uipc_socket.c revision 1.224 1 /* $NetBSD: uipc_socket.c,v 1.224 2014/05/19 02:51:24 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 /*
66 * Socket operation routines.
67 *
68 * These routines are called by the routines in sys_socket.c or from a
69 * system process, and implement the semantics of socket operations by
70 * switching out to the protocol specific routines.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.224 2014/05/19 02:51:24 rmind Exp $");
75
76 #include "opt_compat_netbsd.h"
77 #include "opt_sock_counters.h"
78 #include "opt_sosend_loan.h"
79 #include "opt_mbuftrace.h"
80 #include "opt_somaxkva.h"
81 #include "opt_multiprocessor.h" /* XXX */
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/proc.h>
86 #include <sys/file.h>
87 #include <sys/filedesc.h>
88 #include <sys/kmem.h>
89 #include <sys/mbuf.h>
90 #include <sys/domain.h>
91 #include <sys/kernel.h>
92 #include <sys/protosw.h>
93 #include <sys/socket.h>
94 #include <sys/socketvar.h>
95 #include <sys/signalvar.h>
96 #include <sys/resourcevar.h>
97 #include <sys/uidinfo.h>
98 #include <sys/event.h>
99 #include <sys/poll.h>
100 #include <sys/kauth.h>
101 #include <sys/mutex.h>
102 #include <sys/condvar.h>
103 #include <sys/kthread.h>
104
105 #ifdef COMPAT_50
106 #include <compat/sys/time.h>
107 #include <compat/sys/socket.h>
108 #endif
109
110 #include <uvm/uvm_extern.h>
111 #include <uvm/uvm_loan.h>
112 #include <uvm/uvm_page.h>
113
114 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
115
116 extern const struct fileops socketops;
117
118 extern int somaxconn; /* patchable (XXX sysctl) */
119 int somaxconn = SOMAXCONN;
120 kmutex_t *softnet_lock;
121
122 #ifdef SOSEND_COUNTERS
123 #include <sys/device.h>
124
125 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
126 NULL, "sosend", "loan big");
127 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
128 NULL, "sosend", "copy big");
129 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
130 NULL, "sosend", "copy small");
131 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
132 NULL, "sosend", "kva limit");
133
134 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
135
136 EVCNT_ATTACH_STATIC(sosend_loan_big);
137 EVCNT_ATTACH_STATIC(sosend_copy_big);
138 EVCNT_ATTACH_STATIC(sosend_copy_small);
139 EVCNT_ATTACH_STATIC(sosend_kvalimit);
140 #else
141
142 #define SOSEND_COUNTER_INCR(ev) /* nothing */
143
144 #endif /* SOSEND_COUNTERS */
145
146 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
147 int sock_loan_thresh = -1;
148 #else
149 int sock_loan_thresh = 4096;
150 #endif
151
152 static kmutex_t so_pendfree_lock;
153 static struct mbuf *so_pendfree = NULL;
154
155 #ifndef SOMAXKVA
156 #define SOMAXKVA (16 * 1024 * 1024)
157 #endif
158 int somaxkva = SOMAXKVA;
159 static int socurkva;
160 static kcondvar_t socurkva_cv;
161
162 static kauth_listener_t socket_listener;
163
164 #define SOCK_LOAN_CHUNK 65536
165
166 static void sopendfree_thread(void *);
167 static kcondvar_t pendfree_thread_cv;
168 static lwp_t *sopendfree_lwp;
169
170 static void sysctl_kern_socket_setup(void);
171 static struct sysctllog *socket_sysctllog;
172
173 static vsize_t
174 sokvareserve(struct socket *so, vsize_t len)
175 {
176 int error;
177
178 mutex_enter(&so_pendfree_lock);
179 while (socurkva + len > somaxkva) {
180 SOSEND_COUNTER_INCR(&sosend_kvalimit);
181 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
182 if (error) {
183 len = 0;
184 break;
185 }
186 }
187 socurkva += len;
188 mutex_exit(&so_pendfree_lock);
189 return len;
190 }
191
192 static void
193 sokvaunreserve(vsize_t len)
194 {
195
196 mutex_enter(&so_pendfree_lock);
197 socurkva -= len;
198 cv_broadcast(&socurkva_cv);
199 mutex_exit(&so_pendfree_lock);
200 }
201
202 /*
203 * sokvaalloc: allocate kva for loan.
204 */
205
206 vaddr_t
207 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
208 {
209 vaddr_t lva;
210
211 /*
212 * reserve kva.
213 */
214
215 if (sokvareserve(so, len) == 0)
216 return 0;
217
218 /*
219 * allocate kva.
220 */
221
222 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
223 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
224 if (lva == 0) {
225 sokvaunreserve(len);
226 return (0);
227 }
228
229 return lva;
230 }
231
232 /*
233 * sokvafree: free kva for loan.
