uipc_socket.c revision 1.215.4.4 1 /* $NetBSD: uipc_socket.c,v 1.215.4.4 2014/05/18 17:46:08 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 /*
66 * Socket operation routines.
67 *
68 * These routines are called by the routines in sys_socket.c or from a
69 * system process, and implement the semantics of socket operations by
70 * switching out to the protocol specific routines.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.215.4.4 2014/05/18 17:46:08 rmind Exp $");
75
76 #include "opt_compat_netbsd.h"
77 #include "opt_sock_counters.h"
78 #include "opt_sosend_loan.h"
79 #include "opt_mbuftrace.h"
80 #include "opt_somaxkva.h"
81 #include "opt_multiprocessor.h" /* XXX */
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/proc.h>
86 #include <sys/file.h>
87 #include <sys/filedesc.h>
88 #include <sys/kmem.h>
89 #include <sys/mbuf.h>
90 #include <sys/domain.h>
91 #include <sys/kernel.h>
92 #include <sys/protosw.h>
93 #include <sys/socket.h>
94 #include <sys/socketvar.h>
95 #include <sys/signalvar.h>
96 #include <sys/resourcevar.h>
97 #include <sys/uidinfo.h>
98 #include <sys/event.h>
99 #include <sys/poll.h>
100 #include <sys/kauth.h>
101 #include <sys/mutex.h>
102 #include <sys/condvar.h>
103 #include <sys/kthread.h>
104
105 #ifdef COMPAT_50
106 #include <compat/sys/time.h>
107 #include <compat/sys/socket.h>
108 #endif
109
110 #include <uvm/uvm_extern.h>
111 #include <uvm/uvm_loan.h>
112 #include <uvm/uvm_page.h>
113
114 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
115
116 extern const struct fileops socketops;
117
118 extern int somaxconn; /* patchable (XXX sysctl) */
119 int somaxconn = SOMAXCONN;
120 kmutex_t *softnet_lock;
121
122 #ifdef SOSEND_COUNTERS
123 #include <sys/device.h>
124
125 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
126 NULL, "sosend", "loan big");
127 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
128 NULL, "sosend", "copy big");
129 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
130 NULL, "sosend", "copy small");
131 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
132 NULL, "sosend", "kva limit");
133
134 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
135
136 EVCNT_ATTACH_STATIC(sosend_loan_big);
137 EVCNT_ATTACH_STATIC(sosend_copy_big);
138 EVCNT_ATTACH_STATIC(sosend_copy_small);
139 EVCNT_ATTACH_STATIC(sosend_kvalimit);
140 #else
141
142 #define SOSEND_COUNTER_INCR(ev) /* nothing */
143
144 #endif /* SOSEND_COUNTERS */
145
146 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
147 int sock_loan_thresh = -1;
148 #else
149 int sock_loan_thresh = 4096;
150 #endif
151
152 static kmutex_t so_pendfree_lock;
153 static struct mbuf *so_pendfree = NULL;
154
155 #ifndef SOMAXKVA
156 #define SOMAXKVA (16 * 1024 * 1024)
157 #endif
158 int somaxkva = SOMAXKVA;
159 static int socurkva;
160 static kcondvar_t socurkva_cv;
161
162 static kauth_listener_t socket_listener;
163
164 #define SOCK_LOAN_CHUNK 65536
165
166 static void sopendfree_thread(void *);
167 static kcondvar_t pendfree_thread_cv;
168 static lwp_t *sopendfree_lwp;
169
170 static void sysctl_kern_socket_setup(void);
171 static struct sysctllog *socket_sysctllog;
172
173 static vsize_t
174 sokvareserve(struct socket *so, vsize_t len)
175 {
176 int error;
177
178 mutex_enter(&so_pendfree_lock);
179 while (socurkva + len > somaxkva) {
180 SOSEND_COUNTER_INCR(&sosend_kvalimit);
181 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
182 if (error) {
183 len = 0;
184 break;
185 }
186 }
187 socurkva += len;
188 mutex_exit(&so_pendfree_lock);
189 return len;
190 }
191
192 static void
193 sokvaunreserve(vsize_t len)
194 {
195
196 mutex_enter(&so_pendfree_lock);
197 socurkva -= len;
198 cv_broadcast(&socurkva_cv);
199 mutex_exit(&so_pendfree_lock);
200 }
201
202 /*
203 * sokvaalloc: allocate kva for loan.
204 */
205
206 vaddr_t
207 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
208 {
209 vaddr_t lva;
210
211 /*
212 * reserve kva.
213 */
214
215 if (sokvareserve(so, len) == 0)
216 return 0;
217
218 /*
219 * allocate kva.
220 */
221
222 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
223 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
224 if (lva == 0) {
225 sokvaunreserve(len);
226 return (0);
227 }
228
229 return lva;
230 }
231
232 /*
233 * sokvafree: free kva for loan.
234 */
235
236 void
237 sokvafree(vaddr_t sva, vsize_t len)
238 {
239
240 /*
241 * free kva.
242 */
243
244 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
245
246 /*
247 * unreserve kva.
248 */
249
250 sokvaunreserve(len);
251 }
252
253 static void
254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
255 {
256 vaddr_t sva, eva;
257 vsize_t len;
258 int npgs;
259
260 KASSERT(pgs != NULL);
261
262 eva = round_page((vaddr_t) buf + size);
263 sva = trunc_page((vaddr_t) buf);
264 len = eva - sva;
265 npgs = len >> PAGE_SHIFT;
266
267 pmap_kremove(sva, len);
268 pmap_update(pmap_kernel());
269 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
270 sokvafree(sva, len);
271 }
272
273 /*
274 * sopendfree_thread: free mbufs on "pendfree" list.
275 * unlock and relock so_pendfree_lock when freeing mbufs.
276 */
277
278 static void
279 sopendfree_thread(void *v)
280 {
281 struct mbuf *m, *next;
282 size_t rv;
283
284 mutex_enter(&so_pendfree_lock);
285
286 for (;;) {
287 rv = 0;
288 while (so_pendfree != NULL) {
289 m = so_pendfree;
290 so_pendfree = NULL;
291 mutex_exit(&so_pendfree_lock);
292
293 for (; m != NULL; m = next) {
294 next = m->m_next;
295 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
296 KASSERT(m->m_ext.ext_refcnt == 0);
297
298 rv += m->m_ext.ext_size;
299 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
300 m->m_ext.ext_size);
301 pool_cache_put(mb_cache, m);
302 }
303
304 mutex_enter(&so_pendfree_lock);
305 }
306 if (rv)
307 cv_broadcast(&socurkva_cv);
308 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
309 }
310 panic("sopendfree_thread");
311 /* NOTREACHED */
312 }
313
314 void
315 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
316 {
317
318 KASSERT(m != NULL);
319
320 /*
321 * postpone freeing mbuf.
322 *
323 * we can't do it in interrupt context
324 * because we need to put kva back to kernel_map.
