uipc_socket.c revision 1.213 1 /* $NetBSD: uipc_socket.c,v 1.213 2013/02/14 21:57:58 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.213 2013/02/14 21:57:58 christos Exp $");
67
68 #include "opt_compat_netbsd.h"
69 #include "opt_sock_counters.h"
70 #include "opt_sosend_loan.h"
71 #include "opt_mbuftrace.h"
72 #include "opt_somaxkva.h"
73 #include "opt_multiprocessor.h" /* XXX */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/file.h>
79 #include <sys/filedesc.h>
80 #include <sys/kmem.h>
81 #include <sys/mbuf.h>
82 #include <sys/domain.h>
83 #include <sys/kernel.h>
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/signalvar.h>
88 #include <sys/resourcevar.h>
89 #include <sys/uidinfo.h>
90 #include <sys/event.h>
91 #include <sys/poll.h>
92 #include <sys/kauth.h>
93 #include <sys/mutex.h>
94 #include <sys/condvar.h>
95 #include <sys/kthread.h>
96
97 #ifdef COMPAT_50
98 #include <compat/sys/time.h>
99 #include <compat/sys/socket.h>
100 #endif
101
102 #include <uvm/uvm_extern.h>
103 #include <uvm/uvm_loan.h>
104 #include <uvm/uvm_page.h>
105
106 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
107 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
108
109 extern const struct fileops socketops;
110
111 extern int somaxconn; /* patchable (XXX sysctl) */
112 int somaxconn = SOMAXCONN;
113 kmutex_t *softnet_lock;
114
115 #ifdef SOSEND_COUNTERS
116 #include <sys/device.h>
117
118 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
119 NULL, "sosend", "loan big");
120 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
121 NULL, "sosend", "copy big");
122 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
123 NULL, "sosend", "copy small");
124 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
125 NULL, "sosend", "kva limit");
126
127 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
128
129 EVCNT_ATTACH_STATIC(sosend_loan_big);
130 EVCNT_ATTACH_STATIC(sosend_copy_big);
131 EVCNT_ATTACH_STATIC(sosend_copy_small);
132 EVCNT_ATTACH_STATIC(sosend_kvalimit);
133 #else
134
135 #define SOSEND_COUNTER_INCR(ev) /* nothing */
136
137 #endif /* SOSEND_COUNTERS */
138
139 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
140 int sock_loan_thresh = -1;
141 #else
142 int sock_loan_thresh = 4096;
143 #endif
144
145 static kmutex_t so_pendfree_lock;
146 static struct mbuf *so_pendfree = NULL;
147
148 #ifndef SOMAXKVA
149 #define SOMAXKVA (16 * 1024 * 1024)
150 #endif
151 int somaxkva = SOMAXKVA;
152 static int socurkva;
153 static kcondvar_t socurkva_cv;
154
155 static kauth_listener_t socket_listener;
156
157 #define SOCK_LOAN_CHUNK 65536
158
159 static void sopendfree_thread(void *);
160 static kcondvar_t pendfree_thread_cv;
161 static lwp_t *sopendfree_lwp;
162
163 static void sysctl_kern_socket_setup(void);
164 static struct sysctllog *socket_sysctllog;
165
166 static vsize_t
167 sokvareserve(struct socket *so, vsize_t len)
168 {
169 int error;
170
171 mutex_enter(&so_pendfree_lock);
172 while (socurkva + len > somaxkva) {
173 SOSEND_COUNTER_INCR(&sosend_kvalimit);
174 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
175 if (error) {
176 len = 0;
177 break;
178 }
179 }
180 socurkva += len;
181 mutex_exit(&so_pendfree_lock);
182 return len;
183 }
184
185 static void
186 sokvaunreserve(vsize_t len)
187 {
188
189 mutex_enter(&so_pendfree_lock);
190 socurkva -= len;
191 cv_broadcast(&socurkva_cv);
192 mutex_exit(&so_pendfree_lock);
193 }
194
195 /*
196 * sokvaalloc: allocate kva for loan.
197 */
198
199 vaddr_t
200 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
201 {
202 vaddr_t lva;
203
204 /*
205 * reserve kva.
206 */
207
208 if (sokvareserve(so, len) == 0)
209 return 0;
210
211 /*
212 * allocate kva.
213 */
214
215 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
216 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
217 if (lva == 0) {
218 sokvaunreserve(len);
219 return (0);
220 }
221
222 return lva;
223 }
224
225 /*
226 * sokvafree: free kva for loan.
227 */
228
229 void
230 sokvafree(vaddr_t sva, vsize_t len)
231 {
232
233 /*
234 * free kva.
235 */
236
237 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
238
239 /*
240 * unreserve kva.
241 */
242
243 sokvaunreserve(len);
244 }
245
246 static void
247 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
248 {
249 vaddr_t sva, eva;
250 vsize_t len;
251 int npgs;
252
253 KASSERT(pgs != NULL);
254
255 eva = round_page((vaddr_t) buf + size);
256 sva = trunc_page((vaddr_t) buf);
257 len = eva - sva;
258 npgs = len >> PAGE_SHIFT;
259
260 pmap_kremove(sva, len);
261 pmap_update(pmap_kernel());
262 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
263 sokvafree(sva, len);
264 }
265
266 /*
267 * sopendfree_thread: free mbufs on "pendfree" list.
268 * unlock and relock so_pendfree_lock when freeing mbufs.
269 */
270
271 static void
272 sopendfree_thread(void *v)
273 {
274 struct mbuf *m, *next;
275 size_t rv;
276
277 mutex_enter(&so_pendfree_lock);
278
279 for (;;) {
280 rv = 0;
281 while (so_pendfree != NULL) {
282 m = so_pendfree;
283 so_pendfree = NULL;
284 mutex_exit(&so_pendfree_lock);
285
286 for (; m != NULL; m = next) {
287 next = m->m_next;
288 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
289 KASSERT(m->m_ext.ext_refcnt == 0);
290
291 rv += m->m_ext.ext_size;
292 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
293 m->m_ext.ext_size);
294 pool_cache_put(mb_cache, m);
295 }
296
297 mutex_enter(&so_pendfree_lock);
298 }
299 if (rv)
300 cv_broadcast(&socurkva_cv);
301 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
302 }
303 panic("sopendfree_thread");
304 /* NOTREACHED */
305 }
306
307 void
308 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
309 {
310
311 KASSERT(m != NULL);
312
313 /*
314 * postpone freeing mbuf.
315 *
316 * we can't do it in interrupt context
317 * because we need to put kva back to kernel_map.
318 */
319
320 mutex_enter(&so_pendfree_lock);
321 m->m_next = so_pendfree;
322 so_pendfree = m;
323 cv_signal(&pendfree_thread_cv);
324 mutex_exit(&so_pendfree_lock);
325 }
326
327 static long
328 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
329 {
330 struct iovec *iov = uio->uio_iov;
331 vaddr_t sva, eva;
332 vsize_t len;
333 vaddr_t lva;
334 int npgs, error;
335 vaddr_t va;
336 int i;
337
338 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
339 return (0);
340
341 if (iov->iov_len < (size_t) space)
342 space = iov->iov_len;
343 if (space > SOCK_LOAN_CHUNK)
344 space = SOCK_LOAN_CHUNK;
345
346 eva = round_page((vaddr_t) iov->iov_base + space);
347 sva = trunc_page((vaddr_t) iov->iov_base);
348 len = eva - sva;
349 npgs = len >> PAGE_SHIFT;
350
351 KASSERT(npgs <= M_EXT_MAXPAGES);
352
353 lva = sokvaalloc(sva, len, so);
354 if (lva == 0)
355 return 0;
356
357 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
358 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
359 if (error) {
360 sokvafree(lva, len);
361 return (0);
362 }
363
364 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
365 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
366 VM_PROT_READ, 0);
367 pmap_update(pmap_kernel());
368
369 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
370
371 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
372 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
373
374 uio->uio_resid -= space;
375 /* uio_offset not updated, not set/used for write(2) */
376 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
377 uio->uio_iov->iov_len -= space;
378 if (uio->uio_iov->iov_len == 0) {
379 uio->uio_iov++;
380 uio->uio_iovcnt--;
381 }
382
383 return (space);
384 }
385
386 struct mbuf *
387 getsombuf(struct socket *so, int type)
388 {
389 struct mbuf *m;
390
391 m = m_get(M_WAIT, type);
392 MCLAIM(m, so->so_mowner);
393 return m;
394 }
395
396 static int
397 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
398 void *arg0, void *arg1, void *arg2, void *arg3)
399 {
400 int result;
401 enum kauth_network_req req;
402
403 result = KAUTH_RESULT_DEFER;
404 req = (enum kauth_network_req)arg0;
405
406 if ((action != KAUTH_NETWORK_SOCKET) &&
407 (action != KAUTH_NETWORK_BIND))
408 return result;
409
410 switch (req) {
411 case KAUTH_REQ_NETWORK_BIND_PORT:
412 result = KAUTH_RESULT_ALLOW;
413 break;
414
415 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
416 /* Normal users can only drop their own connections. */
417 struct socket *so = (struct socket *)arg1;
418
419 if (proc_uidmatch(cred, so->so_cred))
420 result = KAUTH_RESULT_ALLOW;
421
422 break;
423 }
424
425 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
426 /* We allow "raw" routing/bluetooth sockets to anyone. */
427 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
428 || (u_long)arg1 == PF_BLUETOOTH) {
429 result = KAUTH_RESULT_ALLOW;
430 } else {
431 /* Privileged, let secmodel handle this. */
432 if ((u_long)arg2 == SOCK_RAW)
433 break;
434 }
435
436 result = KAUTH_RESULT_ALLOW;
437
438 break;
439
440 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
441 result = KAUTH_RESULT_ALLOW;
442
443 break;
444
445 default:
446 break;
447 }
448
449 return result;
450 }
451
452 void
453 soinit(void)
454 {
455
456 sysctl_kern_socket_setup();
457
458 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
459 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
460 cv_init(&socurkva_cv, "sokva");
461 cv_init(&pendfree_thread_cv, "sopendfr");
462 soinit2();
463
464 /* Set the initial adjusted socket buffer size. */
465 if (sb_max_set(sb_max))
466 panic("bad initial sb_max value: %lu", sb_max);
467
468 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
469 socket_listener_cb, NULL);
470 }
471
472 void
473 soinit1(void)
474 {
475 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
476 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
477 if (error)
478 panic("soinit1 %d", error);
479 }
480
481 /*
482 * Socket operation routines.