234 */
235
236 void
237 sokvafree(vaddr_t sva, vsize_t len)
238 {
239
240 /*
241 * free kva.
242 */
243
244 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
245
246 /*
247 * unreserve kva.
248 */
249
250 sokvaunreserve(len);
251 }
252
253 static void
254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
255 {
256 vaddr_t sva, eva;
257 vsize_t len;
258 int npgs;
259
260 KASSERT(pgs != NULL);
261
262 eva = round_page((vaddr_t) buf + size);
263 sva = trunc_page((vaddr_t) buf);
264 len = eva - sva;
265 npgs = len >> PAGE_SHIFT;
266
267 pmap_kremove(sva, len);
268 pmap_update(pmap_kernel());
269 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
270 sokvafree(sva, len);
271 }
272
273 /*
274 * sopendfree_thread: free mbufs on "pendfree" list.
275 * unlock and relock so_pendfree_lock when freeing mbufs.
276 */
277
278 static void
279 sopendfree_thread(void *v)
280 {
281 struct mbuf *m, *next;
282 size_t rv;
283
284 mutex_enter(&so_pendfree_lock);
285
286 for (;;) {
287 rv = 0;
288 while (so_pendfree != NULL) {
289 m = so_pendfree;
290 so_pendfree = NULL;
291 mutex_exit(&so_pendfree_lock);
292
293 for (; m != NULL; m = next) {
294 next = m->m_next;
295 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
296 KASSERT(m->m_ext.ext_refcnt == 0);
297
298 rv += m->m_ext.ext_size;
299 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
300 m->m_ext.ext_size);
301 pool_cache_put(mb_cache, m);
302 }
303
304 mutex_enter(&so_pendfree_lock);
305 }
306 if (rv)
307 cv_broadcast(&socurkva_cv);
308 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
309 }
310 panic("sopendfree_thread");
311 /* NOTREACHED */
312 }
313
314 void
315 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
316 {
317
318 KASSERT(m != NULL);
319
320 /*
321 * postpone freeing mbuf.
322 *
323 * we can't do it in interrupt context
324 * because we need to put kva back to kernel_map.
325 */
326
327 mutex_enter(&so_pendfree_lock);
328 m->m_next = so_pendfree;
329 so_pendfree = m;
330 cv_signal(&pendfree_thread_cv);
331 mutex_exit(&so_pendfree_lock);
332 }
333
334 static long
335 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
336 {
337 struct iovec *iov = uio->uio_iov;
338 vaddr_t sva, eva;
339 vsize_t len;
340 vaddr_t lva;
341 int npgs, error;
342 vaddr_t va;
343 int i;
344
345 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
346 return (0);
347
348 if (iov->iov_len < (size_t) space)
349 space = iov->iov_len;
350 if (space > SOCK_LOAN_CHUNK)
351 space = SOCK_LOAN_CHUNK;
352
353 eva = round_page((vaddr_t) iov->iov_base + space);
354 sva = trunc_page((vaddr_t) iov->iov_base);
355 len = eva - sva;
356 npgs = len >> PAGE_SHIFT;
357
358 KASSERT(npgs <= M_EXT_MAXPAGES);
359
360 lva = sokvaalloc(sva, len, so);
361 if (lva == 0)
362 return 0;
363
364 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
365 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
366 if (error) {
367 sokvafree(lva, len);
368 return (0);
369 }
370
371 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
372 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
373 VM_PROT_READ, 0);
374 pmap_update(pmap_kernel());
375
376 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
377
378 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
379 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
380
381 uio->uio_resid -= space;
382 /* uio_offset not updated, not set/used for write(2) */
383 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
384 uio->uio_iov->iov_len -= space;
385 if (uio->uio_iov->iov_len == 0) {
386 uio->uio_iov++;
387 uio->uio_iovcnt--;
388 }
389
390 return (space);
391 }
392
393 struct mbuf *
394 getsombuf(struct socket *so, int type)
395 {
396 struct mbuf *m;
397
398 m = m_get(M_WAIT, type);
399 MCLAIM(m, so->so_mowner);
400 return m;
401 }
402
403 static int
404 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
405 void *arg0, void *arg1, void *arg2, void *arg3)
406 {
407 int result;
408 enum kauth_network_req req;
409
410 result = KAUTH_RESULT_DEFER;
411 req = (enum kauth_network_req)arg0;
412
413 if ((action != KAUTH_NETWORK_SOCKET) &&
414 (action != KAUTH_NETWORK_BIND))
415 return result;
416
417 switch (req) {
418 case KAUTH_REQ_NETWORK_BIND_PORT:
419 result = KAUTH_RESULT_ALLOW;
420 break;
421
422 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
423 /* Normal users can only drop their own connections. */
424 struct socket *so = (struct socket *)arg1;
425
426 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
427 result = KAUTH_RESULT_ALLOW;
428
429 break;
430 }
431
432 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
433 /* We allow "raw" routing/bluetooth sockets to anyone. */
434 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
435 || (u_long)arg1 == PF_BLUETOOTH) {
436 result = KAUTH_RESULT_ALLOW;
437 } else {
438 /* Privileged, let secmodel handle this. */
439 if ((u_long)arg2 == SOCK_RAW)
440 break;
441 }
442
443 result = KAUTH_RESULT_ALLOW;
444
445 break;
446
447 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
448 result = KAUTH_RESULT_ALLOW;
449
450 break;
451
452 default:
453 break;
454 }
455
456 return result;
457 }
458
459 void
460 soinit(void)
461 {
462
463 sysctl_kern_socket_setup();
464
465 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
466 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
467 cv_init(&socurkva_cv, "sokva");
468 cv_init(&pendfree_thread_cv, "sopendfr");
469 soinit2();
470
471 /* Set the initial adjusted socket buffer size. */
472 if (sb_max_set(sb_max))
473 panic("bad initial sb_max value: %lu", sb_max);
474
475 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
476 socket_listener_cb, NULL);
477 }
478
479 void
480 soinit1(void)
481 {
482 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
483 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
484 if (error)
485 panic("soinit1 %d", error);
486 }
487
488 /*
489 * socreate: create a new socket of the specified type and the protocol.