325 */
326
327 mutex_enter(&so_pendfree_lock);
328 m->m_next = so_pendfree;
329 so_pendfree = m;
330 cv_signal(&pendfree_thread_cv);
331 mutex_exit(&so_pendfree_lock);
332 }
333
334 static long
335 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
336 {
337 struct iovec *iov = uio->uio_iov;
338 vaddr_t sva, eva;
339 vsize_t len;
340 vaddr_t lva;
341 int npgs, error;
342 vaddr_t va;
343 int i;
344
345 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
346 return (0);
347
348 if (iov->iov_len < (size_t) space)
349 space = iov->iov_len;
350 if (space > SOCK_LOAN_CHUNK)
351 space = SOCK_LOAN_CHUNK;
352
353 eva = round_page((vaddr_t) iov->iov_base + space);
354 sva = trunc_page((vaddr_t) iov->iov_base);
355 len = eva - sva;
356 npgs = len >> PAGE_SHIFT;
357
358 KASSERT(npgs <= M_EXT_MAXPAGES);
359
360 lva = sokvaalloc(sva, len, so);
361 if (lva == 0)
362 return 0;
363
364 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
365 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
366 if (error) {
367 sokvafree(lva, len);
368 return (0);
369 }
370
371 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
372 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
373 VM_PROT_READ, 0);
374 pmap_update(pmap_kernel());
375
376 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
377
378 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
379 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
380
381 uio->uio_resid -= space;
382 /* uio_offset not updated, not set/used for write(2) */
383 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
384 uio->uio_iov->iov_len -= space;
385 if (uio->uio_iov->iov_len == 0) {
386 uio->uio_iov++;
387 uio->uio_iovcnt--;
388 }
389
390 return (space);
391 }
392
393 struct mbuf *
394 getsombuf(struct socket *so, int type)
395 {
396 struct mbuf *m;
397
398 m = m_get(M_WAIT, type);
399 MCLAIM(m, so->so_mowner);
400 return m;
401 }
402
403 static int
404 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
405 void *arg0, void *arg1, void *arg2, void *arg3)
406 {
407 int result;
408 enum kauth_network_req req;
409
410 result = KAUTH_RESULT_DEFER;
411 req = (enum kauth_network_req)arg0;
412
413 if ((action != KAUTH_NETWORK_SOCKET) &&
414 (action != KAUTH_NETWORK_BIND))
415 return result;
416
417 switch (req) {
418 case KAUTH_REQ_NETWORK_BIND_PORT:
419 result = KAUTH_RESULT_ALLOW;
420 break;
421
422 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
423 /* Normal users can only drop their own connections. */
424 struct socket *so = (struct socket *)arg1;
425
426 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
427 result = KAUTH_RESULT_ALLOW;
428
429 break;
430 }
431
432 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
433 /* We allow "raw" routing/bluetooth sockets to anyone. */
434 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
435 || (u_long)arg1 == PF_BLUETOOTH) {
436 result = KAUTH_RESULT_ALLOW;
437 } else {
438 /* Privileged, let secmodel handle this. */
439 if ((u_long)arg2 == SOCK_RAW)
440 break;
441 }
442
443 result = KAUTH_RESULT_ALLOW;
444
445 break;
446
447 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
448 result = KAUTH_RESULT_ALLOW;
449
450 break;
451
452 default:
453 break;
454 }
455
456 return result;
457 }
458
459 void
460 soinit(void)
461 {
462
463 sysctl_kern_socket_setup();
464
465 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
466 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
467 cv_init(&socurkva_cv, "sokva");
468 cv_init(&pendfree_thread_cv, "sopendfr");
469 soinit2();
470
471 /* Set the initial adjusted socket buffer size. */
472 if (sb_max_set(sb_max))
473 panic("bad initial sb_max value: %lu", sb_max);
474
475 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
476 socket_listener_cb, NULL);
477 }
478
479 void
480 soinit1(void)
481 {
482 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
483 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
484 if (error)
485 panic("soinit1 %d", error);
486 }
487
488 /*
489 * socreate: create a new socket of the specified type and the protocol.
490 *
491 * => Caller may specify another socket for lock sharing (must not be held).
492 * => Returns the new socket without lock held.
493 */
494 int
495 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
496 struct socket *lockso)
497 {
498 const struct protosw *prp;
499 struct socket *so;
500 uid_t uid;
501 int error;
502 kmutex_t *lock;
503
504 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
505 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
506 KAUTH_ARG(proto));
507 if (error != 0)
508 return error;
509
510 if (proto)
511 prp = pffindproto(dom, proto, type);
512 else
513 prp = pffindtype(dom, type);
514 if (prp == NULL) {
515 /* no support for domain */
516 if (pffinddomain(dom) == 0)
517 return EAFNOSUPPORT;
518 /* no support for socket type */
519 if (proto == 0 && type != 0)
520 return EPROTOTYPE;
521 return EPROTONOSUPPORT;
522 }
523 if (prp->pr_usrreqs == NULL)
524 return EPROTONOSUPPORT;
525 if (prp->pr_type != type)
526 return EPROTOTYPE;
527
528 so = soget(true);
529 so->so_type = type;
530 so->so_proto = prp;
531 so->so_refcnt = 1;
532
533 so->so_send = sosend;
534 so->so_receive = soreceive;
535 #ifdef MBUFTRACE
536 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
537 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
538 so->so_mowner = &prp->pr_domain->dom_mowner;
539 #endif
540 uid = kauth_cred_geteuid(l->l_cred);
541 so->so_uidinfo = uid_find(uid);
542 so->so_cpid = l->l_proc->p_pid;
543
544 /*
545 * Lock assigned and taken during pr_attach, unless we share
546 * the lock with another socket, e.g. socketpair(2) case.
547 */
548 if (lockso) {
549 lock = lockso->so_lock;
550 so->so_lock = lock;
551 mutex_obj_hold(lock);
552 }
553
554 error = (*prp->pr_usrreqs->pr_attach)(so, proto);
555 if (error) {
556 solock(so);
557 KASSERT(so->so_pcb == NULL);
558 so->so_state |= SS_NOFDREF;
559 sofree(so);
560 return error;
561 }
562 so->so_cred = kauth_cred_dup(l->l_cred);
563
564 *aso = so;
565 return 0;
566 }
567
568 /*
569 * fsocreate: create a socket and a file descriptor associated with it.
570 *
571 * => On success, write file descriptor to fdout and return zero.
572 * => On failure, return non-zero; *fdout will be undefined.
573 */
574 int
575 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
576 {
577 lwp_t *l = curlwp;
578 int error, fd, flags;
579 struct socket *so;
580 struct file *fp;
581
582 if ((error = fd_allocfile(&fp, &fd)) != 0) {
583 return error;
584 }
585 flags = type & SOCK_FLAGS_MASK;
586 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
587 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
588 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
589 fp->f_type = DTYPE_SOCKET;
590 fp->f_ops = &socketops;
591
592 type &= ~SOCK_FLAGS_MASK;
593 error = socreate(domain, &so, type, proto, l, NULL);
594 if (error) {
595 fd_abort(curproc, fp, fd);
596 return error;
597 }
598 if (flags & SOCK_NONBLOCK) {
599 so->so_state |= SS_NBIO;
600 }
601 fp->f_data = so;
602 fd_affix(curproc, fp, fd);
603
604 if (sop != NULL) {
605 *sop = so;
606 }
607 *fdout = fd;
608 return error;
609 }
610
611 void
612 soref(struct socket *so)
613 {
614 atomic_inc_uint(&so->so_refcnt);
615 }
616
617 void
618 sounref(struct socket *so)
619 {
620 if (atomic_dec_uint_nv(&so->so_refcnt) > 0) {
621 return;
622 }
623 soput(so);
624 }
625
626 int
627 sofamily(const struct socket *so)
628 {
629 const struct protosw *pr;
630 const struct domain *dom;
631
632 if ((pr = so->so_proto) == NULL)
633 return AF_UNSPEC;
634 if ((dom = pr->pr_domain) == NULL)
635 return AF_UNSPEC;
636 return dom->dom_family;
637 }
638
639 int
640 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
641 {
642 int error;
643
644 solock(so);
645 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
646 PRU_BIND, NULL, nam, NULL, l);
647 sounlock(so);
648 return error;
649 }
650
651 int
652 solisten(struct socket *so, int backlog, struct lwp *l)
653 {
654 int error;
655
656 solock(so);
657 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
658 SS_ISDISCONNECTING)) != 0) {
659 sounlock(so);
660 return EINVAL;
661 }
662 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
663 PRU_LISTEN, NULL, NULL, NULL, l);
664 if (error != 0) {
665 sounlock(so);
666 return error;
667 }
668 if (TAILQ_EMPTY(&so->so_q))
669 so->so_options |= SO_ACCEPTCONN;
670 if (backlog < 0)
671 backlog = 0;
672 so->so_qlimit = min(backlog, somaxconn);
673 sounlock(so);
674 return 0;
675 }
676
677 void
678 sofree(struct socket *so)
679 {
680
681 KASSERT(solocked(so));
682
683 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
684 sounlock(so);
685 return;
686 }
687 if (so->so_head) {
688 /*
689 * We must not decommission a socket that's on the accept(2)
690 * queue. If we do, then accept(2) may hang after select(2)
691 * indicated that the listening socket was ready.
692 */
693 if (!soqremque(so, 0)) {
694 sounlock(so);
695 return;
696 }
697 }
698 if (so->so_rcv.sb_hiwat)
699 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
700 RLIM_INFINITY);
701 if (so->so_snd.sb_hiwat)
702 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
703 RLIM_INFINITY);
704 sbrelease(&so->so_snd, so);
705 KASSERT(!cv_has_waiters(&so->so_cv));
706 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
707 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
708 sorflush(so);
709 /* Remove acccept filter if one is present. */
710 if (so->so_accf != NULL)
711 (void)accept_filt_clear(so);
712 sounlock(so);
713
714 /* Will soput() if the last reference. */
715 sounref(so);
716 }
717
718 /*
719 * soclose: close a socket on last file table reference removal.
720 * Initiate disconnect if connected. Free socket when disconnect complete.
