uipc_socket.c revision 1.211.2.4 1 /* $NetBSD: uipc_socket.c,v 1.211.2.4 2014/08/20 00:04:29 tls Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 /*
66 * Socket operation routines.
67 *
68 * These routines are called by the routines in sys_socket.c or from a
69 * system process, and implement the semantics of socket operations by
70 * switching out to the protocol specific routines.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.211.2.4 2014/08/20 00:04:29 tls Exp $");
75
76 #include "opt_compat_netbsd.h"
77 #include "opt_sock_counters.h"
78 #include "opt_sosend_loan.h"
79 #include "opt_mbuftrace.h"
80 #include "opt_somaxkva.h"
81 #include "opt_multiprocessor.h" /* XXX */
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/proc.h>
86 #include <sys/file.h>
87 #include <sys/filedesc.h>
88 #include <sys/kmem.h>
89 #include <sys/mbuf.h>
90 #include <sys/domain.h>
91 #include <sys/kernel.h>
92 #include <sys/protosw.h>
93 #include <sys/socket.h>
94 #include <sys/socketvar.h>
95 #include <sys/signalvar.h>
96 #include <sys/resourcevar.h>
97 #include <sys/uidinfo.h>
98 #include <sys/event.h>
99 #include <sys/poll.h>
100 #include <sys/kauth.h>
101 #include <sys/mutex.h>
102 #include <sys/condvar.h>
103 #include <sys/kthread.h>
104
105 #ifdef COMPAT_50
106 #include <compat/sys/time.h>
107 #include <compat/sys/socket.h>
108 #endif
109
110 #include <uvm/uvm_extern.h>
111 #include <uvm/uvm_loan.h>
112 #include <uvm/uvm_page.h>
113
114 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
115
116 extern const struct fileops socketops;
117
118 extern int somaxconn; /* patchable (XXX sysctl) */
119 int somaxconn = SOMAXCONN;
120 kmutex_t *softnet_lock;
121
122 #ifdef SOSEND_COUNTERS
123 #include <sys/device.h>
124
125 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
126 NULL, "sosend", "loan big");
127 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
128 NULL, "sosend", "copy big");
129 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
130 NULL, "sosend", "copy small");
131 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
132 NULL, "sosend", "kva limit");
133
134 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
135
136 EVCNT_ATTACH_STATIC(sosend_loan_big);
137 EVCNT_ATTACH_STATIC(sosend_copy_big);
138 EVCNT_ATTACH_STATIC(sosend_copy_small);
139 EVCNT_ATTACH_STATIC(sosend_kvalimit);
140 #else
141
142 #define SOSEND_COUNTER_INCR(ev) /* nothing */
143
144 #endif /* SOSEND_COUNTERS */
145
146 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
147 int sock_loan_thresh = -1;
148 #else
149 int sock_loan_thresh = 4096;
150 #endif
151
152 static kmutex_t so_pendfree_lock;
153 static struct mbuf *so_pendfree = NULL;
154
155 #ifndef SOMAXKVA
156 #define SOMAXKVA (16 * 1024 * 1024)
157 #endif
158 int somaxkva = SOMAXKVA;
159 static int socurkva;
160 static kcondvar_t socurkva_cv;
161
162 static kauth_listener_t socket_listener;
163
164 #define SOCK_LOAN_CHUNK 65536
165
166 static void sopendfree_thread(void *);
167 static kcondvar_t pendfree_thread_cv;
168 static lwp_t *sopendfree_lwp;
169
170 static void sysctl_kern_socket_setup(void);
171 static struct sysctllog *socket_sysctllog;
172
173 static vsize_t
174 sokvareserve(struct socket *so, vsize_t len)
175 {
176 int error;
177
178 mutex_enter(&so_pendfree_lock);
179 while (socurkva + len > somaxkva) {
180 SOSEND_COUNTER_INCR(&sosend_kvalimit);
181 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
182 if (error) {
183 len = 0;
184 break;
185 }
186 }
187 socurkva += len;
188 mutex_exit(&so_pendfree_lock);
189 return len;
190 }
191
192 static void
193 sokvaunreserve(vsize_t len)
194 {
195
196 mutex_enter(&so_pendfree_lock);
197 socurkva -= len;
198 cv_broadcast(&socurkva_cv);
199 mutex_exit(&so_pendfree_lock);
200 }
201
202 /*
203 * sokvaalloc: allocate kva for loan.
204 */
205
206 vaddr_t
207 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
208 {
209 vaddr_t lva;
210
211 /*
212 * reserve kva.
213 */
214
215 if (sokvareserve(so, len) == 0)
216 return 0;
217
218 /*
219 * allocate kva.
220 */
221
222 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
223 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
224 if (lva == 0) {
225 sokvaunreserve(len);
226 return (0);
227 }
228
229 return lva;
230 }
231
232 /*
233 * sokvafree: free kva for loan.
234 */
235
236 void
237 sokvafree(vaddr_t sva, vsize_t len)
238 {
239
240 /*
241 * free kva.
242 */
243
244 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
245
246 /*
247 * unreserve kva.
248 */
249
250 sokvaunreserve(len);
251 }
252
253 static void
254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
255 {
256 vaddr_t sva, eva;
257 vsize_t len;
258 int npgs;
259
260 KASSERT(pgs != NULL);
261
262 eva = round_page((vaddr_t) buf + size);
263 sva = trunc_page((vaddr_t) buf);
264 len = eva - sva;
265 npgs = len >> PAGE_SHIFT;
266
267 pmap_kremove(sva, len);
268 pmap_update(pmap_kernel());
269 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
270 sokvafree(sva, len);
271 }
272
273 /*
274 * sopendfree_thread: free mbufs on "pendfree" list.
275 * unlock and relock so_pendfree_lock when freeing mbufs.
276 */
277
278 static void
279 sopendfree_thread(void *v)
280 {
281 struct mbuf *m, *next;
282 size_t rv;
283
284 mutex_enter(&so_pendfree_lock);
285
286 for (;;) {
287 rv = 0;
288 while (so_pendfree != NULL) {
289 m = so_pendfree;
290 so_pendfree = NULL;
291 mutex_exit(&so_pendfree_lock);
292
293 for (; m != NULL; m = next) {
294 next = m->m_next;
295 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
296 KASSERT(m->m_ext.ext_refcnt == 0);
297
298 rv += m->m_ext.ext_size;
299 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
300 m->m_ext.ext_size);
301 pool_cache_put(mb_cache, m);
302 }
303
304 mutex_enter(&so_pendfree_lock);
305 }
306 if (rv)
307 cv_broadcast(&socurkva_cv);
308 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
309 }
310 panic("sopendfree_thread");
311 /* NOTREACHED */
312 }
313
314 void
315 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
316 {
317
318 KASSERT(m != NULL);
319
320 /*
321 * postpone freeing mbuf.
322 *
323 * we can't do it in interrupt context
324 * because we need to put kva back to kernel_map.
