uipc_socket.c revision 1.222 1 /* $NetBSD: uipc_socket.c,v 1.222 2014/05/17 23:27:59 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 /*
66 * Socket operation routines.
67 *
68 * These routines are called by the routines in sys_socket.c or from a
69 * system process, and implement the semantics of socket operations by
70 * switching out to the protocol specific routines.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.222 2014/05/17 23:27:59 rmind Exp $");
75
76 #include "opt_compat_netbsd.h"
77 #include "opt_sock_counters.h"
78 #include "opt_sosend_loan.h"
79 #include "opt_mbuftrace.h"
80 #include "opt_somaxkva.h"
81 #include "opt_multiprocessor.h" /* XXX */
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/proc.h>
86 #include <sys/file.h>
87 #include <sys/filedesc.h>
88 #include <sys/kmem.h>
89 #include <sys/mbuf.h>
90 #include <sys/domain.h>
91 #include <sys/kernel.h>
92 #include <sys/protosw.h>
93 #include <sys/socket.h>
94 #include <sys/socketvar.h>
95 #include <sys/signalvar.h>
96 #include <sys/resourcevar.h>
97 #include <sys/uidinfo.h>
98 #include <sys/event.h>
99 #include <sys/poll.h>
100 #include <sys/kauth.h>
101 #include <sys/mutex.h>
102 #include <sys/condvar.h>
103 #include <sys/kthread.h>
104
105 #ifdef COMPAT_50
106 #include <compat/sys/time.h>
107 #include <compat/sys/socket.h>
108 #endif
109
110 #include <uvm/uvm_extern.h>
111 #include <uvm/uvm_loan.h>
112 #include <uvm/uvm_page.h>
113
114 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
115
116 extern const struct fileops socketops;
117
118 extern int somaxconn; /* patchable (XXX sysctl) */
119 int somaxconn = SOMAXCONN;
120 kmutex_t *softnet_lock;
121
122 #ifdef SOSEND_COUNTERS
123 #include <sys/device.h>
124
125 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
126 NULL, "sosend", "loan big");
127 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
128 NULL, "sosend", "copy big");
129 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
130 NULL, "sosend", "copy small");
131 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
132 NULL, "sosend", "kva limit");
133
134 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
135
136 EVCNT_ATTACH_STATIC(sosend_loan_big);
137 EVCNT_ATTACH_STATIC(sosend_copy_big);
138 EVCNT_ATTACH_STATIC(sosend_copy_small);
139 EVCNT_ATTACH_STATIC(sosend_kvalimit);
140 #else
141
142 #define SOSEND_COUNTER_INCR(ev) /* nothing */
143
144 #endif /* SOSEND_COUNTERS */
145
146 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
147 int sock_loan_thresh = -1;
148 #else
149 int sock_loan_thresh = 4096;
150 #endif
151
152 static kmutex_t so_pendfree_lock;
153 static struct mbuf *so_pendfree = NULL;
154
155 #ifndef SOMAXKVA
156 #define SOMAXKVA (16 * 1024 * 1024)
157 #endif
158 int somaxkva = SOMAXKVA;
159 static int socurkva;
160 static kcondvar_t socurkva_cv;
161
162 static kauth_listener_t socket_listener;
163
164 #define SOCK_LOAN_CHUNK 65536
165
166 static void sopendfree_thread(void *);
167 static kcondvar_t pendfree_thread_cv;
168 static lwp_t *sopendfree_lwp;
169
170 static void sysctl_kern_socket_setup(void);
171 static struct sysctllog *socket_sysctllog;
172
173 static vsize_t
174 sokvareserve(struct socket *so, vsize_t len)
175 {
176 int error;
177
178 mutex_enter(&so_pendfree_lock);
179 while (socurkva + len > somaxkva) {
180 SOSEND_COUNTER_INCR(&sosend_kvalimit);
181 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
182 if (error) {
183 len = 0;
184 break;
185 }
186 }
187 socurkva += len;
188 mutex_exit(&so_pendfree_lock);
189 return len;
190 }
191
192 static void
193 sokvaunreserve(vsize_t len)
194 {
195
196 mutex_enter(&so_pendfree_lock);
197 socurkva -= len;
198 cv_broadcast(&socurkva_cv);
199 mutex_exit(&so_pendfree_lock);
200 }
201
202 /*
203 * sokvaalloc: allocate kva for loan.
204 */
205
206 vaddr_t
207 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
208 {
209 vaddr_t lva;
210
211 /*
212 * reserve kva.
213 */
214
215 if (sokvareserve(so, len) == 0)
216 return 0;
217
218 /*
219 * allocate kva.
220 */
221
222 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
223 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
224 if (lva == 0) {
225 sokvaunreserve(len);
226 return (0);
227 }
228
229 return lva;
230 }
231
232 /*
233 * sokvafree: free kva for loan.
234 */
235
236 void
237 sokvafree(vaddr_t sva, vsize_t len)
238 {
239
240 /*
241 * free kva.
242 */
243
244 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
245
246 /*
247 * unreserve kva.
248 */
249
250 sokvaunreserve(len);
251 }
252
253 static void
254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
255 {
256 vaddr_t sva, eva;
257 vsize_t len;
258 int npgs;
259
260 KASSERT(pgs != NULL);
261
262 eva = round_page((vaddr_t) buf + size);
263 sva = trunc_page((vaddr_t) buf);
264 len = eva - sva;
265 npgs = len >> PAGE_SHIFT;
266
267 pmap_kremove(sva, len);
268 pmap_update(pmap_kernel());
269 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
270 sokvafree(sva, len);
271 }
272
273 /*
274 * sopendfree_thread: free mbufs on "pendfree" list.
275 * unlock and relock so_pendfree_lock when freeing mbufs.
276 */
277
278 static void
279 sopendfree_thread(void *v)
280 {
281 struct mbuf *m, *next;
282 size_t rv;
283
284 mutex_enter(&so_pendfree_lock);
285
286 for (;;) {
287 rv = 0;
288 while (so_pendfree != NULL) {
289 m = so_pendfree;
290 so_pendfree = NULL;
291 mutex_exit(&so_pendfree_lock);
292
293 for (; m != NULL; m = next) {
294 next = m->m_next;
295 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
296 KASSERT(m->m_ext.ext_refcnt == 0);
297
298 rv += m->m_ext.ext_size;
299 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
300 m->m_ext.ext_size);
301 pool_cache_put(mb_cache, m);
302 }
303
304 mutex_enter(&so_pendfree_lock);
305 }
306 if (rv)
307 cv_broadcast(&socurkva_cv);
308 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
309 }
310 panic("sopendfree_thread");
311 /* NOTREACHED */
312 }
313
314 void
315 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
316 {
317
318 KASSERT(m != NULL);
319
320 /*
321 * postpone freeing mbuf.
322 *
323 * we can't do it in interrupt context
324 * because we need to put kva back to kernel_map.