721 */
722 int
723 soclose(struct socket *so)
724 {
725 struct socket *so2;
726 int error = 0;
727
728 solock(so);
729 if (so->so_options & SO_ACCEPTCONN) {
730 for (;;) {
731 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
732 KASSERT(solocked2(so, so2));
733 (void) soqremque(so2, 0);
734 /* soabort drops the lock. */
735 (void) soabort(so2);
736 solock(so);
737 continue;
738 }
739 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
740 KASSERT(solocked2(so, so2));
741 (void) soqremque(so2, 1);
742 /* soabort drops the lock. */
743 (void) soabort(so2);
744 solock(so);
745 continue;
746 }
747 break;
748 }
749 }
750 if (so->so_pcb == NULL)
751 goto discard;
752 if (so->so_state & SS_ISCONNECTED) {
753 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
754 error = sodisconnect(so);
755 if (error)
756 goto drop;
757 }
758 if (so->so_options & SO_LINGER) {
759 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
760 (SS_ISDISCONNECTING|SS_NBIO))
761 goto drop;
762 while (so->so_state & SS_ISCONNECTED) {
763 error = sowait(so, true, so->so_linger * hz);
764 if (error)
765 break;
766 }
767 }
768 }
769 drop:
770 if (so->so_pcb) {
771 (*so->so_proto->pr_usrreqs->pr_detach)(so);
772 }
773 discard:
774 KASSERT((so->so_state & SS_NOFDREF) == 0);
775 kauth_cred_free(so->so_cred);
776 so->so_state |= SS_NOFDREF;
777 sofree(so);
778 return error;
779 }
780
781 /*
782 * Must be called with the socket locked.. Will return with it unlocked.
783 */
784 int
785 soabort(struct socket *so)
786 {
787 u_int refs;
788 int error;
789
790 KASSERT(solocked(so));
791 KASSERT(so->so_head == NULL);
792
793 soref(so);
794 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
795 PRU_ABORT, NULL, NULL, NULL, NULL);
796 refs = so->so_refcnt;
797 sounref(so);
798
799 /* XXX: Fix PRU_ABORT to behave consistently. */
800 if (error || refs == 1) {
801 sofree(so);
802 } else {
803 sounlock(so);
804 }
805 sounref(so);
806 return error;
807 }
808
809 int
810 soaccept(struct socket *so, struct mbuf *nam)
811 {
812 int error;
813
814 KASSERT(solocked(so));
815 KASSERT((so->so_state & SS_NOFDREF) != 0);
816
817 so->so_state &= ~SS_NOFDREF;
818
819 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
820 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
821 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
822 PRU_ACCEPT, NULL, nam, NULL, NULL);
823 else
824 error = ECONNABORTED;
825
826 return error;
827 }
828
829 int
830 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
831 {
832 int error;
833
834 KASSERT(solocked(so));
835
836 if (so->so_options & SO_ACCEPTCONN)
837 return EOPNOTSUPP;
838 /*
839 * If protocol is connection-based, can only connect once.
840 * Otherwise, if connected, try to disconnect first.
841 * This allows user to disconnect by connecting to, e.g.,
842 * a null address.
843 */
844 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
845 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
846 (error = sodisconnect(so))))
847 error = EISCONN;
848 else
849 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
850 PRU_CONNECT, NULL, nam, NULL, l);
851
852 return error;
853 }
854
855 int
856 soconnect2(struct socket *so1, struct socket *so2)
857 {
858 KASSERT(solocked2(so1, so2));
859
860 return (*so1->so_proto->pr_usrreqs->pr_generic)(so1,
861 PRU_CONNECT2, NULL, (struct mbuf *)so2, NULL, NULL);
862 }
863
864 int
865 sodisconnect(struct socket *so)
866 {
867 int error;
868
869 KASSERT(solocked(so));
870
871 if ((so->so_state & SS_ISCONNECTED) == 0) {
872 error = ENOTCONN;
873 } else if (so->so_state & SS_ISDISCONNECTING) {
874 error = EALREADY;
875 } else {
876 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
877 PRU_DISCONNECT, NULL, NULL, NULL, NULL);
878 }
879 return (error);
880 }
881
882 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
883 /*
884 * Send on a socket.
885 * If send must go all at once and message is larger than
886 * send buffering, then hard error.
887 * Lock against other senders.
888 * If must go all at once and not enough room now, then
889 * inform user that this would block and do nothing.
890 * Otherwise, if nonblocking, send as much as possible.
891 * The data to be sent is described by "uio" if nonzero,
892 * otherwise by the mbuf chain "top" (which must be null
893 * if uio is not). Data provided in mbuf chain must be small
894 * enough to send all at once.
895 *
896 * Returns nonzero on error, timeout or signal; callers
897 * must check for short counts if EINTR/ERESTART are returned.
898 * Data and control buffers are freed on return.
899 */
900 int
901 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
902 struct mbuf *control, int flags, struct lwp *l)
903 {
904 struct mbuf **mp, *m;
905 long space, len, resid, clen, mlen;
906 int error, s, dontroute, atomic;
907 short wakeup_state = 0;
908
909 clen = 0;
910
911 /*
912 * solock() provides atomicity of access. splsoftnet() prevents
913 * protocol processing soft interrupts from interrupting us and
914 * blocking (expensive).
915 */
916 s = splsoftnet();
917 solock(so);
918 atomic = sosendallatonce(so) || top;
919 if (uio)
920 resid = uio->uio_resid;
921 else
922 resid = top->m_pkthdr.len;
923 /*
924 * In theory resid should be unsigned.
925 * However, space must be signed, as it might be less than 0
926 * if we over-committed, and we must use a signed comparison
927 * of space and resid. On the other hand, a negative resid
928 * causes us to loop sending 0-length segments to the protocol.
929 */
930 if (resid < 0) {
931 error = EINVAL;
932 goto out;
933 }
934 dontroute =
935 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
936 (so->so_proto->pr_flags & PR_ATOMIC);
937 l->l_ru.ru_msgsnd++;
938 if (control)
939 clen = control->m_len;
940 restart:
941 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
942 goto out;
943 do {
944 if (so->so_state & SS_CANTSENDMORE) {
945 error = EPIPE;
946 goto release;
947 }
948 if (so->so_error) {
949 error = so->so_error;
950 so->so_error = 0;
951 goto release;
952 }
953 if ((so->so_state & SS_ISCONNECTED) == 0) {
954 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
955 if (resid || clen == 0) {
956 error = ENOTCONN;
957 goto release;
958 }
959 } else if (addr == 0) {
960 error = EDESTADDRREQ;
961 goto release;
962 }
963 }
964 space = sbspace(&so->so_snd);
965 if (flags & MSG_OOB)
966 space += 1024;
967 if ((atomic && resid > so->so_snd.sb_hiwat) ||
968 clen > so->so_snd.sb_hiwat) {
969 error = EMSGSIZE;
970 goto release;
971 }
972 if (space < resid + clen &&
973 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
974 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
975 error = EWOULDBLOCK;
976 goto release;
977 }
978 sbunlock(&so->so_snd);
979 if (wakeup_state & SS_RESTARTSYS) {
980 error = ERESTART;
981 goto out;
982 }
983 error = sbwait(&so->so_snd);
984 if (error)
985 goto out;
986 wakeup_state = so->so_state;
987 goto restart;
988 }
989 wakeup_state = 0;
990 mp = ⊤
991 space -= clen;
992 do {
993 if (uio == NULL) {
994 /*
995 * Data is prepackaged in "top".
996 */
997 resid = 0;
998 if (flags & MSG_EOR)
999 top->m_flags |= M_EOR;
1000 } else do {
1001 sounlock(so);
1002 splx(s);
1003 if (top == NULL) {
1004 m = m_gethdr(M_WAIT, MT_DATA);
1005 mlen = MHLEN;
1006 m->m_pkthdr.len = 0;
1007 m->m_pkthdr.rcvif = NULL;
1008 } else {
1009 m = m_get(M_WAIT, MT_DATA);
1010 mlen = MLEN;
1011 }
1012 MCLAIM(m, so->so_snd.sb_mowner);
1013 if (sock_loan_thresh >= 0 &&
1014 uio->uio_iov->iov_len >= sock_loan_thresh &&
1015 space >= sock_loan_thresh &&
1016 (len = sosend_loan(so, uio, m,
1017 space)) != 0) {
1018 SOSEND_COUNTER_INCR(&sosend_loan_big);
1019 space -= len;
1020 goto have_data;
1021 }
1022 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1023 SOSEND_COUNTER_INCR(&sosend_copy_big);
1024 m_clget(m, M_DONTWAIT);
1025 if ((m->m_flags & M_EXT) == 0)
1026 goto nopages;
1027 mlen = MCLBYTES;
1028 if (atomic && top == 0) {
1029 len = lmin(MCLBYTES - max_hdr,
1030 resid);
1031 m->m_data += max_hdr;
1032 } else
1033 len = lmin(MCLBYTES, resid);
1034 space -= len;
1035 } else {
1036 nopages:
1037 SOSEND_COUNTER_INCR(&sosend_copy_small);
1038 len = lmin(lmin(mlen, resid), space);
1039 space -= len;
1040 /*
1041 * For datagram protocols, leave room
1042 * for protocol headers in first mbuf.
