uipc_socket.c revision 1.215.4.2 1 /* $NetBSD: uipc_socket.c,v 1.215.4.2 2013/08/28 23:59:35 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 /*
66 * Socket operation routines.
67 *
68 * These routines are called by the routines in sys_socket.c or from a
69 * system process, and implement the semantics of socket operations by
70 * switching out to the protocol specific routines.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.215.4.2 2013/08/28 23:59:35 rmind Exp $");
75
76 #include "opt_compat_netbsd.h"
77 #include "opt_sock_counters.h"
78 #include "opt_sosend_loan.h"
79 #include "opt_mbuftrace.h"
80 #include "opt_somaxkva.h"
81 #include "opt_multiprocessor.h" /* XXX */
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/proc.h>
86 #include <sys/file.h>
87 #include <sys/filedesc.h>
88 #include <sys/kmem.h>
89 #include <sys/mbuf.h>
90 #include <sys/domain.h>
91 #include <sys/kernel.h>
92 #include <sys/protosw.h>
93 #include <sys/socket.h>
94 #include <sys/socketvar.h>
95 #include <sys/signalvar.h>
96 #include <sys/resourcevar.h>
97 #include <sys/uidinfo.h>
98 #include <sys/event.h>
99 #include <sys/poll.h>
100 #include <sys/kauth.h>
101 #include <sys/mutex.h>
102 #include <sys/condvar.h>
103 #include <sys/kthread.h>
104
105 #ifdef COMPAT_50
106 #include <compat/sys/time.h>
107 #include <compat/sys/socket.h>
108 #endif
109
110 #include <uvm/uvm_extern.h>
111 #include <uvm/uvm_loan.h>
112 #include <uvm/uvm_page.h>
113
114 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
115
116 extern const struct fileops socketops;
117
118 extern int somaxconn; /* patchable (XXX sysctl) */
119 int somaxconn = SOMAXCONN;
120 kmutex_t *softnet_lock;
121
122 #ifdef SOSEND_COUNTERS
123 #include <sys/device.h>
124
125 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
126 NULL, "sosend", "loan big");
127 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
128 NULL, "sosend", "copy big");
129 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
130 NULL, "sosend", "copy small");
131 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
132 NULL, "sosend", "kva limit");
133
134 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
135
136 EVCNT_ATTACH_STATIC(sosend_loan_big);
137 EVCNT_ATTACH_STATIC(sosend_copy_big);
138 EVCNT_ATTACH_STATIC(sosend_copy_small);
139 EVCNT_ATTACH_STATIC(sosend_kvalimit);
140 #else
141
142 #define SOSEND_COUNTER_INCR(ev) /* nothing */
143
144 #endif /* SOSEND_COUNTERS */
145
146 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
147 int sock_loan_thresh = -1;
148 #else
149 int sock_loan_thresh = 4096;
150 #endif
151
152 static kmutex_t so_pendfree_lock;
153 static struct mbuf *so_pendfree = NULL;
154
155 #ifndef SOMAXKVA
156 #define SOMAXKVA (16 * 1024 * 1024)
157 #endif
158 int somaxkva = SOMAXKVA;
159 static int socurkva;
160 static kcondvar_t socurkva_cv;
161
162 static kauth_listener_t socket_listener;
163
164 #define SOCK_LOAN_CHUNK 65536
165
166 static void sopendfree_thread(void *);
167 static kcondvar_t pendfree_thread_cv;
168 static lwp_t *sopendfree_lwp;
169
170 static void sysctl_kern_socket_setup(void);
171 static struct sysctllog *socket_sysctllog;
172
173 static vsize_t
174 sokvareserve(struct socket *so, vsize_t len)
175 {
176 int error;
177
178 mutex_enter(&so_pendfree_lock);
179 while (socurkva + len > somaxkva) {
180 SOSEND_COUNTER_INCR(&sosend_kvalimit);
181 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
182 if (error) {
183 len = 0;
184 break;
185 }
186 }
187 socurkva += len;
188 mutex_exit(&so_pendfree_lock);
189 return len;
190 }
191
192 static void
193 sokvaunreserve(vsize_t len)
194 {
195
196 mutex_enter(&so_pendfree_lock);
197 socurkva -= len;
198 cv_broadcast(&socurkva_cv);
199 mutex_exit(&so_pendfree_lock);
200 }
201
202 /*
203 * sokvaalloc: allocate kva for loan.
204 */
205
206 vaddr_t
207 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
208 {
209 vaddr_t lva;
210
211 /*
212 * reserve kva.
213 */
214
215 if (sokvareserve(so, len) == 0)
216 return 0;
217
218 /*
219 * allocate kva.
220 */
221
222 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
223 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
224 if (lva == 0) {
225 sokvaunreserve(len);
226 return (0);
227 }
228
229 return lva;
230 }
231
232 /*
233 * sokvafree: free kva for loan.
234 */
235
236 void
237 sokvafree(vaddr_t sva, vsize_t len)
238 {
239
240 /*
241 * free kva.
242 */
243
244 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
245
246 /*
247 * unreserve kva.
248 */
249
250 sokvaunreserve(len);
251 }
252
253 static void
254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
255 {
256 vaddr_t sva, eva;
257 vsize_t len;
258 int npgs;
259
260 KASSERT(pgs != NULL);
261
262 eva = round_page((vaddr_t) buf + size);
263 sva = trunc_page((vaddr_t) buf);
264 len = eva - sva;
265 npgs = len >> PAGE_SHIFT;
266
267 pmap_kremove(sva, len);
268 pmap_update(pmap_kernel());
269 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
270 sokvafree(sva, len);
271 }
272
273 /*
274 * sopendfree_thread: free mbufs on "pendfree" list.
275 * unlock and relock so_pendfree_lock when freeing mbufs.
276 */
277
278 static void
279 sopendfree_thread(void *v)
280 {
281 struct mbuf *m, *next;
282 size_t rv;
283
284 mutex_enter(&so_pendfree_lock);
285
286 for (;;) {
287 rv = 0;
288 while (so_pendfree != NULL) {
289 m = so_pendfree;
290 so_pendfree = NULL;
291 mutex_exit(&so_pendfree_lock);
292
293 for (; m != NULL; m = next) {
294 next = m->m_next;
295 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
296 KASSERT(m->m_ext.ext_refcnt == 0);
297
298 rv += m->m_ext.ext_size;
299 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
300 m->m_ext.ext_size);
301 pool_cache_put(mb_cache, m);
302 }
303
304 mutex_enter(&so_pendfree_lock);
305 }
306 if (rv)
307 cv_broadcast(&socurkva_cv);
308 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
309 }
310 panic("sopendfree_thread");
311 /* NOTREACHED */
312 }
313
314 void
315 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
316 {
317
318 KASSERT(m != NULL);
319
320 /*
321 * postpone freeing mbuf.
322 *
323 * we can't do it in interrupt context
324 * because we need to put kva back to kernel_map.