325 */
326
327 mutex_enter(&so_pendfree_lock);
328 m->m_next = so_pendfree;
329 so_pendfree = m;
330 cv_signal(&pendfree_thread_cv);
331 mutex_exit(&so_pendfree_lock);
332 }
333
334 static long
335 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
336 {
337 struct iovec *iov = uio->uio_iov;
338 vaddr_t sva, eva;
339 vsize_t len;
340 vaddr_t lva;
341 int npgs, error;
342 vaddr_t va;
343 int i;
344
345 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
346 return (0);
347
348 if (iov->iov_len < (size_t) space)
349 space = iov->iov_len;
350 if (space > SOCK_LOAN_CHUNK)
351 space = SOCK_LOAN_CHUNK;
352
353 eva = round_page((vaddr_t) iov->iov_base + space);
354 sva = trunc_page((vaddr_t) iov->iov_base);
355 len = eva - sva;
356 npgs = len >> PAGE_SHIFT;
357
358 KASSERT(npgs <= M_EXT_MAXPAGES);
359
360 lva = sokvaalloc(sva, len, so);
361 if (lva == 0)
362 return 0;
363
364 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
365 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
366 if (error) {
367 sokvafree(lva, len);
368 return (0);
369 }
370
371 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
372 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
373 VM_PROT_READ, 0);
374 pmap_update(pmap_kernel());
375
376 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
377
378 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
379 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
380
381 uio->uio_resid -= space;
382 /* uio_offset not updated, not set/used for write(2) */
383 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
384 uio->uio_iov->iov_len -= space;
385 if (uio->uio_iov->iov_len == 0) {
386 uio->uio_iov++;
387 uio->uio_iovcnt--;
388 }
389
390 return (space);
391 }
392
393 struct mbuf *
394 getsombuf(struct socket *so, int type)
395 {
396 struct mbuf *m;
397
398 m = m_get(M_WAIT, type);
399 MCLAIM(m, so->so_mowner);
400 return m;
401 }
402
403 static int
404 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
405 void *arg0, void *arg1, void *arg2, void *arg3)
406 {
407 int result;
408 enum kauth_network_req req;
409
410 result = KAUTH_RESULT_DEFER;
411 req = (enum kauth_network_req)arg0;
412
413 if ((action != KAUTH_NETWORK_SOCKET) &&
414 (action != KAUTH_NETWORK_BIND))
415 return result;
416
417 switch (req) {
418 case KAUTH_REQ_NETWORK_BIND_PORT:
419 result = KAUTH_RESULT_ALLOW;
420 break;
421
422 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
423 /* Normal users can only drop their own connections. */
424 struct socket *so = (struct socket *)arg1;
425
426 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
427 result = KAUTH_RESULT_ALLOW;
428
429 break;
430 }
431
432 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
433 /* We allow "raw" routing/bluetooth sockets to anyone. */
434 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
435 || (u_long)arg1 == PF_BLUETOOTH) {
436 result = KAUTH_RESULT_ALLOW;
437 } else {
438 /* Privileged, let secmodel handle this. */
439 if ((u_long)arg2 == SOCK_RAW)
440 break;
441 }
442
443 result = KAUTH_RESULT_ALLOW;
444
445 break;
446
447 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
448 result = KAUTH_RESULT_ALLOW;
449
450 break;
451
452 default:
453 break;
454 }
455
456 return result;
457 }
458
459 void
460 soinit(void)
461 {
462
463 sysctl_kern_socket_setup();
464
465 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
466 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
467 cv_init(&socurkva_cv, "sokva");
468 cv_init(&pendfree_thread_cv, "sopendfr");
469 soinit2();
470
471 /* Set the initial adjusted socket buffer size. */
472 if (sb_max_set(sb_max))
473 panic("bad initial sb_max value: %lu", sb_max);
474
475 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
476 socket_listener_cb, NULL);
477 }
478
479 void
480 soinit1(void)
481 {
482 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
483 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
484 if (error)
485 panic("soinit1 %d", error);
486 }
487
488 /*
489 * socreate: create a new socket of the specified type and the protocol.
490 *
491 * => Caller may specify another socket for lock sharing (must not be held).
492 * => Returns the new socket without lock held.
493 */
494 int
495 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
496 struct socket *lockso)
497 {
498 const struct protosw *prp;
499 struct socket *so;
500 uid_t uid;
501 int error;
502 kmutex_t *lock;
503
504 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
505 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
506 KAUTH_ARG(proto));
507 if (error != 0)
508 return error;
509
510 if (proto)
511 prp = pffindproto(dom, proto, type);
512 else
513 prp = pffindtype(dom, type);
514 if (prp == NULL) {
515 /* no support for domain */
516 if (pffinddomain(dom) == 0)
517 return EAFNOSUPPORT;
518 /* no support for socket type */
519 if (proto == 0 && type != 0)
520 return EPROTOTYPE;
521 return EPROTONOSUPPORT;
522 }
523 if (prp->pr_usrreq == NULL)
524 return EPROTONOSUPPORT;
525 if (prp->pr_type != type)
526 return EPROTOTYPE;
527
528 so = soget(true);
529 so->so_type = type;
530 so->so_proto = prp;
531 so->so_send = sosend;
532 so->so_receive = soreceive;
533 #ifdef MBUFTRACE
534 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
535 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
536 so->so_mowner = &prp->pr_domain->dom_mowner;
537 #endif
538 uid = kauth_cred_geteuid(l->l_cred);
539 so->so_uidinfo = uid_find(uid);
540 so->so_cpid = l->l_proc->p_pid;
541 if (lockso != NULL) {
542 /* Caller wants us to share a lock. */
543 lock = lockso->so_lock;
544 so->so_lock = lock;
545 mutex_obj_hold(lock);
546 /* XXX Why is this not solock, to match sounlock? */
547 mutex_enter(lock);
548 } else {
549 /* Lock assigned and taken during PRU_ATTACH. */
550 }
551 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL,
552 (struct mbuf *)(long)proto, NULL, l);
553 KASSERT(solocked(so));
554 if (error != 0) {
555 KASSERT(so->so_pcb == NULL);
556 so->so_state |= SS_NOFDREF;
557 sofree(so);
558 return error;
559 }
560 so->so_cred = kauth_cred_dup(l->l_cred);
561 sounlock(so);
562 *aso = so;
563 return 0;
564 }
565
566 /*
567 * fsocreate: create a socket and a file descriptor associated with it.
568 *
569 * => On success, write file descriptor to fdout and return zero.
570 * => On failure, return non-zero; *fdout will be undefined.
571 */
572 int
573 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
574 {
575 lwp_t *l = curlwp;
576 int error, fd, flags;
577 struct socket *so;
578 struct file *fp;
579
580 if ((error = fd_allocfile(&fp, &fd)) != 0) {
581 return error;
582 }
583 flags = type & SOCK_FLAGS_MASK;
584 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
585 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
586 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
587 fp->f_type = DTYPE_SOCKET;
588 fp->f_ops = &socketops;
589
590 type &= ~SOCK_FLAGS_MASK;
591 error = socreate(domain, &so, type, proto, l, NULL);
592 if (error) {
593 fd_abort(curproc, fp, fd);
594 return error;
595 }
596 if (flags & SOCK_NONBLOCK) {
597 so->so_state |= SS_NBIO;
598 }
599 fp->f_data = so;
600 fd_affix(curproc, fp, fd);
601
602 if (sop != NULL) {
603 *sop = so;
604 }
605 *fdout = fd;
606 return error;
607 }
608
609 int
610 sofamily(const struct socket *so)
611 {
612 const struct protosw *pr;
613 const struct domain *dom;
614
615 if ((pr = so->so_proto) == NULL)
616 return AF_UNSPEC;
617 if ((dom = pr->pr_domain) == NULL)
618 return AF_UNSPEC;
619 return dom->dom_family;
620 }
621
622 int
623 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
624 {
625 int error;
626
627 solock(so);
628 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l);
629 sounlock(so);
630 return error;
631 }
632
633 int
634 solisten(struct socket *so, int backlog, struct lwp *l)
635 {
636 int error;
637
638 solock(so);
639 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
640 SS_ISDISCONNECTING)) != 0) {
641 sounlock(so);
642 return EINVAL;
643 }
644 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL,
645 NULL, NULL, l);
646 if (error != 0) {
647 sounlock(so);
648 return error;
649 }
650 if (TAILQ_EMPTY(&so->so_q))
651 so->so_options |= SO_ACCEPTCONN;
652 if (backlog < 0)
653 backlog = 0;
654 so->so_qlimit = min(backlog, somaxconn);
655 sounlock(so);
656 return 0;
657 }
658
659 void
660 sofree(struct socket *so)
661 {
662 u_int refs;
663
664 KASSERT(solocked(so));
665
666 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
667 sounlock(so);
668 return;
669 }
670 if (so->so_head) {
671 /*
672 * We must not decommission a socket that's on the accept(2)
673 * queue. If we do, then accept(2) may hang after select(2)
674 * indicated that the listening socket was ready.
675 */
676 if (!soqremque(so, 0)) {
677 sounlock(so);
678 return;
679 }
680 }
681 if (so->so_rcv.sb_hiwat)
682 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
683 RLIM_INFINITY);
684 if (so->so_snd.sb_hiwat)
685 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
686 RLIM_INFINITY);
687 sbrelease(&so->so_snd, so);
688 KASSERT(!cv_has_waiters(&so->so_cv));
689 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
690 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
691 sorflush(so);
692 refs = so->so_aborting; /* XXX */
693 /* Remove acccept filter if one is present. */
694 if (so->so_accf != NULL)
695 (void)accept_filt_clear(so);
696 sounlock(so);
697 if (refs == 0) /* XXX */
698 soput(so);
699 }
700
701 /*
702 * soclose: close a socket on last file table reference removal.
703 * Initiate disconnect if connected. Free socket when disconnect complete.
