->so_state &= ~SS_MORETOCOME;
1055 clen = 0;
1056 control = NULL;
1057 top = NULL;
1058 mp = ⊤
1059 if (error != 0)
1060 goto release;
1061 } while (resid && space > 0);
1062 } while (resid);
1063
1064 release:
1065 sbunlock(&so->so_snd);
1066 out:
1067 sounlock(so);
1068 splx(s);
1069 if (top)
1070 m_freem(top);
1071 if (control)
1072 m_freem(control);
1073 return (error);
1074 }
1075
1076 /*
1077 * Following replacement or removal of the first mbuf on the first
1078 * mbuf chain of a socket buffer, push necessary state changes back
1079 * into the socket buffer so that other consumers see the values
1080 * consistently. 'nextrecord' is the callers locally stored value of
1081 * the original value of sb->sb_mb->m_nextpkt which must be restored
1082 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1083 */
1084 static void
1085 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1086 {
1087
1088 KASSERT(solocked(sb->sb_so));
1089
1090 /*
1091 * First, update for the new value of nextrecord. If necessary,
1092 * make it the first record.
1093 */
1094 if (sb->sb_mb != NULL)
1095 sb->sb_mb->m_nextpkt = nextrecord;
1096 else
1097 sb->sb_mb = nextrecord;
1098
1099 /*
1100 * Now update any dependent socket buffer fields to reflect
1101 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1102 * the addition of a second clause that takes care of the
1103 * case where sb_mb has been updated, but remains the last
1104 * record.
1105 */
1106 if (sb->sb_mb == NULL) {
1107 sb->sb_mbtail = NULL;
1108 sb->sb_lastrecord = NULL;
1109 } else if (sb->sb_mb->m_nextpkt == NULL)
1110 sb->sb_lastrecord = sb->sb_mb;
1111 }
1112
1113 /*
1114 * Implement receive operations on a socket.
1115 * We depend on the way that records are added to the sockbuf
1116 * by sbappend*. In particular, each record (mbufs linked through m_next)
1117 * must begin with an address if the protocol so specifies,
1118 * followed by an optional mbuf or mbufs containing ancillary data,
1119 * and then zero or more mbufs of data.
1120 * In order to avoid blocking network interrupts for the entire time here,
1121 * we splx() while doing the actual copy to user space.
1122 * Although the sockbuf is locked, new data may still be appended,
1123 * and thus we must maintain consistency of the sockbuf during that time.
1124 *
1125 * The caller may receive the data as a single mbuf chain by supplying
1126 * an mbuf **mp0 for use in returning the chain. The uio is then used
1127 * only for the count in uio_resid.
1128 */
1129 int
1130 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1131 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1132 {
1133 struct lwp *l = curlwp;
1134 struct mbuf *m, **mp, *mt;
1135 size_t len, offset, moff, orig_resid;
1136 int atomic, flags, error, s, type;
1137 const struct protosw *pr;
1138 struct mbuf *nextrecord;
1139 int mbuf_removed = 0;
1140 const struct domain *dom;
1141 short wakeup_state = 0;
1142
1143 pr = so->so_proto;
1144 atomic = pr->pr_flags & PR_ATOMIC;
1145 dom = pr->pr_domain;
1146 mp = mp0;
1147 type = 0;
1148 orig_resid = uio->uio_resid;
1149
1150 if (paddr != NULL)
1151 *paddr = NULL;
1152 if (controlp != NULL)
1153 *controlp = NULL;
1154 if (flagsp != NULL)
1155 flags = *flagsp &~ MSG_EOR;
1156 else
1157 flags = 0;
1158
1159 if (flags & MSG_OOB) {
1160 m = m_get(M_WAIT, MT_DATA);
1161 solock(so);
1162 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1163 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1164 sounlock(so);
1165 if (error)
1166 goto bad;
1167 do {
1168 error = uiomove(mtod(m, void *),
1169 MIN(uio->uio_resid, m->m_len), uio);
1170 m = m_free(m);
1171 } while (uio->uio_resid > 0 && error == 0 && m);
1172 bad:
1173 if (m != NULL)
1174 m_freem(m);
1175 return error;
1176 }
1177 if (mp != NULL)
1178 *mp = NULL;
1179
1180 /*
1181 * solock() provides atomicity of access. splsoftnet() prevents
1182 * protocol processing soft interrupts from interrupting us and
1183 * blocking (expensive).
1184 */
1185 s = splsoftnet();
1186 solock(so);
1187 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1188 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1189
1190 restart:
1191 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1192 sounlock(so);
1193 splx(s);
1194 return error;
1195 }
1196
1197 m = so->so_rcv.sb_mb;
1198 /*
1199 * If we have less data than requested, block awaiting more
1200 * (subject to any timeout) if:
1201 * 1. the current count is less than the low water mark,
1202 * 2. MSG_WAITALL is set, and it is possible to do the entire
1203 * receive operation at once if we block (resid <= hiwat), or
1204 * 3. MSG_DONTWAIT is not set.
1205 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1206 * we have to do the receive in sections, and thus risk returning
1207 * a short count if a timeout or signal occurs after we start.
