uipc_socket.c revision 1.220 1 /* $NetBSD: uipc_socket.c,v 1.220 2013/11/02 20:09:33 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.220 2013/11/02 20:09:33 christos Exp $");
67
68 #include "opt_compat_netbsd.h"
69 #include "opt_sock_counters.h"
70 #include "opt_sosend_loan.h"
71 #include "opt_mbuftrace.h"
72 #include "opt_somaxkva.h"
73 #include "opt_multiprocessor.h" /* XXX */
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/proc.h>
78 #include <sys/file.h>
79 #include <sys/filedesc.h>
80 #include <sys/kmem.h>
81 #include <sys/mbuf.h>
82 #include <sys/domain.h>
83 #include <sys/kernel.h>
84 #include <sys/protosw.h>
85 #include <sys/socket.h>
86 #include <sys/socketvar.h>
87 #include <sys/signalvar.h>
88 #include <sys/resourcevar.h>
89 #include <sys/uidinfo.h>
90 #include <sys/event.h>
91 #include <sys/poll.h>
92 #include <sys/kauth.h>
93 #include <sys/mutex.h>
94 #include <sys/condvar.h>
95 #include <sys/kthread.h>
96
97 #ifdef COMPAT_50
98 #include <compat/sys/time.h>
99 #include <compat/sys/socket.h>
100 #endif
101
102 #include <uvm/uvm_extern.h>
103 #include <uvm/uvm_loan.h>
104 #include <uvm/uvm_page.h>
105
106 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
107 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
108
109 extern const struct fileops socketops;
110
111 extern int somaxconn; /* patchable (XXX sysctl) */
112 int somaxconn = SOMAXCONN;
113 kmutex_t *softnet_lock;
114
115 #ifdef SOSEND_COUNTERS
116 #include <sys/device.h>
117
118 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
119 NULL, "sosend", "loan big");
120 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
121 NULL, "sosend", "copy big");
122 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
123 NULL, "sosend", "copy small");
124 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
125 NULL, "sosend", "kva limit");
126
127 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
128
129 EVCNT_ATTACH_STATIC(sosend_loan_big);
130 EVCNT_ATTACH_STATIC(sosend_copy_big);
131 EVCNT_ATTACH_STATIC(sosend_copy_small);
132 EVCNT_ATTACH_STATIC(sosend_kvalimit);
133 #else
134
135 #define SOSEND_COUNTER_INCR(ev) /* nothing */
136
137 #endif /* SOSEND_COUNTERS */
138
139 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
140 int sock_loan_thresh = -1;
141 #else
142 int sock_loan_thresh = 4096;
143 #endif
144
145 static kmutex_t so_pendfree_lock;
146 static struct mbuf *so_pendfree = NULL;
147
148 #ifndef SOMAXKVA
149 #define SOMAXKVA (16 * 1024 * 1024)
150 #endif
151 int somaxkva = SOMAXKVA;
152 static int socurkva;
153 static kcondvar_t socurkva_cv;
154
155 static kauth_listener_t socket_listener;
156
157 #define SOCK_LOAN_CHUNK 65536
158
159 static void sopendfree_thread(void *);
160 static kcondvar_t pendfree_thread_cv;
161 static lwp_t *sopendfree_lwp;
162
163 static void sysctl_kern_socket_setup(void);
164 static struct sysctllog *socket_sysctllog;
165
166 static vsize_t
167 sokvareserve(struct socket *so, vsize_t len)
168 {
169 int error;
170
171 mutex_enter(&so_pendfree_lock);
172 while (socurkva + len > somaxkva) {
173 SOSEND_COUNTER_INCR(&sosend_kvalimit);
174 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
175 if (error) {
176 len = 0;
177 break;
178 }
179 }
180 socurkva += len;
181 mutex_exit(&so_pendfree_lock);
182 return len;
183 }
184
185 static void
186 sokvaunreserve(vsize_t len)
187 {
188
189 mutex_enter(&so_pendfree_lock);
190 socurkva -= len;
191 cv_broadcast(&socurkva_cv);
192 mutex_exit(&so_pendfree_lock);
193 }
194
195 /*
196 * sokvaalloc: allocate kva for loan.
197 */
198
199 vaddr_t
200 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
201 {
202 vaddr_t lva;
203
204 /*
205 * reserve kva.
206 */
207
208 if (sokvareserve(so, len) == 0)
209 return 0;
210
211 /*
212 * allocate kva.
213 */
214
215 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
216 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
217 if (lva == 0) {
218 sokvaunreserve(len);
219 return (0);
220 }
221
222 return lva;
223 }
224
225 /*
226 * sokvafree: free kva for loan.
227 */
228
229 void
230 sokvafree(vaddr_t sva, vsize_t len)
231 {
232
233 /*
234 * free kva.
235 */
236
237 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
238
239 /*
240 * unreserve kva.
241 */
242
243 sokvaunreserve(len);
244 }
245
246 static void
247 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
248 {
249 vaddr_t sva, eva;
250 vsize_t len;
251 int npgs;
252
253 KASSERT(pgs != NULL);
254
255 eva = round_page((vaddr_t) buf + size);
256 sva = trunc_page((vaddr_t) buf);
257 len = eva - sva;
258 npgs = len >> PAGE_SHIFT;
259
260 pmap_kremove(sva, len);
261 pmap_update(pmap_kernel());
262 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
263 sokvafree(sva, len);
264 }
265
266 /*
267 * sopendfree_thread: free mbufs on "pendfree" list.
268 * unlock and relock so_pendfree_lock when freeing mbufs.
269 */
270
271 static void
272 sopendfree_thread(void *v)
273 {
274 struct mbuf *m, *next;
275 size_t rv;
276
277 mutex_enter(&so_pendfree_lock);
278
279 for (;;) {
280 rv = 0;
281 while (so_pendfree != NULL) {
282 m = so_pendfree;
283 so_pendfree = NULL;
284 mutex_exit(&so_pendfree_lock);
285
286 for (; m != NULL; m = next) {
287 next = m->m_next;
288 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
289 KASSERT(m->m_ext.ext_refcnt == 0);
290
291 rv += m->m_ext.ext_size;
292 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
293 m->m_ext.ext_size);
294 pool_cache_put(mb_cache, m);
295 }
296
297 mutex_enter(&so_pendfree_lock);
298 }
299 if (rv)
300 cv_broadcast(&socurkva_cv);
301 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
302 }
303 panic("sopendfree_thread");
304 /* NOTREACHED */
305 }
306
307 void
308 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
309 {
310
311 KASSERT(m != NULL);
312
313 /*
314 * postpone freeing mbuf.
315 *
316 * we can't do it in interrupt context
317 * because we need to put kva back to kernel_map.
