Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.221
      1 /*	$NetBSD: uipc_socket.c,v 1.221 2014/02/25 18:30:11 pooka Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 #include <sys/cdefs.h>
     66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.221 2014/02/25 18:30:11 pooka Exp $");
     67 
     68 #include "opt_compat_netbsd.h"
     69 #include "opt_sock_counters.h"
     70 #include "opt_sosend_loan.h"
     71 #include "opt_mbuftrace.h"
     72 #include "opt_somaxkva.h"
     73 #include "opt_multiprocessor.h"	/* XXX */
     74 
     75 #include <sys/param.h>
     76 #include <sys/systm.h>
     77 #include <sys/proc.h>
     78 #include <sys/file.h>
     79 #include <sys/filedesc.h>
     80 #include <sys/kmem.h>
     81 #include <sys/mbuf.h>
     82 #include <sys/domain.h>
     83 #include <sys/kernel.h>
     84 #include <sys/protosw.h>
     85 #include <sys/socket.h>
     86 #include <sys/socketvar.h>
     87 #include <sys/signalvar.h>
     88 #include <sys/resourcevar.h>
     89 #include <sys/uidinfo.h>
     90 #include <sys/event.h>
     91 #include <sys/poll.h>
     92 #include <sys/kauth.h>
     93 #include <sys/mutex.h>
     94 #include <sys/condvar.h>
     95 #include <sys/kthread.h>
     96 
     97 #ifdef COMPAT_50
     98 #include <compat/sys/time.h>
     99 #include <compat/sys/socket.h>
    100 #endif
    101 
    102 #include <uvm/uvm_extern.h>
    103 #include <uvm/uvm_loan.h>
    104 #include <uvm/uvm_page.h>
    105 
    106 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options");
    107 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    108 
    109 extern const struct fileops socketops;
    110 
    111 extern int	somaxconn;			/* patchable (XXX sysctl) */
    112 int		somaxconn = SOMAXCONN;
    113 kmutex_t	*softnet_lock;
    114 
    115 #ifdef SOSEND_COUNTERS
    116 #include <sys/device.h>
    117 
    118 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    119     NULL, "sosend", "loan big");
    120 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    121     NULL, "sosend", "copy big");
    122 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    123     NULL, "sosend", "copy small");
    124 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    125     NULL, "sosend", "kva limit");
    126 
    127 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    128 
    129 EVCNT_ATTACH_STATIC(sosend_loan_big);
    130 EVCNT_ATTACH_STATIC(sosend_copy_big);
    131 EVCNT_ATTACH_STATIC(sosend_copy_small);
    132 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    133 #else
    134 
    135 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    136 
    137 #endif /* SOSEND_COUNTERS */
    138 
    139 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    140 int sock_loan_thresh = -1;
    141 #else
    142 int sock_loan_thresh = 4096;
    143 #endif
    144 
    145 static kmutex_t so_pendfree_lock;
    146 static struct mbuf *so_pendfree = NULL;
    147 
    148 #ifndef SOMAXKVA
    149 #define	SOMAXKVA (16 * 1024 * 1024)
    150 #endif
    151 int somaxkva = SOMAXKVA;
    152 static int socurkva;
    153 static kcondvar_t socurkva_cv;
    154 
    155 static kauth_listener_t socket_listener;
    156 
    157 #define	SOCK_LOAN_CHUNK		65536
    158 
    159 static void sopendfree_thread(void *);
    160 static kcondvar_t pendfree_thread_cv;
    161 static lwp_t *sopendfree_lwp;
    162 
    163 static void sysctl_kern_socket_setup(void);
    164 static struct sysctllog *socket_sysctllog;
    165 
    166 static vsize_t
    167 sokvareserve(struct socket *so, vsize_t len)
    168 {
    169 	int error;
    170 
    171 	mutex_enter(&so_pendfree_lock);
    172 	while (socurkva + len > somaxkva) {
    173 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    174 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    175 		if (error) {
    176 			len = 0;
    177 			break;
    178 		}
    179 	}
    180 	socurkva += len;
    181 	mutex_exit(&so_pendfree_lock);
    182 	return len;
    183 }
    184 
    185 static void
    186 sokvaunreserve(vsize_t len)
    187 {
    188 
    189 	mutex_enter(&so_pendfree_lock);
    190 	socurkva -= len;
    191 	cv_broadcast(&socurkva_cv);
    192 	mutex_exit(&so_pendfree_lock);
    193 }
    194 
    195 /*
    196  * sokvaalloc: allocate kva for loan.
    197  */
    198 
    199 vaddr_t
    200 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
    201 {
    202 	vaddr_t lva;
    203 
    204 	/*
    205 	 * reserve kva.
    206 	 */
    207 
    208 	if (sokvareserve(so, len) == 0)
    209 		return 0;
    210 
    211 	/*
    212 	 * allocate kva.
    213 	 */
    214 
    215 	lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
    216 	    UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    217 	if (lva == 0) {
    218 		sokvaunreserve(len);
    219 		return (0);
    220 	}
    221 
    222 	return lva;
    223 }
    224 
    225 /*
    226  * sokvafree: free kva for loan.
    227  */
    228 
    229 void
    230 sokvafree(vaddr_t sva, vsize_t len)
    231 {
    232 
    233 	/*
    234 	 * free kva.
    235 	 */
    236 
    237 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    238 
    239 	/*
    240 	 * unreserve kva.
    241 	 */
    242 
    243 	sokvaunreserve(len);
    244 }
    245 
    246 static void
    247 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    248 {
    249 	vaddr_t sva, eva;
    250 	vsize_t len;
    251 	int npgs;
    252 
    253 	KASSERT(pgs != NULL);
    254 
    255 	eva = round_page((vaddr_t) buf + size);
    256 	sva = trunc_page((vaddr_t) buf);
    257 	len = eva - sva;
    258 	npgs = len >> PAGE_SHIFT;
    259 
    260 	pmap_kremove(sva, len);
    261 	pmap_update(pmap_kernel());
    262 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    263 	sokvafree(sva, len);
    264 }
    265 
    266 /*
    267  * sopendfree_thread: free mbufs on "pendfree" list.
    268  * unlock and relock so_pendfree_lock when freeing mbufs.
    269  */
    270 
    271 static void
    272 sopendfree_thread(void *v)
    273 {
    274 	struct mbuf *m, *next;
    275 	size_t rv;
    276 
    277 	mutex_enter(&so_pendfree_lock);
    278 
    279 	for (;;) {
    280 		rv = 0;
    281 		while (so_pendfree != NULL) {
    282 			m = so_pendfree;
    283 			so_pendfree = NULL;
    284 			mutex_exit(&so_pendfree_lock);
    285 
    286 			for (; m != NULL; m = next) {
    287 				next = m->m_next;
    288 				KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
    289 				KASSERT(m->m_ext.ext_refcnt == 0);
    290 
    291 				rv += m->m_ext.ext_size;
    292 				sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    293 				    m->m_ext.ext_size);
    294 				pool_cache_put(mb_cache, m);
    295 			}
    296 
    297 			mutex_enter(&so_pendfree_lock);
    298 		}
    299 		if (rv)
    300 			cv_broadcast(&socurkva_cv);
    301 		cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
    302 	}
    303 	panic("sopendfree_thread");
    304 	/* NOTREACHED */
    305 }
    306 
    307 void
    308 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    309 {
    310 
    311 	KASSERT(m != NULL);
    312 
    313 	/*
    314 	 * postpone freeing mbuf.
    315 	 *
    316 	 * we can't do it in interrupt context
    317 	 * because we need to put kva back to kernel_map.