1208 */
1209 if (m == NULL ||
1210 ((flags & MSG_DONTWAIT) == 0 &&
1211 so->so_rcv.sb_cc < uio->uio_resid &&
1212 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1213 ((flags & MSG_WAITALL) &&
1214 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1215 m->m_nextpkt == NULL && !atomic)) {
1216 #ifdef DIAGNOSTIC
1217 if (m == NULL && so->so_rcv.sb_cc)
1218 panic("receive 1");
1219 #endif
1220 if (so->so_error) {
1221 if (m != NULL)
1222 goto dontblock;
1223 error = so->so_error;
1224 if ((flags & MSG_PEEK) == 0)
1225 so->so_error = 0;
1226 goto release;
1227 }
1228 if (so->so_state & SS_CANTRCVMORE) {
1229 if (m != NULL)
1230 goto dontblock;
1231 else
1232 goto release;
1233 }
1234 for (; m != NULL; m = m->m_next)
1235 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1236 m = so->so_rcv.sb_mb;
1237 goto dontblock;
1238 }
1239 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1240 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1241 error = ENOTCONN;
1242 goto release;
1243 }
1244 if (uio->uio_resid == 0)
1245 goto release;
1246 if ((so->so_state & SS_NBIO) ||
1247 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1248 error = EWOULDBLOCK;
1249 goto release;
1250 }
1251 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1252 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1253 sbunlock(&so->so_rcv);
1254 if (wakeup_state & SS_RESTARTSYS)
1255 error = ERESTART;
1256 else
1257 error = sbwait(&so->so_rcv);
1258 if (error != 0) {
1259 sounlock(so);
1260 splx(s);
1261 return error;
1262 }
1263 wakeup_state = so->so_state;
1264 goto restart;
1265 }
1266 dontblock:
1267 /*
1268 * On entry here, m points to the first record of the socket buffer.
1269 * From this point onward, we maintain 'nextrecord' as a cache of the
1270 * pointer to the next record in the socket buffer. We must keep the
1271 * various socket buffer pointers and local stack versions of the
1272 * pointers in sync, pushing out modifications before dropping the
1273 * socket lock, and re-reading them when picking it up.
1274 *
1275 * Otherwise, we will race with the network stack appending new data
1276 * or records onto the socket buffer by using inconsistent/stale
1277 * versions of the field, possibly resulting in socket buffer
1278 * corruption.
1279 *
1280 * By holding the high-level sblock(), we prevent simultaneous
1281 * readers from pulling off the front of the socket buffer.
1282 */
1283 if (l != NULL)
1284 l->l_ru.ru_msgrcv++;
1285 KASSERT(m == so->so_rcv.sb_mb);
1286 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1287 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1288 nextrecord = m->m_nextpkt;
1289 if (pr->pr_flags & PR_ADDR) {
1290 #ifdef DIAGNOSTIC
1291 if (m->m_type != MT_SONAME)
1292 panic("receive 1a");
1293 #endif
1294 orig_resid = 0;
1295 if (flags & MSG_PEEK) {
1296 if (paddr)
1297 *paddr = m_copy(m, 0, m->m_len);
1298 m = m->m_next;
1299 } else {
1300 sbfree(&so->so_rcv, m);
1301 mbuf_removed = 1;
1302 if (paddr != NULL) {
1303 *paddr = m;
1304 so->so_rcv.sb_mb = m->m_next;
1305 m->m_next = NULL;
1306 m = so->so_rcv.sb_mb;
1307 } else {
1308 MFREE(m, so->so_rcv.sb_mb);
1309 m = so->so_rcv.sb_mb;
1310 }
1311 sbsync(&so->so_rcv, nextrecord);
1312 }
1313 }
1314
1315 /*
1316 * Process one or more MT_CONTROL mbufs present before any data mbufs
1317 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1318 * just copy the data; if !MSG_PEEK, we call into the protocol to
1319 * perform externalization (or freeing if controlp == NULL).
1320 */
1321 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1322 struct mbuf *cm = NULL, *cmn;
1323 struct mbuf **cme = &cm;
1324
1325 do {
1326 if (flags & MSG_PEEK) {
1327 if (controlp != NULL) {
1328 *controlp = m_copy(m, 0, m->m_len);
1329 controlp = &(*controlp)->m_next;
1330 }
1331 m = m->m_next;
1332 } else {
1333 sbfree(&so->so_rcv, m);
1334 so->so_rcv.sb_mb = m->m_next;
1335 m->m_next = NULL;
1336 *cme = m;
1337 cme = &(*cme)->m_next;
1338 m = so->so_rcv.sb_mb;
1339 }
1340 } while (m != NULL && m->m_type == MT_CONTROL);
1341 if ((flags & MSG_PEEK) == 0)
1342 sbsync(&so->so_rcv, nextrecord);
1343 for (; cm != NULL; cm = cmn) {
1344 cmn = cm->m_next;
1345 cm->m_next = NULL;
1346 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1347 if (controlp != NULL) {
1348 if (dom->dom_externalize != NULL &&
1349 type == SCM_RIGHTS) {
1350 sounlock(so);
1351 splx(s);
1352 error = (*dom->dom_externalize)(cm, l,
1353 (flags & MSG_CMSG_CLOEXEC) ?