318 */
319
320 mutex_enter(&so_pendfree_lock);
321 m->m_next = so_pendfree;
322 so_pendfree = m;
323 cv_signal(&pendfree_thread_cv);
324 mutex_exit(&so_pendfree_lock);
325 }
326
327 static long
328 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
329 {
330 struct iovec *iov = uio->uio_iov;
331 vaddr_t sva, eva;
332 vsize_t len;
333 vaddr_t lva;
334 int npgs, error;
335 vaddr_t va;
336 int i;
337
338 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
339 return (0);
340
341 if (iov->iov_len < (size_t) space)
342 space = iov->iov_len;
343 if (space > SOCK_LOAN_CHUNK)
344 space = SOCK_LOAN_CHUNK;
345
346 eva = round_page((vaddr_t) iov->iov_base + space);
347 sva = trunc_page((vaddr_t) iov->iov_base);
348 len = eva - sva;
349 npgs = len >> PAGE_SHIFT;
350
351 KASSERT(npgs <= M_EXT_MAXPAGES);
352
353 lva = sokvaalloc(sva, len, so);
354 if (lva == 0)
355 return 0;
356
357 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
358 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
359 if (error) {
360 sokvafree(lva, len);
361 return (0);
362 }
363
364 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
365 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
366 VM_PROT_READ, 0);
367 pmap_update(pmap_kernel());
368
369 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
370
371 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
372 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
373
374 uio->uio_resid -= space;
375 /* uio_offset not updated, not set/used for write(2) */
376 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
377 uio->uio_iov->iov_len -= space;
378 if (uio->uio_iov->iov_len == 0) {
379 uio->uio_iov++;
380 uio->uio_iovcnt--;
381 }
382
383 return (space);
384 }
385
386 struct mbuf *
387 getsombuf(struct socket *so, int type)
388 {
389 struct mbuf *m;
390
391 m = m_get(M_WAIT, type);
392 MCLAIM(m, so->so_mowner);
393 return m;
394 }
395
396 static int
397 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
398 void *arg0, void *arg1, void *arg2, void *arg3)
399 {
400 int result;
401 enum kauth_network_req req;
402
403 result = KAUTH_RESULT_DEFER;
404 req = (enum kauth_network_req)arg0;
405
406 if ((action != KAUTH_NETWORK_SOCKET) &&
407 (action != KAUTH_NETWORK_BIND))
408 return result;
409
410 switch (req) {
411 case KAUTH_REQ_NETWORK_BIND_PORT:
412 result = KAUTH_RESULT_ALLOW;
413 break;
414
415 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
416 /* Normal users can only drop their own connections. */
417 struct socket *so = (struct socket *)arg1;
418
419 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
420 result = KAUTH_RESULT_ALLOW;
421
422 break;
423 }
424
425 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
426 /* We allow "raw" routing/bluetooth sockets to anyone. */
427 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
428 || (u_long)arg1 == PF_BLUETOOTH) {
429 result = KAUTH_RESULT_ALLOW;
430 } else {
431 /* Privileged, let secmodel handle this. */
432 if ((u_long)arg2 == SOCK_RAW)
433 break;
434 }
435
436 result = KAUTH_RESULT_ALLOW;
437
438 break;
439
440 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
441 result = KAUTH_RESULT_ALLOW;
442
443 break;
444
445 default:
446 break;
447 }
448
449 return result;
450 }
451
452 void
453 soinit(void)
454 {
455
456 sysctl_kern_socket_setup();
457
458 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
459 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
460 cv_init(&socurkva_cv, "sokva");
461 cv_init(&pendfree_thread_cv, "sopendfr");
462 soinit2();
463
464 /* Set the initial adjusted socket buffer size. */
465 if (sb_max_set(sb_max))
466 panic("bad initial sb_max value: %lu", sb_max);
467
468 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
469 socket_listener_cb, NULL);
470 }
471
472 void
473 soinit1(void)
474 {
475 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
476 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
477 if (error)
478 panic("soinit1 %d", error);
479 }
480
481 /*
482 * Socket operation routines.
483 * These routines are called by the routines in
484 * sys_socket.c or from a system process, and
485 * implement the semantics of socket operations by
486 * switching out to the protocol specific routines.
487 */
488 /*ARGSUSED*/
489 int
490 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
491 struct socket *lockso)
492 {
493 const struct protosw *prp;
494 struct socket *so;
495 uid_t uid;
496 int error;
497 kmutex_t *lock;
498
499 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
500 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
501 KAUTH_ARG(proto));
502 if (error != 0)
503 return error;
504
505 if (proto)
506 prp = pffindproto(dom, proto, type);
507 else
508 prp = pffindtype(dom, type);
509 if (prp == NULL) {
510 /* no support for domain */
511 if (pffinddomain(dom) == 0)
512 return EAFNOSUPPORT;
513 /* no support for socket type */
514 if (proto == 0 && type != 0)
515 return EPROTOTYPE;
516 return EPROTONOSUPPORT;
517 }
518 if (prp->pr_usrreq == NULL)
519 return EPROTONOSUPPORT;
520 if (prp->pr_type != type)
521 return EPROTOTYPE;
522
523 so = soget(true);
524 so->so_type = type;
525 so->so_proto = prp;
526 so->so_send = sosend;
527 so->so_receive = soreceive;
528 #ifdef MBUFTRACE
529 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
530 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
531 so->so_mowner = &prp->pr_domain->dom_mowner;
532 #endif
533 uid = kauth_cred_geteuid(l->l_cred);
534 so->so_uidinfo = uid_find(uid);
535 so->so_cpid = l->l_proc->p_pid;
536 if (lockso != NULL) {
537 /* Caller wants us to share a lock. */
538 lock = lockso->so_lock;
539 so->so_lock = lock;
540 mutex_obj_hold(lock);
541 /* XXX Why is this not solock, to match sounlock? */
542 mutex_enter(lock);
543 } else {
544 /* Lock assigned and taken during PRU_ATTACH. */
545 }
546 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
547 (struct mbuf *)(long)proto, NULL, l);
548 KASSERT(solocked(so));
549 if (error != 0) {
550 so->so_state |= SS_NOFDREF;
551 sofree(so);
552 return error;
553 }
554 so->so_cred = kauth_cred_dup(l->l_cred);
555 sounlock(so);
556 *aso = so;
557 return 0;
558 }
559
560 /* On success, write file descriptor to fdout and return zero. On
561 * failure, return non-zero; *fdout will be undefined.
562 */
563 int
564 fsocreate(int domain, struct socket **sop, int type, int protocol,
565 struct lwp *l, int *fdout)
566 {
567 struct socket *so;
568 struct file *fp;
569 int fd, error;
570 int flags = type & SOCK_FLAGS_MASK;
571
572 type &= ~SOCK_FLAGS_MASK;
573 if ((error = fd_allocfile(&fp, &fd)) != 0)
574 return error;
575 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
576 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
577 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
578 fp->f_type = DTYPE_SOCKET;
579 fp->f_ops = &socketops;
580 error = socreate(domain, &so, type, protocol, l, NULL);
581 if (error != 0) {
582 fd_abort(curproc, fp, fd);
583 } else {
584 if (sop != NULL)
585 *sop = so;
586 fp->f_data = so;
587 fd_affix(curproc, fp, fd);
588 *fdout = fd;
589 if (flags & SOCK_NONBLOCK)
590 so->so_state |= SS_NBIO;
591 }
592 return error;
593 }
594
595 int
596 sofamily(const struct socket *so)
597 {
598 const struct protosw *pr;
599 const struct domain *dom;
600
601 if ((pr = so->so_proto) == NULL)
602 return AF_UNSPEC;
603 if ((dom = pr->pr_domain) == NULL)
604 return AF_UNSPEC;
605 return dom->dom_family;
606 }
607
608 int
609 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
610 {
611 int error;
612
613 solock(so);
614 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
615 sounlock(so);
616 return error;
617 }
618
619 int
620 solisten(struct socket *so, int backlog, struct lwp *l)
621 {
622 int error;
623
624 solock(so);
625 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
626 SS_ISDISCONNECTING)) != 0) {
627 sounlock(so);
628 return (EINVAL);
629 }
630 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
631 NULL, NULL, l);
632 if (error != 0) {
633 sounlock(so);
634 return error;
635 }
636 if (TAILQ_EMPTY(&so->so_q))
637 so->so_options |= SO_ACCEPTCONN;
638 if (backlog < 0)
639 backlog = 0;
640 so->so_qlimit = min(backlog, somaxconn);
641 sounlock(so);
642 return 0;
643 }
644
645 void
646 sofree(struct socket *so)
647 {
648 u_int refs;
649
650 KASSERT(solocked(so));
651
652 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
653 sounlock(so);
654 return;
655 }
656 if (so->so_head) {
657 /*
658 * We must not decommission a socket that's on the accept(2)
659 * queue. If we do, then accept(2) may hang after select(2)
660 * indicated that the listening socket was ready.
661 */
662 if (!soqremque(so, 0)) {
663 sounlock(so);
664 return;
665 }
666 }
667 if (so->so_rcv.sb_hiwat)
668 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
669 RLIM_INFINITY);
670 if (so->so_snd.sb_hiwat)
671 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
672 RLIM_INFINITY);
673 sbrelease(&so->so_snd, so);
674 KASSERT(!cv_has_waiters(&so->so_cv));
675 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
676 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
677 sorflush(so);
678 refs = so->so_aborting; /* XXX */
679 /* Remove acccept filter if one is present. */
680 if (so->so_accf != NULL)
681 (void)accept_filt_clear(so);
682 sounlock(so);
683 if (refs == 0) /* XXX */
684 soput(so);
685 }
686
687 /*
688 * Close a socket on last file table reference removal.
689 * Initiate disconnect if connected.
690 * Free socket when disconnect complete.
