uipc_socket.c revision 1.216 1 /* $NetBSD: uipc_socket.c,v 1.216 2013/08/02 20:00:33 spz Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.216 2013/08/02 20:00:33 spz Exp $");
67
68 #include "opt_compat_netbsd.h"
69 #include "opt_sock_counters.h"
70 #include "opt_sosend_loan.h"
71 #include "opt_mbuftrace.h"
72 #include "opt_somaxkva.h"
73 #include "opt_multiprocessor.h" /* XXX */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/file.h>
79 #include <sys/filedesc.h>
80 #include <sys/kmem.h>
81 #include <sys/mbuf.h>
82 #include <sys/domain.h>
83 #include <sys/kernel.h>
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/signalvar.h>
88 #include <sys/resourcevar.h>
89 #include <sys/uidinfo.h>
90 #include <sys/event.h>
91 #include <sys/poll.h>
92 #include <sys/kauth.h>
93 #include <sys/mutex.h>
94 #include <sys/condvar.h>
95 #include <sys/kthread.h>
96
97 #ifdef COMPAT_50
98 #include <compat/sys/time.h>
99 #include <compat/sys/socket.h>
100 #endif
101
102 #include <uvm/uvm_extern.h>
103 #include <uvm/uvm_loan.h>
104 #include <uvm/uvm_page.h>
105
106 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
107 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
108
109 extern const struct fileops socketops;
110
111 extern int somaxconn; /* patchable (XXX sysctl) */
112 int somaxconn = SOMAXCONN;
113 kmutex_t *softnet_lock;
114
115 #ifdef SOSEND_COUNTERS
116 #include <sys/device.h>
117
118 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
119 NULL, "sosend", "loan big");
120 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
121 NULL, "sosend", "copy big");
122 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
123 NULL, "sosend", "copy small");
124 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
125 NULL, "sosend", "kva limit");
126
127 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
128
129 EVCNT_ATTACH_STATIC(sosend_loan_big);
130 EVCNT_ATTACH_STATIC(sosend_copy_big);
131 EVCNT_ATTACH_STATIC(sosend_copy_small);
132 EVCNT_ATTACH_STATIC(sosend_kvalimit);
133 #else
134
135 #define SOSEND_COUNTER_INCR(ev) /* nothing */
136
137 #endif /* SOSEND_COUNTERS */
138
139 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
140 int sock_loan_thresh = -1;
141 #else
142 int sock_loan_thresh = 4096;
143 #endif
144
145 static kmutex_t so_pendfree_lock;
146 static struct mbuf *so_pendfree = NULL;
147
148 #ifndef SOMAXKVA
149 #define SOMAXKVA (16 * 1024 * 1024)
150 #endif
151 int somaxkva = SOMAXKVA;
152 static int socurkva;
153 static kcondvar_t socurkva_cv;
154
155 static kauth_listener_t socket_listener;
156
157 #define SOCK_LOAN_CHUNK 65536
158
159 static void sopendfree_thread(void *);
160 static kcondvar_t pendfree_thread_cv;
161 static lwp_t *sopendfree_lwp;
162
163 static void sysctl_kern_socket_setup(void);
164 static struct sysctllog *socket_sysctllog;
165
166 static vsize_t
167 sokvareserve(struct socket *so, vsize_t len)
168 {
169 int error;
170
171 mutex_enter(&so_pendfree_lock);
172 while (socurkva + len > somaxkva) {
173 SOSEND_COUNTER_INCR(&sosend_kvalimit);
174 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
175 if (error) {
176 len = 0;
177 break;
178 }
179 }
180 socurkva += len;
181 mutex_exit(&so_pendfree_lock);
182 return len;
183 }
184
185 static void
186 sokvaunreserve(vsize_t len)
187 {
188
189 mutex_enter(&so_pendfree_lock);
190 socurkva -= len;
191 cv_broadcast(&socurkva_cv);
192 mutex_exit(&so_pendfree_lock);
193 }
194
195 /*
196 * sokvaalloc: allocate kva for loan.
197 */
198
199 vaddr_t
200 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
201 {
202 vaddr_t lva;
203
204 /*
205 * reserve kva.
206 */
207
208 if (sokvareserve(so, len) == 0)
209 return 0;
210
211 /*
212 * allocate kva.
213 */
214
215 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
216 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
217 if (lva == 0) {
218 sokvaunreserve(len);
219 return (0);
220 }
221
222 return lva;
223 }
224
225 /*
226 * sokvafree: free kva for loan.
227 */
228
229 void
230 sokvafree(vaddr_t sva, vsize_t len)
231 {
232
233 /*
234 * free kva.
235 */
236
237 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
238
239 /*
240 * unreserve kva.
241 */
242
243 sokvaunreserve(len);
244 }
245
246 static void
247 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
248 {
249 vaddr_t sva, eva;
250 vsize_t len;
251 int npgs;
252
253 KASSERT(pgs != NULL);
254
255 eva = round_page((vaddr_t) buf + size);
256 sva = trunc_page((vaddr_t) buf);
257 len = eva - sva;
258 npgs = len >> PAGE_SHIFT;
259
260 pmap_kremove(sva, len);
261 pmap_update(pmap_kernel());
262 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
263 sokvafree(sva, len);
264 }
265
266 /*
267 * sopendfree_thread: free mbufs on "pendfree" list.
268 * unlock and relock so_pendfree_lock when freeing mbufs.
269 */
270
271 static void
272 sopendfree_thread(void *v)
273 {
274 struct mbuf *m, *next;
275 size_t rv;
276
277 mutex_enter(&so_pendfree_lock);
278
279 for (;;) {
280 rv = 0;
281 while (so_pendfree != NULL) {
282 m = so_pendfree;
283 so_pendfree = NULL;
284 mutex_exit(&so_pendfree_lock);
285
286 for (; m != NULL; m = next) {
287 next = m->m_next;
288 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
289 KASSERT(m->m_ext.ext_refcnt == 0);
290
291 rv += m->m_ext.ext_size;
292 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
293 m->m_ext.ext_size);
294 pool_cache_put(mb_cache, m);
295 }
296
297 mutex_enter(&so_pendfree_lock);
298 }
299 if (rv)
300 cv_broadcast(&socurkva_cv);
301 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
302 }
303 panic("sopendfree_thread");
304 /* NOTREACHED */
305 }
306
307 void
308 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
309 {
310
311 KASSERT(m != NULL);
312
313 /*
314 * postpone freeing mbuf.
315 *
316 * we can't do it in interrupt context
317 * because we need to put kva back to kernel_map.
318 */
319
320 mutex_enter(&so_pendfree_lock);
321 m->m_next = so_pendfree;
322 so_pendfree = m;
323 cv_signal(&pendfree_thread_cv);
324 mutex_exit(&so_pendfree_lock);
325 }
326
327 static long
328 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
329 {
330 struct iovec *iov = uio->uio_iov;
331 vaddr_t sva, eva;
332 vsize_t len;
333 vaddr_t lva;
334 int npgs, error;
335 vaddr_t va;
336 int i;
337
338 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
339 return (0);
340
341 if (iov->iov_len < (size_t) space)
342 space = iov->iov_len;
343 if (space > SOCK_LOAN_CHUNK)
344 space = SOCK_LOAN_CHUNK;
345
346 eva = round_page((vaddr_t) iov->iov_base + space);
347 sva = trunc_page((vaddr_t) iov->iov_base);
348 len = eva - sva;
349 npgs = len >> PAGE_SHIFT;
350
351 KASSERT(npgs <= M_EXT_MAXPAGES);
352
353 lva = sokvaalloc(sva, len, so);
354 if (lva == 0)
355 return 0;
356
357 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
358 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
359 if (error) {
360 sokvafree(lva, len);
361 return (0);
362 }
363
364 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
365 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
366 VM_PROT_READ, 0);
367 pmap_update(pmap_kernel());
368
369 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
370
371 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
372 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
373
374 uio->uio_resid -= space;
375 /* uio_offset not updated, not set/used for write(2) */
376 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
377 uio->uio_iov->iov_len -= space;
378 if (uio->uio_iov->iov_len == 0) {
379 uio->uio_iov++;
380 uio->uio_iovcnt--;
381 }
382
383 return (space);
384 }
385
386 struct mbuf *
387 getsombuf(struct socket *so, int type)
388 {
389 struct mbuf *m;
390
391 m = m_get(M_WAIT, type);
392 MCLAIM(m, so->so_mowner);
393 return m;
394 }
395
396 static int
397 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
398 void *arg0, void *arg1, void *arg2, void *arg3)
399 {
400 int result;
401 enum kauth_network_req req;
402
403 result = KAUTH_RESULT_DEFER;
404 req = (enum kauth_network_req)arg0;
405
406 if ((action != KAUTH_NETWORK_SOCKET) &&
407 (action != KAUTH_NETWORK_BIND))
408 return result;
409
410 switch (req) {
411 case KAUTH_REQ_NETWORK_BIND_PORT:
412 result = KAUTH_RESULT_ALLOW;
413 break;
414
415 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
416 /* Normal users can only drop their own connections. */
417 struct socket *so = (struct socket *)arg1;
418
419 if (proc_uidmatch(cred, so->so_cred) == 0)
420 result = KAUTH_RESULT_ALLOW;
421
422 break;
423 }
424
425 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
426 /* We allow "raw" routing/bluetooth sockets to anyone. */
427 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
428 || (u_long)arg1 == PF_BLUETOOTH) {
429 result = KAUTH_RESULT_ALLOW;
430 } else {
431 /* Privileged, let secmodel handle this. */
432 if ((u_long)arg2 == SOCK_RAW)
433 break;
434 }
435
436 result = KAUTH_RESULT_ALLOW;
437
438 break;
439
440 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
441 result = KAUTH_RESULT_ALLOW;
442
443 break;
444
445 default:
446 break;
447 }
448
449 return result;
450 }
451
452 void
453 soinit(void)
454 {
455
456 sysctl_kern_socket_setup();
457
458 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
459 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
460 cv_init(&socurkva_cv, "sokva");
461 cv_init(&pendfree_thread_cv, "sopendfr");
462 soinit2();
463
464 /* Set the initial adjusted socket buffer size. */
465 if (sb_max_set(sb_max))
466 panic("bad initial sb_max value: %lu", sb_max);
467
468 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
469 socket_listener_cb, NULL);
470 }
471
472 void
473 soinit1(void)
474 {
475 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
476 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
477 if (error)
478 panic("soinit1 %d", error);
479 }
480
481 /*
482 * Socket operation routines.