1354 O_CLOEXEC : 0);
1355 s = splsoftnet();
1356 solock(so);
1357 }
1358 *controlp = cm;
1359 while (*controlp != NULL)
1360 controlp = &(*controlp)->m_next;
1361 } else {
1362 /*
1363 * Dispose of any SCM_RIGHTS message that went
1364 * through the read path rather than recv.
1365 */
1366 if (dom->dom_dispose != NULL &&
1367 type == SCM_RIGHTS) {
1368 sounlock(so);
1369 (*dom->dom_dispose)(cm);
1370 solock(so);
1371 }
1372 m_freem(cm);
1373 }
1374 }
1375 if (m != NULL)
1376 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1377 else
1378 nextrecord = so->so_rcv.sb_mb;
1379 orig_resid = 0;
1380 }
1381
1382 /* If m is non-NULL, we have some data to read. */
1383 if (__predict_true(m != NULL)) {
1384 type = m->m_type;
1385 if (type == MT_OOBDATA)
1386 flags |= MSG_OOB;
1387 }
1388 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1389 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1390
1391 moff = 0;
1392 offset = 0;
1393 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1394 if (m->m_type == MT_OOBDATA) {
1395 if (type != MT_OOBDATA)
1396 break;
1397 } else if (type == MT_OOBDATA)
1398 break;
1399 #ifdef DIAGNOSTIC
1400 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1401 panic("receive 3");
1402 #endif
1403 so->so_state &= ~SS_RCVATMARK;
1404 wakeup_state = 0;
1405 len = uio->uio_resid;
1406 if (so->so_oobmark && len > so->so_oobmark - offset)
1407 len = so->so_oobmark - offset;
1408 if (len > m->m_len - moff)
1409 len = m->m_len - moff;
1410 /*
1411 * If mp is set, just pass back the mbufs.
1412 * Otherwise copy them out via the uio, then free.
1413 * Sockbuf must be consistent here (points to current mbuf,
1414 * it points to next record) when we drop priority;
1415 * we must note any additions to the sockbuf when we
1416 * block interrupts again.
1417 */
1418 if (mp == NULL) {
1419 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1420 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1421 sounlock(so);
1422 splx(s);
1423 error = uiomove(mtod(m, char *) + moff, len, uio);
1424 s = splsoftnet();
1425 solock(so);
1426 if (error != 0) {
1427 /*
1428 * If any part of the record has been removed
1429 * (such as the MT_SONAME mbuf, which will
1430 * happen when PR_ADDR, and thus also
1431 * PR_ATOMIC, is set), then drop the entire
1432 * record to maintain the atomicity of the
1433 * receive operation.
1434 *
1435 * This avoids a later panic("receive 1a")
1436 * when compiled with DIAGNOSTIC.
1437 */
1438 if (m && mbuf_removed && atomic)
1439 (void) sbdroprecord(&so->so_rcv);
1440
1441 goto release;
1442 }
1443 } else
1444 uio->uio_resid -= len;
1445 if (len == m->m_len - moff) {
1446 if (m->m_flags & M_EOR)
1447 flags |= MSG_EOR;
1448 if (flags & MSG_PEEK) {
1449 m = m->m_next;
1450 moff = 0;
1451 } else {
1452 nextrecord = m->m_nextpkt;
1453 sbfree(&so->so_rcv, m);
1454 if (mp) {
1455 *mp = m;
1456 mp = &m->m_next;
1457 so->so_rcv.sb_mb = m = m->m_next;
1458 *mp = NULL;
1459 } else {
1460 MFREE(m, so->so_rcv.sb_mb);
1461 m = so->so_rcv.sb_mb;
1462 }
1463 /*
1464 * If m != NULL, we also know that
1465 * so->so_rcv.sb_mb != NULL.
1466 */
1467 KASSERT(so->so_rcv.sb_mb == m);
1468 if (m) {
1469 m->m_nextpkt = nextrecord;
1470 if (nextrecord == NULL)
1471 so->so_rcv.sb_lastrecord = m;
1472 } else {
1473 so->so_rcv.sb_mb = nextrecord;
1474 SB_EMPTY_FIXUP(&so->so_rcv);
1475 }
1476 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1477 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1478 }
1479 } else if (flags & MSG_PEEK)
1480 moff += len;
1481 else {
1482 if (mp != NULL) {
1483 mt = m_copym(m, 0, len, M_NOWAIT);
1484 if (__predict_false(mt == NULL)) {
1485 sounlock(so);
1486 mt = m_copym(m, 0, len, M_WAIT);
1487 solock(so);
1488 }
1489 *mp = mt;
1490 }
1491 m->m_data += len;
1492 m->m_len -= len;
1493 so->so_rcv.sb_cc -= len;
1494 }
1495 if (so->so_oobmark) {
1496 if ((flags & MSG_PEEK) == 0) {
1497 so->so_oobmark -= len;
1498 if (so->so_oobmark == 0) {
1499 so->so_state |= SS_RCVATMARK;
1500 break;
1501 }
1502 } else {
1503 offset += len;
1504 if (offset == so->so_oobmark)
1505 break;
1506 }
1507 }
1508 if (flags & MSG_EOR)
1509 break;
1510 /*
1511 * If the MSG_WAITALL flag is set (for non-atomic socket),
1512 * we must not quit until "uio->uio_resid == 0" or an error
1513 * termination. If a signal/timeout occurs, return
1514 * with a short count but without error.
