Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.209.2.2.2.2
      1 /*	$NetBSD: uipc_socket.c,v 1.209.2.2.2.2 2013/11/25 08:27:06 bouyer Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.209.2.2.2.2 2013/11/25 08:27:06 bouyer Exp $");
     67 
     68 #include "opt_compat_netbsd.h"
     69 #include "opt_sock_counters.h"
     70 #include "opt_sosend_loan.h"
     71 #include "opt_mbuftrace.h"
     72 #include "opt_somaxkva.h"
     73 #include "opt_multiprocessor.h"	/* XXX */
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/proc.h>
     78 #include <sys/file.h>
     79 #include <sys/filedesc.h>
     80 #include <sys/kmem.h>
     81 #include <sys/mbuf.h>
     82 #include <sys/domain.h>
     83 #include <sys/kernel.h>
     84 #include <sys/protosw.h>
     85 #include <sys/socket.h>
     86 #include <sys/socketvar.h>
     87 #include <sys/signalvar.h>
     88 #include <sys/resourcevar.h>
     89 #include <sys/uidinfo.h>
     90 #include <sys/event.h>
     91 #include <sys/poll.h>
     92 #include <sys/kauth.h>
     93 #include <sys/mutex.h>
     94 #include <sys/condvar.h>
     95 #include <sys/kthread.h>
     96 
     97 #ifdef COMPAT_50
     98 #include <compat/sys/time.h>
     99 #include <compat/sys/socket.h>
    100 #endif
    101 
    102 #include <uvm/uvm_extern.h>
    103 #include <uvm/uvm_loan.h>
    104 #include <uvm/uvm_page.h>
    105 
    106 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
    107 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    108 
    109 extern const struct fileops socketops;
    110 
    111 extern int	somaxconn;			/* patchable (XXX sysctl) */
    112 int		somaxconn = SOMAXCONN;
    113 kmutex_t	*softnet_lock;
    114 
    115 #ifdef SOSEND_COUNTERS
    116 #include <sys/device.h>
    117 
    118 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    119     NULL, "sosend", "loan big");
    120 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    121     NULL, "sosend", "copy big");
    122 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    123     NULL, "sosend", "copy small");
    124 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    125     NULL, "sosend", "kva limit");
    126 
    127 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    128 
    129 EVCNT_ATTACH_STATIC(sosend_loan_big);
    130 EVCNT_ATTACH_STATIC(sosend_copy_big);
    131 EVCNT_ATTACH_STATIC(sosend_copy_small);
    132 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    133 #else
    134 
    135 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    136 
    137 #endif /* SOSEND_COUNTERS */
    138 
    139 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    140 int sock_loan_thresh = -1;
    141 #else
    142 int sock_loan_thresh = 4096;
    143 #endif
    144 
    145 static kmutex_t so_pendfree_lock;
    146 static struct mbuf *so_pendfree = NULL;
    147 
    148 #ifndef SOMAXKVA
    149 #define	SOMAXKVA (16 * 1024 * 1024)
    150 #endif
    151 int somaxkva = SOMAXKVA;
    152 static int socurkva;
    153 static kcondvar_t socurkva_cv;
    154 
    155 static kauth_listener_t socket_listener;
    156 
    157 #define	SOCK_LOAN_CHUNK		65536
    158 
    159 static void sopendfree_thread(void *);
    160 static kcondvar_t pendfree_thread_cv;
    161 static lwp_t *sopendfree_lwp;
    162 
    163 static void sysctl_kern_somaxkva_setup(void);
    164 static struct sysctllog *socket_sysctllog;
    165 
    166 static vsize_t
    167 sokvareserve(struct socket *so, vsize_t len)
    168 {
    169 	int error;
    170 
    171 	mutex_enter(&so_pendfree_lock);
    172 	while (socurkva + len > somaxkva) {
    173 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    174 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    175 		if (error) {
    176 			len = 0;
    177 			break;
    178 		}
    179 	}
    180 	socurkva += len;
    181 	mutex_exit(&so_pendfree_lock);
    182 	return len;
    183 }
    184 
    185 static void
    186 sokvaunreserve(vsize_t len)
    187 {
    188 
    189 	mutex_enter(&so_pendfree_lock);
    190 	socurkva -= len;
    191 	cv_broadcast(&socurkva_cv);
    192 	mutex_exit(&so_pendfree_lock);
    193 }
    194 
    195 /*
    196  * sokvaalloc: allocate kva for loan.
    197  */
    198 
    199 vaddr_t
    200 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
    201 {
    202 	vaddr_t lva;
    203 
    204 	/*
    205 	 * reserve kva.
    206 	 */
    207 
    208 	if (sokvareserve(so, len) == 0)
    209 		return 0;
    210 
    211 	/*
    212 	 * allocate kva.
    213 	 */
    214 
    215 	lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
    216 	    UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    217 	if (lva == 0) {
    218 		sokvaunreserve(len);
    219 		return (0);
    220 	}
    221 
    222 	return lva;
    223 }
    224 
    225 /*
    226  * sokvafree: free kva for loan.
    227  */
    228 
    229 void
    230 sokvafree(vaddr_t sva, vsize_t len)
    231 {
    232 
    233 	/*
    234 	 * free kva.
    235 	 */
    236 
    237 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    238 
    239 	/*
    240 	 * unreserve kva.
    241 	 */
    242 
    243 	sokvaunreserve(len);
    244 }
    245 
    246 static void
    247 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    248 {
    249 	vaddr_t sva, eva;
    250 	vsize_t len;
    251 	int npgs;
    252 
    253 	KASSERT(pgs != NULL);
    254 
    255 	eva = round_page((vaddr_t) buf + size);
    256 	sva = trunc_page((vaddr_t) buf);
    257 	len = eva - sva;
    258 	npgs = len >> PAGE_SHIFT;
    259 
    260 	pmap_kremove(sva, len);
    261 	pmap_update(pmap_kernel());
    262 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    263 	sokvafree(sva, len);
    264 }
    265 
    266 /*
    267  * sopendfree_thread: free mbufs on "pendfree" list.
    268  * unlock and relock so_pendfree_lock when freeing mbufs.
    269  */
    270 
    271 static void
    272 sopendfree_thread(void *v)
    273 {
    274 	struct mbuf *m, *next;
    275 	size_t rv;
    276 
    277 	mutex_enter(&so_pendfree_lock);
    278 
    279 	for (;;) {
    280 		rv = 0;
    281 		while (so_pendfree != NULL) {
    282 			m = so_pendfree;
    283 			so_pendfree = NULL;
    284 			mutex_exit(&so_pendfree_lock);
    285 
    286 			for (; m != NULL; m = next) {
    287 				next = m->m_next;
    288 				KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
    289 				KASSERT(m->m_ext.ext_refcnt == 0);
    290 
    291 				rv += m->m_ext.ext_size;
    292 				sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    293 				    m->m_ext.ext_size);
    294 				pool_cache_put(mb_cache, m);
    295 			}
    296 
    297 			mutex_enter(&so_pendfree_lock);
    298 		}
    299 		if (rv)
    300 			cv_broadcast(&socurkva_cv);
    301 		cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
    302 	}
    303 	panic("sopendfree_thread");
    304 	/* NOTREACHED */
    305 }
    306 
    307 void
    308 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    309 {
    310 
    311 	KASSERT(m != NULL);
    312 
    313 	/*
    314 	 * postpone freeing mbuf.
    315 	 *
    316 	 * we can't do it in interrupt context
    317 	 * because we need to put kva back to kernel_map.