    318 	 */
    319 
    320 	mutex_enter(&so_pendfree_lock);
    321 	m->m_next = so_pendfree;
    322 	so_pendfree = m;
    323 	cv_signal(&pendfree_thread_cv);
    324 	mutex_exit(&so_pendfree_lock);
    325 }
    326 
    327 static long
    328 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    329 {
    330 	struct iovec *iov = uio->uio_iov;
    331 	vaddr_t sva, eva;
    332 	vsize_t len;
    333 	vaddr_t lva;
    334 	int npgs, error;
    335 	vaddr_t va;
    336 	int i;
    337 
    338 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    339 		return (0);
    340 
    341 	if (iov->iov_len < (size_t) space)
    342 		space = iov->iov_len;
    343 	if (space > SOCK_LOAN_CHUNK)
    344 		space = SOCK_LOAN_CHUNK;
    345 
    346 	eva = round_page((vaddr_t) iov->iov_base + space);
    347 	sva = trunc_page((vaddr_t) iov->iov_base);
    348 	len = eva - sva;
    349 	npgs = len >> PAGE_SHIFT;
    350 
    351 	KASSERT(npgs <= M_EXT_MAXPAGES);
    352 
    353 	lva = sokvaalloc(sva, len, so);
    354 	if (lva == 0)
    355 		return 0;
    356 
    357 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    358 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    359 	if (error) {
    360 		sokvafree(lva, len);
    361 		return (0);
    362 	}
    363 
    364 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    365 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    366 		    VM_PROT_READ, 0);
    367 	pmap_update(pmap_kernel());
    368 
    369 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    370 
    371 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    372 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    373 
    374 	uio->uio_resid -= space;
    375 	/* uio_offset not updated, not set/used for write(2) */
    376 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    377 	uio->uio_iov->iov_len -= space;
    378 	if (uio->uio_iov->iov_len == 0) {
    379 		uio->uio_iov++;
    380 		uio->uio_iovcnt--;
    381 	}
    382 
    383 	return (space);
    384 }
    385 
    386 struct mbuf *
    387 getsombuf(struct socket *so, int type)
    388 {
    389 	struct mbuf *m;
    390 
    391 	m = m_get(M_WAIT, type);
    392 	MCLAIM(m, so->so_mowner);
    393 	return m;
    394 }
    395 
    396 static int
    397 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    398     void *arg0, void *arg1, void *arg2, void *arg3)
    399 {
    400 	int result;
    401 	enum kauth_network_req req;
    402 
    403 	result = KAUTH_RESULT_DEFER;
    404 	req = (enum kauth_network_req)arg0;
    405 
    406 	if ((action != KAUTH_NETWORK_SOCKET) &&
    407 	    (action != KAUTH_NETWORK_BIND))
    408 		return result;
    409 
    410 	switch (req) {
    411 	case KAUTH_REQ_NETWORK_BIND_PORT:
    412 		result = KAUTH_RESULT_ALLOW;
    413 		break;
    414 
    415 	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
    416 		/* Normal users can only drop their own connections. */
    417 		struct socket *so = (struct socket *)arg1;
    418 
    419 		if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
    420 			result = KAUTH_RESULT_ALLOW;
    421 
    422 		break;
    423 		}
    424 
    425 	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
    426 		/* We allow "raw" routing/bluetooth sockets to anyone. */
    427 		if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
    428 		    || (u_long)arg1 == PF_BLUETOOTH) {
    429 			result = KAUTH_RESULT_ALLOW;
    430 		} else {
    431 			/* Privileged, let secmodel handle this. */
    432 			if ((u_long)arg2 == SOCK_RAW)
    433 				break;
    434 		}
    435 
    436 		result = KAUTH_RESULT_ALLOW;
    437 
    438 		break;
    439 
    440 	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
    441 		result = KAUTH_RESULT_ALLOW;
    442 
    443 		break;
    444 
    445 	default:
    446 		break;
    447 	}
    448 
    449 	return result;
    450 }
    451 
    452 void
    453 soinit(void)
    454 {
    455 
    456 	sysctl_kern_socket_setup();
    457 
    458 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    459 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    460 	cv_init(&socurkva_cv, "sokva");
    461 	cv_init(&pendfree_thread_cv, "sopendfr");
    462 	soinit2();
    463 
    464 	/* Set the initial adjusted socket buffer size. */
    465 	if (sb_max_set(sb_max))
    466 		panic("bad initial sb_max value: %lu", sb_max);
    467 
    468 	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    469 	    socket_listener_cb, NULL);
    470 }
    471 
    472 void
    473 soinit1(void)
    474 {
    475 	int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    476 	    sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
    477 	if (error)
    478 		panic("soinit1 %d", error);
    479 }
    480 
    481 /*
    482  * Socket operation routines.
    483  * These routines are called by the routines in
    484  * sys_socket.c or from a system process, and
    485  * implement the semantics of socket operations by
    486  * switching out to the protocol specific routines.
    487  */
    488 /*ARGSUSED*/
    489 int
    490 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    491 	 struct socket *lockso)
    492 {
    493 	const struct protosw	*prp;
    494 	struct socket	*so;
    495 	uid_t		uid;
    496 	int		error;
    497 	kmutex_t	*lock;
    498 
    499 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    500 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    501 	    KAUTH_ARG(proto));
    502 	if (error != 0)
    503 		return error;
    504 
    505 	if (proto)
    506 		prp = pffindproto(dom, proto, type);
    507 	else
    508 		prp = pffindtype(dom, type);
    509 	if (prp == NULL) {
    510 		/* no support for domain */
    511 		if (pffinddomain(dom) == 0)
    512 			return EAFNOSUPPORT;
    513 		/* no support for socket type */
    514 		if (proto == 0 && type != 0)
    515 			return EPROTOTYPE;
    516 		return EPROTONOSUPPORT;
    517 	}
    518 	if (prp->pr_usrreq == NULL)
    519 		return EPROTONOSUPPORT;
    520 	if (prp->pr_type != type)
    521 		return EPROTOTYPE;
    522 
    523 	so = soget(true);
    524 	so->so_type = type;
    525 	so->so_proto = prp;
    526 	so->so_send = sosend;
    527 	so->so_receive = soreceive;
    528 #ifdef MBUFTRACE
    529 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    530 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    531 	so->so_mowner = &prp->pr_domain->dom_mowner;
    532 #endif
    533 	uid = kauth_cred_geteuid(l->l_cred);
    534 	so->so_uidinfo = uid_find(uid);
    535 	so->so_cpid = l->l_proc->p_pid;
    536 	if (lockso != NULL) {
    537 		/* Caller wants us to share a lock. */
    538 		lock = lockso->so_lock;
    539 		so->so_lock = lock;
    540 		mutex_obj_hold(lock);
    541 		/* XXX Why is this not solock, to match sounlock? */
    542 		mutex_enter(lock);
    543 	} else {
    544 		/* Lock assigned and taken during PRU_ATTACH. */
    545 	}
    546 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
    547 	    (struct mbuf *)(long)proto, NULL, l);
    548 	KASSERT(solocked(so));
    549 	if (error != 0) {
    550 		so->so_state |= SS_NOFDREF;
    551 		sofree(so);
    552 		return error;
    553 	}
    554 	so->so_cred = kauth_cred_dup(l->l_cred);
    555 	sounlock(so);
    556 	*aso = so;
    557 	return 0;
    558 }
    559 
    560 /* On success, write file descriptor to fdout and return zero.  On
    561  * failure, return non-zero; *fdout will be undefined.
    562  */
    563 int
    564 fsocreate(int domain, struct socket **sop, int type, int protocol,
    565     struct lwp *l, int *fdout)
    566 {
    567 	struct socket	*so;
    568 	struct file	*fp;
    569 	int		fd, error;
    570 	int		flags = type & SOCK_FLAGS_MASK;
    571 
    572 	type &= ~SOCK_FLAGS_MASK;
    573 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    574 		return error;
    575 	fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
    576 	fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
    577 	    ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
    578 	fp->f_type = DTYPE_SOCKET;
    579 	fp->f_ops = &socketops;
    580 	error = socreate(domain, &so, type, protocol, l, NULL);
    581 	if (error != 0) {
    582 		fd_abort(curproc, fp, fd);
    583 	} else {
    584 		if (sop != NULL)
    585 			*sop = so;
    586 		fp->f_data = so;
    587 		fd_affix(curproc, fp, fd);
    588 		*fdout = fd;
    589 		if (flags & SOCK_NONBLOCK)
    590 			so->so_state |= SS_NBIO;
    591 	}
    592 	return error;
    593 }
    594 
    595 int
    596 sofamily(const struct socket *so)
    597 {
    598 	const struct protosw *pr;
    599 	const struct domain *dom;
    600 
    601 	if ((pr = so->so_proto) == NULL)
    602 		return AF_UNSPEC;
    603 	if ((dom = pr->pr_domain) == NULL)
    604 		return AF_UNSPEC;
    605 	return dom->dom_family;
    606 }
    607 
    608 int
    609 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    610 {
    611 	int	error;
    612 
    613 	solock(so);
    614 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
    615 	sounlock(so);
    616 	return error;
    617 }
    618 
    619 int
    620 solisten(struct socket *so, int backlog, struct lwp *l)
    621 {
    622 	int	error;
    623 
    624 	solock(so);
    625 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    626 	    SS_ISDISCONNECTING)) != 0) {
    627 	    	sounlock(so);
    628 		return (EINVAL);
    629 	}
    630 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
    631 	    NULL, NULL, l);
    632 	if (error != 0) {
    633 		sounlock(so);
    634 		return error;
    635 	}
    636 	if (TAILQ_EMPTY(&so->so_q))
    637 		so->so_options |= SO_ACCEPTCONN;
    638 	if (backlog < 0)
    639 		backlog = 0;
    640 	so->so_qlimit = min(backlog, somaxconn);
    641 	sounlock(so);
    642 	return 0;
    643 }
    644 
    645 void
    646 sofree(struct socket *so)
    647 {
    648 	u_int refs;
    649 
    650 	KASSERT(solocked(so));
    651 
    652 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    653 		sounlock(so);
    654 		return;
    655 	}
    656 	if (so->so_head) {
    657 		/*
    658 		 * We must not decommission a socket that's on the accept(2)
    659 		 * queue.  If we do, then accept(2) may hang after select(2)
    660 		 * indicated that the listening socket was ready.
    661 		 */
    662 		if (!soqremque(so, 0)) {
    663 			sounlock(so);
    664 			return;
    665 		}
    666 	}
    667 	if (so->so_rcv.sb_hiwat)
    668 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    669 		    RLIM_INFINITY);
    670 	if (so->so_snd.sb_hiwat)
    671 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    672 		    RLIM_INFINITY);
    673 	sbrelease(&so->so_snd, so);
    674 	KASSERT(!cv_has_waiters(&so->so_cv));
    675 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    676 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    677 	sorflush(so);
    678 	refs = so->so_aborting;	/* XXX */
    679 	/* Remove acccept filter if one is present. */
    680 	if (so->so_accf != NULL)
    681 		(void)accept_filt_clear(so);
    682 	sounlock(so);
    683 	if (refs == 0)		/* XXX */
    684 		soput(so);
    685 }
    686 
    687 /*
    688  * Close a socket on last file table reference removal.
    689  * Initiate disconnect if connected.
    690  * Free socket when disconnect complete.