1515 * Keep sockbuf locked against other readers.
1516 */
1517 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1518 !sosendallatonce(so) && !nextrecord) {
1519 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1520 break;
1521 /*
1522 * If we are peeking and the socket receive buffer is
1523 * full, stop since we can't get more data to peek at.
1524 */
1525 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1526 break;
1527 /*
1528 * If we've drained the socket buffer, tell the
1529 * protocol in case it needs to do something to
1530 * get it filled again.
1531 */
1532 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1533 (*pr->pr_usrreq)(so, PRU_RCVD,
1534 NULL, (struct mbuf *)(long)flags, NULL, l);
1535 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1536 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1537 if (wakeup_state & SS_RESTARTSYS)
1538 error = ERESTART;
1539 else
1540 error = sbwait(&so->so_rcv);
1541 if (error != 0) {
1542 sbunlock(&so->so_rcv);
1543 sounlock(so);
1544 splx(s);
1545 return 0;
1546 }
1547 if ((m = so->so_rcv.sb_mb) != NULL)
1548 nextrecord = m->m_nextpkt;
1549 wakeup_state = so->so_state;
1550 }
1551 }
1552
1553 if (m && atomic) {
1554 flags |= MSG_TRUNC;
1555 if ((flags & MSG_PEEK) == 0)
1556 (void) sbdroprecord(&so->so_rcv);
1557 }
1558 if ((flags & MSG_PEEK) == 0) {
1559 if (m == NULL) {
1560 /*
1561 * First part is an inline SB_EMPTY_FIXUP(). Second
1562 * part makes sure sb_lastrecord is up-to-date if
1563 * there is still data in the socket buffer.
1564 */
1565 so->so_rcv.sb_mb = nextrecord;
1566 if (so->so_rcv.sb_mb == NULL) {
1567 so->so_rcv.sb_mbtail = NULL;
1568 so->so_rcv.sb_lastrecord = NULL;
1569 } else if (nextrecord->m_nextpkt == NULL)
1570 so->so_rcv.sb_lastrecord = nextrecord;
1571 }
1572 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1573 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1574 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1575 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1576 (struct mbuf *)(long)flags, NULL, l);
1577 }
1578 if (orig_resid == uio->uio_resid && orig_resid &&
1579 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1580 sbunlock(&so->so_rcv);
1581 goto restart;
1582 }
1583
1584 if (flagsp != NULL)
1585 *flagsp |= flags;
1586 release:
1587 sbunlock(&so->so_rcv);
1588 sounlock(so);
1589 splx(s);
1590 return error;
1591 }
1592
1593 int
1594 soshutdown(struct socket *so, int how)
1595 {
1596 const struct protosw *pr;
1597 int error;
1598
1599 KASSERT(solocked(so));
1600
1601 pr = so->so_proto;
1602 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1603 return (EINVAL);
1604
1605 if (how == SHUT_RD || how == SHUT_RDWR) {
1606 sorflush(so);
1607 error = 0;
1608 }
1609 if (how == SHUT_WR || how == SHUT_RDWR)
1610 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1611 NULL, NULL, NULL);
1612
1613 return error;
1614 }
1615
1616 void
1617 sorestart(struct socket *so)
1618 {
1619 /*
1620 * An application has called close() on an fd on which another
1621 * of its threads has called a socket system call.
1622 * Mark this and wake everyone up, and code that would block again
1623 * instead returns ERESTART.
1624 * On system call re-entry the fd is validated and EBADF returned.
1625 * Any other fd will block again on the 2nd syscall.
1626 */
1627 solock(so);
1628 so->so_state |= SS_RESTARTSYS;
1629 cv_broadcast(&so->so_cv);
1630 cv_broadcast(&so->so_snd.sb_cv);
1631 cv_broadcast(&so->so_rcv.sb_cv);
1632 sounlock(so);
1633 }
1634
1635 void
1636 sorflush(struct socket *so)
1637 {
1638 struct sockbuf *sb, asb;
1639 const struct protosw *pr;
1640
1641 KASSERT(solocked(so));
1642
1643 sb = &so->so_rcv;
1644 pr = so->so_proto;
1645 socantrcvmore(so);
1646 sb->sb_flags |= SB_NOINTR;
1647 (void )sblock(sb, M_WAITOK);
1648 sbunlock(sb);
1649 asb = *sb;
1650 /*
1651 * Clear most of the sockbuf structure, but leave some of the
1652 * fields valid.