483 * These routines are called by the routines in
484 * sys_socket.c or from a system process, and
485 * implement the semantics of socket operations by
486 * switching out to the protocol specific routines.
487 */
488 /*ARGSUSED*/
489 int
490 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
491 struct socket *lockso)
492 {
493 const struct protosw *prp;
494 struct socket *so;
495 uid_t uid;
496 int error;
497 kmutex_t *lock;
498
499 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
500 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
501 KAUTH_ARG(proto));
502 if (error != 0)
503 return error;
504
505 if (proto)
506 prp = pffindproto(dom, proto, type);
507 else
508 prp = pffindtype(dom, type);
509 if (prp == NULL) {
510 /* no support for domain */
511 if (pffinddomain(dom) == 0)
512 return EAFNOSUPPORT;
513 /* no support for socket type */
514 if (proto == 0 && type != 0)
515 return EPROTOTYPE;
516 return EPROTONOSUPPORT;
517 }
518 if (prp->pr_usrreq == NULL)
519 return EPROTONOSUPPORT;
520 if (prp->pr_type != type)
521 return EPROTOTYPE;
522
523 so = soget(true);
524 so->so_type = type;
525 so->so_proto = prp;
526 so->so_send = sosend;
527 so->so_receive = soreceive;
528 #ifdef MBUFTRACE
529 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
530 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
531 so->so_mowner = &prp->pr_domain->dom_mowner;
532 #endif
533 uid = kauth_cred_geteuid(l->l_cred);
534 so->so_uidinfo = uid_find(uid);
535 so->so_cpid = l->l_proc->p_pid;
536 if (lockso != NULL) {
537 /* Caller wants us to share a lock. */
538 lock = lockso->so_lock;
539 so->so_lock = lock;
540 mutex_obj_hold(lock);
541 mutex_enter(lock);
542 } else {
543 /* Lock assigned and taken during PRU_ATTACH. */
544 }
545 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
546 (struct mbuf *)(long)proto, NULL, l);
547 KASSERT(solocked(so));
548 if (error != 0) {
549 so->so_state |= SS_NOFDREF;
550 sofree(so);
551 return error;
552 }
553 so->so_cred = kauth_cred_dup(l->l_cred);
554 sounlock(so);
555 *aso = so;
556 return 0;
557 }
558
559 /* On success, write file descriptor to fdout and return zero. On
560 * failure, return non-zero; *fdout will be undefined.
561 */
562 int
563 fsocreate(int domain, struct socket **sop, int type, int protocol,
564 struct lwp *l, int *fdout)
565 {
566 struct socket *so;
567 struct file *fp;
568 int fd, error;
569 int flags = type & SOCK_FLAGS_MASK;
570
571 type &= ~SOCK_FLAGS_MASK;
572 if ((error = fd_allocfile(&fp, &fd)) != 0)
573 return error;
574 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
575 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
576 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
577 fp->f_type = DTYPE_SOCKET;
578 fp->f_ops = &socketops;
579 error = socreate(domain, &so, type, protocol, l, NULL);
580 if (error != 0) {
581 fd_abort(curproc, fp, fd);
582 } else {
583 if (sop != NULL)
584 *sop = so;
585 fp->f_data = so;
586 fd_affix(curproc, fp, fd);
587 *fdout = fd;
588 if (flags & SOCK_NONBLOCK)
589 so->so_state |= SS_NBIO;
590 }
591 return error;
592 }
593
594 int
595 sofamily(const struct socket *so)
596 {
597 const struct protosw *pr;
598 const struct domain *dom;
599
600 if ((pr = so->so_proto) == NULL)
601 return AF_UNSPEC;
602 if ((dom = pr->pr_domain) == NULL)
603 return AF_UNSPEC;
604 return dom->dom_family;
605 }
606
607 int
608 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
609 {
610 int error;
611
612 solock(so);
613 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
614 sounlock(so);
615 return error;
616 }
617
618 int
619 solisten(struct socket *so, int backlog, struct lwp *l)
620 {
621 int error;
622
623 solock(so);
624 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
625 SS_ISDISCONNECTING)) != 0) {
626 sounlock(so);
627 return (EINVAL);
628 }
629 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
630 NULL, NULL, l);
631 if (error != 0) {
632 sounlock(so);
633 return error;
634 }
635 if (TAILQ_EMPTY(&so->so_q))
636 so->so_options |= SO_ACCEPTCONN;
637 if (backlog < 0)
638 backlog = 0;
639 so->so_qlimit = min(backlog, somaxconn);
640 sounlock(so);
641 return 0;
642 }
643
644 void
645 sofree(struct socket *so)
646 {
647 u_int refs;
648
649 KASSERT(solocked(so));
650
651 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
652 sounlock(so);
653 return;
654 }
655 if (so->so_head) {
656 /*
657 * We must not decommission a socket that's on the accept(2)
658 * queue. If we do, then accept(2) may hang after select(2)
659 * indicated that the listening socket was ready.
660 */
661 if (!soqremque(so, 0)) {
662 sounlock(so);
663 return;
664 }
665 }
666 if (so->so_rcv.sb_hiwat)
667 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
668 RLIM_INFINITY);
669 if (so->so_snd.sb_hiwat)
670 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
671 RLIM_INFINITY);
672 sbrelease(&so->so_snd, so);
673 KASSERT(!cv_has_waiters(&so->so_cv));
674 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
675 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
676 sorflush(so);
677 refs = so->so_aborting; /* XXX */
678 /* Remove acccept filter if one is present. */
679 if (so->so_accf != NULL)
680 (void)accept_filt_clear(so);
681 sounlock(so);
682 if (refs == 0) /* XXX */
683 soput(so);
684 }
685
686 /*
687 * Close a socket on last file table reference removal.
688 * Initiate disconnect if connected.
689 * Free socket when disconnect complete.
690 */
691 int
692 soclose(struct socket *so)
693 {
694 struct socket *so2;
695 int error;
696 int error2;
697
698 error = 0;
699 solock(so);
700 if (so->so_options & SO_ACCEPTCONN) {
701 for (;;) {
702 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
703 KASSERT(solocked2(so, so2));
704 (void) soqremque(so2, 0);
705 /* soabort drops the lock. */
706 (void) soabort(so2);
707 solock(so);
708 continue;
709 }
710 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
711 KASSERT(solocked2(so, so2));
712 (void) soqremque(so2, 1);
713 /* soabort drops the lock. */
714 (void) soabort(so2);
715 solock(so);
716 continue;
717 }
718 break;
719 }
720 }
721 if (so->so_pcb == 0)
722 goto discard;
723 if (so->so_state & SS_ISCONNECTED) {
724 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
725 error = sodisconnect(so);
726 if (error)
727 goto drop;
728 }
729 if (so->so_options & SO_LINGER) {
730 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
731 (SS_ISDISCONNECTING|SS_NBIO))
732 goto drop;
733 while (so->so_state & SS_ISCONNECTED) {
734 error = sowait(so, true, so->so_linger * hz);
735 if (error)
736 break;
737 }
738 }
739 }
740 drop:
741 if (so->so_pcb) {
742 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
743 NULL, NULL, NULL, NULL);
744 if (error == 0)
745 error = error2;
746 }
747 discard:
748 if (so->so_state & SS_NOFDREF)
749 panic("soclose: NOFDREF");
750 kauth_cred_free(so->so_cred);
751 so->so_state |= SS_NOFDREF;
752 sofree(so);
753 return (error);
754 }
755
756 /*
757 * Must be called with the socket locked.. Will return with it unlocked.