704 */
705 int
706 soclose(struct socket *so)
707 {
708 struct socket *so2;
709 int error = 0;
710
711 solock(so);
712 if (so->so_options & SO_ACCEPTCONN) {
713 for (;;) {
714 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
715 KASSERT(solocked2(so, so2));
716 (void) soqremque(so2, 0);
717 /* soabort drops the lock. */
718 (void) soabort(so2);
719 solock(so);
720 continue;
721 }
722 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
723 KASSERT(solocked2(so, so2));
724 (void) soqremque(so2, 1);
725 /* soabort drops the lock. */
726 (void) soabort(so2);
727 solock(so);
728 continue;
729 }
730 break;
731 }
732 }
733 if (so->so_pcb == NULL)
734 goto discard;
735 if (so->so_state & SS_ISCONNECTED) {
736 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
737 error = sodisconnect(so);
738 if (error)
739 goto drop;
740 }
741 if (so->so_options & SO_LINGER) {
742 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
743 (SS_ISDISCONNECTING|SS_NBIO))
744 goto drop;
745 while (so->so_state & SS_ISCONNECTED) {
746 error = sowait(so, true, so->so_linger * hz);
747 if (error)
748 break;
749 }
750 }
751 }
752 drop:
753 if (so->so_pcb) {
754 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
755 NULL, NULL, NULL, NULL);
756 if (error == 0)
757 error = error2;
758 }
759 discard:
760 KASSERT((so->so_state & SS_NOFDREF) == 0);
761 kauth_cred_free(so->so_cred);
762 so->so_state |= SS_NOFDREF;
763 sofree(so);
764 return error;
765 }
766
767 /*
768 * Must be called with the socket locked.. Will return with it unlocked.
769 */
770 int
771 soabort(struct socket *so)
772 {
773 u_int refs;
774 int error;
775
776 KASSERT(solocked(so));
777 KASSERT(so->so_head == NULL);
778
779 so->so_aborting++; /* XXX */
780 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL,
781 NULL, NULL, NULL);
782 refs = --so->so_aborting; /* XXX */
783 if (error || (refs == 0)) {
784 sofree(so);
785 } else {
786 sounlock(so);
787 }
788 return error;
789 }
790
791 int
792 soaccept(struct socket *so, struct mbuf *nam)
793 {
794 int error;
795
796 KASSERT(solocked(so));
797 KASSERT((so->so_state & SS_NOFDREF) != 0);
798
799 so->so_state &= ~SS_NOFDREF;
800 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
801 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
802 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
803 NULL, nam, NULL, NULL);
804 else
805 error = ECONNABORTED;
806
807 return error;
808 }
809
810 int
811 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
812 {
813 int error;
814
815 KASSERT(solocked(so));
816
817 if (so->so_options & SO_ACCEPTCONN)
818 return EOPNOTSUPP;
819 /*
820 * If protocol is connection-based, can only connect once.
821 * Otherwise, if connected, try to disconnect first.
822 * This allows user to disconnect by connecting to, e.g.,
823 * a null address.
824 */
825 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
826 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
827 (error = sodisconnect(so))))
828 error = EISCONN;
829 else
830 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
831 NULL, nam, NULL, l);
832
833 return error;
834 }
835
836 int
837 soconnect2(struct socket *so1, struct socket *so2)
838 {
839 KASSERT(solocked2(so1, so2));
840
841 return (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
842 NULL, (struct mbuf *)so2, NULL, NULL);
843 }
844
845 int
846 sodisconnect(struct socket *so)
847 {
848 int error;
849
850 KASSERT(solocked(so));
851
852 if ((so->so_state & SS_ISCONNECTED) == 0) {
853 error = ENOTCONN;
854 } else if (so->so_state & SS_ISDISCONNECTING) {
855 error = EALREADY;
856 } else {
857 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
858 NULL, NULL, NULL, NULL);
859 }
860 return (error);
861 }
862
863 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
864 /*
865 * Send on a socket.
866 * If send must go all at once and message is larger than
867 * send buffering, then hard error.
868 * Lock against other senders.
869 * If must go all at once and not enough room now, then
870 * inform user that this would block and do nothing.
871 * Otherwise, if nonblocking, send as much as possible.
872 * The data to be sent is described by "uio" if nonzero,
873 * otherwise by the mbuf chain "top" (which must be null
874 * if uio is not). Data provided in mbuf chain must be small
875 * enough to send all at once.
876 *
877 * Returns nonzero on error, timeout or signal; callers
878 * must check for short counts if EINTR/ERESTART are returned.
879 * Data and control buffers are freed on return.
880 */
881 int
882 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
883 struct mbuf *control, int flags, struct lwp *l)
884 {
885 struct mbuf **mp, *m;
886 long space, len, resid, clen, mlen;
887 int error, s, dontroute, atomic;
888 short wakeup_state = 0;
889
890 clen = 0;
891
892 /*
893 * solock() provides atomicity of access. splsoftnet() prevents
894 * protocol processing soft interrupts from interrupting us and
895 * blocking (expensive).
896 */
897 s = splsoftnet();
898 solock(so);
899 atomic = sosendallatonce(so) || top;
900 if (uio)
901 resid = uio->uio_resid;
902 else
903 resid = top->m_pkthdr.len;
904 /*
905 * In theory resid should be unsigned.
906 * However, space must be signed, as it might be less than 0
907 * if we over-committed, and we must use a signed comparison
908 * of space and resid. On the other hand, a negative resid
909 * causes us to loop sending 0-length segments to the protocol.
910 */
911 if (resid < 0) {
912 error = EINVAL;
913 goto out;
914 }
915 dontroute =
916 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
917 (so->so_proto->pr_flags & PR_ATOMIC);
918 l->l_ru.ru_msgsnd++;
919 if (control)
920 clen = control->m_len;
921 restart:
922 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
923 goto out;
924 do {
925 if (so->so_state & SS_CANTSENDMORE) {
926 error = EPIPE;
927 goto release;
928 }
929 if (so->so_error) {
930 error = so->so_error;
931 so->so_error = 0;
932 goto release;
933 }
934 if ((so->so_state & SS_ISCONNECTED) == 0) {
935 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
936 if (resid || clen == 0) {
937 error = ENOTCONN;
938 goto release;
939 }
940 } else if (addr == 0) {
941 error = EDESTADDRREQ;
942 goto release;
943 }
944 }
945 space = sbspace(&so->so_snd);
946 if (flags & MSG_OOB)
947 space += 1024;
948 if ((atomic && resid > so->so_snd.sb_hiwat) ||
949 clen > so->so_snd.sb_hiwat) {
950 error = EMSGSIZE;
951 goto release;
952 }
953 if (space < resid + clen &&
954 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
955 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
956 error = EWOULDBLOCK;
957 goto release;
958 }
959 sbunlock(&so->so_snd);
960 if (wakeup_state & SS_RESTARTSYS) {
961 error = ERESTART;
962 goto out;
963 }
964 error = sbwait(&so->so_snd);
965 if (error)
966 goto out;
967 wakeup_state = so->so_state;
968 goto restart;
969 }
970 wakeup_state = 0;
971 mp = ⊤
972 space -= clen;
973 do {
974 if (uio == NULL) {
975 /*
976 * Data is prepackaged in "top".
977 */
978 resid = 0;
979 if (flags & MSG_EOR)
980 top->m_flags |= M_EOR;
981 } else do {
982 sounlock(so);
983 splx(s);
984 if (top == NULL) {
985 m = m_gethdr(M_WAIT, MT_DATA);
986 mlen = MHLEN;
987 m->m_pkthdr.len = 0;
988 m->m_pkthdr.rcvif = NULL;
989 } else {
990 m = m_get(M_WAIT, MT_DATA);
991 mlen = MLEN;
992 }
993 MCLAIM(m, so->so_snd.sb_mowner);
994 if (sock_loan_thresh >= 0 &&
995 uio->uio_iov->iov_len >= sock_loan_thresh &&
996 space >= sock_loan_thresh &&
997 (len = sosend_loan(so, uio, m,
998 space)) != 0) {
999 SOSEND_COUNTER_INCR(&sosend_loan_big);
1000 space -= len;
1001 goto have_data;
1002 }
1003 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1004 SOSEND_COUNTER_INCR(&sosend_copy_big);
1005 m_clget(m, M_DONTWAIT);
1006 if ((m->m_flags & M_EXT) == 0)
1007 goto nopages;
1008 mlen = MCLBYTES;
1009 if (atomic && top == 0) {
1010 len = lmin(MCLBYTES - max_hdr,
1011 resid);
1012 m->m_data += max_hdr;
1013 } else
1014 len = lmin(MCLBYTES, resid);
1015 space -= len;
1016 } else {
1017 nopages:
1018 SOSEND_COUNTER_INCR(&sosend_copy_small);
1019 len = lmin(lmin(mlen, resid), space);
1020 space -= len;
1021 /*
1022 * For datagram protocols, leave room
1023 * for protocol headers in first mbuf.