325 */
326
327 mutex_enter(&so_pendfree_lock);
328 m->m_next = so_pendfree;
329 so_pendfree = m;
330 cv_signal(&pendfree_thread_cv);
331 mutex_exit(&so_pendfree_lock);
332 }
333
334 static long
335 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
336 {
337 struct iovec *iov = uio->uio_iov;
338 vaddr_t sva, eva;
339 vsize_t len;
340 vaddr_t lva;
341 int npgs, error;
342 vaddr_t va;
343 int i;
344
345 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
346 return (0);
347
348 if (iov->iov_len < (size_t) space)
349 space = iov->iov_len;
350 if (space > SOCK_LOAN_CHUNK)
351 space = SOCK_LOAN_CHUNK;
352
353 eva = round_page((vaddr_t) iov->iov_base + space);
354 sva = trunc_page((vaddr_t) iov->iov_base);
355 len = eva - sva;
356 npgs = len >> PAGE_SHIFT;
357
358 KASSERT(npgs <= M_EXT_MAXPAGES);
359
360 lva = sokvaalloc(sva, len, so);
361 if (lva == 0)
362 return 0;
363
364 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
365 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
366 if (error) {
367 sokvafree(lva, len);
368 return (0);
369 }
370
371 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
372 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
373 VM_PROT_READ, 0);
374 pmap_update(pmap_kernel());
375
376 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
377
378 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
379 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
380
381 uio->uio_resid -= space;
382 /* uio_offset not updated, not set/used for write(2) */
383 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
384 uio->uio_iov->iov_len -= space;
385 if (uio->uio_iov->iov_len == 0) {
386 uio->uio_iov++;
387 uio->uio_iovcnt--;
388 }
389
390 return (space);
391 }
392
393 struct mbuf *
394 getsombuf(struct socket *so, int type)
395 {
396 struct mbuf *m;
397
398 m = m_get(M_WAIT, type);
399 MCLAIM(m, so->so_mowner);
400 return m;
401 }
402
403 static int
404 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
405 void *arg0, void *arg1, void *arg2, void *arg3)
406 {
407 int result;
408 enum kauth_network_req req;
409
410 result = KAUTH_RESULT_DEFER;
411 req = (enum kauth_network_req)arg0;
412
413 if ((action != KAUTH_NETWORK_SOCKET) &&
414 (action != KAUTH_NETWORK_BIND))
415 return result;
416
417 switch (req) {
418 case KAUTH_REQ_NETWORK_BIND_PORT:
419 result = KAUTH_RESULT_ALLOW;
420 break;
421
422 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
423 /* Normal users can only drop their own connections. */
424 struct socket *so = (struct socket *)arg1;
425
426 if (proc_uidmatch(cred, so->so_cred) == 0)
427 result = KAUTH_RESULT_ALLOW;
428
429 break;
430 }
431
432 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
433 /* We allow "raw" routing/bluetooth sockets to anyone. */
434 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
435 || (u_long)arg1 == PF_BLUETOOTH) {
436 result = KAUTH_RESULT_ALLOW;
437 } else {
438 /* Privileged, let secmodel handle this. */
439 if ((u_long)arg2 == SOCK_RAW)
440 break;
441 }
442
443 result = KAUTH_RESULT_ALLOW;
444
445 break;
446
447 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
448 result = KAUTH_RESULT_ALLOW;
449
450 break;
451
452 default:
453 break;
454 }
455
456 return result;
457 }
458
459 void
460 soinit(void)
461 {
462
463 sysctl_kern_socket_setup();
464
465 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
466 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
467 cv_init(&socurkva_cv, "sokva");
468 cv_init(&pendfree_thread_cv, "sopendfr");
469 soinit2();
470
471 /* Set the initial adjusted socket buffer size. */
472 if (sb_max_set(sb_max))
473 panic("bad initial sb_max value: %lu", sb_max);
474
475 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
476 socket_listener_cb, NULL);
477 }
478
479 void
480 soinit1(void)
481 {
482 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
483 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
484 if (error)
485 panic("soinit1 %d", error);
486 }
487
488 /*
489 * socreate: create a new socket of the specified type and the protocol.
490 *
491 * => Caller may specify another socket for lock sharing (must not be held).
492 * => Returns the new socket without lock held.
493 */
494 int
495 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
496 struct socket *lockso)
497 {
498 const struct protosw *prp;
499 struct socket *so;
500 uid_t uid;
501 int error;
502 kmutex_t *lock;
503
504 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
505 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
506 KAUTH_ARG(proto));
507 if (error != 0)
508 return error;
509
510 if (proto)
511 prp = pffindproto(dom, proto, type);
512 else
513 prp = pffindtype(dom, type);
514 if (prp == NULL) {
515 /* no support for domain */
516 if (pffinddomain(dom) == 0)
517 return EAFNOSUPPORT;
518 /* no support for socket type */
519 if (proto == 0 && type != 0)
520 return EPROTOTYPE;
521 return EPROTONOSUPPORT;
522 }
523 if (prp->pr_usrreqs == NULL)
524 return EPROTONOSUPPORT;
525 if (prp->pr_type != type)
526 return EPROTOTYPE;
527
528 so = soget(true);
529 so->so_type = type;
530 so->so_proto = prp;
531 so->so_send = sosend;
532 so->so_receive = soreceive;
533 #ifdef MBUFTRACE
534 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
535 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
536 so->so_mowner = &prp->pr_domain->dom_mowner;
537 #endif
538 uid = kauth_cred_geteuid(l->l_cred);
539 so->so_uidinfo = uid_find(uid);
540 so->so_cpid = l->l_proc->p_pid;
541
542 /*
543 * Lock assigned and taken during pr_attach, unless we share
544 * the lock with another socket, e.g. socketpair(2) case.
545 */
546 if (lockso) {
547 lock = lockso->so_lock;
548 so->so_lock = lock;
549 mutex_obj_hold(lock);
550 }
551
552 error = (*prp->pr_usrreqs->pr_attach)(so, proto);
553 if (error) {
554 solock(so);
555 KASSERT(so->so_pcb == NULL);
556 so->so_state |= SS_NOFDREF;
557 sofree(so);
558 return error;
559 }
560 so->so_cred = kauth_cred_dup(l->l_cred);
561
562 *aso = so;
563 return 0;
564 }
565
566 /*
567 * fsocreate: create a socket and a file descriptor associated with it.
568 *
569 * => On success, write file descriptor to fdout and return zero.
570 * => On failure, return non-zero; *fdout will be undefined.
571 */
572 int
573 fsocreate(int domain, struct socket **sop, int type, int protocol, int *fdout)
574 {
575 lwp_t *l = curlwp;
576 int error, fd, flags;
577 struct socket *so;
578 struct file *fp;
579
580 if ((error = fd_allocfile(&fp, &fd)) != 0) {
581 return error;
582 }
583
584 flags = type & SOCK_FLAGS_MASK;
585 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
586 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
587 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
588 fp->f_type = DTYPE_SOCKET;
589 fp->f_ops = &socketops;
590
591 type &= ~SOCK_FLAGS_MASK;
592 error = socreate(domain, &so, type, protocol, l, NULL);
593 if (error != 0) {
594 fd_abort(curproc, fp, fd);
595 return error;
596 }
597 if (flags & SOCK_NONBLOCK) {
598 so->so_state |= SS_NBIO;
599 }
600
601 fp->f_data = so;
602 fd_affix(curproc, fp, fd);
603 if (sop != NULL) {
604 *sop = so;
605 }
606 *fdout = fd;
607 return error;
608 }
609
610 int
611 sofamily(const struct socket *so)
612 {
613 const struct protosw *pr;
614 const struct domain *dom;
615
616 if ((pr = so->so_proto) == NULL)
617 return AF_UNSPEC;
618 if ((dom = pr->pr_domain) == NULL)
619 return AF_UNSPEC;
620 return dom->dom_family;
621 }
622
623 int
624 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
625 {
626 int error;
627
628 solock(so);
629 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
630 PRU_BIND, NULL, nam, NULL, l);
631 sounlock(so);
632 return error;
633 }
634
635 int
636 solisten(struct socket *so, int backlog, struct lwp *l)
637 {
638 int error;
639
640 solock(so);
641 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
642 SS_ISDISCONNECTING)) != 0) {
643 sounlock(so);
644 return (EINVAL);
645 }
646 error = (*so->so_proto->pr_usrreqs->pr_generic)(so, PRU_LISTEN, NULL,
647 NULL, NULL, l);
648 if (error != 0) {
649 sounlock(so);
650 return error;
651 }
652 if (TAILQ_EMPTY(&so->so_q))
653 so->so_options |= SO_ACCEPTCONN;
654 if (backlog < 0)
655 backlog = 0;
656 so->so_qlimit = min(backlog, somaxconn);
657 sounlock(so);
658 return 0;
659 }
660
661 void
662 sofree(struct socket *so)
663 {
664 u_int refs;
665
666 KASSERT(solocked(so));
667
668 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
669 sounlock(so);
670 return;
671 }
672 if (so->so_head) {
673 /*
674 * We must not decommission a socket that's on the accept(2)
675 * queue. If we do, then accept(2) may hang after select(2)
676 * indicated that the listening socket was ready.
677 */
678 if (!soqremque(so, 0)) {
679 sounlock(so);
680 return;
681 }
682 }
683 if (so->so_rcv.sb_hiwat)
684 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
685 RLIM_INFINITY);
686 if (so->so_snd.sb_hiwat)
687 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
688 RLIM_INFINITY);
689 sbrelease(&so->so_snd, so);
690 KASSERT(!cv_has_waiters(&so->so_cv));
691 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
692 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
693 sorflush(so);
694 refs = so->so_aborting; /* XXX */
695 /* Remove acccept filter if one is present. */
696 if (so->so_accf != NULL)
697 (void)accept_filt_clear(so);
698 sounlock(so);
699 if (refs == 0) /* XXX */
700 soput(so);
701 }
702
703 /*
704 * soclose: close a socket on last file table reference removal.
705 * Initiate disconnect if connected. Free socket when disconnect complete.