691 */
692 int
693 soclose(struct socket *so)
694 {
695 struct socket *so2;
696 int error;
697 int error2;
698
699 error = 0;
700 solock(so);
701 if (so->so_options & SO_ACCEPTCONN) {
702 for (;;) {
703 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
704 KASSERT(solocked2(so, so2));
705 (void) soqremque(so2, 0);
706 /* soabort drops the lock. */
707 (void) soabort(so2);
708 solock(so);
709 continue;
710 }
711 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
712 KASSERT(solocked2(so, so2));
713 (void) soqremque(so2, 1);
714 /* soabort drops the lock. */
715 (void) soabort(so2);
716 solock(so);
717 continue;
718 }
719 break;
720 }
721 }
722 if (so->so_pcb == 0)
723 goto discard;
724 if (so->so_state & SS_ISCONNECTED) {
725 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
726 error = sodisconnect(so);
727 if (error)
728 goto drop;
729 }
730 if (so->so_options & SO_LINGER) {
731 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
732 (SS_ISDISCONNECTING|SS_NBIO))
733 goto drop;
734 while (so->so_state & SS_ISCONNECTED) {
735 error = sowait(so, true, so->so_linger * hz);
736 if (error)
737 break;
738 }
739 }
740 }
741 drop:
742 if (so->so_pcb) {
743 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
744 NULL, NULL, NULL, NULL);
745 if (error == 0)
746 error = error2;
747 }
748 discard:
749 if (so->so_state & SS_NOFDREF)
750 panic("soclose: NOFDREF");
751 kauth_cred_free(so->so_cred);
752 so->so_state |= SS_NOFDREF;
753 sofree(so);
754 return (error);
755 }
756
757 /*
758 * Must be called with the socket locked.. Will return with it unlocked.
759 */
760 int
761 soabort(struct socket *so)
762 {
763 u_int refs;
764 int error;
765
766 KASSERT(solocked(so));
767 KASSERT(so->so_head == NULL);
768
769 so->so_aborting++; /* XXX */
770 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
771 NULL, NULL, NULL);
772 refs = --so->so_aborting; /* XXX */
773 if (error || (refs == 0)) {
774 sofree(so);
775 } else {
776 sounlock(so);
777 }
778 return error;
779 }
780
781 int
782 soaccept(struct socket *so, struct mbuf *nam)
783 {
784 int error;
785
786 KASSERT(solocked(so));
787
788 error = 0;
789 if ((so->so_state & SS_NOFDREF) == 0)
790 panic("soaccept: !NOFDREF");
791 so->so_state &= ~SS_NOFDREF;
792 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
793 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
794 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
795 NULL, nam, NULL, NULL);
796 else
797 error = ECONNABORTED;
798
799 return (error);
800 }
801
802 int
803 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
804 {
805 int error;
806
807 KASSERT(solocked(so));
808
809 if (so->so_options & SO_ACCEPTCONN)
810 return (EOPNOTSUPP);
811 /*
812 * If protocol is connection-based, can only connect once.
813 * Otherwise, if connected, try to disconnect first.
814 * This allows user to disconnect by connecting to, e.g.,
815 * a null address.
816 */
817 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
818 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
819 (error = sodisconnect(so))))
820 error = EISCONN;
821 else
822 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
823 NULL, nam, NULL, l);
824 return (error);
825 }
826
827 int
828 soconnect2(struct socket *so1, struct socket *so2)
829 {
830 int error;
831
832 KASSERT(solocked2(so1, so2));
833
834 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
835 NULL, (struct mbuf *)so2, NULL, NULL);
836 return (error);
837 }
838
839 int
840 sodisconnect(struct socket *so)
841 {
842 int error;
843
844 KASSERT(solocked(so));
845
846 if ((so->so_state & SS_ISCONNECTED) == 0) {
847 error = ENOTCONN;
848 } else if (so->so_state & SS_ISDISCONNECTING) {
849 error = EALREADY;
850 } else {
851 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
852 NULL, NULL, NULL, NULL);
853 }
854 return (error);
855 }
856
857 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
858 /*
859 * Send on a socket.
860 * If send must go all at once and message is larger than
861 * send buffering, then hard error.
862 * Lock against other senders.
863 * If must go all at once and not enough room now, then
864 * inform user that this would block and do nothing.
865 * Otherwise, if nonblocking, send as much as possible.
866 * The data to be sent is described by "uio" if nonzero,
867 * otherwise by the mbuf chain "top" (which must be null
868 * if uio is not). Data provided in mbuf chain must be small
869 * enough to send all at once.
870 *
871 * Returns nonzero on error, timeout or signal; callers
872 * must check for short counts if EINTR/ERESTART are returned.
873 * Data and control buffers are freed on return.
874 */
875 int
876 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
877 struct mbuf *control, int flags, struct lwp *l)
878 {
879 struct mbuf **mp, *m;
880 long space, len, resid, clen, mlen;
881 int error, s, dontroute, atomic;
882 short wakeup_state = 0;
883
884 clen = 0;
885
886 /*
887 * solock() provides atomicity of access. splsoftnet() prevents
888 * protocol processing soft interrupts from interrupting us and
889 * blocking (expensive).
890 */
891 s = splsoftnet();
892 solock(so);
893 atomic = sosendallatonce(so) || top;
894 if (uio)
895 resid = uio->uio_resid;
896 else
897 resid = top->m_pkthdr.len;
898 /*
899 * In theory resid should be unsigned.
900 * However, space must be signed, as it might be less than 0
901 * if we over-committed, and we must use a signed comparison
902 * of space and resid. On the other hand, a negative resid
903 * causes us to loop sending 0-length segments to the protocol.
904 */
905 if (resid < 0) {
906 error = EINVAL;
907 goto out;
908 }
909 dontroute =
910 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
911 (so->so_proto->pr_flags & PR_ATOMIC);
912 l->l_ru.ru_msgsnd++;
913 if (control)
914 clen = control->m_len;
915 restart:
916 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
917 goto out;
918 do {
919 if (so->so_state & SS_CANTSENDMORE) {
920 error = EPIPE;
921 goto release;
922 }
923 if (so->so_error) {
924 error = so->so_error;
925 so->so_error = 0;
926 goto release;
927 }
928 if ((so->so_state & SS_ISCONNECTED) == 0) {
929 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
930 if (resid || clen == 0) {
931 error = ENOTCONN;
932 goto release;
933 }
934 } else if (addr == 0) {
935 error = EDESTADDRREQ;
936 goto release;
937 }
938 }
939 space = sbspace(&so->so_snd);
940 if (flags & MSG_OOB)
941 space += 1024;
942 if ((atomic && resid > so->so_snd.sb_hiwat) ||
943 clen > so->so_snd.sb_hiwat) {
944 error = EMSGSIZE;
945 goto release;
946 }
947 if (space < resid + clen &&
948 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
949 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
950 error = EWOULDBLOCK;
951 goto release;
952 }
953 sbunlock(&so->so_snd);
954 if (wakeup_state & SS_RESTARTSYS) {
955 error = ERESTART;
956 goto out;
957 }
958 error = sbwait(&so->so_snd);
959 if (error)
960 goto out;
961 wakeup_state = so->so_state;
962 goto restart;
963 }
964 wakeup_state = 0;
965 mp = ⊤
966 space -= clen;
967 do {
968 if (uio == NULL) {
969 /*
970 * Data is prepackaged in "top".
971 */
972 resid = 0;
973 if (flags & MSG_EOR)
974 top->m_flags |= M_EOR;
975 } else do {
976 sounlock(so);
977 splx(s);
978 if (top == NULL) {
979 m = m_gethdr(M_WAIT, MT_DATA);
980 mlen = MHLEN;
981 m->m_pkthdr.len = 0;
982 m->m_pkthdr.rcvif = NULL;
983 } else {
984 m = m_get(M_WAIT, MT_DATA);
985 mlen = MLEN;
986 }
987 MCLAIM(m, so->so_snd.sb_mowner);
988 if (sock_loan_thresh >= 0 &&
989 uio->uio_iov->iov_len >= sock_loan_thresh &&
990 space >= sock_loan_thresh &&
991 (len = sosend_loan(so, uio, m,
992 space)) != 0) {
993 SOSEND_COUNTER_INCR(&sosend_loan_big);
994 space -= len;
995 goto have_data;
996 }
997 if (resid >= MINCLSIZE && space >= MCLBYTES) {
998 SOSEND_COUNTER_INCR(&sosend_copy_big);
999 m_clget(m, M_DONTWAIT);
1000 if ((m->m_flags & M_EXT) == 0)
1001 goto nopages;
1002 mlen = MCLBYTES;
1003 if (atomic && top == 0) {
1004 len = lmin(MCLBYTES - max_hdr,
1005 resid);
1006 m->m_data += max_hdr;
1007 } else
1008 len = lmin(MCLBYTES, resid);
1009 space -= len;
1010 } else {
1011 nopages:
1012 SOSEND_COUNTER_INCR(&sosend_copy_small);
1013 len = lmin(lmin(mlen, resid), space);
1014 space -= len;
1015 /*
1016 * For datagram protocols, leave room
1017 * for protocol headers in first mbuf.