1043 */
1044 if (atomic && top == 0 && len < mlen)
1045 MH_ALIGN(m, len);
1046 }
1047 error = uiomove(mtod(m, void *), (int)len, uio);
1048 have_data:
1049 resid = uio->uio_resid;
1050 m->m_len = len;
1051 *mp = m;
1052 top->m_pkthdr.len += len;
1053 s = splsoftnet();
1054 solock(so);
1055 if (error != 0)
1056 goto release;
1057 mp = &m->m_next;
1058 if (resid <= 0) {
1059 if (flags & MSG_EOR)
1060 top->m_flags |= M_EOR;
1061 break;
1062 }
1063 } while (space > 0 && atomic);
1064
1065 if (so->so_state & SS_CANTSENDMORE) {
1066 error = EPIPE;
1067 goto release;
1068 }
1069 if (dontroute)
1070 so->so_options |= SO_DONTROUTE;
1071 if (resid > 0)
1072 so->so_state |= SS_MORETOCOME;
1073 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
1074 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
1075 top, addr, control, curlwp);
1076 if (dontroute)
1077 so->so_options &= ~SO_DONTROUTE;
1078 if (resid > 0)
1079 so->so_state &= ~SS_MORETOCOME;
1080 clen = 0;
1081 control = NULL;
1082 top = NULL;
1083 mp = ⊤
1084 if (error != 0)
1085 goto release;
1086 } while (resid && space > 0);
1087 } while (resid);
1088
1089 release:
1090 sbunlock(&so->so_snd);
1091 out:
1092 sounlock(so);
1093 splx(s);
1094 if (top)
1095 m_freem(top);
1096 if (control)
1097 m_freem(control);
1098 return (error);
1099 }
1100
1101 /*
1102 * Following replacement or removal of the first mbuf on the first
1103 * mbuf chain of a socket buffer, push necessary state changes back
1104 * into the socket buffer so that other consumers see the values
1105 * consistently. 'nextrecord' is the callers locally stored value of
1106 * the original value of sb->sb_mb->m_nextpkt which must be restored
1107 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1108 */
1109 static void
1110 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1111 {
1112
1113 KASSERT(solocked(sb->sb_so));
1114
1115 /*
1116 * First, update for the new value of nextrecord. If necessary,
1117 * make it the first record.
1118 */
1119 if (sb->sb_mb != NULL)
1120 sb->sb_mb->m_nextpkt = nextrecord;
1121 else
1122 sb->sb_mb = nextrecord;
1123
1124 /*
1125 * Now update any dependent socket buffer fields to reflect
1126 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1127 * the addition of a second clause that takes care of the
1128 * case where sb_mb has been updated, but remains the last
1129 * record.
1130 */
1131 if (sb->sb_mb == NULL) {
1132 sb->sb_mbtail = NULL;
1133 sb->sb_lastrecord = NULL;
1134 } else if (sb->sb_mb->m_nextpkt == NULL)
1135 sb->sb_lastrecord = sb->sb_mb;
1136 }
1137
1138 /*
1139 * Implement receive operations on a socket.
1140 * We depend on the way that records are added to the sockbuf
1141 * by sbappend*. In particular, each record (mbufs linked through m_next)
1142 * must begin with an address if the protocol so specifies,
1143 * followed by an optional mbuf or mbufs containing ancillary data,
1144 * and then zero or more mbufs of data.
1145 * In order to avoid blocking network interrupts for the entire time here,
1146 * we splx() while doing the actual copy to user space.
1147 * Although the sockbuf is locked, new data may still be appended,
1148 * and thus we must maintain consistency of the sockbuf during that time.
1149 *
1150 * The caller may receive the data as a single mbuf chain by supplying
1151 * an mbuf **mp0 for use in returning the chain. The uio is then used
1152 * only for the count in uio_resid.
1153 */
1154 int
1155 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1156 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1157 {
1158 struct lwp *l = curlwp;
1159 struct mbuf *m, **mp, *mt;
1160 size_t len, offset, moff, orig_resid;
1161 int atomic, flags, error, s, type;
1162 const struct protosw *pr;
1163 struct mbuf *nextrecord;
1164 int mbuf_removed = 0;
1165 const struct domain *dom;
1166 short wakeup_state = 0;
1167
1168 pr = so->so_proto;
1169 atomic = pr->pr_flags & PR_ATOMIC;
1170 dom = pr->pr_domain;
1171 mp = mp0;
1172 type = 0;
1173 orig_resid = uio->uio_resid;
1174
1175 if (paddr != NULL)
1176 *paddr = NULL;
1177 if (controlp != NULL)
1178 *controlp = NULL;
1179 if (flagsp != NULL)
1180 flags = *flagsp &~ MSG_EOR;
1181 else
1182 flags = 0;
1183
1184 if (flags & MSG_OOB) {
1185 m = m_get(M_WAIT, MT_DATA);
1186 solock(so);
1187 error = (*pr->pr_usrreqs->pr_generic)(so, PRU_RCVOOB, m,
1188 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1189 sounlock(so);
1190 if (error)
1191 goto bad;
1192 do {
1193 error = uiomove(mtod(m, void *),
1194 MIN(uio->uio_resid, m->m_len), uio);
1195 m = m_free(m);
1196 } while (uio->uio_resid > 0 && error == 0 && m);
1197 bad:
1198 if (m != NULL)
1199 m_freem(m);
1200 return error;
1201 }
1202 if (mp != NULL)
1203 *mp = NULL;
1204
1205 /*
1206 * solock() provides atomicity of access. splsoftnet() prevents
1207 * protocol processing soft interrupts from interrupting us and
1208 * blocking (expensive).
1209 */
1210 s = splsoftnet();
1211 solock(so);
1212 restart:
1213 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1214 sounlock(so);
1215 splx(s);
1216 return error;
1217 }
1218
1219 m = so->so_rcv.sb_mb;
1220 /*
1221 * If we have less data than requested, block awaiting more
1222 * (subject to any timeout) if:
1223 * 1. the current count is less than the low water mark,
1224 * 2. MSG_WAITALL is set, and it is possible to do the entire
1225 * receive operation at once if we block (resid <= hiwat), or
1226 * 3. MSG_DONTWAIT is not set.
1227 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1228 * we have to do the receive in sections, and thus risk returning
1229 * a short count if a timeout or signal occurs after we start.
1230 */
1231 if (m == NULL ||
1232 ((flags & MSG_DONTWAIT) == 0 &&
1233 so->so_rcv.sb_cc < uio->uio_resid &&
1234 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1235 ((flags & MSG_WAITALL) &&
1236 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1237 m->m_nextpkt == NULL && !atomic)) {
1238 #ifdef DIAGNOSTIC
1239 if (m == NULL && so->so_rcv.sb_cc)
1240 panic("receive 1");
1241 #endif
1242 if (so->so_error) {
1243 if (m != NULL)
1244 goto dontblock;
1245 error = so->so_error;
1246 if ((flags & MSG_PEEK) == 0)
1247 so->so_error = 0;
1248 goto release;
1249 }
1250 if (so->so_state & SS_CANTRCVMORE) {
1251 if (m != NULL)
1252 goto dontblock;
1253 else
1254 goto release;
1255 }
1256 for (; m != NULL; m = m->m_next)
1257 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1258 m = so->so_rcv.sb_mb;
1259 goto dontblock;
1260 }
1261 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1262 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1263 error = ENOTCONN;
1264 goto release;
1265 }
1266 if (uio->uio_resid == 0)
1267 goto release;
1268 if ((so->so_state & SS_NBIO) ||
1269 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1270 error = EWOULDBLOCK;
1271 goto release;
1272 }
1273 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1274 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1275 sbunlock(&so->so_rcv);
1276 if (wakeup_state & SS_RESTARTSYS)
1277 error = ERESTART;
1278 else
1279 error = sbwait(&so->so_rcv);
1280 if (error != 0) {
1281 sounlock(so);
1282 splx(s);
1283 return error;
1284 }
1285 wakeup_state = so->so_state;
1286 goto restart;
1287 }
1288 dontblock:
1289 /*
1290 * On entry here, m points to the first record of the socket buffer.
1291 * From this point onward, we maintain 'nextrecord' as a cache of the
1292 * pointer to the next record in the socket buffer. We must keep the
1293 * various socket buffer pointers and local stack versions of the
1294 * pointers in sync, pushing out modifications before dropping the
1295 * socket lock, and re-reading them when picking it up.
1296 *
1297 * Otherwise, we will race with the network stack appending new data
1298 * or records onto the socket buffer by using inconsistent/stale
1299 * versions of the field, possibly resulting in socket buffer
1300 * corruption.