483 * These routines are called by the routines in
484 * sys_socket.c or from a system process, and
485 * implement the semantics of socket operations by
486 * switching out to the protocol specific routines.
487 */
488 /*ARGSUSED*/
489 int
490 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
491 struct socket *lockso)
492 {
493 const struct protosw *prp;
494 struct socket *so;
495 uid_t uid;
496 int error;
497 kmutex_t *lock;
498
499 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
500 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
501 KAUTH_ARG(proto));
502 if (error != 0)
503 return error;
504
505 if (proto)
506 prp = pffindproto(dom, proto, type);
507 else
508 prp = pffindtype(dom, type);
509 if (prp == NULL) {
510 /* no support for domain */
511 if (pffinddomain(dom) == 0)
512 return EAFNOSUPPORT;
513 /* no support for socket type */
514 if (proto == 0 && type != 0)
515 return EPROTOTYPE;
516 return EPROTONOSUPPORT;
517 }
518 if (prp->pr_usrreq == NULL)
519 return EPROTONOSUPPORT;
520 if (prp->pr_type != type)
521 return EPROTOTYPE;
522
523 so = soget(true);
524 so->so_type = type;
525 so->so_proto = prp;
526 so->so_send = sosend;
527 so->so_receive = soreceive;
528 #ifdef MBUFTRACE
529 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
530 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
531 so->so_mowner = &prp->pr_domain->dom_mowner;
532 #endif
533 uid = kauth_cred_geteuid(l->l_cred);
534 so->so_uidinfo = uid_find(uid);
535 so->so_cpid = l->l_proc->p_pid;
536 if (lockso != NULL) {
537 /* Caller wants us to share a lock. */
538 lock = lockso->so_lock;
539 so->so_lock = lock;
540 mutex_obj_hold(lock);
541 /* XXX Why is this not solock, to match sounlock? */
542 mutex_enter(lock);
543 } else {
544 /* Lock assigned and taken during PRU_ATTACH. */
545 }
546 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
547 (struct mbuf *)(long)proto, NULL, l);
548 KASSERT(solocked(so));
549 if (error != 0) {
550 so->so_state |= SS_NOFDREF;
551 sofree(so);
552 return error;
553 }
554 so->so_cred = kauth_cred_dup(l->l_cred);
555 sounlock(so);
556 *aso = so;
557 return 0;
558 }
559
560 /* On success, write file descriptor to fdout and return zero. On
561 * failure, return non-zero; *fdout will be undefined.
562 */
563 int
564 fsocreate(int domain, struct socket **sop, int type, int protocol,
565 struct lwp *l, int *fdout)
566 {
567 struct socket *so;
568 struct file *fp;
569 int fd, error;
570 int flags = type & SOCK_FLAGS_MASK;
571
572 type &= ~SOCK_FLAGS_MASK;
573 if ((error = fd_allocfile(&fp, &fd)) != 0)
574 return error;
575 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
576 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
577 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
578 fp->f_type = DTYPE_SOCKET;
579 fp->f_ops = &socketops;
580 error = socreate(domain, &so, type, protocol, l, NULL);
581 if (error != 0) {
582 fd_abort(curproc, fp, fd);
583 } else {
584 if (sop != NULL)
585 *sop = so;
586 fp->f_data = so;
587 fd_affix(curproc, fp, fd);
588 *fdout = fd;
589 if (flags & SOCK_NONBLOCK)
590 so->so_state |= SS_NBIO;
591 }
592 return error;
593 }
594
595 int
596 sofamily(const struct socket *so)
597 {
598 const struct protosw *pr;
599 const struct domain *dom;
600
601 if ((pr = so->so_proto) == NULL)
602 return AF_UNSPEC;
603 if ((dom = pr->pr_domain) == NULL)
604 return AF_UNSPEC;
605 return dom->dom_family;
606 }
607
608 int
609 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
610 {
611 int error;
612
613 solock(so);
614 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
615 sounlock(so);
616 return error;
617 }
618
619 int
620 solisten(struct socket *so, int backlog, struct lwp *l)
621 {
622 int error;
623
624 solock(so);
625 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
626 SS_ISDISCONNECTING)) != 0) {
627 sounlock(so);
628 return (EINVAL);
629 }
630 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
631 NULL, NULL, l);
632 if (error != 0) {
633 sounlock(so);
634 return error;
635 }
636 if (TAILQ_EMPTY(&so->so_q))
637 so->so_options |= SO_ACCEPTCONN;
638 if (backlog < 0)
639 backlog = 0;
640 so->so_qlimit = min(backlog, somaxconn);
641 sounlock(so);
642 return 0;
643 }
644
645 void
646 sofree(struct socket *so)
647 {
648 u_int refs;
649
650 KASSERT(solocked(so));
651
652 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
653 sounlock(so);
654 return;
655 }
656 if (so->so_head) {
657 /*
658 * We must not decommission a socket that's on the accept(2)
659 * queue. If we do, then accept(2) may hang after select(2)
660 * indicated that the listening socket was ready.
661 */
662 if (!soqremque(so, 0)) {
663 sounlock(so);
664 return;
665 }
666 }
667 if (so->so_rcv.sb_hiwat)
668 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
669 RLIM_INFINITY);
670 if (so->so_snd.sb_hiwat)
671 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
672 RLIM_INFINITY);
673 sbrelease(&so->so_snd, so);
674 KASSERT(!cv_has_waiters(&so->so_cv));
675 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
676 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
677 sorflush(so);
678 refs = so->so_aborting; /* XXX */
679 /* Remove acccept filter if one is present. */
680 if (so->so_accf != NULL)
681 (void)accept_filt_clear(so);
682 sounlock(so);
683 if (refs == 0) /* XXX */
684 soput(so);
685 }
686
687 /*
688 * Close a socket on last file table reference removal.
689 * Initiate disconnect if connected.
690 * Free socket when disconnect complete.
691 */
692 int
693 soclose(struct socket *so)
694 {
695 struct socket *so2;
696 int error;
697 int error2;
698
699 error = 0;
700 solock(so);
701 if (so->so_options & SO_ACCEPTCONN) {
702 for (;;) {
703 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
704 KASSERT(solocked2(so, so2));
705 (void) soqremque(so2, 0);
706 /* soabort drops the lock. */
707 (void) soabort(so2);
708 solock(so);
709 continue;
710 }
711 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
712 KASSERT(solocked2(so, so2));
713 (void) soqremque(so2, 1);
714 /* soabort drops the lock. */
715 (void) soabort(so2);
716 solock(so);
717 continue;
718 }
719 break;
720 }
721 }
722 if (so->so_pcb == 0)
723 goto discard;
724 if (so->so_state & SS_ISCONNECTED) {
725 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
726 error = sodisconnect(so);
727 if (error)
728 goto drop;
729 }
730 if (so->so_options & SO_LINGER) {
731 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
732 (SS_ISDISCONNECTING|SS_NBIO))
733 goto drop;
734 while (so->so_state & SS_ISCONNECTED) {
735 error = sowait(so, true, so->so_linger * hz);
736 if (error)
737 break;
738 }
739 }
740 }
741 drop:
742 if (so->so_pcb) {
743 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
744 NULL, NULL, NULL, NULL);
745 if (error == 0)
746 error = error2;
747 }
748 discard:
749 if (so->so_state & SS_NOFDREF)
750 panic("soclose: NOFDREF");
751 kauth_cred_free(so->so_cred);
752 so->so_state |= SS_NOFDREF;
753 sofree(so);
754 return (error);
755 }
756
757 /*
758 * Must be called with the socket locked.. Will return with it unlocked.