    691  */
    692 int
    693 soclose(struct socket *so)
    694 {
    695 	struct socket	*so2;
    696 	int		error;
    697 	int		error2;
    698 
    699 	error = 0;
    700 	solock(so);
    701 	if (so->so_options & SO_ACCEPTCONN) {
    702 		for (;;) {
    703 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    704 				KASSERT(solocked2(so, so2));
    705 				(void) soqremque(so2, 0);
    706 				/* soabort drops the lock. */
    707 				(void) soabort(so2);
    708 				solock(so);
    709 				continue;
    710 			}
    711 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    712 				KASSERT(solocked2(so, so2));
    713 				(void) soqremque(so2, 1);
    714 				/* soabort drops the lock. */
    715 				(void) soabort(so2);
    716 				solock(so);
    717 				continue;
    718 			}
    719 			break;
    720 		}
    721 	}
    722 	if (so->so_pcb == 0)
    723 		goto discard;
    724 	if (so->so_state & SS_ISCONNECTED) {
    725 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    726 			error = sodisconnect(so);
    727 			if (error)
    728 				goto drop;
    729 		}
    730 		if (so->so_options & SO_LINGER) {
    731 			if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
    732 			    (SS_ISDISCONNECTING|SS_NBIO))
    733 				goto drop;
    734 			while (so->so_state & SS_ISCONNECTED) {
    735 				error = sowait(so, true, so->so_linger * hz);
    736 				if (error)
    737 					break;
    738 			}
    739 		}
    740 	}
    741  drop:
    742 	if (so->so_pcb) {
    743 		error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
    744 		    NULL, NULL, NULL, NULL);
    745 		if (error == 0)
    746 			error = error2;
    747 	}
    748  discard:
    749 	if (so->so_state & SS_NOFDREF)
    750 		panic("soclose: NOFDREF");
    751 	kauth_cred_free(so->so_cred);
    752 	so->so_state |= SS_NOFDREF;
    753 	sofree(so);
    754 	return (error);
    755 }
    756 
    757 /*
    758  * Must be called with the socket locked..  Will return with it unlocked.
    759  */
    760 int
    761 soabort(struct socket *so)
    762 {
    763 	u_int refs;
    764 	int error;
    765 
    766 	KASSERT(solocked(so));
    767 	KASSERT(so->so_head == NULL);
    768 
    769 	so->so_aborting++;		/* XXX */
    770 	error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
    771 	    NULL, NULL, NULL);
    772 	refs = --so->so_aborting;	/* XXX */
    773 	if (error || (refs == 0)) {
    774 		sofree(so);
    775 	} else {
    776 		sounlock(so);
    777 	}
    778 	return error;
    779 }
    780 
    781 int
    782 soaccept(struct socket *so, struct mbuf *nam)
    783 {
    784 	int	error;
    785 
    786 	KASSERT(solocked(so));
    787 
    788 	error = 0;
    789 	if ((so->so_state & SS_NOFDREF) == 0)
    790 		panic("soaccept: !NOFDREF");
    791 	so->so_state &= ~SS_NOFDREF;
    792 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    793 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    794 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
    795 		    NULL, nam, NULL, NULL);
    796 	else
    797 		error = ECONNABORTED;
    798 
    799 	return (error);
    800 }
    801 
    802 int
    803 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    804 {
    805 	int		error;
    806 
    807 	KASSERT(solocked(so));
    808 
    809 	if (so->so_options & SO_ACCEPTCONN)
    810 		return (EOPNOTSUPP);
    811 	/*
    812 	 * If protocol is connection-based, can only connect once.
    813 	 * Otherwise, if connected, try to disconnect first.
    814 	 * This allows user to disconnect by connecting to, e.g.,
    815 	 * a null address.
    816 	 */
    817 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    818 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    819 	    (error = sodisconnect(so))))
    820 		error = EISCONN;
    821 	else
    822 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
    823 		    NULL, nam, NULL, l);
    824 	return (error);
    825 }
    826 
    827 int
    828 soconnect2(struct socket *so1, struct socket *so2)
    829 {
    830 	int	error;
    831 
    832 	KASSERT(solocked2(so1, so2));
    833 
    834 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
    835 	    NULL, (struct mbuf *)so2, NULL, NULL);
    836 	return (error);
    837 }
    838 
    839 int
    840 sodisconnect(struct socket *so)
    841 {
    842 	int	error;
    843 
    844 	KASSERT(solocked(so));
    845 
    846 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    847 		error = ENOTCONN;
    848 	} else if (so->so_state & SS_ISDISCONNECTING) {
    849 		error = EALREADY;
    850 	} else {
    851 		error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
    852 		    NULL, NULL, NULL, NULL);
    853 	}
    854 	return (error);
    855 }
    856 
    857 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    858 /*
    859  * Send on a socket.
    860  * If send must go all at once and message is larger than
    861  * send buffering, then hard error.
    862  * Lock against other senders.
    863  * If must go all at once and not enough room now, then
    864  * inform user that this would block and do nothing.
    865  * Otherwise, if nonblocking, send as much as possible.
    866  * The data to be sent is described by "uio" if nonzero,
    867  * otherwise by the mbuf chain "top" (which must be null
    868  * if uio is not).  Data provided in mbuf chain must be small
    869  * enough to send all at once.
    870  *
    871  * Returns nonzero on error, timeout or signal; callers
    872  * must check for short counts if EINTR/ERESTART are returned.
    873  * Data and control buffers are freed on return.
    874  */
    875 int
    876 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    877 	struct mbuf *control, int flags, struct lwp *l)
    878 {
    879 	struct mbuf	**mp, *m;
    880 	long		space, len, resid, clen, mlen;
    881 	int		error, s, dontroute, atomic;
    882 	short		wakeup_state = 0;
    883 
    884 	clen = 0;
    885 
    886 	/*
    887 	 * solock() provides atomicity of access.  splsoftnet() prevents
    888 	 * protocol processing soft interrupts from interrupting us and
    889 	 * blocking (expensive).
    890 	 */
    891 	s = splsoftnet();
    892 	solock(so);
    893 	atomic = sosendallatonce(so) || top;
    894 	if (uio)
    895 		resid = uio->uio_resid;
    896 	else
    897 		resid = top->m_pkthdr.len;
    898 	/*
    899 	 * In theory resid should be unsigned.
    900 	 * However, space must be signed, as it might be less than 0
    901 	 * if we over-committed, and we must use a signed comparison
    902 	 * of space and resid.  On the other hand, a negative resid
    903 	 * causes us to loop sending 0-length segments to the protocol.
    904 	 */
    905 	if (resid < 0) {
    906 		error = EINVAL;
    907 		goto out;
    908 	}
    909 	dontroute =
    910 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    911 	    (so->so_proto->pr_flags & PR_ATOMIC);
    912 	l->l_ru.ru_msgsnd++;
    913 	if (control)
    914 		clen = control->m_len;
    915  restart:
    916 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    917 		goto out;
    918 	do {
    919 		if (so->so_state & SS_CANTSENDMORE) {
    920 			error = EPIPE;
    921 			goto release;
    922 		}
    923 		if (so->so_error) {
    924 			error = so->so_error;
    925 			so->so_error = 0;
    926 			goto release;
    927 		}
    928 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    929 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    930 				if (resid || clen == 0) {
    931 					error = ENOTCONN;
    932 					goto release;
    933 				}
    934 			} else if (addr == 0) {
    935 				error = EDESTADDRREQ;
    936 				goto release;
    937 			}
    938 		}
    939 		space = sbspace(&so->so_snd);
    940 		if (flags & MSG_OOB)
    941 			space += 1024;
    942 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    943 		    clen > so->so_snd.sb_hiwat) {
    944 			error = EMSGSIZE;
    945 			goto release;
    946 		}
    947 		if (space < resid + clen &&
    948 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    949 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
    950 				error = EWOULDBLOCK;
    951 				goto release;
    952 			}
    953 			sbunlock(&so->so_snd);
    954 			if (wakeup_state & SS_RESTARTSYS) {
    955 				error = ERESTART;
    956 				goto out;
    957 			}
    958 			error = sbwait(&so->so_snd);
    959 			if (error)
    960 				goto out;
    961 			wakeup_state = so->so_state;
    962 			goto restart;
    963 		}
    964 		wakeup_state = 0;
    965 		mp = &top;
    966 		space -= clen;
    967 		do {
    968 			if (uio == NULL) {
    969 				/*
    970 				 * Data is prepackaged in "top".
    971 				 */
    972 				resid = 0;
    973 				if (flags & MSG_EOR)
    974 					top->m_flags |= M_EOR;
    975 			} else do {
    976 				sounlock(so);
    977 				splx(s);
    978 				if (top == NULL) {
    979 					m = m_gethdr(M_WAIT, MT_DATA);
    980 					mlen = MHLEN;
    981 					m->m_pkthdr.len = 0;
    982 					m->m_pkthdr.rcvif = NULL;
    983 				} else {
    984 					m = m_get(M_WAIT, MT_DATA);
    985 					mlen = MLEN;
    986 				}
    987 				MCLAIM(m, so->so_snd.sb_mowner);
    988 				if (sock_loan_thresh >= 0 &&
    989 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
    990 				    space >= sock_loan_thresh &&
    991 				    (len = sosend_loan(so, uio, m,
    992 						       space)) != 0) {
    993 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    994 					space -= len;
    995 					goto have_data;
    996 				}
    997 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
    998 					SOSEND_COUNTER_INCR(&sosend_copy_big);
    999 					m_clget(m, M_DONTWAIT);
   1000 					if ((m->m_flags & M_EXT) == 0)
   1001 						goto nopages;
   1002 					mlen = MCLBYTES;
   1003 					if (atomic && top == 0) {
   1004 						len = lmin(MCLBYTES - max_hdr,
   1005 						    resid);
   1006 						m->m_data += max_hdr;
   1007 					} else
   1008 						len = lmin(MCLBYTES, resid);
   1009 					space -= len;
   1010 				} else {
   1011  nopages:
   1012 					SOSEND_COUNTER_INCR(&sosend_copy_small);
   1013 					len = lmin(lmin(mlen, resid), space);
   1014 					space -= len;
   1015 					/*
   1016 					 * For datagram protocols, leave room
   1017 					 * for protocol headers in first mbuf.