    318 	 */
    319 
    320 	mutex_enter(&so_pendfree_lock);
    321 	m->m_next = so_pendfree;
    322 	so_pendfree = m;
    323 	cv_signal(&pendfree_thread_cv);
    324 	mutex_exit(&so_pendfree_lock);
    325 }
    326 
    327 static long
    328 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    329 {
    330 	struct iovec *iov = uio->uio_iov;
    331 	vaddr_t sva, eva;
    332 	vsize_t len;
    333 	vaddr_t lva;
    334 	int npgs, error;
    335 	vaddr_t va;
    336 	int i;
    337 
    338 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    339 		return (0);
    340 
    341 	if (iov->iov_len < (size_t) space)
    342 		space = iov->iov_len;
    343 	if (space > SOCK_LOAN_CHUNK)
    344 		space = SOCK_LOAN_CHUNK;
    345 
    346 	eva = round_page((vaddr_t) iov->iov_base + space);
    347 	sva = trunc_page((vaddr_t) iov->iov_base);
    348 	len = eva - sva;
    349 	npgs = len >> PAGE_SHIFT;
    350 
    351 	KASSERT(npgs <= M_EXT_MAXPAGES);
    352 
    353 	lva = sokvaalloc(sva, len, so);
    354 	if (lva == 0)
    355 		return 0;
    356 
    357 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    358 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    359 	if (error) {
    360 		sokvafree(lva, len);
    361 		return (0);
    362 	}
    363 
    364 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    365 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    366 		    VM_PROT_READ, 0);
    367 	pmap_update(pmap_kernel());
    368 
    369 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    370 
    371 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    372 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    373 
    374 	uio->uio_resid -= space;
    375 	/* uio_offset not updated, not set/used for write(2) */
    376 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    377 	uio->uio_iov->iov_len -= space;
    378 	if (uio->uio_iov->iov_len == 0) {
    379 		uio->uio_iov++;
    380 		uio->uio_iovcnt--;
    381 	}
    382 
    383 	return (space);
    384 }
    385 
    386 struct mbuf *
    387 getsombuf(struct socket *so, int type)
    388 {
    389 	struct mbuf *m;
    390 
    391 	m = m_get(M_WAIT, type);
    392 	MCLAIM(m, so->so_mowner);
    393 	return m;
    394 }
    395 
    396 static int
    397 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    398     void *arg0, void *arg1, void *arg2, void *arg3)
    399 {
    400 	int result;
    401 	enum kauth_network_req req;
    402 
    403 	result = KAUTH_RESULT_DEFER;
    404 	req = (enum kauth_network_req)arg0;
    405 
    406 	if ((action != KAUTH_NETWORK_SOCKET) &&
    407 	    (action != KAUTH_NETWORK_BIND))
    408 		return result;
    409 
    410 	switch (req) {
    411 	case KAUTH_REQ_NETWORK_BIND_PORT:
    412 		result = KAUTH_RESULT_ALLOW;
    413 		break;
    414 
    415 	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
    416 		/* Normal users can only drop their own connections. */
    417 		struct socket *so = (struct socket *)arg1;
    418 
    419 		if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
    420 			result = KAUTH_RESULT_ALLOW;
    421 
    422 		break;
    423 		}
    424 
    425 	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
    426 		/* We allow "raw" routing/bluetooth sockets to anyone. */
    427 		if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
    428 		    || (u_long)arg1 == PF_BLUETOOTH) {
    429 			result = KAUTH_RESULT_ALLOW;
    430 		} else {
    431 			/* Privileged, let secmodel handle this. */
    432 			if ((u_long)arg2 == SOCK_RAW)
    433 				break;
    434 		}
    435 
    436 		result = KAUTH_RESULT_ALLOW;
    437 
    438 		break;
    439 
    440 	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
    441 		result = KAUTH_RESULT_ALLOW;
    442 
    443 		break;
    444 
    445 	default:
    446 		break;
    447 	}
    448 
    449 	return result;
    450 }
    451 
    452 void
    453 soinit(void)
    454 {
    455 
    456 	sysctl_kern_somaxkva_setup();
    457 
    458 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    459 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    460 	cv_init(&socurkva_cv, "sokva");
    461 	cv_init(&pendfree_thread_cv, "sopendfr");
    462 	soinit2();
    463 
    464 	/* Set the initial adjusted socket buffer size. */
    465 	if (sb_max_set(sb_max))
    466 		panic("bad initial sb_max value: %lu", sb_max);
    467 
    468 	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    469 	    socket_listener_cb, NULL);
    470 }
    471 
    472 void
    473 soinit1(void)
    474 {
    475 	int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    476 	    sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
    477 	if (error)
    478 		panic("soinit1 %d", error);
    479 }
    480 
    481 /*
    482  * Socket operation routines.
    483  * These routines are called by the routines in
    484  * sys_socket.c or from a system process, and
    485  * implement the semantics of socket operations by
    486  * switching out to the protocol specific routines.
    487  */
    488 /*ARGSUSED*/
    489 int
    490 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    491 	 struct socket *lockso)
    492 {
    493 	const struct protosw	*prp;
    494 	struct socket	*so;
    495 	uid_t		uid;
    496 	int		error;
    497 	kmutex_t	*lock;
    498 
    499 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    500 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    501 	    KAUTH_ARG(proto));
    502 	if (error != 0)
    503 		return error;
    504 
    505 	if (proto)
    506 		prp = pffindproto(dom, proto, type);
    507 	else
    508 		prp = pffindtype(dom, type);
    509 	if (prp == NULL) {
    510 		/* no support for domain */
    511 		if (pffinddomain(dom) == 0)
    512 			return EAFNOSUPPORT;
    513 		/* no support for socket type */
    514 		if (proto == 0 && type != 0)
    515 			return EPROTOTYPE;
    516 		return EPROTONOSUPPORT;
    517 	}
    518 	if (prp->pr_usrreq == NULL)
    519 		return EPROTONOSUPPORT;
    520 	if (prp->pr_type != type)
    521 		return EPROTOTYPE;
    522 
    523 	so = soget(true);
    524 	so->so_type = type;
    525 	so->so_proto = prp;
    526 	so->so_send = sosend;
    527 	so->so_receive = soreceive;
    528 #ifdef MBUFTRACE
    529 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    530 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    531 	so->so_mowner = &prp->pr_domain->dom_mowner;
    532 #endif
    533 	uid = kauth_cred_geteuid(l->l_cred);
    534 	so->so_uidinfo = uid_find(uid);
    535 	so->so_cpid = l->l_proc->p_pid;
    536 	if (lockso != NULL) {
    537 		/* Caller wants us to share a lock. */
    538 		lock = lockso->so_lock;
    539 		so->so_lock = lock;
    540 		mutex_obj_hold(lock);
    541 		mutex_enter(lock);
    542 	} else {
    543 		/* Lock assigned and taken during PRU_ATTACH. */
    544 	}
    545 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
    546 	    (struct mbuf *)(long)proto, NULL, l);
    547 	KASSERT(solocked(so));
    548 	if (error != 0) {
    549 		so->so_state |= SS_NOFDREF;
    550 		sofree(so);
    551 		return error;
    552 	}
    553 	so->so_cred = kauth_cred_dup(l->l_cred);
    554 	sounlock(so);
    555 	*aso = so;
    556 	return 0;
    557 }
    558 
    559 /* On success, write file descriptor to fdout and return zero.  On
    560  * failure, return non-zero; *fdout will be undefined.
    561  */
    562 int
    563 fsocreate(int domain, struct socket **sop, int type, int protocol,
    564     struct lwp *l, int *fdout)
    565 {
    566 	struct socket	*so;
    567 	struct file	*fp;
    568 	int		fd, error;
    569 	int		flags = type & SOCK_FLAGS_MASK;
    570 
    571 	type &= ~SOCK_FLAGS_MASK;
    572 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    573 		return error;
    574 	fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
    575 	fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
    576 	    ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
    577 	fp->f_type = DTYPE_SOCKET;
    578 	fp->f_ops = &socketops;
    579 	error = socreate(domain, &so, type, protocol, l, NULL);
    580 	if (error != 0) {
    581 		fd_abort(curproc, fp, fd);
    582 	} else {
    583 		if (sop != NULL)
    584 			*sop = so;
    585 		fp->f_data = so;
    586 		fd_affix(curproc, fp, fd);
    587 		*fdout = fd;
    588 		if (flags & SOCK_NONBLOCK)
    589 			so->so_state |= SS_NBIO;
    590 	}
    591 	return error;
    592 }
    593 
    594 int
    595 sofamily(const struct socket *so)
    596 {
    597 	const struct protosw *pr;
    598 	const struct domain *dom;
    599 
    600 	if ((pr = so->so_proto) == NULL)
    601 		return AF_UNSPEC;
    602 	if ((dom = pr->pr_domain) == NULL)
    603 		return AF_UNSPEC;
    604 	return dom->dom_family;
    605 }
    606 
    607 int
    608 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    609 {
    610 	int	error;
    611 
    612 	solock(so);
    613 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
    614 	sounlock(so);
    615 	return error;
    616 }
    617 
    618 int
    619 solisten(struct socket *so, int backlog, struct lwp *l)
    620 {
    621 	int	error;
    622 
    623 	solock(so);
    624 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    625 	    SS_ISDISCONNECTING)) != 0) {
    626 	    	sounlock(so);
    627 		return (EOPNOTSUPP);
    628 	}
    629 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
    630 	    NULL, NULL, l);
    631 	if (error != 0) {
    632 		sounlock(so);
    633 		return error;
    634 	}
    635 	if (TAILQ_EMPTY(&so->so_q))
    636 		so->so_options |= SO_ACCEPTCONN;
    637 	if (backlog < 0)
    638 		backlog = 0;
    639 	so->so_qlimit = min(backlog, somaxconn);
    640 	sounlock(so);
    641 	return 0;
    642 }
    643 
    644 void
    645 sofree(struct socket *so)
    646 {
    647 	u_int refs;
    648 
    649 	KASSERT(solocked(so));
    650 
    651 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    652 		sounlock(so);
    653 		return;
    654 	}
    655 	if (so->so_head) {
    656 		/*
    657 		 * We must not decommission a socket that's on the accept(2)
    658 		 * queue.  If we do, then accept(2) may hang after select(2)
    659 		 * indicated that the listening socket was ready.
    660 		 */
    661 		if (!soqremque(so, 0)) {
    662 			sounlock(so);
    663 			return;
    664 		}
    665 	}
    666 	if (so->so_rcv.sb_hiwat)
    667 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    668 		    RLIM_INFINITY);
    669 	if (so->so_snd.sb_hiwat)
    670 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    671 		    RLIM_INFINITY);
    672 	sbrelease(&so->so_snd, so);
    673 	KASSERT(!cv_has_waiters(&so->so_cv));
    674 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    675 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    676 	sorflush(so);
    677 	refs = so->so_aborting;	/* XXX */
    678 	/* Remove acccept filter if one is present. */
    679 	if (so->so_accf != NULL)
    680 		(void)accept_filt_clear(so);
    681 	sounlock(so);
    682 	if (refs == 0)		/* XXX */
    683 		soput(so);
    684 }
    685 
    686 /*
    687  * Close a socket on last file table reference removal.
    688  * Initiate disconnect if connected.
    689  * Free socket when disconnect complete.