325 */
326
327 mutex_enter(&so_pendfree_lock);
328 m->m_next = so_pendfree;
329 so_pendfree = m;
330 cv_signal(&pendfree_thread_cv);
331 mutex_exit(&so_pendfree_lock);
332 }
333
334 static long
335 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
336 {
337 struct iovec *iov = uio->uio_iov;
338 vaddr_t sva, eva;
339 vsize_t len;
340 vaddr_t lva;
341 int npgs, error;
342 vaddr_t va;
343 int i;
344
345 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
346 return (0);
347
348 if (iov->iov_len < (size_t) space)
349 space = iov->iov_len;
350 if (space > SOCK_LOAN_CHUNK)
351 space = SOCK_LOAN_CHUNK;
352
353 eva = round_page((vaddr_t) iov->iov_base + space);
354 sva = trunc_page((vaddr_t) iov->iov_base);
355 len = eva - sva;
356 npgs = len >> PAGE_SHIFT;
357
358 KASSERT(npgs <= M_EXT_MAXPAGES);
359
360 lva = sokvaalloc(sva, len, so);
361 if (lva == 0)
362 return 0;
363
364 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
365 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
366 if (error) {
367 sokvafree(lva, len);
368 return (0);
369 }
370
371 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
372 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
373 VM_PROT_READ, 0);
374 pmap_update(pmap_kernel());
375
376 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
377
378 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
379 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
380
381 uio->uio_resid -= space;
382 /* uio_offset not updated, not set/used for write(2) */
383 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
384 uio->uio_iov->iov_len -= space;
385 if (uio->uio_iov->iov_len == 0) {
386 uio->uio_iov++;
387 uio->uio_iovcnt--;
388 }
389
390 return (space);
391 }
392
393 struct mbuf *
394 getsombuf(struct socket *so, int type)
395 {
396 struct mbuf *m;
397
398 m = m_get(M_WAIT, type);
399 MCLAIM(m, so->so_mowner);
400 return m;
401 }
402
403 static int
404 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
405 void *arg0, void *arg1, void *arg2, void *arg3)
406 {
407 int result;
408 enum kauth_network_req req;
409
410 result = KAUTH_RESULT_DEFER;
411 req = (enum kauth_network_req)arg0;
412
413 if ((action != KAUTH_NETWORK_SOCKET) &&
414 (action != KAUTH_NETWORK_BIND))
415 return result;
416
417 switch (req) {
418 case KAUTH_REQ_NETWORK_BIND_PORT:
419 result = KAUTH_RESULT_ALLOW;
420 break;
421
422 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
423 /* Normal users can only drop their own connections. */
424 struct socket *so = (struct socket *)arg1;
425
426 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
427 result = KAUTH_RESULT_ALLOW;
428
429 break;
430 }
431
432 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
433 /* We allow "raw" routing/bluetooth sockets to anyone. */
434 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
435 || (u_long)arg1 == PF_BLUETOOTH) {
436 result = KAUTH_RESULT_ALLOW;
437 } else {
438 /* Privileged, let secmodel handle this. */
439 if ((u_long)arg2 == SOCK_RAW)
440 break;
441 }
442
443 result = KAUTH_RESULT_ALLOW;
444
445 break;
446
447 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
448 result = KAUTH_RESULT_ALLOW;
449
450 break;
451
452 default:
453 break;
454 }
455
456 return result;
457 }
458
459 void
460 soinit(void)
461 {
462
463 sysctl_kern_socket_setup();
464
465 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
466 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
467 cv_init(&socurkva_cv, "sokva");
468 cv_init(&pendfree_thread_cv, "sopendfr");
469 soinit2();
470
471 /* Set the initial adjusted socket buffer size. */
472 if (sb_max_set(sb_max))
473 panic("bad initial sb_max value: %lu", sb_max);
474
475 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
476 socket_listener_cb, NULL);
477 }
478
479 void
480 soinit1(void)
481 {
482 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
483 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
484 if (error)
485 panic("soinit1 %d", error);
486 }
487
488 /*
489 * socreate: create a new socket of the specified type and the protocol.
490 *
491 * => Caller may specify another socket for lock sharing (must not be held).
492 * => Returns the new socket without lock held.
493 */
494 int
495 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
496 struct socket *lockso)
497 {
498 const struct protosw *prp;
499 struct socket *so;
500 uid_t uid;
501 int error;
502 kmutex_t *lock;
503
504 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
505 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
506 KAUTH_ARG(proto));
507 if (error != 0)
508 return error;
509
510 if (proto)
511 prp = pffindproto(dom, proto, type);
512 else
513 prp = pffindtype(dom, type);
514 if (prp == NULL) {
515 /* no support for domain */
516 if (pffinddomain(dom) == 0)
517 return EAFNOSUPPORT;
518 /* no support for socket type */
519 if (proto == 0 && type != 0)
520 return EPROTOTYPE;
521 return EPROTONOSUPPORT;
522 }
523 if (prp->pr_usrreqs == NULL)
524 return EPROTONOSUPPORT;
525 if (prp->pr_type != type)
526 return EPROTOTYPE;
527
528 so = soget(true);
529 so->so_type = type;
530 so->so_proto = prp;
531 so->so_send = sosend;
532 so->so_receive = soreceive;
533 #ifdef MBUFTRACE
534 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
535 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
536 so->so_mowner = &prp->pr_domain->dom_mowner;
537 #endif
538 uid = kauth_cred_geteuid(l->l_cred);
539 so->so_uidinfo = uid_find(uid);
540 so->so_cpid = l->l_proc->p_pid;
541
542 /*
543 * Lock assigned and taken during PCB attach, unless we share
544 * the lock with another socket, e.g. socketpair(2) case.
545 */
546 if (lockso) {
547 lock = lockso->so_lock;
548 so->so_lock = lock;
549 mutex_obj_hold(lock);
550 mutex_enter(lock);
551 }
552
553 /* Attach the PCB (returns with the socket lock held). */
554 error = (*prp->pr_usrreqs->pr_attach)(so, proto);
555 KASSERT(solocked(so));
556
557 if (error) {
558 KASSERT(so->so_pcb == NULL);
559 so->so_state |= SS_NOFDREF;
560 sofree(so);
561 return error;
562 }
563 so->so_cred = kauth_cred_dup(l->l_cred);
564 sounlock(so);
565
566 *aso = so;
567 return 0;
568 }
569
570 /*
571 * fsocreate: create a socket and a file descriptor associated with it.
572 *
573 * => On success, write file descriptor to fdout and return zero.
574 * => On failure, return non-zero; *fdout will be undefined.
575 */
576 int
577 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
578 {
579 lwp_t *l = curlwp;
580 int error, fd, flags;
581 struct socket *so;
582 struct file *fp;
583
584 if ((error = fd_allocfile(&fp, &fd)) != 0) {
585 return error;
586 }
587 flags = type & SOCK_FLAGS_MASK;
588 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
589 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
590 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
591 fp->f_type = DTYPE_SOCKET;
592 fp->f_ops = &socketops;
593
594 type &= ~SOCK_FLAGS_MASK;
595 error = socreate(domain, &so, type, proto, l, NULL);
596 if (error) {
597 fd_abort(curproc, fp, fd);
598 return error;
599 }
600 if (flags & SOCK_NONBLOCK) {
601 so->so_state |= SS_NBIO;
602 }
603 fp->f_data = so;
604 fd_affix(curproc, fp, fd);
605
606 if (sop != NULL) {
607 *sop = so;
608 }
609 *fdout = fd;
610 return error;
611 }
612
613 int
614 sofamily(const struct socket *so)
615 {
616 const struct protosw *pr;
617 const struct domain *dom;
618
619 if ((pr = so->so_proto) == NULL)
620 return AF_UNSPEC;
621 if ((dom = pr->pr_domain) == NULL)
622 return AF_UNSPEC;
623 return dom->dom_family;
624 }
625
626 int
627 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
628 {
629 int error;
630
631 solock(so);
632 error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
633 sounlock(so);
634 return error;
635 }
636
637 int
638 solisten(struct socket *so, int backlog, struct lwp *l)
639 {
640 int error;
641
642 solock(so);
643 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
644 SS_ISDISCONNECTING)) != 0) {
645 sounlock(so);
646 return EINVAL;
647 }
648 error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
649 if (error != 0) {
650 sounlock(so);
651 return error;
652 }
653 if (TAILQ_EMPTY(&so->so_q))
654 so->so_options |= SO_ACCEPTCONN;
655 if (backlog < 0)
656 backlog = 0;
657 so->so_qlimit = min(backlog, somaxconn);
658 sounlock(so);
659 return 0;
660 }
661
662 void
663 sofree(struct socket *so)
664 {
665 u_int refs;
666
667 KASSERT(solocked(so));
668
669 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
670 sounlock(so);
671 return;
672 }
673 if (so->so_head) {
674 /*
675 * We must not decommission a socket that's on the accept(2)
676 * queue. If we do, then accept(2) may hang after select(2)
677 * indicated that the listening socket was ready.
678 */
679 if (!soqremque(so, 0)) {
680 sounlock(so);
681 return;
682 }
683 }
684 if (so->so_rcv.sb_hiwat)
685 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
686 RLIM_INFINITY);
687 if (so->so_snd.sb_hiwat)
688 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
689 RLIM_INFINITY);
690 sbrelease(&so->so_snd, so);
691 KASSERT(!cv_has_waiters(&so->so_cv));
692 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
693 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
694 sorflush(so);
695 refs = so->so_aborting; /* XXX */
696 /* Remove acccept filter if one is present. */
697 if (so->so_accf != NULL)
698 (void)accept_filt_clear(so);
699 sounlock(so);
700 if (refs == 0) /* XXX */
701 soput(so);
702 }
703
704 /*
705 * soclose: close a socket on last file table reference removal.
706 * Initiate disconnect if connected. Free socket when disconnect complete.