1018 */
1019 if (atomic && top == 0 && len < mlen)
1020 MH_ALIGN(m, len);
1021 }
1022 error = uiomove(mtod(m, void *), (int)len, uio);
1023 have_data:
1024 resid = uio->uio_resid;
1025 m->m_len = len;
1026 *mp = m;
1027 top->m_pkthdr.len += len;
1028 s = splsoftnet();
1029 solock(so);
1030 if (error != 0)
1031 goto release;
1032 mp = &m->m_next;
1033 if (resid <= 0) {
1034 if (flags & MSG_EOR)
1035 top->m_flags |= M_EOR;
1036 break;
1037 }
1038 } while (space > 0 && atomic);
1039
1040 if (so->so_state & SS_CANTSENDMORE) {
1041 error = EPIPE;
1042 goto release;
1043 }
1044 if (dontroute)
1045 so->so_options |= SO_DONTROUTE;
1046 if (resid > 0)
1047 so->so_state |= SS_MORETOCOME;
1048 error = (*so->so_proto->pr_usrreq)(so,
1049 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
1050 top, addr, control, curlwp);
1051 if (dontroute)
1052 so->so_options &= ~SO_DONTROUTE;
1053 if (resid > 0)
1054 so->so_state &= ~SS_MORETOCOME;
1055 clen = 0;
1056 control = NULL;
1057 top = NULL;
1058 mp = ⊤
1059 if (error != 0)
1060 goto release;
1061 } while (resid && space > 0);
1062 } while (resid);
1063
1064 release:
1065 sbunlock(&so->so_snd);
1066 out:
1067 sounlock(so);
1068 splx(s);
1069 if (top)
1070 m_freem(top);
1071 if (control)
1072 m_freem(control);
1073 return (error);
1074 }
1075
1076 /*
1077 * Following replacement or removal of the first mbuf on the first
1078 * mbuf chain of a socket buffer, push necessary state changes back
1079 * into the socket buffer so that other consumers see the values
1080 * consistently. 'nextrecord' is the callers locally stored value of
1081 * the original value of sb->sb_mb->m_nextpkt which must be restored
1082 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1083 */
1084 static void
1085 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1086 {
1087
1088 KASSERT(solocked(sb->sb_so));
1089
1090 /*
1091 * First, update for the new value of nextrecord. If necessary,
1092 * make it the first record.
1093 */
1094 if (sb->sb_mb != NULL)
1095 sb->sb_mb->m_nextpkt = nextrecord;
1096 else
1097 sb->sb_mb = nextrecord;
1098
1099 /*
1100 * Now update any dependent socket buffer fields to reflect
1101 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1102 * the addition of a second clause that takes care of the
1103 * case where sb_mb has been updated, but remains the last
1104 * record.
1105 */
1106 if (sb->sb_mb == NULL) {
1107 sb->sb_mbtail = NULL;
1108 sb->sb_lastrecord = NULL;
1109 } else if (sb->sb_mb->m_nextpkt == NULL)
1110 sb->sb_lastrecord = sb->sb_mb;
1111 }
1112
1113 /*
1114 * Implement receive operations on a socket.
1115 * We depend on the way that records are added to the sockbuf
1116 * by sbappend*. In particular, each record (mbufs linked through m_next)
1117 * must begin with an address if the protocol so specifies,
1118 * followed by an optional mbuf or mbufs containing ancillary data,
1119 * and then zero or more mbufs of data.
1120 * In order to avoid blocking network interrupts for the entire time here,
1121 * we splx() while doing the actual copy to user space.
1122 * Although the sockbuf is locked, new data may still be appended,
1123 * and thus we must maintain consistency of the sockbuf during that time.
1124 *
1125 * The caller may receive the data as a single mbuf chain by supplying
1126 * an mbuf **mp0 for use in returning the chain. The uio is then used
1127 * only for the count in uio_resid.
1128 */
1129 int
1130 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1131 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1132 {
1133 struct lwp *l = curlwp;
1134 struct mbuf *m, **mp, *mt;
1135 size_t len, offset, moff, orig_resid;
1136 int atomic, flags, error, s, type;
1137 const struct protosw *pr;
1138 struct mbuf *nextrecord;
1139 int mbuf_removed = 0;
1140 const struct domain *dom;
1141 short wakeup_state = 0;
1142
1143 pr = so->so_proto;
1144 atomic = pr->pr_flags & PR_ATOMIC;
1145 dom = pr->pr_domain;
1146 mp = mp0;
1147 type = 0;
1148 orig_resid = uio->uio_resid;
1149
1150 if (paddr != NULL)
1151 *paddr = NULL;
1152 if (controlp != NULL)
1153 *controlp = NULL;
1154 if (flagsp != NULL)
1155 flags = *flagsp &~ MSG_EOR;
1156 else
1157 flags = 0;
1158
1159 if (flags & MSG_OOB) {
1160 m = m_get(M_WAIT, MT_DATA);
1161 solock(so);
1162 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1163 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1164 sounlock(so);
1165 if (error)
1166 goto bad;
1167 do {
1168 error = uiomove(mtod(m, void *),
1169 MIN(uio->uio_resid, m->m_len), uio);
1170 m = m_free(m);
1171 } while (uio->uio_resid > 0 && error == 0 && m);
1172 bad:
1173 if (m != NULL)
1174 m_freem(m);
1175 return error;
1176 }
1177 if (mp != NULL)
1178 *mp = NULL;
1179
1180 /*
1181 * solock() provides atomicity of access. splsoftnet() prevents
1182 * protocol processing soft interrupts from interrupting us and
1183 * blocking (expensive).
1184 */
1185 s = splsoftnet();
1186 solock(so);
1187 restart:
1188 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1189 sounlock(so);
1190 splx(s);
1191 return error;
1192 }
1193
1194 m = so->so_rcv.sb_mb;
1195 /*
1196 * If we have less data than requested, block awaiting more
1197 * (subject to any timeout) if:
1198 * 1. the current count is less than the low water mark,
1199 * 2. MSG_WAITALL is set, and it is possible to do the entire
1200 * receive operation at once if we block (resid <= hiwat), or
1201 * 3. MSG_DONTWAIT is not set.
1202 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1203 * we have to do the receive in sections, and thus risk returning
1204 * a short count if a timeout or signal occurs after we start.
1205 */
1206 if (m == NULL ||
1207 ((flags & MSG_DONTWAIT) == 0 &&
1208 so->so_rcv.sb_cc < uio->uio_resid &&
1209 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1210 ((flags & MSG_WAITALL) &&
1211 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1212 m->m_nextpkt == NULL && !atomic)) {
1213 #ifdef DIAGNOSTIC
1214 if (m == NULL && so->so_rcv.sb_cc)
1215 panic("receive 1");
1216 #endif
1217 if (so->so_error) {
1218 if (m != NULL)
1219 goto dontblock;
1220 error = so->so_error;
1221 if ((flags & MSG_PEEK) == 0)
1222 so->so_error = 0;
1223 goto release;
1224 }
1225 if (so->so_state & SS_CANTRCVMORE) {
1226 if (m != NULL)
1227 goto dontblock;
1228 else
1229 goto release;
1230 }
1231 for (; m != NULL; m = m->m_next)
1232 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1233 m = so->so_rcv.sb_mb;
1234 goto dontblock;
1235 }
1236 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1237 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1238 error = ENOTCONN;
1239 goto release;
1240 }
1241 if (uio->uio_resid == 0)
1242 goto release;
1243 if ((so->so_state & SS_NBIO) ||
1244 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1245 error = EWOULDBLOCK;
1246 goto release;
1247 }
1248 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1249 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1250 sbunlock(&so->so_rcv);
1251 if (wakeup_state & SS_RESTARTSYS)
1252 error = ERESTART;
1253 else
1254 error = sbwait(&so->so_rcv);
1255 if (error != 0) {
1256 sounlock(so);
1257 splx(s);
1258 return error;
1259 }
1260 wakeup_state = so->so_state;
1261 goto restart;
1262 }
1263 dontblock:
1264 /*
1265 * On entry here, m points to the first record of the socket buffer.
1266 * From this point onward, we maintain 'nextrecord' as a cache of the
1267 * pointer to the next record in the socket buffer. We must keep the
1268 * various socket buffer pointers and local stack versions of the
1269 * pointers in sync, pushing out modifications before dropping the
1270 * socket lock, and re-reading them when picking it up.
1271 *
1272 * Otherwise, we will race with the network stack appending new data
1273 * or records onto the socket buffer by using inconsistent/stale
1274 * versions of the field, possibly resulting in socket buffer
1275 * corruption.
1276 *
1277 * By holding the high-level sblock(), we prevent simultaneous
1278 * readers from pulling off the front of the socket buffer.