490 *
491 * => Caller may specify another socket for lock sharing (must not be held).
492 * => Returns the new socket without lock held.
493 */
494 int
495 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
496 struct socket *lockso)
497 {
498 const struct protosw *prp;
499 struct socket *so;
500 uid_t uid;
501 int error;
502 kmutex_t *lock;
503
504 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
505 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
506 KAUTH_ARG(proto));
507 if (error != 0)
508 return error;
509
510 if (proto)
511 prp = pffindproto(dom, proto, type);
512 else
513 prp = pffindtype(dom, type);
514 if (prp == NULL) {
515 /* no support for domain */
516 if (pffinddomain(dom) == 0)
517 return EAFNOSUPPORT;
518 /* no support for socket type */
519 if (proto == 0 && type != 0)
520 return EPROTOTYPE;
521 return EPROTONOSUPPORT;
522 }
523 if (prp->pr_usrreqs == NULL)
524 return EPROTONOSUPPORT;
525 if (prp->pr_type != type)
526 return EPROTOTYPE;
527
528 so = soget(true);
529 so->so_type = type;
530 so->so_proto = prp;
531 so->so_send = sosend;
532 so->so_receive = soreceive;
533 #ifdef MBUFTRACE
534 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
535 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
536 so->so_mowner = &prp->pr_domain->dom_mowner;
537 #endif
538 uid = kauth_cred_geteuid(l->l_cred);
539 so->so_uidinfo = uid_find(uid);
540 so->so_cpid = l->l_proc->p_pid;
541
542 /*
543 * Lock assigned and taken during PCB attach, unless we share
544 * the lock with another socket, e.g. socketpair(2) case.
545 */
546 if (lockso) {
547 lock = lockso->so_lock;
548 so->so_lock = lock;
549 mutex_obj_hold(lock);
550 mutex_enter(lock);
551 }
552
553 /* Attach the PCB (returns with the socket lock held). */
554 error = (*prp->pr_usrreqs->pr_attach)(so, proto);
555 KASSERT(solocked(so));
556
557 if (error) {
558 KASSERT(so->so_pcb == NULL);
559 so->so_state |= SS_NOFDREF;
560 sofree(so);
561 return error;
562 }
563 so->so_cred = kauth_cred_dup(l->l_cred);
564 sounlock(so);
565
566 *aso = so;
567 return 0;
568 }
569
570 /*
571 * fsocreate: create a socket and a file descriptor associated with it.
572 *
573 * => On success, write file descriptor to fdout and return zero.
574 * => On failure, return non-zero; *fdout will be undefined.