   1018 					 */
   1019 					if (atomic && top == 0 && len < mlen)
   1020 						MH_ALIGN(m, len);
   1021 				}
   1022 				error = uiomove(mtod(m, void *), (int)len, uio);
   1023  have_data:
   1024 				resid = uio->uio_resid;
   1025 				m->m_len = len;
   1026 				*mp = m;
   1027 				top->m_pkthdr.len += len;
   1028 				s = splsoftnet();
   1029 				solock(so);
   1030 				if (error != 0)
   1031 					goto release;
   1032 				mp = &m->m_next;
   1033 				if (resid <= 0) {
   1034 					if (flags & MSG_EOR)
   1035 						top->m_flags |= M_EOR;
   1036 					break;
   1037 				}
   1038 			} while (space > 0 && atomic);
   1039 
   1040 			if (so->so_state & SS_CANTSENDMORE) {
   1041 				error = EPIPE;
   1042 				goto release;
   1043 			}
   1044 			if (dontroute)
   1045 				so->so_options |= SO_DONTROUTE;
   1046 			if (resid > 0)
   1047 				so->so_state |= SS_MORETOCOME;
   1048 			error = (*so->so_proto->pr_usrreq)(so,
   1049 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
   1050 			    top, addr, control, curlwp);
   1051 			if (dontroute)
   1052 				so->so_options &= ~SO_DONTROUTE;
   1053 			if (resid > 0)
   1054 				so->so_state &= ~SS_MORETOCOME;
   1055 			clen = 0;
   1056 			control = NULL;
   1057 			top = NULL;
   1058 			mp = &top;
   1059 			if (error != 0)
   1060 				goto release;
   1061 		} while (resid && space > 0);
   1062 	} while (resid);
   1063 
   1064  release:
   1065 	sbunlock(&so->so_snd);
   1066  out:
   1067 	sounlock(so);
   1068 	splx(s);
   1069 	if (top)
   1070 		m_freem(top);
   1071 	if (control)
   1072 		m_freem(control);
   1073 	return (error);
   1074 }
   1075 
   1076 /*
   1077  * Following replacement or removal of the first mbuf on the first
   1078  * mbuf chain of a socket buffer, push necessary state changes back
   1079  * into the socket buffer so that other consumers see the values
   1080  * consistently.  'nextrecord' is the callers locally stored value of
   1081  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1082  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1083  */
   1084 static void
   1085 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1086 {
   1087 
   1088 	KASSERT(solocked(sb->sb_so));
   1089 
   1090 	/*
   1091 	 * First, update for the new value of nextrecord.  If necessary,
   1092 	 * make it the first record.
   1093 	 */
   1094 	if (sb->sb_mb != NULL)
   1095 		sb->sb_mb->m_nextpkt = nextrecord;
   1096 	else
   1097 		sb->sb_mb = nextrecord;
   1098 
   1099         /*
   1100          * Now update any dependent socket buffer fields to reflect
   1101          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1102          * the addition of a second clause that takes care of the
   1103          * case where sb_mb has been updated, but remains the last
   1104          * record.
   1105          */
   1106         if (sb->sb_mb == NULL) {
   1107                 sb->sb_mbtail = NULL;
   1108                 sb->sb_lastrecord = NULL;
   1109         } else if (sb->sb_mb->m_nextpkt == NULL)
   1110                 sb->sb_lastrecord = sb->sb_mb;
   1111 }
   1112 
   1113 /*
   1114  * Implement receive operations on a socket.
   1115  * We depend on the way that records are added to the sockbuf
   1116  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1117  * must begin with an address if the protocol so specifies,
   1118  * followed by an optional mbuf or mbufs containing ancillary data,
   1119  * and then zero or more mbufs of data.
   1120  * In order to avoid blocking network interrupts for the entire time here,
   1121  * we splx() while doing the actual copy to user space.
   1122  * Although the sockbuf is locked, new data may still be appended,
   1123  * and thus we must maintain consistency of the sockbuf during that time.
   1124  *
   1125  * The caller may receive the data as a single mbuf chain by supplying
   1126  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1127  * only for the count in uio_resid.
   1128  */
   1129 int
   1130 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1131 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1132 {
   1133 	struct lwp *l = curlwp;
   1134 	struct mbuf	*m, **mp, *mt;
   1135 	size_t len, offset, moff, orig_resid;
   1136 	int atomic, flags, error, s, type;
   1137 	const struct protosw	*pr;
   1138 	struct mbuf	*nextrecord;
   1139 	int		mbuf_removed = 0;
   1140 	const struct domain *dom;
   1141 	short		wakeup_state = 0;
   1142 
   1143 	pr = so->so_proto;
   1144 	atomic = pr->pr_flags & PR_ATOMIC;
   1145 	dom = pr->pr_domain;
   1146 	mp = mp0;
   1147 	type = 0;
   1148 	orig_resid = uio->uio_resid;
   1149 
   1150 	if (paddr != NULL)
   1151 		*paddr = NULL;
   1152 	if (controlp != NULL)
   1153 		*controlp = NULL;
   1154 	if (flagsp != NULL)
   1155 		flags = *flagsp &~ MSG_EOR;
   1156 	else
   1157 		flags = 0;
   1158 
   1159 	if (flags & MSG_OOB) {
   1160 		m = m_get(M_WAIT, MT_DATA);
   1161 		solock(so);
   1162 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
   1163 		    (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
   1164 		sounlock(so);
   1165 		if (error)
   1166 			goto bad;
   1167 		do {
   1168 			error = uiomove(mtod(m, void *),
   1169 			    MIN(uio->uio_resid, m->m_len), uio);
   1170 			m = m_free(m);
   1171 		} while (uio->uio_resid > 0 && error == 0 && m);
   1172  bad:
   1173 		if (m != NULL)
   1174 			m_freem(m);
   1175 		return error;
   1176 	}
   1177 	if (mp != NULL)
   1178 		*mp = NULL;
   1179 
   1180 	/*
   1181 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1182 	 * protocol processing soft interrupts from interrupting us and
   1183 	 * blocking (expensive).
   1184 	 */
   1185 	s = splsoftnet();
   1186 	solock(so);
   1187  restart:
   1188 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1189 		sounlock(so);
   1190 		splx(s);
   1191 		return error;
   1192 	}
   1193 
   1194 	m = so->so_rcv.sb_mb;
   1195 	/*
   1196 	 * If we have less data than requested, block awaiting more
   1197 	 * (subject to any timeout) if:
   1198 	 *   1. the current count is less than the low water mark,
   1199 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1200 	 *	receive operation at once if we block (resid <= hiwat), or
   1201 	 *   3. MSG_DONTWAIT is not set.
   1202 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1203 	 * we have to do the receive in sections, and thus risk returning
   1204 	 * a short count if a timeout or signal occurs after we start.
   1205 	 */
   1206 	if (m == NULL ||
   1207 	    ((flags & MSG_DONTWAIT) == 0 &&
   1208 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1209 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1210 	      ((flags & MSG_WAITALL) &&
   1211 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1212 	     m->m_nextpkt == NULL && !atomic)) {
   1213 #ifdef DIAGNOSTIC
   1214 		if (m == NULL && so->so_rcv.sb_cc)
   1215 			panic("receive 1");
   1216 #endif
   1217 		if (so->so_error) {
   1218 			if (m != NULL)
   1219 				goto dontblock;
   1220 			error = so->so_error;
   1221 			if ((flags & MSG_PEEK) == 0)
   1222 				so->so_error = 0;
   1223 			goto release;
   1224 		}
   1225 		if (so->so_state & SS_CANTRCVMORE) {
   1226 			if (m != NULL)
   1227 				goto dontblock;
   1228 			else
   1229 				goto release;
   1230 		}
   1231 		for (; m != NULL; m = m->m_next)
   1232 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1233 				m = so->so_rcv.sb_mb;
   1234 				goto dontblock;
   1235 			}
   1236 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1237 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1238 			error = ENOTCONN;
   1239 			goto release;
   1240 		}
   1241 		if (uio->uio_resid == 0)
   1242 			goto release;
   1243 		if ((so->so_state & SS_NBIO) ||
   1244 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
   1245 			error = EWOULDBLOCK;
   1246 			goto release;
   1247 		}
   1248 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1249 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1250 		sbunlock(&so->so_rcv);
   1251 		if (wakeup_state & SS_RESTARTSYS)
   1252 			error = ERESTART;
   1253 		else
   1254 			error = sbwait(&so->so_rcv);
   1255 		if (error != 0) {
   1256 			sounlock(so);
   1257 			splx(s);
   1258 			return error;
   1259 		}
   1260 		wakeup_state = so->so_state;
   1261 		goto restart;
   1262 	}
   1263  dontblock:
   1264 	/*
   1265 	 * On entry here, m points to the first record of the socket buffer.
   1266 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1267 	 * pointer to the next record in the socket buffer.  We must keep the
   1268 	 * various socket buffer pointers and local stack versions of the
   1269 	 * pointers in sync, pushing out modifications before dropping the
   1270 	 * socket lock, and re-reading them when picking it up.
   1271 	 *
   1272 	 * Otherwise, we will race with the network stack appending new data
   1273 	 * or records onto the socket buffer by using inconsistent/stale
   1274 	 * versions of the field, possibly resulting in socket buffer
   1275 	 * corruption.
   1276 	 *
   1277 	 * By holding the high-level sblock(), we prevent simultaneous
   1278 	 * readers from pulling off the front of the socket buffer.