1301 *
1302 * By holding the high-level sblock(), we prevent simultaneous
1303 * readers from pulling off the front of the socket buffer.
1304 */
1305 if (l != NULL)
1306 l->l_ru.ru_msgrcv++;
1307 KASSERT(m == so->so_rcv.sb_mb);
1308 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1309 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1310 nextrecord = m->m_nextpkt;
1311 if (pr->pr_flags & PR_ADDR) {
1312 #ifdef DIAGNOSTIC
1313 if (m->m_type != MT_SONAME)
1314 panic("receive 1a");
1315 #endif
1316 orig_resid = 0;
1317 if (flags & MSG_PEEK) {
1318 if (paddr)
1319 *paddr = m_copy(m, 0, m->m_len);
1320 m = m->m_next;
1321 } else {
1322 sbfree(&so->so_rcv, m);
1323 mbuf_removed = 1;
1324 if (paddr != NULL) {
1325 *paddr = m;
1326 so->so_rcv.sb_mb = m->m_next;
1327 m->m_next = NULL;
1328 m = so->so_rcv.sb_mb;
1329 } else {
1330 MFREE(m, so->so_rcv.sb_mb);
1331 m = so->so_rcv.sb_mb;
1332 }
1333 sbsync(&so->so_rcv, nextrecord);
1334 }
1335 }
1336
1337 /*
1338 * Process one or more MT_CONTROL mbufs present before any data mbufs
1339 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1340 * just copy the data; if !MSG_PEEK, we call into the protocol to
1341 * perform externalization (or freeing if controlp == NULL).
1342 */
1343 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1344 struct mbuf *cm = NULL, *cmn;
1345 struct mbuf **cme = &cm;
1346
1347 do {
1348 if (flags & MSG_PEEK) {
1349 if (controlp != NULL) {
1350 *controlp = m_copy(m, 0, m->m_len);
1351 controlp = &(*controlp)->m_next;
1352 }
1353 m = m->m_next;
1354 } else {
1355 sbfree(&so->so_rcv, m);
1356 so->so_rcv.sb_mb = m->m_next;
1357 m->m_next = NULL;
1358 *cme = m;
1359 cme = &(*cme)->m_next;
1360 m = so->so_rcv.sb_mb;
1361 }
1362 } while (m != NULL && m->m_type == MT_CONTROL);
1363 if ((flags & MSG_PEEK) == 0)
1364 sbsync(&so->so_rcv, nextrecord);
1365 for (; cm != NULL; cm = cmn) {
1366 cmn = cm->m_next;
1367 cm->m_next = NULL;
1368 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1369 if (controlp != NULL) {
1370 if (dom->dom_externalize != NULL &&
1371 type == SCM_RIGHTS) {
1372 sounlock(so);
1373 splx(s);
1374 error = (*dom->dom_externalize)(cm, l,
1375 (flags & MSG_CMSG_CLOEXEC) ?
1376 O_CLOEXEC : 0);
1377 s = splsoftnet();
1378 solock(so);
1379 }
1380 *controlp = cm;
1381 while (*controlp != NULL)
1382 controlp = &(*controlp)->m_next;
1383 } else {
1384 /*
1385 * Dispose of any SCM_RIGHTS message that went
1386 * through the read path rather than recv.
1387 */
1388 if (dom->dom_dispose != NULL &&
1389 type == SCM_RIGHTS) {
1390 sounlock(so);
1391 (*dom->dom_dispose)(cm);
1392 solock(so);
1393 }
1394 m_freem(cm);
1395 }
1396 }
1397 if (m != NULL)
1398 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1399 else
1400 nextrecord = so->so_rcv.sb_mb;
1401 orig_resid = 0;
1402 }
1403
1404 /* If m is non-NULL, we have some data to read. */
1405 if (__predict_true(m != NULL)) {
1406 type = m->m_type;
1407 if (type == MT_OOBDATA)
1408 flags |= MSG_OOB;
1409 }
1410 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1411 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1412
1413 moff = 0;
1414 offset = 0;
1415 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1416 if (m->m_type == MT_OOBDATA) {
1417 if (type != MT_OOBDATA)
1418 break;
1419 } else if (type == MT_OOBDATA)
1420 break;
1421 #ifdef DIAGNOSTIC
1422 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1423 panic("receive 3");
1424 #endif
1425 so->so_state &= ~SS_RCVATMARK;
1426 wakeup_state = 0;
1427 len = uio->uio_resid;
1428 if (so->so_oobmark && len > so->so_oobmark - offset)
1429 len = so->so_oobmark - offset;
1430 if (len > m->m_len - moff)
1431 len = m->m_len - moff;
1432 /*
1433 * If mp is set, just pass back the mbufs.
1434 * Otherwise copy them out via the uio, then free.
1435 * Sockbuf must be consistent here (points to current mbuf,
1436 * it points to next record) when we drop priority;
1437 * we must note any additions to the sockbuf when we
1438 * block interrupts again.
1439 */
1440 if (mp == NULL) {
1441 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1442 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1443 sounlock(so);
1444 splx(s);
1445 error = uiomove(mtod(m, char *) + moff, len, uio);
1446 s = splsoftnet();
1447 solock(so);
1448 if (error != 0) {
1449 /*
1450 * If any part of the record has been removed
1451 * (such as the MT_SONAME mbuf, which will
1452 * happen when PR_ADDR, and thus also
1453 * PR_ATOMIC, is set), then drop the entire
1454 * record to maintain the atomicity of the
1455 * receive operation.
1456 *
1457 * This avoids a later panic("receive 1a")
1458 * when compiled with DIAGNOSTIC.
1459 */
1460 if (m && mbuf_removed && atomic)
1461 (void) sbdroprecord(&so->so_rcv);
1462
1463 goto release;
1464 }
1465 } else
1466 uio->uio_resid -= len;
1467 if (len == m->m_len - moff) {
1468 if (m->m_flags & M_EOR)
1469 flags |= MSG_EOR;
1470 if (flags & MSG_PEEK) {
1471 m = m->m_next;
1472 moff = 0;
1473 } else {
1474 nextrecord = m->m_nextpkt;
1475 sbfree(&so->so_rcv, m);
1476 if (mp) {
1477 *mp = m;
1478 mp = &m->m_next;
1479 so->so_rcv.sb_mb = m = m->m_next;
1480 *mp = NULL;
1481 } else {
1482 MFREE(m, so->so_rcv.sb_mb);
1483 m = so->so_rcv.sb_mb;
1484 }
1485 /*
1486 * If m != NULL, we also know that
1487 * so->so_rcv.sb_mb != NULL.
1488 */
1489 KASSERT(so->so_rcv.sb_mb == m);
1490 if (m) {
1491 m->m_nextpkt = nextrecord;
1492 if (nextrecord == NULL)
1493 so->so_rcv.sb_lastrecord = m;
1494 } else {
1495 so->so_rcv.sb_mb = nextrecord;
1496 SB_EMPTY_FIXUP(&so->so_rcv);
1497 }
1498 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1499 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1500 }
1501 } else if (flags & MSG_PEEK)
1502 moff += len;
1503 else {
1504 if (mp != NULL) {
1505 mt = m_copym(m, 0, len, M_NOWAIT);
1506 if (__predict_false(mt == NULL)) {
1507 sounlock(so);
1508 mt = m_copym(m, 0, len, M_WAIT);
1509 solock(so);
1510 }
1511 *mp = mt;
1512 }
1513 m->m_data += len;
1514 m->m_len -= len;
1515 so->so_rcv.sb_cc -= len;
1516 }
1517 if (so->so_oobmark) {
1518 if ((flags & MSG_PEEK) == 0) {
1519 so->so_oobmark -= len;
1520 if (so->so_oobmark == 0) {
1521 so->so_state |= SS_RCVATMARK;
1522 break;
1523 }
1524 } else {
1525 offset += len;
1526 if (offset == so->so_oobmark)
1527 break;
1528 }
1529 }
1530 if (flags & MSG_EOR)
1531 break;
1532 /*
1533 * If the MSG_WAITALL flag is set (for non-atomic socket),
1534 * we must not quit until "uio->uio_resid == 0" or an error
1535 * termination. If a signal/timeout occurs, return
1536 * with a short count but without error.
1537 * Keep sockbuf locked against other readers.
1538 */
1539 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1540 !sosendallatonce(so) && !nextrecord) {
1541 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1542 break;
1543 /*
1544 * If we are peeking and the socket receive buffer is
1545 * full, stop since we can't get more data to peek at.
1546 */
1547 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1548 break;
1549 /*
1550 * If we've drained the socket buffer, tell the
1551 * protocol in case it needs to do something to
1552 * get it filled again.