1279 */
1280 if (l != NULL)
1281 l->l_ru.ru_msgrcv++;
1282 KASSERT(m == so->so_rcv.sb_mb);
1283 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1284 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1285 nextrecord = m->m_nextpkt;
1286 if (pr->pr_flags & PR_ADDR) {
1287 #ifdef DIAGNOSTIC
1288 if (m->m_type != MT_SONAME)
1289 panic("receive 1a");
1290 #endif
1291 orig_resid = 0;
1292 if (flags & MSG_PEEK) {
1293 if (paddr)
1294 *paddr = m_copy(m, 0, m->m_len);
1295 m = m->m_next;
1296 } else {
1297 sbfree(&so->so_rcv, m);
1298 mbuf_removed = 1;
1299 if (paddr != NULL) {
1300 *paddr = m;
1301 so->so_rcv.sb_mb = m->m_next;
1302 m->m_next = NULL;
1303 m = so->so_rcv.sb_mb;
1304 } else {
1305 MFREE(m, so->so_rcv.sb_mb);
1306 m = so->so_rcv.sb_mb;
1307 }
1308 sbsync(&so->so_rcv, nextrecord);
1309 }
1310 }
1311
1312 /*
1313 * Process one or more MT_CONTROL mbufs present before any data mbufs
1314 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1315 * just copy the data; if !MSG_PEEK, we call into the protocol to
1316 * perform externalization (or freeing if controlp == NULL).
1317 */
1318 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1319 struct mbuf *cm = NULL, *cmn;
1320 struct mbuf **cme = &cm;
1321
1322 do {
1323 if (flags & MSG_PEEK) {
1324 if (controlp != NULL) {
1325 *controlp = m_copy(m, 0, m->m_len);
1326 controlp = &(*controlp)->m_next;
1327 }
1328 m = m->m_next;
1329 } else {
1330 sbfree(&so->so_rcv, m);
1331 so->so_rcv.sb_mb = m->m_next;
1332 m->m_next = NULL;
1333 *cme = m;
1334 cme = &(*cme)->m_next;
1335 m = so->so_rcv.sb_mb;
1336 }
1337 } while (m != NULL && m->m_type == MT_CONTROL);
1338 if ((flags & MSG_PEEK) == 0)
1339 sbsync(&so->so_rcv, nextrecord);
1340 for (; cm != NULL; cm = cmn) {
1341 cmn = cm->m_next;
1342 cm->m_next = NULL;
1343 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1344 if (controlp != NULL) {
1345 if (dom->dom_externalize != NULL &&
1346 type == SCM_RIGHTS) {
1347 sounlock(so);
1348 splx(s);
1349 error = (*dom->dom_externalize)(cm, l,
1350 (flags & MSG_CMSG_CLOEXEC) ?
1351 O_CLOEXEC : 0);
1352 s = splsoftnet();
1353 solock(so);
1354 }
1355 *controlp = cm;
1356 while (*controlp != NULL)
1357 controlp = &(*controlp)->m_next;
1358 } else {
1359 /*
1360 * Dispose of any SCM_RIGHTS message that went
1361 * through the read path rather than recv.
1362 */
1363 if (dom->dom_dispose != NULL &&
1364 type == SCM_RIGHTS) {
1365 sounlock(so);
1366 (*dom->dom_dispose)(cm);
1367 solock(so);
1368 }
1369 m_freem(cm);
1370 }
1371 }
1372 if (m != NULL)
1373 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1374 else
1375 nextrecord = so->so_rcv.sb_mb;
1376 orig_resid = 0;
1377 }
1378
1379 /* If m is non-NULL, we have some data to read. */
1380 if (__predict_true(m != NULL)) {
1381 type = m->m_type;
1382 if (type == MT_OOBDATA)
1383 flags |= MSG_OOB;
1384 }
1385 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1386 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1387
1388 moff = 0;
1389 offset = 0;
1390 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1391 if (m->m_type == MT_OOBDATA) {
1392 if (type != MT_OOBDATA)
1393 break;
1394 } else if (type == MT_OOBDATA)
1395 break;
1396 #ifdef DIAGNOSTIC
1397 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1398 panic("receive 3");
1399 #endif
1400 so->so_state &= ~SS_RCVATMARK;
1401 wakeup_state = 0;
1402 len = uio->uio_resid;
1403 if (so->so_oobmark && len > so->so_oobmark - offset)
1404 len = so->so_oobmark - offset;
1405 if (len > m->m_len - moff)
1406 len = m->m_len - moff;
1407 /*
1408 * If mp is set, just pass back the mbufs.
1409 * Otherwise copy them out via the uio, then free.
1410 * Sockbuf must be consistent here (points to current mbuf,
1411 * it points to next record) when we drop priority;
1412 * we must note any additions to the sockbuf when we
1413 * block interrupts again.
1414 */
1415 if (mp == NULL) {
1416 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1417 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1418 sounlock(so);
1419 splx(s);
1420 error = uiomove(mtod(m, char *) + moff, len, uio);
1421 s = splsoftnet();
1422 solock(so);
1423 if (error != 0) {
1424 /*
1425 * If any part of the record has been removed
1426 * (such as the MT_SONAME mbuf, which will
1427 * happen when PR_ADDR, and thus also
1428 * PR_ATOMIC, is set), then drop the entire
1429 * record to maintain the atomicity of the
1430 * receive operation.
1431 *
1432 * This avoids a later panic("receive 1a")
1433 * when compiled with DIAGNOSTIC.
1434 */
1435 if (m && mbuf_removed && atomic)
1436 (void) sbdroprecord(&so->so_rcv);
1437
1438 goto release;
1439 }
1440 } else
1441 uio->uio_resid -= len;
1442 if (len == m->m_len - moff) {
1443 if (m->m_flags & M_EOR)
1444 flags |= MSG_EOR;
1445 if (flags & MSG_PEEK) {
1446 m = m->m_next;
1447 moff = 0;
1448 } else {
1449 nextrecord = m->m_nextpkt;
1450 sbfree(&so->so_rcv, m);
1451 if (mp) {
1452 *mp = m;
1453 mp = &m->m_next;
1454 so->so_rcv.sb_mb = m = m->m_next;
1455 *mp = NULL;
1456 } else {
1457 MFREE(m, so->so_rcv.sb_mb);
1458 m = so->so_rcv.sb_mb;
1459 }
1460 /*
1461 * If m != NULL, we also know that
1462 * so->so_rcv.sb_mb != NULL.
1463 */
1464 KASSERT(so->so_rcv.sb_mb == m);
1465 if (m) {
1466 m->m_nextpkt = nextrecord;
1467 if (nextrecord == NULL)
1468 so->so_rcv.sb_lastrecord = m;
1469 } else {
1470 so->so_rcv.sb_mb = nextrecord;
1471 SB_EMPTY_FIXUP(&so->so_rcv);
1472 }
1473 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1474 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1475 }
1476 } else if (flags & MSG_PEEK)
1477 moff += len;
1478 else {
1479 if (mp != NULL) {
1480 mt = m_copym(m, 0, len, M_NOWAIT);
1481 if (__predict_false(mt == NULL)) {
1482 sounlock(so);
1483 mt = m_copym(m, 0, len, M_WAIT);
1484 solock(so);
1485 }
1486 *mp = mt;
1487 }
1488 m->m_data += len;
1489 m->m_len -= len;
1490 so->so_rcv.sb_cc -= len;
1491 }
1492 if (so->so_oobmark) {
1493 if ((flags & MSG_PEEK) == 0) {
1494 so->so_oobmark -= len;
1495 if (so->so_oobmark == 0) {
1496 so->so_state |= SS_RCVATMARK;
1497 break;
1498 }
1499 } else {
1500 offset += len;
1501 if (offset == so->so_oobmark)
1502 break;
1503 }
1504 }
1505 if (flags & MSG_EOR)
1506 break;
1507 /*
1508 * If the MSG_WAITALL flag is set (for non-atomic socket),
1509 * we must not quit until "uio->uio_resid == 0" or an error
1510 * termination. If a signal/timeout occurs, return
1511 * with a short count but without error.
1512 * Keep sockbuf locked against other readers.
1513 */
1514 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1515 !sosendallatonce(so) && !nextrecord) {
1516 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1517 break;
1518 /*
1519 * If we are peeking and the socket receive buffer is
1520 * full, stop since we can't get more data to peek at.
1521 */
1522 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1523 break;
1524 /*
1525 * If we've drained the socket buffer, tell the
1526 * protocol in case it needs to do something to
1527 * get it filled again.