    690  */
    691 int
    692 soclose(struct socket *so)
    693 {
    694 	struct socket	*so2;
    695 	int		error;
    696 	int		error2;
    697 
    698 	error = 0;
    699 	solock(so);
    700 	if (so->so_options & SO_ACCEPTCONN) {
    701 		for (;;) {
    702 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    703 				KASSERT(solocked2(so, so2));
    704 				(void) soqremque(so2, 0);
    705 				/* soabort drops the lock. */
    706 				(void) soabort(so2);
    707 				solock(so);
    708 				continue;
    709 			}
    710 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    711 				KASSERT(solocked2(so, so2));
    712 				(void) soqremque(so2, 1);
    713 				/* soabort drops the lock. */
    714 				(void) soabort(so2);
    715 				solock(so);
    716 				continue;
    717 			}
    718 			break;
    719 		}
    720 	}
    721 	if (so->so_pcb == 0)
    722 		goto discard;
    723 	if (so->so_state & SS_ISCONNECTED) {
    724 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    725 			error = sodisconnect(so);
    726 			if (error)
    727 				goto drop;
    728 		}
    729 		if (so->so_options & SO_LINGER) {
    730 			if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
    731 			    (SS_ISDISCONNECTING|SS_NBIO))
    732 				goto drop;
    733 			while (so->so_state & SS_ISCONNECTED) {
    734 				error = sowait(so, true, so->so_linger * hz);
    735 				if (error)
    736 					break;
    737 			}
    738 		}
    739 	}
    740  drop:
    741 	if (so->so_pcb) {
    742 		error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    743 		    NULL, NULL, NULL, NULL);
    744 		if (error == 0)
    745 			error = error2;
    746 	}
    747  discard:
    748 	if (so->so_state & SS_NOFDREF)
    749 		panic("soclose: NOFDREF");
    750 	kauth_cred_free(so->so_cred);
    751 	so->so_state |= SS_NOFDREF;
    752 	sofree(so);
    753 	return (error);
    754 }
    755 
    756 /*
    757  * Must be called with the socket locked..  Will return with it unlocked.
    758  */
    759 int
    760 soabort(struct socket *so)
    761 {
    762 	u_int refs;
    763 	int error;
    764 
    765 	KASSERT(solocked(so));
    766 	KASSERT(so->so_head == NULL);
    767 
    768 	so->so_aborting++;		/* XXX */
    769 	error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
    770 	    NULL, NULL, NULL);
    771 	refs = --so->so_aborting;	/* XXX */
    772 	if (error || (refs == 0)) {
    773 		sofree(so);
    774 	} else {
    775 		sounlock(so);
    776 	}
    777 	return error;
    778 }
    779 
    780 int
    781 soaccept(struct socket *so, struct mbuf *nam)
    782 {
    783 	int	error;
    784 
    785 	KASSERT(solocked(so));
    786 
    787 	error = 0;
    788 	if ((so->so_state & SS_NOFDREF) == 0)
    789 		panic("soaccept: !NOFDREF");
    790 	so->so_state &= ~SS_NOFDREF;
    791 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    792 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    793 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    794 		    NULL, nam, NULL, NULL);
    795 	else
    796 		error = ECONNABORTED;
    797 
    798 	return (error);
    799 }
    800 
    801 int
    802 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    803 {
    804 	int		error;
    805 
    806 	KASSERT(solocked(so));
    807 
    808 	if (so->so_options & SO_ACCEPTCONN)
    809 		return (EOPNOTSUPP);
    810 	/*
    811 	 * If protocol is connection-based, can only connect once.
    812 	 * Otherwise, if connected, try to disconnect first.
    813 	 * This allows user to disconnect by connecting to, e.g.,
    814 	 * a null address.
    815 	 */
    816 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    817 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    818 	    (error = sodisconnect(so))))
    819 		error = EISCONN;
    820 	else
    821 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    822 		    NULL, nam, NULL, l);
    823 	return (error);
    824 }
    825 
    826 int
    827 soconnect2(struct socket *so1, struct socket *so2)
    828 {
    829 	int	error;
    830 
    831 	KASSERT(solocked2(so1, so2));
    832 
    833 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    834 	    NULL, (struct mbuf *)so2, NULL, NULL);
    835 	return (error);
    836 }
    837 
    838 int
    839 sodisconnect(struct socket *so)
    840 {
    841 	int	error;
    842 
    843 	KASSERT(solocked(so));
    844 
    845 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    846 		error = ENOTCONN;
    847 	} else if (so->so_state & SS_ISDISCONNECTING) {
    848 		error = EALREADY;
    849 	} else {
    850 		error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    851 		    NULL, NULL, NULL, NULL);
    852 	}
    853 	return (error);
    854 }
    855 
    856 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    857 /*
    858  * Send on a socket.
    859  * If send must go all at once and message is larger than
    860  * send buffering, then hard error.
    861  * Lock against other senders.
    862  * If must go all at once and not enough room now, then
    863  * inform user that this would block and do nothing.
    864  * Otherwise, if nonblocking, send as much as possible.
    865  * The data to be sent is described by "uio" if nonzero,
    866  * otherwise by the mbuf chain "top" (which must be null
    867  * if uio is not).  Data provided in mbuf chain must be small
    868  * enough to send all at once.
    869  *
    870  * Returns nonzero on error, timeout or signal; callers
    871  * must check for short counts if EINTR/ERESTART are returned.
    872  * Data and control buffers are freed on return.
    873  */
    874 int
    875 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    876 	struct mbuf *control, int flags, struct lwp *l)
    877 {
    878 	struct mbuf	**mp, *m;
    879 	struct proc	*p;
    880 	long		space, len, resid, clen, mlen;
    881 	int		error, s, dontroute, atomic;
    882 	short		wakeup_state = 0;
    883 
    884 	p = l->l_proc;
    885 	clen = 0;
    886 
    887 	/*
    888 	 * solock() provides atomicity of access.  splsoftnet() prevents
    889 	 * protocol processing soft interrupts from interrupting us and
    890 	 * blocking (expensive).
    891 	 */
    892 	s = splsoftnet();
    893 	solock(so);
    894 	atomic = sosendallatonce(so) || top;
    895 	if (uio)
    896 		resid = uio->uio_resid;
    897 	else
    898 		resid = top->m_pkthdr.len;
    899 	/*
    900 	 * In theory resid should be unsigned.
    901 	 * However, space must be signed, as it might be less than 0
    902 	 * if we over-committed, and we must use a signed comparison
    903 	 * of space and resid.  On the other hand, a negative resid
    904 	 * causes us to loop sending 0-length segments to the protocol.
    905 	 */
    906 	if (resid < 0) {
    907 		error = EINVAL;
    908 		goto out;
    909 	}
    910 	dontroute =
    911 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    912 	    (so->so_proto->pr_flags & PR_ATOMIC);
    913 	l->l_ru.ru_msgsnd++;
    914 	if (control)
    915 		clen = control->m_len;
    916  restart:
    917 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    918 		goto out;
    919 	do {
    920 		if (so->so_state & SS_CANTSENDMORE) {
    921 			error = EPIPE;
    922 			goto release;
    923 		}
    924 		if (so->so_error) {
    925 			error = so->so_error;
    926 			so->so_error = 0;
    927 			goto release;
    928 		}
    929 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    930 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    931 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
    932 				    !(resid == 0 && clen != 0)) {
    933 					error = ENOTCONN;
    934 					goto release;
    935 				}
    936 			} else if (addr == 0) {
    937 				error = EDESTADDRREQ;
    938 				goto release;
    939 			}
    940 		}
    941 		space = sbspace(&so->so_snd);
    942 		if (flags & MSG_OOB)
    943 			space += 1024;
    944 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    945 		    clen > so->so_snd.sb_hiwat) {
    946 			error = EMSGSIZE;
    947 			goto release;
    948 		}
    949 		if (space < resid + clen &&
    950 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    951 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
    952 				error = EWOULDBLOCK;
    953 				goto release;
    954 			}
    955 			sbunlock(&so->so_snd);
    956 			if (wakeup_state & SS_RESTARTSYS) {
    957 				error = ERESTART;
    958 				goto out;
    959 			}
    960 			error = sbwait(&so->so_snd);
    961 			if (error)
    962 				goto out;
    963 			wakeup_state = so->so_state;
    964 			goto restart;
    965 		}
    966 		wakeup_state = 0;
    967 		mp = &top;
    968 		space -= clen;
    969 		do {
    970 			if (uio == NULL) {
    971 				/*
    972 				 * Data is prepackaged in "top".
    973 				 */
    974 				resid = 0;
    975 				if (flags & MSG_EOR)
    976 					top->m_flags |= M_EOR;
    977 			} else do {
    978 				sounlock(so);
    979 				splx(s);
    980 				if (top == NULL) {
    981 					m = m_gethdr(M_WAIT, MT_DATA);
    982 					mlen = MHLEN;
    983 					m->m_pkthdr.len = 0;
    984 					m->m_pkthdr.rcvif = NULL;
    985 				} else {
    986 					m = m_get(M_WAIT, MT_DATA);
    987 					mlen = MLEN;
    988 				}
    989 				MCLAIM(m, so->so_snd.sb_mowner);
    990 				if (sock_loan_thresh >= 0 &&
    991 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
    992 				    space >= sock_loan_thresh &&
    993 				    (len = sosend_loan(so, uio, m,
    994 						       space)) != 0) {
    995 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    996 					space -= len;
    997 					goto have_data;
    998 				}
    999 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
   1000 					SOSEND_COUNTER_INCR(&sosend_copy_big);
   1001 					m_clget(m, M_DONTWAIT);
   1002 					if ((m->m_flags & M_EXT) == 0)
   1003 						goto nopages;
   1004 					mlen = MCLBYTES;
   1005 					if (atomic && top == 0) {
   1006 						len = lmin(MCLBYTES - max_hdr,
   1007 						    resid);
   1008 						m->m_data += max_hdr;
   1009 					} else
   1010 						len = lmin(MCLBYTES, resid);
   1011 					space -= len;
   1012 				} else {
   1013  nopages:
   1014 					SOSEND_COUNTER_INCR(&sosend_copy_small);
   1015 					len = lmin(lmin(mlen, resid), space);
   1016 					space -= len;
   1017 					/*
   1018 					 * For datagram protocols, leave room
   1019 					 * for protocol headers in first mbuf.