1024 */
1025 if (atomic && top == 0 && len < mlen)
1026 MH_ALIGN(m, len);
1027 }
1028 error = uiomove(mtod(m, void *), (int)len, uio);
1029 have_data:
1030 resid = uio->uio_resid;
1031 m->m_len = len;
1032 *mp = m;
1033 top->m_pkthdr.len += len;
1034 s = splsoftnet();
1035 solock(so);
1036 if (error != 0)
1037 goto release;
1038 mp = &m->m_next;
1039 if (resid <= 0) {
1040 if (flags & MSG_EOR)
1041 top->m_flags |= M_EOR;
1042 break;
1043 }
1044 } while (space > 0 && atomic);
1045
1046 if (so->so_state & SS_CANTSENDMORE) {
1047 error = EPIPE;
1048 goto release;
1049 }
1050 if (dontroute)
1051 so->so_options |= SO_DONTROUTE;
1052 if (resid > 0)
1053 so->so_state |= SS_MORETOCOME;
1054 error = (*so->so_proto->pr_usrreq)(so,
1055 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
1056 top, addr, control, curlwp);
1057 if (dontroute)
1058 so->so_options &= ~SO_DONTROUTE;
1059 if (resid > 0)
1060 so->so_state &= ~SS_MORETOCOME;
1061 clen = 0;
1062 control = NULL;
1063 top = NULL;
1064 mp = ⊤
1065 if (error != 0)
1066 goto release;
1067 } while (resid && space > 0);
1068 } while (resid);
1069
1070 release:
1071 sbunlock(&so->so_snd);
1072 out:
1073 sounlock(so);
1074 splx(s);
1075 if (top)
1076 m_freem(top);
1077 if (control)
1078 m_freem(control);
1079 return (error);
1080 }
1081
1082 /*
1083 * Following replacement or removal of the first mbuf on the first
1084 * mbuf chain of a socket buffer, push necessary state changes back
1085 * into the socket buffer so that other consumers see the values
1086 * consistently. 'nextrecord' is the callers locally stored value of
1087 * the original value of sb->sb_mb->m_nextpkt which must be restored
1088 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1089 */
1090 static void
1091 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1092 {
1093
1094 KASSERT(solocked(sb->sb_so));
1095
1096 /*
1097 * First, update for the new value of nextrecord. If necessary,
1098 * make it the first record.
1099 */
1100 if (sb->sb_mb != NULL)
1101 sb->sb_mb->m_nextpkt = nextrecord;
1102 else
1103 sb->sb_mb = nextrecord;
1104
1105 /*
1106 * Now update any dependent socket buffer fields to reflect
1107 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1108 * the addition of a second clause that takes care of the
1109 * case where sb_mb has been updated, but remains the last
1110 * record.
1111 */
1112 if (sb->sb_mb == NULL) {
1113 sb->sb_mbtail = NULL;
1114 sb->sb_lastrecord = NULL;
1115 } else if (sb->sb_mb->m_nextpkt == NULL)
1116 sb->sb_lastrecord = sb->sb_mb;
1117 }
1118
1119 /*
1120 * Implement receive operations on a socket.
1121 * We depend on the way that records are added to the sockbuf
1122 * by sbappend*. In particular, each record (mbufs linked through m_next)
1123 * must begin with an address if the protocol so specifies,
1124 * followed by an optional mbuf or mbufs containing ancillary data,
1125 * and then zero or more mbufs of data.
1126 * In order to avoid blocking network interrupts for the entire time here,
1127 * we splx() while doing the actual copy to user space.
1128 * Although the sockbuf is locked, new data may still be appended,
1129 * and thus we must maintain consistency of the sockbuf during that time.
1130 *
1131 * The caller may receive the data as a single mbuf chain by supplying
1132 * an mbuf **mp0 for use in returning the chain. The uio is then used
1133 * only for the count in uio_resid.
1134 */
1135 int
1136 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1137 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1138 {
1139 struct lwp *l = curlwp;
1140 struct mbuf *m, **mp, *mt;
1141 size_t len, offset, moff, orig_resid;
1142 int atomic, flags, error, s, type;
1143 const struct protosw *pr;
1144 struct mbuf *nextrecord;
1145 int mbuf_removed = 0;
1146 const struct domain *dom;
1147 short wakeup_state = 0;
1148
1149 pr = so->so_proto;
1150 atomic = pr->pr_flags & PR_ATOMIC;
1151 dom = pr->pr_domain;
1152 mp = mp0;
1153 type = 0;
1154 orig_resid = uio->uio_resid;
1155
1156 if (paddr != NULL)
1157 *paddr = NULL;
1158 if (controlp != NULL)
1159 *controlp = NULL;
1160 if (flagsp != NULL)
1161 flags = *flagsp &~ MSG_EOR;
1162 else
1163 flags = 0;
1164
1165 if (flags & MSG_OOB) {
1166 m = m_get(M_WAIT, MT_DATA);
1167 solock(so);
1168 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
1169 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1170 sounlock(so);
1171 if (error)
1172 goto bad;
1173 do {
1174 error = uiomove(mtod(m, void *),
1175 MIN(uio->uio_resid, m->m_len), uio);
1176 m = m_free(m);
1177 } while (uio->uio_resid > 0 && error == 0 && m);
1178 bad:
1179 if (m != NULL)
1180 m_freem(m);
1181 return error;
1182 }
1183 if (mp != NULL)
1184 *mp = NULL;
1185
1186 /*
1187 * solock() provides atomicity of access. splsoftnet() prevents
1188 * protocol processing soft interrupts from interrupting us and
1189 * blocking (expensive).
1190 */
1191 s = splsoftnet();
1192 solock(so);
1193 restart:
1194 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1195 sounlock(so);
1196 splx(s);
1197 return error;
1198 }
1199
1200 m = so->so_rcv.sb_mb;
1201 /*
1202 * If we have less data than requested, block awaiting more
1203 * (subject to any timeout) if:
1204 * 1. the current count is less than the low water mark,
1205 * 2. MSG_WAITALL is set, and it is possible to do the entire
1206 * receive operation at once if we block (resid <= hiwat), or
1207 * 3. MSG_DONTWAIT is not set.
1208 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1209 * we have to do the receive in sections, and thus risk returning
1210 * a short count if a timeout or signal occurs after we start.
1211 */
1212 if (m == NULL ||
1213 ((flags & MSG_DONTWAIT) == 0 &&
1214 so->so_rcv.sb_cc < uio->uio_resid &&
1215 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1216 ((flags & MSG_WAITALL) &&
1217 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1218 m->m_nextpkt == NULL && !atomic)) {
1219 #ifdef DIAGNOSTIC
1220 if (m == NULL && so->so_rcv.sb_cc)
1221 panic("receive 1");
1222 #endif
1223 if (so->so_error) {
1224 if (m != NULL)
1225 goto dontblock;
1226 error = so->so_error;
1227 if ((flags & MSG_PEEK) == 0)
1228 so->so_error = 0;
1229 goto release;
1230 }
1231 if (so->so_state & SS_CANTRCVMORE) {
1232 if (m != NULL)
1233 goto dontblock;
1234 else
1235 goto release;
1236 }
1237 for (; m != NULL; m = m->m_next)
1238 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1239 m = so->so_rcv.sb_mb;
1240 goto dontblock;
1241 }
1242 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1243 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1244 error = ENOTCONN;
1245 goto release;
1246 }
1247 if (uio->uio_resid == 0)
1248 goto release;
1249 if ((so->so_state & SS_NBIO) ||
1250 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1251 error = EWOULDBLOCK;
1252 goto release;
1253 }
1254 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1255 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1256 sbunlock(&so->so_rcv);
1257 if (wakeup_state & SS_RESTARTSYS)
1258 error = ERESTART;
1259 else
1260 error = sbwait(&so->so_rcv);
1261 if (error != 0) {
1262 sounlock(so);
1263 splx(s);
1264 return error;
1265 }
1266 wakeup_state = so->so_state;
1267 goto restart;
1268 }
1269 dontblock:
1270 /*
1271 * On entry here, m points to the first record of the socket buffer.
1272 * From this point onward, we maintain 'nextrecord' as a cache of the
1273 * pointer to the next record in the socket buffer. We must keep the
1274 * various socket buffer pointers and local stack versions of the
1275 * pointers in sync, pushing out modifications before dropping the
1276 * socket lock, and re-reading them when picking it up.
1277 *
1278 * Otherwise, we will race with the network stack appending new data
1279 * or records onto the socket buffer by using inconsistent/stale
1280 * versions of the field, possibly resulting in socket buffer
1281 * corruption.
1282 *
1283 * By holding the high-level sblock(), we prevent simultaneous
1284 * readers from pulling off the front of the socket buffer.