575 */
576 int
577 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
578 {
579 lwp_t *l = curlwp;
580 int error, fd, flags;
581 struct socket *so;
582 struct file *fp;
583
584 if ((error = fd_allocfile(&fp, &fd)) != 0) {
585 return error;
586 }
587 flags = type & SOCK_FLAGS_MASK;
588 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
589 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
590 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
591 fp->f_type = DTYPE_SOCKET;
592 fp->f_ops = &socketops;
593
594 type &= ~SOCK_FLAGS_MASK;
595 error = socreate(domain, &so, type, proto, l, NULL);
596 if (error) {
597 fd_abort(curproc, fp, fd);
598 return error;
599 }
600 if (flags & SOCK_NONBLOCK) {
601 so->so_state |= SS_NBIO;
602 }
603 fp->f_data = so;
604 fd_affix(curproc, fp, fd);
605
606 if (sop != NULL) {
607 *sop = so;
608 }
609 *fdout = fd;
610 return error;
611 }
612
613 int
614 sofamily(const struct socket *so)
615 {
616 const struct protosw *pr;
617 const struct domain *dom;
618
619 if ((pr = so->so_proto) == NULL)
620 return AF_UNSPEC;
621 if ((dom = pr->pr_domain) == NULL)
622 return AF_UNSPEC;
623 return dom->dom_family;
624 }
625
626 int
627 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
628 {
629 int error;
630
631 solock(so);
632 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
633 PRU_BIND, NULL, nam, NULL, l);
634 sounlock(so);
635 return error;
636 }
637
638 int
639 solisten(struct socket *so, int backlog, struct lwp *l)
640 {
641 int error;
642
643 solock(so);
644 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
645 SS_ISDISCONNECTING)) != 0) {
646 sounlock(so);
647 return EINVAL;
648 }
649 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
650 PRU_LISTEN, NULL, NULL, NULL, l);
651 if (error != 0) {
652 sounlock(so);
653 return error;
654 }
655 if (TAILQ_EMPTY(&so->so_q))
656 so->so_options |= SO_ACCEPTCONN;
657 if (backlog < 0)
658 backlog = 0;
659 so->so_qlimit = min(backlog, somaxconn);
660 sounlock(so);
661 return 0;
662 }
663
664 void
665 sofree(struct socket *so)
666 {
667 u_int refs;
668
669 KASSERT(solocked(so));
670
671 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
672 sounlock(so);
673 return;
674 }
675 if (so->so_head) {
676 /*
677 * We must not decommission a socket that's on the accept(2)
678 * queue. If we do, then accept(2) may hang after select(2)
679 * indicated that the listening socket was ready.
680 */
681 if (!soqremque(so, 0)) {
682 sounlock(so);
683 return;
684 }
685 }
686 if (so->so_rcv.sb_hiwat)
687 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
688 RLIM_INFINITY);
689 if (so->so_snd.sb_hiwat)
690 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
691 RLIM_INFINITY);
692 sbrelease(&so->so_snd, so);
693 KASSERT(!cv_has_waiters(&so->so_cv));
694 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
695 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
696 sorflush(so);
697 refs = so->so_aborting; /* XXX */
698 /* Remove acccept filter if one is present. */
699 if (so->so_accf != NULL)
700 (void)accept_filt_clear(so);
701 sounlock(so);
702 if (refs == 0) /* XXX */
703 soput(so);
704 }
705
706 /*
707 * soclose: close a socket on last file table reference removal.
708 * Initiate disconnect if connected. Free socket when disconnect complete.
709 */
710 int
711 soclose(struct socket *so)
712 {
713 struct socket *so2;
714 int error = 0;
715
716 solock(so);
717 if (so->so_options & SO_ACCEPTCONN) {
718 for (;;) {
719 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
720 KASSERT(solocked2(so, so2));
721 (void) soqremque(so2, 0);
722 /* soabort drops the lock. */
723 (void) soabort(so2);
724 solock(so);
725 continue;
726 }
727 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
728 KASSERT(solocked2(so, so2));
729 (void) soqremque(so2, 1);
730 /* soabort drops the lock. */
731 (void) soabort(so2);
732 solock(so);
733 continue;
734 }
735 break;
736 }
737 }
738 if (so->so_pcb == NULL)
739 goto discard;
740 if (so->so_state & SS_ISCONNECTED) {
741 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
742 error = sodisconnect(so);
743 if (error)
744 goto drop;
745 }
746 if (so->so_options & SO_LINGER) {
747 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
748 (SS_ISDISCONNECTING|SS_NBIO))
749 goto drop;
750 while (so->so_state & SS_ISCONNECTED) {
751 error = sowait(so, true, so->so_linger * hz);
752 if (error)
753 break;
754 }
755 }
756 }
757 drop:
758 if (so->so_pcb) {
759 KASSERT(solocked(so));
760 (*so->so_proto->pr_usrreqs->pr_detach)(so);
761 }
762 discard:
763 KASSERT((so->so_state & SS_NOFDREF) == 0);
764 kauth_cred_free(so->so_cred);
765 so->so_state |= SS_NOFDREF;
766 sofree(so);
767 return error;
768 }
769
770 /*
771 * Must be called with the socket locked.. Will return with it unlocked.
772 */
773 int
774 soabort(struct socket *so)
775 {
776 u_int refs;
777 int error;
778
779 KASSERT(solocked(so));
780 KASSERT(so->so_head == NULL);
781
782 so->so_aborting++; /* XXX */
783 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
784 PRU_ABORT, NULL, NULL, NULL, NULL);
785 refs = --so->so_aborting; /* XXX */
786 if (error || (refs == 0)) {
787 sofree(so);
788 } else {
789 sounlock(so);
790 }
791 return error;
792 }
793
794 int
795 soaccept(struct socket *so, struct mbuf *nam)
796 {
797 int error;
798
799 KASSERT(solocked(so));
800 KASSERT((so->so_state & SS_NOFDREF) != 0);
801
802 so->so_state &= ~SS_NOFDREF;
803 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
804 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
805 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
806 PRU_ACCEPT, NULL, nam, NULL, NULL);
807 else
808 error = ECONNABORTED;
809
810 return error;
811 }
812
813 int
814 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
815 {
816 int error;
817
818 KASSERT(solocked(so));
819
820 if (so->so_options & SO_ACCEPTCONN)
821 return EOPNOTSUPP;
822 /*
823 * If protocol is connection-based, can only connect once.