   1020 					 */
   1021 					if (atomic && top == 0 && len < mlen)
   1022 						MH_ALIGN(m, len);
   1023 				}
   1024 				error = uiomove(mtod(m, void *), (int)len, uio);
   1025  have_data:
   1026 				resid = uio->uio_resid;
   1027 				m->m_len = len;
   1028 				*mp = m;
   1029 				top->m_pkthdr.len += len;
   1030 				s = splsoftnet();
   1031 				solock(so);
   1032 				if (error != 0)
   1033 					goto release;
   1034 				mp = &m->m_next;
   1035 				if (resid <= 0) {
   1036 					if (flags & MSG_EOR)
   1037 						top->m_flags |= M_EOR;
   1038 					break;
   1039 				}
   1040 			} while (space > 0 && atomic);
   1041 
   1042 			if (so->so_state & SS_CANTSENDMORE) {
   1043 				error = EPIPE;
   1044 				goto release;
   1045 			}
   1046 			if (dontroute)
   1047 				so->so_options |= SO_DONTROUTE;
   1048 			if (resid > 0)
   1049 				so->so_state |= SS_MORETOCOME;
   1050 			error = (*so->so_proto->pr_usrreq)(so,
   1051 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
   1052 			    top, addr, control, curlwp);
   1053 			if (dontroute)
   1054 				so->so_options &= ~SO_DONTROUTE;
   1055 			if (resid > 0)
   1056 				so->so_state &= ~SS_MORETOCOME;
   1057 			clen = 0;
   1058 			control = NULL;
   1059 			top = NULL;
   1060 			mp = &top;
   1061 			if (error != 0)
   1062 				goto release;
   1063 		} while (resid && space > 0);
   1064 	} while (resid);
   1065 
   1066  release:
   1067 	sbunlock(&so->so_snd);
   1068  out:
   1069 	sounlock(so);
   1070 	splx(s);
   1071 	if (top)
   1072 		m_freem(top);
   1073 	if (control)
   1074 		m_freem(control);
   1075 	return (error);
   1076 }
   1077 
   1078 /*
   1079  * Following replacement or removal of the first mbuf on the first
   1080  * mbuf chain of a socket buffer, push necessary state changes back
   1081  * into the socket buffer so that other consumers see the values
   1082  * consistently.  'nextrecord' is the callers locally stored value of
   1083  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1084  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1085  */
   1086 static void
   1087 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1088 {
   1089 
   1090 	KASSERT(solocked(sb->sb_so));
   1091 
   1092 	/*
   1093 	 * First, update for the new value of nextrecord.  If necessary,
   1094 	 * make it the first record.
   1095 	 */
   1096 	if (sb->sb_mb != NULL)
   1097 		sb->sb_mb->m_nextpkt = nextrecord;
   1098 	else
   1099 		sb->sb_mb = nextrecord;
   1100 
   1101         /*
   1102          * Now update any dependent socket buffer fields to reflect
   1103          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1104          * the addition of a second clause that takes care of the
   1105          * case where sb_mb has been updated, but remains the last
   1106          * record.
   1107          */
   1108         if (sb->sb_mb == NULL) {
   1109                 sb->sb_mbtail = NULL;
   1110                 sb->sb_lastrecord = NULL;
   1111         } else if (sb->sb_mb->m_nextpkt == NULL)
   1112                 sb->sb_lastrecord = sb->sb_mb;
   1113 }
   1114 
   1115 /*
   1116  * Implement receive operations on a socket.
   1117  * We depend on the way that records are added to the sockbuf
   1118  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1119  * must begin with an address if the protocol so specifies,
   1120  * followed by an optional mbuf or mbufs containing ancillary data,
   1121  * and then zero or more mbufs of data.
   1122  * In order to avoid blocking network interrupts for the entire time here,
   1123  * we splx() while doing the actual copy to user space.
   1124  * Although the sockbuf is locked, new data may still be appended,
   1125  * and thus we must maintain consistency of the sockbuf during that time.
   1126  *
   1127  * The caller may receive the data as a single mbuf chain by supplying
   1128  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1129  * only for the count in uio_resid.
   1130  */
   1131 int
   1132 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1133 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1134 {
   1135 	struct lwp *l = curlwp;
   1136 	struct mbuf	*m, **mp, *mt;
   1137 	size_t len, offset, moff, orig_resid;
   1138 	int atomic, flags, error, s, type;
   1139 	const struct protosw	*pr;
   1140 	struct mbuf	*nextrecord;
   1141 	int		mbuf_removed = 0;
   1142 	const struct domain *dom;
   1143 	short		wakeup_state = 0;
   1144 
   1145 	pr = so->so_proto;
   1146 	atomic = pr->pr_flags & PR_ATOMIC;
   1147 	dom = pr->pr_domain;
   1148 	mp = mp0;
   1149 	type = 0;
   1150 	orig_resid = uio->uio_resid;
   1151 
   1152 	if (paddr != NULL)
   1153 		*paddr = NULL;
   1154 	if (controlp != NULL)
   1155 		*controlp = NULL;
   1156 	if (flagsp != NULL)
   1157 		flags = *flagsp &~ MSG_EOR;
   1158 	else
   1159 		flags = 0;
   1160 
   1161 	if (flags & MSG_OOB) {
   1162 		m = m_get(M_WAIT, MT_DATA);
   1163 		solock(so);
   1164 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
   1165 		    (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
   1166 		sounlock(so);
   1167 		if (error)
   1168 			goto bad;
   1169 		do {
   1170 			error = uiomove(mtod(m, void *),
   1171 			    MIN(uio->uio_resid, m->m_len), uio);
   1172 			m = m_free(m);
   1173 		} while (uio->uio_resid > 0 && error == 0 && m);
   1174  bad:
   1175 		if (m != NULL)
   1176 			m_freem(m);
   1177 		return error;
   1178 	}
   1179 	if (mp != NULL)
   1180 		*mp = NULL;
   1181 
   1182 	/*
   1183 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1184 	 * protocol processing soft interrupts from interrupting us and
   1185 	 * blocking (expensive).
   1186 	 */
   1187 	s = splsoftnet();
   1188 	solock(so);
   1189 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
   1190 		(*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
   1191 
   1192  restart:
   1193 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1194 		sounlock(so);
   1195 		splx(s);
   1196 		return error;
   1197 	}
   1198 
   1199 	m = so->so_rcv.sb_mb;
   1200 	/*
   1201 	 * If we have less data than requested, block awaiting more
   1202 	 * (subject to any timeout) if:
   1203 	 *   1. the current count is less than the low water mark,
   1204 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1205 	 *	receive operation at once if we block (resid <= hiwat), or
   1206 	 *   3. MSG_DONTWAIT is not set.
   1207 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1208 	 * we have to do the receive in sections, and thus risk returning
   1209 	 * a short count if a timeout or signal occurs after we start.
   1210 	 */
   1211 	if (m == NULL ||
   1212 	    ((flags & MSG_DONTWAIT) == 0 &&
   1213 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1214 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1215 	      ((flags & MSG_WAITALL) &&
   1216 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1217 	     m->m_nextpkt == NULL && !atomic)) {
   1218 #ifdef DIAGNOSTIC
   1219 		if (m == NULL && so->so_rcv.sb_cc)
   1220 			panic("receive 1");
   1221 #endif
   1222 		if (so->so_error) {
   1223 			if (m != NULL)
   1224 				goto dontblock;
   1225 			error = so->so_error;
   1226 			if ((flags & MSG_PEEK) == 0)
   1227 				so->so_error = 0;
   1228 			goto release;
   1229 		}
   1230 		if (so->so_state & SS_CANTRCVMORE) {
   1231 			if (m != NULL)
   1232 				goto dontblock;
   1233 			else
   1234 				goto release;
   1235 		}
   1236 		for (; m != NULL; m = m->m_next)
   1237 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1238 				m = so->so_rcv.sb_mb;
   1239 				goto dontblock;
   1240 			}
   1241 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1242 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1243 			error = ENOTCONN;
   1244 			goto release;
   1245 		}
   1246 		if (uio->uio_resid == 0)
   1247 			goto release;
   1248 		if ((so->so_state & SS_NBIO) ||
   1249 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
   1250 			error = EWOULDBLOCK;
   1251 			goto release;
   1252 		}
   1253 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1254 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1255 		sbunlock(&so->so_rcv);
   1256 		if (wakeup_state & SS_RESTARTSYS)
   1257 			error = ERESTART;
   1258 		else
   1259 			error = sbwait(&so->so_rcv);
   1260 		if (error != 0) {
   1261 			sounlock(so);
   1262 			splx(s);
   1263 			return error;
   1264 		}
   1265 		wakeup_state = so->so_state;
   1266 		goto restart;
   1267 	}
   1268  dontblock:
   1269 	/*
   1270 	 * On entry here, m points to the first record of the socket buffer.