1285 */
1286 if (l != NULL)
1287 l->l_ru.ru_msgrcv++;
1288 KASSERT(m == so->so_rcv.sb_mb);
1289 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1290 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1291 nextrecord = m->m_nextpkt;
1292 if (pr->pr_flags & PR_ADDR) {
1293 #ifdef DIAGNOSTIC
1294 if (m->m_type != MT_SONAME)
1295 panic("receive 1a");
1296 #endif
1297 orig_resid = 0;
1298 if (flags & MSG_PEEK) {
1299 if (paddr)
1300 *paddr = m_copy(m, 0, m->m_len);
1301 m = m->m_next;
1302 } else {
1303 sbfree(&so->so_rcv, m);
1304 mbuf_removed = 1;
1305 if (paddr != NULL) {
1306 *paddr = m;
1307 so->so_rcv.sb_mb = m->m_next;
1308 m->m_next = NULL;
1309 m = so->so_rcv.sb_mb;
1310 } else {
1311 MFREE(m, so->so_rcv.sb_mb);
1312 m = so->so_rcv.sb_mb;
1313 }
1314 sbsync(&so->so_rcv, nextrecord);
1315 }
1316 }
1317
1318 /*
1319 * Process one or more MT_CONTROL mbufs present before any data mbufs
1320 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1321 * just copy the data; if !MSG_PEEK, we call into the protocol to
1322 * perform externalization (or freeing if controlp == NULL).
1323 */
1324 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1325 struct mbuf *cm = NULL, *cmn;
1326 struct mbuf **cme = &cm;
1327
1328 do {
1329 if (flags & MSG_PEEK) {
1330 if (controlp != NULL) {
1331 *controlp = m_copy(m, 0, m->m_len);
1332 controlp = &(*controlp)->m_next;
1333 }
1334 m = m->m_next;
1335 } else {
1336 sbfree(&so->so_rcv, m);
1337 so->so_rcv.sb_mb = m->m_next;
1338 m->m_next = NULL;
1339 *cme = m;
1340 cme = &(*cme)->m_next;
1341 m = so->so_rcv.sb_mb;
1342 }
1343 } while (m != NULL && m->m_type == MT_CONTROL);
1344 if ((flags & MSG_PEEK) == 0)
1345 sbsync(&so->so_rcv, nextrecord);
1346 for (; cm != NULL; cm = cmn) {
1347 cmn = cm->m_next;
1348 cm->m_next = NULL;
1349 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1350 if (controlp != NULL) {
1351 if (dom->dom_externalize != NULL &&
1352 type == SCM_RIGHTS) {
1353 sounlock(so);
1354 splx(s);
1355 error = (*dom->dom_externalize)(cm, l,
1356 (flags & MSG_CMSG_CLOEXEC) ?
1357 O_CLOEXEC : 0);
1358 s = splsoftnet();
1359 solock(so);
1360 }
1361 *controlp = cm;
1362 while (*controlp != NULL)
1363 controlp = &(*controlp)->m_next;
1364 } else {
1365 /*
1366 * Dispose of any SCM_RIGHTS message that went
1367 * through the read path rather than recv.
1368 */
1369 if (dom->dom_dispose != NULL &&
1370 type == SCM_RIGHTS) {
1371 sounlock(so);
1372 (*dom->dom_dispose)(cm);
1373 solock(so);
1374 }
1375 m_freem(cm);
1376 }
1377 }
1378 if (m != NULL)
1379 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1380 else
1381 nextrecord = so->so_rcv.sb_mb;
1382 orig_resid = 0;
1383 }
1384
1385 /* If m is non-NULL, we have some data to read. */
1386 if (__predict_true(m != NULL)) {
1387 type = m->m_type;
1388 if (type == MT_OOBDATA)
1389 flags |= MSG_OOB;
1390 }
1391 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1392 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1393
1394 moff = 0;
1395 offset = 0;
1396 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1397 if (m->m_type == MT_OOBDATA) {
1398 if (type != MT_OOBDATA)
1399 break;
1400 } else if (type == MT_OOBDATA)
1401 break;
1402 #ifdef DIAGNOSTIC
1403 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1404 panic("receive 3");
1405 #endif
1406 so->so_state &= ~SS_RCVATMARK;
1407 wakeup_state = 0;
1408 len = uio->uio_resid;
1409 if (so->so_oobmark && len > so->so_oobmark - offset)
1410 len = so->so_oobmark - offset;
1411 if (len > m->m_len - moff)
1412 len = m->m_len - moff;
1413 /*
1414 * If mp is set, just pass back the mbufs.
1415 * Otherwise copy them out via the uio, then free.
1416 * Sockbuf must be consistent here (points to current mbuf,
1417 * it points to next record) when we drop priority;
1418 * we must note any additions to the sockbuf when we
1419 * block interrupts again.
1420 */
1421 if (mp == NULL) {
1422 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1423 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1424 sounlock(so);
1425 splx(s);
1426 error = uiomove(mtod(m, char *) + moff, len, uio);
1427 s = splsoftnet();
1428 solock(so);
1429 if (error != 0) {
1430 /*
1431 * If any part of the record has been removed
1432 * (such as the MT_SONAME mbuf, which will
1433 * happen when PR_ADDR, and thus also
1434 * PR_ATOMIC, is set), then drop the entire
1435 * record to maintain the atomicity of the
1436 * receive operation.
1437 *
1438 * This avoids a later panic("receive 1a")
1439 * when compiled with DIAGNOSTIC.
1440 */
1441 if (m && mbuf_removed && atomic)
1442 (void) sbdroprecord(&so->so_rcv);
1443
1444 goto release;
1445 }
1446 } else
1447 uio->uio_resid -= len;
1448 if (len == m->m_len - moff) {
1449 if (m->m_flags & M_EOR)
1450 flags |= MSG_EOR;
1451 if (flags & MSG_PEEK) {
1452 m = m->m_next;
1453 moff = 0;
1454 } else {
1455 nextrecord = m->m_nextpkt;
1456 sbfree(&so->so_rcv, m);
1457 if (mp) {
1458 *mp = m;
1459 mp = &m->m_next;
1460 so->so_rcv.sb_mb = m = m->m_next;
1461 *mp = NULL;
1462 } else {
1463 MFREE(m, so->so_rcv.sb_mb);
1464 m = so->so_rcv.sb_mb;
1465 }
1466 /*
1467 * If m != NULL, we also know that
1468 * so->so_rcv.sb_mb != NULL.
1469 */
1470 KASSERT(so->so_rcv.sb_mb == m);
1471 if (m) {
1472 m->m_nextpkt = nextrecord;
1473 if (nextrecord == NULL)
1474 so->so_rcv.sb_lastrecord = m;
1475 } else {
1476 so->so_rcv.sb_mb = nextrecord;
1477 SB_EMPTY_FIXUP(&so->so_rcv);
1478 }
1479 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1480 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1481 }
1482 } else if (flags & MSG_PEEK)
1483 moff += len;
1484 else {
1485 if (mp != NULL) {
1486 mt = m_copym(m, 0, len, M_NOWAIT);
1487 if (__predict_false(mt == NULL)) {
1488 sounlock(so);
1489 mt = m_copym(m, 0, len, M_WAIT);
1490 solock(so);
1491 }
1492 *mp = mt;
1493 }
1494 m->m_data += len;
1495 m->m_len -= len;
1496 so->so_rcv.sb_cc -= len;
1497 }
1498 if (so->so_oobmark) {
1499 if ((flags & MSG_PEEK) == 0) {
1500 so->so_oobmark -= len;
1501 if (so->so_oobmark == 0) {
1502 so->so_state |= SS_RCVATMARK;
1503 break;
1504 }
1505 } else {
1506 offset += len;
1507 if (offset == so->so_oobmark)
1508 break;
1509 }
1510 }
1511 if (flags & MSG_EOR)
1512 break;
1513 /*
1514 * If the MSG_WAITALL flag is set (for non-atomic socket),
1515 * we must not quit until "uio->uio_resid == 0" or an error
1516 * termination. If a signal/timeout occurs, return
1517 * with a short count but without error.
1518 * Keep sockbuf locked against other readers.
1519 */
1520 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1521 !sosendallatonce(so) && !nextrecord) {
1522 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1523 break;
1524 /*
1525 * If we are peeking and the socket receive buffer is
1526 * full, stop since we can't get more data to peek at.
1527 */
1528 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1529 break;
1530 /*
1531 * If we've drained the socket buffer, tell the
1532 * protocol in case it needs to do something to
1533 * get it filled again.