1653 */
1654 memset(&sb->sb_startzero, 0,
1655 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1656 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1657 sounlock(so);
1658 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1659 solock(so);
1660 }
1661 sbrelease(&asb, so);
1662 }
1663
1664 /*
1665 * internal set SOL_SOCKET options
1666 */
1667 static int
1668 sosetopt1(struct socket *so, const struct sockopt *sopt)
1669 {
1670 int error = EINVAL, optval, opt;
1671 struct linger l;
1672 struct timeval tv;
1673
1674 switch ((opt = sopt->sopt_name)) {
1675
1676 case SO_ACCEPTFILTER:
1677 error = accept_filt_setopt(so, sopt);
1678 KASSERT(solocked(so));
1679 break;
1680
1681 case SO_LINGER:
1682 error = sockopt_get(sopt, &l, sizeof(l));
1683 solock(so);
1684 if (error)
1685 break;
1686 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1687 l.l_linger > (INT_MAX / hz)) {
1688 error = EDOM;
1689 break;
1690 }
1691 so->so_linger = l.l_linger;
1692 if (l.l_onoff)
1693 so->so_options |= SO_LINGER;
1694 else
1695 so->so_options &= ~SO_LINGER;
1696 break;
1697
1698 case SO_DEBUG:
1699 case SO_KEEPALIVE:
1700 case SO_DONTROUTE:
1701 case SO_USELOOPBACK:
1702 case SO_BROADCAST:
1703 case SO_REUSEADDR:
1704 case SO_REUSEPORT:
1705 case SO_OOBINLINE:
1706 case SO_TIMESTAMP:
1707 case SO_NOSIGPIPE:
1708 #ifdef SO_OTIMESTAMP
1709 case SO_OTIMESTAMP:
1710 #endif
1711 error = sockopt_getint(sopt, &optval);
1712 solock(so);
1713 if (error)
1714 break;
1715 if (optval)
1716 so->so_options |= opt;
1717 else
1718 so->so_options &= ~opt;
1719 break;
1720
1721 case SO_SNDBUF:
1722 case SO_RCVBUF:
1723 case SO_SNDLOWAT:
1724 case SO_RCVLOWAT:
1725 error = sockopt_getint(sopt, &optval);
1726 solock(so);
1727 if (error)
1728 break;
1729
1730 /*
1731 * Values < 1 make no sense for any of these
1732 * options, so disallow them.
1733 */
1734 if (optval < 1) {
1735 error = EINVAL;
1736 break;
1737 }
1738
1739 switch (opt) {
1740 case SO_SNDBUF:
1741 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1742 error = ENOBUFS;
1743 break;
1744 }
1745 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1746 break;
1747
1748 case SO_RCVBUF:
1749 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1750 error = ENOBUFS;
1751 break;
1752 }
1753 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1754 break;
1755
1756 /*
1757 * Make sure the low-water is never greater than
1758 * the high-water.
1759 */
1760 case SO_SNDLOWAT:
1761 if (optval > so->so_snd.sb_hiwat)
1762 optval = so->so_snd.sb_hiwat;
1763
1764 so->so_snd.sb_lowat = optval;
1765 break;
1766
1767 case SO_RCVLOWAT:
1768 if (optval > so->so_rcv.sb_hiwat)
1769 optval = so->so_rcv.sb_hiwat;
1770
1771 so->so_rcv.sb_lowat = optval;
1772 break;
1773 }
1774 break;
1775
1776 #ifdef COMPAT_50
1777 case SO_OSNDTIMEO:
1778 case SO_ORCVTIMEO: {
1779 struct timeval50 otv;
1780 error = sockopt_get(sopt, &otv, sizeof(otv));
1781 if (error) {
1782 solock(so);
1783 break;
1784 }
1785 timeval50_to_timeval(&otv, &tv);
1786 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1787 error = 0;
1788 /*FALLTHROUGH*/
1789 }
1790 #endif /* COMPAT_50 */
1791
1792 case SO_SNDTIMEO:
1793 case SO_RCVTIMEO:
1794 if (error)
1795 error = sockopt_get(sopt, &tv, sizeof(tv));
1796 solock(so);
1797 if (error)
1798 break;
1799
1800 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1801 error = EDOM;
1802 break;
1803 }
1804
1805 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1806 if (optval == 0 && tv.tv_usec != 0)
1807 optval = 1;
1808
1809 switch (opt) {
1810 case SO_SNDTIMEO:
1811 so->so_snd.sb_timeo = optval;
1812 break;
1813 case SO_RCVTIMEO:
1814 so->so_rcv.sb_timeo = optval;
1815 break;
1816 }
1817 break;
1818
1819 default:
1820 solock(so);
1821 error = ENOPROTOOPT;
1822 break;
1823 }
1824 KASSERT(solocked(so));
1825 return error;
1826 }
1827
1828 int
1829 sosetopt(struct socket *so, struct sockopt *sopt)
1830 {
1831 int error, prerr;
1832
1833 if (sopt->sopt_level == SOL_SOCKET) {
1834 error = sosetopt1(so, sopt);
1835 KASSERT(solocked(so));
1836 } else {
1837 error = ENOPROTOOPT;
1838 solock(so);
1839 }
1840
1841 if ((error == 0 || error == ENOPROTOOPT) &&
1842 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1843 /* give the protocol stack a shot */
1844 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1845 if (prerr == 0)
1846 error = 0;
1847 else if (prerr != ENOPROTOOPT)
1848 error = prerr;
1849 }
1850 sounlock(so);
1851 return error;
1852 }
1853
1854 /*
1855 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1856 */
1857 int
1858 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1859 const void *val, size_t valsize)