1528 */
1529 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1530 (*pr->pr_usrreq)(so, PRU_RCVD,
1531 NULL, (struct mbuf *)(long)flags, NULL, l);
1532 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1533 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1534 if (wakeup_state & SS_RESTARTSYS)
1535 error = ERESTART;
1536 else
1537 error = sbwait(&so->so_rcv);
1538 if (error != 0) {
1539 sbunlock(&so->so_rcv);
1540 sounlock(so);
1541 splx(s);
1542 return 0;
1543 }
1544 if ((m = so->so_rcv.sb_mb) != NULL)
1545 nextrecord = m->m_nextpkt;
1546 wakeup_state = so->so_state;
1547 }
1548 }
1549
1550 if (m && atomic) {
1551 flags |= MSG_TRUNC;
1552 if ((flags & MSG_PEEK) == 0)
1553 (void) sbdroprecord(&so->so_rcv);
1554 }
1555 if ((flags & MSG_PEEK) == 0) {
1556 if (m == NULL) {
1557 /*
1558 * First part is an inline SB_EMPTY_FIXUP(). Second
1559 * part makes sure sb_lastrecord is up-to-date if
1560 * there is still data in the socket buffer.
1561 */
1562 so->so_rcv.sb_mb = nextrecord;
1563 if (so->so_rcv.sb_mb == NULL) {
1564 so->so_rcv.sb_mbtail = NULL;
1565 so->so_rcv.sb_lastrecord = NULL;
1566 } else if (nextrecord->m_nextpkt == NULL)
1567 so->so_rcv.sb_lastrecord = nextrecord;
1568 }
1569 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1570 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1571 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1572 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1573 (struct mbuf *)(long)flags, NULL, l);
1574 }
1575 if (orig_resid == uio->uio_resid && orig_resid &&
1576 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1577 sbunlock(&so->so_rcv);
1578 goto restart;
1579 }
1580
1581 if (flagsp != NULL)
1582 *flagsp |= flags;
1583 release:
1584 sbunlock(&so->so_rcv);
1585 sounlock(so);
1586 splx(s);
1587 return error;
1588 }
1589
1590 int
1591 soshutdown(struct socket *so, int how)
1592 {
1593 const struct protosw *pr;
1594 int error;
1595
1596 KASSERT(solocked(so));
1597
1598 pr = so->so_proto;
1599 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1600 return (EINVAL);
1601
1602 if (how == SHUT_RD || how == SHUT_RDWR) {
1603 sorflush(so);
1604 error = 0;
1605 }
1606 if (how == SHUT_WR || how == SHUT_RDWR)
1607 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1608 NULL, NULL, NULL);
1609
1610 return error;
1611 }
1612
1613 void
1614 sorestart(struct socket *so)
1615 {
1616 /*
1617 * An application has called close() on an fd on which another
1618 * of its threads has called a socket system call.
1619 * Mark this and wake everyone up, and code that would block again
1620 * instead returns ERESTART.
1621 * On system call re-entry the fd is validated and EBADF returned.
1622 * Any other fd will block again on the 2nd syscall.
1623 */
1624 solock(so);
1625 so->so_state |= SS_RESTARTSYS;
1626 cv_broadcast(&so->so_cv);
1627 cv_broadcast(&so->so_snd.sb_cv);
1628 cv_broadcast(&so->so_rcv.sb_cv);
1629 sounlock(so);
1630 }
1631
1632 void
1633 sorflush(struct socket *so)
1634 {
1635 struct sockbuf *sb, asb;
1636 const struct protosw *pr;
1637
1638 KASSERT(solocked(so));
1639
1640 sb = &so->so_rcv;
1641 pr = so->so_proto;
1642 socantrcvmore(so);
1643 sb->sb_flags |= SB_NOINTR;
1644 (void )sblock(sb, M_WAITOK);
1645 sbunlock(sb);
1646 asb = *sb;
1647 /*
1648 * Clear most of the sockbuf structure, but leave some of the
1649 * fields valid.
1650 */
1651 memset(&sb->sb_startzero, 0,
1652 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1653 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1654 sounlock(so);
1655 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1656 solock(so);
1657 }
1658 sbrelease(&asb, so);
1659 }
1660
1661 /*
1662 * internal set SOL_SOCKET options
1663 */
1664 static int
1665 sosetopt1(struct socket *so, const struct sockopt *sopt)
1666 {
1667 int error = EINVAL, opt;
1668 int optval = 0; /* XXX: gcc */
1669 struct linger l;
1670 struct timeval tv;
1671
1672 switch ((opt = sopt->sopt_name)) {
1673
1674 case SO_ACCEPTFILTER:
1675 error = accept_filt_setopt(so, sopt);
1676 KASSERT(solocked(so));
1677 break;
1678
1679 case SO_LINGER:
1680 error = sockopt_get(sopt, &l, sizeof(l));
1681 solock(so);
1682 if (error)
1683 break;
1684 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1685 l.l_linger > (INT_MAX / hz)) {
1686 error = EDOM;
1687 break;
1688 }
1689 so->so_linger = l.l_linger;
1690 if (l.l_onoff)
1691 so->so_options |= SO_LINGER;
1692 else
1693 so->so_options &= ~SO_LINGER;
1694 break;
1695
1696 case SO_DEBUG:
1697 case SO_KEEPALIVE:
1698 case SO_DONTROUTE:
1699 case SO_USELOOPBACK:
1700 case SO_BROADCAST:
1701 case SO_REUSEADDR:
1702 case SO_REUSEPORT:
1703 case SO_OOBINLINE:
1704 case SO_TIMESTAMP:
1705 case SO_NOSIGPIPE:
1706 #ifdef SO_OTIMESTAMP
1707 case SO_OTIMESTAMP:
1708 #endif
1709 error = sockopt_getint(sopt, &optval);
1710 solock(so);
1711 if (error)
1712 break;
1713 if (optval)
1714 so->so_options |= opt;
1715 else
1716 so->so_options &= ~opt;
1717 break;
1718
1719 case SO_SNDBUF:
1720 case SO_RCVBUF:
1721 case SO_SNDLOWAT:
1722 case SO_RCVLOWAT:
1723 error = sockopt_getint(sopt, &optval);
1724 solock(so);
1725 if (error)
1726 break;
1727
1728 /*
1729 * Values < 1 make no sense for any of these
1730 * options, so disallow them.
1731 */
1732 if (optval < 1) {
1733 error = EINVAL;
1734 break;
1735 }
1736
1737 switch (opt) {
1738 case SO_SNDBUF:
1739 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1740 error = ENOBUFS;
1741 break;
1742 }
1743 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1744 break;
1745
1746 case SO_RCVBUF:
1747 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1748 error = ENOBUFS;
1749 break;
1750 }
1751 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1752 break;
1753
1754 /*
1755 * Make sure the low-water is never greater than
1756 * the high-water.