1534 */
1535 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1536 (*pr->pr_usrreq)(so, PRU_RCVD,
1537 NULL, (struct mbuf *)(long)flags, NULL, l);
1538 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1539 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1540 if (wakeup_state & SS_RESTARTSYS)
1541 error = ERESTART;
1542 else
1543 error = sbwait(&so->so_rcv);
1544 if (error != 0) {
1545 sbunlock(&so->so_rcv);
1546 sounlock(so);
1547 splx(s);
1548 return 0;
1549 }
1550 if ((m = so->so_rcv.sb_mb) != NULL)
1551 nextrecord = m->m_nextpkt;
1552 wakeup_state = so->so_state;
1553 }
1554 }
1555
1556 if (m && atomic) {
1557 flags |= MSG_TRUNC;
1558 if ((flags & MSG_PEEK) == 0)
1559 (void) sbdroprecord(&so->so_rcv);
1560 }
1561 if ((flags & MSG_PEEK) == 0) {
1562 if (m == NULL) {
1563 /*
1564 * First part is an inline SB_EMPTY_FIXUP(). Second
1565 * part makes sure sb_lastrecord is up-to-date if
1566 * there is still data in the socket buffer.
1567 */
1568 so->so_rcv.sb_mb = nextrecord;
1569 if (so->so_rcv.sb_mb == NULL) {
1570 so->so_rcv.sb_mbtail = NULL;
1571 so->so_rcv.sb_lastrecord = NULL;
1572 } else if (nextrecord->m_nextpkt == NULL)
1573 so->so_rcv.sb_lastrecord = nextrecord;
1574 }
1575 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1576 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1577 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1578 (*pr->pr_usrreq)(so, PRU_RCVD, NULL,
1579 (struct mbuf *)(long)flags, NULL, l);
1580 }
1581 if (orig_resid == uio->uio_resid && orig_resid &&
1582 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1583 sbunlock(&so->so_rcv);
1584 goto restart;
1585 }
1586
1587 if (flagsp != NULL)
1588 *flagsp |= flags;
1589 release:
1590 sbunlock(&so->so_rcv);
1591 sounlock(so);
1592 splx(s);
1593 return error;
1594 }
1595
1596 int
1597 soshutdown(struct socket *so, int how)
1598 {
1599 const struct protosw *pr;
1600 int error;
1601
1602 KASSERT(solocked(so));
1603
1604 pr = so->so_proto;
1605 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1606 return (EINVAL);
1607
1608 if (how == SHUT_RD || how == SHUT_RDWR) {
1609 sorflush(so);
1610 error = 0;
1611 }
1612 if (how == SHUT_WR || how == SHUT_RDWR)
1613 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL,
1614 NULL, NULL, NULL);
1615
1616 return error;
1617 }
1618
1619 void
1620 sorestart(struct socket *so)
1621 {
1622 /*
1623 * An application has called close() on an fd on which another
1624 * of its threads has called a socket system call.
1625 * Mark this and wake everyone up, and code that would block again
1626 * instead returns ERESTART.
1627 * On system call re-entry the fd is validated and EBADF returned.
1628 * Any other fd will block again on the 2nd syscall.
1629 */
1630 solock(so);
1631 so->so_state |= SS_RESTARTSYS;
1632 cv_broadcast(&so->so_cv);
1633 cv_broadcast(&so->so_snd.sb_cv);
1634 cv_broadcast(&so->so_rcv.sb_cv);
1635 sounlock(so);
1636 }
1637
1638 void
1639 sorflush(struct socket *so)
1640 {
1641 struct sockbuf *sb, asb;
1642 const struct protosw *pr;
1643
1644 KASSERT(solocked(so));
1645
1646 sb = &so->so_rcv;
1647 pr = so->so_proto;
1648 socantrcvmore(so);
1649 sb->sb_flags |= SB_NOINTR;
1650 (void )sblock(sb, M_WAITOK);
1651 sbunlock(sb);
1652 asb = *sb;
1653 /*
1654 * Clear most of the sockbuf structure, but leave some of the
1655 * fields valid.
1656 */
1657 memset(&sb->sb_startzero, 0,
1658 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1659 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1660 sounlock(so);
1661 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1662 solock(so);
1663 }
1664 sbrelease(&asb, so);
1665 }
1666
1667 /*
1668 * internal set SOL_SOCKET options
1669 */
1670 static int
1671 sosetopt1(struct socket *so, const struct sockopt *sopt)
1672 {
1673 int error = EINVAL, opt;
1674 int optval = 0; /* XXX: gcc */
1675 struct linger l;
1676 struct timeval tv;
1677
1678 switch ((opt = sopt->sopt_name)) {
1679
1680 case SO_ACCEPTFILTER:
1681 error = accept_filt_setopt(so, sopt);
1682 KASSERT(solocked(so));
1683 break;
1684
1685 case SO_LINGER:
1686 error = sockopt_get(sopt, &l, sizeof(l));
1687 solock(so);
1688 if (error)
1689 break;
1690 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1691 l.l_linger > (INT_MAX / hz)) {
1692 error = EDOM;
1693 break;
1694 }
1695 so->so_linger = l.l_linger;
1696 if (l.l_onoff)
1697 so->so_options |= SO_LINGER;
1698 else
1699 so->so_options &= ~SO_LINGER;
1700 break;
1701
1702 case SO_DEBUG:
1703 case SO_KEEPALIVE:
1704 case SO_DONTROUTE:
1705 case SO_USELOOPBACK:
1706 case SO_BROADCAST:
1707 case SO_REUSEADDR:
1708 case SO_REUSEPORT:
1709 case SO_OOBINLINE:
1710 case SO_TIMESTAMP:
1711 case SO_NOSIGPIPE:
1712 #ifdef SO_OTIMESTAMP
1713 case SO_OTIMESTAMP:
1714 #endif
1715 error = sockopt_getint(sopt, &optval);
1716 solock(so);
1717 if (error)
1718 break;
1719 if (optval)
1720 so->so_options |= opt;
1721 else
1722 so->so_options &= ~opt;
1723 break;
1724
1725 case SO_SNDBUF:
1726 case SO_RCVBUF:
1727 case SO_SNDLOWAT:
1728 case SO_RCVLOWAT:
1729 error = sockopt_getint(sopt, &optval);
1730 solock(so);
1731 if (error)
1732 break;
1733
1734 /*
1735 * Values < 1 make no sense for any of these
1736 * options, so disallow them.
1737 */
1738 if (optval < 1) {
1739 error = EINVAL;
1740 break;
1741 }
1742
1743 switch (opt) {
1744 case SO_SNDBUF:
1745 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1746 error = ENOBUFS;
1747 break;
1748 }
1749 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1750 break;
1751
1752 case SO_RCVBUF:
1753 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1754 error = ENOBUFS;
1755 break;
1756 }
1757 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1758 break;
1759
1760 /*
1761 * Make sure the low-water is never greater than
1762 * the high-water.