759 */
760 int
761 soabort(struct socket *so)
762 {
763 u_int refs;
764 int error;
765
766 KASSERT(solocked(so));
767 KASSERT(so->so_head == NULL);
768
769 so->so_aborting++; /* XXX */
770 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
771 NULL, NULL, NULL);
772 refs = --so->so_aborting; /* XXX */
773 if (error || (refs == 0)) {
774 sofree(so);
775 } else {
776 sounlock(so);
777 }
778 return error;
779 }
780
781 int
782 soaccept(struct socket *so, struct mbuf *nam)
783 {
784 int error;
785
786 KASSERT(solocked(so));
787
788 error = 0;
789 if ((so->so_state & SS_NOFDREF) == 0)
790 panic("soaccept: !NOFDREF");
791 so->so_state &= ~SS_NOFDREF;
792 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
793 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
794 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
795 NULL, nam, NULL, NULL);
796 else
797 error = ECONNABORTED;
798
799 return (error);
800 }
801
802 int
803 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
804 {
805 int error;
806
807 KASSERT(solocked(so));
808
809 if (so->so_options & SO_ACCEPTCONN)
810 return (EOPNOTSUPP);
811 /*
812 * If protocol is connection-based, can only connect once.
813 * Otherwise, if connected, try to disconnect first.
814 * This allows user to disconnect by connecting to, e.g.,
815 * a null address.
816 */
817 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
818 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
819 (error = sodisconnect(so))))
820 error = EISCONN;
821 else
822 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
823 NULL, nam, NULL, l);
824 return (error);
825 }
826
827 int
828 soconnect2(struct socket *so1, struct socket *so2)
829 {
830 int error;
831
832 KASSERT(solocked2(so1, so2));
833
834 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
835 NULL, (struct mbuf *)so2, NULL, NULL);
836 return (error);
837 }
838
839 int
840 sodisconnect(struct socket *so)
841 {
842 int error;
843
844 KASSERT(solocked(so));
845
846 if ((so->so_state & SS_ISCONNECTED) == 0) {
847 error = ENOTCONN;
848 } else if (so->so_state & SS_ISDISCONNECTING) {
849 error = EALREADY;
850 } else {
851 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
852 NULL, NULL, NULL, NULL);
853 }
854 return (error);
855 }
856
857 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
858 /*
859 * Send on a socket.
860 * If send must go all at once and message is larger than
861 * send buffering, then hard error.
862 * Lock against other senders.
863 * If must go all at once and not enough room now, then
864 * inform user that this would block and do nothing.
865 * Otherwise, if nonblocking, send as much as possible.
866 * The data to be sent is described by "uio" if nonzero,
867 * otherwise by the mbuf chain "top" (which must be null
868 * if uio is not). Data provided in mbuf chain must be small
869 * enough to send all at once.
870 *
871 * Returns nonzero on error, timeout or signal; callers
872 * must check for short counts if EINTR/ERESTART are returned.
873 * Data and control buffers are freed on return.
874 */
875 int
876 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
877 struct mbuf *control, int flags, struct lwp *l)
878 {
879 struct mbuf **mp, *m;
880 long space, len, resid, clen, mlen;
881 int error, s, dontroute, atomic;
882 short wakeup_state = 0;
883
884 clen = 0;
885
886 /*
887 * solock() provides atomicity of access. splsoftnet() prevents
888 * protocol processing soft interrupts from interrupting us and
889 * blocking (expensive).
890 */
891 s = splsoftnet();
892 solock(so);
893 atomic = sosendallatonce(so) || top;
894 if (uio)
895 resid = uio->uio_resid;
896 else
897 resid = top->m_pkthdr.len;
898 /*
899 * In theory resid should be unsigned.
900 * However, space must be signed, as it might be less than 0
901 * if we over-committed, and we must use a signed comparison
902 * of space and resid. On the other hand, a negative resid
903 * causes us to loop sending 0-length segments to the protocol.
904 */
905 if (resid < 0) {
906 error = EINVAL;
907 goto out;
908 }
909 dontroute =
910 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
911 (so->so_proto->pr_flags & PR_ATOMIC);
912 l->l_ru.ru_msgsnd++;
913 if (control)
914 clen = control->m_len;
915 restart:
916 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
917 goto out;
918 do {
919 if (so->so_state & SS_CANTSENDMORE) {
920 error = EPIPE;
921 goto release;
922 }
923 if (so->so_error) {
924 error = so->so_error;
925 so->so_error = 0;
926 goto release;
927 }
928 if ((so->so_state & SS_ISCONNECTED) == 0) {
929 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
930 if ((so->so_state & SS_ISCONFIRMING) == 0 &&
931 !(resid == 0 && clen != 0)) {
932 error = ENOTCONN;
933 goto release;
934 }
935 } else if (addr == 0) {
936 error = EDESTADDRREQ;
937 goto release;
938 }
939 }
940 space = sbspace(&so->so_snd);
941 if (flags & MSG_OOB)
942 space += 1024;
943 if ((atomic && resid > so->so_snd.sb_hiwat) ||
944 clen > so->so_snd.sb_hiwat) {
945 error = EMSGSIZE;
946 goto release;
947 }
948 if (space < resid + clen &&
949 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
950 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
951 error = EWOULDBLOCK;
952 goto release;
953 }
954 sbunlock(&so->so_snd);
955 if (wakeup_state & SS_RESTARTSYS) {
956 error = ERESTART;
957 goto out;
958 }
959 error = sbwait(&so->so_snd);
960 if (error)
961 goto out;
962 wakeup_state = so->so_state;
963 goto restart;
964 }
965 wakeup_state = 0;
966 mp = ⊤
967 space -= clen;
968 do {
969 if (uio == NULL) {
970 /*
971 * Data is prepackaged in "top".
972 */
973 resid = 0;
974 if (flags & MSG_EOR)
975 top->m_flags |= M_EOR;
976 } else do {
977 sounlock(so);
978 splx(s);
979 if (top == NULL) {
980 m = m_gethdr(M_WAIT, MT_DATA);
981 mlen = MHLEN;
982 m->m_pkthdr.len = 0;
983 m->m_pkthdr.rcvif = NULL;
984 } else {
985 m = m_get(M_WAIT, MT_DATA);
986 mlen = MLEN;
987 }
988 MCLAIM(m, so->so_snd.sb_mowner);
989 if (sock_loan_thresh >= 0 &&
990 uio->uio_iov->iov_len >= sock_loan_thresh &&
991 space >= sock_loan_thresh &&
992 (len = sosend_loan(so, uio, m,
993 space)) != 0) {
994 SOSEND_COUNTER_INCR(&sosend_loan_big);
995 space -= len;
996 goto have_data;
997 }
998 if (resid >= MINCLSIZE && space >= MCLBYTES) {
999 SOSEND_COUNTER_INCR(&sosend_copy_big);
1000 m_clget(m, M_DONTWAIT);
1001 if ((m->m_flags & M_EXT) == 0)
1002 goto nopages;
1003 mlen = MCLBYTES;
1004 if (atomic && top == 0) {
1005 len = lmin(MCLBYTES - max_hdr,
1006 resid);
1007 m->m_data += max_hdr;
1008 } else
1009 len = lmin(MCLBYTES, resid);
1010 space -= len;
1011 } else {
1012 nopages:
1013 SOSEND_COUNTER_INCR(&sosend_copy_small);
1014 len = lmin(lmin(mlen, resid), space);
1015 space -= len;
1016 /*
1017 * For datagram protocols, leave room
1018 * for protocol headers in first mbuf.