707 */
708 int
709 soclose(struct socket *so)
710 {
711 struct socket *so2;
712 int error = 0;
713
714 solock(so);
715 if (so->so_options & SO_ACCEPTCONN) {
716 for (;;) {
717 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
718 KASSERT(solocked2(so, so2));
719 (void) soqremque(so2, 0);
720 /* soabort drops the lock. */
721 (void) soabort(so2);
722 solock(so);
723 continue;
724 }
725 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
726 KASSERT(solocked2(so, so2));
727 (void) soqremque(so2, 1);
728 /* soabort drops the lock. */
729 (void) soabort(so2);
730 solock(so);
731 continue;
732 }
733 break;
734 }
735 }
736 if (so->so_pcb == NULL)
737 goto discard;
738 if (so->so_state & SS_ISCONNECTED) {
739 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
740 error = sodisconnect(so);
741 if (error)
742 goto drop;
743 }
744 if (so->so_options & SO_LINGER) {
745 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
746 (SS_ISDISCONNECTING|SS_NBIO))
747 goto drop;
748 while (so->so_state & SS_ISCONNECTED) {
749 error = sowait(so, true, so->so_linger * hz);
750 if (error)
751 break;
752 }
753 }
754 }
755 drop:
756 if (so->so_pcb) {
757 KASSERT(solocked(so));
758 (*so->so_proto->pr_usrreqs->pr_detach)(so);
759 }
760 discard:
761 KASSERT((so->so_state & SS_NOFDREF) == 0);
762 kauth_cred_free(so->so_cred);
763 so->so_state |= SS_NOFDREF;
764 sofree(so);
765 return error;
766 }
767
768 /*
769 * Must be called with the socket locked.. Will return with it unlocked.
770 */
771 int
772 soabort(struct socket *so)
773 {
774 u_int refs;
775 int error;
776
777 KASSERT(solocked(so));
778 KASSERT(so->so_head == NULL);
779
780 so->so_aborting++; /* XXX */
781 error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
782 refs = --so->so_aborting; /* XXX */
783 if (error || (refs == 0)) {
784 sofree(so);
785 } else {
786 sounlock(so);
787 }
788 return error;
789 }
790
791 int
792 soaccept(struct socket *so, struct mbuf *nam)
793 {
794 int error;
795
796 KASSERT(solocked(so));
797 KASSERT((so->so_state & SS_NOFDREF) != 0);
798
799 so->so_state &= ~SS_NOFDREF;
800 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
801 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
802 error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
803 else
804 error = ECONNABORTED;
805
806 return error;
807 }
808
809 int
810 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
811 {
812 int error;
813
814 KASSERT(solocked(so));
815
816 if (so->so_options & SO_ACCEPTCONN)
817 return EOPNOTSUPP;
818 /*
819 * If protocol is connection-based, can only connect once.
820 * Otherwise, if connected, try to disconnect first.
821 * This allows user to disconnect by connecting to, e.g.,
822 * a null address.
823 */
824 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
825 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
826 (error = sodisconnect(so))))
827 error = EISCONN;
828 else
829 error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
830
831 return error;
832 }
833
834 int
835 soconnect2(struct socket *so1, struct socket *so2)
836 {
837 KASSERT(solocked2(so1, so2));
838
839 return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
840 }
841
842 int
843 sodisconnect(struct socket *so)
844 {
845 int error;
846
847 KASSERT(solocked(so));
848
849 if ((so->so_state & SS_ISCONNECTED) == 0) {
850 error = ENOTCONN;
851 } else if (so->so_state & SS_ISDISCONNECTING) {
852 error = EALREADY;
853 } else {
854 error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
855 }
856 return (error);
857 }
858
859 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
860 /*
861 * Send on a socket.
862 * If send must go all at once and message is larger than
863 * send buffering, then hard error.
864 * Lock against other senders.
865 * If must go all at once and not enough room now, then
866 * inform user that this would block and do nothing.
867 * Otherwise, if nonblocking, send as much as possible.
868 * The data to be sent is described by "uio" if nonzero,
869 * otherwise by the mbuf chain "top" (which must be null
870 * if uio is not). Data provided in mbuf chain must be small
871 * enough to send all at once.
872 *
873 * Returns nonzero on error, timeout or signal; callers
874 * must check for short counts if EINTR/ERESTART are returned.
875 * Data and control buffers are freed on return.
876 */
877 int
878 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
879 struct mbuf *control, int flags, struct lwp *l)
880 {
881 struct mbuf **mp, *m;
882 long space, len, resid, clen, mlen;
883 int error, s, dontroute, atomic;
884 short wakeup_state = 0;
885
886 clen = 0;
887
888 /*
889 * solock() provides atomicity of access. splsoftnet() prevents
890 * protocol processing soft interrupts from interrupting us and
891 * blocking (expensive).
892 */
893 s = splsoftnet();
894 solock(so);
895 atomic = sosendallatonce(so) || top;
896 if (uio)
897 resid = uio->uio_resid;
898 else
899 resid = top->m_pkthdr.len;
900 /*
901 * In theory resid should be unsigned.
902 * However, space must be signed, as it might be less than 0
903 * if we over-committed, and we must use a signed comparison
904 * of space and resid. On the other hand, a negative resid
905 * causes us to loop sending 0-length segments to the protocol.
906 */
907 if (resid < 0) {
908 error = EINVAL;
909 goto out;
910 }
911 dontroute =
912 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
913 (so->so_proto->pr_flags & PR_ATOMIC);
914 l->l_ru.ru_msgsnd++;
915 if (control)
916 clen = control->m_len;
917 restart:
918 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
919 goto out;
920 do {
921 if (so->so_state & SS_CANTSENDMORE) {
922 error = EPIPE;
923 goto release;
924 }
925 if (so->so_error) {
926 error = so->so_error;
927 so->so_error = 0;
928 goto release;
929 }
930 if ((so->so_state & SS_ISCONNECTED) == 0) {
931 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
932 if (resid || clen == 0) {
933 error = ENOTCONN;
934 goto release;
935 }
936 } else if (addr == 0) {
937 error = EDESTADDRREQ;
938 goto release;
939 }
940 }
941 space = sbspace(&so->so_snd);
942 if (flags & MSG_OOB)
943 space += 1024;
944 if ((atomic && resid > so->so_snd.sb_hiwat) ||
945 clen > so->so_snd.sb_hiwat) {
946 error = EMSGSIZE;
947 goto release;
948 }
949 if (space < resid + clen &&
950 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
951 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
952 error = EWOULDBLOCK;
953 goto release;
954 }
955 sbunlock(&so->so_snd);
956 if (wakeup_state & SS_RESTARTSYS) {
957 error = ERESTART;
958 goto out;
959 }
960 error = sbwait(&so->so_snd);
961 if (error)
962 goto out;
963 wakeup_state = so->so_state;
964 goto restart;
965 }
966 wakeup_state = 0;
967 mp = ⊤
968 space -= clen;
969 do {
970 if (uio == NULL) {
971 /*
972 * Data is prepackaged in "top".
973 */
974 resid = 0;
975 if (flags & MSG_EOR)
976 top->m_flags |= M_EOR;
977 } else do {
978 sounlock(so);
979 splx(s);
980 if (top == NULL) {
981 m = m_gethdr(M_WAIT, MT_DATA);
982 mlen = MHLEN;
983 m->m_pkthdr.len = 0;
984 m->m_pkthdr.rcvif = NULL;
985 } else {
986 m = m_get(M_WAIT, MT_DATA);
987 mlen = MLEN;
988 }
989 MCLAIM(m, so->so_snd.sb_mowner);
990 if (sock_loan_thresh >= 0 &&
991 uio->uio_iov->iov_len >= sock_loan_thresh &&
992 space >= sock_loan_thresh &&
993 (len = sosend_loan(so, uio, m,
994 space)) != 0) {
995 SOSEND_COUNTER_INCR(&sosend_loan_big);
996 space -= len;
997 goto have_data;
998 }
999 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1000 SOSEND_COUNTER_INCR(&sosend_copy_big);
1001 m_clget(m, M_DONTWAIT);
1002 if ((m->m_flags & M_EXT) == 0)
1003 goto nopages;
1004 mlen = MCLBYTES;
1005 if (atomic && top == 0) {
1006 len = lmin(MCLBYTES - max_hdr,
1007 resid);
1008 m->m_data += max_hdr;
1009 } else
1010 len = lmin(MCLBYTES, resid);
1011 space -= len;
1012 } else {
1013 nopages:
1014 SOSEND_COUNTER_INCR(&sosend_copy_small);
1015 len = lmin(lmin(mlen, resid), space);
1016 space -= len;
1017 /*
1018 * For datagram protocols, leave room
1019 * for protocol headers in first mbuf.