   1271 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1272 	 * pointer to the next record in the socket buffer.  We must keep the
   1273 	 * various socket buffer pointers and local stack versions of the
   1274 	 * pointers in sync, pushing out modifications before dropping the
   1275 	 * socket lock, and re-reading them when picking it up.
   1276 	 *
   1277 	 * Otherwise, we will race with the network stack appending new data
   1278 	 * or records onto the socket buffer by using inconsistent/stale
   1279 	 * versions of the field, possibly resulting in socket buffer
   1280 	 * corruption.
   1281 	 *
   1282 	 * By holding the high-level sblock(), we prevent simultaneous
   1283 	 * readers from pulling off the front of the socket buffer.
   1284 	 */
   1285 	if (l != NULL)
   1286 		l->l_ru.ru_msgrcv++;
   1287 	KASSERT(m == so->so_rcv.sb_mb);
   1288 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1289 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1290 	nextrecord = m->m_nextpkt;
   1291 	if (pr->pr_flags & PR_ADDR) {
   1292 #ifdef DIAGNOSTIC
   1293 		if (m->m_type != MT_SONAME)
   1294 			panic("receive 1a");
   1295 #endif
   1296 		orig_resid = 0;
   1297 		if (flags & MSG_PEEK) {
   1298 			if (paddr)
   1299 				*paddr = m_copy(m, 0, m->m_len);
   1300 			m = m->m_next;
   1301 		} else {
   1302 			sbfree(&so->so_rcv, m);
   1303 			mbuf_removed = 1;
   1304 			if (paddr != NULL) {
   1305 				*paddr = m;
   1306 				so->so_rcv.sb_mb = m->m_next;
   1307 				m->m_next = NULL;
   1308 				m = so->so_rcv.sb_mb;
   1309 			} else {
   1310 				MFREE(m, so->so_rcv.sb_mb);
   1311 				m = so->so_rcv.sb_mb;
   1312 			}
   1313 			sbsync(&so->so_rcv, nextrecord);
   1314 		}
   1315 	}
   1316 
   1317 	/*
   1318 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1319 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1320 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1321 	 * perform externalization (or freeing if controlp == NULL).
   1322 	 */
   1323 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1324 		struct mbuf *cm = NULL, *cmn;
   1325 		struct mbuf **cme = &cm;
   1326 
   1327 		do {
   1328 			if (flags & MSG_PEEK) {
   1329 				if (controlp != NULL) {
   1330 					*controlp = m_copy(m, 0, m->m_len);
   1331 					controlp = &(*controlp)->m_next;
   1332 				}
   1333 				m = m->m_next;
   1334 			} else {
   1335 				sbfree(&so->so_rcv, m);
   1336 				so->so_rcv.sb_mb = m->m_next;
   1337 				m->m_next = NULL;
   1338 				*cme = m;
   1339 				cme = &(*cme)->m_next;
   1340 				m = so->so_rcv.sb_mb;
   1341 			}
   1342 		} while (m != NULL && m->m_type == MT_CONTROL);
   1343 		if ((flags & MSG_PEEK) == 0)
   1344 			sbsync(&so->so_rcv, nextrecord);
   1345 		for (; cm != NULL; cm = cmn) {
   1346 			cmn = cm->m_next;
   1347 			cm->m_next = NULL;
   1348 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1349 			if (controlp != NULL) {
   1350 				if (dom->dom_externalize != NULL &&
   1351 				    type == SCM_RIGHTS) {
   1352 					sounlock(so);
   1353 					splx(s);
   1354 					error = (*dom->dom_externalize)(cm, l,
   1355 					    (flags & MSG_CMSG_CLOEXEC) ?
   1356 					    O_CLOEXEC : 0);
   1357 					s = splsoftnet();
   1358 					solock(so);
   1359 				}
   1360 				*controlp = cm;
   1361 				while (*controlp != NULL)
   1362 					controlp = &(*controlp)->m_next;
   1363 			} else {
   1364 				/*
   1365 				 * Dispose of any SCM_RIGHTS message that went
   1366 				 * through the read path rather than recv.
   1367 				 */
   1368 				if (dom->dom_dispose != NULL &&
   1369 				    type == SCM_RIGHTS) {
   1370 				    	sounlock(so);
   1371 					(*dom->dom_dispose)(cm);
   1372 					solock(so);
   1373 				}
   1374 				m_freem(cm);
   1375 			}
   1376 		}
   1377 		if (m != NULL)
   1378 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1379 		else
   1380 			nextrecord = so->so_rcv.sb_mb;
   1381 		orig_resid = 0;
   1382 	}
   1383 
   1384 	/* If m is non-NULL, we have some data to read. */
   1385 	if (__predict_true(m != NULL)) {
   1386 		type = m->m_type;
   1387 		if (type == MT_OOBDATA)
   1388 			flags |= MSG_OOB;
   1389 	}
   1390 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1391 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1392 
   1393 	moff = 0;
   1394 	offset = 0;
   1395 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1396 		if (m->m_type == MT_OOBDATA) {
   1397 			if (type != MT_OOBDATA)
   1398 				break;
   1399 		} else if (type == MT_OOBDATA)
   1400 			break;
   1401 #ifdef DIAGNOSTIC
   1402 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1403 			panic("receive 3");
   1404 #endif
   1405 		so->so_state &= ~SS_RCVATMARK;
   1406 		wakeup_state = 0;
   1407 		len = uio->uio_resid;
   1408 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1409 			len = so->so_oobmark - offset;
   1410 		if (len > m->m_len - moff)
   1411 			len = m->m_len - moff;
   1412 		/*
   1413 		 * If mp is set, just pass back the mbufs.
   1414 		 * Otherwise copy them out via the uio, then free.
   1415 		 * Sockbuf must be consistent here (points to current mbuf,
   1416 		 * it points to next record) when we drop priority;
   1417 		 * we must note any additions to the sockbuf when we
   1418 		 * block interrupts again.
   1419 		 */
   1420 		if (mp == NULL) {
   1421 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1422 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1423 			sounlock(so);
   1424 			splx(s);
   1425 			error = uiomove(mtod(m, char *) + moff, len, uio);
   1426 			s = splsoftnet();
   1427 			solock(so);
   1428 			if (error != 0) {
   1429 				/*
   1430 				 * If any part of the record has been removed
   1431 				 * (such as the MT_SONAME mbuf, which will
   1432 				 * happen when PR_ADDR, and thus also
   1433 				 * PR_ATOMIC, is set), then drop the entire
   1434 				 * record to maintain the atomicity of the
   1435 				 * receive operation.
   1436 				 *
   1437 				 * This avoids a later panic("receive 1a")
   1438 				 * when compiled with DIAGNOSTIC.
   1439 				 */
   1440 				if (m && mbuf_removed && atomic)
   1441 					(void) sbdroprecord(&so->so_rcv);
   1442 
   1443 				goto release;
   1444 			}
   1445 		} else
   1446 			uio->uio_resid -= len;
   1447 		if (len == m->m_len - moff) {
   1448 			if (m->m_flags & M_EOR)
   1449 				flags |= MSG_EOR;
   1450 			if (flags & MSG_PEEK) {
   1451 				m = m->m_next;
   1452 				moff = 0;
   1453 			} else {
   1454 				nextrecord = m->m_nextpkt;
   1455 				sbfree(&so->so_rcv, m);
   1456 				if (mp) {
   1457 					*mp = m;
   1458 					mp = &m->m_next;
   1459 					so->so_rcv.sb_mb = m = m->m_next;
   1460 					*mp = NULL;
   1461 				} else {
   1462 					MFREE(m, so->so_rcv.sb_mb);
   1463 					m = so->so_rcv.sb_mb;
   1464 				}
   1465 				/*
   1466 				 * If m != NULL, we also know that
   1467 				 * so->so_rcv.sb_mb != NULL.
   1468 				 */
   1469 				KASSERT(so->so_rcv.sb_mb == m);
   1470 				if (m) {
   1471 					m->m_nextpkt = nextrecord;
   1472 					if (nextrecord == NULL)
   1473 						so->so_rcv.sb_lastrecord = m;
   1474 				} else {
   1475 					so->so_rcv.sb_mb = nextrecord;
   1476 					SB_EMPTY_FIXUP(&so->so_rcv);
   1477 				}
   1478 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1479 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1480 			}
   1481 		} else if (flags & MSG_PEEK)
   1482 			moff += len;
   1483 		else {
   1484 			if (mp != NULL) {
   1485 				mt = m_copym(m, 0, len, M_NOWAIT);
   1486 				if (__predict_false(mt == NULL)) {
   1487 					sounlock(so);
   1488 					mt = m_copym(m, 0, len, M_WAIT);
   1489 					solock(so);
   1490 				}
   1491 				*mp = mt;
   1492 			}
   1493 			m->m_data += len;
   1494 			m->m_len -= len;
   1495 			so->so_rcv.sb_cc -= len;
   1496 		}
   1497 		if (so->so_oobmark) {
   1498 			if ((flags & MSG_PEEK) == 0) {
   1499 				so->so_oobmark -= len;
   1500 				if (so->so_oobmark == 0) {
   1501 					so->so_state |= SS_RCVATMARK;
   1502 					break;
   1503 				}
   1504 			} else {
   1505 				offset += len;
   1506 				if (offset == so->so_oobmark)
   1507 					break;
   1508 			}
   1509 		}
   1510 		if (flags & MSG_EOR)
   1511 			break;
   1512 		/*
   1513 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1514 		 * we must not quit until "uio->uio_resid == 0" or an error
   1515 		 * termination.  If a signal/timeout occurs, return
   1516 		 * with a short count but without error.