1019 */
1020 if (atomic && top == 0 && len < mlen)
1021 MH_ALIGN(m, len);
1022 }
1023 error = uiomove(mtod(m, void *), (int)len, uio);
1024 have_data:
1025 resid = uio->uio_resid;
1026 m->m_len = len;
1027 *mp = m;
1028 top->m_pkthdr.len += len;
1029 s = splsoftnet();
1030 solock(so);
1031 if (error != 0)
1032 goto release;
1033 mp = &m->m_next;
1034 if (resid <= 0) {
1035 if (flags & MSG_EOR)
1036 top->m_flags |= M_EOR;
1037 break;
1038 }
1039 } while (space > 0 && atomic);
1040
1041 if (so->so_state & SS_CANTSENDMORE) {
1042 error = EPIPE;
1043 goto release;
1044 }
1045 if (dontroute)
1046 so->so_options |= SO_DONTROUTE;
1047 if (resid > 0)
1048 so->so_state |= SS_MORETOCOME;
1049 error = (*so->so_proto->pr_usrreq)(so,
1050 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
1051 top, addr, control, curlwp);
1052 if (dontroute)
1053 so->so_options &= ~SO_DONTROUTE;
1054 if (resid > 0)
1055 so->so_state &= ~SS_MORETOCOME;
1056 clen = 0;
1057 control = NULL;
1058 top = NULL;
1059 mp = ⊤
1060 if (error != 0)
1061 goto release;
1062 } while (resid && space > 0);
1063 } while (resid);
1064
1065 release:
1066 sbunlock(&so->so_snd);
1067 out:
1068 sounlock(so);
1069 splx(s);
1070 if (top)
1071 m_freem(top);
1072 if (control)
1073 m_freem(control);
1074 return (error);
1075 }
1076
1077 /*
1078 * Following replacement or removal of the first mbuf on the first
1079 * mbuf chain of a socket buffer, push necessary state changes back
1080 * into the socket buffer so that other consumers see the values
1081 * consistently. 'nextrecord' is the callers locally stored value of
1082 * the original value of sb->sb_mb->m_nextpkt which must be restored
1083 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1084 */
1085 static void
1086 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1087 {
1088
1089 KASSERT(solocked(sb->sb_so));
1090
1091 /*
1092 * First, update for the new value of nextrecord. If necessary,
1093 * make it the first record.
1094 */
1095 if (sb->sb_mb != NULL)
1096 sb->sb_mb->m_nextpkt = nextrecord;
1097 else
1098 sb->sb_mb = nextrecord;
1099
1100 /*
1101 * Now update any dependent socket buffer fields to reflect
1102 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1103 * the addition of a second clause that takes care of the
1104 * case where sb_mb has been updated, but remains the last
1105 * record.
1106 */
1107 if (sb->sb_mb == NULL) {
1108 sb->sb_mbtail = NULL;
1109 sb->sb_lastrecord = NULL;
1110 } else if (sb->sb_mb->m_nextpkt == NULL)
1111 sb->sb_lastrecord = sb->sb_mb;
1112 }
1113
1114 /*
1115 * Implement receive operations on a socket.
1116 * We depend on the way that records are added to the sockbuf
1117 * by sbappend*. In particular, each record (mbufs linked through m_next)
1118 * must begin with an address if the protocol so specifies,
1119 * followed by an optional mbuf or mbufs containing ancillary data,
1120 * and then zero or more mbufs of data.
1121 * In order to avoid blocking network interrupts for the entire time here,
1122 * we splx() while doing the actual copy to user space.
1123 * Although the sockbuf is locked, new data may still be appended,
1124 * and thus we must maintain consistency of the sockbuf during that time.
1125 *
1126 * The caller may receive the data as a single mbuf chain by supplying
1127 * an mbuf **mp0 for use in returning the chain. The uio is then used
1128 * only for the count in uio_resid.
1129 */
1130 int
1131 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1132 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1133 {
1134 struct lwp *l = curlwp;
1135 struct mbuf *m, **mp, *mt;
1136 size_t len, offset, moff, orig_resid;
1137 int atomic, flags, error, s, type;
1138 const struct protosw *pr;
1139 struct mbuf *nextrecord;
1140 int mbuf_removed = 0;
1141 const struct domain *dom;
1142 short wakeup_state = 0;
1143
1144 pr = so->so_proto;
1145 atomic = pr->pr_flags & PR_ATOMIC;
1146 dom = pr->pr_domain;
1147 mp = mp0;
1148 type = 0;
1149 orig_resid = uio->uio_resid;
1150
1151 if (paddr != NULL)
1152 *paddr = NULL;
1153 if (controlp != NULL)
1154 *controlp = NULL;
1155 if (flagsp != NULL)
1156 flags = *flagsp &~ MSG_EOR;
1157 else
1158 flags = 0;
1159
1160 if (flags & MSG_OOB) {
1161 m = m_get(M_WAIT, MT_DATA);
1162 solock(so);
1163 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1164 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1165 sounlock(so);
1166 if (error)
1167 goto bad;
1168 do {
1169 error = uiomove(mtod(m, void *),
1170 MIN(uio->uio_resid, m->m_len), uio);
1171 m = m_free(m);
1172 } while (uio->uio_resid > 0 && error == 0 && m);
1173 bad:
1174 if (m != NULL)
1175 m_freem(m);
1176 return error;
1177 }
1178 if (mp != NULL)
1179 *mp = NULL;
1180
1181 /*
1182 * solock() provides atomicity of access. splsoftnet() prevents
1183 * protocol processing soft interrupts from interrupting us and
1184 * blocking (expensive).
1185 */
1186 s = splsoftnet();
1187 solock(so);
1188 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
1189 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l);
1190
1191 restart:
1192 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1193 sounlock(so);
1194 splx(s);
1195 return error;
1196 }
1197
1198 m = so->so_rcv.sb_mb;
1199 /*
1200 * If we have less data than requested, block awaiting more
1201 * (subject to any timeout) if:
1202 * 1. the current count is less than the low water mark,
1203 * 2. MSG_WAITALL is set, and it is possible to do the entire
1204 * receive operation at once if we block (resid <= hiwat), or
1205 * 3. MSG_DONTWAIT is not set.
1206 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1207 * we have to do the receive in sections, and thus risk returning
1208 * a short count if a timeout or signal occurs after we start.
1209 */
1210 if (m == NULL ||
1211 ((flags & MSG_DONTWAIT) == 0 &&
1212 so->so_rcv.sb_cc < uio->uio_resid &&
1213 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1214 ((flags & MSG_WAITALL) &&
1215 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1216 m->m_nextpkt == NULL && !atomic)) {
1217 #ifdef DIAGNOSTIC
1218 if (m == NULL && so->so_rcv.sb_cc)
1219 panic("receive 1");
1220 #endif
1221 if (so->so_error) {
1222 if (m != NULL)
1223 goto dontblock;
1224 error = so->so_error;
1225 if ((flags & MSG_PEEK) == 0)
1226 so->so_error = 0;
1227 goto release;
1228 }
1229 if (so->so_state & SS_CANTRCVMORE) {
1230 if (m != NULL)
1231 goto dontblock;
1232 else
1233 goto release;
1234 }
1235 for (; m != NULL; m = m->m_next)
1236 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1237 m = so->so_rcv.sb_mb;
1238 goto dontblock;
1239 }
1240 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1241 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1242 error = ENOTCONN;
1243 goto release;
1244 }
1245 if (uio->uio_resid == 0)
1246 goto release;
1247 if ((so->so_state & SS_NBIO) ||
1248 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1249 error = EWOULDBLOCK;
1250 goto release;
1251 }
1252 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1253 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1254 sbunlock(&so->so_rcv);
1255 if (wakeup_state & SS_RESTARTSYS)
1256 error = ERESTART;
1257 else
1258 error = sbwait(&so->so_rcv);
1259 if (error != 0) {
1260 sounlock(so);
1261 splx(s);
1262 return error;
1263 }
1264 wakeup_state = so->so_state;
1265 goto restart;
1266 }
1267 dontblock:
1268 /*
1269 * On entry here, m points to the first record of the socket buffer.
1270 * From this point onward, we maintain 'nextrecord' as a cache of the
1271 * pointer to the next record in the socket buffer. We must keep the
1272 * various socket buffer pointers and local stack versions of the
1273 * pointers in sync, pushing out modifications before dropping the
1274 * socket lock, and re-reading them when picking it up.
1275 *
1276 * Otherwise, we will race with the network stack appending new data
1277 * or records onto the socket buffer by using inconsistent/stale
1278 * versions of the field, possibly resulting in socket buffer
1279 * corruption.
1280 *
1281 * By holding the high-level sblock(), we prevent simultaneous
1282 * readers from pulling off the front of the socket buffer.