1757 */
1758 case SO_SNDLOWAT:
1759 if (optval > so->so_snd.sb_hiwat)
1760 optval = so->so_snd.sb_hiwat;
1761
1762 so->so_snd.sb_lowat = optval;
1763 break;
1764
1765 case SO_RCVLOWAT:
1766 if (optval > so->so_rcv.sb_hiwat)
1767 optval = so->so_rcv.sb_hiwat;
1768
1769 so->so_rcv.sb_lowat = optval;
1770 break;
1771 }
1772 break;
1773
1774 #ifdef COMPAT_50
1775 case SO_OSNDTIMEO:
1776 case SO_ORCVTIMEO: {
1777 struct timeval50 otv;
1778 error = sockopt_get(sopt, &otv, sizeof(otv));
1779 if (error) {
1780 solock(so);
1781 break;
1782 }
1783 timeval50_to_timeval(&otv, &tv);
1784 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1785 error = 0;
1786 /*FALLTHROUGH*/
1787 }
1788 #endif /* COMPAT_50 */
1789
1790 case SO_SNDTIMEO:
1791 case SO_RCVTIMEO:
1792 if (error)
1793 error = sockopt_get(sopt, &tv, sizeof(tv));
1794 solock(so);
1795 if (error)
1796 break;
1797
1798 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1799 error = EDOM;
1800 break;
1801 }
1802
1803 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1804 if (optval == 0 && tv.tv_usec != 0)
1805 optval = 1;
1806
1807 switch (opt) {
1808 case SO_SNDTIMEO:
1809 so->so_snd.sb_timeo = optval;
1810 break;
1811 case SO_RCVTIMEO:
1812 so->so_rcv.sb_timeo = optval;
1813 break;
1814 }
1815 break;
1816
1817 default:
1818 solock(so);
1819 error = ENOPROTOOPT;
1820 break;
1821 }
1822 KASSERT(solocked(so));
1823 return error;
1824 }
1825
1826 int
1827 sosetopt(struct socket *so, struct sockopt *sopt)
1828 {
1829 int error, prerr;
1830
1831 if (sopt->sopt_level == SOL_SOCKET) {
1832 error = sosetopt1(so, sopt);
1833 KASSERT(solocked(so));
1834 } else {
1835 error = ENOPROTOOPT;
1836 solock(so);
1837 }
1838
1839 if ((error == 0 || error == ENOPROTOOPT) &&
1840 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1841 /* give the protocol stack a shot */
1842 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1843 if (prerr == 0)
1844 error = 0;
1845 else if (prerr != ENOPROTOOPT)
1846 error = prerr;
1847 }
1848 sounlock(so);
1849 return error;
1850 }
1851
1852 /*
1853 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1854 */
1855 int
1856 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1857 const void *val, size_t valsize)
1858 {
1859 struct sockopt sopt;
1860 int error;
1861
1862 KASSERT(valsize == 0 || val != NULL);
1863
1864 sockopt_init(&sopt, level, name, valsize);
1865 sockopt_set(&sopt, val, valsize);
1866
1867 error = sosetopt(so, &sopt);
1868
1869 sockopt_destroy(&sopt);
1870
1871 return error;
1872 }
1873
1874 /*
1875 * internal get SOL_SOCKET options
1876 */
1877 static int
1878 sogetopt1(struct socket *so, struct sockopt *sopt)
1879 {
1880 int error, optval, opt;
1881 struct linger l;
1882 struct timeval tv;
1883
1884 switch ((opt = sopt->sopt_name)) {
1885
1886 case SO_ACCEPTFILTER:
1887 error = accept_filt_getopt(so, sopt);
1888 break;
1889
1890 case SO_LINGER:
1891 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1892 l.l_linger = so->so_linger;
1893
1894 error = sockopt_set(sopt, &l, sizeof(l));
1895 break;
1896
1897 case SO_USELOOPBACK:
1898 case SO_DONTROUTE:
1899 case SO_DEBUG:
1900 case SO_KEEPALIVE:
1901 case SO_REUSEADDR:
1902 case SO_REUSEPORT:
1903 case SO_BROADCAST:
1904 case SO_OOBINLINE:
1905 case SO_TIMESTAMP:
1906 case SO_NOSIGPIPE:
1907 #ifdef SO_OTIMESTAMP
1908 case SO_OTIMESTAMP:
1909 #endif
1910 case SO_ACCEPTCONN:
1911 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1912 break;
1913
1914 case SO_TYPE:
1915 error = sockopt_setint(sopt, so->so_type);
1916 break;
1917
1918 case SO_ERROR:
1919 error = sockopt_setint(sopt, so->so_error);
1920 so->so_error = 0;
1921 break;
1922
1923 case SO_SNDBUF:
1924 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1925 break;
1926
1927 case SO_RCVBUF:
1928 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1929 break;
1930
1931 case SO_SNDLOWAT:
1932 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1933 break;
1934
1935 case SO_RCVLOWAT:
1936 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1937 break;
1938
1939 #ifdef COMPAT_50
1940 case SO_OSNDTIMEO:
1941 case SO_ORCVTIMEO: {
1942 struct timeval50 otv;
1943
1944 optval = (opt == SO_OSNDTIMEO ?
1945 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1946
1947 otv.tv_sec = optval / hz;
1948 otv.tv_usec = (optval % hz) * tick;
1949
1950 error = sockopt_set(sopt, &otv, sizeof(otv));
1951 break;
1952 }
1953 #endif /* COMPAT_50 */
1954
1955 case SO_SNDTIMEO:
1956 case SO_RCVTIMEO:
1957 optval = (opt == SO_SNDTIMEO ?
1958 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1959
1960 tv.tv_sec = optval / hz;
1961 tv.tv_usec = (optval % hz) * tick;
1962
1963 error = sockopt_set(sopt, &tv, sizeof(tv));
1964 break;
1965
1966 case SO_OVERFLOWED:
1967 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1968 break;
1969
1970 default:
1971 error = ENOPROTOOPT;
1972 break;
1973 }
1974
1975 return (error);
1976 }
1977
1978 int
1979 sogetopt(struct socket *so, struct sockopt *sopt)
1980 {
1981 int error;
1982
1983 solock(so);
1984 if (sopt->sopt_level != SOL_SOCKET) {
1985 if (so->so_proto && so->so_proto->pr_ctloutput) {
1986 error = ((*so->so_proto->pr_ctloutput)
1987 (PRCO_GETOPT, so, sopt));
1988 } else
1989 error = (ENOPROTOOPT);
1990 } else {
1991 error = sogetopt1(so, sopt);
1992 }
1993 sounlock(so);
1994 return (error);
1995 }
1996
1997 /*
1998 * alloc sockopt data buffer buffer
1999 * - will be released at destroy
2000 */
2001 static int
2002 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2003 {
2004
2005 KASSERT(sopt->sopt_size == 0);
2006
2007 if (len > sizeof(sopt->sopt_buf)) {
2008 sopt->sopt_data = kmem_zalloc(len, kmflag);
2009 if (sopt->sopt_data == NULL)
2010 return ENOMEM;
2011 } else
2012 sopt->sopt_data = sopt->sopt_buf;
2013
2014 sopt->sopt_size = len;
2015 return 0;
2016 }
2017
2018 /*
2019 * initialise sockopt storage
2020 * - MAY sleep during allocation
2021 */
2022 void
2023 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2024 {
2025
2026 memset(sopt, 0, sizeof(*sopt));
2027
2028 sopt->sopt_level = level;
2029 sopt->sopt_name = name;
2030 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2031 }
2032
2033 /*
2034 * destroy sockopt storage
2035 * - will release any held memory references
2036 */
2037 void
2038 sockopt_destroy(struct sockopt *sopt)
2039 {
2040
2041 if (sopt->sopt_data != sopt->sopt_buf)
2042 kmem_free(sopt->sopt_data, sopt->sopt_size);
2043
2044 memset(sopt, 0, sizeof(*sopt));
2045 }
2046
2047 /*
2048 * set sockopt value
2049 * - value is copied into sockopt
2050 * - memory is allocated when necessary, will not sleep
2051 */
2052 int
2053 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2054 {
2055 int error;
2056
2057 if (sopt->sopt_size == 0) {
2058 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2059 if (error)
2060 return error;
2061 }
2062
2063 KASSERT(sopt->sopt_size == len);
2064 memcpy(sopt->sopt_data, buf, len);
2065 return 0;
2066 }
2067
2068 /*
2069 * common case of set sockopt integer value
2070 */
2071 int
2072 sockopt_setint(struct sockopt *sopt, int val)
2073 {
2074
2075 return sockopt_set(sopt, &val, sizeof(int));
2076 }
2077
2078 /*
2079 * get sockopt value
2080 * - correct size must be given
2081 */
2082 int
2083 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2084 {
2085
2086 if (sopt->sopt_size != len)
2087 return EINVAL;
2088
2089 memcpy(buf, sopt->sopt_data, len);
2090 return 0;
2091 }
2092
2093 /*
2094 * common case of get sockopt integer value
2095 */
2096 int
2097 sockopt_getint(const struct sockopt *sopt, int *valp)
2098 {
2099
2100 return sockopt_get(sopt, valp, sizeof(int));
2101 }
2102
2103 /*
2104 * set sockopt value from mbuf
2105 * - ONLY for legacy code
2106 * - mbuf is released by sockopt
2107 * - will not sleep
2108 */
2109 int
2110 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2111 {
2112 size_t len;
2113 int error;
2114
2115 len = m_length(m);
2116
2117 if (sopt->sopt_size == 0) {
2118 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2119 if (error)
2120 return error;
2121 }
2122
2123 KASSERT(sopt->sopt_size == len);
2124 m_copydata(m, 0, len, sopt->sopt_data);
2125 m_freem(m);
2126
2127 return 0;
2128 }
2129
2130 /*
2131 * get sockopt value into mbuf