1020 */
1021 if (atomic && top == 0 && len < mlen)
1022 MH_ALIGN(m, len);
1023 }
1024 error = uiomove(mtod(m, void *), (int)len, uio);
1025 have_data:
1026 resid = uio->uio_resid;
1027 m->m_len = len;
1028 *mp = m;
1029 top->m_pkthdr.len += len;
1030 s = splsoftnet();
1031 solock(so);
1032 if (error != 0)
1033 goto release;
1034 mp = &m->m_next;
1035 if (resid <= 0) {
1036 if (flags & MSG_EOR)
1037 top->m_flags |= M_EOR;
1038 break;
1039 }
1040 } while (space > 0 && atomic);
1041
1042 if (so->so_state & SS_CANTSENDMORE) {
1043 error = EPIPE;
1044 goto release;
1045 }
1046 if (dontroute)
1047 so->so_options |= SO_DONTROUTE;
1048 if (resid > 0)
1049 so->so_state |= SS_MORETOCOME;
1050 if (flags & MSG_OOB)
1051 error = (*so->so_proto->pr_usrreqs->pr_sendoob)(so,
1052 top, control);
1053 else
1054 error = (*so->so_proto->pr_usrreqs->pr_send)(so,
1055 top, addr, control, l);
1056 if (dontroute)
1057 so->so_options &= ~SO_DONTROUTE;
1058 if (resid > 0)
1059 so->so_state &= ~SS_MORETOCOME;
1060 clen = 0;
1061 control = NULL;
1062 top = NULL;
1063 mp = ⊤
1064 if (error != 0)
1065 goto release;
1066 } while (resid && space > 0);
1067 } while (resid);
1068
1069 release:
1070 sbunlock(&so->so_snd);
1071 out:
1072 sounlock(so);
1073 splx(s);
1074 if (top)
1075 m_freem(top);
1076 if (control)
1077 m_freem(control);
1078 return (error);
1079 }
1080
1081 /*
1082 * Following replacement or removal of the first mbuf on the first
1083 * mbuf chain of a socket buffer, push necessary state changes back
1084 * into the socket buffer so that other consumers see the values
1085 * consistently. 'nextrecord' is the callers locally stored value of
1086 * the original value of sb->sb_mb->m_nextpkt which must be restored
1087 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1088 */
1089 static void
1090 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1091 {
1092
1093 KASSERT(solocked(sb->sb_so));
1094
1095 /*
1096 * First, update for the new value of nextrecord. If necessary,
1097 * make it the first record.
1098 */
1099 if (sb->sb_mb != NULL)
1100 sb->sb_mb->m_nextpkt = nextrecord;
1101 else
1102 sb->sb_mb = nextrecord;
1103
1104 /*
1105 * Now update any dependent socket buffer fields to reflect
1106 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1107 * the addition of a second clause that takes care of the
1108 * case where sb_mb has been updated, but remains the last
1109 * record.
1110 */
1111 if (sb->sb_mb == NULL) {
1112 sb->sb_mbtail = NULL;
1113 sb->sb_lastrecord = NULL;
1114 } else if (sb->sb_mb->m_nextpkt == NULL)
1115 sb->sb_lastrecord = sb->sb_mb;
1116 }
1117
1118 /*
1119 * Implement receive operations on a socket.
1120 * We depend on the way that records are added to the sockbuf
1121 * by sbappend*. In particular, each record (mbufs linked through m_next)
1122 * must begin with an address if the protocol so specifies,
1123 * followed by an optional mbuf or mbufs containing ancillary data,
1124 * and then zero or more mbufs of data.
1125 * In order to avoid blocking network interrupts for the entire time here,
1126 * we splx() while doing the actual copy to user space.
1127 * Although the sockbuf is locked, new data may still be appended,
1128 * and thus we must maintain consistency of the sockbuf during that time.
1129 *
1130 * The caller may receive the data as a single mbuf chain by supplying
1131 * an mbuf **mp0 for use in returning the chain. The uio is then used
1132 * only for the count in uio_resid.
1133 */
1134 int
1135 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1136 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1137 {
1138 struct lwp *l = curlwp;
1139 struct mbuf *m, **mp, *mt;
1140 size_t len, offset, moff, orig_resid;
1141 int atomic, flags, error, s, type;
1142 const struct protosw *pr;
1143 struct mbuf *nextrecord;
1144 int mbuf_removed = 0;
1145 const struct domain *dom;
1146 short wakeup_state = 0;
1147
1148 pr = so->so_proto;
1149 atomic = pr->pr_flags & PR_ATOMIC;
1150 dom = pr->pr_domain;
1151 mp = mp0;
1152 type = 0;
1153 orig_resid = uio->uio_resid;
1154
1155 if (paddr != NULL)
1156 *paddr = NULL;
1157 if (controlp != NULL)
1158 *controlp = NULL;
1159 if (flagsp != NULL)
1160 flags = *flagsp &~ MSG_EOR;
1161 else
1162 flags = 0;
1163
1164 if (flags & MSG_OOB) {
1165 m = m_get(M_WAIT, MT_DATA);
1166 solock(so);
1167 error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
1168 sounlock(so);
1169 if (error)
1170 goto bad;
1171 do {
1172 error = uiomove(mtod(m, void *),
1173 MIN(uio->uio_resid, m->m_len), uio);
1174 m = m_free(m);
1175 } while (uio->uio_resid > 0 && error == 0 && m);
1176 bad:
1177 if (m != NULL)
1178 m_freem(m);
1179 return error;
1180 }
1181 if (mp != NULL)
1182 *mp = NULL;
1183
1184 /*
1185 * solock() provides atomicity of access. splsoftnet() prevents
1186 * protocol processing soft interrupts from interrupting us and
1187 * blocking (expensive).
1188 */
1189 s = splsoftnet();
1190 solock(so);
1191 restart:
1192 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1193 sounlock(so);
1194 splx(s);
1195 return error;
1196 }
1197
1198 m = so->so_rcv.sb_mb;
1199 /*
1200 * If we have less data than requested, block awaiting more
1201 * (subject to any timeout) if:
1202 * 1. the current count is less than the low water mark,
1203 * 2. MSG_WAITALL is set, and it is possible to do the entire
1204 * receive operation at once if we block (resid <= hiwat), or
1205 * 3. MSG_DONTWAIT is not set.
1206 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1207 * we have to do the receive in sections, and thus risk returning
1208 * a short count if a timeout or signal occurs after we start.
1209 */
1210 if (m == NULL ||
1211 ((flags & MSG_DONTWAIT) == 0 &&
1212 so->so_rcv.sb_cc < uio->uio_resid &&
1213 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1214 ((flags & MSG_WAITALL) &&
1215 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1216 m->m_nextpkt == NULL && !atomic)) {
1217 #ifdef DIAGNOSTIC
1218 if (m == NULL && so->so_rcv.sb_cc)
1219 panic("receive 1");
1220 #endif
1221 if (so->so_error) {
1222 if (m != NULL)
1223 goto dontblock;
1224 error = so->so_error;
1225 if ((flags & MSG_PEEK) == 0)
1226 so->so_error = 0;
1227 goto release;
1228 }
1229 if (so->so_state & SS_CANTRCVMORE) {
1230 if (m != NULL)
1231 goto dontblock;
1232 else
1233 goto release;
1234 }
1235 for (; m != NULL; m = m->m_next)
1236 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1237 m = so->so_rcv.sb_mb;
1238 goto dontblock;
1239 }
1240 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1241 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1242 error = ENOTCONN;
1243 goto release;
1244 }
1245 if (uio->uio_resid == 0)
1246 goto release;
1247 if ((so->so_state & SS_NBIO) ||
1248 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1249 error = EWOULDBLOCK;
1250 goto release;
1251 }
1252 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1253 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1254 sbunlock(&so->so_rcv);
1255 if (wakeup_state & SS_RESTARTSYS)
1256 error = ERESTART;
1257 else
1258 error = sbwait(&so->so_rcv);
1259 if (error != 0) {
1260 sounlock(so);
1261 splx(s);
1262 return error;
1263 }
1264 wakeup_state = so->so_state;
1265 goto restart;
1266 }
1267 dontblock:
1268 /*
1269 * On entry here, m points to the first record of the socket buffer.
1270 * From this point onward, we maintain 'nextrecord' as a cache of the
1271 * pointer to the next record in the socket buffer. We must keep the
1272 * various socket buffer pointers and local stack versions of the
1273 * pointers in sync, pushing out modifications before dropping the
1274 * socket lock, and re-reading them when picking it up.
1275 *
1276 * Otherwise, we will race with the network stack appending new data
1277 * or records onto the socket buffer by using inconsistent/stale
1278 * versions of the field, possibly resulting in socket buffer
1279 * corruption.
1280 *
1281 * By holding the high-level sblock(), we prevent simultaneous
1282 * readers from pulling off the front of the socket buffer.