1283 */
1284 if (l != NULL)
1285 l->l_ru.ru_msgrcv++;
1286 KASSERT(m == so->so_rcv.sb_mb);
1287 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1288 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1289 nextrecord = m->m_nextpkt;
1290 if (pr->pr_flags & PR_ADDR) {
1291 #ifdef DIAGNOSTIC
1292 if (m->m_type != MT_SONAME)
1293 panic("receive 1a");
1294 #endif
1295 orig_resid = 0;
1296 if (flags & MSG_PEEK) {
1297 if (paddr)
1298 *paddr = m_copy(m, 0, m->m_len);
1299 m = m->m_next;
1300 } else {
1301 sbfree(&so->so_rcv, m);
1302 mbuf_removed = 1;
1303 if (paddr != NULL) {
1304 *paddr = m;
1305 so->so_rcv.sb_mb = m->m_next;
1306 m->m_next = NULL;
1307 m = so->so_rcv.sb_mb;
1308 } else {
1309 MFREE(m, so->so_rcv.sb_mb);
1310 m = so->so_rcv.sb_mb;
1311 }
1312 sbsync(&so->so_rcv, nextrecord);
1313 }
1314 }
1315
1316 /*
1317 * Process one or more MT_CONTROL mbufs present before any data mbufs
1318 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1319 * just copy the data; if !MSG_PEEK, we call into the protocol to
1320 * perform externalization (or freeing if controlp == NULL).
1321 */
1322 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1323 struct mbuf *cm = NULL, *cmn;
1324 struct mbuf **cme = &cm;
1325
1326 do {
1327 if (flags & MSG_PEEK) {
1328 if (controlp != NULL) {
1329 *controlp = m_copy(m, 0, m->m_len);
1330 controlp = &(*controlp)->m_next;
1331 }
1332 m = m->m_next;
1333 } else {
1334 sbfree(&so->so_rcv, m);
1335 so->so_rcv.sb_mb = m->m_next;
1336 m->m_next = NULL;
1337 *cme = m;
1338 cme = &(*cme)->m_next;
1339 m = so->so_rcv.sb_mb;
1340 }
1341 } while (m != NULL && m->m_type == MT_CONTROL);
1342 if ((flags & MSG_PEEK) == 0)
1343 sbsync(&so->so_rcv, nextrecord);
1344 for (; cm != NULL; cm = cmn) {
1345 cmn = cm->m_next;
1346 cm->m_next = NULL;
1347 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1348 if (controlp != NULL) {
1349 if (dom->dom_externalize != NULL &&
1350 type == SCM_RIGHTS) {
1351 sounlock(so);
1352 splx(s);
1353 error = (*dom->dom_externalize)(cm, l,
1354 (flags & MSG_CMSG_CLOEXEC) ?
1355 O_CLOEXEC : 0);
1356 s = splsoftnet();
1357 solock(so);
1358 }
1359 *controlp = cm;
1360 while (*controlp != NULL)
1361 controlp = &(*controlp)->m_next;
1362 } else {
1363 /*
1364 * Dispose of any SCM_RIGHTS message that went
1365 * through the read path rather than recv.
1366 */
1367 if (dom->dom_dispose != NULL &&
1368 type == SCM_RIGHTS) {
1369 sounlock(so);
1370 (*dom->dom_dispose)(cm);
1371 solock(so);
1372 }
1373 m_freem(cm);
1374 }
1375 }
1376 if (m != NULL)
1377 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1378 else
1379 nextrecord = so->so_rcv.sb_mb;
1380 orig_resid = 0;
1381 }
1382
1383 /* If m is non-NULL, we have some data to read. */
1384 if (__predict_true(m != NULL)) {
1385 type = m->m_type;
1386 if (type == MT_OOBDATA)
1387 flags |= MSG_OOB;
1388 }
1389 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1390 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1391
1392 moff = 0;
1393 offset = 0;
1394 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1395 if (m->m_type == MT_OOBDATA) {
1396 if (type != MT_OOBDATA)
1397 break;
1398 } else if (type == MT_OOBDATA)
1399 break;
1400 #ifdef DIAGNOSTIC
1401 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1402 panic("receive 3");
1403 #endif
1404 so->so_state &= ~SS_RCVATMARK;
1405 wakeup_state = 0;
1406 len = uio->uio_resid;
1407 if (so->so_oobmark && len > so->so_oobmark - offset)
1408 len = so->so_oobmark - offset;
1409 if (len > m->m_len - moff)
1410 len = m->m_len - moff;
1411 /*
1412 * If mp is set, just pass back the mbufs.
1413 * Otherwise copy them out via the uio, then free.
1414 * Sockbuf must be consistent here (points to current mbuf,
1415 * it points to next record) when we drop priority;
1416 * we must note any additions to the sockbuf when we
1417 * block interrupts again.
1418 */
1419 if (mp == NULL) {
1420 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1421 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1422 sounlock(so);
1423 splx(s);
1424 error = uiomove(mtod(m, char *) + moff, len, uio);
1425 s = splsoftnet();
1426 solock(so);
1427 if (error != 0) {
1428 /*
1429 * If any part of the record has been removed
1430 * (such as the MT_SONAME mbuf, which will
1431 * happen when PR_ADDR, and thus also
1432 * PR_ATOMIC, is set), then drop the entire
1433 * record to maintain the atomicity of the
1434 * receive operation.
1435 *
1436 * This avoids a later panic("receive 1a")
1437 * when compiled with DIAGNOSTIC.
1438 */
1439 if (m && mbuf_removed && atomic)
1440 (void) sbdroprecord(&so->so_rcv);
1441
1442 goto release;
1443 }
1444 } else
1445 uio->uio_resid -= len;
1446 if (len == m->m_len - moff) {
1447 if (m->m_flags & M_EOR)
1448 flags |= MSG_EOR;
1449 if (flags & MSG_PEEK) {
1450 m = m->m_next;
1451 moff = 0;
1452 } else {
1453 nextrecord = m->m_nextpkt;
1454 sbfree(&so->so_rcv, m);
1455 if (mp) {
1456 *mp = m;
1457 mp = &m->m_next;
1458 so->so_rcv.sb_mb = m = m->m_next;
1459 *mp = NULL;
1460 } else {
1461 MFREE(m, so->so_rcv.sb_mb);
1462 m = so->so_rcv.sb_mb;
1463 }
1464 /*
1465 * If m != NULL, we also know that
1466 * so->so_rcv.sb_mb != NULL.
1467 */
1468 KASSERT(so->so_rcv.sb_mb == m);
1469 if (m) {
1470 m->m_nextpkt = nextrecord;
1471 if (nextrecord == NULL)
1472 so->so_rcv.sb_lastrecord = m;
1473 } else {
1474 so->so_rcv.sb_mb = nextrecord;
1475 SB_EMPTY_FIXUP(&so->so_rcv);
1476 }
1477 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1478 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1479 }
1480 } else if (flags & MSG_PEEK)
1481 moff += len;
1482 else {
1483 if (mp != NULL) {
1484 mt = m_copym(m, 0, len, M_NOWAIT);
1485 if (__predict_false(mt == NULL)) {
1486 sounlock(so);
1487 mt = m_copym(m, 0, len, M_WAIT);
1488 solock(so);
1489 }
1490 *mp = mt;
1491 }
1492 m->m_data += len;
1493 m->m_len -= len;
1494 so->so_rcv.sb_cc -= len;
1495 }
1496 if (so->so_oobmark) {
1497 if ((flags & MSG_PEEK) == 0) {
1498 so->so_oobmark -= len;
1499 if (so->so_oobmark == 0) {
1500 so->so_state |= SS_RCVATMARK;
1501 break;
1502 }
1503 } else {
1504 offset += len;
1505 if (offset == so->so_oobmark)
1506 break;
1507 }
1508 }
1509 if (flags & MSG_EOR)
1510 break;
1511 /*
1512 * If the MSG_WAITALL flag is set (for non-atomic socket),
1513 * we must not quit until "uio->uio_resid == 0" or an error
1514 * termination. If a signal/timeout occurs, return
1515 * with a short count but without error.
1516 * Keep sockbuf locked against other readers.
1517 */
1518 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1519 !sosendallatonce(so) && !nextrecord) {
1520 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1521 break;
1522 /*
1523 * If we are peeking and the socket receive buffer is
1524 * full, stop since we can't get more data to peek at.
1525 */
1526 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1527 break;
1528 /*
1529 * If we've drained the socket buffer, tell the
1530 * protocol in case it needs to do something to
1531 * get it filled again.