   1279 	 */
   1280 	if (l != NULL)
   1281 		l->l_ru.ru_msgrcv++;
   1282 	KASSERT(m == so->so_rcv.sb_mb);
   1283 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1284 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1285 	nextrecord = m->m_nextpkt;
   1286 	if (pr->pr_flags & PR_ADDR) {
   1287 #ifdef DIAGNOSTIC
   1288 		if (m->m_type != MT_SONAME)
   1289 			panic("receive 1a");
   1290 #endif
   1291 		orig_resid = 0;
   1292 		if (flags & MSG_PEEK) {
   1293 			if (paddr)
   1294 				*paddr = m_copy(m, 0, m->m_len);
   1295 			m = m->m_next;
   1296 		} else {
   1297 			sbfree(&so->so_rcv, m);
   1298 			mbuf_removed = 1;
   1299 			if (paddr != NULL) {
   1300 				*paddr = m;
   1301 				so->so_rcv.sb_mb = m->m_next;
   1302 				m->m_next = NULL;
   1303 				m = so->so_rcv.sb_mb;
   1304 			} else {
   1305 				MFREE(m, so->so_rcv.sb_mb);
   1306 				m = so->so_rcv.sb_mb;
   1307 			}
   1308 			sbsync(&so->so_rcv, nextrecord);
   1309 		}
   1310 	}
   1311 
   1312 	/*
   1313 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1314 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1315 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1316 	 * perform externalization (or freeing if controlp == NULL).
   1317 	 */
   1318 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1319 		struct mbuf *cm = NULL, *cmn;
   1320 		struct mbuf **cme = &cm;
   1321 
   1322 		do {
   1323 			if (flags & MSG_PEEK) {
   1324 				if (controlp != NULL) {
   1325 					*controlp = m_copy(m, 0, m->m_len);
   1326 					controlp = &(*controlp)->m_next;
   1327 				}
   1328 				m = m->m_next;
   1329 			} else {
   1330 				sbfree(&so->so_rcv, m);
   1331 				so->so_rcv.sb_mb = m->m_next;
   1332 				m->m_next = NULL;
   1333 				*cme = m;
   1334 				cme = &(*cme)->m_next;
   1335 				m = so->so_rcv.sb_mb;
   1336 			}
   1337 		} while (m != NULL && m->m_type == MT_CONTROL);
   1338 		if ((flags & MSG_PEEK) == 0)
   1339 			sbsync(&so->so_rcv, nextrecord);
   1340 		for (; cm != NULL; cm = cmn) {
   1341 			cmn = cm->m_next;
   1342 			cm->m_next = NULL;
   1343 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1344 			if (controlp != NULL) {
   1345 				if (dom->dom_externalize != NULL &&
   1346 				    type == SCM_RIGHTS) {
   1347 					sounlock(so);
   1348 					splx(s);
   1349 					error = (*dom->dom_externalize)(cm, l,
   1350 					    (flags & MSG_CMSG_CLOEXEC) ?
   1351 					    O_CLOEXEC : 0);
   1352 					s = splsoftnet();
   1353 					solock(so);
   1354 				}
   1355 				*controlp = cm;
   1356 				while (*controlp != NULL)
   1357 					controlp = &(*controlp)->m_next;
   1358 			} else {
   1359 				/*
   1360 				 * Dispose of any SCM_RIGHTS message that went
   1361 				 * through the read path rather than recv.
   1362 				 */
   1363 				if (dom->dom_dispose != NULL &&
   1364 				    type == SCM_RIGHTS) {
   1365 				    	sounlock(so);
   1366 					(*dom->dom_dispose)(cm);
   1367 					solock(so);
   1368 				}
   1369 				m_freem(cm);
   1370 			}
   1371 		}
   1372 		if (m != NULL)
   1373 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1374 		else
   1375 			nextrecord = so->so_rcv.sb_mb;
   1376 		orig_resid = 0;
   1377 	}
   1378 
   1379 	/* If m is non-NULL, we have some data to read. */
   1380 	if (__predict_true(m != NULL)) {
   1381 		type = m->m_type;
   1382 		if (type == MT_OOBDATA)
   1383 			flags |= MSG_OOB;
   1384 	}
   1385 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1386 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1387 
   1388 	moff = 0;
   1389 	offset = 0;
   1390 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1391 		if (m->m_type == MT_OOBDATA) {
   1392 			if (type != MT_OOBDATA)
   1393 				break;
   1394 		} else if (type == MT_OOBDATA)
   1395 			break;
   1396 #ifdef DIAGNOSTIC
   1397 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1398 			panic("receive 3");
   1399 #endif
   1400 		so->so_state &= ~SS_RCVATMARK;
   1401 		wakeup_state = 0;
   1402 		len = uio->uio_resid;
   1403 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1404 			len = so->so_oobmark - offset;
   1405 		if (len > m->m_len - moff)
   1406 			len = m->m_len - moff;
   1407 		/*
   1408 		 * If mp is set, just pass back the mbufs.
   1409 		 * Otherwise copy them out via the uio, then free.
   1410 		 * Sockbuf must be consistent here (points to current mbuf,
   1411 		 * it points to next record) when we drop priority;
   1412 		 * we must note any additions to the sockbuf when we
   1413 		 * block interrupts again.
   1414 		 */
   1415 		if (mp == NULL) {
   1416 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1417 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1418 			sounlock(so);
   1419 			splx(s);
   1420 			error = uiomove(mtod(m, char *) + moff, len, uio);
   1421 			s = splsoftnet();
   1422 			solock(so);
   1423 			if (error != 0) {
   1424 				/*
   1425 				 * If any part of the record has been removed
   1426 				 * (such as the MT_SONAME mbuf, which will
   1427 				 * happen when PR_ADDR, and thus also
   1428 				 * PR_ATOMIC, is set), then drop the entire
   1429 				 * record to maintain the atomicity of the
   1430 				 * receive operation.
   1431 				 *
   1432 				 * This avoids a later panic("receive 1a")
   1433 				 * when compiled with DIAGNOSTIC.
   1434 				 */
   1435 				if (m && mbuf_removed && atomic)
   1436 					(void) sbdroprecord(&so->so_rcv);
   1437 
   1438 				goto release;
   1439 			}
   1440 		} else
   1441 			uio->uio_resid -= len;
   1442 		if (len == m->m_len - moff) {
   1443 			if (m->m_flags & M_EOR)
   1444 				flags |= MSG_EOR;
   1445 			if (flags & MSG_PEEK) {
   1446 				m = m->m_next;
   1447 				moff = 0;
   1448 			} else {
   1449 				nextrecord = m->m_nextpkt;
   1450 				sbfree(&so->so_rcv, m);
   1451 				if (mp) {
   1452 					*mp = m;
   1453 					mp = &m->m_next;
   1454 					so->so_rcv.sb_mb = m = m->m_next;
   1455 					*mp = NULL;
   1456 				} else {
   1457 					MFREE(m, so->so_rcv.sb_mb);
   1458 					m = so->so_rcv.sb_mb;
   1459 				}
   1460 				/*
   1461 				 * If m != NULL, we also know that
   1462 				 * so->so_rcv.sb_mb != NULL.
   1463 				 */
   1464 				KASSERT(so->so_rcv.sb_mb == m);
   1465 				if (m) {
   1466 					m->m_nextpkt = nextrecord;
   1467 					if (nextrecord == NULL)
   1468 						so->so_rcv.sb_lastrecord = m;
   1469 				} else {
   1470 					so->so_rcv.sb_mb = nextrecord;
   1471 					SB_EMPTY_FIXUP(&so->so_rcv);
   1472 				}
   1473 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1474 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1475 			}
   1476 		} else if (flags & MSG_PEEK)
   1477 			moff += len;
   1478 		else {
   1479 			if (mp != NULL) {
   1480 				mt = m_copym(m, 0, len, M_NOWAIT);
   1481 				if (__predict_false(mt == NULL)) {
   1482 					sounlock(so);
   1483 					mt = m_copym(m, 0, len, M_WAIT);
   1484 					solock(so);
   1485 				}
   1486 				*mp = mt;
   1487 			}
   1488 			m->m_data += len;
   1489 			m->m_len -= len;
   1490 			so->so_rcv.sb_cc -= len;
   1491 		}
   1492 		if (so->so_oobmark) {
   1493 			if ((flags & MSG_PEEK) == 0) {
   1494 				so->so_oobmark -= len;
   1495 				if (so->so_oobmark == 0) {
   1496 					so->so_state |= SS_RCVATMARK;
   1497 					break;
   1498 				}
   1499 			} else {
   1500 				offset += len;
   1501 				if (offset == so->so_oobmark)
   1502 					break;
   1503 			}
   1504 		}
   1505 		if (flags & MSG_EOR)
   1506 			break;
   1507 		/*
   1508 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1509 		 * we must not quit until "uio->uio_resid == 0" or an error
   1510 		 * termination.  If a signal/timeout occurs, return
   1511 		 * with a short count but without error.
   1512 		 * Keep sockbuf locked against other readers.
   1513 		 */
   1514 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1515 		    !sosendallatonce(so) && !nextrecord) {
   1516 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1517 				break;
   1518 			/*
   1519 			 * If we are peeking and the socket receive buffer is
   1520 			 * full, stop since we can't get more data to peek at.
   1521 			 */
   1522 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1523 				break;
   1524 			/*
   1525 			 * If we've drained the socket buffer, tell the
   1526 			 * protocol in case it needs to do something to
   1527 			 * get it filled again.