1283 */
1284 if (l != NULL)
1285 l->l_ru.ru_msgrcv++;
1286 KASSERT(m == so->so_rcv.sb_mb);
1287 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1288 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1289 nextrecord = m->m_nextpkt;
1290 if (pr->pr_flags & PR_ADDR) {
1291 #ifdef DIAGNOSTIC
1292 if (m->m_type != MT_SONAME)
1293 panic("receive 1a");
1294 #endif
1295 orig_resid = 0;
1296 if (flags & MSG_PEEK) {
1297 if (paddr)
1298 *paddr = m_copy(m, 0, m->m_len);
1299 m = m->m_next;
1300 } else {
1301 sbfree(&so->so_rcv, m);
1302 mbuf_removed = 1;
1303 if (paddr != NULL) {
1304 *paddr = m;
1305 so->so_rcv.sb_mb = m->m_next;
1306 m->m_next = NULL;
1307 m = so->so_rcv.sb_mb;
1308 } else {
1309 MFREE(m, so->so_rcv.sb_mb);
1310 m = so->so_rcv.sb_mb;
1311 }
1312 sbsync(&so->so_rcv, nextrecord);
1313 }
1314 }
1315
1316 /*
1317 * Process one or more MT_CONTROL mbufs present before any data mbufs
1318 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1319 * just copy the data; if !MSG_PEEK, we call into the protocol to
1320 * perform externalization (or freeing if controlp == NULL).
1321 */
1322 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1323 struct mbuf *cm = NULL, *cmn;
1324 struct mbuf **cme = &cm;
1325
1326 do {
1327 if (flags & MSG_PEEK) {
1328 if (controlp != NULL) {
1329 *controlp = m_copy(m, 0, m->m_len);
1330 controlp = &(*controlp)->m_next;
1331 }
1332 m = m->m_next;
1333 } else {
1334 sbfree(&so->so_rcv, m);
1335 so->so_rcv.sb_mb = m->m_next;
1336 m->m_next = NULL;
1337 *cme = m;
1338 cme = &(*cme)->m_next;
1339 m = so->so_rcv.sb_mb;
1340 }
1341 } while (m != NULL && m->m_type == MT_CONTROL);
1342 if ((flags & MSG_PEEK) == 0)
1343 sbsync(&so->so_rcv, nextrecord);
1344 for (; cm != NULL; cm = cmn) {
1345 cmn = cm->m_next;
1346 cm->m_next = NULL;
1347 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1348 if (controlp != NULL) {
1349 if (dom->dom_externalize != NULL &&
1350 type == SCM_RIGHTS) {
1351 sounlock(so);
1352 splx(s);
1353 error = (*dom->dom_externalize)(cm, l,
1354 (flags & MSG_CMSG_CLOEXEC) ?
1355 O_CLOEXEC : 0);
1356 s = splsoftnet();
1357 solock(so);
1358 }
1359 *controlp = cm;
1360 while (*controlp != NULL)
1361 controlp = &(*controlp)->m_next;
1362 } else {
1363 /*
1364 * Dispose of any SCM_RIGHTS message that went
1365 * through the read path rather than recv.
1366 */
1367 if (dom->dom_dispose != NULL &&
1368 type == SCM_RIGHTS) {
1369 sounlock(so);
1370 (*dom->dom_dispose)(cm);
1371 solock(so);
1372 }
1373 m_freem(cm);
1374 }
1375 }
1376 if (m != NULL)
1377 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1378 else
1379 nextrecord = so->so_rcv.sb_mb;
1380 orig_resid = 0;
1381 }
1382
1383 /* If m is non-NULL, we have some data to read. */
1384 if (__predict_true(m != NULL)) {
1385 type = m->m_type;
1386 if (type == MT_OOBDATA)
1387 flags |= MSG_OOB;
1388 }
1389 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1390 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1391
1392 moff = 0;
1393 offset = 0;
1394 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1395 if (m->m_type == MT_OOBDATA) {
1396 if (type != MT_OOBDATA)
1397 break;
1398 } else if (type == MT_OOBDATA)
1399 break;
1400 #ifdef DIAGNOSTIC
1401 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1402 panic("receive 3");
1403 #endif
1404 so->so_state &= ~SS_RCVATMARK;
1405 wakeup_state = 0;
1406 len = uio->uio_resid;
1407 if (so->so_oobmark && len > so->so_oobmark - offset)
1408 len = so->so_oobmark - offset;
1409 if (len > m->m_len - moff)
1410 len = m->m_len - moff;
1411 /*
1412 * If mp is set, just pass back the mbufs.
1413 * Otherwise copy them out via the uio, then free.
1414 * Sockbuf must be consistent here (points to current mbuf,
1415 * it points to next record) when we drop priority;
1416 * we must note any additions to the sockbuf when we
1417 * block interrupts again.
1418 */
1419 if (mp == NULL) {
1420 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1421 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1422 sounlock(so);
1423 splx(s);
1424 error = uiomove(mtod(m, char *) + moff, len, uio);
1425 s = splsoftnet();
1426 solock(so);
1427 if (error != 0) {
1428 /*
1429 * If any part of the record has been removed
1430 * (such as the MT_SONAME mbuf, which will
1431 * happen when PR_ADDR, and thus also
1432 * PR_ATOMIC, is set), then drop the entire
1433 * record to maintain the atomicity of the
1434 * receive operation.
1435 *
1436 * This avoids a later panic("receive 1a")
1437 * when compiled with DIAGNOSTIC.
1438 */
1439 if (m && mbuf_removed && atomic)
1440 (void) sbdroprecord(&so->so_rcv);
1441
1442 goto release;
1443 }
1444 } else
1445 uio->uio_resid -= len;
1446 if (len == m->m_len - moff) {
1447 if (m->m_flags & M_EOR)
1448 flags |= MSG_EOR;
1449 if (flags & MSG_PEEK) {
1450 m = m->m_next;
1451 moff = 0;
1452 } else {
1453 nextrecord = m->m_nextpkt;
1454 sbfree(&so->so_rcv, m);
1455 if (mp) {
1456 *mp = m;
1457 mp = &m->m_next;
1458 so->so_rcv.sb_mb = m = m->m_next;
1459 *mp = NULL;
1460 } else {
1461 MFREE(m, so->so_rcv.sb_mb);
1462 m = so->so_rcv.sb_mb;
1463 }
1464 /*
1465 * If m != NULL, we also know that
1466 * so->so_rcv.sb_mb != NULL.
1467 */
1468 KASSERT(so->so_rcv.sb_mb == m);
1469 if (m) {
1470 m->m_nextpkt = nextrecord;
1471 if (nextrecord == NULL)
1472 so->so_rcv.sb_lastrecord = m;
1473 } else {
1474 so->so_rcv.sb_mb = nextrecord;
1475 SB_EMPTY_FIXUP(&so->so_rcv);
1476 }
1477 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1478 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1479 }
1480 } else if (flags & MSG_PEEK)
1481 moff += len;
1482 else {
1483 if (mp != NULL) {
1484 mt = m_copym(m, 0, len, M_NOWAIT);
1485 if (__predict_false(mt == NULL)) {
1486 sounlock(so);
1487 mt = m_copym(m, 0, len, M_WAIT);
1488 solock(so);
1489 }
1490 *mp = mt;
1491 }
1492 m->m_data += len;
1493 m->m_len -= len;
1494 so->so_rcv.sb_cc -= len;
1495 }
1496 if (so->so_oobmark) {
1497 if ((flags & MSG_PEEK) == 0) {
1498 so->so_oobmark -= len;
1499 if (so->so_oobmark == 0) {
1500 so->so_state |= SS_RCVATMARK;
1501 break;
1502 }
1503 } else {
1504 offset += len;
1505 if (offset == so->so_oobmark)
1506 break;
1507 }
1508 }
1509 if (flags & MSG_EOR)
1510 break;
1511 /*
1512 * If the MSG_WAITALL flag is set (for non-atomic socket),
1513 * we must not quit until "uio->uio_resid == 0" or an error
1514 * termination. If a signal/timeout occurs, return
1515 * with a short count but without error.
1516 * Keep sockbuf locked against other readers.
1517 */
1518 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1519 !sosendallatonce(so) && !nextrecord) {
1520 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1521 break;
1522 /*
1523 * If we are peeking and the socket receive buffer is
1524 * full, stop since we can't get more data to peek at.
1525 */
1526 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1527 break;
1528 /*
1529 * If we've drained the socket buffer, tell the
1530 * protocol in case it needs to do something to
1531 * get it filled again.