706 */
707 int
708 soclose(struct socket *so)
709 {
710 struct socket *so2;
711 int error;
712
713 error = 0;
714 solock(so);
715 if (so->so_options & SO_ACCEPTCONN) {
716 for (;;) {
717 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
718 KASSERT(solocked2(so, so2));
719 (void) soqremque(so2, 0);
720 /* soabort drops the lock. */
721 (void) soabort(so2);
722 solock(so);
723 continue;
724 }
725 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
726 KASSERT(solocked2(so, so2));
727 (void) soqremque(so2, 1);
728 /* soabort drops the lock. */
729 (void) soabort(so2);
730 solock(so);
731 continue;
732 }
733 break;
734 }
735 }
736 if (so->so_pcb == NULL)
737 goto discard;
738 if (so->so_state & SS_ISCONNECTED) {
739 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
740 error = sodisconnect(so);
741 if (error)
742 goto drop;
743 }
744 if (so->so_options & SO_LINGER) {
745 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
746 (SS_ISDISCONNECTING|SS_NBIO))
747 goto drop;
748 while (so->so_state & SS_ISCONNECTED) {
749 error = sowait(so, true, so->so_linger * hz);
750 if (error)
751 break;
752 }
753 }
754 }
755 drop:
756 if (so->so_pcb) {
757 (*so->so_proto->pr_usrreqs->pr_detach)(so);
758 }
759 discard:
760 KASSERT((so->so_state & SS_NOFDREF) == 0);
761 kauth_cred_free(so->so_cred);
762 so->so_state |= SS_NOFDREF;
763 sofree(so);
764 return error;
765 }
766
767 /*
768 * Must be called with the socket locked.. Will return with it unlocked.
769 */
770 int
771 soabort(struct socket *so)
772 {
773 u_int refs;
774 int error;
775
776 KASSERT(solocked(so));
777 KASSERT(so->so_head == NULL);
778
779 so->so_aborting++; /* XXX */
780 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
781 PRU_ABORT, NULL, NULL, NULL, NULL);
782 refs = --so->so_aborting; /* XXX */
783 if (error || (refs == 0)) {
784 sofree(so);
785 } else {
786 sounlock(so);
787 }
788 return error;
789 }
790
791 int
792 soaccept(struct socket *so, struct mbuf *nam)
793 {
794 int error;
795
796 KASSERT(solocked(so));
797
798 error = 0;
799 KASSERT((so->so_state & SS_NOFDREF) != 0);
800 so->so_state &= ~SS_NOFDREF;
801
802 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
803 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
804 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
805 PRU_ACCEPT, NULL, nam, NULL, NULL);
806 else
807 error = ECONNABORTED;
808
809 return (error);
810 }
811
812 int
813 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
814 {
815 int error;
816
817 KASSERT(solocked(so));
818
819 if (so->so_options & SO_ACCEPTCONN)
820 return (EOPNOTSUPP);
821 /*
822 * If protocol is connection-based, can only connect once.
823 * Otherwise, if connected, try to disconnect first.
824 * This allows user to disconnect by connecting to, e.g.,
825 * a null address.
826 */
827 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
828 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
829 (error = sodisconnect(so))))
830 error = EISCONN;
831 else
832 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
833 PRU_CONNECT, NULL, nam, NULL, l);
834
835 return error;
836 }
837
838 int
839 soconnect2(struct socket *so1, struct socket *so2)
840 {
841 int error;
842
843 KASSERT(solocked2(so1, so2));
844
845 error = (*so1->so_proto->pr_usrreqs->pr_generic)(so1, PRU_CONNECT2,
846 NULL, (struct mbuf *)so2, NULL, NULL);
847 return (error);
848 }
849
850 int
851 sodisconnect(struct socket *so)
852 {
853 int error;
854
855 KASSERT(solocked(so));
856
857 if ((so->so_state & SS_ISCONNECTED) == 0) {
858 error = ENOTCONN;
859 } else if (so->so_state & SS_ISDISCONNECTING) {
860 error = EALREADY;
861 } else {
862 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
863 PRU_DISCONNECT, NULL, NULL, NULL, NULL);
864 }
865 return (error);
866 }
867
868 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
869 /*
870 * Send on a socket.
871 * If send must go all at once and message is larger than
872 * send buffering, then hard error.
873 * Lock against other senders.
874 * If must go all at once and not enough room now, then
875 * inform user that this would block and do nothing.
876 * Otherwise, if nonblocking, send as much as possible.
877 * The data to be sent is described by "uio" if nonzero,
878 * otherwise by the mbuf chain "top" (which must be null
879 * if uio is not). Data provided in mbuf chain must be small
880 * enough to send all at once.
881 *
882 * Returns nonzero on error, timeout or signal; callers
883 * must check for short counts if EINTR/ERESTART are returned.
884 * Data and control buffers are freed on return.
885 */
886 int
887 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
888 struct mbuf *control, int flags, struct lwp *l)
889 {
890 struct mbuf **mp, *m;
891 long space, len, resid, clen, mlen;
892 int error, s, dontroute, atomic;
893 short wakeup_state = 0;
894
895 clen = 0;
896
897 /*
898 * solock() provides atomicity of access. splsoftnet() prevents
899 * protocol processing soft interrupts from interrupting us and
900 * blocking (expensive).
901 */
902 s = splsoftnet();
903 solock(so);
904 atomic = sosendallatonce(so) || top;
905 if (uio)
906 resid = uio->uio_resid;
907 else
908 resid = top->m_pkthdr.len;
909 /*
910 * In theory resid should be unsigned.
911 * However, space must be signed, as it might be less than 0
912 * if we over-committed, and we must use a signed comparison
913 * of space and resid. On the other hand, a negative resid
914 * causes us to loop sending 0-length segments to the protocol.
915 */
916 if (resid < 0) {
917 error = EINVAL;
918 goto out;
919 }
920 dontroute =
921 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
922 (so->so_proto->pr_flags & PR_ATOMIC);
923 l->l_ru.ru_msgsnd++;
924 if (control)
925 clen = control->m_len;
926 restart:
927 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
928 goto out;
929 do {
930 if (so->so_state & SS_CANTSENDMORE) {
931 error = EPIPE;
932 goto release;
933 }
934 if (so->so_error) {
935 error = so->so_error;
936 so->so_error = 0;
937 goto release;
938 }
939 if ((so->so_state & SS_ISCONNECTED) == 0) {
940 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
941 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
942 !(resid == 0 && clen != 0)) {
943 error = ENOTCONN;
944 goto release;
945 }
946 } else if (addr == 0) {
947 error = EDESTADDRREQ;
948 goto release;
949 }
950 }
951 space = sbspace(&so->so_snd);
952 if (flags & MSG_OOB)
953 space += 1024;
954 if ((atomic && resid > so->so_snd.sb_hiwat) ||
955 clen > so->so_snd.sb_hiwat) {
956 error = EMSGSIZE;
957 goto release;
958 }
959 if (space < resid + clen &&
960 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
961 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
962 error = EWOULDBLOCK;
963 goto release;
964 }
965 sbunlock(&so->so_snd);
966 if (wakeup_state & SS_RESTARTSYS) {
967 error = ERESTART;
968 goto out;
969 }
970 error = sbwait(&so->so_snd);
971 if (error)
972 goto out;
973 wakeup_state = so->so_state;
974 goto restart;
975 }
976 wakeup_state = 0;
977 mp = ⊤
978 space -= clen;
979 do {
980 if (uio == NULL) {
981 /*
982 * Data is prepackaged in "top".
983 */
984 resid = 0;
985 if (flags & MSG_EOR)
986 top->m_flags |= M_EOR;
987 } else do {
988 sounlock(so);
989 splx(s);
990 if (top == NULL) {
991 m = m_gethdr(M_WAIT, MT_DATA);
992 mlen = MHLEN;
993 m->m_pkthdr.len = 0;
994 m->m_pkthdr.rcvif = NULL;
995 } else {
996 m = m_get(M_WAIT, MT_DATA);
997 mlen = MLEN;
998 }
999 MCLAIM(m, so->so_snd.sb_mowner);
1000 if (sock_loan_thresh >= 0 &&
1001 uio->uio_iov->iov_len >= sock_loan_thresh &&
1002 space >= sock_loan_thresh &&
1003 (len = sosend_loan(so, uio, m,
1004 space)) != 0) {
1005 SOSEND_COUNTER_INCR(&sosend_loan_big);
1006 space -= len;
1007 goto have_data;
1008 }
1009 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1010 SOSEND_COUNTER_INCR(&sosend_copy_big);
1011 m_clget(m, M_DONTWAIT);
1012 if ((m->m_flags & M_EXT) == 0)
1013 goto nopages;
1014 mlen = MCLBYTES;
1015 if (atomic && top == 0) {
1016 len = lmin(MCLBYTES - max_hdr,
1017 resid);
1018 m->m_data += max_hdr;
1019 } else
1020 len = lmin(MCLBYTES, resid);
1021 space -= len;
1022 } else {
1023 nopages:
1024 SOSEND_COUNTER_INCR(&sosend_copy_small);
1025 len = lmin(lmin(mlen, resid), space);
1026 space -= len;
1027 /*
1028 * For datagram protocols, leave room
1029 * for protocol headers in first mbuf.