1763 */
1764 case SO_SNDLOWAT:
1765 if (optval > so->so_snd.sb_hiwat)
1766 optval = so->so_snd.sb_hiwat;
1767
1768 so->so_snd.sb_lowat = optval;
1769 break;
1770
1771 case SO_RCVLOWAT:
1772 if (optval > so->so_rcv.sb_hiwat)
1773 optval = so->so_rcv.sb_hiwat;
1774
1775 so->so_rcv.sb_lowat = optval;
1776 break;
1777 }
1778 break;
1779
1780 #ifdef COMPAT_50
1781 case SO_OSNDTIMEO:
1782 case SO_ORCVTIMEO: {
1783 struct timeval50 otv;
1784 error = sockopt_get(sopt, &otv, sizeof(otv));
1785 if (error) {
1786 solock(so);
1787 break;
1788 }
1789 timeval50_to_timeval(&otv, &tv);
1790 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1791 error = 0;
1792 /*FALLTHROUGH*/
1793 }
1794 #endif /* COMPAT_50 */
1795
1796 case SO_SNDTIMEO:
1797 case SO_RCVTIMEO:
1798 if (error)
1799 error = sockopt_get(sopt, &tv, sizeof(tv));
1800 solock(so);
1801 if (error)
1802 break;
1803
1804 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1805 error = EDOM;
1806 break;
1807 }
1808
1809 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1810 if (optval == 0 && tv.tv_usec != 0)
1811 optval = 1;
1812
1813 switch (opt) {
1814 case SO_SNDTIMEO:
1815 so->so_snd.sb_timeo = optval;
1816 break;
1817 case SO_RCVTIMEO:
1818 so->so_rcv.sb_timeo = optval;
1819 break;
1820 }
1821 break;
1822
1823 default:
1824 solock(so);
1825 error = ENOPROTOOPT;
1826 break;
1827 }
1828 KASSERT(solocked(so));
1829 return error;
1830 }
1831
1832 int
1833 sosetopt(struct socket *so, struct sockopt *sopt)
1834 {
1835 int error, prerr;
1836
1837 if (sopt->sopt_level == SOL_SOCKET) {
1838 error = sosetopt1(so, sopt);
1839 KASSERT(solocked(so));
1840 } else {
1841 error = ENOPROTOOPT;
1842 solock(so);
1843 }
1844
1845 if ((error == 0 || error == ENOPROTOOPT) &&
1846 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1847 /* give the protocol stack a shot */
1848 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1849 if (prerr == 0)
1850 error = 0;
1851 else if (prerr != ENOPROTOOPT)
1852 error = prerr;
1853 }
1854 sounlock(so);
1855 return error;
1856 }
1857
1858 /*
1859 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1860 */
1861 int
1862 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1863 const void *val, size_t valsize)
1864 {
1865 struct sockopt sopt;
1866 int error;
1867
1868 KASSERT(valsize == 0 || val != NULL);
1869
1870 sockopt_init(&sopt, level, name, valsize);
1871 sockopt_set(&sopt, val, valsize);
1872
1873 error = sosetopt(so, &sopt);
1874
1875 sockopt_destroy(&sopt);
1876
1877 return error;
1878 }
1879
1880 /*
1881 * internal get SOL_SOCKET options
1882 */
1883 static int
1884 sogetopt1(struct socket *so, struct sockopt *sopt)
1885 {
1886 int error, optval, opt;
1887 struct linger l;
1888 struct timeval tv;
1889
1890 switch ((opt = sopt->sopt_name)) {
1891
1892 case SO_ACCEPTFILTER:
1893 error = accept_filt_getopt(so, sopt);
1894 break;
1895
1896 case SO_LINGER:
1897 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1898 l.l_linger = so->so_linger;
1899
1900 error = sockopt_set(sopt, &l, sizeof(l));
1901 break;
1902
1903 case SO_USELOOPBACK:
1904 case SO_DONTROUTE:
1905 case SO_DEBUG:
1906 case SO_KEEPALIVE:
1907 case SO_REUSEADDR:
1908 case SO_REUSEPORT:
1909 case SO_BROADCAST:
1910 case SO_OOBINLINE:
1911 case SO_TIMESTAMP:
1912 case SO_NOSIGPIPE:
1913 #ifdef SO_OTIMESTAMP
1914 case SO_OTIMESTAMP:
1915 #endif
1916 case SO_ACCEPTCONN:
1917 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1918 break;
1919
1920 case SO_TYPE:
1921 error = sockopt_setint(sopt, so->so_type);
1922 break;
1923
1924 case SO_ERROR:
1925 error = sockopt_setint(sopt, so->so_error);
1926 so->so_error = 0;
1927 break;
1928
1929 case SO_SNDBUF:
1930 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1931 break;
1932
1933 case SO_RCVBUF:
1934 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1935 break;
1936
1937 case SO_SNDLOWAT:
1938 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1939 break;
1940
1941 case SO_RCVLOWAT:
1942 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1943 break;
1944
1945 #ifdef COMPAT_50
1946 case SO_OSNDTIMEO:
1947 case SO_ORCVTIMEO: {
1948 struct timeval50 otv;
1949
1950 optval = (opt == SO_OSNDTIMEO ?
1951 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1952
1953 otv.tv_sec = optval / hz;
1954 otv.tv_usec = (optval % hz) * tick;
1955
1956 error = sockopt_set(sopt, &otv, sizeof(otv));
1957 break;
1958 }
1959 #endif /* COMPAT_50 */
1960
1961 case SO_SNDTIMEO:
1962 case SO_RCVTIMEO:
1963 optval = (opt == SO_SNDTIMEO ?
1964 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1965
1966 tv.tv_sec = optval / hz;
1967 tv.tv_usec = (optval % hz) * tick;
1968
1969 error = sockopt_set(sopt, &tv, sizeof(tv));
1970 break;
1971
1972 case SO_OVERFLOWED:
1973 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1974 break;
1975
1976 default:
1977 error = ENOPROTOOPT;
1978 break;
1979 }
1980
1981 return (error);
1982 }
1983
1984 int
1985 sogetopt(struct socket *so, struct sockopt *sopt)
1986 {
1987 int error;
1988
1989 solock(so);
1990 if (sopt->sopt_level != SOL_SOCKET) {
1991 if (so->so_proto && so->so_proto->pr_ctloutput) {
1992 error = ((*so->so_proto->pr_ctloutput)
1993 (PRCO_GETOPT, so, sopt));
1994 } else
1995 error = (ENOPROTOOPT);
1996 } else {
1997 error = sogetopt1(so, sopt);
1998 }
1999 sounlock(so);
2000 return (error);
2001 }
2002
2003 /*
2004 * alloc sockopt data buffer buffer
2005 * - will be released at destroy
2006 */
2007 static int
2008 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2009 {
2010
2011 KASSERT(sopt->sopt_size == 0);
2012
2013 if (len > sizeof(sopt->sopt_buf)) {
2014 sopt->sopt_data = kmem_zalloc(len, kmflag);
2015 if (sopt->sopt_data == NULL)
2016 return ENOMEM;
2017 } else
2018 sopt->sopt_data = sopt->sopt_buf;
2019
2020 sopt->sopt_size = len;
2021 return 0;
2022 }
2023
2024 /*
2025 * initialise sockopt storage
2026 * - MAY sleep during allocation
2027 */
2028 void
2029 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2030 {
2031
2032 memset(sopt, 0, sizeof(*sopt));
2033
2034 sopt->sopt_level = level;
2035 sopt->sopt_name = name;
2036 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2037 }
2038
2039 /*
2040 * destroy sockopt storage
2041 * - will release any held memory references
2042 */
2043 void
2044 sockopt_destroy(struct sockopt *sopt)
2045 {
2046
2047 if (sopt->sopt_data != sopt->sopt_buf)
2048 kmem_free(sopt->sopt_data, sopt->sopt_size);
2049
2050 memset(sopt, 0, sizeof(*sopt));
2051 }
2052
2053 /*
2054 * set sockopt value
2055 * - value is copied into sockopt
2056 * - memory is allocated when necessary, will not sleep
2057 */
2058 int
2059 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2060 {
2061 int error;
2062
2063 if (sopt->sopt_size == 0) {
2064 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2065 if (error)
2066 return error;
2067 }
2068
2069 KASSERT(sopt->sopt_size == len);
2070 memcpy(sopt->sopt_data, buf, len);
2071 return 0;
2072 }
2073
2074 /*
2075 * common case of set sockopt integer value
2076 */
2077 int
2078 sockopt_setint(struct sockopt *sopt, int val)
2079 {
2080
2081 return sockopt_set(sopt, &val, sizeof(int));
2082 }
2083
2084 /*
2085 * get sockopt value
2086 * - correct size must be given
2087 */
2088 int
2089 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2090 {
2091
2092 if (sopt->sopt_size != len)
2093 return EINVAL;
2094
2095 memcpy(buf, sopt->sopt_data, len);
2096 return 0;
2097 }
2098
2099 /*
2100 * common case of get sockopt integer value
2101 */
2102 int
2103 sockopt_getint(const struct sockopt *sopt, int *valp)
2104 {
2105
2106 return sockopt_get(sopt, valp, sizeof(int));
2107 }
2108
2109 /*
2110 * set sockopt value from mbuf
2111 * - ONLY for legacy code
2112 * - mbuf is released by sockopt
2113 * - will not sleep
2114 */
2115 int
2116 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2117 {
2118 size_t len;
2119 int error;
2120
2121 len = m_length(m);
2122
2123 if (sopt->sopt_size == 0) {
2124 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2125 if (error)
2126 return error;
2127 }
2128
2129 KASSERT(sopt->sopt_size == len);
2130 m_copydata(m, 0, len, sopt->sopt_data);
2131 m_freem(m);
2132