758 */
759 int
760 soabort(struct socket *so)
761 {
762 u_int refs;
763 int error;
764
765 KASSERT(solocked(so));
766 KASSERT(so->so_head == NULL);
767
768 so->so_aborting++; /* XXX */
769 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
770 NULL, NULL, NULL);
771 refs = --so->so_aborting; /* XXX */
772 if (error || (refs == 0)) {
773 sofree(so);
774 } else {
775 sounlock(so);
776 }
777 return error;
778 }
779
780 int
781 soaccept(struct socket *so, struct mbuf *nam)
782 {
783 int error;
784
785 KASSERT(solocked(so));
786
787 error = 0;
788 if ((so->so_state & SS_NOFDREF) == 0)
789 panic("soaccept: !NOFDREF");
790 so->so_state &= ~SS_NOFDREF;
791 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
792 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
793 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
794 NULL, nam, NULL, NULL);
795 else
796 error = ECONNABORTED;
797
798 return (error);
799 }
800
801 int
802 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
803 {
804 int error;
805
806 KASSERT(solocked(so));
807
808 if (so->so_options & SO_ACCEPTCONN)
809 return (EOPNOTSUPP);
810 /*
811 * If protocol is connection-based, can only connect once.
812 * Otherwise, if connected, try to disconnect first.
813 * This allows user to disconnect by connecting to, e.g.,
814 * a null address.
815 */
816 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
817 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
818 (error = sodisconnect(so))))
819 error = EISCONN;
820 else
821 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
822 NULL, nam, NULL, l);
823 return (error);
824 }
825
826 int
827 soconnect2(struct socket *so1, struct socket *so2)
828 {
829 int error;
830
831 KASSERT(solocked2(so1, so2));
832
833 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
834 NULL, (struct mbuf *)so2, NULL, NULL);
835 return (error);
836 }
837
838 int
839 sodisconnect(struct socket *so)
840 {
841 int error;
842
843 KASSERT(solocked(so));
844
845 if ((so->so_state & SS_ISCONNECTED) == 0) {
846 error = ENOTCONN;
847 } else if (so->so_state & SS_ISDISCONNECTING) {
848 error = EALREADY;
849 } else {
850 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
851 NULL, NULL, NULL, NULL);
852 }
853 return (error);
854 }
855
856 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
857 /*
858 * Send on a socket.
859 * If send must go all at once and message is larger than
860 * send buffering, then hard error.
861 * Lock against other senders.
862 * If must go all at once and not enough room now, then
863 * inform user that this would block and do nothing.
864 * Otherwise, if nonblocking, send as much as possible.
865 * The data to be sent is described by "uio" if nonzero,
866 * otherwise by the mbuf chain "top" (which must be null
867 * if uio is not). Data provided in mbuf chain must be small
868 * enough to send all at once.
869 *
870 * Returns nonzero on error, timeout or signal; callers
871 * must check for short counts if EINTR/ERESTART are returned.
872 * Data and control buffers are freed on return.
873 */
874 int
875 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
876 struct mbuf *control, int flags, struct lwp *l)
877 {
878 struct mbuf **mp, *m;
879 struct proc *p;
880 long space, len, resid, clen, mlen;
881 int error, s, dontroute, atomic;
882 short wakeup_state = 0;
883
884 p = l->l_proc;
885 clen = 0;
886
887 /*
888 * solock() provides atomicity of access. splsoftnet() prevents
889 * protocol processing soft interrupts from interrupting us and
890 * blocking (expensive).
891 */
892 s = splsoftnet();
893 solock(so);
894 atomic = sosendallatonce(so) || top;
895 if (uio)
896 resid = uio->uio_resid;
897 else
898 resid = top->m_pkthdr.len;
899 /*
900 * In theory resid should be unsigned.
901 * However, space must be signed, as it might be less than 0
902 * if we over-committed, and we must use a signed comparison
903 * of space and resid. On the other hand, a negative resid
904 * causes us to loop sending 0-length segments to the protocol.
905 */
906 if (resid < 0) {
907 error = EINVAL;
908 goto out;
909 }
910 dontroute =
911 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
912 (so->so_proto->pr_flags & PR_ATOMIC);
913 l->l_ru.ru_msgsnd++;
914 if (control)
915 clen = control->m_len;
916 restart:
917 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
918 goto out;
919 do {
920 if (so->so_state & SS_CANTSENDMORE) {
921 error = EPIPE;
922 goto release;
923 }
924 if (so->so_error) {
925 error = so->so_error;
926 so->so_error = 0;
927 goto release;
928 }
929 if ((so->so_state & SS_ISCONNECTED) == 0) {
930 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
931 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
932 !(resid == 0 && clen != 0)) {
933 error = ENOTCONN;
934 goto release;
935 }
936 } else if (addr == 0) {
937 error = EDESTADDRREQ;
938 goto release;
939 }
940 }
941 space = sbspace(&so->so_snd);
942 if (flags & MSG_OOB)
943 space += 1024;
944 if ((atomic && resid > so->so_snd.sb_hiwat) ||
945 clen > so->so_snd.sb_hiwat) {
946 error = EMSGSIZE;
947 goto release;
948 }
949 if (space < resid + clen &&
950 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
951 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
952 error = EWOULDBLOCK;
953 goto release;
954 }
955 sbunlock(&so->so_snd);
956 if (wakeup_state & SS_RESTARTSYS) {
957 error = ERESTART;
958 goto out;
959 }
960 error = sbwait(&so->so_snd);
961 if (error)
962 goto out;
963 wakeup_state = so->so_state;
964 goto restart;
965 }
966 wakeup_state = 0;
967 mp = ⊤
968 space -= clen;
969 do {
970 if (uio == NULL) {
971 /*
972 * Data is prepackaged in "top".
973 */
974 resid = 0;
975 if (flags & MSG_EOR)
976 top->m_flags |= M_EOR;
977 } else do {
978 sounlock(so);
979 splx(s);
980 if (top == NULL) {
981 m = m_gethdr(M_WAIT, MT_DATA);
982 mlen = MHLEN;
983 m->m_pkthdr.len = 0;
984 m->m_pkthdr.rcvif = NULL;
985 } else {
986 m = m_get(M_WAIT, MT_DATA);
987 mlen = MLEN;
988 }
989 MCLAIM(m, so->so_snd.sb_mowner);
990 if (sock_loan_thresh >= 0 &&
991 uio->uio_iov->iov_len >= sock_loan_thresh &&
992 space >= sock_loan_thresh &&
993 (len = sosend_loan(so, uio, m,
994 space)) != 0) {
995 SOSEND_COUNTER_INCR(&sosend_loan_big);
996 space -= len;
997 goto have_data;
998 }
999 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1000 SOSEND_COUNTER_INCR(&sosend_copy_big);
1001 m_clget(m, M_DONTWAIT);
1002 if ((m->m_flags & M_EXT) == 0)
1003 goto nopages;
1004 mlen = MCLBYTES;
1005 if (atomic && top == 0) {
1006 len = lmin(MCLBYTES - max_hdr,
1007 resid);
1008 m->m_data += max_hdr;
1009 } else
1010 len = lmin(MCLBYTES, resid);
1011 space -= len;
1012 } else {
1013 nopages:
1014 SOSEND_COUNTER_INCR(&sosend_copy_small);
1015 len = lmin(lmin(mlen, resid), space);
1016 space -= len;
1017 /*
1018 * For datagram protocols, leave room
1019 * for protocol headers in first mbuf.