   1517 		 * Keep sockbuf locked against other readers.
   1518 		 */
   1519 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1520 		    !sosendallatonce(so) && !nextrecord) {
   1521 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1522 				break;
   1523 			/*
   1524 			 * If we are peeking and the socket receive buffer is
   1525 			 * full, stop since we can't get more data to peek at.
   1526 			 */
   1527 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1528 				break;
   1529 			/*
   1530 			 * If we've drained the socket buffer, tell the
   1531 			 * protocol in case it needs to do something to
   1532 			 * get it filled again.
   1533 			 */
   1534 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1535 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1536 				    NULL, (struct mbuf *)(long)flags, NULL, l);
   1537 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1538 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1539 			if (wakeup_state & SS_RESTARTSYS)
   1540 				error = ERESTART;
   1541 			else
   1542 				error = sbwait(&so->so_rcv);
   1543 			if (error != 0) {
   1544 				sbunlock(&so->so_rcv);
   1545 				sounlock(so);
   1546 				splx(s);
   1547 				return 0;
   1548 			}
   1549 			if ((m = so->so_rcv.sb_mb) != NULL)
   1550 				nextrecord = m->m_nextpkt;
   1551 			wakeup_state = so->so_state;
   1552 		}
   1553 	}
   1554 
   1555 	if (m && atomic) {
   1556 		flags |= MSG_TRUNC;
   1557 		if ((flags & MSG_PEEK) == 0)
   1558 			(void) sbdroprecord(&so->so_rcv);
   1559 	}
   1560 	if ((flags & MSG_PEEK) == 0) {
   1561 		if (m == NULL) {
   1562 			/*
   1563 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1564 			 * part makes sure sb_lastrecord is up-to-date if
   1565 			 * there is still data in the socket buffer.
   1566 			 */
   1567 			so->so_rcv.sb_mb = nextrecord;
   1568 			if (so->so_rcv.sb_mb == NULL) {
   1569 				so->so_rcv.sb_mbtail = NULL;
   1570 				so->so_rcv.sb_lastrecord = NULL;
   1571 			} else if (nextrecord->m_nextpkt == NULL)
   1572 				so->so_rcv.sb_lastrecord = nextrecord;
   1573 		}
   1574 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1575 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1576 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1577 			(*pr->pr_usrreq)(so, PRU_RCVD, NULL,
   1578 			    (struct mbuf *)(long)flags, NULL, l);
   1579 	}
   1580 	if (orig_resid == uio->uio_resid && orig_resid &&
   1581 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1582 		sbunlock(&so->so_rcv);
   1583 		goto restart;
   1584 	}
   1585 
   1586 	if (flagsp != NULL)
   1587 		*flagsp |= flags;
   1588  release:
   1589 	sbunlock(&so->so_rcv);
   1590 	sounlock(so);
   1591 	splx(s);
   1592 	return error;
   1593 }
   1594 
   1595 int
   1596 soshutdown(struct socket *so, int how)
   1597 {
   1598 	const struct protosw	*pr;
   1599 	int	error;
   1600 
   1601 	KASSERT(solocked(so));
   1602 
   1603 	pr = so->so_proto;
   1604 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1605 		return (EINVAL);
   1606 
   1607 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1608 		sorflush(so);
   1609 		error = 0;
   1610 	}
   1611 	if (how == SHUT_WR || how == SHUT_RDWR)
   1612 		error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
   1613 		    NULL, NULL, NULL);
   1614 
   1615 	return error;
   1616 }
   1617 
   1618 void
   1619 sorestart(struct socket *so)
   1620 {
   1621 	/*
   1622 	 * An application has called close() on an fd on which another
   1623 	 * of its threads has called a socket system call.
   1624 	 * Mark this and wake everyone up, and code that would block again
   1625 	 * instead returns ERESTART.
   1626 	 * On system call re-entry the fd is validated and EBADF returned.
   1627 	 * Any other fd will block again on the 2nd syscall.
   1628 	 */
   1629 	solock(so);
   1630 	so->so_state |= SS_RESTARTSYS;
   1631 	cv_broadcast(&so->so_cv);
   1632 	cv_broadcast(&so->so_snd.sb_cv);
   1633 	cv_broadcast(&so->so_rcv.sb_cv);
   1634 	sounlock(so);
   1635 }
   1636 
   1637 void
   1638 sorflush(struct socket *so)
   1639 {
   1640 	struct sockbuf	*sb, asb;
   1641 	const struct protosw	*pr;
   1642 
   1643 	KASSERT(solocked(so));
   1644 
   1645 	sb = &so->so_rcv;
   1646 	pr = so->so_proto;
   1647 	socantrcvmore(so);
   1648 	sb->sb_flags |= SB_NOINTR;
   1649 	(void )sblock(sb, M_WAITOK);
   1650 	sbunlock(sb);
   1651 	asb = *sb;
   1652 	/*
   1653 	 * Clear most of the sockbuf structure, but leave some of the
   1654 	 * fields valid.
   1655 	 */
   1656 	memset(&sb->sb_startzero, 0,
   1657 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1658 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1659 		sounlock(so);
   1660 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1661 		solock(so);
   1662 	}
   1663 	sbrelease(&asb, so);
   1664 }
   1665 
   1666 /*
   1667  * internal set SOL_SOCKET options
   1668  */
   1669 static int
   1670 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1671 {
   1672 	int error = EINVAL, optval, opt;
   1673 	struct linger l;
   1674 	struct timeval tv;
   1675 
   1676 	switch ((opt = sopt->sopt_name)) {
   1677 
   1678 	case SO_ACCEPTFILTER:
   1679 		error = accept_filt_setopt(so, sopt);
   1680 		KASSERT(solocked(so));
   1681 		break;
   1682 
   1683   	case SO_LINGER:
   1684  		error = sockopt_get(sopt, &l, sizeof(l));
   1685 		solock(so);
   1686  		if (error)
   1687  			break;
   1688  		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1689  		    l.l_linger > (INT_MAX / hz)) {
   1690 			error = EDOM;
   1691 			break;
   1692 		}
   1693  		so->so_linger = l.l_linger;
   1694  		if (l.l_onoff)
   1695  			so->so_options |= SO_LINGER;
   1696  		else
   1697  			so->so_options &= ~SO_LINGER;
   1698    		break;
   1699 
   1700 	case SO_DEBUG:
   1701 	case SO_KEEPALIVE:
   1702 	case SO_DONTROUTE:
   1703 	case SO_USELOOPBACK:
   1704 	case SO_BROADCAST:
   1705 	case SO_REUSEADDR:
   1706 	case SO_REUSEPORT:
   1707 	case SO_OOBINLINE:
   1708 	case SO_TIMESTAMP:
   1709 	case SO_NOSIGPIPE:
   1710 #ifdef SO_OTIMESTAMP
   1711 	case SO_OTIMESTAMP:
   1712 #endif
   1713 		error = sockopt_getint(sopt, &optval);
   1714 		solock(so);
   1715 		if (error)
   1716 			break;
   1717 		if (optval)
   1718 			so->so_options |= opt;
   1719 		else
   1720 			so->so_options &= ~opt;
   1721 		break;
   1722 
   1723 	case SO_SNDBUF:
   1724 	case SO_RCVBUF:
   1725 	case SO_SNDLOWAT:
   1726 	case SO_RCVLOWAT:
   1727 		error = sockopt_getint(sopt, &optval);
   1728 		solock(so);
   1729 		if (error)
   1730 			break;
   1731 
   1732 		/*
   1733 		 * Values < 1 make no sense for any of these
   1734 		 * options, so disallow them.
   1735 		 */
   1736 		if (optval < 1) {
   1737 			error = EINVAL;
   1738 			break;
   1739 		}
   1740 
   1741 		switch (opt) {
   1742 		case SO_SNDBUF:
   1743 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
   1744 				error = ENOBUFS;
   1745 				break;
   1746 			}
   1747 			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1748 			break;
   1749 
   1750 		case SO_RCVBUF:
   1751 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
   1752 				error = ENOBUFS;
   1753 				break;
   1754 			}
   1755 			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1756 			break;
   1757 
   1758 		/*
   1759 		 * Make sure the low-water is never greater than
   1760 		 * the high-water.