1532 */
1533 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1534 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1535 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1536 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1537 if (wakeup_state & SS_RESTARTSYS)
1538 error = ERESTART;
1539 else
1540 error = sbwait(&so->so_rcv);
1541 if (error != 0) {
1542 sbunlock(&so->so_rcv);
1543 sounlock(so);
1544 splx(s);
1545 return 0;
1546 }
1547 if ((m = so->so_rcv.sb_mb) != NULL)
1548 nextrecord = m->m_nextpkt;
1549 wakeup_state = so->so_state;
1550 }
1551 }
1552
1553 if (m && atomic) {
1554 flags |= MSG_TRUNC;
1555 if ((flags & MSG_PEEK) == 0)
1556 (void) sbdroprecord(&so->so_rcv);
1557 }
1558 if ((flags & MSG_PEEK) == 0) {
1559 if (m == NULL) {
1560 /*
1561 * First part is an inline SB_EMPTY_FIXUP(). Second
1562 * part makes sure sb_lastrecord is up-to-date if
1563 * there is still data in the socket buffer.
1564 */
1565 so->so_rcv.sb_mb = nextrecord;
1566 if (so->so_rcv.sb_mb == NULL) {
1567 so->so_rcv.sb_mbtail = NULL;
1568 so->so_rcv.sb_lastrecord = NULL;
1569 } else if (nextrecord->m_nextpkt == NULL)
1570 so->so_rcv.sb_lastrecord = nextrecord;
1571 }
1572 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1573 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1574 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1575 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1576 }
1577 if (orig_resid == uio->uio_resid && orig_resid &&
1578 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1579 sbunlock(&so->so_rcv);
1580 goto restart;
1581 }
1582
1583 if (flagsp != NULL)
1584 *flagsp |= flags;
1585 release:
1586 sbunlock(&so->so_rcv);
1587 sounlock(so);
1588 splx(s);
1589 return error;
1590 }
1591
1592 int
1593 soshutdown(struct socket *so, int how)
1594 {
1595 const struct protosw *pr;
1596 int error;
1597
1598 KASSERT(solocked(so));
1599
1600 pr = so->so_proto;
1601 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1602 return (EINVAL);
1603
1604 if (how == SHUT_RD || how == SHUT_RDWR) {
1605 sorflush(so);
1606 error = 0;
1607 }
1608 if (how == SHUT_WR || how == SHUT_RDWR)
1609 error = (*pr->pr_usrreqs->pr_shutdown)(so);
1610
1611 return error;
1612 }
1613
1614 void
1615 sorestart(struct socket *so)
1616 {
1617 /*
1618 * An application has called close() on an fd on which another
1619 * of its threads has called a socket system call.
1620 * Mark this and wake everyone up, and code that would block again
1621 * instead returns ERESTART.
1622 * On system call re-entry the fd is validated and EBADF returned.
1623 * Any other fd will block again on the 2nd syscall.
1624 */
1625 solock(so);
1626 so->so_state |= SS_RESTARTSYS;
1627 cv_broadcast(&so->so_cv);
1628 cv_broadcast(&so->so_snd.sb_cv);
1629 cv_broadcast(&so->so_rcv.sb_cv);
1630 sounlock(so);
1631 }
1632
1633 void
1634 sorflush(struct socket *so)
1635 {
1636 struct sockbuf *sb, asb;
1637 const struct protosw *pr;
1638
1639 KASSERT(solocked(so));
1640
1641 sb = &so->so_rcv;
1642 pr = so->so_proto;
1643 socantrcvmore(so);
1644 sb->sb_flags |= SB_NOINTR;
1645 (void )sblock(sb, M_WAITOK);
1646 sbunlock(sb);
1647 asb = *sb;
1648 /*
1649 * Clear most of the sockbuf structure, but leave some of the
1650 * fields valid.
1651 */
1652 memset(&sb->sb_startzero, 0,
1653 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1654 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1655 sounlock(so);
1656 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1657 solock(so);
1658 }
1659 sbrelease(&asb, so);
1660 }
1661
1662 /*
1663 * internal set SOL_SOCKET options
1664 */
1665 static int
1666 sosetopt1(struct socket *so, const struct sockopt *sopt)
1667 {
1668 int error = EINVAL, opt;
1669 int optval = 0; /* XXX: gcc */
1670 struct linger l;
1671 struct timeval tv;
1672
1673 switch ((opt = sopt->sopt_name)) {
1674
1675 case SO_ACCEPTFILTER:
1676 error = accept_filt_setopt(so, sopt);
1677 KASSERT(solocked(so));
1678 break;
1679
1680 case SO_LINGER:
1681 error = sockopt_get(sopt, &l, sizeof(l));
1682 solock(so);
1683 if (error)
1684 break;
1685 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1686 l.l_linger > (INT_MAX / hz)) {
1687 error = EDOM;
1688 break;
1689 }
1690 so->so_linger = l.l_linger;
1691 if (l.l_onoff)
1692 so->so_options |= SO_LINGER;
1693 else
1694 so->so_options &= ~SO_LINGER;
1695 break;
1696
1697 case SO_DEBUG:
1698 case SO_KEEPALIVE:
1699 case SO_DONTROUTE:
1700 case SO_USELOOPBACK:
1701 case SO_BROADCAST:
1702 case SO_REUSEADDR:
1703 case SO_REUSEPORT:
1704 case SO_OOBINLINE:
1705 case SO_TIMESTAMP:
1706 case SO_NOSIGPIPE:
1707 #ifdef SO_OTIMESTAMP
1708 case SO_OTIMESTAMP:
1709 #endif
1710 error = sockopt_getint(sopt, &optval);
1711 solock(so);
1712 if (error)
1713 break;
1714 if (optval)
1715 so->so_options |= opt;
1716 else
1717 so->so_options &= ~opt;
1718 break;
1719
1720 case SO_SNDBUF:
1721 case SO_RCVBUF:
1722 case SO_SNDLOWAT:
1723 case SO_RCVLOWAT:
1724 error = sockopt_getint(sopt, &optval);
1725 solock(so);
1726 if (error)
1727 break;
1728
1729 /*
1730 * Values < 1 make no sense for any of these
1731 * options, so disallow them.
1732 */
1733 if (optval < 1) {
1734 error = EINVAL;
1735 break;
1736 }
1737
1738 switch (opt) {
1739 case SO_SNDBUF:
1740 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1741 error = ENOBUFS;
1742 break;
1743 }
1744 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1745 break;
1746
1747 case SO_RCVBUF:
1748 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1749 error = ENOBUFS;
1750 break;
1751 }
1752 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1753 break;
1754
1755 /*
1756 * Make sure the low-water is never greater than
1757 * the high-water.