1553 */
1554 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1555 (*pr->pr_usrreqs->pr_generic)(so, PRU_RCVD,
1556 NULL, (struct mbuf *)(long)flags, NULL, l);
1557 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1558 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1559 if (wakeup_state & SS_RESTARTSYS)
1560 error = ERESTART;
1561 else
1562 error = sbwait(&so->so_rcv);
1563 if (error != 0) {
1564 sbunlock(&so->so_rcv);
1565 sounlock(so);
1566 splx(s);
1567 return 0;
1568 }
1569 if ((m = so->so_rcv.sb_mb) != NULL)
1570 nextrecord = m->m_nextpkt;
1571 wakeup_state = so->so_state;
1572 }
1573 }
1574
1575 if (m && atomic) {
1576 flags |= MSG_TRUNC;
1577 if ((flags & MSG_PEEK) == 0)
1578 (void) sbdroprecord(&so->so_rcv);
1579 }
1580 if ((flags & MSG_PEEK) == 0) {
1581 if (m == NULL) {
1582 /*
1583 * First part is an inline SB_EMPTY_FIXUP(). Second
1584 * part makes sure sb_lastrecord is up-to-date if
1585 * there is still data in the socket buffer.
1586 */
1587 so->so_rcv.sb_mb = nextrecord;
1588 if (so->so_rcv.sb_mb == NULL) {
1589 so->so_rcv.sb_mbtail = NULL;
1590 so->so_rcv.sb_lastrecord = NULL;
1591 } else if (nextrecord->m_nextpkt == NULL)
1592 so->so_rcv.sb_lastrecord = nextrecord;
1593 }
1594 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1595 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1596 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1597 (*pr->pr_usrreqs->pr_generic)(so, PRU_RCVD, NULL,
1598 (struct mbuf *)(long)flags, NULL, l);
1599 }
1600 if (orig_resid == uio->uio_resid && orig_resid &&
1601 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1602 sbunlock(&so->so_rcv);
1603 goto restart;
1604 }
1605
1606 if (flagsp != NULL)
1607 *flagsp |= flags;
1608 release:
1609 sbunlock(&so->so_rcv);
1610 sounlock(so);
1611 splx(s);
1612 return error;
1613 }
1614
1615 int
1616 soshutdown(struct socket *so, int how)
1617 {
1618 const struct protosw *pr;
1619 int error;
1620
1621 KASSERT(solocked(so));
1622
1623 pr = so->so_proto;
1624 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1625 return (EINVAL);
1626
1627 if (how == SHUT_RD || how == SHUT_RDWR) {
1628 sorflush(so);
1629 error = 0;
1630 }
1631 if (how == SHUT_WR || how == SHUT_RDWR)
1632 error = (*pr->pr_usrreqs->pr_generic)(so,
1633 PRU_SHUTDOWN, NULL, NULL, NULL, NULL);
1634
1635 return error;
1636 }
1637
1638 void
1639 sorestart(struct socket *so)
1640 {
1641 /*
1642 * An application has called close() on an fd on which another
1643 * of its threads has called a socket system call.
1644 * Mark this and wake everyone up, and code that would block again
1645 * instead returns ERESTART.
1646 * On system call re-entry the fd is validated and EBADF returned.
1647 * Any other fd will block again on the 2nd syscall.
1648 */
1649 solock(so);
1650 so->so_state |= SS_RESTARTSYS;
1651 cv_broadcast(&so->so_cv);
1652 cv_broadcast(&so->so_snd.sb_cv);
1653 cv_broadcast(&so->so_rcv.sb_cv);
1654 sounlock(so);
1655 }
1656
1657 void
1658 sorflush(struct socket *so)
1659 {
1660 struct sockbuf *sb, asb;
1661 const struct protosw *pr;
1662
1663 KASSERT(solocked(so));
1664
1665 sb = &so->so_rcv;
1666 pr = so->so_proto;
1667 socantrcvmore(so);
1668 sb->sb_flags |= SB_NOINTR;
1669 (void )sblock(sb, M_WAITOK);
1670 sbunlock(sb);
1671 asb = *sb;
1672 /*
1673 * Clear most of the sockbuf structure, but leave some of the
1674 * fields valid.
1675 */
1676 memset(&sb->sb_startzero, 0,
1677 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1678 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1679 sounlock(so);
1680 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1681 solock(so);
1682 }
1683 sbrelease(&asb, so);
1684 }
1685
1686 /*
1687 * internal set SOL_SOCKET options
1688 */
1689 static int
1690 sosetopt1(struct socket *so, const struct sockopt *sopt)
1691 {
1692 int error = EINVAL, opt;
1693 int optval = 0; /* XXX: gcc */
1694 struct linger l;
1695 struct timeval tv;
1696
1697 switch ((opt = sopt->sopt_name)) {
1698
1699 case SO_ACCEPTFILTER:
1700 error = accept_filt_setopt(so, sopt);
1701 KASSERT(solocked(so));
1702 break;
1703
1704 case SO_LINGER:
1705 error = sockopt_get(sopt, &l, sizeof(l));
1706 solock(so);
1707 if (error)
1708 break;
1709 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1710 l.l_linger > (INT_MAX / hz)) {
1711 error = EDOM;
1712 break;
1713 }
1714 so->so_linger = l.l_linger;
1715 if (l.l_onoff)
1716 so->so_options |= SO_LINGER;
1717 else
1718 so->so_options &= ~SO_LINGER;
1719 break;
1720
1721 case SO_DEBUG:
1722 case SO_KEEPALIVE:
1723 case SO_DONTROUTE:
1724 case SO_USELOOPBACK:
1725 case SO_BROADCAST:
1726 case SO_REUSEADDR:
1727 case SO_REUSEPORT:
1728 case SO_OOBINLINE:
1729 case SO_TIMESTAMP:
1730 case SO_NOSIGPIPE:
1731 #ifdef SO_OTIMESTAMP
1732 case SO_OTIMESTAMP:
1733 #endif
1734 error = sockopt_getint(sopt, &optval);
1735 solock(so);
1736 if (error)
1737 break;
1738 if (optval)
1739 so->so_options |= opt;
1740 else
1741 so->so_options &= ~opt;
1742 break;
1743
1744 case SO_SNDBUF:
1745 case SO_RCVBUF:
1746 case SO_SNDLOWAT:
1747 case SO_RCVLOWAT:
1748 error = sockopt_getint(sopt, &optval);
1749 solock(so);
1750 if (error)
1751 break;
1752
1753 /*
1754 * Values < 1 make no sense for any of these
1755 * options, so disallow them.
1756 */
1757 if (optval < 1) {
1758 error = EINVAL;
1759 break;
1760 }
1761
1762 switch (opt) {
1763 case SO_SNDBUF:
1764 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1765 error = ENOBUFS;
1766 break;
1767 }
1768 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1769 break;
1770
1771 case SO_RCVBUF:
1772 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1773 error = ENOBUFS;
1774 break;
1775 }
1776 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1777 break;
1778
1779 /*
1780 * Make sure the low-water is never greater than
1781 * the high-water.