   1761 		 */
   1762 		case SO_SNDLOWAT:
   1763 			if (optval > so->so_snd.sb_hiwat)
   1764 				optval = so->so_snd.sb_hiwat;
   1765 
   1766 			so->so_snd.sb_lowat = optval;
   1767 			break;
   1768 
   1769 		case SO_RCVLOWAT:
   1770 			if (optval > so->so_rcv.sb_hiwat)
   1771 				optval = so->so_rcv.sb_hiwat;
   1772 
   1773 			so->so_rcv.sb_lowat = optval;
   1774 			break;
   1775 		}
   1776 		break;
   1777 
   1778 #ifdef COMPAT_50
   1779 	case SO_OSNDTIMEO:
   1780 	case SO_ORCVTIMEO: {
   1781 		struct timeval50 otv;
   1782 		error = sockopt_get(sopt, &otv, sizeof(otv));
   1783 		if (error) {
   1784 			solock(so);
   1785 			break;
   1786 		}
   1787 		timeval50_to_timeval(&otv, &tv);
   1788 		opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
   1789 		error = 0;
   1790 		/*FALLTHROUGH*/
   1791 	}
   1792 #endif /* COMPAT_50 */
   1793 
   1794 	case SO_SNDTIMEO:
   1795 	case SO_RCVTIMEO:
   1796 		if (error)
   1797 			error = sockopt_get(sopt, &tv, sizeof(tv));
   1798 		solock(so);
   1799 		if (error)
   1800 			break;
   1801 
   1802 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
   1803 			error = EDOM;
   1804 			break;
   1805 		}
   1806 
   1807 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1808 		if (optval == 0 && tv.tv_usec != 0)
   1809 			optval = 1;
   1810 
   1811 		switch (opt) {
   1812 		case SO_SNDTIMEO:
   1813 			so->so_snd.sb_timeo = optval;
   1814 			break;
   1815 		case SO_RCVTIMEO:
   1816 			so->so_rcv.sb_timeo = optval;
   1817 			break;
   1818 		}
   1819 		break;
   1820 
   1821 	default:
   1822 		solock(so);
   1823 		error = ENOPROTOOPT;
   1824 		break;
   1825 	}
   1826 	KASSERT(solocked(so));
   1827 	return error;
   1828 }
   1829 
   1830 int
   1831 sosetopt(struct socket *so, struct sockopt *sopt)
   1832 {
   1833 	int error, prerr;
   1834 
   1835 	if (sopt->sopt_level == SOL_SOCKET) {
   1836 		error = sosetopt1(so, sopt);
   1837 		KASSERT(solocked(so));
   1838 	} else {
   1839 		error = ENOPROTOOPT;
   1840 		solock(so);
   1841 	}
   1842 
   1843 	if ((error == 0 || error == ENOPROTOOPT) &&
   1844 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1845 		/* give the protocol stack a shot */
   1846 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1847 		if (prerr == 0)
   1848 			error = 0;
   1849 		else if (prerr != ENOPROTOOPT)
   1850 			error = prerr;
   1851 	}
   1852 	sounlock(so);
   1853 	return error;
   1854 }
   1855 
   1856 /*
   1857  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1858  */
   1859 int
   1860 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1861     const void *val, size_t valsize)
   1862 {
   1863 	struct sockopt sopt;
   1864 	int error;
   1865 
   1866 	KASSERT(valsize == 0 || val != NULL);
   1867 
   1868 	sockopt_init(&sopt, level, name, valsize);
   1869 	sockopt_set(&sopt, val, valsize);
   1870 
   1871 	error = sosetopt(so, &sopt);
   1872 
   1873 	sockopt_destroy(&sopt);
   1874 
   1875 	return error;
   1876 }
   1877 
   1878 /*
   1879  * internal get SOL_SOCKET options
   1880  */
   1881 static int
   1882 sogetopt1(struct socket *so, struct sockopt *sopt)
   1883 {
   1884 	int error, optval, opt;
   1885 	struct linger l;
   1886 	struct timeval tv;
   1887 
   1888 	switch ((opt = sopt->sopt_name)) {
   1889 
   1890 	case SO_ACCEPTFILTER:
   1891 		error = accept_filt_getopt(so, sopt);
   1892 		break;
   1893 
   1894 	case SO_LINGER:
   1895 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1896 		l.l_linger = so->so_linger;
   1897 
   1898 		error = sockopt_set(sopt, &l, sizeof(l));
   1899 		break;
   1900 
   1901 	case SO_USELOOPBACK:
   1902 	case SO_DONTROUTE:
   1903 	case SO_DEBUG:
   1904 	case SO_KEEPALIVE:
   1905 	case SO_REUSEADDR:
   1906 	case SO_REUSEPORT:
   1907 	case SO_BROADCAST:
   1908 	case SO_OOBINLINE:
   1909 	case SO_TIMESTAMP:
   1910 	case SO_NOSIGPIPE:
   1911 #ifdef SO_OTIMESTAMP
   1912 	case SO_OTIMESTAMP:
   1913 #endif
   1914 		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
   1915 		break;
   1916 
   1917 	case SO_TYPE:
   1918 		error = sockopt_setint(sopt, so->so_type);
   1919 		break;
   1920 
   1921 	case SO_ERROR:
   1922 		error = sockopt_setint(sopt, so->so_error);
   1923 		so->so_error = 0;
   1924 		break;
   1925 
   1926 	case SO_SNDBUF:
   1927 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1928 		break;
   1929 
   1930 	case SO_RCVBUF:
   1931 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1932 		break;
   1933 
   1934 	case SO_SNDLOWAT:
   1935 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1936 		break;
   1937 
   1938 	case SO_RCVLOWAT:
   1939 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1940 		break;
   1941 
   1942 #ifdef COMPAT_50
   1943 	case SO_OSNDTIMEO:
   1944 	case SO_ORCVTIMEO: {
   1945 		struct timeval50 otv;
   1946 
   1947 		optval = (opt == SO_OSNDTIMEO ?
   1948 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1949 
   1950 		otv.tv_sec = optval / hz;
   1951 		otv.tv_usec = (optval % hz) * tick;
   1952 
   1953 		error = sockopt_set(sopt, &otv, sizeof(otv));
   1954 		break;
   1955 	}
   1956 #endif /* COMPAT_50 */
   1957 
   1958 	case SO_SNDTIMEO:
   1959 	case SO_RCVTIMEO:
   1960 		optval = (opt == SO_SNDTIMEO ?
   1961 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1962 
   1963 		tv.tv_sec = optval / hz;
   1964 		tv.tv_usec = (optval % hz) * tick;
   1965 
   1966 		error = sockopt_set(sopt, &tv, sizeof(tv));
   1967 		break;
   1968 
   1969 	case SO_OVERFLOWED:
   1970 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   1971 		break;
   1972 
   1973 	default:
   1974 		error = ENOPROTOOPT;
   1975 		break;
   1976 	}
   1977 
   1978 	return (error);
   1979 }
   1980 
   1981 int
   1982 sogetopt(struct socket *so, struct sockopt *sopt)
   1983 {
   1984 	int		error;
   1985 
   1986 	solock(so);
   1987 	if (sopt->sopt_level != SOL_SOCKET) {
   1988 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1989 			error = ((*so->so_proto->pr_ctloutput)
   1990 			    (PRCO_GETOPT, so, sopt));
   1991 		} else
   1992 			error = (ENOPROTOOPT);
   1993 	} else {
   1994 		error = sogetopt1(so, sopt);
   1995 	}
   1996 	sounlock(so);
   1997 	return (error);
   1998 }
   1999 
   2000 /*
   2001  * alloc sockopt data buffer buffer
   2002  *	- will be released at destroy
   2003  */
   2004 static int
   2005 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
   2006 {
   2007 
   2008 	KASSERT(sopt->sopt_size == 0);
   2009 
   2010 	if (len > sizeof(sopt->sopt_buf)) {
   2011 		sopt->sopt_data = kmem_zalloc(len, kmflag);
   2012 		if (sopt->sopt_data == NULL)
   2013 			return ENOMEM;
   2014 	} else
   2015 		sopt->sopt_data = sopt->sopt_buf;
   2016 
   2017 	sopt->sopt_size = len;
   2018 	return 0;
   2019 }
   2020 
   2021 /*
   2022  * initialise sockopt storage
   2023  *	- MAY sleep during allocation
   2024  */
   2025 void
   2026 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   2027 {
   2028 
   2029 	memset(sopt, 0, sizeof(*sopt));
   2030 
   2031 	sopt->sopt_level = level;
   2032 	sopt->sopt_name = name;
   2033 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
   2034 }
   2035 
   2036 /*
   2037  * destroy sockopt storage
   2038  *	- will release any held memory references
   2039  */
   2040 void
   2041 sockopt_destroy(struct sockopt *sopt)
   2042 {
   2043 
   2044 	if (sopt->sopt_data != sopt->sopt_buf)
   2045 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   2046 
   2047 	memset(sopt, 0, sizeof(*sopt));
   2048 }
   2049 
   2050 /*
   2051  * set sockopt value
   2052  *	- value is copied into sockopt
   2053  * 	- memory is allocated when necessary, will not sleep
   2054  */
   2055 int
   2056 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   2057 {
   2058 	int error;
   2059 
   2060 	if (sopt->sopt_size == 0) {
   2061 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2062 		if (error)
   2063 			return error;
   2064 	}
   2065 
   2066 	KASSERT(sopt->sopt_size == len);
   2067 	memcpy(sopt->sopt_data, buf, len);
   2068 	return 0;
   2069 }
   2070 
   2071 /*
   2072  * common case of set sockopt integer value
   2073  */
   2074 int
   2075 sockopt_setint(struct sockopt *sopt, int val)
   2076 {
   2077 
   2078 	return sockopt_set(sopt, &val, sizeof(int));
   2079 }
   2080 
   2081 /*
   2082  * get sockopt value
   2083  *	- correct size must be given
   2084  */
   2085 int
   2086 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   2087 {
   2088 
   2089 	if (sopt->sopt_size != len)
   2090 		return EINVAL;
   2091 
   2092 	memcpy(buf, sopt->sopt_data, len);
   2093 	return 0;
   2094 }
   2095 
   2096 /*
   2097  * common case of get sockopt integer value
   2098  */
   2099 int
   2100 sockopt_getint(const struct sockopt *sopt, int *valp)
   2101 {
   2102 
   2103 	return sockopt_get(sopt, valp, sizeof(int));
   2104 }
   2105 
   2106 /*
   2107  * set sockopt value from mbuf
   2108  *	- ONLY for legacy code
   2109  *	- mbuf is released by sockopt