1020 */
1021 if (atomic && top == 0 && len < mlen)
1022 MH_ALIGN(m, len);
1023 }
1024 error = uiomove(mtod(m, void *), (int)len, uio);
1025 have_data:
1026 resid = uio->uio_resid;
1027 m->m_len = len;
1028 *mp = m;
1029 top->m_pkthdr.len += len;
1030 s = splsoftnet();
1031 solock(so);
1032 if (error != 0)
1033 goto release;
1034 mp = &m->m_next;
1035 if (resid <= 0) {
1036 if (flags & MSG_EOR)
1037 top->m_flags |= M_EOR;
1038 break;
1039 }
1040 } while (space > 0 && atomic);
1041
1042 if (so->so_state & SS_CANTSENDMORE) {
1043 error = EPIPE;
1044 goto release;
1045 }
1046 if (dontroute)
1047 so->so_options |= SO_DONTROUTE;
1048 if (resid > 0)
1049 so->so_state |= SS_MORETOCOME;
1050 error = (*so->so_proto->pr_usrreq)(so,
1051 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
1052 top, addr, control, curlwp);
1053 if (dontroute)
1054 so->so_options &= ~SO_DONTROUTE;
1055 if (resid > 0)
1056 so->so_state &= ~SS_MORETOCOME;
1057 clen = 0;
1058 control = NULL;
1059 top = NULL;
1060 mp = ⊤
1061 if (error != 0)
1062 goto release;
1063 } while (resid && space > 0);
1064 } while (resid);
1065
1066 release:
1067 sbunlock(&so->so_snd);
1068 out:
1069 sounlock(so);
1070 splx(s);
1071 if (top)
1072 m_freem(top);
1073 if (control)
1074 m_freem(control);
1075 return (error);
1076 }
1077
1078 /*
1079 * Following replacement or removal of the first mbuf on the first
1080 * mbuf chain of a socket buffer, push necessary state changes back
1081 * into the socket buffer so that other consumers see the values
1082 * consistently. 'nextrecord' is the callers locally stored value of
1083 * the original value of sb->sb_mb->m_nextpkt which must be restored
1084 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1085 */
1086 static void
1087 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1088 {
1089
1090 KASSERT(solocked(sb->sb_so));
1091
1092 /*
1093 * First, update for the new value of nextrecord. If necessary,
1094 * make it the first record.
1095 */
1096 if (sb->sb_mb != NULL)
1097 sb->sb_mb->m_nextpkt = nextrecord;
1098 else
1099 sb->sb_mb = nextrecord;
1100
1101 /*
1102 * Now update any dependent socket buffer fields to reflect
1103 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1104 * the addition of a second clause that takes care of the
1105 * case where sb_mb has been updated, but remains the last
1106 * record.
1107 */
1108 if (sb->sb_mb == NULL) {
1109 sb->sb_mbtail = NULL;
1110 sb->sb_lastrecord = NULL;
1111 } else if (sb->sb_mb->m_nextpkt == NULL)
1112 sb->sb_lastrecord = sb->sb_mb;
1113 }
1114
1115 /*
1116 * Implement receive operations on a socket.
1117 * We depend on the way that records are added to the sockbuf
1118 * by sbappend*. In particular, each record (mbufs linked through m_next)
1119 * must begin with an address if the protocol so specifies,
1120 * followed by an optional mbuf or mbufs containing ancillary data,
1121 * and then zero or more mbufs of data.
1122 * In order to avoid blocking network interrupts for the entire time here,
1123 * we splx() while doing the actual copy to user space.
1124 * Although the sockbuf is locked, new data may still be appended,
1125 * and thus we must maintain consistency of the sockbuf during that time.
1126 *
1127 * The caller may receive the data as a single mbuf chain by supplying
1128 * an mbuf **mp0 for use in returning the chain. The uio is then used
1129 * only for the count in uio_resid.
1130 */
1131 int
1132 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1133 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1134 {
1135 struct lwp *l = curlwp;
1136 struct mbuf *m, **mp, *mt;
1137 size_t len, offset, moff, orig_resid;
1138 int atomic, flags, error, s, type;
1139 const struct protosw *pr;
1140 struct mbuf *nextrecord;
1141 int mbuf_removed = 0;
1142 const struct domain *dom;
1143 short wakeup_state = 0;
1144
1145 pr = so->so_proto;
1146 atomic = pr->pr_flags & PR_ATOMIC;
1147 dom = pr->pr_domain;
1148 mp = mp0;
1149 type = 0;
1150 orig_resid = uio->uio_resid;
1151
1152 if (paddr != NULL)
1153 *paddr = NULL;
1154 if (controlp != NULL)
1155 *controlp = NULL;
1156 if (flagsp != NULL)
1157 flags = *flagsp &~ MSG_EOR;
1158 else
1159 flags = 0;
1160
1161 if (flags & MSG_OOB) {
1162 m = m_get(M_WAIT, MT_DATA);
1163 solock(so);
1164 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1165 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1166 sounlock(so);
1167 if (error)
1168 goto bad;
1169 do {
1170 error = uiomove(mtod(m, void *),
1171 MIN(uio->uio_resid, m->m_len), uio);
1172 m = m_free(m);
1173 } while (uio->uio_resid > 0 && error == 0 && m);
1174 bad:
1175 if (m != NULL)
1176 m_freem(m);
1177 return error;
1178 }
1179 if (mp != NULL)
1180 *mp = NULL;
1181
1182 /*
1183 * solock() provides atomicity of access. splsoftnet() prevents
1184 * protocol processing soft interrupts from interrupting us and
1185 * blocking (expensive).
1186 */
1187 s = splsoftnet();
1188 solock(so);
1189 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1190 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1191
1192 restart:
1193 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1194 sounlock(so);
1195 splx(s);
1196 return error;
1197 }
1198
1199 m = so->so_rcv.sb_mb;
1200 /*
1201 * If we have less data than requested, block awaiting more
1202 * (subject to any timeout) if:
1203 * 1. the current count is less than the low water mark,
1204 * 2. MSG_WAITALL is set, and it is possible to do the entire
1205 * receive operation at once if we block (resid <= hiwat), or
1206 * 3. MSG_DONTWAIT is not set.
1207 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1208 * we have to do the receive in sections, and thus risk returning
1209 * a short count if a timeout or signal occurs after we start.
1210 */
1211 if (m == NULL ||
1212 ((flags & MSG_DONTWAIT) == 0 &&
1213 so->so_rcv.sb_cc < uio->uio_resid &&
1214 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1215 ((flags & MSG_WAITALL) &&
1216 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1217 m->m_nextpkt == NULL && !atomic)) {
1218 #ifdef DIAGNOSTIC
1219 if (m == NULL && so->so_rcv.sb_cc)
1220 panic("receive 1");
1221 #endif
1222 if (so->so_error) {
1223 if (m != NULL)
1224 goto dontblock;
1225 error = so->so_error;
1226 if ((flags & MSG_PEEK) == 0)
1227 so->so_error = 0;
1228 goto release;
1229 }
1230 if (so->so_state & SS_CANTRCVMORE) {
1231 if (m != NULL)
1232 goto dontblock;
1233 else
1234 goto release;
1235 }
1236 for (; m != NULL; m = m->m_next)
1237 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1238 m = so->so_rcv.sb_mb;
1239 goto dontblock;
1240 }
1241 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1242 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1243 error = ENOTCONN;
1244 goto release;
1245 }
1246 if (uio->uio_resid == 0)
1247 goto release;
1248 if ((so->so_state & SS_NBIO) ||
1249 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1250 error = EWOULDBLOCK;
1251 goto release;
1252 }
1253 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1254 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1255 sbunlock(&so->so_rcv);
1256 if (wakeup_state & SS_RESTARTSYS)
1257 error = ERESTART;
1258 else
1259 error = sbwait(&so->so_rcv);
1260 if (error != 0) {
1261 sounlock(so);
1262 splx(s);
1263 return error;
1264 }
1265 wakeup_state = so->so_state;
1266 goto restart;
1267 }
1268 dontblock:
1269 /*
1270 * On entry here, m points to the first record of the socket buffer.
1271 * From this point onward, we maintain 'nextrecord' as a cache of the
1272 * pointer to the next record in the socket buffer. We must keep the
1273 * various socket buffer pointers and local stack versions of the
1274 * pointers in sync, pushing out modifications before dropping the
1275 * socket lock, and re-reading them when picking it up.
1276 *
1277 * Otherwise, we will race with the network stack appending new data
1278 * or records onto the socket buffer by using inconsistent/stale
1279 * versions of the field, possibly resulting in socket buffer
1280 * corruption.
1281 *
1282 * By holding the high-level sblock(), we prevent simultaneous
1283 * readers from pulling off the front of the socket buffer.