1030 */
1031 if (atomic && top == 0 && len < mlen)
1032 MH_ALIGN(m, len);
1033 }
1034 error = uiomove(mtod(m, void *), (int)len, uio);
1035 have_data:
1036 resid = uio->uio_resid;
1037 m->m_len = len;
1038 *mp = m;
1039 top->m_pkthdr.len += len;
1040 s = splsoftnet();
1041 solock(so);
1042 if (error != 0)
1043 goto release;
1044 mp = &m->m_next;
1045 if (resid <= 0) {
1046 if (flags & MSG_EOR)
1047 top->m_flags |= M_EOR;
1048 break;
1049 }
1050 } while (space > 0 && atomic);
1051
1052 if (so->so_state & SS_CANTSENDMORE) {
1053 error = EPIPE;
1054 goto release;
1055 }
1056 if (dontroute)
1057 so->so_options |= SO_DONTROUTE;
1058 if (resid > 0)
1059 so->so_state |= SS_MORETOCOME;
1060 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
1061 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
1062 top, addr, control, curlwp);
1063 if (dontroute)
1064 so->so_options &= ~SO_DONTROUTE;
1065 if (resid > 0)
1066 so->so_state &= ~SS_MORETOCOME;
1067 clen = 0;
1068 control = NULL;
1069 top = NULL;
1070 mp = ⊤
1071 if (error != 0)
1072 goto release;
1073 } while (resid && space > 0);
1074 } while (resid);
1075
1076 release:
1077 sbunlock(&so->so_snd);
1078 out:
1079 sounlock(so);
1080 splx(s);
1081 if (top)
1082 m_freem(top);
1083 if (control)
1084 m_freem(control);
1085 return (error);
1086 }
1087
1088 /*
1089 * Following replacement or removal of the first mbuf on the first
1090 * mbuf chain of a socket buffer, push necessary state changes back
1091 * into the socket buffer so that other consumers see the values
1092 * consistently. 'nextrecord' is the callers locally stored value of
1093 * the original value of sb->sb_mb->m_nextpkt which must be restored
1094 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1095 */
1096 static void
1097 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1098 {
1099
1100 KASSERT(solocked(sb->sb_so));
1101
1102 /*
1103 * First, update for the new value of nextrecord. If necessary,
1104 * make it the first record.
1105 */
1106 if (sb->sb_mb != NULL)
1107 sb->sb_mb->m_nextpkt = nextrecord;
1108 else
1109 sb->sb_mb = nextrecord;
1110
1111 /*
1112 * Now update any dependent socket buffer fields to reflect
1113 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1114 * the addition of a second clause that takes care of the
1115 * case where sb_mb has been updated, but remains the last
1116 * record.
1117 */
1118 if (sb->sb_mb == NULL) {
1119 sb->sb_mbtail = NULL;
1120 sb->sb_lastrecord = NULL;
1121 } else if (sb->sb_mb->m_nextpkt == NULL)
1122 sb->sb_lastrecord = sb->sb_mb;
1123 }
1124
1125 /*
1126 * Implement receive operations on a socket.
1127 * We depend on the way that records are added to the sockbuf
1128 * by sbappend*. In particular, each record (mbufs linked through m_next)
1129 * must begin with an address if the protocol so specifies,
1130 * followed by an optional mbuf or mbufs containing ancillary data,
1131 * and then zero or more mbufs of data.
1132 * In order to avoid blocking network interrupts for the entire time here,
1133 * we splx() while doing the actual copy to user space.
1134 * Although the sockbuf is locked, new data may still be appended,
1135 * and thus we must maintain consistency of the sockbuf during that time.
1136 *
1137 * The caller may receive the data as a single mbuf chain by supplying
1138 * an mbuf **mp0 for use in returning the chain. The uio is then used
1139 * only for the count in uio_resid.
1140 */
1141 int
1142 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1143 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1144 {
1145 struct lwp *l = curlwp;
1146 struct mbuf *m, **mp, *mt;
1147 size_t len, offset, moff, orig_resid;
1148 int atomic, flags, error, s, type;
1149 const struct protosw *pr;
1150 struct mbuf *nextrecord;
1151 int mbuf_removed = 0;
1152 const struct domain *dom;
1153 short wakeup_state = 0;
1154
1155 pr = so->so_proto;
1156 atomic = pr->pr_flags & PR_ATOMIC;
1157 dom = pr->pr_domain;
1158 mp = mp0;
1159 type = 0;
1160 orig_resid = uio->uio_resid;
1161
1162 if (paddr != NULL)
1163 *paddr = NULL;
1164 if (controlp != NULL)
1165 *controlp = NULL;
1166 if (flagsp != NULL)
1167 flags = *flagsp &~ MSG_EOR;
1168 else
1169 flags = 0;
1170
1171 if (flags & MSG_OOB) {
1172 m = m_get(M_WAIT, MT_DATA);
1173 solock(so);
1174 error = (*pr->pr_usrreqs->pr_generic)(so, PRU_RCVOOB, m,
1175 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1176 sounlock(so);
1177 if (error)
1178 goto bad;
1179 do {
1180 error = uiomove(mtod(m, void *),
1181 MIN(uio->uio_resid, m->m_len), uio);
1182 m = m_free(m);
1183 } while (uio->uio_resid > 0 && error == 0 && m);
1184 bad:
1185 if (m != NULL)
1186 m_freem(m);
1187 return error;
1188 }
1189 if (mp != NULL)
1190 *mp = NULL;
1191
1192 /*
1193 * solock() provides atomicity of access. splsoftnet() prevents
1194 * protocol processing soft interrupts from interrupting us and
1195 * blocking (expensive).
1196 */
1197 s = splsoftnet();
1198 solock(so);
1199 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1200 (*pr->pr_usrreqs->pr_generic)(so, PRU_RCVD, NULL, NULL, NULL, l);
1201
1202 restart:
1203 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1204 sounlock(so);
1205 splx(s);
1206 return error;
1207 }
1208
1209 m = so->so_rcv.sb_mb;
1210 /*
1211 * If we have less data than requested, block awaiting more
1212 * (subject to any timeout) if:
1213 * 1. the current count is less than the low water mark,
1214 * 2. MSG_WAITALL is set, and it is possible to do the entire
1215 * receive operation at once if we block (resid <= hiwat), or
1216 * 3. MSG_DONTWAIT is not set.
1217 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1218 * we have to do the receive in sections, and thus risk returning
1219 * a short count if a timeout or signal occurs after we start.
1220 */
1221 if (m == NULL ||
1222 ((flags & MSG_DONTWAIT) == 0 &&
1223 so->so_rcv.sb_cc < uio->uio_resid &&
1224 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1225 ((flags & MSG_WAITALL) &&
1226 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1227 m->m_nextpkt == NULL && !atomic)) {
1228 #ifdef DIAGNOSTIC
1229 if (m == NULL && so->so_rcv.sb_cc)
1230 panic("receive 1");
1231 #endif
1232 if (so->so_error) {
1233 if (m != NULL)
1234 goto dontblock;
1235 error = so->so_error;
1236 if ((flags & MSG_PEEK) == 0)
1237 so->so_error = 0;
1238 goto release;
1239 }
1240 if (so->so_state & SS_CANTRCVMORE) {
1241 if (m != NULL)
1242 goto dontblock;
1243 else
1244 goto release;
1245 }
1246 for (; m != NULL; m = m->m_next)
1247 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1248 m = so->so_rcv.sb_mb;
1249 goto dontblock;
1250 }
1251 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1252 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1253 error = ENOTCONN;
1254 goto release;
1255 }
1256 if (uio->uio_resid == 0)
1257 goto release;
1258 if ((so->so_state & SS_NBIO) ||
1259 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1260 error = EWOULDBLOCK;
1261 goto release;
1262 }
1263 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1264 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1265 sbunlock(&so->so_rcv);
1266 if (wakeup_state & SS_RESTARTSYS)
1267 error = ERESTART;
1268 else
1269 error = sbwait(&so->so_rcv);
1270 if (error != 0) {
1271 sounlock(so);
1272 splx(s);
1273 return error;
1274 }
1275 wakeup_state = so->so_state;
1276 goto restart;
1277 }
1278 dontblock:
1279 /*
1280 * On entry here, m points to the first record of the socket buffer.
1281 * From this point onward, we maintain 'nextrecord' as a cache of the
1282 * pointer to the next record in the socket buffer. We must keep the
1283 * various socket buffer pointers and local stack versions of the
1284 * pointers in sync, pushing out modifications before dropping the
1285 * socket lock, and re-reading them when picking it up.
1286 *
1287 * Otherwise, we will race with the network stack appending new data
1288 * or records onto the socket buffer by using inconsistent/stale
1289 * versions of the field, possibly resulting in socket buffer
1290 * corruption.