2132 * - ONLY for legacy code
2133 * - mbuf to be released by the caller
2134 * - will not sleep
2135 */
2136 struct mbuf *
2137 sockopt_getmbuf(const struct sockopt *sopt)
2138 {
2139 struct mbuf *m;
2140
2141 if (sopt->sopt_size > MCLBYTES)
2142 return NULL;
2143
2144 m = m_get(M_DONTWAIT, MT_SOOPTS);
2145 if (m == NULL)
2146 return NULL;
2147
2148 if (sopt->sopt_size > MLEN) {
2149 MCLGET(m, M_DONTWAIT);
2150 if ((m->m_flags & M_EXT) == 0) {
2151 m_free(m);
2152 return NULL;
2153 }
2154 }
2155
2156 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2157 m->m_len = sopt->sopt_size;
2158
2159 return m;
2160 }
2161
2162 void
2163 sohasoutofband(struct socket *so)
2164 {
2165
2166 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2167 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2168 }
2169
2170 static void
2171 filt_sordetach(struct knote *kn)
2172 {
2173 struct socket *so;
2174
2175 so = ((file_t *)kn->kn_obj)->f_data;
2176 solock(so);
2177 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2178 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2179 so->so_rcv.sb_flags &= ~SB_KNOTE;
2180 sounlock(so);
2181 }
2182
2183 /*ARGSUSED*/
2184 static int
2185 filt_soread(struct knote *kn, long hint)
2186 {
2187 struct socket *so;
2188 int rv;
2189
2190 so = ((file_t *)kn->kn_obj)->f_data;
2191 if (hint != NOTE_SUBMIT)
2192 solock(so);
2193 kn->kn_data = so->so_rcv.sb_cc;
2194 if (so->so_state & SS_CANTRCVMORE) {
2195 kn->kn_flags |= EV_EOF;
2196 kn->kn_fflags = so->so_error;
2197 rv = 1;
2198 } else if (so->so_error) /* temporary udp error */
2199 rv = 1;
2200 else if (kn->kn_sfflags & NOTE_LOWAT)
2201 rv = (kn->kn_data >= kn->kn_sdata);
2202 else
2203 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2204 if (hint != NOTE_SUBMIT)
2205 sounlock(so);
2206 return rv;
2207 }
2208
2209 static void
2210 filt_sowdetach(struct knote *kn)
2211 {
2212 struct socket *so;
2213
2214 so = ((file_t *)kn->kn_obj)->f_data;
2215 solock(so);
2216 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2217 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2218 so->so_snd.sb_flags &= ~SB_KNOTE;
2219 sounlock(so);
2220 }
2221
2222 /*ARGSUSED*/
2223 static int
2224 filt_sowrite(struct knote *kn, long hint)
2225 {
2226 struct socket *so;
2227 int rv;
2228
2229 so = ((file_t *)kn->kn_obj)->f_data;
2230 if (hint != NOTE_SUBMIT)
2231 solock(so);
2232 kn->kn_data = sbspace(&so->so_snd);
2233 if (so->so_state & SS_CANTSENDMORE) {
2234 kn->kn_flags |= EV_EOF;
2235 kn->kn_fflags = so->so_error;
2236 rv = 1;
2237 } else if (so->so_error) /* temporary udp error */
2238 rv = 1;
2239 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2240 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2241 rv = 0;
2242 else if (kn->kn_sfflags & NOTE_LOWAT)
2243 rv = (kn->kn_data >= kn->kn_sdata);
2244 else
2245 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2246 if (hint != NOTE_SUBMIT)
2247 sounlock(so);
2248 return rv;
2249 }
2250
2251 /*ARGSUSED*/
2252 static int
2253 filt_solisten(struct knote *kn, long hint)
2254 {
2255 struct socket *so;
2256 int rv;
2257
2258 so = ((file_t *)kn->kn_obj)->f_data;
2259
2260 /*
2261 * Set kn_data to number of incoming connections, not
2262 * counting partial (incomplete) connections.
2263 */
2264 if (hint != NOTE_SUBMIT)
2265 solock(so);
2266 kn->kn_data = so->so_qlen;
2267 rv = (kn->kn_data > 0);
2268 if (hint != NOTE_SUBMIT)
2269 sounlock(so);
2270 return rv;
2271 }
2272
2273 static const struct filterops solisten_filtops =
2274 { 1, NULL, filt_sordetach, filt_solisten };
2275 static const struct filterops soread_filtops =
2276 { 1, NULL, filt_sordetach, filt_soread };
2277 static const struct filterops sowrite_filtops =
2278 { 1, NULL, filt_sowdetach, filt_sowrite };
2279
2280 int
2281 soo_kqfilter(struct file *fp, struct knote *kn)
2282 {
2283 struct socket *so;
2284 struct sockbuf *sb;
2285
2286 so = ((file_t *)kn->kn_obj)->f_data;
2287 solock(so);
2288 switch (kn->kn_filter) {
2289 case EVFILT_READ:
2290 if (so->so_options & SO_ACCEPTCONN)
2291 kn->kn_fop = &solisten_filtops;
2292 else
2293 kn->kn_fop = &soread_filtops;
2294 sb = &so->so_rcv;
2295 break;
2296 case EVFILT_WRITE:
2297 kn->kn_fop = &sowrite_filtops;
2298 sb = &so->so_snd;
2299 break;
2300 default:
2301 sounlock(so);
2302 return (EINVAL);
2303 }
2304 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2305 sb->sb_flags |= SB_KNOTE;
2306 sounlock(so);
2307 return (0);
2308 }
2309
2310 static int
2311 sodopoll(struct socket *so, int events)
2312 {
2313 int revents;
2314
2315 revents = 0;
2316
2317 if (events & (POLLIN | POLLRDNORM))
2318 if (soreadable(so))
2319 revents |= events & (POLLIN | POLLRDNORM);
2320
2321 if (events & (POLLOUT | POLLWRNORM))
2322 if (sowritable(so))
2323 revents |= events & (POLLOUT | POLLWRNORM);
2324
2325 if (events & (POLLPRI | POLLRDBAND))
2326 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2327 revents |= events & (POLLPRI | POLLRDBAND);
2328
2329 return revents;
2330 }
2331
2332 int
2333 sopoll(struct socket *so, int events)
2334 {
2335 int revents = 0;
2336
2337 #ifndef DIAGNOSTIC
2338 /*
2339 * Do a quick, unlocked check in expectation that the socket
2340 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2341 * as the solocked() assertions will fail.
2342 */
2343 if ((revents = sodopoll(so, events)) != 0)
2344 return revents;
2345 #endif
2346
2347 solock(so);
2348 if ((revents = sodopoll(so, events)) == 0) {
2349 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2350 selrecord(curlwp, &so->so_rcv.sb_sel);
2351 so->so_rcv.sb_flags |= SB_NOTIFY;
2352 }
2353
2354 if (events & (POLLOUT | POLLWRNORM)) {
2355 selrecord(curlwp, &so->so_snd.sb_sel);
2356 so->so_snd.sb_flags |= SB_NOTIFY;
2357 }
2358 }
2359 sounlock(so);
2360
2361 return revents;
2362 }
2363
2364
2365 #include <sys/sysctl.h>
2366
2367 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2368 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2369
2370 /*
2371 * sysctl helper routine for kern.somaxkva. ensures that the given
2372 * value is not too small.
2373 * (XXX should we maybe make sure it's not too large as well?)
2374 */
2375 static int
2376 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2377 {
2378 int error, new_somaxkva;
2379 struct sysctlnode node;
2380
2381 new_somaxkva = somaxkva;
2382 node = *rnode;
2383 node.sysctl_data = &new_somaxkva;
2384 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2385 if (error || newp == NULL)
2386 return (error);
2387
2388 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2389 return (EINVAL);
2390
2391 mutex_enter(&so_pendfree_lock);
2392 somaxkva = new_somaxkva;
2393 cv_broadcast(&socurkva_cv);
2394 mutex_exit(&so_pendfree_lock);
2395
2396 return (error);
2397 }
2398
2399 /*
2400 * sysctl helper routine for kern.sbmax. Basically just ensures that
2401 * any new value is not too small.
2402 */
2403 static int
2404 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2405 {
2406 int error, new_sbmax;
2407 struct sysctlnode node;
2408
2409 new_sbmax = sb_max;
2410 node = *rnode;
2411 node.sysctl_data = &new_sbmax;
2412 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2413 if (error || newp == NULL)
2414 return (error);
2415
2416 KERNEL_LOCK(1, NULL);
2417 error = sb_max_set(new_sbmax);
2418 KERNEL_UNLOCK_ONE(NULL);
2419
2420 return (error);
2421 }
2422
2423 static void
2424 sysctl_kern_socket_setup(void)
2425 {
2426
2427 KASSERT(socket_sysctllog == NULL);
2428 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2429 CTLFLAG_PERMANENT,
2430 CTLTYPE_NODE, "kern", NULL,
2431 NULL, 0, NULL, 0,
2432 CTL_KERN, CTL_EOL);
2433
2434 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2435 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2436 CTLTYPE_INT, "somaxkva",
2437 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2438 "used for socket buffers"),
2439 sysctl_kern_somaxkva, 0, NULL, 0,
2440 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2441
2442 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2443 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2444 CTLTYPE_INT, "sbmax",
2445 SYSCTL_DESCR("Maximum socket buffer size"),
2446 sysctl_kern_sbmax, 0, NULL, 0,
2447 CTL_KERN, KERN_SBMAX, CTL_EOL);
2448 }
2449