1860 {
1861 struct sockopt sopt;
1862 int error;
1863
1864 KASSERT(valsize == 0 || val != NULL);
1865
1866 sockopt_init(&sopt, level, name, valsize);
1867 sockopt_set(&sopt, val, valsize);
1868
1869 error = sosetopt(so, &sopt);
1870
1871 sockopt_destroy(&sopt);
1872
1873 return error;
1874 }
1875
1876 /*
1877 * internal get SOL_SOCKET options
1878 */
1879 static int
1880 sogetopt1(struct socket *so, struct sockopt *sopt)
1881 {
1882 int error, optval, opt;
1883 struct linger l;
1884 struct timeval tv;
1885
1886 switch ((opt = sopt->sopt_name)) {
1887
1888 case SO_ACCEPTFILTER:
1889 error = accept_filt_getopt(so, sopt);
1890 break;
1891
1892 case SO_LINGER:
1893 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1894 l.l_linger = so->so_linger;
1895
1896 error = sockopt_set(sopt, &l, sizeof(l));
1897 break;
1898
1899 case SO_USELOOPBACK:
1900 case SO_DONTROUTE:
1901 case SO_DEBUG:
1902 case SO_KEEPALIVE:
1903 case SO_REUSEADDR:
1904 case SO_REUSEPORT:
1905 case SO_BROADCAST:
1906 case SO_OOBINLINE:
1907 case SO_TIMESTAMP:
1908 case SO_NOSIGPIPE:
1909 #ifdef SO_OTIMESTAMP
1910 case SO_OTIMESTAMP:
1911 #endif
1912 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1913 break;
1914
1915 case SO_TYPE:
1916 error = sockopt_setint(sopt, so->so_type);
1917 break;
1918
1919 case SO_ERROR:
1920 error = sockopt_setint(sopt, so->so_error);
1921 so->so_error = 0;
1922 break;
1923
1924 case SO_SNDBUF:
1925 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1926 break;
1927
1928 case SO_RCVBUF:
1929 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1930 break;
1931
1932 case SO_SNDLOWAT:
1933 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1934 break;
1935
1936 case SO_RCVLOWAT:
1937 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1938 break;
1939
1940 #ifdef COMPAT_50
1941 case SO_OSNDTIMEO:
1942 case SO_ORCVTIMEO: {
1943 struct timeval50 otv;
1944
1945 optval = (opt == SO_OSNDTIMEO ?
1946 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1947
1948 otv.tv_sec = optval / hz;
1949 otv.tv_usec = (optval % hz) * tick;
1950
1951 error = sockopt_set(sopt, &otv, sizeof(otv));
1952 break;
1953 }
1954 #endif /* COMPAT_50 */
1955
1956 case SO_SNDTIMEO:
1957 case SO_RCVTIMEO:
1958 optval = (opt == SO_SNDTIMEO ?
1959 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1960
1961 tv.tv_sec = optval / hz;
1962 tv.tv_usec = (optval % hz) * tick;
1963
1964 error = sockopt_set(sopt, &tv, sizeof(tv));
1965 break;
1966
1967 case SO_OVERFLOWED:
1968 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1969 break;
1970
1971 default:
1972 error = ENOPROTOOPT;
1973 break;
1974 }
1975
1976 return (error);
1977 }
1978
1979 int
1980 sogetopt(struct socket *so, struct sockopt *sopt)
1981 {
1982 int error;
1983
1984 solock(so);
1985 if (sopt->sopt_level != SOL_SOCKET) {
1986 if (so->so_proto && so->so_proto->pr_ctloutput) {
1987 error = ((*so->so_proto->pr_ctloutput)
1988 (PRCO_GETOPT, so, sopt));
1989 } else
1990 error = (ENOPROTOOPT);
1991 } else {
1992 error = sogetopt1(so, sopt);
1993 }
1994 sounlock(so);
1995 return (error);
1996 }
1997
1998 /*
1999 * alloc sockopt data buffer buffer
2000 * - will be released at destroy
2001 */
2002 static int
2003 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2004 {
2005
2006 KASSERT(sopt->sopt_size == 0);
2007
2008 if (len > sizeof(sopt->sopt_buf)) {
2009 sopt->sopt_data = kmem_zalloc(len, kmflag);
2010 if (sopt->sopt_data == NULL)
2011 return ENOMEM;
2012 } else
2013 sopt->sopt_data = sopt->sopt_buf;
2014
2015 sopt->sopt_size = len;
2016 return 0;
2017 }
2018
2019 /*
2020 * initialise sockopt storage
2021 * - MAY sleep during allocation
2022 */
2023 void
2024 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2025 {
2026
2027 memset(sopt, 0, sizeof(*sopt));
2028
2029 sopt->sopt_level = level;
2030 sopt->sopt_name = name;
2031 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2032 }
2033
2034 /*
2035 * destroy sockopt storage
2036 * - will release any held memory references
2037 */
2038 void
2039 sockopt_destroy(struct sockopt *sopt)
2040 {
2041
2042 if (sopt->sopt_data != sopt->sopt_buf)
2043 kmem_free(sopt->sopt_data, sopt->sopt_size);
2044
2045 memset(sopt, 0, sizeof(*sopt));
2046 }
2047
2048 /*
2049 * set sockopt value
2050 * - value is copied into sockopt
2051 * - memory is allocated when necessary, will not sleep
2052 */
2053 int
2054 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2055 {
2056 int error;
2057
2058 if (sopt->sopt_size == 0) {
2059 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2060 if (error)
2061 return error;
2062 }
2063
2064 KASSERT(sopt->sopt_size == len);