824 * Otherwise, if connected, try to disconnect first.
825 * This allows user to disconnect by connecting to, e.g.,
826 * a null address.
827 */
828 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
829 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
830 (error = sodisconnect(so))))
831 error = EISCONN;
832 else
833 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
834 PRU_CONNECT, NULL, nam, NULL, l);
835
836 return error;
837 }
838
839 int
840 soconnect2(struct socket *so1, struct socket *so2)
841 {
842 KASSERT(solocked2(so1, so2));
843
844 return (*so1->so_proto->pr_usrreqs->pr_generic)(so1,
845 PRU_CONNECT2, NULL, (struct mbuf *)so2, NULL, NULL);
846 }
847
848 int
849 sodisconnect(struct socket *so)
850 {
851 int error;
852
853 KASSERT(solocked(so));
854
855 if ((so->so_state & SS_ISCONNECTED) == 0) {
856 error = ENOTCONN;
857 } else if (so->so_state & SS_ISDISCONNECTING) {
858 error = EALREADY;
859 } else {
860 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
861 PRU_DISCONNECT, NULL, NULL, NULL, NULL);
862 }
863 return (error);
864 }
865
866 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
867 /*
868 * Send on a socket.
869 * If send must go all at once and message is larger than
870 * send buffering, then hard error.
871 * Lock against other senders.
872 * If must go all at once and not enough room now, then
873 * inform user that this would block and do nothing.
874 * Otherwise, if nonblocking, send as much as possible.
875 * The data to be sent is described by "uio" if nonzero,
876 * otherwise by the mbuf chain "top" (which must be null
877 * if uio is not). Data provided in mbuf chain must be small
878 * enough to send all at once.
879 *
880 * Returns nonzero on error, timeout or signal; callers
881 * must check for short counts if EINTR/ERESTART are returned.
882 * Data and control buffers are freed on return.
883 */
884 int
885 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
886 struct mbuf *control, int flags, struct lwp *l)
887 {
888 struct mbuf **mp, *m;
889 long space, len, resid, clen, mlen;
890 int error, s, dontroute, atomic;
891 short wakeup_state = 0;
892
893 clen = 0;
894
895 /*
896 * solock() provides atomicity of access. splsoftnet() prevents
897 * protocol processing soft interrupts from interrupting us and
898 * blocking (expensive).
899 */
900 s = splsoftnet();
901 solock(so);
902 atomic = sosendallatonce(so) || top;
903 if (uio)
904 resid = uio->uio_resid;
905 else
906 resid = top->m_pkthdr.len;
907 /*
908 * In theory resid should be unsigned.
909 * However, space must be signed, as it might be less than 0
910 * if we over-committed, and we must use a signed comparison
911 * of space and resid. On the other hand, a negative resid
912 * causes us to loop sending 0-length segments to the protocol.
913 */
914 if (resid < 0) {
915 error = EINVAL;
916 goto out;
917 }
918 dontroute =
919 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
920 (so->so_proto->pr_flags & PR_ATOMIC);
921 l->l_ru.ru_msgsnd++;
922 if (control)
923 clen = control->m_len;
924 restart:
925 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
926 goto out;
927 do {
928 if (so->so_state & SS_CANTSENDMORE) {
929 error = EPIPE;
930 goto release;
931 }
932 if (so->so_error) {
933 error = so->so_error;
934 so->so_error = 0;
935 goto release;
936 }
937 if ((so->so_state & SS_ISCONNECTED) == 0) {
938 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
939 if (resid || clen == 0) {
940 error = ENOTCONN;
941 goto release;
942 }
943 } else if (addr == 0) {
944 error = EDESTADDRREQ;
945 goto release;
946 }
947 }
948 space = sbspace(&so->so_snd);
949 if (flags & MSG_OOB)
950 space += 1024;
951 if ((atomic && resid > so->so_snd.sb_hiwat) ||
952 clen > so->so_snd.sb_hiwat) {
953 error = EMSGSIZE;
954 goto release;
955 }
956 if (space < resid + clen &&
957 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
958 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
959 error = EWOULDBLOCK;
960 goto release;
961 }
962 sbunlock(&so->so_snd);
963 if (wakeup_state & SS_RESTARTSYS) {
964 error = ERESTART;
965 goto out;
966 }
967 error = sbwait(&so->so_snd);
968 if (error)
969 goto out;
970 wakeup_state = so->so_state;
971 goto restart;
972 }
973 wakeup_state = 0;
974 mp = ⊤
975 space -= clen;
976 do {
977 if (uio == NULL) {
978 /*
979 * Data is prepackaged in "top".