1284 */
1285 if (l != NULL)
1286 l->l_ru.ru_msgrcv++;
1287 KASSERT(m == so->so_rcv.sb_mb);
1288 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1289 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1290 nextrecord = m->m_nextpkt;
1291 if (pr->pr_flags & PR_ADDR) {
1292 #ifdef DIAGNOSTIC
1293 if (m->m_type != MT_SONAME)
1294 panic("receive 1a");
1295 #endif
1296 orig_resid = 0;
1297 if (flags & MSG_PEEK) {
1298 if (paddr)
1299 *paddr = m_copy(m, 0, m->m_len);
1300 m = m->m_next;
1301 } else {
1302 sbfree(&so->so_rcv, m);
1303 mbuf_removed = 1;
1304 if (paddr != NULL) {
1305 *paddr = m;
1306 so->so_rcv.sb_mb = m->m_next;
1307 m->m_next = NULL;
1308 m = so->so_rcv.sb_mb;
1309 } else {
1310 MFREE(m, so->so_rcv.sb_mb);
1311 m = so->so_rcv.sb_mb;
1312 }
1313 sbsync(&so->so_rcv, nextrecord);
1314 }
1315 }
1316
1317 /*
1318 * Process one or more MT_CONTROL mbufs present before any data mbufs
1319 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1320 * just copy the data; if !MSG_PEEK, we call into the protocol to
1321 * perform externalization (or freeing if controlp == NULL).
1322 */
1323 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1324 struct mbuf *cm = NULL, *cmn;
1325 struct mbuf **cme = &cm;
1326
1327 do {
1328 if (flags & MSG_PEEK) {
1329 if (controlp != NULL) {
1330 *controlp = m_copy(m, 0, m->m_len);
1331 controlp = &(*controlp)->m_next;
1332 }
1333 m = m->m_next;
1334 } else {
1335 sbfree(&so->so_rcv, m);
1336 so->so_rcv.sb_mb = m->m_next;
1337 m->m_next = NULL;
1338 *cme = m;
1339 cme = &(*cme)->m_next;
1340 m = so->so_rcv.sb_mb;
1341 }
1342 } while (m != NULL && m->m_type == MT_CONTROL);
1343 if ((flags & MSG_PEEK) == 0)
1344 sbsync(&so->so_rcv, nextrecord);
1345 for (; cm != NULL; cm = cmn) {
1346 cmn = cm->m_next;
1347 cm->m_next = NULL;
1348 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1349 if (controlp != NULL) {
1350 if (dom->dom_externalize != NULL &&
1351 type == SCM_RIGHTS) {
1352 sounlock(so);
1353 splx(s);
1354 error = (*dom->dom_externalize)(cm, l,
1355 (flags & MSG_CMSG_CLOEXEC) ?
1356 O_CLOEXEC : 0);
1357 s = splsoftnet();
1358 solock(so);
1359 }
1360 *controlp = cm;
1361 while (*controlp != NULL)
1362 controlp = &(*controlp)->m_next;
1363 } else {
1364 /*
1365 * Dispose of any SCM_RIGHTS message that went
1366 * through the read path rather than recv.
1367 */
1368 if (dom->dom_dispose != NULL &&
1369 type == SCM_RIGHTS) {
1370 sounlock(so);
1371 (*dom->dom_dispose)(cm);
1372 solock(so);
1373 }
1374 m_freem(cm);
1375 }
1376 }
1377 if (m != NULL)
1378 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1379 else
1380 nextrecord = so->so_rcv.sb_mb;
1381 orig_resid = 0;
1382 }
1383
1384 /* If m is non-NULL, we have some data to read. */
1385 if (__predict_true(m != NULL)) {
1386 type = m->m_type;
1387 if (type == MT_OOBDATA)
1388 flags |= MSG_OOB;
1389 }
1390 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1391 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1392
1393 moff = 0;
1394 offset = 0;
1395 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1396 if (m->m_type == MT_OOBDATA) {
1397 if (type != MT_OOBDATA)
1398 break;
1399 } else if (type == MT_OOBDATA)
1400 break;
1401 #ifdef DIAGNOSTIC
1402 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1403 panic("receive 3");
1404 #endif
1405 so->so_state &= ~SS_RCVATMARK;
1406 wakeup_state = 0;
1407 len = uio->uio_resid;
1408 if (so->so_oobmark && len > so->so_oobmark - offset)
1409 len = so->so_oobmark - offset;
1410 if (len > m->m_len - moff)
1411 len = m->m_len - moff;
1412 /*
1413 * If mp is set, just pass back the mbufs.
1414 * Otherwise copy them out via the uio, then free.
1415 * Sockbuf must be consistent here (points to current mbuf,
1416 * it points to next record) when we drop priority;
1417 * we must note any additions to the sockbuf when we
1418 * block interrupts again.
1419 */
1420 if (mp == NULL) {
1421 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1422 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1423 sounlock(so);
1424 splx(s);
1425 error = uiomove(mtod(m, char *) + moff, len, uio);
1426 s = splsoftnet();
1427 solock(so);
1428 if (error != 0) {
1429 /*
1430 * If any part of the record has been removed
1431 * (such as the MT_SONAME mbuf, which will
1432 * happen when PR_ADDR, and thus also
1433 * PR_ATOMIC, is set), then drop the entire
1434 * record to maintain the atomicity of the
1435 * receive operation.
1436 *
1437 * This avoids a later panic("receive 1a")
1438 * when compiled with DIAGNOSTIC.
1439 */
1440 if (m && mbuf_removed && atomic)
1441 (void) sbdroprecord(&so->so_rcv);
1442
1443 goto release;
1444 }
1445 } else
1446 uio->uio_resid -= len;
1447 if (len == m->m_len - moff) {
1448 if (m->m_flags & M_EOR)
1449 flags |= MSG_EOR;
1450 if (flags & MSG_PEEK) {
1451 m = m->m_next;
1452 moff = 0;
1453 } else {
1454 nextrecord = m->m_nextpkt;
1455 sbfree(&so->so_rcv, m);
1456 if (mp) {
1457 *mp = m;
1458 mp = &m->m_next;
1459 so->so_rcv.sb_mb = m = m->m_next;
1460 *mp = NULL;
1461 } else {
1462 MFREE(m, so->so_rcv.sb_mb);
1463 m = so->so_rcv.sb_mb;
1464 }
1465 /*
1466 * If m != NULL, we also know that
1467 * so->so_rcv.sb_mb != NULL.
1468 */
1469 KASSERT(so->so_rcv.sb_mb == m);
1470 if (m) {
1471 m->m_nextpkt = nextrecord;
1472 if (nextrecord == NULL)
1473 so->so_rcv.sb_lastrecord = m;
1474 } else {
1475 so->so_rcv.sb_mb = nextrecord;
1476 SB_EMPTY_FIXUP(&so->so_rcv);
1477 }
1478 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1479 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1480 }
1481 } else if (flags & MSG_PEEK)
1482 moff += len;
1483 else {
1484 if (mp != NULL) {
1485 mt = m_copym(m, 0, len, M_NOWAIT);
1486 if (__predict_false(mt == NULL)) {
1487 sounlock(so);
1488 mt = m_copym(m, 0, len, M_WAIT);
1489 solock(so);
1490 }
1491 *mp = mt;
1492 }
1493 m->m_data += len;
1494 m->m_len -= len;
1495 so->so_rcv.sb_cc -= len;
1496 }
1497 if (so->so_oobmark) {
1498 if ((flags & MSG_PEEK) == 0) {
1499 so->so_oobmark -= len;
1500 if (so->so_oobmark == 0) {
1501 so->so_state |= SS_RCVATMARK;
1502 break;
1503 }
1504 } else {
1505 offset += len;
1506 if (offset == so->so_oobmark)
1507 break;
1508 }
1509 }
1510 if (flags & MSG_EOR)
1511 break;
1512 /*
1513 * If the MSG_WAITALL flag is set (for non-atomic socket),
1514 * we must not quit until "uio->uio_resid == 0" or an error
1515 * termination. If a signal/timeout occurs, return
1516 * with a short count but without error.
1517 * Keep sockbuf locked against other readers.
1518 */
1519 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1520 !sosendallatonce(so) && !nextrecord) {
1521 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1522 break;
1523 /*
1524 * If we are peeking and the socket receive buffer is
1525 * full, stop since we can't get more data to peek at.
1526 */
1527 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1528 break;
1529 /*
1530 * If we've drained the socket buffer, tell the
1531 * protocol in case it needs to do something to
1532 * get it filled again.