1758 */
1759 case SO_SNDLOWAT:
1760 if (optval > so->so_snd.sb_hiwat)
1761 optval = so->so_snd.sb_hiwat;
1762
1763 so->so_snd.sb_lowat = optval;
1764 break;
1765
1766 case SO_RCVLOWAT:
1767 if (optval > so->so_rcv.sb_hiwat)
1768 optval = so->so_rcv.sb_hiwat;
1769
1770 so->so_rcv.sb_lowat = optval;
1771 break;
1772 }
1773 break;
1774
1775 #ifdef COMPAT_50
1776 case SO_OSNDTIMEO:
1777 case SO_ORCVTIMEO: {
1778 struct timeval50 otv;
1779 error = sockopt_get(sopt, &otv, sizeof(otv));
1780 if (error) {
1781 solock(so);
1782 break;
1783 }
1784 timeval50_to_timeval(&otv, &tv);
1785 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1786 error = 0;
1787 /*FALLTHROUGH*/
1788 }
1789 #endif /* COMPAT_50 */
1790
1791 case SO_SNDTIMEO:
1792 case SO_RCVTIMEO:
1793 if (error)
1794 error = sockopt_get(sopt, &tv, sizeof(tv));
1795 solock(so);
1796 if (error)
1797 break;
1798
1799 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1800 error = EDOM;
1801 break;
1802 }
1803
1804 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1805 if (optval == 0 && tv.tv_usec != 0)
1806 optval = 1;
1807
1808 switch (opt) {
1809 case SO_SNDTIMEO:
1810 so->so_snd.sb_timeo = optval;
1811 break;
1812 case SO_RCVTIMEO:
1813 so->so_rcv.sb_timeo = optval;
1814 break;
1815 }
1816 break;
1817
1818 default:
1819 solock(so);
1820 error = ENOPROTOOPT;
1821 break;
1822 }
1823 KASSERT(solocked(so));
1824 return error;
1825 }
1826
1827 int
1828 sosetopt(struct socket *so, struct sockopt *sopt)
1829 {
1830 int error, prerr;
1831
1832 if (sopt->sopt_level == SOL_SOCKET) {
1833 error = sosetopt1(so, sopt);
1834 KASSERT(solocked(so));
1835 } else {
1836 error = ENOPROTOOPT;
1837 solock(so);
1838 }
1839
1840 if ((error == 0 || error == ENOPROTOOPT) &&
1841 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1842 /* give the protocol stack a shot */
1843 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1844 if (prerr == 0)
1845 error = 0;
1846 else if (prerr != ENOPROTOOPT)
1847 error = prerr;
1848 }
1849 sounlock(so);
1850 return error;
1851 }
1852
1853 /*
1854 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1855 */
1856 int
1857 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1858 const void *val, size_t valsize)
1859 {
1860 struct sockopt sopt;
1861 int error;
1862
1863 KASSERT(valsize == 0 || val != NULL);
1864
1865 sockopt_init(&sopt, level, name, valsize);
1866 sockopt_set(&sopt, val, valsize);
1867
1868 error = sosetopt(so, &sopt);
1869
1870 sockopt_destroy(&sopt);
1871
1872 return error;
1873 }
1874
1875 /*
1876 * internal get SOL_SOCKET options
1877 */
1878 static int
1879 sogetopt1(struct socket *so, struct sockopt *sopt)
1880 {
1881 int error, optval, opt;
1882 struct linger l;
1883 struct timeval tv;
1884
1885 switch ((opt = sopt->sopt_name)) {
1886
1887 case SO_ACCEPTFILTER:
1888 error = accept_filt_getopt(so, sopt);
1889 break;
1890
1891 case SO_LINGER:
1892 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1893 l.l_linger = so->so_linger;
1894
1895 error = sockopt_set(sopt, &l, sizeof(l));
1896 break;
1897
1898 case SO_USELOOPBACK:
1899 case SO_DONTROUTE:
1900 case SO_DEBUG:
1901 case SO_KEEPALIVE:
1902 case SO_REUSEADDR:
1903 case SO_REUSEPORT:
1904 case SO_BROADCAST:
1905 case SO_OOBINLINE:
1906 case SO_TIMESTAMP:
1907 case SO_NOSIGPIPE:
1908 #ifdef SO_OTIMESTAMP
1909 case SO_OTIMESTAMP:
1910 #endif
1911 case SO_ACCEPTCONN:
1912 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1913 break;
1914
1915 case SO_TYPE:
1916 error = sockopt_setint(sopt, so->so_type);
1917 break;
1918
1919 case SO_ERROR:
1920 error = sockopt_setint(sopt, so->so_error);
1921 so->so_error = 0;
1922 break;
1923
1924 case SO_SNDBUF:
1925 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1926 break;
1927
1928 case SO_RCVBUF:
1929 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1930 break;
1931
1932 case SO_SNDLOWAT:
1933 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1934 break;
1935
1936 case SO_RCVLOWAT:
1937 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1938 break;
1939
1940 #ifdef COMPAT_50
1941 case SO_OSNDTIMEO:
1942 case SO_ORCVTIMEO: {
1943 struct timeval50 otv;
1944
1945 optval = (opt == SO_OSNDTIMEO ?
1946 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1947
1948 otv.tv_sec = optval / hz;
1949 otv.tv_usec = (optval % hz) * tick;
1950
1951 error = sockopt_set(sopt, &otv, sizeof(otv));
1952 break;
1953 }
1954 #endif /* COMPAT_50 */
1955
1956 case SO_SNDTIMEO:
1957 case SO_RCVTIMEO:
1958 optval = (opt == SO_SNDTIMEO ?
1959 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1960
1961 tv.tv_sec = optval / hz;
1962 tv.tv_usec = (optval % hz) * tick;
1963
1964 error = sockopt_set(sopt, &tv, sizeof(tv));
1965 break;
1966
1967 case SO_OVERFLOWED:
1968 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1969 break;
1970
1971 default:
1972 error = ENOPROTOOPT;
1973 break;
1974 }
1975
1976 return (error);
1977 }
1978
1979 int
1980 sogetopt(struct socket *so, struct sockopt *sopt)
1981 {
1982 int error;
1983
1984 solock(so);
1985 if (sopt->sopt_level != SOL_SOCKET) {
1986 if (so->so_proto && so->so_proto->pr_ctloutput) {
1987 error = ((*so->so_proto->pr_ctloutput)
1988 (PRCO_GETOPT, so, sopt));
1989 } else
1990 error = (ENOPROTOOPT);
1991 } else {
1992 error = sogetopt1(so, sopt);
1993 }
1994 sounlock(so);
1995 return (error);
1996 }
1997
1998 /*
1999 * alloc sockopt data buffer buffer
2000 * - will be released at destroy
2001 */
2002 static int
2003 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2004 {
2005
2006 KASSERT(sopt->sopt_size == 0);
2007
2008 if (len > sizeof(sopt->sopt_buf)) {
2009 sopt->sopt_data = kmem_zalloc(len, kmflag);
2010 if (sopt->sopt_data == NULL)
2011 return ENOMEM;
2012 } else
2013 sopt->sopt_data = sopt->sopt_buf;
2014
2015 sopt->sopt_size = len;
2016 return 0;
2017 }
2018
2019 /*
2020 * initialise sockopt storage
2021 * - MAY sleep during allocation
2022 */
2023 void
2024 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2025 {
2026
2027 memset(sopt, 0, sizeof(*sopt));
2028
2029 sopt->sopt_level = level;
2030 sopt->sopt_name = name;
2031 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2032 }
2033
2034 /*
2035 * destroy sockopt storage
2036 * - will release any held memory references
2037 */
2038 void
2039 sockopt_destroy(struct sockopt *sopt)
2040 {
2041
2042 if (sopt->sopt_data != sopt->sopt_buf)
2043 kmem_free(sopt->sopt_data, sopt->sopt_size);
2044
2045 memset(sopt, 0, sizeof(*sopt));
2046 }
2047
2048 /*
2049 * set sockopt value
2050 * - value is copied into sockopt
2051 * - memory is allocated when necessary, will not sleep
2052 */
2053 int
2054 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2055 {
2056 int error;
2057
2058 if (sopt->sopt_size == 0) {
2059 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2060 if (error)
2061 return error;
2062 }
2063
2064 KASSERT(sopt->sopt_size == len);
2065 memcpy(sopt->sopt_data, buf, len);
2066 return 0;
2067 }
2068
2069 /*
2070 * common case of set sockopt integer value
2071 */
2072 int
2073 sockopt_setint(struct sockopt *sopt, int val)
2074 {
2075
2076 return sockopt_set(sopt, &val, sizeof(int));
2077 }
2078
2079 /*
2080 * get sockopt value
2081 * - correct size must be given
2082 */
2083 int
2084 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2085 {
2086
2087 if (sopt->sopt_size != len)
2088 return EINVAL;
2089
2090 memcpy(buf, sopt->sopt_data, len);
2091 return 0;
2092 }
2093
2094 /*
2095 * common case of get sockopt integer value
2096 */
2097 int
2098 sockopt_getint(const struct sockopt *sopt, int *valp)
2099 {
2100
2101 return sockopt_get(sopt, valp, sizeof(int));
2102 }
2103
2104 /*
2105 * set sockopt value from mbuf
2106 * - ONLY for legacy code
2107 * - mbuf is released by sockopt
2108 * - will not sleep
2109 */
2110 int
2111 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2112 {
2113 size_t len;
2114 int error;
2115
2116 len = m_length(m);
2117
2118 if (sopt->sopt_size == 0) {
2119 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2120 if (error)
2121 return error;
2122 }
2123
2124 KASSERT(sopt->sopt_size == len);
2125 m_copydata(m, 0, len, sopt->sopt_data);
2126 m_freem(m);
2127