980 */
981 resid = 0;
982 if (flags & MSG_EOR)
983 top->m_flags |= M_EOR;
984 } else do {
985 sounlock(so);
986 splx(s);
987 if (top == NULL) {
988 m = m_gethdr(M_WAIT, MT_DATA);
989 mlen = MHLEN;
990 m->m_pkthdr.len = 0;
991 m->m_pkthdr.rcvif = NULL;
992 } else {
993 m = m_get(M_WAIT, MT_DATA);
994 mlen = MLEN;
995 }
996 MCLAIM(m, so->so_snd.sb_mowner);
997 if (sock_loan_thresh >= 0 &&
998 uio->uio_iov->iov_len >= sock_loan_thresh &&
999 space >= sock_loan_thresh &&
1000 (len = sosend_loan(so, uio, m,
1001 space)) != 0) {
1002 SOSEND_COUNTER_INCR(&sosend_loan_big);
1003 space -= len;
1004 goto have_data;
1005 }
1006 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1007 SOSEND_COUNTER_INCR(&sosend_copy_big);
1008 m_clget(m, M_DONTWAIT);
1009 if ((m->m_flags & M_EXT) == 0)
1010 goto nopages;
1011 mlen = MCLBYTES;
1012 if (atomic && top == 0) {
1013 len = lmin(MCLBYTES - max_hdr,
1014 resid);
1015 m->m_data += max_hdr;
1016 } else
1017 len = lmin(MCLBYTES, resid);
1018 space -= len;
1019 } else {
1020 nopages:
1021 SOSEND_COUNTER_INCR(&sosend_copy_small);
1022 len = lmin(lmin(mlen, resid), space);
1023 space -= len;
1024 /*
1025 * For datagram protocols, leave room
1026 * for protocol headers in first mbuf.
1027 */
1028 if (atomic && top == 0 && len < mlen)
1029 MH_ALIGN(m, len);
1030 }
1031 error = uiomove(mtod(m, void *), (int)len, uio);
1032 have_data:
1033 resid = uio->uio_resid;
1034 m->m_len = len;
1035 *mp = m;
1036 top->m_pkthdr.len += len;
1037 s = splsoftnet();
1038 solock(so);
1039 if (error != 0)
1040 goto release;
1041 mp = &m->m_next;
1042 if (resid <= 0) {
1043 if (flags & MSG_EOR)
1044 top->m_flags |= M_EOR;
1045 break;
1046 }
1047 } while (space > 0 && atomic);
1048
1049 if (so->so_state & SS_CANTSENDMORE) {
1050 error = EPIPE;
1051 goto release;
1052 }
1053 if (dontroute)
1054 so->so_options |= SO_DONTROUTE;
1055 if (resid > 0)
1056 so->so_state |= SS_MORETOCOME;
1057 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
1058 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
1059 top, addr, control, curlwp);
1060 if (dontroute)
1061 so->so_options &= ~SO_DONTROUTE;
1062 if (resid > 0)
1063 so->so_state &= ~SS_MORETOCOME;
1064 clen = 0;
1065 control = NULL;
1066 top = NULL;
1067 mp = ⊤
1068 if (error != 0)
1069 goto release;
1070 } while (resid && space > 0);
1071 } while (resid);
1072
1073 release:
1074 sbunlock(&so->so_snd);
1075 out:
1076 sounlock(so);
1077 splx(s);
1078 if (top)
1079 m_freem(top);
1080 if (control)
1081 m_freem(control);
1082 return (error);
1083 }
1084
1085 /*
1086 * Following replacement or removal of the first mbuf on the first
1087 * mbuf chain of a socket buffer, push necessary state changes back
1088 * into the socket buffer so that other consumers see the values
1089 * consistently. 'nextrecord' is the callers locally stored value of
1090 * the original value of sb->sb_mb->m_nextpkt which must be restored
1091 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1092 */
1093 static void
1094 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1095 {
1096
1097 KASSERT(solocked(sb->sb_so));
1098
1099 /*
1100 * First, update for the new value of nextrecord. If necessary,
1101 * make it the first record.
1102 */
1103 if (sb->sb_mb != NULL)
1104 sb->sb_mb->m_nextpkt = nextrecord;
1105 else
1106 sb->sb_mb = nextrecord;
1107
1108 /*
1109 * Now update any dependent socket buffer fields to reflect
1110 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1111 * the addition of a second clause that takes care of the
1112 * case where sb_mb has been updated, but remains the last
1113 * record.