1533 */
1534 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1535 (*pr->pr_usrreq)(so, PRU_RCVD,
1536 NULL, (struct mbuf *)(long)flags, NULL, l);
1537 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1538 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1539 if (wakeup_state & SS_RESTARTSYS)
1540 error = ERESTART;
1541 else
1542 error = sbwait(&so->so_rcv);
1543 if (error != 0) {
1544 sbunlock(&so->so_rcv);
1545 sounlock(so);
1546 splx(s);
1547 return 0;
1548 }
1549 if ((m = so->so_rcv.sb_mb) != NULL)
1550 nextrecord = m->m_nextpkt;
1551 wakeup_state = so->so_state;
1552 }
1553 }
1554
1555 if (m && atomic) {
1556 flags |= MSG_TRUNC;
1557 if ((flags & MSG_PEEK) == 0)
1558 (void) sbdroprecord(&so->so_rcv);
1559 }
1560 if ((flags & MSG_PEEK) == 0) {
1561 if (m == NULL) {
1562 /*
1563 * First part is an inline SB_EMPTY_FIXUP(). Second
1564 * part makes sure sb_lastrecord is up-to-date if
1565 * there is still data in the socket buffer.
1566 */
1567 so->so_rcv.sb_mb = nextrecord;
1568 if (so->so_rcv.sb_mb == NULL) {
1569 so->so_rcv.sb_mbtail = NULL;
1570 so->so_rcv.sb_lastrecord = NULL;
1571 } else if (nextrecord->m_nextpkt == NULL)
1572 so->so_rcv.sb_lastrecord = nextrecord;
1573 }
1574 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1575 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1576 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1577 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1578 (struct mbuf *)(long)flags, NULL, l);
1579 }
1580 if (orig_resid == uio->uio_resid && orig_resid &&
1581 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1582 sbunlock(&so->so_rcv);
1583 goto restart;
1584 }
1585
1586 if (flagsp != NULL)
1587 *flagsp |= flags;
1588 release:
1589 sbunlock(&so->so_rcv);
1590 sounlock(so);
1591 splx(s);
1592 return error;
1593 }
1594
1595 int
1596 soshutdown(struct socket *so, int how)
1597 {
1598 const struct protosw *pr;
1599 int error;
1600
1601 KASSERT(solocked(so));
1602
1603 pr = so->so_proto;
1604 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1605 return (EINVAL);
1606
1607 if (how == SHUT_RD || how == SHUT_RDWR) {
1608 sorflush(so);
1609 error = 0;
1610 }
1611 if (how == SHUT_WR || how == SHUT_RDWR)
1612 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1613 NULL, NULL, NULL);
1614
1615 return error;
1616 }
1617
1618 void
1619 sorestart(struct socket *so)
1620 {
1621 /*
1622 * An application has called close() on an fd on which another
1623 * of its threads has called a socket system call.
1624 * Mark this and wake everyone up, and code that would block again
1625 * instead returns ERESTART.
1626 * On system call re-entry the fd is validated and EBADF returned.
1627 * Any other fd will block again on the 2nd syscall.
1628 */
1629 solock(so);
1630 so->so_state |= SS_RESTARTSYS;
1631 cv_broadcast(&so->so_cv);
1632 cv_broadcast(&so->so_snd.sb_cv);
1633 cv_broadcast(&so->so_rcv.sb_cv);
1634 sounlock(so);
1635 }
1636
1637 void
1638 sorflush(struct socket *so)
1639 {
1640 struct sockbuf *sb, asb;
1641 const struct protosw *pr;
1642
1643 KASSERT(solocked(so));
1644
1645 sb = &so->so_rcv;
1646 pr = so->so_proto;
1647 socantrcvmore(so);
1648 sb->sb_flags |= SB_NOINTR;
1649 (void )sblock(sb, M_WAITOK);
1650 sbunlock(sb);
1651 asb = *sb;
1652 /*
1653 * Clear most of the sockbuf structure, but leave some of the
1654 * fields valid.
1655 */
1656 memset(&sb->sb_startzero, 0,
1657 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1658 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1659 sounlock(so);
1660 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1661 solock(so);
1662 }
1663 sbrelease(&asb, so);
1664 }
1665
1666 /*
1667 * internal set SOL_SOCKET options
1668 */
1669 static int
1670 sosetopt1(struct socket *so, const struct sockopt *sopt)
1671 {
1672 int error = EINVAL, optval, opt;
1673 struct linger l;
1674 struct timeval tv;
1675
1676 switch ((opt = sopt->sopt_name)) {
1677
1678 case SO_ACCEPTFILTER:
1679 error = accept_filt_setopt(so, sopt);
1680 KASSERT(solocked(so));
1681 break;
1682
1683 case SO_LINGER:
1684 error = sockopt_get(sopt, &l, sizeof(l));
1685 solock(so);
1686 if (error)
1687 break;
1688 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1689 l.l_linger > (INT_MAX / hz)) {
1690 error = EDOM;
1691 break;
1692 }
1693 so->so_linger = l.l_linger;
1694 if (l.l_onoff)
1695 so->so_options |= SO_LINGER;
1696 else
1697 so->so_options &= ~SO_LINGER;
1698 break;
1699
1700 case SO_DEBUG:
1701 case SO_KEEPALIVE:
1702 case SO_DONTROUTE:
1703 case SO_USELOOPBACK:
1704 case SO_BROADCAST:
1705 case SO_REUSEADDR:
1706 case SO_REUSEPORT:
1707 case SO_OOBINLINE:
1708 case SO_TIMESTAMP:
1709 case SO_NOSIGPIPE:
1710 #ifdef SO_OTIMESTAMP
1711 case SO_OTIMESTAMP:
1712 #endif
1713 error = sockopt_getint(sopt, &optval);
1714 solock(so);
1715 if (error)
1716 break;
1717 if (optval)
1718 so->so_options |= opt;
1719 else
1720 so->so_options &= ~opt;
1721 break;
1722
1723 case SO_SNDBUF:
1724 case SO_RCVBUF:
1725 case SO_SNDLOWAT:
1726 case SO_RCVLOWAT:
1727 error = sockopt_getint(sopt, &optval);
1728 solock(so);
1729 if (error)
1730 break;
1731
1732 /*
1733 * Values < 1 make no sense for any of these
1734 * options, so disallow them.
1735 */
1736 if (optval < 1) {
1737 error = EINVAL;
1738 break;
1739 }
1740
1741 switch (opt) {
1742 case SO_SNDBUF:
1743 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1744 error = ENOBUFS;
1745 break;
1746 }
1747 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1748 break;
1749
1750 case SO_RCVBUF:
1751 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1752 error = ENOBUFS;
1753 break;
1754 }
1755 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1756 break;
1757
1758 /*
1759 * Make sure the low-water is never greater than
1760 * the high-water.