1782 */
1783 case SO_SNDLOWAT:
1784 if (optval > so->so_snd.sb_hiwat)
1785 optval = so->so_snd.sb_hiwat;
1786
1787 so->so_snd.sb_lowat = optval;
1788 break;
1789
1790 case SO_RCVLOWAT:
1791 if (optval > so->so_rcv.sb_hiwat)
1792 optval = so->so_rcv.sb_hiwat;
1793
1794 so->so_rcv.sb_lowat = optval;
1795 break;
1796 }
1797 break;
1798
1799 #ifdef COMPAT_50
1800 case SO_OSNDTIMEO:
1801 case SO_ORCVTIMEO: {
1802 struct timeval50 otv;
1803 error = sockopt_get(sopt, &otv, sizeof(otv));
1804 if (error) {
1805 solock(so);
1806 break;
1807 }
1808 timeval50_to_timeval(&otv, &tv);
1809 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1810 error = 0;
1811 /*FALLTHROUGH*/
1812 }
1813 #endif /* COMPAT_50 */
1814
1815 case SO_SNDTIMEO:
1816 case SO_RCVTIMEO:
1817 if (error)
1818 error = sockopt_get(sopt, &tv, sizeof(tv));
1819 solock(so);
1820 if (error)
1821 break;
1822
1823 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1824 error = EDOM;
1825 break;
1826 }
1827
1828 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1829 if (optval == 0 && tv.tv_usec != 0)
1830 optval = 1;
1831
1832 switch (opt) {
1833 case SO_SNDTIMEO:
1834 so->so_snd.sb_timeo = optval;
1835 break;
1836 case SO_RCVTIMEO:
1837 so->so_rcv.sb_timeo = optval;
1838 break;
1839 }
1840 break;
1841
1842 default:
1843 solock(so);
1844 error = ENOPROTOOPT;
1845 break;
1846 }
1847 KASSERT(solocked(so));
1848 return error;
1849 }
1850
1851 int
1852 sosetopt(struct socket *so, struct sockopt *sopt)
1853 {
1854 int error, prerr;
1855
1856 if (sopt->sopt_level == SOL_SOCKET) {
1857 error = sosetopt1(so, sopt);
1858 KASSERT(solocked(so));
1859 } else {
1860 error = ENOPROTOOPT;
1861 solock(so);
1862 }
1863
1864 if ((error == 0 || error == ENOPROTOOPT) &&
1865 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1866 /* give the protocol stack a shot */
1867 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1868 if (prerr == 0)
1869 error = 0;
1870 else if (prerr != ENOPROTOOPT)
1871 error = prerr;
1872 }
1873 sounlock(so);
1874 return error;
1875 }
1876
1877 /*
1878 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1879 */
1880 int
1881 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1882 const void *val, size_t valsize)
1883 {
1884 struct sockopt sopt;
1885 int error;
1886
1887 KASSERT(valsize == 0 || val != NULL);
1888
1889 sockopt_init(&sopt, level, name, valsize);
1890 sockopt_set(&sopt, val, valsize);
1891
1892 error = sosetopt(so, &sopt);
1893
1894 sockopt_destroy(&sopt);
1895
1896 return error;
1897 }
1898
1899 /*
1900 * internal get SOL_SOCKET options
1901 */
1902 static int
1903 sogetopt1(struct socket *so, struct sockopt *sopt)
1904 {
1905 int error, optval, opt;
1906 struct linger l;
1907 struct timeval tv;
1908
1909 switch ((opt = sopt->sopt_name)) {
1910
1911 case SO_ACCEPTFILTER:
1912 error = accept_filt_getopt(so, sopt);
1913 break;
1914
1915 case SO_LINGER:
1916 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1917 l.l_linger = so->so_linger;
1918
1919 error = sockopt_set(sopt, &l, sizeof(l));
1920 break;
1921
1922 case SO_USELOOPBACK:
1923 case SO_DONTROUTE:
1924 case SO_DEBUG:
1925 case SO_KEEPALIVE:
1926 case SO_REUSEADDR:
1927 case SO_REUSEPORT:
1928 case SO_BROADCAST:
1929 case SO_OOBINLINE:
1930 case SO_TIMESTAMP:
1931 case SO_NOSIGPIPE:
1932 #ifdef SO_OTIMESTAMP
1933 case SO_OTIMESTAMP:
1934 #endif
1935 case SO_ACCEPTCONN:
1936 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1937 break;
1938
1939 case SO_TYPE:
1940 error = sockopt_setint(sopt, so->so_type);
1941 break;
1942
1943 case SO_ERROR:
1944 error = sockopt_setint(sopt, so->so_error);
1945 so->so_error = 0;
1946 break;
1947
1948 case SO_SNDBUF:
1949 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1950 break;
1951
1952 case SO_RCVBUF:
1953 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1954 break;
1955
1956 case SO_SNDLOWAT:
1957 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1958 break;
1959
1960 case SO_RCVLOWAT:
1961 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1962 break;
1963
1964 #ifdef COMPAT_50
1965 case SO_OSNDTIMEO:
1966 case SO_ORCVTIMEO: {
1967 struct timeval50 otv;
1968
1969 optval = (opt == SO_OSNDTIMEO ?
1970 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1971
1972 otv.tv_sec = optval / hz;
1973 otv.tv_usec = (optval % hz) * tick;
1974
1975 error = sockopt_set(sopt, &otv, sizeof(otv));
1976 break;
1977 }
1978 #endif /* COMPAT_50 */
1979
1980 case SO_SNDTIMEO:
1981 case SO_RCVTIMEO:
1982 optval = (opt == SO_SNDTIMEO ?
1983 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1984
1985 tv.tv_sec = optval / hz;
1986 tv.tv_usec = (optval % hz) * tick;
1987
1988 error = sockopt_set(sopt, &tv, sizeof(tv));
1989 break;
1990
1991 case SO_OVERFLOWED:
1992 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1993 break;
1994
1995 default:
1996 error = ENOPROTOOPT;
1997 break;
1998 }
1999
2000 return (error);
2001 }
2002
2003 int
2004 sogetopt(struct socket *so, struct sockopt *sopt)
2005 {
2006 int error;
2007
2008 solock(so);
2009 if (sopt->sopt_level != SOL_SOCKET) {
2010 if (so->so_proto && so->so_proto->pr_ctloutput) {
2011 error = ((*so->so_proto->pr_ctloutput)
2012 (PRCO_GETOPT, so, sopt));
2013 } else
2014 error = (ENOPROTOOPT);
2015 } else {
2016 error = sogetopt1(so, sopt);
2017 }
2018 sounlock(so);
2019 return (error);
2020 }
2021
2022 /*
2023 * alloc sockopt data buffer buffer
2024 * - will be released at destroy
2025 */
2026 static int
2027 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2028 {
2029
2030 KASSERT(sopt->sopt_size == 0);
2031
2032 if (len > sizeof(sopt->sopt_buf)) {
2033 sopt->sopt_data = kmem_zalloc(len, kmflag);
2034 if (sopt->sopt_data == NULL)
2035 return ENOMEM;
2036 } else
2037 sopt->sopt_data = sopt->sopt_buf;
2038
2039 sopt->sopt_size = len;
2040 return 0;
2041 }
2042
2043 /*
2044 * initialise sockopt storage
2045 * - MAY sleep during allocation
2046 */
2047 void
2048 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2049 {
2050
2051 memset(sopt, 0, sizeof(*sopt));
2052
2053 sopt->sopt_level = level;
2054 sopt->sopt_name = name;
2055 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2056 }
2057
2058 /*
2059 * destroy sockopt storage
2060 * - will release any held memory references
2061 */
2062 void
2063 sockopt_destroy(struct sockopt *sopt)
2064 {
2065
2066 if (sopt->sopt_data != sopt->sopt_buf)
2067 kmem_free(sopt->sopt_data, sopt->sopt_size);
2068
2069 memset(sopt, 0, sizeof(*sopt));
2070 }
2071
2072 /*
2073 * set sockopt value
2074 * - value is copied into sockopt
2075 * - memory is allocated when necessary, will not sleep
2076 */
2077 int
2078 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2079 {
2080 int error;
2081
2082 if (sopt->sopt_size == 0) {
2083 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2084 if (error)
2085 return error;
2086 }
2087
2088 KASSERT(sopt->sopt_size == len);
2089 memcpy(sopt->sopt_data, buf, len);
2090 return 0;
2091 }
2092
2093 /*
2094 * common case of set sockopt integer value
2095 */
2096 int
2097 sockopt_setint(struct sockopt *sopt, int val)
2098 {
2099
2100 return sockopt_set(sopt, &val, sizeof(int));
2101 }
2102
2103 /*
2104 * get sockopt value
2105 * - correct size must be given
2106 */
2107 int
2108 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2109 {
2110
2111 if (sopt->sopt_size != len)
2112 return EINVAL;
2113
2114 memcpy(buf, sopt->sopt_data, len);
2115 return 0;
2116 }
2117
2118 /*
2119 * common case of get sockopt integer value
2120 */
2121 int
2122 sockopt_getint(const struct sockopt *sopt, int *valp)
2123 {
2124
2125 return sockopt_get(sopt, valp, sizeof(int));
2126 }
2127
2128 /*
2129 * set sockopt value from mbuf
2130 * - ONLY for legacy code
2131 * - mbuf is released by sockopt
2132 * - will not sleep
2133 */
2134 int
2135 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2136 {
2137 size_t len;
2138 int error;
2139
2140 len = m_length(m);
2141
2142 if (sopt->sopt_size == 0) {
2143 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2144 if (error)
2145 return error;
2146 }
2147
2148 KASSERT(sopt->sopt_size == len);
2149 m_copydata(m, 0, len, sopt->sopt_data);
2150 m_freem(m);
2151