1291 *
1292 * By holding the high-level sblock(), we prevent simultaneous
1293 * readers from pulling off the front of the socket buffer.
1294 */
1295 if (l != NULL)
1296 l->l_ru.ru_msgrcv++;
1297 KASSERT(m == so->so_rcv.sb_mb);
1298 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1299 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1300 nextrecord = m->m_nextpkt;
1301 if (pr->pr_flags & PR_ADDR) {
1302 #ifdef DIAGNOSTIC
1303 if (m->m_type != MT_SONAME)
1304 panic("receive 1a");
1305 #endif
1306 orig_resid = 0;
1307 if (flags & MSG_PEEK) {
1308 if (paddr)
1309 *paddr = m_copy(m, 0, m->m_len);
1310 m = m->m_next;
1311 } else {
1312 sbfree(&so->so_rcv, m);
1313 mbuf_removed = 1;
1314 if (paddr != NULL) {
1315 *paddr = m;
1316 so->so_rcv.sb_mb = m->m_next;
1317 m->m_next = NULL;
1318 m = so->so_rcv.sb_mb;
1319 } else {
1320 MFREE(m, so->so_rcv.sb_mb);
1321 m = so->so_rcv.sb_mb;
1322 }
1323 sbsync(&so->so_rcv, nextrecord);
1324 }
1325 }
1326
1327 /*
1328 * Process one or more MT_CONTROL mbufs present before any data mbufs
1329 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1330 * just copy the data; if !MSG_PEEK, we call into the protocol to
1331 * perform externalization (or freeing if controlp == NULL).
1332 */
1333 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1334 struct mbuf *cm = NULL, *cmn;
1335 struct mbuf **cme = &cm;
1336
1337 do {
1338 if (flags & MSG_PEEK) {
1339 if (controlp != NULL) {
1340 *controlp = m_copy(m, 0, m->m_len);
1341 controlp = &(*controlp)->m_next;
1342 }
1343 m = m->m_next;
1344 } else {
1345 sbfree(&so->so_rcv, m);
1346 so->so_rcv.sb_mb = m->m_next;
1347 m->m_next = NULL;
1348 *cme = m;
1349 cme = &(*cme)->m_next;
1350 m = so->so_rcv.sb_mb;
1351 }
1352 } while (m != NULL && m->m_type == MT_CONTROL);
1353 if ((flags & MSG_PEEK) == 0)
1354 sbsync(&so->so_rcv, nextrecord);
1355 for (; cm != NULL; cm = cmn) {
1356 cmn = cm->m_next;
1357 cm->m_next = NULL;
1358 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1359 if (controlp != NULL) {
1360 if (dom->dom_externalize != NULL &&
1361 type == SCM_RIGHTS) {
1362 sounlock(so);
1363 splx(s);
1364 error = (*dom->dom_externalize)(cm, l,
1365 (flags & MSG_CMSG_CLOEXEC) ?
1366 O_CLOEXEC : 0);
1367 s = splsoftnet();
1368 solock(so);
1369 }
1370 *controlp = cm;
1371 while (*controlp != NULL)
1372 controlp = &(*controlp)->m_next;
1373 } else {
1374 /*
1375 * Dispose of any SCM_RIGHTS message that went
1376 * through the read path rather than recv.
1377 */
1378 if (dom->dom_dispose != NULL &&
1379 type == SCM_RIGHTS) {
1380 sounlock(so);
1381 (*dom->dom_dispose)(cm);
1382 solock(so);
1383 }
1384 m_freem(cm);
1385 }
1386 }
1387 if (m != NULL)
1388 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1389 else
1390 nextrecord = so->so_rcv.sb_mb;
1391 orig_resid = 0;
1392 }
1393
1394 /* If m is non-NULL, we have some data to read. */
1395 if (__predict_true(m != NULL)) {
1396 type = m->m_type;
1397 if (type == MT_OOBDATA)
1398 flags |= MSG_OOB;
1399 }
1400 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1401 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1402
1403 moff = 0;
1404 offset = 0;
1405 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1406 if (m->m_type == MT_OOBDATA) {
1407 if (type != MT_OOBDATA)
1408 break;
1409 } else if (type == MT_OOBDATA)
1410 break;
1411 #ifdef DIAGNOSTIC
1412 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1413 panic("receive 3");
1414 #endif
1415 so->so_state &= ~SS_RCVATMARK;
1416 wakeup_state = 0;
1417 len = uio->uio_resid;
1418 if (so->so_oobmark && len > so->so_oobmark - offset)
1419 len = so->so_oobmark - offset;
1420 if (len > m->m_len - moff)
1421 len = m->m_len - moff;
1422 /*
1423 * If mp is set, just pass back the mbufs.
1424 * Otherwise copy them out via the uio, then free.
1425 * Sockbuf must be consistent here (points to current mbuf,
1426 * it points to next record) when we drop priority;
1427 * we must note any additions to the sockbuf when we
1428 * block interrupts again.
1429 */
1430 if (mp == NULL) {
1431 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1432 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1433 sounlock(so);
1434 splx(s);
1435 error = uiomove(mtod(m, char *) + moff, len, uio);
1436 s = splsoftnet();
1437 solock(so);
1438 if (error != 0) {
1439 /*
1440 * If any part of the record has been removed
1441 * (such as the MT_SONAME mbuf, which will
1442 * happen when PR_ADDR, and thus also
1443 * PR_ATOMIC, is set), then drop the entire
1444 * record to maintain the atomicity of the
1445 * receive operation.
1446 *
1447 * This avoids a later panic("receive 1a")
1448 * when compiled with DIAGNOSTIC.
1449 */
1450 if (m && mbuf_removed && atomic)
1451 (void) sbdroprecord(&so->so_rcv);
1452
1453 goto release;
1454 }
1455 } else
1456 uio->uio_resid -= len;
1457 if (len == m->m_len - moff) {
1458 if (m->m_flags & M_EOR)
1459 flags |= MSG_EOR;
1460 if (flags & MSG_PEEK) {
1461 m = m->m_next;
1462 moff = 0;
1463 } else {
1464 nextrecord = m->m_nextpkt;
1465 sbfree(&so->so_rcv, m);
1466 if (mp) {
1467 *mp = m;
1468 mp = &m->m_next;
1469 so->so_rcv.sb_mb = m = m->m_next;
1470 *mp = NULL;
1471 } else {
1472 MFREE(m, so->so_rcv.sb_mb);
1473 m = so->so_rcv.sb_mb;
1474 }
1475 /*
1476 * If m != NULL, we also know that
1477 * so->so_rcv.sb_mb != NULL.
1478 */
1479 KASSERT(so->so_rcv.sb_mb == m);
1480 if (m) {
1481 m->m_nextpkt = nextrecord;
1482 if (nextrecord == NULL)
1483 so->so_rcv.sb_lastrecord = m;
1484 } else {
1485 so->so_rcv.sb_mb = nextrecord;
1486 SB_EMPTY_FIXUP(&so->so_rcv);
1487 }
1488 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1489 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1490 }
1491 } else if (flags & MSG_PEEK)
1492 moff += len;
1493 else {
1494 if (mp != NULL) {
1495 mt = m_copym(m, 0, len, M_NOWAIT);
1496 if (__predict_false(mt == NULL)) {
1497 sounlock(so);
1498 mt = m_copym(m, 0, len, M_WAIT);
1499 solock(so);
1500 }
1501 *mp = mt;
1502 }
1503 m->m_data += len;
1504 m->m_len -= len;
1505 so->so_rcv.sb_cc -= len;
1506 }
1507 if (so->so_oobmark) {
1508 if ((flags & MSG_PEEK) == 0) {
1509 so->so_oobmark -= len;
1510 if (so->so_oobmark == 0) {
1511 so->so_state |= SS_RCVATMARK;
1512 break;
1513 }
1514 } else {
1515 offset += len;
1516 if (offset == so->so_oobmark)
1517 break;
1518 }
1519 }
1520 if (flags & MSG_EOR)
1521 break;
1522 /*
1523 * If the MSG_WAITALL flag is set (for non-atomic socket),
1524 * we must not quit until "uio->uio_resid == 0" or an error
1525 * termination. If a signal/timeout occurs, return
1526 * with a short count but without error.
1527 * Keep sockbuf locked against other readers.
1528 */
1529 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1530 !sosendallatonce(so) && !nextrecord) {
1531 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1532 break;
1533 /*
1534 * If we are peeking and the socket receive buffer is
1535 * full, stop since we can't get more data to peek at.
1536 */
1537 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1538 break;
1539 /*
1540 * If we've drained the socket buffer, tell the
1541 * protocol in case it needs to do something to
1542 * get it filled again.