1532 */
1533 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1534 (*pr->pr_usrreq)(so, PRU_RCVD,
1535 NULL, (struct mbuf *)(long)flags, NULL, l);
1536 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1537 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1538 if (wakeup_state & SS_RESTARTSYS)
1539 error = ERESTART;
1540 else
1541 error = sbwait(&so->so_rcv);
1542 if (error != 0) {
1543 sbunlock(&so->so_rcv);
1544 sounlock(so);
1545 splx(s);
1546 return 0;
1547 }
1548 if ((m = so->so_rcv.sb_mb) != NULL)
1549 nextrecord = m->m_nextpkt;
1550 wakeup_state = so->so_state;
1551 }
1552 }
1553
1554 if (m && atomic) {
1555 flags |= MSG_TRUNC;
1556 if ((flags & MSG_PEEK) == 0)
1557 (void) sbdroprecord(&so->so_rcv);
1558 }
1559 if ((flags & MSG_PEEK) == 0) {
1560 if (m == NULL) {
1561 /*
1562 * First part is an inline SB_EMPTY_FIXUP(). Second
1563 * part makes sure sb_lastrecord is up-to-date if
1564 * there is still data in the socket buffer.
1565 */
1566 so->so_rcv.sb_mb = nextrecord;
1567 if (so->so_rcv.sb_mb == NULL) {
1568 so->so_rcv.sb_mbtail = NULL;
1569 so->so_rcv.sb_lastrecord = NULL;
1570 } else if (nextrecord->m_nextpkt == NULL)
1571 so->so_rcv.sb_lastrecord = nextrecord;
1572 }
1573 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1574 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1575 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1576 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1577 (struct mbuf *)(long)flags, NULL, l);
1578 }
1579 if (orig_resid == uio->uio_resid && orig_resid &&
1580 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1581 sbunlock(&so->so_rcv);
1582 goto restart;
1583 }
1584
1585 if (flagsp != NULL)
1586 *flagsp |= flags;
1587 release:
1588 sbunlock(&so->so_rcv);
1589 sounlock(so);
1590 splx(s);
1591 return error;
1592 }
1593
1594 int
1595 soshutdown(struct socket *so, int how)
1596 {
1597 const struct protosw *pr;
1598 int error;
1599
1600 KASSERT(solocked(so));
1601
1602 pr = so->so_proto;
1603 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1604 return (EINVAL);
1605
1606 if (how == SHUT_RD || how == SHUT_RDWR) {
1607 sorflush(so);
1608 error = 0;
1609 }
1610 if (how == SHUT_WR || how == SHUT_RDWR)
1611 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1612 NULL, NULL, NULL);
1613
1614 return error;
1615 }
1616
1617 void
1618 sorestart(struct socket *so)
1619 {
1620 /*
1621 * An application has called close() on an fd on which another
1622 * of its threads has called a socket system call.
1623 * Mark this and wake everyone up, and code that would block again
1624 * instead returns ERESTART.
1625 * On system call re-entry the fd is validated and EBADF returned.
1626 * Any other fd will block again on the 2nd syscall.
1627 */
1628 solock(so);
1629 so->so_state |= SS_RESTARTSYS;
1630 cv_broadcast(&so->so_cv);
1631 cv_broadcast(&so->so_snd.sb_cv);
1632 cv_broadcast(&so->so_rcv.sb_cv);
1633 sounlock(so);
1634 }
1635
1636 void
1637 sorflush(struct socket *so)
1638 {
1639 struct sockbuf *sb, asb;
1640 const struct protosw *pr;
1641
1642 KASSERT(solocked(so));
1643
1644 sb = &so->so_rcv;
1645 pr = so->so_proto;
1646 socantrcvmore(so);
1647 sb->sb_flags |= SB_NOINTR;
1648 (void )sblock(sb, M_WAITOK);
1649 sbunlock(sb);
1650 asb = *sb;
1651 /*
1652 * Clear most of the sockbuf structure, but leave some of the
1653 * fields valid.
1654 */
1655 memset(&sb->sb_startzero, 0,
1656 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1657 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1658 sounlock(so);
1659 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1660 solock(so);
1661 }
1662 sbrelease(&asb, so);
1663 }
1664
1665 /*
1666 * internal set SOL_SOCKET options
1667 */
1668 static int
1669 sosetopt1(struct socket *so, const struct sockopt *sopt)
1670 {
1671 int error = EINVAL, optval, opt;
1672 struct linger l;
1673 struct timeval tv;
1674
1675 switch ((opt = sopt->sopt_name)) {
1676
1677 case SO_ACCEPTFILTER:
1678 error = accept_filt_setopt(so, sopt);
1679 KASSERT(solocked(so));
1680 break;
1681
1682 case SO_LINGER:
1683 error = sockopt_get(sopt, &l, sizeof(l));
1684 solock(so);
1685 if (error)
1686 break;
1687 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1688 l.l_linger > (INT_MAX / hz)) {
1689 error = EDOM;
1690 break;
1691 }
1692 so->so_linger = l.l_linger;
1693 if (l.l_onoff)
1694 so->so_options |= SO_LINGER;
1695 else
1696 so->so_options &= ~SO_LINGER;
1697 break;
1698
1699 case SO_DEBUG:
1700 case SO_KEEPALIVE:
1701 case SO_DONTROUTE:
1702 case SO_USELOOPBACK:
1703 case SO_BROADCAST:
1704 case SO_REUSEADDR:
1705 case SO_REUSEPORT:
1706 case SO_OOBINLINE:
1707 case SO_TIMESTAMP:
1708 case SO_NOSIGPIPE:
1709 #ifdef SO_OTIMESTAMP
1710 case SO_OTIMESTAMP:
1711 #endif
1712 error = sockopt_getint(sopt, &optval);
1713 solock(so);
1714 if (error)
1715 break;
1716 if (optval)
1717 so->so_options |= opt;
1718 else
1719 so->so_options &= ~opt;
1720 break;
1721
1722 case SO_SNDBUF:
1723 case SO_RCVBUF:
1724 case SO_SNDLOWAT:
1725 case SO_RCVLOWAT:
1726 error = sockopt_getint(sopt, &optval);
1727 solock(so);
1728 if (error)
1729 break;
1730
1731 /*
1732 * Values < 1 make no sense for any of these
1733 * options, so disallow them.
1734 */
1735 if (optval < 1) {
1736 error = EINVAL;
1737 break;
1738 }
1739
1740 switch (opt) {
1741 case SO_SNDBUF:
1742 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1743 error = ENOBUFS;
1744 break;
1745 }
1746 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1747 break;
1748
1749 case SO_RCVBUF:
1750 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1751 error = ENOBUFS;
1752 break;
1753 }
1754 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1755 break;
1756
1757 /*
1758 * Make sure the low-water is never greater than
1759 * the high-water.