   2110  *	- will not sleep
   2111  */
   2112 int
   2113 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   2114 {
   2115 	size_t len;
   2116 	int error;
   2117 
   2118 	len = m_length(m);
   2119 
   2120 	if (sopt->sopt_size == 0) {
   2121 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2122 		if (error)
   2123 			return error;
   2124 	}
   2125 
   2126 	KASSERT(sopt->sopt_size == len);
   2127 	m_copydata(m, 0, len, sopt->sopt_data);
   2128 	m_freem(m);
   2129 
   2130 	return 0;
   2131 }
   2132 
   2133 /*
   2134  * get sockopt value into mbuf
   2135  *	- ONLY for legacy code
   2136  *	- mbuf to be released by the caller
   2137  *	- will not sleep
   2138  */
   2139 struct mbuf *
   2140 sockopt_getmbuf(const struct sockopt *sopt)
   2141 {
   2142 	struct mbuf *m;
   2143 
   2144 	if (sopt->sopt_size > MCLBYTES)
   2145 		return NULL;
   2146 
   2147 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   2148 	if (m == NULL)
   2149 		return NULL;
   2150 
   2151 	if (sopt->sopt_size > MLEN) {
   2152 		MCLGET(m, M_DONTWAIT);
   2153 		if ((m->m_flags & M_EXT) == 0) {
   2154 			m_free(m);
   2155 			return NULL;
   2156 		}
   2157 	}
   2158 
   2159 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
   2160 	m->m_len = sopt->sopt_size;
   2161 
   2162 	return m;
   2163 }
   2164 
   2165 void
   2166 sohasoutofband(struct socket *so)
   2167 {
   2168 
   2169 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2170 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
   2171 }
   2172 
   2173 static void
   2174 filt_sordetach(struct knote *kn)
   2175 {
   2176 	struct socket	*so;
   2177 
   2178 	so = ((file_t *)kn->kn_obj)->f_data;
   2179 	solock(so);
   2180 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   2181 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   2182 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2183 	sounlock(so);
   2184 }
   2185 
   2186 /*ARGSUSED*/
   2187 static int
   2188 filt_soread(struct knote *kn, long hint)
   2189 {
   2190 	struct socket	*so;
   2191 	int rv;
   2192 
   2193 	so = ((file_t *)kn->kn_obj)->f_data;
   2194 	if (hint != NOTE_SUBMIT)
   2195 		solock(so);
   2196 	kn->kn_data = so->so_rcv.sb_cc;
   2197 	if (so->so_state & SS_CANTRCVMORE) {
   2198 		kn->kn_flags |= EV_EOF;
   2199 		kn->kn_fflags = so->so_error;
   2200 		rv = 1;
   2201 	} else if (so->so_error)	/* temporary udp error */
   2202 		rv = 1;
   2203 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2204 		rv = (kn->kn_data >= kn->kn_sdata);
   2205 	else
   2206 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2207 	if (hint != NOTE_SUBMIT)
   2208 		sounlock(so);
   2209 	return rv;
   2210 }
   2211 
   2212 static void
   2213 filt_sowdetach(struct knote *kn)
   2214 {
   2215 	struct socket	*so;
   2216 
   2217 	so = ((file_t *)kn->kn_obj)->f_data;
   2218 	solock(so);
   2219 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   2220 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   2221 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2222 	sounlock(so);
   2223 }
   2224 
   2225 /*ARGSUSED*/
   2226 static int
   2227 filt_sowrite(struct knote *kn, long hint)
   2228 {
   2229 	struct socket	*so;
   2230 	int rv;
   2231 
   2232 	so = ((file_t *)kn->kn_obj)->f_data;
   2233 	if (hint != NOTE_SUBMIT)
   2234 		solock(so);
   2235 	kn->kn_data = sbspace(&so->so_snd);
   2236 	if (so->so_state & SS_CANTSENDMORE) {
   2237 		kn->kn_flags |= EV_EOF;
   2238 		kn->kn_fflags = so->so_error;
   2239 		rv = 1;
   2240 	} else if (so->so_error)	/* temporary udp error */
   2241 		rv = 1;
   2242 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2243 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2244 		rv = 0;
   2245 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2246 		rv = (kn->kn_data >= kn->kn_sdata);
   2247 	else
   2248 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2249 	if (hint != NOTE_SUBMIT)
   2250 		sounlock(so);
   2251 	return rv;
   2252 }
   2253 
   2254 /*ARGSUSED*/
   2255 static int
   2256 filt_solisten(struct knote *kn, long hint)
   2257 {
   2258 	struct socket	*so;
   2259 	int rv;
   2260 
   2261 	so = ((file_t *)kn->kn_obj)->f_data;
   2262 
   2263 	/*
   2264 	 * Set kn_data to number of incoming connections, not
   2265 	 * counting partial (incomplete) connections.
   2266 	 */
   2267 	if (hint != NOTE_SUBMIT)
   2268 		solock(so);
   2269 	kn->kn_data = so->so_qlen;
   2270 	rv = (kn->kn_data > 0);
   2271 	if (hint != NOTE_SUBMIT)
   2272 		sounlock(so);
   2273 	return rv;
   2274 }
   2275 
   2276 static const struct filterops solisten_filtops =
   2277 	{ 1, NULL, filt_sordetach, filt_solisten };
   2278 static const struct filterops soread_filtops =
   2279 	{ 1, NULL, filt_sordetach, filt_soread };
   2280 static const struct filterops sowrite_filtops =
   2281 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   2282 
   2283 int
   2284 soo_kqfilter(struct file *fp, struct knote *kn)
   2285 {
   2286 	struct socket	*so;
   2287 	struct sockbuf	*sb;
   2288 
   2289 	so = ((file_t *)kn->kn_obj)->f_data;
   2290 	solock(so);
   2291 	switch (kn->kn_filter) {
   2292 	case EVFILT_READ:
   2293 		if (so->so_options & SO_ACCEPTCONN)
   2294 			kn->kn_fop = &solisten_filtops;
   2295 		else
   2296 			kn->kn_fop = &soread_filtops;
   2297 		sb = &so->so_rcv;
   2298 		break;
   2299 	case EVFILT_WRITE:
   2300 		kn->kn_fop = &sowrite_filtops;
   2301 		sb = &so->so_snd;
   2302 		break;
   2303 	default:
   2304 		sounlock(so);
   2305 		return (EINVAL);
   2306 	}
   2307 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   2308 	sb->sb_flags |= SB_KNOTE;
   2309 	sounlock(so);
   2310 	return (0);
   2311 }
   2312 
   2313 static int
   2314 sodopoll(struct socket *so, int events)
   2315 {
   2316 	int revents;
   2317 
   2318 	revents = 0;
   2319 
   2320 	if (events & (POLLIN | POLLRDNORM))
   2321 		if (soreadable(so))
   2322 			revents |= events & (POLLIN | POLLRDNORM);
   2323 
   2324 	if (events & (POLLOUT | POLLWRNORM))
   2325 		if (sowritable(so))
   2326 			revents |= events & (POLLOUT | POLLWRNORM);
   2327 
   2328 	if (events & (POLLPRI | POLLRDBAND))
   2329 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   2330 			revents |= events & (POLLPRI | POLLRDBAND);
   2331 
   2332 	return revents;
   2333 }
   2334 
   2335 int
   2336 sopoll(struct socket *so, int events)
   2337 {
   2338 	int revents = 0;
   2339 
   2340 #ifndef DIAGNOSTIC
   2341 	/*
   2342 	 * Do a quick, unlocked check in expectation that the socket
   2343 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2344 	 * as the solocked() assertions will fail.
   2345 	 */
   2346 	if ((revents = sodopoll(so, events)) != 0)
   2347 		return revents;
   2348 #endif
   2349 
   2350 	solock(so);
   2351 	if ((revents = sodopoll(so, events)) == 0) {
   2352 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2353 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2354 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2355 		}
   2356 
   2357 		if (events & (POLLOUT | POLLWRNORM)) {
   2358 			selrecord(curlwp, &so->so_snd.sb_sel);
   2359 			so->so_snd.sb_flags |= SB_NOTIFY;
   2360 		}
   2361 	}
   2362 	sounlock(so);
   2363 
   2364 	return revents;
   2365 }
   2366 
   2367 
   2368 #include <sys/sysctl.h>
   2369 
   2370 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2371 
   2372 /*
   2373  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2374  * value is not too small.
   2375  * (XXX should we maybe make sure it's not too large as well?)
   2376  */
   2377 static int
   2378 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2379 {
   2380 	int error, new_somaxkva;
   2381 	struct sysctlnode node;
   2382 
   2383 	new_somaxkva = somaxkva;
   2384 	node = *rnode;
   2385 	node.sysctl_data = &new_somaxkva;
   2386 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2387 	if (error || newp == NULL)
   2388 		return (error);
   2389 
   2390 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2391 		return (EINVAL);
   2392 
   2393 	mutex_enter(&so_pendfree_lock);
   2394 	somaxkva = new_somaxkva;
   2395 	cv_broadcast(&socurkva_cv);
   2396 	mutex_exit(&so_pendfree_lock);
   2397 
   2398 	return (error);
   2399 }
   2400 
   2401 static void
   2402 sysctl_kern_somaxkva_setup(void)
   2403 {
   2404 
   2405 	KASSERT(socket_sysctllog == NULL);
   2406 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2407 		       CTLFLAG_PERMANENT,
   2408 		       CTLTYPE_NODE, "kern", NULL,
   2409 		       NULL, 0, NULL, 0,
   2410 		       CTL_KERN, CTL_EOL);
   2411 
   2412 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2413 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2414 		       CTLTYPE_INT, "somaxkva",
   2415 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2416 				    "used for socket buffers"),
   2417 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2418 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2419 }
   2420