   1528 			 */
   1529 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1530 				(*pr->pr_usrreq)(so, PRU_RCVD,
   1531 				    NULL, (struct mbuf *)(long)flags, NULL, l);
   1532 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1533 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1534 			if (wakeup_state & SS_RESTARTSYS)
   1535 				error = ERESTART;
   1536 			else
   1537 				error = sbwait(&so->so_rcv);
   1538 			if (error != 0) {
   1539 				sbunlock(&so->so_rcv);
   1540 				sounlock(so);
   1541 				splx(s);
   1542 				return 0;
   1543 			}
   1544 			if ((m = so->so_rcv.sb_mb) != NULL)
   1545 				nextrecord = m->m_nextpkt;
   1546 			wakeup_state = so->so_state;
   1547 		}
   1548 	}
   1549 
   1550 	if (m && atomic) {
   1551 		flags |= MSG_TRUNC;
   1552 		if ((flags & MSG_PEEK) == 0)
   1553 			(void) sbdroprecord(&so->so_rcv);
   1554 	}
   1555 	if ((flags & MSG_PEEK) == 0) {
   1556 		if (m == NULL) {
   1557 			/*
   1558 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1559 			 * part makes sure sb_lastrecord is up-to-date if
   1560 			 * there is still data in the socket buffer.
   1561 			 */
   1562 			so->so_rcv.sb_mb = nextrecord;
   1563 			if (so->so_rcv.sb_mb == NULL) {
   1564 				so->so_rcv.sb_mbtail = NULL;
   1565 				so->so_rcv.sb_lastrecord = NULL;
   1566 			} else if (nextrecord->m_nextpkt == NULL)
   1567 				so->so_rcv.sb_lastrecord = nextrecord;
   1568 		}
   1569 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1570 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1571 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1572 			(*pr->pr_usrreq)(so, PRU_RCVD, NULL,
   1573 			    (struct mbuf *)(long)flags, NULL, l);
   1574 	}
   1575 	if (orig_resid == uio->uio_resid && orig_resid &&
   1576 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1577 		sbunlock(&so->so_rcv);
   1578 		goto restart;
   1579 	}
   1580 
   1581 	if (flagsp != NULL)
   1582 		*flagsp |= flags;
   1583  release:
   1584 	sbunlock(&so->so_rcv);
   1585 	sounlock(so);
   1586 	splx(s);
   1587 	return error;
   1588 }
   1589 
   1590 int
   1591 soshutdown(struct socket *so, int how)
   1592 {
   1593 	const struct protosw	*pr;
   1594 	int	error;
   1595 
   1596 	KASSERT(solocked(so));
   1597 
   1598 	pr = so->so_proto;
   1599 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1600 		return (EINVAL);
   1601 
   1602 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1603 		sorflush(so);
   1604 		error = 0;
   1605 	}
   1606 	if (how == SHUT_WR || how == SHUT_RDWR)
   1607 		error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
   1608 		    NULL, NULL, NULL);
   1609 
   1610 	return error;
   1611 }
   1612 
   1613 void
   1614 sorestart(struct socket *so)
   1615 {
   1616 	/*
   1617 	 * An application has called close() on an fd on which another
   1618 	 * of its threads has called a socket system call.
   1619 	 * Mark this and wake everyone up, and code that would block again
   1620 	 * instead returns ERESTART.
   1621 	 * On system call re-entry the fd is validated and EBADF returned.
   1622 	 * Any other fd will block again on the 2nd syscall.
   1623 	 */
   1624 	solock(so);
   1625 	so->so_state |= SS_RESTARTSYS;
   1626 	cv_broadcast(&so->so_cv);
   1627 	cv_broadcast(&so->so_snd.sb_cv);
   1628 	cv_broadcast(&so->so_rcv.sb_cv);
   1629 	sounlock(so);
   1630 }
   1631 
   1632 void
   1633 sorflush(struct socket *so)
   1634 {
   1635 	struct sockbuf	*sb, asb;
   1636 	const struct protosw	*pr;
   1637 
   1638 	KASSERT(solocked(so));
   1639 
   1640 	sb = &so->so_rcv;
   1641 	pr = so->so_proto;
   1642 	socantrcvmore(so);
   1643 	sb->sb_flags |= SB_NOINTR;
   1644 	(void )sblock(sb, M_WAITOK);
   1645 	sbunlock(sb);
   1646 	asb = *sb;
   1647 	/*
   1648 	 * Clear most of the sockbuf structure, but leave some of the
   1649 	 * fields valid.
   1650 	 */
   1651 	memset(&sb->sb_startzero, 0,
   1652 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1653 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1654 		sounlock(so);
   1655 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1656 		solock(so);
   1657 	}
   1658 	sbrelease(&asb, so);
   1659 }
   1660 
   1661 /*
   1662  * internal set SOL_SOCKET options
   1663  */
   1664 static int
   1665 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1666 {
   1667 	int error = EINVAL, opt;
   1668 	int optval = 0; /* XXX: gcc */
   1669 	struct linger l;
   1670 	struct timeval tv;
   1671 
   1672 	switch ((opt = sopt->sopt_name)) {
   1673 
   1674 	case SO_ACCEPTFILTER:
   1675 		error = accept_filt_setopt(so, sopt);
   1676 		KASSERT(solocked(so));
   1677 		break;
   1678 
   1679   	case SO_LINGER:
   1680  		error = sockopt_get(sopt, &l, sizeof(l));
   1681 		solock(so);
   1682  		if (error)
   1683  			break;
   1684  		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1685  		    l.l_linger > (INT_MAX / hz)) {
   1686 			error = EDOM;
   1687 			break;
   1688 		}
   1689  		so->so_linger = l.l_linger;
   1690  		if (l.l_onoff)
   1691  			so->so_options |= SO_LINGER;
   1692  		else
   1693  			so->so_options &= ~SO_LINGER;
   1694    		break;
   1695 
   1696 	case SO_DEBUG:
   1697 	case SO_KEEPALIVE:
   1698 	case SO_DONTROUTE:
   1699 	case SO_USELOOPBACK:
   1700 	case SO_BROADCAST:
   1701 	case SO_REUSEADDR:
   1702 	case SO_REUSEPORT:
   1703 	case SO_OOBINLINE:
   1704 	case SO_TIMESTAMP:
   1705 	case SO_NOSIGPIPE:
   1706 #ifdef SO_OTIMESTAMP
   1707 	case SO_OTIMESTAMP:
   1708 #endif
   1709 		error = sockopt_getint(sopt, &optval);
   1710 		solock(so);
   1711 		if (error)
   1712 			break;
   1713 		if (optval)
   1714 			so->so_options |= opt;
   1715 		else
   1716 			so->so_options &= ~opt;
   1717 		break;
   1718 
   1719 	case SO_SNDBUF:
   1720 	case SO_RCVBUF:
   1721 	case SO_SNDLOWAT:
   1722 	case SO_RCVLOWAT:
   1723 		error = sockopt_getint(sopt, &optval);
   1724 		solock(so);
   1725 		if (error)
   1726 			break;
   1727 
   1728 		/*
   1729 		 * Values < 1 make no sense for any of these
   1730 		 * options, so disallow them.
   1731 		 */
   1732 		if (optval < 1) {
   1733 			error = EINVAL;
   1734 			break;
   1735 		}
   1736 
   1737 		switch (opt) {
   1738 		case SO_SNDBUF:
   1739 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
   1740 				error = ENOBUFS;
   1741 				break;
   1742 			}
   1743 			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1744 			break;
   1745 
   1746 		case SO_RCVBUF:
   1747 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
   1748 				error = ENOBUFS;
   1749 				break;
   1750 			}
   1751 			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1752 			break;
   1753 
   1754 		/*
   1755 		 * Make sure the low-water is never greater than
   1756 		 * the high-water.