1760 */
1761 case SO_SNDLOWAT:
1762 if (optval > so->so_snd.sb_hiwat)
1763 optval = so->so_snd.sb_hiwat;
1764
1765 so->so_snd.sb_lowat = optval;
1766 break;
1767
1768 case SO_RCVLOWAT:
1769 if (optval > so->so_rcv.sb_hiwat)
1770 optval = so->so_rcv.sb_hiwat;
1771
1772 so->so_rcv.sb_lowat = optval;
1773 break;
1774 }
1775 break;
1776
1777 #ifdef COMPAT_50
1778 case SO_OSNDTIMEO:
1779 case SO_ORCVTIMEO: {
1780 struct timeval50 otv;
1781 error = sockopt_get(sopt, &otv, sizeof(otv));
1782 if (error) {
1783 solock(so);
1784 break;
1785 }
1786 timeval50_to_timeval(&otv, &tv);
1787 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1788 error = 0;
1789 /*FALLTHROUGH*/
1790 }
1791 #endif /* COMPAT_50 */
1792
1793 case SO_SNDTIMEO:
1794 case SO_RCVTIMEO:
1795 if (error)
1796 error = sockopt_get(sopt, &tv, sizeof(tv));
1797 solock(so);
1798 if (error)
1799 break;
1800
1801 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1802 error = EDOM;
1803 break;
1804 }
1805
1806 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1807 if (optval == 0 && tv.tv_usec != 0)
1808 optval = 1;
1809
1810 switch (opt) {
1811 case SO_SNDTIMEO:
1812 so->so_snd.sb_timeo = optval;
1813 break;
1814 case SO_RCVTIMEO:
1815 so->so_rcv.sb_timeo = optval;
1816 break;
1817 }
1818 break;
1819
1820 default:
1821 solock(so);
1822 error = ENOPROTOOPT;
1823 break;
1824 }
1825 KASSERT(solocked(so));
1826 return error;
1827 }
1828
1829 int
1830 sosetopt(struct socket *so, struct sockopt *sopt)
1831 {
1832 int error, prerr;
1833
1834 if (sopt->sopt_level == SOL_SOCKET) {
1835 error = sosetopt1(so, sopt);
1836 KASSERT(solocked(so));
1837 } else {
1838 error = ENOPROTOOPT;
1839 solock(so);
1840 }
1841
1842 if ((error == 0 || error == ENOPROTOOPT) &&
1843 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1844 /* give the protocol stack a shot */
1845 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1846 if (prerr == 0)
1847 error = 0;
1848 else if (prerr != ENOPROTOOPT)
1849 error = prerr;
1850 }
1851 sounlock(so);
1852 return error;
1853 }
1854
1855 /*
1856 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1857 */
1858 int
1859 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1860 const void *val, size_t valsize)
1861 {
1862 struct sockopt sopt;
1863 int error;
1864
1865 KASSERT(valsize == 0 || val != NULL);
1866
1867 sockopt_init(&sopt, level, name, valsize);
1868 sockopt_set(&sopt, val, valsize);
1869
1870 error = sosetopt(so, &sopt);
1871
1872 sockopt_destroy(&sopt);
1873
1874 return error;
1875 }
1876
1877 /*
1878 * internal get SOL_SOCKET options
1879 */
1880 static int
1881 sogetopt1(struct socket *so, struct sockopt *sopt)
1882 {
1883 int error, optval, opt;
1884 struct linger l;
1885 struct timeval tv;
1886
1887 switch ((opt = sopt->sopt_name)) {
1888
1889 case SO_ACCEPTFILTER:
1890 error = accept_filt_getopt(so, sopt);
1891 break;
1892
1893 case SO_LINGER:
1894 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1895 l.l_linger = so->so_linger;
1896
1897 error = sockopt_set(sopt, &l, sizeof(l));
1898 break;
1899
1900 case SO_USELOOPBACK:
1901 case SO_DONTROUTE:
1902 case SO_DEBUG:
1903 case SO_KEEPALIVE:
1904 case SO_REUSEADDR:
1905 case SO_REUSEPORT:
1906 case SO_BROADCAST:
1907 case SO_OOBINLINE:
1908 case SO_TIMESTAMP:
1909 case SO_NOSIGPIPE:
1910 #ifdef SO_OTIMESTAMP
1911 case SO_OTIMESTAMP:
1912 #endif
1913 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1914 break;
1915
1916 case SO_TYPE:
1917 error = sockopt_setint(sopt, so->so_type);
1918 break;
1919
1920 case SO_ERROR:
1921 error = sockopt_setint(sopt, so->so_error);
1922 so->so_error = 0;
1923 break;
1924
1925 case SO_SNDBUF:
1926 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1927 break;
1928
1929 case SO_RCVBUF:
1930 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1931 break;
1932
1933 case SO_SNDLOWAT:
1934 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1935 break;
1936
1937 case SO_RCVLOWAT:
1938 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1939 break;
1940
1941 #ifdef COMPAT_50
1942 case SO_OSNDTIMEO:
1943 case SO_ORCVTIMEO: {
1944 struct timeval50 otv;
1945
1946 optval = (opt == SO_OSNDTIMEO ?
1947 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1948
1949 otv.tv_sec = optval / hz;
1950 otv.tv_usec = (optval % hz) * tick;
1951
1952 error = sockopt_set(sopt, &otv, sizeof(otv));
1953 break;
1954 }
1955 #endif /* COMPAT_50 */
1956
1957 case SO_SNDTIMEO:
1958 case SO_RCVTIMEO:
1959 optval = (opt == SO_SNDTIMEO ?
1960 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1961
1962 tv.tv_sec = optval / hz;
1963 tv.tv_usec = (optval % hz) * tick;
1964
1965 error = sockopt_set(sopt, &tv, sizeof(tv));
1966 break;
1967
1968 case SO_OVERFLOWED:
1969 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1970 break;
1971
1972 default:
1973 error = ENOPROTOOPT;
1974 break;
1975 }
1976
1977 return (error);
1978 }
1979
1980 int
1981 sogetopt(struct socket *so, struct sockopt *sopt)
1982 {
1983 int error;
1984
1985 solock(so);
1986 if (sopt->sopt_level != SOL_SOCKET) {
1987 if (so->so_proto && so->so_proto->pr_ctloutput) {
1988 error = ((*so->so_proto->pr_ctloutput)
1989 (PRCO_GETOPT, so, sopt));
1990 } else
1991 error = (ENOPROTOOPT);
1992 } else {
1993 error = sogetopt1(so, sopt);
1994 }
1995 sounlock(so);
1996 return (error);
1997 }
1998
1999 /*
2000 * alloc sockopt data buffer buffer
2001 * - will be released at destroy
2002 */
2003 static int
2004 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2005 {
2006
2007 KASSERT(sopt->sopt_size == 0);
2008
2009 if (len > sizeof(sopt->sopt_buf)) {
2010 sopt->sopt_data = kmem_zalloc(len, kmflag);
2011 if (sopt->sopt_data == NULL)
2012 return ENOMEM;
2013 } else
2014 sopt->sopt_data = sopt->sopt_buf;
2015
2016 sopt->sopt_size = len;
2017 return 0;
2018 }
2019
2020 /*
2021 * initialise sockopt storage
2022 * - MAY sleep during allocation
2023 */
2024 void
2025 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2026 {
2027
2028 memset(sopt, 0, sizeof(*sopt));
2029
2030 sopt->sopt_level = level;
2031 sopt->sopt_name = name;
2032 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2033 }
2034
2035 /*
2036 * destroy sockopt storage
2037 * - will release any held memory references
2038 */
2039 void
2040 sockopt_destroy(struct sockopt *sopt)
2041 {
2042
2043 if (sopt->sopt_data != sopt->sopt_buf)
2044 kmem_free(sopt->sopt_data, sopt->sopt_size);
2045
2046 memset(sopt, 0, sizeof(*sopt));
2047 }
2048
2049 /*
2050 * set sockopt value
2051 * - value is copied into sockopt
2052 * - memory is allocated when necessary, will not sleep
2053 */
2054 int
2055 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2056 {
2057 int error;
2058
2059 if (sopt->sopt_size == 0) {
2060 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2061 if (error)
2062 return error;
2063 }
2064
2065 KASSERT(sopt->sopt_size == len);
2066 memcpy(sopt->sopt_data, buf, len);
2067 return 0;
2068 }
2069
2070 /*
2071 * common case of set sockopt integer value
2072 */
2073 int
2074 sockopt_setint(struct sockopt *sopt, int val)
2075 {
2076
2077 return sockopt_set(sopt, &val, sizeof(int));
2078 }
2079
2080 /*
2081 * get sockopt value
2082 * - correct size must be given
2083 */
2084 int
2085 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2086 {
2087
2088 if (sopt->sopt_size != len)
2089 return EINVAL;
2090
2091 memcpy(buf, sopt->sopt_data, len);
2092 return 0;
2093 }
2094
2095 /*
2096 * common case of get sockopt integer value
2097 */
2098 int
2099 sockopt_getint(const struct sockopt *sopt, int *valp)
2100 {
2101
2102 return sockopt_get(sopt, valp, sizeof(int));
2103 }
2104
2105 /*
2106 * set sockopt value from mbuf
2107 * - ONLY for legacy code
2108 * - mbuf is released by sockopt
2109 * - will not sleep
2110 */
2111 int
2112 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2113 {
2114 size_t len;
2115 int error;
2116
2117 len = m_length(m);
2118
2119 if (sopt->sopt_size == 0) {
2120 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2121 if (error)
2122 return error;
2123 }
2124
2125 KASSERT(sopt->sopt_size == len);
2126 m_copydata(m, 0, len, sopt->sopt_data);
2127 m_freem(m);
2128
2129 return 0;
2130 }
2131
2132 /*
2133 * get sockopt value into mbuf
2134 * - ONLY for legacy code