2065 memcpy(sopt->sopt_data, buf, len);
2066 return 0;
2067 }
2068
2069 /*
2070 * common case of set sockopt integer value
2071 */
2072 int
2073 sockopt_setint(struct sockopt *sopt, int val)
2074 {
2075
2076 return sockopt_set(sopt, &val, sizeof(int));
2077 }
2078
2079 /*
2080 * get sockopt value
2081 * - correct size must be given
2082 */
2083 int
2084 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2085 {
2086
2087 if (sopt->sopt_size != len)
2088 return EINVAL;
2089
2090 memcpy(buf, sopt->sopt_data, len);
2091 return 0;
2092 }
2093
2094 /*
2095 * common case of get sockopt integer value
2096 */
2097 int
2098 sockopt_getint(const struct sockopt *sopt, int *valp)
2099 {
2100
2101 return sockopt_get(sopt, valp, sizeof(int));
2102 }
2103
2104 /*
2105 * set sockopt value from mbuf
2106 * - ONLY for legacy code
2107 * - mbuf is released by sockopt
2108 * - will not sleep
2109 */
2110 int
2111 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2112 {
2113 size_t len;
2114 int error;
2115
2116 len = m_length(m);
2117
2118 if (sopt->sopt_size == 0) {
2119 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2120 if (error)
2121 return error;
2122 }
2123
2124 KASSERT(sopt->sopt_size == len);
2125 m_copydata(m, 0, len, sopt->sopt_data);
2126 m_freem(m);
2127
2128 return 0;
2129 }
2130
2131 /*
2132 * get sockopt value into mbuf
2133 * - ONLY for legacy code
2134 * - mbuf to be released by the caller
2135 * - will not sleep
2136 */
2137 struct mbuf *
2138 sockopt_getmbuf(const struct sockopt *sopt)
2139 {
2140 struct mbuf *m;
2141
2142 if (sopt->sopt_size > MCLBYTES)
2143 return NULL;
2144
2145 m = m_get(M_DONTWAIT, MT_SOOPTS);
2146 if (m == NULL)
2147 return NULL;
2148
2149 if (sopt->sopt_size > MLEN) {
2150 MCLGET(m, M_DONTWAIT);
2151 if ((m->m_flags & M_EXT) == 0) {
2152 m_free(m);
2153 return NULL;
2154 }
2155 }
2156
2157 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2158 m->m_len = sopt->sopt_size;
2159
2160 return m;
2161 }
2162
2163 void
2164 sohasoutofband(struct socket *so)
2165 {
2166
2167 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2168 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2169 }
2170
2171 static void
2172 filt_sordetach(struct knote *kn)
2173 {
2174 struct socket *so;
2175
2176 so = ((file_t *)kn->kn_obj)->f_data;
2177 solock(so);
2178 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2179 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2180 so->so_rcv.sb_flags &= ~SB_KNOTE;
2181 sounlock(so);
2182 }
2183
2184 /*ARGSUSED*/
2185 static int
2186 filt_soread(struct knote *kn, long hint)
2187 {
2188 struct socket *so;
2189 int rv;
2190
2191 so = ((file_t *)kn->kn_obj)->f_data;
2192 if (hint != NOTE_SUBMIT)
2193 solock(so);
2194 kn->kn_data = so->so_rcv.sb_cc;
2195 if (so->so_state & SS_CANTRCVMORE) {
2196 kn->kn_flags |= EV_EOF;
2197 kn->kn_fflags = so->so_error;
2198 rv = 1;
2199 } else if (so->so_error) /* temporary udp error */
2200 rv = 1;
2201 else if (kn->kn_sfflags & NOTE_LOWAT)
2202 rv = (kn->kn_data >= kn->kn_sdata);
2203 else
2204 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2205 if (hint != NOTE_SUBMIT)
2206 sounlock(so);
2207 return rv;
2208 }
2209
2210 static void
2211 filt_sowdetach(struct knote *kn)
2212 {
2213 struct socket *so;
2214
2215 so = ((file_t *)kn->kn_obj)->f_data;
2216 solock(so);
2217 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2218 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2219 so->so_snd.sb_flags &= ~SB_KNOTE;
2220 sounlock(so);
2221 }
2222
2223 /*ARGSUSED*/
2224 static int
2225 filt_sowrite(struct knote *kn, long hint)
2226 {
2227 struct socket *so;
2228 int rv;
2229
2230 so = ((file_t *)kn->kn_obj)->f_data;
2231 if (hint != NOTE_SUBMIT)
2232 solock(so);
2233 kn->kn_data = sbspace(&so->so_snd);
2234 if (so->so_state & SS_CANTSENDMORE) {
2235 kn->kn_flags |= EV_EOF;
2236 kn->kn_fflags = so->so_error;
2237 rv = 1;
2238 } else if (so->so_error) /* temporary udp error */
2239 rv = 1;
2240 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2241 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2242 rv = 0;
2243 else if (kn->kn_sfflags & NOTE_LOWAT)
2244 rv = (kn->kn_data >= kn->kn_sdata);
2245 else
2246 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2247 if (hint != NOTE_SUBMIT)
2248 sounlock(so);
2249 return rv;
2250 }
2251
2252 /*ARGSUSED*/
2253 static int
2254 filt_solisten(struct knote *kn, long hint)
2255 {
2256 struct socket *so;
2257 int rv;
2258
2259 so = ((file_t *)kn->kn_obj)->f_data;
2260
2261 /*
2262 * Set kn_data to number of incoming connections, not
2263 * counting partial (incomplete) connections.