2152 return 0;
2153 }
2154
2155 /*
2156 * get sockopt value into mbuf
2157 * - ONLY for legacy code
2158 * - mbuf to be released by the caller
2159 * - will not sleep
2160 */
2161 struct mbuf *
2162 sockopt_getmbuf(const struct sockopt *sopt)
2163 {
2164 struct mbuf *m;
2165
2166 if (sopt->sopt_size > MCLBYTES)
2167 return NULL;
2168
2169 m = m_get(M_DONTWAIT, MT_SOOPTS);
2170 if (m == NULL)
2171 return NULL;
2172
2173 if (sopt->sopt_size > MLEN) {
2174 MCLGET(m, M_DONTWAIT);
2175 if ((m->m_flags & M_EXT) == 0) {
2176 m_free(m);
2177 return NULL;
2178 }
2179 }
2180
2181 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2182 m->m_len = sopt->sopt_size;
2183
2184 return m;
2185 }
2186
2187 void
2188 sohasoutofband(struct socket *so)
2189 {
2190
2191 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2192 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2193 }
2194
2195 static void
2196 filt_sordetach(struct knote *kn)
2197 {
2198 struct socket *so;
2199
2200 so = ((file_t *)kn->kn_obj)->f_data;
2201 solock(so);
2202 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2203 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2204 so->so_rcv.sb_flags &= ~SB_KNOTE;
2205 sounlock(so);
2206 }
2207
2208 /*ARGSUSED*/
2209 static int
2210 filt_soread(struct knote *kn, long hint)
2211 {
2212 struct socket *so;
2213 int rv;
2214
2215 so = ((file_t *)kn->kn_obj)->f_data;
2216 if (hint != NOTE_SUBMIT)
2217 solock(so);
2218 kn->kn_data = so->so_rcv.sb_cc;
2219 if (so->so_state & SS_CANTRCVMORE) {
2220 kn->kn_flags |= EV_EOF;
2221 kn->kn_fflags = so->so_error;
2222 rv = 1;
2223 } else if (so->so_error) /* temporary udp error */
2224 rv = 1;
2225 else if (kn->kn_sfflags & NOTE_LOWAT)
2226 rv = (kn->kn_data >= kn->kn_sdata);
2227 else
2228 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2229 if (hint != NOTE_SUBMIT)
2230 sounlock(so);
2231 return rv;
2232 }
2233
2234 static void
2235 filt_sowdetach(struct knote *kn)
2236 {
2237 struct socket *so;
2238
2239 so = ((file_t *)kn->kn_obj)->f_data;
2240 solock(so);
2241 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2242 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2243 so->so_snd.sb_flags &= ~SB_KNOTE;
2244 sounlock(so);
2245 }
2246
2247 /*ARGSUSED*/
2248 static int
2249 filt_sowrite(struct knote *kn, long hint)
2250 {
2251 struct socket *so;
2252 int rv;
2253
2254 so = ((file_t *)kn->kn_obj)->f_data;
2255 if (hint != NOTE_SUBMIT)
2256 solock(so);
2257 kn->kn_data = sbspace(&so->so_snd);
2258 if (so->so_state & SS_CANTSENDMORE) {
2259 kn->kn_flags |= EV_EOF;
2260 kn->kn_fflags = so->so_error;
2261 rv = 1;
2262 } else if (so->so_error) /* temporary udp error */
2263 rv = 1;
2264 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2265 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2266 rv = 0;
2267 else if (kn->kn_sfflags & NOTE_LOWAT)
2268 rv = (kn->kn_data >= kn->kn_sdata);
2269 else
2270 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2271 if (hint != NOTE_SUBMIT)
2272 sounlock(so);
2273 return rv;
2274 }
2275
2276 /*ARGSUSED*/
2277 static int
2278 filt_solisten(struct knote *kn, long hint)
2279 {
2280 struct socket *so;
2281 int rv;
2282
2283 so = ((file_t *)kn->kn_obj)->f_data;
2284
2285 /*
2286 * Set kn_data to number of incoming connections, not
2287 * counting partial (incomplete) connections.
2288 */
2289 if (hint != NOTE_SUBMIT)
2290 solock(so);
2291 kn->kn_data = so->so_qlen;
2292 rv = (kn->kn_data > 0);
2293 if (hint != NOTE_SUBMIT)
2294 sounlock(so);
2295 return rv;
2296 }
2297
2298 static const struct filterops solisten_filtops =
2299 { 1, NULL, filt_sordetach, filt_solisten };
2300 static const struct filterops soread_filtops =
2301 { 1, NULL, filt_sordetach, filt_soread };
2302 static const struct filterops sowrite_filtops =
2303 { 1, NULL, filt_sowdetach, filt_sowrite };
2304
2305 int
2306 soo_kqfilter(struct file *fp, struct knote *kn)
2307 {
2308 struct socket *so;
2309 struct sockbuf *sb;
2310
2311 so = ((file_t *)kn->kn_obj)->f_data;
2312 solock(so);
2313 switch (kn->kn_filter) {
2314 case EVFILT_READ:
2315 if (so->so_options & SO_ACCEPTCONN)
2316 kn->kn_fop = &solisten_filtops;
2317 else
2318 kn->kn_fop = &soread_filtops;
2319 sb = &so->so_rcv;
2320 break;
2321 case EVFILT_WRITE:
2322 kn->kn_fop = &sowrite_filtops;
2323 sb = &so->so_snd;
2324 break;
2325 default:
2326 sounlock(so);
2327 return (EINVAL);
2328 }
2329 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2330 sb->sb_flags |= SB_KNOTE;
2331 sounlock(so);
2332 return (0);
2333 }
2334
2335 static int
2336 sodopoll(struct socket *so, int events)
2337 {
2338 int revents;
2339
2340 revents = 0;
2341
2342 if (events & (POLLIN | POLLRDNORM))
2343 if (soreadable(so))
2344 revents |= events & (POLLIN | POLLRDNORM);
2345
2346 if (events & (POLLOUT | POLLWRNORM))
2347 if (sowritable(so))
2348 revents |= events & (POLLOUT | POLLWRNORM);
2349
2350 if (events & (POLLPRI | POLLRDBAND))
2351 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2352 revents |= events & (POLLPRI | POLLRDBAND);
2353
2354 return revents;
2355 }
2356
2357 int
2358 sopoll(struct socket *so, int events)
2359 {
2360 int revents = 0;
2361
2362 #ifndef DIAGNOSTIC
2363 /*
2364 * Do a quick, unlocked check in expectation that the socket
2365 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2366 * as the solocked() assertions will fail.
2367 */
2368 if ((revents = sodopoll(so, events)) != 0)
2369 return revents;
2370 #endif
2371
2372 solock(so);
2373 if ((revents = sodopoll(so, events)) == 0) {
2374 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2375 selrecord(curlwp, &so->so_rcv.sb_sel);
2376 so->so_rcv.sb_flags |= SB_NOTIFY;
2377 }
2378
2379 if (events & (POLLOUT | POLLWRNORM)) {
2380 selrecord(curlwp, &so->so_snd.sb_sel);
2381 so->so_snd.sb_flags |= SB_NOTIFY;
2382 }
2383 }
2384 sounlock(so);
2385
2386 return revents;
2387 }
2388
2389
2390 #include <sys/sysctl.h>
2391
2392 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2393 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2394
2395 /*
2396 * sysctl helper routine for kern.somaxkva. ensures that the given
2397 * value is not too small.
2398 * (XXX should we maybe make sure it's not too large as well?)
2399 */
2400 static int
2401 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2402 {
2403 int error, new_somaxkva;
2404 struct sysctlnode node;
2405
2406 new_somaxkva = somaxkva;
2407 node = *rnode;
2408 node.sysctl_data = &new_somaxkva;
2409 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2410 if (error || newp == NULL)
2411 return (error);
2412
2413 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2414 return (EINVAL);
2415
2416 mutex_enter(&so_pendfree_lock);
2417 somaxkva = new_somaxkva;
2418 cv_broadcast(&socurkva_cv);
2419 mutex_exit(&so_pendfree_lock);
2420
2421 return (error);
2422 }
2423
2424 /*
2425 * sysctl helper routine for kern.sbmax. Basically just ensures that
2426 * any new value is not too small.
2427 */
2428 static int
2429 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2430 {
2431 int error, new_sbmax;
2432 struct sysctlnode node;
2433
2434 new_sbmax = sb_max;
2435 node = *rnode;
2436 node.sysctl_data = &new_sbmax;
2437 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2438 if (error || newp == NULL)
2439 return (error);
2440
2441 KERNEL_LOCK(1, NULL);
2442 error = sb_max_set(new_sbmax);
2443 KERNEL_UNLOCK_ONE(NULL);
2444
2445 return (error);
2446 }
2447
2448 static void
2449 sysctl_kern_socket_setup(void)
2450 {
2451
2452 KASSERT(socket_sysctllog == NULL);
2453
2454 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2455 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2456 CTLTYPE_INT, "somaxkva",
2457 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2458 "used for socket buffers"),
2459 sysctl_kern_somaxkva, 0, NULL, 0,
2460 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2461
2462 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2463 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2464 CTLTYPE_INT, "sbmax",
2465 SYSCTL_DESCR("Maximum socket buffer size"),
2466 sysctl_kern_sbmax, 0, NULL, 0,
2467 CTL_KERN, KERN_SBMAX, CTL_EOL);
2468 }
2469