2135 * - mbuf to be released by the caller
2136 * - will not sleep
2137 */
2138 struct mbuf *
2139 sockopt_getmbuf(const struct sockopt *sopt)
2140 {
2141 struct mbuf *m;
2142
2143 if (sopt->sopt_size > MCLBYTES)
2144 return NULL;
2145
2146 m = m_get(M_DONTWAIT, MT_SOOPTS);
2147 if (m == NULL)
2148 return NULL;
2149
2150 if (sopt->sopt_size > MLEN) {
2151 MCLGET(m, M_DONTWAIT);
2152 if ((m->m_flags & M_EXT) == 0) {
2153 m_free(m);
2154 return NULL;
2155 }
2156 }
2157
2158 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2159 m->m_len = sopt->sopt_size;
2160
2161 return m;
2162 }
2163
2164 void
2165 sohasoutofband(struct socket *so)
2166 {
2167
2168 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2169 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2170 }
2171
2172 static void
2173 filt_sordetach(struct knote *kn)
2174 {
2175 struct socket *so;
2176
2177 so = ((file_t *)kn->kn_obj)->f_data;
2178 solock(so);
2179 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2180 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2181 so->so_rcv.sb_flags &= ~SB_KNOTE;
2182 sounlock(so);
2183 }
2184
2185 /*ARGSUSED*/
2186 static int
2187 filt_soread(struct knote *kn, long hint)
2188 {
2189 struct socket *so;
2190 int rv;
2191
2192 so = ((file_t *)kn->kn_obj)->f_data;
2193 if (hint != NOTE_SUBMIT)
2194 solock(so);
2195 kn->kn_data = so->so_rcv.sb_cc;
2196 if (so->so_state & SS_CANTRCVMORE) {
2197 kn->kn_flags |= EV_EOF;
2198 kn->kn_fflags = so->so_error;
2199 rv = 1;
2200 } else if (so->so_error) /* temporary udp error */
2201 rv = 1;
2202 else if (kn->kn_sfflags & NOTE_LOWAT)
2203 rv = (kn->kn_data >= kn->kn_sdata);
2204 else
2205 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2206 if (hint != NOTE_SUBMIT)
2207 sounlock(so);
2208 return rv;
2209 }
2210
2211 static void
2212 filt_sowdetach(struct knote *kn)
2213 {
2214 struct socket *so;
2215
2216 so = ((file_t *)kn->kn_obj)->f_data;
2217 solock(so);
2218 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2219 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2220 so->so_snd.sb_flags &= ~SB_KNOTE;
2221 sounlock(so);
2222 }
2223
2224 /*ARGSUSED*/
2225 static int
2226 filt_sowrite(struct knote *kn, long hint)
2227 {
2228 struct socket *so;
2229 int rv;
2230
2231 so = ((file_t *)kn->kn_obj)->f_data;
2232 if (hint != NOTE_SUBMIT)
2233 solock(so);
2234 kn->kn_data = sbspace(&so->so_snd);
2235 if (so->so_state & SS_CANTSENDMORE) {
2236 kn->kn_flags |= EV_EOF;
2237 kn->kn_fflags = so->so_error;
2238 rv = 1;
2239 } else if (so->so_error) /* temporary udp error */
2240 rv = 1;
2241 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2242 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2243 rv = 0;
2244 else if (kn->kn_sfflags & NOTE_LOWAT)
2245 rv = (kn->kn_data >= kn->kn_sdata);
2246 else
2247 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2248 if (hint != NOTE_SUBMIT)
2249 sounlock(so);
2250 return rv;
2251 }
2252
2253 /*ARGSUSED*/
2254 static int
2255 filt_solisten(struct knote *kn, long hint)
2256 {
2257 struct socket *so;
2258 int rv;
2259
2260 so = ((file_t *)kn->kn_obj)->f_data;
2261
2262 /*
2263 * Set kn_data to number of incoming connections, not
2264 * counting partial (incomplete) connections.
2265 */
2266 if (hint != NOTE_SUBMIT)
2267 solock(so);
2268 kn->kn_data = so->so_qlen;
2269 rv = (kn->kn_data > 0);
2270 if (hint != NOTE_SUBMIT)
2271 sounlock(so);
2272 return rv;
2273 }
2274
2275 static const struct filterops solisten_filtops =
2276 { 1, NULL, filt_sordetach, filt_solisten };
2277 static const struct filterops soread_filtops =
2278 { 1, NULL, filt_sordetach, filt_soread };
2279 static const struct filterops sowrite_filtops =
2280 { 1, NULL, filt_sowdetach, filt_sowrite };
2281
2282 int
2283 soo_kqfilter(struct file *fp, struct knote *kn)
2284 {
2285 struct socket *so;
2286 struct sockbuf *sb;
2287
2288 so = ((file_t *)kn->kn_obj)->f_data;
2289 solock(so);
2290 switch (kn->kn_filter) {
2291 case EVFILT_READ:
2292 if (so->so_options & SO_ACCEPTCONN)
2293 kn->kn_fop = &solisten_filtops;
2294 else
2295 kn->kn_fop = &soread_filtops;
2296 sb = &so->so_rcv;
2297 break;
2298 case EVFILT_WRITE:
2299 kn->kn_fop = &sowrite_filtops;
2300 sb = &so->so_snd;
2301 break;
2302 default:
2303 sounlock(so);
2304 return (EINVAL);
2305 }
2306 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2307 sb->sb_flags |= SB_KNOTE;
2308 sounlock(so);
2309 return (0);
2310 }
2311
2312 static int
2313 sodopoll(struct socket *so, int events)
2314 {
2315 int revents;
2316
2317 revents = 0;
2318
2319 if (events & (POLLIN | POLLRDNORM))
2320 if (soreadable(so))
2321 revents |= events & (POLLIN | POLLRDNORM);
2322
2323 if (events & (POLLOUT | POLLWRNORM))
2324 if (sowritable(so))
2325 revents |= events & (POLLOUT | POLLWRNORM);
2326
2327 if (events & (POLLPRI | POLLRDBAND))
2328 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2329 revents |= events & (POLLPRI | POLLRDBAND);
2330
2331 return revents;
2332 }
2333
2334 int
2335 sopoll(struct socket *so, int events)
2336 {
2337 int revents = 0;
2338
2339 #ifndef DIAGNOSTIC
2340 /*
2341 * Do a quick, unlocked check in expectation that the socket
2342 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2343 * as the solocked() assertions will fail.
2344 */
2345 if ((revents = sodopoll(so, events)) != 0)
2346 return revents;
2347 #endif
2348
2349 solock(so);
2350 if ((revents = sodopoll(so, events)) == 0) {
2351 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2352 selrecord(curlwp, &so->so_rcv.sb_sel);
2353 so->so_rcv.sb_flags |= SB_NOTIFY;
2354 }
2355
2356 if (events & (POLLOUT | POLLWRNORM)) {
2357 selrecord(curlwp, &so->so_snd.sb_sel);
2358 so->so_snd.sb_flags |= SB_NOTIFY;
2359 }
2360 }
2361 sounlock(so);
2362
2363 return revents;
2364 }
2365
2366
2367 #include <sys/sysctl.h>
2368
2369 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2370 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2371
2372 /*
2373 * sysctl helper routine for kern.somaxkva. ensures that the given
2374 * value is not too small.
2375 * (XXX should we maybe make sure it's not too large as well?)
2376 */
2377 static int
2378 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2379 {
2380 int error, new_somaxkva;
2381 struct sysctlnode node;
2382
2383 new_somaxkva = somaxkva;
2384 node = *rnode;
2385 node.sysctl_data = &new_somaxkva;
2386 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2387 if (error || newp == NULL)
2388 return (error);
2389
2390 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2391 return (EINVAL);
2392
2393 mutex_enter(&so_pendfree_lock);
2394 somaxkva = new_somaxkva;
2395 cv_broadcast(&socurkva_cv);
2396 mutex_exit(&so_pendfree_lock);
2397
2398 return (error);
2399 }
2400
2401 /*
2402 * sysctl helper routine for kern.sbmax. Basically just ensures that
2403 * any new value is not too small.
2404 */
2405 static int
2406 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2407 {
2408 int error, new_sbmax;
2409 struct sysctlnode node;
2410
2411 new_sbmax = sb_max;
2412 node = *rnode;
2413 node.sysctl_data = &new_sbmax;
2414 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2415 if (error || newp == NULL)
2416 return (error);
2417
2418 KERNEL_LOCK(1, NULL);
2419 error = sb_max_set(new_sbmax);
2420 KERNEL_UNLOCK_ONE(NULL);
2421
2422 return (error);
2423 }
2424
2425 static void
2426 sysctl_kern_socket_setup(void)
2427 {
2428
2429 KASSERT(socket_sysctllog == NULL);
2430 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2431 CTLFLAG_PERMANENT,
2432 CTLTYPE_NODE, "kern", NULL,
2433 NULL, 0, NULL, 0,
2434 CTL_KERN, CTL_EOL);
2435
2436 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2437 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2438 CTLTYPE_INT, "somaxkva",
2439 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2440 "used for socket buffers"),
2441 sysctl_kern_somaxkva, 0, NULL, 0,
2442 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2443
2444 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2445 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2446 CTLTYPE_INT, "sbmax",
2447 SYSCTL_DESCR("Maximum socket buffer size"),
2448 sysctl_kern_sbmax, 0, NULL, 0,
2449 CTL_KERN, KERN_SBMAX, CTL_EOL);
2450 }
2451