1543 */
1544 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1545 (*pr->pr_usrreqs->pr_generic)(so, PRU_RCVD,
1546 NULL, (struct mbuf *)(long)flags, NULL, l);
1547 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1548 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1549 if (wakeup_state & SS_RESTARTSYS)
1550 error = ERESTART;
1551 else
1552 error = sbwait(&so->so_rcv);
1553 if (error != 0) {
1554 sbunlock(&so->so_rcv);
1555 sounlock(so);
1556 splx(s);
1557 return 0;
1558 }
1559 if ((m = so->so_rcv.sb_mb) != NULL)
1560 nextrecord = m->m_nextpkt;
1561 wakeup_state = so->so_state;
1562 }
1563 }
1564
1565 if (m && atomic) {
1566 flags |= MSG_TRUNC;
1567 if ((flags & MSG_PEEK) == 0)
1568 (void) sbdroprecord(&so->so_rcv);
1569 }
1570 if ((flags & MSG_PEEK) == 0) {
1571 if (m == NULL) {
1572 /*
1573 * First part is an inline SB_EMPTY_FIXUP(). Second
1574 * part makes sure sb_lastrecord is up-to-date if
1575 * there is still data in the socket buffer.
1576 */
1577 so->so_rcv.sb_mb = nextrecord;
1578 if (so->so_rcv.sb_mb == NULL) {
1579 so->so_rcv.sb_mbtail = NULL;
1580 so->so_rcv.sb_lastrecord = NULL;
1581 } else if (nextrecord->m_nextpkt == NULL)
1582 so->so_rcv.sb_lastrecord = nextrecord;
1583 }
1584 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1585 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1586 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1587 (*pr->pr_usrreqs->pr_generic)(so, PRU_RCVD, NULL,
1588 (struct mbuf *)(long)flags, NULL, l);
1589 }
1590 if (orig_resid == uio->uio_resid && orig_resid &&
1591 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1592 sbunlock(&so->so_rcv);
1593 goto restart;
1594 }
1595
1596 if (flagsp != NULL)
1597 *flagsp |= flags;
1598 release:
1599 sbunlock(&so->so_rcv);
1600 sounlock(so);
1601 splx(s);
1602 return error;
1603 }
1604
1605 int
1606 soshutdown(struct socket *so, int how)
1607 {
1608 const struct protosw *pr;
1609 int error;
1610
1611 KASSERT(solocked(so));
1612
1613 pr = so->so_proto;
1614 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1615 return (EINVAL);
1616
1617 if (how == SHUT_RD || how == SHUT_RDWR) {
1618 sorflush(so);
1619 error = 0;
1620 }
1621 if (how == SHUT_WR || how == SHUT_RDWR)
1622 error = (*pr->pr_usrreqs->pr_generic)(so, PRU_SHUTDOWN, NULL,
1623 NULL, NULL, NULL);
1624
1625 return error;
1626 }
1627
1628 void
1629 sorestart(struct socket *so)
1630 {
1631 /*
1632 * An application has called close() on an fd on which another
1633 * of its threads has called a socket system call.
1634 * Mark this and wake everyone up, and code that would block again
1635 * instead returns ERESTART.
1636 * On system call re-entry the fd is validated and EBADF returned.
1637 * Any other fd will block again on the 2nd syscall.
1638 */
1639 solock(so);
1640 so->so_state |= SS_RESTARTSYS;
1641 cv_broadcast(&so->so_cv);
1642 cv_broadcast(&so->so_snd.sb_cv);
1643 cv_broadcast(&so->so_rcv.sb_cv);
1644 sounlock(so);
1645 }
1646
1647 void
1648 sorflush(struct socket *so)
1649 {
1650 struct sockbuf *sb, asb;
1651 const struct protosw *pr;
1652
1653 KASSERT(solocked(so));
1654
1655 sb = &so->so_rcv;
1656 pr = so->so_proto;
1657 socantrcvmore(so);
1658 sb->sb_flags |= SB_NOINTR;
1659 (void )sblock(sb, M_WAITOK);
1660 sbunlock(sb);
1661 asb = *sb;
1662 /*
1663 * Clear most of the sockbuf structure, but leave some of the
1664 * fields valid.
1665 */
1666 memset(&sb->sb_startzero, 0,
1667 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1668 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1669 sounlock(so);
1670 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1671 solock(so);
1672 }
1673 sbrelease(&asb, so);
1674 }
1675
1676 /*
1677 * internal set SOL_SOCKET options
1678 */
1679 static int
1680 sosetopt1(struct socket *so, const struct sockopt *sopt)
1681 {
1682 int error = EINVAL, optval, opt;
1683 struct linger l;
1684 struct timeval tv;
1685
1686 switch ((opt = sopt->sopt_name)) {
1687
1688 case SO_ACCEPTFILTER:
1689 error = accept_filt_setopt(so, sopt);
1690 KASSERT(solocked(so));
1691 break;
1692
1693 case SO_LINGER:
1694 error = sockopt_get(sopt, &l, sizeof(l));
1695 solock(so);
1696 if (error)
1697 break;
1698 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1699 l.l_linger > (INT_MAX / hz)) {
1700 error = EDOM;
1701 break;
1702 }
1703 so->so_linger = l.l_linger;
1704 if (l.l_onoff)
1705 so->so_options |= SO_LINGER;
1706 else
1707 so->so_options &= ~SO_LINGER;
1708 break;
1709
1710 case SO_DEBUG:
1711 case SO_KEEPALIVE:
1712 case SO_DONTROUTE:
1713 case SO_USELOOPBACK:
1714 case SO_BROADCAST:
1715 case SO_REUSEADDR:
1716 case SO_REUSEPORT:
1717 case SO_OOBINLINE:
1718 case SO_TIMESTAMP:
1719 case SO_NOSIGPIPE:
1720 #ifdef SO_OTIMESTAMP
1721 case SO_OTIMESTAMP:
1722 #endif
1723 error = sockopt_getint(sopt, &optval);
1724 solock(so);
1725 if (error)
1726 break;
1727 if (optval)
1728 so->so_options |= opt;
1729 else
1730 so->so_options &= ~opt;
1731 break;
1732
1733 case SO_SNDBUF:
1734 case SO_RCVBUF:
1735 case SO_SNDLOWAT:
1736 case SO_RCVLOWAT:
1737 error = sockopt_getint(sopt, &optval);
1738 solock(so);
1739 if (error)
1740 break;
1741
1742 /*
1743 * Values < 1 make no sense for any of these
1744 * options, so disallow them.
1745 */
1746 if (optval < 1) {
1747 error = EINVAL;
1748 break;
1749 }
1750
1751 switch (opt) {
1752 case SO_SNDBUF:
1753 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1754 error = ENOBUFS;
1755 break;
1756 }
1757 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1758 break;
1759
1760 case SO_RCVBUF:
1761 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1762 error = ENOBUFS;
1763 break;
1764 }
1765 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1766 break;
1767
1768 /*
1769 * Make sure the low-water is never greater than
1770 * the high-water.