1761 */
1762 case SO_SNDLOWAT:
1763 if (optval > so->so_snd.sb_hiwat)
1764 optval = so->so_snd.sb_hiwat;
1765
1766 so->so_snd.sb_lowat = optval;
1767 break;
1768
1769 case SO_RCVLOWAT:
1770 if (optval > so->so_rcv.sb_hiwat)
1771 optval = so->so_rcv.sb_hiwat;
1772
1773 so->so_rcv.sb_lowat = optval;
1774 break;
1775 }
1776 break;
1777
1778 #ifdef COMPAT_50
1779 case SO_OSNDTIMEO:
1780 case SO_ORCVTIMEO: {
1781 struct timeval50 otv;
1782 error = sockopt_get(sopt, &otv, sizeof(otv));
1783 if (error) {
1784 solock(so);
1785 break;
1786 }
1787 timeval50_to_timeval(&otv, &tv);
1788 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1789 error = 0;
1790 /*FALLTHROUGH*/
1791 }
1792 #endif /* COMPAT_50 */
1793
1794 case SO_SNDTIMEO:
1795 case SO_RCVTIMEO:
1796 if (error)
1797 error = sockopt_get(sopt, &tv, sizeof(tv));
1798 solock(so);
1799 if (error)
1800 break;
1801
1802 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1803 error = EDOM;
1804 break;
1805 }
1806
1807 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1808 if (optval == 0 && tv.tv_usec != 0)
1809 optval = 1;
1810
1811 switch (opt) {
1812 case SO_SNDTIMEO:
1813 so->so_snd.sb_timeo = optval;
1814 break;
1815 case SO_RCVTIMEO:
1816 so->so_rcv.sb_timeo = optval;
1817 break;
1818 }
1819 break;
1820
1821 default:
1822 solock(so);
1823 error = ENOPROTOOPT;
1824 break;
1825 }
1826 KASSERT(solocked(so));
1827 return error;
1828 }
1829
1830 int
1831 sosetopt(struct socket *so, struct sockopt *sopt)
1832 {
1833 int error, prerr;
1834
1835 if (sopt->sopt_level == SOL_SOCKET) {
1836 error = sosetopt1(so, sopt);
1837 KASSERT(solocked(so));
1838 } else {
1839 error = ENOPROTOOPT;
1840 solock(so);
1841 }
1842
1843 if ((error == 0 || error == ENOPROTOOPT) &&
1844 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1845 /* give the protocol stack a shot */
1846 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1847 if (prerr == 0)
1848 error = 0;
1849 else if (prerr != ENOPROTOOPT)
1850 error = prerr;
1851 }
1852 sounlock(so);
1853 return error;
1854 }
1855
1856 /*
1857 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1858 */
1859 int
1860 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1861 const void *val, size_t valsize)
1862 {
1863 struct sockopt sopt;
1864 int error;
1865
1866 KASSERT(valsize == 0 || val != NULL);
1867
1868 sockopt_init(&sopt, level, name, valsize);
1869 sockopt_set(&sopt, val, valsize);
1870
1871 error = sosetopt(so, &sopt);
1872
1873 sockopt_destroy(&sopt);
1874
1875 return error;
1876 }
1877
1878 /*
1879 * internal get SOL_SOCKET options
1880 */
1881 static int
1882 sogetopt1(struct socket *so, struct sockopt *sopt)
1883 {
1884 int error, optval, opt;
1885 struct linger l;
1886 struct timeval tv;
1887
1888 switch ((opt = sopt->sopt_name)) {
1889
1890 case SO_ACCEPTFILTER:
1891 error = accept_filt_getopt(so, sopt);
1892 break;
1893
1894 case SO_LINGER:
1895 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1896 l.l_linger = so->so_linger;
1897
1898 error = sockopt_set(sopt, &l, sizeof(l));
1899 break;
1900
1901 case SO_USELOOPBACK:
1902 case SO_DONTROUTE:
1903 case SO_DEBUG:
1904 case SO_KEEPALIVE:
1905 case SO_REUSEADDR:
1906 case SO_REUSEPORT:
1907 case SO_BROADCAST:
1908 case SO_OOBINLINE:
1909 case SO_TIMESTAMP:
1910 case SO_NOSIGPIPE:
1911 #ifdef SO_OTIMESTAMP
1912 case SO_OTIMESTAMP:
1913 #endif
1914 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1915 break;
1916
1917 case SO_TYPE:
1918 error = sockopt_setint(sopt, so->so_type);
1919 break;
1920
1921 case SO_ERROR:
1922 error = sockopt_setint(sopt, so->so_error);
1923 so->so_error = 0;
1924 break;
1925
1926 case SO_SNDBUF:
1927 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1928 break;
1929
1930 case SO_RCVBUF:
1931 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1932 break;
1933
1934 case SO_SNDLOWAT:
1935 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1936 break;
1937
1938 case SO_RCVLOWAT:
1939 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1940 break;
1941
1942 #ifdef COMPAT_50
1943 case SO_OSNDTIMEO:
1944 case SO_ORCVTIMEO: {
1945 struct timeval50 otv;
1946
1947 optval = (opt == SO_OSNDTIMEO ?
1948 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1949
1950 otv.tv_sec = optval / hz;
1951 otv.tv_usec = (optval % hz) * tick;
1952
1953 error = sockopt_set(sopt, &otv, sizeof(otv));
1954 break;
1955 }
1956 #endif /* COMPAT_50 */
1957
1958 case SO_SNDTIMEO:
1959 case SO_RCVTIMEO:
1960 optval = (opt == SO_SNDTIMEO ?
1961 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1962
1963 tv.tv_sec = optval / hz;
1964 tv.tv_usec = (optval % hz) * tick;
1965
1966 error = sockopt_set(sopt, &tv, sizeof(tv));
1967 break;
1968
1969 case SO_OVERFLOWED:
1970 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1971 break;
1972
1973 default:
1974 error = ENOPROTOOPT;
1975 break;
1976 }
1977
1978 return (error);
1979 }
1980
1981 int
1982 sogetopt(struct socket *so, struct sockopt *sopt)
1983 {
1984 int error;
1985
1986 solock(so);
1987 if (sopt->sopt_level != SOL_SOCKET) {
1988 if (so->so_proto && so->so_proto->pr_ctloutput) {
1989 error = ((*so->so_proto->pr_ctloutput)
1990 (PRCO_GETOPT, so, sopt));
1991 } else
1992 error = (ENOPROTOOPT);
1993 } else {
1994 error = sogetopt1(so, sopt);
1995 }
1996 sounlock(so);
1997 return (error);
1998 }
1999
2000 /*
2001 * alloc sockopt data buffer buffer
2002 * - will be released at destroy
2003 */
2004 static int
2005 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2006 {
2007
2008 KASSERT(sopt->sopt_size == 0);
2009
2010 if (len > sizeof(sopt->sopt_buf)) {
2011 sopt->sopt_data = kmem_zalloc(len, kmflag);
2012 if (sopt->sopt_data == NULL)
2013 return ENOMEM;
2014 } else
2015 sopt->sopt_data = sopt->sopt_buf;
2016
2017 sopt->sopt_size = len;
2018 return 0;
2019 }
2020
2021 /*
2022 * initialise sockopt storage
2023 * - MAY sleep during allocation
2024 */
2025 void
2026 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2027 {
2028
2029 memset(sopt, 0, sizeof(*sopt));
2030
2031 sopt->sopt_level = level;
2032 sopt->sopt_name = name;
2033 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2034 }
2035
2036 /*
2037 * destroy sockopt storage
2038 * - will release any held memory references
2039 */
2040 void
2041 sockopt_destroy(struct sockopt *sopt)
2042 {
2043
2044 if (sopt->sopt_data != sopt->sopt_buf)
2045 kmem_free(sopt->sopt_data, sopt->sopt_size);
2046
2047 memset(sopt, 0, sizeof(*sopt));
2048 }
2049
2050 /*
2051 * set sockopt value
2052 * - value is copied into sockopt
2053 * - memory is allocated when necessary, will not sleep
2054 */
2055 int
2056 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2057 {
2058 int error;
2059
2060 if (sopt->sopt_size == 0) {
2061 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2062 if (error)
2063 return error;
2064 }
2065
2066 KASSERT(sopt->sopt_size == len);
2067 memcpy(sopt->sopt_data, buf, len);
2068 return 0;
2069 }
2070
2071 /*
2072 * common case of set sockopt integer value
2073 */
2074 int
2075 sockopt_setint(struct sockopt *sopt, int val)
2076 {
2077
2078 return sockopt_set(sopt, &val, sizeof(int));
2079 }
2080
2081 /*
2082 * get sockopt value
2083 * - correct size must be given
2084 */
2085 int
2086 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2087 {
2088
2089 if (sopt->sopt_size != len)
2090 return EINVAL;
2091
2092 memcpy(buf, sopt->sopt_data, len);
2093 return 0;
2094 }
2095
2096 /*
2097 * common case of get sockopt integer value
2098 */
2099 int
2100 sockopt_getint(const struct sockopt *sopt, int *valp)
2101 {
2102
2103 return sockopt_get(sopt, valp, sizeof(int));
2104 }
2105
2106 /*
2107 * set sockopt value from mbuf
2108 * - ONLY for legacy code
2109 * - mbuf is released by sockopt
2110 * - will not sleep
2111 */
2112 int
2113 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2114 {
2115 size_t len;
2116 int error;
2117
2118 len = m_length(m);
2119
2120 if (sopt->sopt_size == 0) {
2121 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2122 if (error)
2123 return error;
2124 }
2125
2126 KASSERT(sopt->sopt_size == len);
2127 m_copydata(m, 0, len, sopt->sopt_data);
2128 m_freem(m);
2129
2130 return 0;
2131 }
2132
2133 /*
2134 * get sockopt value into mbuf
2135 * - ONLY for legacy code