2264 */
2265 if (hint != NOTE_SUBMIT)
2266 solock(so);
2267 kn->kn_data = so->so_qlen;
2268 rv = (kn->kn_data > 0);
2269 if (hint != NOTE_SUBMIT)
2270 sounlock(so);
2271 return rv;
2272 }
2273
2274 static const struct filterops solisten_filtops =
2275 { 1, NULL, filt_sordetach, filt_solisten };
2276 static const struct filterops soread_filtops =
2277 { 1, NULL, filt_sordetach, filt_soread };
2278 static const struct filterops sowrite_filtops =
2279 { 1, NULL, filt_sowdetach, filt_sowrite };
2280
2281 int
2282 soo_kqfilter(struct file *fp, struct knote *kn)
2283 {
2284 struct socket *so;
2285 struct sockbuf *sb;
2286
2287 so = ((file_t *)kn->kn_obj)->f_data;
2288 solock(so);
2289 switch (kn->kn_filter) {
2290 case EVFILT_READ:
2291 if (so->so_options & SO_ACCEPTCONN)
2292 kn->kn_fop = &solisten_filtops;
2293 else
2294 kn->kn_fop = &soread_filtops;
2295 sb = &so->so_rcv;
2296 break;
2297 case EVFILT_WRITE:
2298 kn->kn_fop = &sowrite_filtops;
2299 sb = &so->so_snd;
2300 break;
2301 default:
2302 sounlock(so);
2303 return (EINVAL);
2304 }
2305 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2306 sb->sb_flags |= SB_KNOTE;
2307 sounlock(so);
2308 return (0);
2309 }
2310
2311 static int
2312 sodopoll(struct socket *so, int events)
2313 {
2314 int revents;
2315
2316 revents = 0;
2317
2318 if (events & (POLLIN | POLLRDNORM))
2319 if (soreadable(so))
2320 revents |= events & (POLLIN | POLLRDNORM);
2321
2322 if (events & (POLLOUT | POLLWRNORM))
2323 if (sowritable(so))
2324 revents |= events & (POLLOUT | POLLWRNORM);
2325
2326 if (events & (POLLPRI | POLLRDBAND))
2327 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2328 revents |= events & (POLLPRI | POLLRDBAND);
2329
2330 return revents;
2331 }
2332
2333 int
2334 sopoll(struct socket *so, int events)
2335 {
2336 int revents = 0;
2337
2338 #ifndef DIAGNOSTIC
2339 /*
2340 * Do a quick, unlocked check in expectation that the socket
2341 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2342 * as the solocked() assertions will fail.
2343 */
2344 if ((revents = sodopoll(so, events)) != 0)
2345 return revents;
2346 #endif
2347
2348 solock(so);
2349 if ((revents = sodopoll(so, events)) == 0) {
2350 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2351 selrecord(curlwp, &so->so_rcv.sb_sel);
2352 so->so_rcv.sb_flags |= SB_NOTIFY;
2353 }
2354
2355 if (events & (POLLOUT | POLLWRNORM)) {
2356 selrecord(curlwp, &so->so_snd.sb_sel);
2357 so->so_snd.sb_flags |= SB_NOTIFY;
2358 }
2359 }
2360 sounlock(so);
2361
2362 return revents;
2363 }
2364
2365
2366 #include <sys/sysctl.h>
2367
2368 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2369
2370 /*
2371 * sysctl helper routine for kern.somaxkva. ensures that the given
2372 * value is not too small.
2373 * (XXX should we maybe make sure it's not too large as well?)
2374 */
2375 static int
2376 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2377 {
2378 int error, new_somaxkva;
2379 struct sysctlnode node;
2380
2381 new_somaxkva = somaxkva;
2382 node = *rnode;
2383 node.sysctl_data = &new_somaxkva;
2384 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2385 if (error || newp == NULL)
2386 return (error);
2387
2388 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2389 return (EINVAL);
2390
2391 mutex_enter(&so_pendfree_lock);
2392 somaxkva = new_somaxkva;
2393 cv_broadcast(&socurkva_cv);
2394 mutex_exit(&so_pendfree_lock);
2395
2396 return (error);
2397 }
2398
2399 static void
2400 sysctl_kern_somaxkva_setup(void)
2401 {
2402
2403 KASSERT(socket_sysctllog == NULL);
2404 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2405 CTLFLAG_PERMANENT,
2406 CTLTYPE_NODE, "kern", NULL,
2407 NULL, 0, NULL, 0,
2408 CTL_KERN, CTL_EOL);
2409
2410 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2411 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2412 CTLTYPE_INT, "somaxkva",
2413 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2414 "used for socket buffers"),
2415 sysctl_kern_somaxkva, 0, NULL, 0,
2416 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2417 }
2418