1114 */
1115 if (sb->sb_mb == NULL) {
1116 sb->sb_mbtail = NULL;
1117 sb->sb_lastrecord = NULL;
1118 } else if (sb->sb_mb->m_nextpkt == NULL)
1119 sb->sb_lastrecord = sb->sb_mb;
1120 }
1121
1122 /*
1123 * Implement receive operations on a socket.
1124 * We depend on the way that records are added to the sockbuf
1125 * by sbappend*. In particular, each record (mbufs linked through m_next)
1126 * must begin with an address if the protocol so specifies,
1127 * followed by an optional mbuf or mbufs containing ancillary data,
1128 * and then zero or more mbufs of data.
1129 * In order to avoid blocking network interrupts for the entire time here,
1130 * we splx() while doing the actual copy to user space.
1131 * Although the sockbuf is locked, new data may still be appended,
1132 * and thus we must maintain consistency of the sockbuf during that time.
1133 *
1134 * The caller may receive the data as a single mbuf chain by supplying
1135 * an mbuf **mp0 for use in returning the chain. The uio is then used
1136 * only for the count in uio_resid.
1137 */
1138 int
1139 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1140 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1141 {
1142 struct lwp *l = curlwp;
1143 struct mbuf *m, **mp, *mt;
1144 size_t len, offset, moff, orig_resid;
1145 int atomic, flags, error, s, type;
1146 const struct protosw *pr;
1147 struct mbuf *nextrecord;
1148 int mbuf_removed = 0;
1149 const struct domain *dom;
1150 short wakeup_state = 0;
1151
1152 pr = so->so_proto;
1153 atomic = pr->pr_flags & PR_ATOMIC;
1154 dom = pr->pr_domain;
1155 mp = mp0;
1156 type = 0;
1157 orig_resid = uio->uio_resid;
1158
1159 if (paddr != NULL)
1160 *paddr = NULL;
1161 if (controlp != NULL)
1162 *controlp = NULL;
1163 if (flagsp != NULL)
1164 flags = *flagsp &~ MSG_EOR;
1165 else
1166 flags = 0;
1167
1168 if (flags & MSG_OOB) {
1169 m = m_get(M_WAIT, MT_DATA);
1170 solock(so);
1171 error = (*pr->pr_usrreqs->pr_generic)(so, PRU_RCVOOB, m,
1172 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
1173 sounlock(so);
1174 if (error)
1175 goto bad;
1176 do {
1177 error = uiomove(mtod(m, void *),
1178 MIN(uio->uio_resid, m->m_len), uio);
1179 m = m_free(m);
1180 } while (uio->uio_resid > 0 && error == 0 && m);
1181 bad:
1182 if (m != NULL)
1183 m_freem(m);
1184 return error;
1185 }
1186 if (mp != NULL)
1187 *mp = NULL;
1188
1189 /*
1190 * solock() provides atomicity of access. splsoftnet() prevents
1191 * protocol processing soft interrupts from interrupting us and
1192 * blocking (expensive).
1193 */
1194 s = splsoftnet();
1195 solock(so);
1196 restart:
1197 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1198 sounlock(so);
1199 splx(s);
1200 return error;
1201 }
1202
1203 m = so->so_rcv.sb_mb;
1204 /*
1205 * If we have less data than requested, block awaiting more
1206 * (subject to any timeout) if:
1207 * 1. the current count is less than the low water mark,
1208 * 2. MSG_WAITALL is set, and it is possible to do the entire
1209 * receive operation at once if we block (resid <= hiwat), or
1210 * 3. MSG_DONTWAIT is not set.
1211 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1212 * we have to do the receive in sections, and thus risk returning
1213 * a short count if a timeout or signal occurs after we start.
1214 */
1215 if (m == NULL ||
1216 ((flags & MSG_DONTWAIT) == 0 &&
1217 so->so_rcv.sb_cc < uio->uio_resid &&
1218 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1219 ((flags & MSG_WAITALL) &&
1220 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1221 m->m_nextpkt == NULL && !atomic)) {
1222 #ifdef DIAGNOSTIC
1223 if (m == NULL && so->so_rcv.sb_cc)
1224 panic("receive 1");
1225 #endif
1226 if (so->so_error) {
1227 if (m != NULL)
1228 goto dontblock;
1229 error = so->so_error;
1230 if ((flags & MSG_PEEK) == 0)
1231 so->so_error = 0;
1232 goto release;
1233 }
1234 if (so->so_state & SS_CANTRCVMORE) {
1235 if (m != NULL)
1236 goto dontblock;
1237 else
1238 goto release;
1239 }
1240 for (; m != NULL; m = m->m_next)
1241 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1242 m = so->so_rcv.sb_mb;
1243 goto dontblock;
1244 }
1245 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1246 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1247 error = ENOTCONN;
1248 goto release;
1249 }
1250 if (uio->uio_resid == 0)
1251 goto release;
1252 if ((so->so_state & SS_NBIO) ||
1253 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1254 error = EWOULDBLOCK;
1255 goto release;
1256 }
1257 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1258 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1259 sbunlock(&so->so_rcv);
1260 if (wakeup_state & SS_RESTARTSYS)
1261 error = ERESTART;
1262 else
1263 error = sbwait(&so->so_rcv);
1264 if (error != 0) {
1265 sounlock(so);
1266 splx(s);
1267 return error;
1268 }
1269 wakeup_state = so->so_state;
1270 goto restart;
1271 }
1272 dontblock:
1273 /*
1274 * On entry here, m points to the first record of the socket buffer.