1771 */
1772 case SO_SNDLOWAT:
1773 if (optval > so->so_snd.sb_hiwat)
1774 optval = so->so_snd.sb_hiwat;
1775
1776 so->so_snd.sb_lowat = optval;
1777 break;
1778
1779 case SO_RCVLOWAT:
1780 if (optval > so->so_rcv.sb_hiwat)
1781 optval = so->so_rcv.sb_hiwat;
1782
1783 so->so_rcv.sb_lowat = optval;
1784 break;
1785 }
1786 break;
1787
1788 #ifdef COMPAT_50
1789 case SO_OSNDTIMEO:
1790 case SO_ORCVTIMEO: {
1791 struct timeval50 otv;
1792 error = sockopt_get(sopt, &otv, sizeof(otv));
1793 if (error) {
1794 solock(so);
1795 break;
1796 }
1797 timeval50_to_timeval(&otv, &tv);
1798 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1799 error = 0;
1800 /*FALLTHROUGH*/
1801 }
1802 #endif /* COMPAT_50 */
1803
1804 case SO_SNDTIMEO:
1805 case SO_RCVTIMEO:
1806 if (error)
1807 error = sockopt_get(sopt, &tv, sizeof(tv));
1808 solock(so);
1809 if (error)
1810 break;
1811
1812 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1813 error = EDOM;
1814 break;
1815 }
1816
1817 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1818 if (optval == 0 && tv.tv_usec != 0)
1819 optval = 1;
1820
1821 switch (opt) {
1822 case SO_SNDTIMEO:
1823 so->so_snd.sb_timeo = optval;
1824 break;
1825 case SO_RCVTIMEO:
1826 so->so_rcv.sb_timeo = optval;
1827 break;
1828 }
1829 break;
1830
1831 default:
1832 solock(so);
1833 error = ENOPROTOOPT;
1834 break;
1835 }
1836 KASSERT(solocked(so));
1837 return error;
1838 }
1839
1840 int
1841 sosetopt(struct socket *so, struct sockopt *sopt)
1842 {
1843 int error, prerr;
1844
1845 if (sopt->sopt_level == SOL_SOCKET) {
1846 error = sosetopt1(so, sopt);
1847 KASSERT(solocked(so));
1848 } else {
1849 error = ENOPROTOOPT;
1850 solock(so);
1851 }
1852
1853 if ((error == 0 || error == ENOPROTOOPT) &&
1854 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1855 /* give the protocol stack a shot */
1856 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1857 if (prerr == 0)
1858 error = 0;
1859 else if (prerr != ENOPROTOOPT)
1860 error = prerr;
1861 }
1862 sounlock(so);
1863 return error;
1864 }
1865
1866 /*
1867 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1868 */
1869 int
1870 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1871 const void *val, size_t valsize)
1872 {
1873 struct sockopt sopt;
1874 int error;
1875
1876 KASSERT(valsize == 0 || val != NULL);
1877
1878 sockopt_init(&sopt, level, name, valsize);
1879 sockopt_set(&sopt, val, valsize);
1880
1881 error = sosetopt(so, &sopt);
1882
1883 sockopt_destroy(&sopt);
1884
1885 return error;
1886 }
1887
1888 /*
1889 * internal get SOL_SOCKET options
1890 */
1891 static int
1892 sogetopt1(struct socket *so, struct sockopt *sopt)
1893 {
1894 int error, optval, opt;
1895 struct linger l;
1896 struct timeval tv;
1897
1898 switch ((opt = sopt->sopt_name)) {
1899
1900 case SO_ACCEPTFILTER:
1901 error = accept_filt_getopt(so, sopt);
1902 break;
1903
1904 case SO_LINGER:
1905 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1906 l.l_linger = so->so_linger;
1907
1908 error = sockopt_set(sopt, &l, sizeof(l));
1909 break;
1910
1911 case SO_USELOOPBACK:
1912 case SO_DONTROUTE:
1913 case SO_DEBUG:
1914 case SO_KEEPALIVE:
1915 case SO_REUSEADDR:
1916 case SO_REUSEPORT:
1917 case SO_BROADCAST:
1918 case SO_OOBINLINE:
1919 case SO_TIMESTAMP:
1920 case SO_NOSIGPIPE:
1921 #ifdef SO_OTIMESTAMP
1922 case SO_OTIMESTAMP:
1923 #endif
1924 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1925 break;
1926
1927 case SO_TYPE:
1928 error = sockopt_setint(sopt, so->so_type);
1929 break;
1930
1931 case SO_ERROR:
1932 error = sockopt_setint(sopt, so->so_error);
1933 so->so_error = 0;
1934 break;
1935
1936 case SO_SNDBUF:
1937 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1938 break;
1939
1940 case SO_RCVBUF:
1941 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1942 break;
1943
1944 case SO_SNDLOWAT:
1945 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1946 break;
1947
1948 case SO_RCVLOWAT:
1949 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1950 break;
1951
1952 #ifdef COMPAT_50
1953 case SO_OSNDTIMEO:
1954 case SO_ORCVTIMEO: {
1955 struct timeval50 otv;
1956
1957 optval = (opt == SO_OSNDTIMEO ?
1958 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1959
1960 otv.tv_sec = optval / hz;
1961 otv.tv_usec = (optval % hz) * tick;
1962
1963 error = sockopt_set(sopt, &otv, sizeof(otv));
1964 break;
1965 }
1966 #endif /* COMPAT_50 */
1967
1968 case SO_SNDTIMEO:
1969 case SO_RCVTIMEO:
1970 optval = (opt == SO_SNDTIMEO ?
1971 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1972
1973 tv.tv_sec = optval / hz;
1974 tv.tv_usec = (optval % hz) * tick;
1975
1976 error = sockopt_set(sopt, &tv, sizeof(tv));
1977 break;
1978
1979 case SO_OVERFLOWED:
1980 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1981 break;
1982
1983 default:
1984 error = ENOPROTOOPT;
1985 break;
1986 }
1987
1988 return (error);
1989 }
1990
1991 int
1992 sogetopt(struct socket *so, struct sockopt *sopt)
1993 {
1994 int error;
1995
1996 solock(so);
1997 if (sopt->sopt_level != SOL_SOCKET) {
1998 if (so->so_proto && so->so_proto->pr_ctloutput) {
1999 error = ((*so->so_proto->pr_ctloutput)
2000 (PRCO_GETOPT, so, sopt));
2001 } else
2002 error = (ENOPROTOOPT);
2003 } else {
2004 error = sogetopt1(so, sopt);
2005 }
2006 sounlock(so);
2007 return (error);
2008 }
2009
2010 /*
2011 * alloc sockopt data buffer buffer
2012 * - will be released at destroy
2013 */
2014 static int
2015 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2016 {
2017
2018 KASSERT(sopt->sopt_size == 0);
2019
2020 if (len > sizeof(sopt->sopt_buf)) {
2021 sopt->sopt_data = kmem_zalloc(len, kmflag);
2022 if (sopt->sopt_data == NULL)
2023 return ENOMEM;
2024 } else
2025 sopt->sopt_data = sopt->sopt_buf;
2026
2027 sopt->sopt_size = len;
2028 return 0;
2029 }
2030
2031 /*
2032 * initialise sockopt storage
2033 * - MAY sleep during allocation
2034 */
2035 void
2036 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2037 {
2038
2039 memset(sopt, 0, sizeof(*sopt));
2040
2041 sopt->sopt_level = level;
2042 sopt->sopt_name = name;
2043 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2044 }
2045
2046 /*
2047 * destroy sockopt storage
2048 * - will release any held memory references
2049 */
2050 void
2051 sockopt_destroy(struct sockopt *sopt)
2052 {
2053
2054 if (sopt->sopt_data != sopt->sopt_buf)
2055 kmem_free(sopt->sopt_data, sopt->sopt_size);
2056
2057 memset(sopt, 0, sizeof(*sopt));
2058 }
2059
2060 /*
2061 * set sockopt value
2062 * - value is copied into sockopt
2063 * - memory is allocated when necessary, will not sleep
2064 */
2065 int
2066 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2067 {
2068 int error;
2069
2070 if (sopt->sopt_size == 0) {
2071 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2072 if (error)
2073 return error;
2074 }
2075
2076 KASSERT(sopt->sopt_size == len);
2077 memcpy(sopt->sopt_data, buf, len);
2078 return 0;
2079 }
2080
2081 /*
2082 * common case of set sockopt integer value
2083 */
2084 int
2085 sockopt_setint(struct sockopt *sopt, int val)
2086 {
2087
2088 return sockopt_set(sopt, &val, sizeof(int));
2089 }
2090
2091 /*
2092 * get sockopt value
2093 * - correct size must be given
2094 */
2095 int
2096 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2097 {
2098
2099 if (sopt->sopt_size != len)
2100 return EINVAL;
2101
2102 memcpy(buf, sopt->sopt_data, len);
2103 return 0;
2104 }
2105
2106 /*
2107 * common case of get sockopt integer value
2108 */
2109 int
2110 sockopt_getint(const struct sockopt *sopt, int *valp)
2111 {
2112
2113 return sockopt_get(sopt, valp, sizeof(int));
2114 }
2115
2116 /*
2117 * set sockopt value from mbuf
2118 * - ONLY for legacy code
2119 * - mbuf is released by sockopt
2120 * - will not sleep
2121 */
2122 int
2123 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2124 {
2125 size_t len;
2126 int error;
2127
2128 len = m_length(m);
2129
2130 if (sopt->sopt_size == 0) {
2131 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2132 if (error)
2133 return error;
2134 }
2135
2136 KASSERT(sopt->sopt_size == len);
2137 m_copydata(m, 0, len, sopt->sopt_data);
2138 m_freem(m);
2139
2140 return 0;
2141 }
2142
2143 /*
2144 * get sockopt value into mbuf
2145 * - ONLY for legacy code