2136 * - mbuf to be released by the caller
2137 * - will not sleep
2138 */
2139 struct mbuf *
2140 sockopt_getmbuf(const struct sockopt *sopt)
2141 {
2142 struct mbuf *m;
2143
2144 if (sopt->sopt_size > MCLBYTES)
2145 return NULL;
2146
2147 m = m_get(M_DONTWAIT, MT_SOOPTS);
2148 if (m == NULL)
2149 return NULL;
2150
2151 if (sopt->sopt_size > MLEN) {
2152 MCLGET(m, M_DONTWAIT);
2153 if ((m->m_flags & M_EXT) == 0) {
2154 m_free(m);
2155 return NULL;
2156 }
2157 }
2158
2159 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2160 m->m_len = sopt->sopt_size;
2161
2162 return m;
2163 }
2164
2165 void
2166 sohasoutofband(struct socket *so)
2167 {
2168
2169 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2170 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2171 }
2172
2173 static void
2174 filt_sordetach(struct knote *kn)
2175 {
2176 struct socket *so;
2177
2178 so = ((file_t *)kn->kn_obj)->f_data;
2179 solock(so);
2180 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2181 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2182 so->so_rcv.sb_flags &= ~SB_KNOTE;
2183 sounlock(so);
2184 }
2185
2186 /*ARGSUSED*/
2187 static int
2188 filt_soread(struct knote *kn, long hint)
2189 {
2190 struct socket *so;
2191 int rv;
2192
2193 so = ((file_t *)kn->kn_obj)->f_data;
2194 if (hint != NOTE_SUBMIT)
2195 solock(so);
2196 kn->kn_data = so->so_rcv.sb_cc;
2197 if (so->so_state & SS_CANTRCVMORE) {
2198 kn->kn_flags |= EV_EOF;
2199 kn->kn_fflags = so->so_error;
2200 rv = 1;
2201 } else if (so->so_error) /* temporary udp error */
2202 rv = 1;
2203 else if (kn->kn_sfflags & NOTE_LOWAT)
2204 rv = (kn->kn_data >= kn->kn_sdata);
2205 else
2206 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2207 if (hint != NOTE_SUBMIT)
2208 sounlock(so);
2209 return rv;
2210 }
2211
2212 static void
2213 filt_sowdetach(struct knote *kn)
2214 {
2215 struct socket *so;
2216
2217 so = ((file_t *)kn->kn_obj)->f_data;
2218 solock(so);
2219 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2220 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2221 so->so_snd.sb_flags &= ~SB_KNOTE;
2222 sounlock(so);
2223 }
2224
2225 /*ARGSUSED*/
2226 static int
2227 filt_sowrite(struct knote *kn, long hint)
2228 {
2229 struct socket *so;
2230 int rv;
2231
2232 so = ((file_t *)kn->kn_obj)->f_data;
2233 if (hint != NOTE_SUBMIT)
2234 solock(so);
2235 kn->kn_data = sbspace(&so->so_snd);
2236 if (so->so_state & SS_CANTSENDMORE) {
2237 kn->kn_flags |= EV_EOF;
2238 kn->kn_fflags = so->so_error;
2239 rv = 1;
2240 } else if (so->so_error) /* temporary udp error */
2241 rv = 1;
2242 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2243 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2244 rv = 0;
2245 else if (kn->kn_sfflags & NOTE_LOWAT)
2246 rv = (kn->kn_data >= kn->kn_sdata);
2247 else
2248 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2249 if (hint != NOTE_SUBMIT)
2250 sounlock(so);
2251 return rv;
2252 }
2253
2254 /*ARGSUSED*/
2255 static int
2256 filt_solisten(struct knote *kn, long hint)
2257 {
2258 struct socket *so;
2259 int rv;
2260
2261 so = ((file_t *)kn->kn_obj)->f_data;
2262
2263 /*
2264 * Set kn_data to number of incoming connections, not
2265 * counting partial (incomplete) connections.
2266 */
2267 if (hint != NOTE_SUBMIT)
2268 solock(so);
2269 kn->kn_data = so->so_qlen;
2270 rv = (kn->kn_data > 0);
2271 if (hint != NOTE_SUBMIT)
2272 sounlock(so);
2273 return rv;
2274 }
2275
2276 static const struct filterops solisten_filtops =
2277 { 1, NULL, filt_sordetach, filt_solisten };
2278 static const struct filterops soread_filtops =
2279 { 1, NULL, filt_sordetach, filt_soread };
2280 static const struct filterops sowrite_filtops =
2281 { 1, NULL, filt_sowdetach, filt_sowrite };
2282
2283 int
2284 soo_kqfilter(struct file *fp, struct knote *kn)
2285 {
2286 struct socket *so;
2287 struct sockbuf *sb;
2288
2289 so = ((file_t *)kn->kn_obj)->f_data;
2290 solock(so);
2291 switch (kn->kn_filter) {
2292 case EVFILT_READ:
2293 if (so->so_options & SO_ACCEPTCONN)
2294 kn->kn_fop = &solisten_filtops;
2295 else
2296 kn->kn_fop = &soread_filtops;
2297 sb = &so->so_rcv;
2298 break;
2299 case EVFILT_WRITE:
2300 kn->kn_fop = &sowrite_filtops;
2301 sb = &so->so_snd;
2302 break;
2303 default:
2304 sounlock(so);
2305 return (EINVAL);
2306 }
2307 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2308 sb->sb_flags |= SB_KNOTE;
2309 sounlock(so);
2310 return (0);
2311 }
2312
2313 static int
2314 sodopoll(struct socket *so, int events)
2315 {
2316 int revents;
2317
2318 revents = 0;
2319
2320 if (events & (POLLIN | POLLRDNORM))
2321 if (soreadable(so))
2322 revents |= events & (POLLIN | POLLRDNORM);
2323
2324 if (events & (POLLOUT | POLLWRNORM))
2325 if (sowritable(so))
2326 revents |= events & (POLLOUT | POLLWRNORM);
2327
2328 if (events & (POLLPRI | POLLRDBAND))
2329 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2330 revents |= events & (POLLPRI | POLLRDBAND);
2331
2332 return revents;
2333 }
2334
2335 int
2336 sopoll(struct socket *so, int events)
2337 {
2338 int revents = 0;
2339
2340 #ifndef DIAGNOSTIC
2341 /*
2342 * Do a quick, unlocked check in expectation that the socket
2343 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2344 * as the solocked() assertions will fail.
2345 */
2346 if ((revents = sodopoll(so, events)) != 0)
2347 return revents;
2348 #endif
2349
2350 solock(so);
2351 if ((revents = sodopoll(so, events)) == 0) {
2352 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2353 selrecord(curlwp, &so->so_rcv.sb_sel);
2354 so->so_rcv.sb_flags |= SB_NOTIFY;
2355 }
2356
2357 if (events & (POLLOUT | POLLWRNORM)) {
2358 selrecord(curlwp, &so->so_snd.sb_sel);
2359 so->so_snd.sb_flags |= SB_NOTIFY;
2360 }
2361 }
2362 sounlock(so);
2363
2364 return revents;
2365 }
2366
2367
2368 #include <sys/sysctl.h>
2369
2370 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2371 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2372
2373 /*
2374 * sysctl helper routine for kern.somaxkva. ensures that the given
2375 * value is not too small.
2376 * (XXX should we maybe make sure it's not too large as well?)
2377 */
2378 static int
2379 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2380 {
2381 int error, new_somaxkva;
2382 struct sysctlnode node;
2383
2384 new_somaxkva = somaxkva;
2385 node = *rnode;
2386 node.sysctl_data = &new_somaxkva;
2387 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2388 if (error || newp == NULL)
2389 return (error);
2390
2391 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2392 return (EINVAL);
2393
2394 mutex_enter(&so_pendfree_lock);
2395 somaxkva = new_somaxkva;
2396 cv_broadcast(&socurkva_cv);
2397 mutex_exit(&so_pendfree_lock);
2398
2399 return (error);
2400 }
2401
2402 /*
2403 * sysctl helper routine for kern.sbmax. Basically just ensures that
2404 * any new value is not too small.
2405 */
2406 static int
2407 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2408 {
2409 int error, new_sbmax;
2410 struct sysctlnode node;
2411
2412 new_sbmax = sb_max;
2413 node = *rnode;
2414 node.sysctl_data = &new_sbmax;
2415 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2416 if (error || newp == NULL)
2417 return (error);
2418
2419 KERNEL_LOCK(1, NULL);
2420 error = sb_max_set(new_sbmax);
2421 KERNEL_UNLOCK_ONE(NULL);
2422
2423 return (error);
2424 }
2425
2426 static void
2427 sysctl_kern_socket_setup(void)
2428 {
2429
2430 KASSERT(socket_sysctllog == NULL);
2431 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2432 CTLFLAG_PERMANENT,
2433 CTLTYPE_NODE, "kern", NULL,
2434 NULL, 0, NULL, 0,
2435 CTL_KERN, CTL_EOL);
2436
2437 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2438 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2439 CTLTYPE_INT, "somaxkva",
2440 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2441 "used for socket buffers"),
2442 sysctl_kern_somaxkva, 0, NULL, 0,
2443 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2444
2445 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2446 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2447 CTLTYPE_INT, "sbmax",
2448 SYSCTL_DESCR("Maximum socket buffer size"),
2449 sysctl_kern_sbmax, 0, NULL, 0,
2450 CTL_KERN, KERN_SBMAX, CTL_EOL);
2451 }
2452