2133 return 0;
2134 }
2135
2136 /*
2137 * get sockopt value into mbuf
2138 * - ONLY for legacy code
2139 * - mbuf to be released by the caller
2140 * - will not sleep
2141 */
2142 struct mbuf *
2143 sockopt_getmbuf(const struct sockopt *sopt)
2144 {
2145 struct mbuf *m;
2146
2147 if (sopt->sopt_size > MCLBYTES)
2148 return NULL;
2149
2150 m = m_get(M_DONTWAIT, MT_SOOPTS);
2151 if (m == NULL)
2152 return NULL;
2153
2154 if (sopt->sopt_size > MLEN) {
2155 MCLGET(m, M_DONTWAIT);
2156 if ((m->m_flags & M_EXT) == 0) {
2157 m_free(m);
2158 return NULL;
2159 }
2160 }
2161
2162 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2163 m->m_len = sopt->sopt_size;
2164
2165 return m;
2166 }
2167
2168 void
2169 sohasoutofband(struct socket *so)
2170 {
2171
2172 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2173 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2174 }
2175
2176 static void
2177 filt_sordetach(struct knote *kn)
2178 {
2179 struct socket *so;
2180
2181 so = ((file_t *)kn->kn_obj)->f_data;
2182 solock(so);
2183 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2184 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2185 so->so_rcv.sb_flags &= ~SB_KNOTE;
2186 sounlock(so);
2187 }
2188
2189 /*ARGSUSED*/
2190 static int
2191 filt_soread(struct knote *kn, long hint)
2192 {
2193 struct socket *so;
2194 int rv;
2195
2196 so = ((file_t *)kn->kn_obj)->f_data;
2197 if (hint != NOTE_SUBMIT)
2198 solock(so);
2199 kn->kn_data = so->so_rcv.sb_cc;
2200 if (so->so_state & SS_CANTRCVMORE) {
2201 kn->kn_flags |= EV_EOF;
2202 kn->kn_fflags = so->so_error;
2203 rv = 1;
2204 } else if (so->so_error) /* temporary udp error */
2205 rv = 1;
2206 else if (kn->kn_sfflags & NOTE_LOWAT)
2207 rv = (kn->kn_data >= kn->kn_sdata);
2208 else
2209 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2210 if (hint != NOTE_SUBMIT)
2211 sounlock(so);
2212 return rv;
2213 }
2214
2215 static void
2216 filt_sowdetach(struct knote *kn)
2217 {
2218 struct socket *so;
2219
2220 so = ((file_t *)kn->kn_obj)->f_data;
2221 solock(so);
2222 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2223 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2224 so->so_snd.sb_flags &= ~SB_KNOTE;
2225 sounlock(so);
2226 }
2227
2228 /*ARGSUSED*/
2229 static int
2230 filt_sowrite(struct knote *kn, long hint)
2231 {
2232 struct socket *so;
2233 int rv;
2234
2235 so = ((file_t *)kn->kn_obj)->f_data;
2236 if (hint != NOTE_SUBMIT)
2237 solock(so);
2238 kn->kn_data = sbspace(&so->so_snd);
2239 if (so->so_state & SS_CANTSENDMORE) {
2240 kn->kn_flags |= EV_EOF;
2241 kn->kn_fflags = so->so_error;
2242 rv = 1;
2243 } else if (so->so_error) /* temporary udp error */
2244 rv = 1;
2245 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2246 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2247 rv = 0;
2248 else if (kn->kn_sfflags & NOTE_LOWAT)
2249 rv = (kn->kn_data >= kn->kn_sdata);
2250 else
2251 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2252 if (hint != NOTE_SUBMIT)
2253 sounlock(so);
2254 return rv;
2255 }
2256
2257 /*ARGSUSED*/
2258 static int
2259 filt_solisten(struct knote *kn, long hint)
2260 {
2261 struct socket *so;
2262 int rv;
2263
2264 so = ((file_t *)kn->kn_obj)->f_data;
2265
2266 /*
2267 * Set kn_data to number of incoming connections, not
2268 * counting partial (incomplete) connections.
2269 */
2270 if (hint != NOTE_SUBMIT)
2271 solock(so);
2272 kn->kn_data = so->so_qlen;
2273 rv = (kn->kn_data > 0);
2274 if (hint != NOTE_SUBMIT)
2275 sounlock(so);
2276 return rv;
2277 }
2278
2279 static const struct filterops solisten_filtops =
2280 { 1, NULL, filt_sordetach, filt_solisten };
2281 static const struct filterops soread_filtops =
2282 { 1, NULL, filt_sordetach, filt_soread };
2283 static const struct filterops sowrite_filtops =
2284 { 1, NULL, filt_sowdetach, filt_sowrite };
2285
2286 int
2287 soo_kqfilter(struct file *fp, struct knote *kn)
2288 {
2289 struct socket *so;
2290 struct sockbuf *sb;
2291
2292 so = ((file_t *)kn->kn_obj)->f_data;
2293 solock(so);
2294 switch (kn->kn_filter) {
2295 case EVFILT_READ:
2296 if (so->so_options & SO_ACCEPTCONN)
2297 kn->kn_fop = &solisten_filtops;
2298 else
2299 kn->kn_fop = &soread_filtops;
2300 sb = &so->so_rcv;
2301 break;
2302 case EVFILT_WRITE:
2303 kn->kn_fop = &sowrite_filtops;
2304 sb = &so->so_snd;
2305 break;
2306 default:
2307 sounlock(so);
2308 return (EINVAL);
2309 }
2310 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2311 sb->sb_flags |= SB_KNOTE;
2312 sounlock(so);
2313 return (0);
2314 }
2315
2316 static int
2317 sodopoll(struct socket *so, int events)
2318 {
2319 int revents;
2320
2321 revents = 0;
2322
2323 if (events & (POLLIN | POLLRDNORM))
2324 if (soreadable(so))
2325 revents |= events & (POLLIN | POLLRDNORM);
2326
2327 if (events & (POLLOUT | POLLWRNORM))
2328 if (sowritable(so))
2329 revents |= events & (POLLOUT | POLLWRNORM);
2330
2331 if (events & (POLLPRI | POLLRDBAND))
2332 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2333 revents |= events & (POLLPRI | POLLRDBAND);
2334
2335 return revents;
2336 }
2337
2338 int
2339 sopoll(struct socket *so, int events)
2340 {
2341 int revents = 0;
2342
2343 #ifndef DIAGNOSTIC
2344 /*
2345 * Do a quick, unlocked check in expectation that the socket
2346 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2347 * as the solocked() assertions will fail.
2348 */
2349 if ((revents = sodopoll(so, events)) != 0)
2350 return revents;
2351 #endif
2352
2353 solock(so);
2354 if ((revents = sodopoll(so, events)) == 0) {
2355 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2356 selrecord(curlwp, &so->so_rcv.sb_sel);
2357 so->so_rcv.sb_flags |= SB_NOTIFY;
2358 }
2359
2360 if (events & (POLLOUT | POLLWRNORM)) {
2361 selrecord(curlwp, &so->so_snd.sb_sel);
2362 so->so_snd.sb_flags |= SB_NOTIFY;
2363 }
2364 }
2365 sounlock(so);
2366
2367 return revents;
2368 }
2369
2370
2371 #include <sys/sysctl.h>
2372
2373 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2374 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2375
2376 /*
2377 * sysctl helper routine for kern.somaxkva. ensures that the given
2378 * value is not too small.
2379 * (XXX should we maybe make sure it's not too large as well?)
2380 */
2381 static int
2382 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2383 {
2384 int error, new_somaxkva;
2385 struct sysctlnode node;
2386
2387 new_somaxkva = somaxkva;
2388 node = *rnode;
2389 node.sysctl_data = &new_somaxkva;
2390 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2391 if (error || newp == NULL)
2392 return (error);
2393
2394 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2395 return (EINVAL);
2396
2397 mutex_enter(&so_pendfree_lock);
2398 somaxkva = new_somaxkva;
2399 cv_broadcast(&socurkva_cv);
2400 mutex_exit(&so_pendfree_lock);
2401
2402 return (error);
2403 }
2404
2405 /*
2406 * sysctl helper routine for kern.sbmax. Basically just ensures that
2407 * any new value is not too small.
2408 */
2409 static int
2410 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2411 {
2412 int error, new_sbmax;
2413 struct sysctlnode node;
2414
2415 new_sbmax = sb_max;
2416 node = *rnode;
2417 node.sysctl_data = &new_sbmax;
2418 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2419 if (error || newp == NULL)
2420 return (error);
2421
2422 KERNEL_LOCK(1, NULL);
2423 error = sb_max_set(new_sbmax);
2424 KERNEL_UNLOCK_ONE(NULL);
2425
2426 return (error);
2427 }
2428
2429 static void
2430 sysctl_kern_socket_setup(void)
2431 {
2432
2433 KASSERT(socket_sysctllog == NULL);
2434
2435 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2436 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2437 CTLTYPE_INT, "somaxkva",
2438 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2439 "used for socket buffers"),
2440 sysctl_kern_somaxkva, 0, NULL, 0,
2441 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2442
2443 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2444 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2445 CTLTYPE_INT, "sbmax",
2446 SYSCTL_DESCR("Maximum socket buffer size"),
2447 sysctl_kern_sbmax, 0, NULL, 0,
2448 CTL_KERN, KERN_SBMAX, CTL_EOL);
2449 }
2450