2128 return 0;
2129 }
2130
2131 /*
2132 * get sockopt value into mbuf
2133 * - ONLY for legacy code
2134 * - mbuf to be released by the caller
2135 * - will not sleep
2136 */
2137 struct mbuf *
2138 sockopt_getmbuf(const struct sockopt *sopt)
2139 {
2140 struct mbuf *m;
2141
2142 if (sopt->sopt_size > MCLBYTES)
2143 return NULL;
2144
2145 m = m_get(M_DONTWAIT, MT_SOOPTS);
2146 if (m == NULL)
2147 return NULL;
2148
2149 if (sopt->sopt_size > MLEN) {
2150 MCLGET(m, M_DONTWAIT);
2151 if ((m->m_flags & M_EXT) == 0) {
2152 m_free(m);
2153 return NULL;
2154 }
2155 }
2156
2157 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2158 m->m_len = sopt->sopt_size;
2159
2160 return m;
2161 }
2162
2163 void
2164 sohasoutofband(struct socket *so)
2165 {
2166
2167 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2168 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2169 }
2170
2171 static void
2172 filt_sordetach(struct knote *kn)
2173 {
2174 struct socket *so;
2175
2176 so = ((file_t *)kn->kn_obj)->f_data;
2177 solock(so);
2178 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2179 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2180 so->so_rcv.sb_flags &= ~SB_KNOTE;
2181 sounlock(so);
2182 }
2183
2184 /*ARGSUSED*/
2185 static int
2186 filt_soread(struct knote *kn, long hint)
2187 {
2188 struct socket *so;
2189 int rv;
2190
2191 so = ((file_t *)kn->kn_obj)->f_data;
2192 if (hint != NOTE_SUBMIT)
2193 solock(so);
2194 kn->kn_data = so->so_rcv.sb_cc;
2195 if (so->so_state & SS_CANTRCVMORE) {
2196 kn->kn_flags |= EV_EOF;
2197 kn->kn_fflags = so->so_error;
2198 rv = 1;
2199 } else if (so->so_error) /* temporary udp error */
2200 rv = 1;
2201 else if (kn->kn_sfflags & NOTE_LOWAT)
2202 rv = (kn->kn_data >= kn->kn_sdata);
2203 else
2204 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2205 if (hint != NOTE_SUBMIT)
2206 sounlock(so);
2207 return rv;
2208 }
2209
2210 static void
2211 filt_sowdetach(struct knote *kn)
2212 {
2213 struct socket *so;
2214
2215 so = ((file_t *)kn->kn_obj)->f_data;
2216 solock(so);
2217 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2218 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2219 so->so_snd.sb_flags &= ~SB_KNOTE;
2220 sounlock(so);
2221 }
2222
2223 /*ARGSUSED*/
2224 static int
2225 filt_sowrite(struct knote *kn, long hint)
2226 {
2227 struct socket *so;
2228 int rv;
2229
2230 so = ((file_t *)kn->kn_obj)->f_data;
2231 if (hint != NOTE_SUBMIT)
2232 solock(so);
2233 kn->kn_data = sbspace(&so->so_snd);
2234 if (so->so_state & SS_CANTSENDMORE) {
2235 kn->kn_flags |= EV_EOF;
2236 kn->kn_fflags = so->so_error;
2237 rv = 1;
2238 } else if (so->so_error) /* temporary udp error */
2239 rv = 1;
2240 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2241 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2242 rv = 0;
2243 else if (kn->kn_sfflags & NOTE_LOWAT)
2244 rv = (kn->kn_data >= kn->kn_sdata);
2245 else
2246 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2247 if (hint != NOTE_SUBMIT)
2248 sounlock(so);
2249 return rv;
2250 }
2251
2252 /*ARGSUSED*/
2253 static int
2254 filt_solisten(struct knote *kn, long hint)
2255 {
2256 struct socket *so;
2257 int rv;
2258
2259 so = ((file_t *)kn->kn_obj)->f_data;
2260
2261 /*
2262 * Set kn_data to number of incoming connections, not
2263 * counting partial (incomplete) connections.
2264 */
2265 if (hint != NOTE_SUBMIT)
2266 solock(so);
2267 kn->kn_data = so->so_qlen;
2268 rv = (kn->kn_data > 0);
2269 if (hint != NOTE_SUBMIT)
2270 sounlock(so);
2271 return rv;
2272 }
2273
2274 static const struct filterops solisten_filtops =
2275 { 1, NULL, filt_sordetach, filt_solisten };
2276 static const struct filterops soread_filtops =
2277 { 1, NULL, filt_sordetach, filt_soread };
2278 static const struct filterops sowrite_filtops =
2279 { 1, NULL, filt_sowdetach, filt_sowrite };
2280
2281 int
2282 soo_kqfilter(struct file *fp, struct knote *kn)
2283 {
2284 struct socket *so;
2285 struct sockbuf *sb;
2286
2287 so = ((file_t *)kn->kn_obj)->f_data;
2288 solock(so);
2289 switch (kn->kn_filter) {
2290 case EVFILT_READ:
2291 if (so->so_options & SO_ACCEPTCONN)
2292 kn->kn_fop = &solisten_filtops;
2293 else
2294 kn->kn_fop = &soread_filtops;
2295 sb = &so->so_rcv;
2296 break;
2297 case EVFILT_WRITE:
2298 kn->kn_fop = &sowrite_filtops;
2299 sb = &so->so_snd;
2300 break;
2301 default:
2302 sounlock(so);
2303 return (EINVAL);
2304 }
2305 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2306 sb->sb_flags |= SB_KNOTE;
2307 sounlock(so);
2308 return (0);
2309 }
2310
2311 static int
2312 sodopoll(struct socket *so, int events)
2313 {
2314 int revents;
2315
2316 revents = 0;
2317
2318 if (events & (POLLIN | POLLRDNORM))
2319 if (soreadable(so))
2320 revents |= events & (POLLIN | POLLRDNORM);
2321
2322 if (events & (POLLOUT | POLLWRNORM))
2323 if (sowritable(so))
2324 revents |= events & (POLLOUT | POLLWRNORM);
2325
2326 if (events & (POLLPRI | POLLRDBAND))
2327 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2328 revents |= events & (POLLPRI | POLLRDBAND);
2329
2330 return revents;
2331 }
2332
2333 int
2334 sopoll(struct socket *so, int events)
2335 {
2336 int revents = 0;
2337
2338 #ifndef DIAGNOSTIC
2339 /*
2340 * Do a quick, unlocked check in expectation that the socket
2341 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2342 * as the solocked() assertions will fail.
2343 */
2344 if ((revents = sodopoll(so, events)) != 0)
2345 return revents;
2346 #endif
2347
2348 solock(so);
2349 if ((revents = sodopoll(so, events)) == 0) {
2350 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2351 selrecord(curlwp, &so->so_rcv.sb_sel);
2352 so->so_rcv.sb_flags |= SB_NOTIFY;
2353 }
2354
2355 if (events & (POLLOUT | POLLWRNORM)) {
2356 selrecord(curlwp, &so->so_snd.sb_sel);
2357 so->so_snd.sb_flags |= SB_NOTIFY;
2358 }
2359 }
2360 sounlock(so);
2361
2362 return revents;
2363 }
2364
2365
2366 #include <sys/sysctl.h>
2367
2368 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2369 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2370
2371 /*
2372 * sysctl helper routine for kern.somaxkva. ensures that the given
2373 * value is not too small.
2374 * (XXX should we maybe make sure it's not too large as well?)
2375 */
2376 static int
2377 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2378 {
2379 int error, new_somaxkva;
2380 struct sysctlnode node;
2381
2382 new_somaxkva = somaxkva;
2383 node = *rnode;
2384 node.sysctl_data = &new_somaxkva;
2385 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2386 if (error || newp == NULL)
2387 return (error);
2388
2389 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2390 return (EINVAL);
2391
2392 mutex_enter(&so_pendfree_lock);
2393 somaxkva = new_somaxkva;
2394 cv_broadcast(&socurkva_cv);
2395 mutex_exit(&so_pendfree_lock);
2396
2397 return (error);
2398 }
2399
2400 /*
2401 * sysctl helper routine for kern.sbmax. Basically just ensures that
2402 * any new value is not too small.
2403 */
2404 static int
2405 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2406 {
2407 int error, new_sbmax;
2408 struct sysctlnode node;
2409
2410 new_sbmax = sb_max;
2411 node = *rnode;
2412 node.sysctl_data = &new_sbmax;
2413 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2414 if (error || newp == NULL)
2415 return (error);
2416
2417 KERNEL_LOCK(1, NULL);
2418 error = sb_max_set(new_sbmax);
2419 KERNEL_UNLOCK_ONE(NULL);
2420
2421 return (error);
2422 }
2423
2424 static void
2425 sysctl_kern_socket_setup(void)
2426 {
2427
2428 KASSERT(socket_sysctllog == NULL);
2429
2430 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2431 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2432 CTLTYPE_INT, "somaxkva",
2433 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2434 "used for socket buffers"),
2435 sysctl_kern_somaxkva, 0, NULL, 0,
2436 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2437
2438 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2439 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2440 CTLTYPE_INT, "sbmax",
2441 SYSCTL_DESCR("Maximum socket buffer size"),
2442 sysctl_kern_sbmax, 0, NULL, 0,
2443 CTL_KERN, KERN_SBMAX, CTL_EOL);
2444 }
2445