   1757 		 */
   1758 		case SO_SNDLOWAT:
   1759 			if (optval > so->so_snd.sb_hiwat)
   1760 				optval = so->so_snd.sb_hiwat;
   1761 
   1762 			so->so_snd.sb_lowat = optval;
   1763 			break;
   1764 
   1765 		case SO_RCVLOWAT:
   1766 			if (optval > so->so_rcv.sb_hiwat)
   1767 				optval = so->so_rcv.sb_hiwat;
   1768 
   1769 			so->so_rcv.sb_lowat = optval;
   1770 			break;
   1771 		}
   1772 		break;
   1773 
   1774 #ifdef COMPAT_50
   1775 	case SO_OSNDTIMEO:
   1776 	case SO_ORCVTIMEO: {
   1777 		struct timeval50 otv;
   1778 		error = sockopt_get(sopt, &otv, sizeof(otv));
   1779 		if (error) {
   1780 			solock(so);
   1781 			break;
   1782 		}
   1783 		timeval50_to_timeval(&otv, &tv);
   1784 		opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
   1785 		error = 0;
   1786 		/*FALLTHROUGH*/
   1787 	}
   1788 #endif /* COMPAT_50 */
   1789 
   1790 	case SO_SNDTIMEO:
   1791 	case SO_RCVTIMEO:
   1792 		if (error)
   1793 			error = sockopt_get(sopt, &tv, sizeof(tv));
   1794 		solock(so);
   1795 		if (error)
   1796 			break;
   1797 
   1798 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
   1799 			error = EDOM;
   1800 			break;
   1801 		}
   1802 
   1803 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1804 		if (optval == 0 && tv.tv_usec != 0)
   1805 			optval = 1;
   1806 
   1807 		switch (opt) {
   1808 		case SO_SNDTIMEO:
   1809 			so->so_snd.sb_timeo = optval;
   1810 			break;
   1811 		case SO_RCVTIMEO:
   1812 			so->so_rcv.sb_timeo = optval;
   1813 			break;
   1814 		}
   1815 		break;
   1816 
   1817 	default:
   1818 		solock(so);
   1819 		error = ENOPROTOOPT;
   1820 		break;
   1821 	}
   1822 	KASSERT(solocked(so));
   1823 	return error;
   1824 }
   1825 
   1826 int
   1827 sosetopt(struct socket *so, struct sockopt *sopt)
   1828 {
   1829 	int error, prerr;
   1830 
   1831 	if (sopt->sopt_level == SOL_SOCKET) {
   1832 		error = sosetopt1(so, sopt);
   1833 		KASSERT(solocked(so));
   1834 	} else {
   1835 		error = ENOPROTOOPT;
   1836 		solock(so);
   1837 	}
   1838 
   1839 	if ((error == 0 || error == ENOPROTOOPT) &&
   1840 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1841 		/* give the protocol stack a shot */
   1842 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1843 		if (prerr == 0)
   1844 			error = 0;
   1845 		else if (prerr != ENOPROTOOPT)
   1846 			error = prerr;
   1847 	}
   1848 	sounlock(so);
   1849 	return error;
   1850 }
   1851 
   1852 /*
   1853  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1854  */
   1855 int
   1856 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1857     const void *val, size_t valsize)
   1858 {
   1859 	struct sockopt sopt;
   1860 	int error;
   1861 
   1862 	KASSERT(valsize == 0 || val != NULL);
   1863 
   1864 	sockopt_init(&sopt, level, name, valsize);
   1865 	sockopt_set(&sopt, val, valsize);
   1866 
   1867 	error = sosetopt(so, &sopt);
   1868 
   1869 	sockopt_destroy(&sopt);
   1870 
   1871 	return error;
   1872 }
   1873 
   1874 /*
   1875  * internal get SOL_SOCKET options
   1876  */
   1877 static int
   1878 sogetopt1(struct socket *so, struct sockopt *sopt)
   1879 {
   1880 	int error, optval, opt;
   1881 	struct linger l;
   1882 	struct timeval tv;
   1883 
   1884 	switch ((opt = sopt->sopt_name)) {
   1885 
   1886 	case SO_ACCEPTFILTER:
   1887 		error = accept_filt_getopt(so, sopt);
   1888 		break;
   1889 
   1890 	case SO_LINGER:
   1891 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1892 		l.l_linger = so->so_linger;
   1893 
   1894 		error = sockopt_set(sopt, &l, sizeof(l));
   1895 		break;
   1896 
   1897 	case SO_USELOOPBACK:
   1898 	case SO_DONTROUTE:
   1899 	case SO_DEBUG:
   1900 	case SO_KEEPALIVE:
   1901 	case SO_REUSEADDR:
   1902 	case SO_REUSEPORT:
   1903 	case SO_BROADCAST:
   1904 	case SO_OOBINLINE:
   1905 	case SO_TIMESTAMP:
   1906 	case SO_NOSIGPIPE:
   1907 #ifdef SO_OTIMESTAMP
   1908 	case SO_OTIMESTAMP:
   1909 #endif
   1910 	case SO_ACCEPTCONN:
   1911 		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
   1912 		break;
   1913 
   1914 	case SO_TYPE:
   1915 		error = sockopt_setint(sopt, so->so_type);
   1916 		break;
   1917 
   1918 	case SO_ERROR:
   1919 		error = sockopt_setint(sopt, so->so_error);
   1920 		so->so_error = 0;
   1921 		break;
   1922 
   1923 	case SO_SNDBUF:
   1924 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1925 		break;
   1926 
   1927 	case SO_RCVBUF:
   1928 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1929 		break;
   1930 
   1931 	case SO_SNDLOWAT:
   1932 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1933 		break;
   1934 
   1935 	case SO_RCVLOWAT:
   1936 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1937 		break;
   1938 
   1939 #ifdef COMPAT_50
   1940 	case SO_OSNDTIMEO:
   1941 	case SO_ORCVTIMEO: {
   1942 		struct timeval50 otv;
   1943 
   1944 		optval = (opt == SO_OSNDTIMEO ?
   1945 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1946 
   1947 		otv.tv_sec = optval / hz;
   1948 		otv.tv_usec = (optval % hz) * tick;
   1949 
   1950 		error = sockopt_set(sopt, &otv, sizeof(otv));
   1951 		break;
   1952 	}
   1953 #endif /* COMPAT_50 */
   1954 
   1955 	case SO_SNDTIMEO:
   1956 	case SO_RCVTIMEO:
   1957 		optval = (opt == SO_SNDTIMEO ?
   1958 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1959 
   1960 		tv.tv_sec = optval / hz;
   1961 		tv.tv_usec = (optval % hz) * tick;
   1962 
   1963 		error = sockopt_set(sopt, &tv, sizeof(tv));
   1964 		break;
   1965 
   1966 	case SO_OVERFLOWED:
   1967 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   1968 		break;
   1969 
   1970 	default:
   1971 		error = ENOPROTOOPT;
   1972 		break;
   1973 	}
   1974 
   1975 	return (error);
   1976 }
   1977 
   1978 int
   1979 sogetopt(struct socket *so, struct sockopt *sopt)
   1980 {
   1981 	int		error;
   1982 
   1983 	solock(so);
   1984 	if (sopt->sopt_level != SOL_SOCKET) {
   1985 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1986 			error = ((*so->so_proto->pr_ctloutput)
   1987 			    (PRCO_GETOPT, so, sopt));
   1988 		} else
   1989 			error = (ENOPROTOOPT);
   1990 	} else {
   1991 		error = sogetopt1(so, sopt);
   1992 	}
   1993 	sounlock(so);
   1994 	return (error);
   1995 }
   1996 
   1997 /*
   1998  * alloc sockopt data buffer buffer
   1999  *	- will be released at destroy
   2000  */
   2001 static int
   2002 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
   2003 {
   2004 
   2005 	KASSERT(sopt->sopt_size == 0);
   2006 
   2007 	if (len > sizeof(sopt->sopt_buf)) {
   2008 		sopt->sopt_data = kmem_zalloc(len, kmflag);
   2009 		if (sopt->sopt_data == NULL)
   2010 			return ENOMEM;
   2011 	} else
   2012 		sopt->sopt_data = sopt->sopt_buf;
   2013 
   2014 	sopt->sopt_size = len;
   2015 	return 0;
   2016 }
   2017 
   2018 /*
   2019  * initialise sockopt storage
   2020  *	- MAY sleep during allocation
   2021  */
   2022 void
   2023 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   2024 {
   2025 
   2026 	memset(sopt, 0, sizeof(*sopt));
   2027 
   2028 	sopt->sopt_level = level;
   2029 	sopt->sopt_name = name;
   2030 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
   2031 }
   2032 
   2033 /*
   2034  * destroy sockopt storage
   2035  *	- will release any held memory references
   2036  */
   2037 void
   2038 sockopt_destroy(struct sockopt *sopt)
   2039 {
   2040 
   2041 	if (sopt->sopt_data != sopt->sopt_buf)
   2042 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   2043 
   2044 	memset(sopt, 0, sizeof(*sopt));
   2045 }
   2046 
   2047 /*
   2048  * set sockopt value
   2049  *	- value is copied into sockopt
   2050  * 	- memory is allocated when necessary, will not sleep
   2051  */
   2052 int
   2053 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   2054 {
   2055 	int error;
   2056 
   2057 	if (sopt->sopt_size == 0) {
   2058 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2059 		if (error)
   2060 			return error;
   2061 	}
   2062 
   2063 	KASSERT(sopt->sopt_size == len);
   2064 	memcpy(sopt->sopt_data, buf, len);
   2065 	return 0;
   2066 }
   2067 
   2068 /*
   2069  * common case of set sockopt integer value
   2070  */
   2071 int
   2072 sockopt_setint(struct sockopt *sopt, int val)
   2073 {
   2074 
   2075 	return sockopt_set(sopt, &val, sizeof(int));
   2076 }
   2077 
   2078 /*
   2079  * get sockopt value
   2080  *	- correct size must be given
   2081  */
   2082 int
   2083 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   2084 {
   2085 
   2086 	if (sopt->sopt_size != len)
   2087 		return EINVAL;
   2088 
   2089 	memcpy(buf, sopt->sopt_data, len);
   2090 	return 0;
   2091 }
   2092 
   2093 /*
   2094  * common case of get sockopt integer value
   2095  */
   2096 int
   2097 sockopt_getint(const struct sockopt *sopt, int *valp)
   2098 {
   2099 
   2100 	return sockopt_get(sopt, valp, sizeof(int));
   2101 }
   2102 
   2103 /*
   2104  * set sockopt value from mbuf
   2105  *	- ONLY for legacy code
   2106  *	- mbuf is released by sockopt
   2107  *	- will not sleep
   2108  */
   2109 int
   2110 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   2111 {
   2112 	size_t len;
   2113 	int error;
   2114 
   2115 	len = m_length(m);
   2116 
   2117 	if (sopt->sopt_size == 0) {
   2118 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2119 		if (error)
   2120 			return error;
   2121 	}
   2122 
   2123 	KASSERT(sopt->sopt_size == len);