2146 * - mbuf to be released by the caller
2147 * - will not sleep
2148 */
2149 struct mbuf *
2150 sockopt_getmbuf(const struct sockopt *sopt)
2151 {
2152 struct mbuf *m;
2153
2154 if (sopt->sopt_size > MCLBYTES)
2155 return NULL;
2156
2157 m = m_get(M_DONTWAIT, MT_SOOPTS);
2158 if (m == NULL)
2159 return NULL;
2160
2161 if (sopt->sopt_size > MLEN) {
2162 MCLGET(m, M_DONTWAIT);
2163 if ((m->m_flags & M_EXT) == 0) {
2164 m_free(m);
2165 return NULL;
2166 }
2167 }
2168
2169 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2170 m->m_len = sopt->sopt_size;
2171
2172 return m;
2173 }
2174
2175 void
2176 sohasoutofband(struct socket *so)
2177 {
2178
2179 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2180 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2181 }
2182
2183 static void
2184 filt_sordetach(struct knote *kn)
2185 {
2186 struct socket *so;
2187
2188 so = ((file_t *)kn->kn_obj)->f_data;
2189 solock(so);
2190 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2191 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2192 so->so_rcv.sb_flags &= ~SB_KNOTE;
2193 sounlock(so);
2194 }
2195
2196 /*ARGSUSED*/
2197 static int
2198 filt_soread(struct knote *kn, long hint)
2199 {
2200 struct socket *so;
2201 int rv;
2202
2203 so = ((file_t *)kn->kn_obj)->f_data;
2204 if (hint != NOTE_SUBMIT)
2205 solock(so);
2206 kn->kn_data = so->so_rcv.sb_cc;
2207 if (so->so_state & SS_CANTRCVMORE) {
2208 kn->kn_flags |= EV_EOF;
2209 kn->kn_fflags = so->so_error;
2210 rv = 1;
2211 } else if (so->so_error) /* temporary udp error */
2212 rv = 1;
2213 else if (kn->kn_sfflags & NOTE_LOWAT)
2214 rv = (kn->kn_data >= kn->kn_sdata);
2215 else
2216 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2217 if (hint != NOTE_SUBMIT)
2218 sounlock(so);
2219 return rv;
2220 }
2221
2222 static void
2223 filt_sowdetach(struct knote *kn)
2224 {
2225 struct socket *so;
2226
2227 so = ((file_t *)kn->kn_obj)->f_data;
2228 solock(so);
2229 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2230 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2231 so->so_snd.sb_flags &= ~SB_KNOTE;
2232 sounlock(so);
2233 }
2234
2235 /*ARGSUSED*/
2236 static int
2237 filt_sowrite(struct knote *kn, long hint)
2238 {
2239 struct socket *so;
2240 int rv;
2241
2242 so = ((file_t *)kn->kn_obj)->f_data;
2243 if (hint != NOTE_SUBMIT)
2244 solock(so);
2245 kn->kn_data = sbspace(&so->so_snd);
2246 if (so->so_state & SS_CANTSENDMORE) {
2247 kn->kn_flags |= EV_EOF;
2248 kn->kn_fflags = so->so_error;
2249 rv = 1;
2250 } else if (so->so_error) /* temporary udp error */
2251 rv = 1;
2252 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2253 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2254 rv = 0;
2255 else if (kn->kn_sfflags & NOTE_LOWAT)
2256 rv = (kn->kn_data >= kn->kn_sdata);
2257 else
2258 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2259 if (hint != NOTE_SUBMIT)
2260 sounlock(so);
2261 return rv;
2262 }
2263
2264 /*ARGSUSED*/
2265 static int
2266 filt_solisten(struct knote *kn, long hint)
2267 {
2268 struct socket *so;
2269 int rv;
2270
2271 so = ((file_t *)kn->kn_obj)->f_data;
2272
2273 /*
2274 * Set kn_data to number of incoming connections, not
2275 * counting partial (incomplete) connections.
2276 */
2277 if (hint != NOTE_SUBMIT)
2278 solock(so);
2279 kn->kn_data = so->so_qlen;
2280 rv = (kn->kn_data > 0);
2281 if (hint != NOTE_SUBMIT)
2282 sounlock(so);
2283 return rv;
2284 }
2285
2286 static const struct filterops solisten_filtops =
2287 { 1, NULL, filt_sordetach, filt_solisten };
2288 static const struct filterops soread_filtops =
2289 { 1, NULL, filt_sordetach, filt_soread };
2290 static const struct filterops sowrite_filtops =
2291 { 1, NULL, filt_sowdetach, filt_sowrite };
2292
2293 int
2294 soo_kqfilter(struct file *fp, struct knote *kn)
2295 {
2296 struct socket *so;
2297 struct sockbuf *sb;
2298
2299 so = ((file_t *)kn->kn_obj)->f_data;
2300 solock(so);
2301 switch (kn->kn_filter) {
2302 case EVFILT_READ:
2303 if (so->so_options & SO_ACCEPTCONN)
2304 kn->kn_fop = &solisten_filtops;
2305 else
2306 kn->kn_fop = &soread_filtops;
2307 sb = &so->so_rcv;
2308 break;
2309 case EVFILT_WRITE:
2310 kn->kn_fop = &sowrite_filtops;
2311 sb = &so->so_snd;
2312 break;
2313 default:
2314 sounlock(so);
2315 return (EINVAL);
2316 }
2317 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2318 sb->sb_flags |= SB_KNOTE;
2319 sounlock(so);
2320 return (0);
2321 }
2322
2323 static int
2324 sodopoll(struct socket *so, int events)
2325 {
2326 int revents;
2327
2328 revents = 0;
2329
2330 if (events & (POLLIN | POLLRDNORM))
2331 if (soreadable(so))
2332 revents |= events & (POLLIN | POLLRDNORM);
2333
2334 if (events & (POLLOUT | POLLWRNORM))
2335 if (sowritable(so))
2336 revents |= events & (POLLOUT | POLLWRNORM);
2337
2338 if (events & (POLLPRI | POLLRDBAND))
2339 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2340 revents |= events & (POLLPRI | POLLRDBAND);
2341
2342 return revents;
2343 }
2344
2345 int
2346 sopoll(struct socket *so, int events)
2347 {
2348 int revents = 0;
2349
2350 #ifndef DIAGNOSTIC
2351 /*
2352 * Do a quick, unlocked check in expectation that the socket
2353 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2354 * as the solocked() assertions will fail.
2355 */
2356 if ((revents = sodopoll(so, events)) != 0)
2357 return revents;
2358 #endif
2359
2360 solock(so);
2361 if ((revents = sodopoll(so, events)) == 0) {
2362 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2363 selrecord(curlwp, &so->so_rcv.sb_sel);
2364 so->so_rcv.sb_flags |= SB_NOTIFY;
2365 }
2366
2367 if (events & (POLLOUT | POLLWRNORM)) {
2368 selrecord(curlwp, &so->so_snd.sb_sel);
2369 so->so_snd.sb_flags |= SB_NOTIFY;
2370 }
2371 }
2372 sounlock(so);
2373
2374 return revents;
2375 }
2376
2377
2378 #include <sys/sysctl.h>
2379
2380 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2381 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2382
2383 /*
2384 * sysctl helper routine for kern.somaxkva. ensures that the given
2385 * value is not too small.
2386 * (XXX should we maybe make sure it's not too large as well?)
2387 */
2388 static int
2389 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2390 {
2391 int error, new_somaxkva;
2392 struct sysctlnode node;
2393
2394 new_somaxkva = somaxkva;
2395 node = *rnode;
2396 node.sysctl_data = &new_somaxkva;
2397 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2398 if (error || newp == NULL)
2399 return (error);
2400
2401 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2402 return (EINVAL);
2403
2404 mutex_enter(&so_pendfree_lock);
2405 somaxkva = new_somaxkva;
2406 cv_broadcast(&socurkva_cv);
2407 mutex_exit(&so_pendfree_lock);
2408
2409 return (error);
2410 }
2411
2412 /*
2413 * sysctl helper routine for kern.sbmax. Basically just ensures that
2414 * any new value is not too small.
2415 */
2416 static int
2417 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2418 {
2419 int error, new_sbmax;
2420 struct sysctlnode node;
2421
2422 new_sbmax = sb_max;
2423 node = *rnode;
2424 node.sysctl_data = &new_sbmax;
2425 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2426 if (error || newp == NULL)
2427 return (error);
2428
2429 KERNEL_LOCK(1, NULL);
2430 error = sb_max_set(new_sbmax);
2431 KERNEL_UNLOCK_ONE(NULL);
2432
2433 return (error);
2434 }
2435
2436 static void
2437 sysctl_kern_socket_setup(void)
2438 {
2439
2440 KASSERT(socket_sysctllog == NULL);
2441 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2442 CTLFLAG_PERMANENT,
2443 CTLTYPE_NODE, "kern", NULL,
2444 NULL, 0, NULL, 0,
2445 CTL_KERN, CTL_EOL);
2446
2447 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2448 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2449 CTLTYPE_INT, "somaxkva",
2450 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2451 "used for socket buffers"),
2452 sysctl_kern_somaxkva, 0, NULL, 0,
2453 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2454
2455 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2456 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2457 CTLTYPE_INT, "sbmax",
2458 SYSCTL_DESCR("Maximum socket buffer size"),
2459 sysctl_kern_sbmax, 0, NULL, 0,
2460 CTL_KERN, KERN_SBMAX, CTL_EOL);
2461 }
2462