   2124 	m_copydata(m, 0, len, sopt->sopt_data);
   2125 	m_freem(m);
   2126 
   2127 	return 0;
   2128 }
   2129 
   2130 /*
   2131  * get sockopt value into mbuf
   2132  *	- ONLY for legacy code
   2133  *	- mbuf to be released by the caller
   2134  *	- will not sleep
   2135  */
   2136 struct mbuf *
   2137 sockopt_getmbuf(const struct sockopt *sopt)
   2138 {
   2139 	struct mbuf *m;
   2140 
   2141 	if (sopt->sopt_size > MCLBYTES)
   2142 		return NULL;
   2143 
   2144 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   2145 	if (m == NULL)
   2146 		return NULL;
   2147 
   2148 	if (sopt->sopt_size > MLEN) {
   2149 		MCLGET(m, M_DONTWAIT);
   2150 		if ((m->m_flags & M_EXT) == 0) {
   2151 			m_free(m);
   2152 			return NULL;
   2153 		}
   2154 	}
   2155 
   2156 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
   2157 	m->m_len = sopt->sopt_size;
   2158 
   2159 	return m;
   2160 }
   2161 
   2162 void
   2163 sohasoutofband(struct socket *so)
   2164 {
   2165 
   2166 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2167 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
   2168 }
   2169 
   2170 static void
   2171 filt_sordetach(struct knote *kn)
   2172 {
   2173 	struct socket	*so;
   2174 
   2175 	so = ((file_t *)kn->kn_obj)->f_data;
   2176 	solock(so);
   2177 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   2178 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   2179 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2180 	sounlock(so);
   2181 }
   2182 
   2183 /*ARGSUSED*/
   2184 static int
   2185 filt_soread(struct knote *kn, long hint)
   2186 {
   2187 	struct socket	*so;
   2188 	int rv;
   2189 
   2190 	so = ((file_t *)kn->kn_obj)->f_data;
   2191 	if (hint != NOTE_SUBMIT)
   2192 		solock(so);
   2193 	kn->kn_data = so->so_rcv.sb_cc;
   2194 	if (so->so_state & SS_CANTRCVMORE) {
   2195 		kn->kn_flags |= EV_EOF;
   2196 		kn->kn_fflags = so->so_error;
   2197 		rv = 1;
   2198 	} else if (so->so_error)	/* temporary udp error */
   2199 		rv = 1;
   2200 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2201 		rv = (kn->kn_data >= kn->kn_sdata);
   2202 	else
   2203 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2204 	if (hint != NOTE_SUBMIT)
   2205 		sounlock(so);
   2206 	return rv;
   2207 }
   2208 
   2209 static void
   2210 filt_sowdetach(struct knote *kn)
   2211 {
   2212 	struct socket	*so;
   2213 
   2214 	so = ((file_t *)kn->kn_obj)->f_data;
   2215 	solock(so);
   2216 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   2217 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   2218 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2219 	sounlock(so);
   2220 }
   2221 
   2222 /*ARGSUSED*/
   2223 static int
   2224 filt_sowrite(struct knote *kn, long hint)
   2225 {
   2226 	struct socket	*so;
   2227 	int rv;
   2228 
   2229 	so = ((file_t *)kn->kn_obj)->f_data;
   2230 	if (hint != NOTE_SUBMIT)
   2231 		solock(so);
   2232 	kn->kn_data = sbspace(&so->so_snd);
   2233 	if (so->so_state & SS_CANTSENDMORE) {
   2234 		kn->kn_flags |= EV_EOF;
   2235 		kn->kn_fflags = so->so_error;
   2236 		rv = 1;
   2237 	} else if (so->so_error)	/* temporary udp error */
   2238 		rv = 1;
   2239 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2240 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2241 		rv = 0;
   2242 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2243 		rv = (kn->kn_data >= kn->kn_sdata);
   2244 	else
   2245 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2246 	if (hint != NOTE_SUBMIT)
   2247 		sounlock(so);
   2248 	return rv;
   2249 }
   2250 
   2251 /*ARGSUSED*/
   2252 static int
   2253 filt_solisten(struct knote *kn, long hint)
   2254 {
   2255 	struct socket	*so;
   2256 	int rv;
   2257 
   2258 	so = ((file_t *)kn->kn_obj)->f_data;
   2259 
   2260 	/*
   2261 	 * Set kn_data to number of incoming connections, not
   2262 	 * counting partial (incomplete) connections.
   2263 	 */
   2264 	if (hint != NOTE_SUBMIT)
   2265 		solock(so);
   2266 	kn->kn_data = so->so_qlen;
   2267 	rv = (kn->kn_data > 0);
   2268 	if (hint != NOTE_SUBMIT)
   2269 		sounlock(so);
   2270 	return rv;
   2271 }
   2272 
   2273 static const struct filterops solisten_filtops =
   2274 	{ 1, NULL, filt_sordetach, filt_solisten };
   2275 static const struct filterops soread_filtops =
   2276 	{ 1, NULL, filt_sordetach, filt_soread };
   2277 static const struct filterops sowrite_filtops =
   2278 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   2279 
   2280 int
   2281 soo_kqfilter(struct file *fp, struct knote *kn)
   2282 {
   2283 	struct socket	*so;
   2284 	struct sockbuf	*sb;
   2285 
   2286 	so = ((file_t *)kn->kn_obj)->f_data;
   2287 	solock(so);
   2288 	switch (kn->kn_filter) {
   2289 	case EVFILT_READ:
   2290 		if (so->so_options & SO_ACCEPTCONN)
   2291 			kn->kn_fop = &solisten_filtops;
   2292 		else
   2293 			kn->kn_fop = &soread_filtops;
   2294 		sb = &so->so_rcv;
   2295 		break;
   2296 	case EVFILT_WRITE:
   2297 		kn->kn_fop = &sowrite_filtops;
   2298 		sb = &so->so_snd;
   2299 		break;
   2300 	default:
   2301 		sounlock(so);
   2302 		return (EINVAL);
   2303 	}
   2304 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   2305 	sb->sb_flags |= SB_KNOTE;
   2306 	sounlock(so);
   2307 	return (0);
   2308 }
   2309 
   2310 static int
   2311 sodopoll(struct socket *so, int events)
   2312 {
   2313 	int revents;
   2314 
   2315 	revents = 0;
   2316 
   2317 	if (events & (POLLIN | POLLRDNORM))
   2318 		if (soreadable(so))
   2319 			revents |= events & (POLLIN | POLLRDNORM);
   2320 
   2321 	if (events & (POLLOUT | POLLWRNORM))
   2322 		if (sowritable(so))
   2323 			revents |= events & (POLLOUT | POLLWRNORM);
   2324 
   2325 	if (events & (POLLPRI | POLLRDBAND))
   2326 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   2327 			revents |= events & (POLLPRI | POLLRDBAND);
   2328 
   2329 	return revents;
   2330 }
   2331 
   2332 int
   2333 sopoll(struct socket *so, int events)
   2334 {
   2335 	int revents = 0;
   2336 
   2337 #ifndef DIAGNOSTIC
   2338 	/*
   2339 	 * Do a quick, unlocked check in expectation that the socket
   2340 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2341 	 * as the solocked() assertions will fail.
   2342 	 */
   2343 	if ((revents = sodopoll(so, events)) != 0)
   2344 		return revents;
   2345 #endif
   2346 
   2347 	solock(so);
   2348 	if ((revents = sodopoll(so, events)) == 0) {
   2349 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2350 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2351 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2352 		}
   2353 
   2354 		if (events & (POLLOUT | POLLWRNORM)) {
   2355 			selrecord(curlwp, &so->so_snd.sb_sel);
   2356 			so->so_snd.sb_flags |= SB_NOTIFY;
   2357 		}
   2358 	}
   2359 	sounlock(so);
   2360 
   2361 	return revents;
   2362 }
   2363 
   2364 
   2365 #include <sys/sysctl.h>
   2366 
   2367 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2368 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
   2369 
   2370 /*
   2371  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2372  * value is not too small.
   2373  * (XXX should we maybe make sure it's not too large as well?)
   2374  */
   2375 static int
   2376 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2377 {
   2378 	int error, new_somaxkva;
   2379 	struct sysctlnode node;
   2380 
   2381 	new_somaxkva = somaxkva;
   2382 	node = *rnode;
   2383 	node.sysctl_data = &new_somaxkva;
   2384 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2385 	if (error || newp == NULL)
   2386 		return (error);
   2387 
   2388 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2389 		return (EINVAL);
   2390 
   2391 	mutex_enter(&so_pendfree_lock);
   2392 	somaxkva = new_somaxkva;
   2393 	cv_broadcast(&socurkva_cv);
   2394 	mutex_exit(&so_pendfree_lock);
   2395 
   2396 	return (error);
   2397 }
   2398 
   2399 /*
   2400  * sysctl helper routine for kern.sbmax. Basically just ensures that
   2401  * any new value is not too small.
   2402  */
   2403 static int
   2404 sysctl_kern_sbmax(SYSCTLFN_ARGS)
   2405 {
   2406 	int error, new_sbmax;
   2407 	struct sysctlnode node;
   2408 
   2409 	new_sbmax = sb_max;
   2410 	node = *rnode;
   2411 	node.sysctl_data = &new_sbmax;
   2412 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2413 	if (error || newp == NULL)
   2414 		return (error);
   2415 
   2416 	KERNEL_LOCK(1, NULL);
   2417 	error = sb_max_set(new_sbmax);
   2418 	KERNEL_UNLOCK_ONE(NULL);
   2419 
   2420 	return (error);
   2421 }
   2422 
   2423 static void
   2424 sysctl_kern_socket_setup(void)
   2425 {
   2426 
   2427 	KASSERT(socket_sysctllog == NULL);
   2428 
   2429 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2430 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2431 		       CTLTYPE_INT, "somaxkva",
   2432 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2433 				    "used for socket buffers"),
   2434 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2435 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2436 
   2437 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2438 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2439 		       CTLTYPE_INT, "sbmax",
   2440 		       SYSCTL_DESCR("Maximum socket buffer size"),
   2441 		       sysctl_kern_sbmax, 0, NULL, 0,
   2442 		       CTL_KERN, KERN_SBMAX, CTL_EOL);
   2443 }
   2444