1275 * From this point onward, we maintain 'nextrecord' as a cache of the
1276 * pointer to the next record in the socket buffer. We must keep the
1277 * various socket buffer pointers and local stack versions of the
1278 * pointers in sync, pushing out modifications before dropping the
1279 * socket lock, and re-reading them when picking it up.
1280 *
1281 * Otherwise, we will race with the network stack appending new data
1282 * or records onto the socket buffer by using inconsistent/stale
1283 * versions of the field, possibly resulting in socket buffer
1284 * corruption.
1285 *
1286 * By holding the high-level sblock(), we prevent simultaneous
1287 * readers from pulling off the front of the socket buffer.
1288 */
1289 if (l != NULL)
1290 l->l_ru.ru_msgrcv++;
1291 KASSERT(m == so->so_rcv.sb_mb);
1292 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1293 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1294 nextrecord = m->m_nextpkt;
1295 if (pr->pr_flags & PR_ADDR) {
1296 #ifdef DIAGNOSTIC
1297 if (m->m_type != MT_SONAME)
1298 panic("receive 1a");
1299 #endif
1300 orig_resid = 0;
1301 if (flags & MSG_PEEK) {
1302 if (paddr)
1303 *paddr = m_copy(m, 0, m->m_len);
1304 m = m->m_next;
1305 } else {
1306 sbfree(&so->so_rcv, m);
1307 mbuf_removed = 1;
1308 if (paddr != NULL) {
1309 *paddr = m;
1310 so->so_rcv.sb_mb = m->m_next;
1311 m->m_next = NULL;
1312 m = so->so_rcv.sb_mb;
1313 } else {
1314 MFREE(m, so->so_rcv.sb_mb);
1315 m = so->so_rcv.sb_mb;
1316 }
1317 sbsync(&so->so_rcv, nextrecord);
1318 }
1319 }
1320
1321 /*
1322 * Process one or more MT_CONTROL mbufs present before any data mbufs
1323 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1324 * just copy the data; if !MSG_PEEK, we call into the protocol to
1325 * perform externalization (or freeing if controlp == NULL).
1326 */
1327 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1328 struct mbuf *cm = NULL, *cmn;
1329 struct mbuf **cme = &cm;
1330
1331 do {
1332 if (flags & MSG_PEEK) {
1333 if (controlp != NULL) {
1334 *controlp = m_copy(m, 0, m->m_len);
1335 controlp = &(*controlp)->m_next;
1336 }
1337 m = m->m_next;
1338 } else {
1339 sbfree(&so->so_rcv, m);
1340 so->so_rcv.sb_mb = m->m_next;
1341 m->m_next = NULL;
1342 *cme = m;
1343 cme = &(*cme)->m_next;
1344 m = so->so_rcv.sb_mb;
1345 }
1346 } while (m != NULL && m->m_type == MT_CONTROL);
1347 if ((flags & MSG_PEEK) == 0)
1348 sbsync(&so->so_rcv, nextrecord);
1349 for (; cm != NULL; cm = cmn) {
1350 cmn = cm->m_next;
1351 cm->m_next = NULL;
1352 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1353 if (controlp != NULL) {
1354 if (dom->dom_externalize != NULL &&
1355 type == SCM_RIGHTS) {
1356 sounlock(so);
1357 splx(s);
1358 error = (*dom->dom_externalize)(cm, l,
1359 (flags & MSG_CMSG_CLOEXEC) ?
1360 O_CLOEXEC : 0);
1361 s = splsoftnet();
1362 solock(so);
1363 }
1364 *controlp = cm;
1365 while (*controlp != NULL)
1366 controlp = &(*controlp)->m_next;
1367 } else {
1368 /*
1369 * Dispose of any SCM_RIGHTS message that went
1370 * through the read path rather than recv.
1371 */
1372 if (dom->dom_dispose != NULL &&
1373 type == SCM_RIGHTS) {
1374 sounlock(so);
1375 (*dom->dom_dispose)(cm);
1376 solock(so);
1377 }
1378 m_freem(cm);
1379 }
1380 }
1381 if (m != NULL)
1382 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1383 else
1384 nextrecord = so->so_rcv.sb_mb;
1385 orig_resid = 0;
1386 }
1387
1388 /* If m is non-NULL, we have some data to read. */
1389 if (__predict_true(m != NULL)) {
1390 type = m->m_type;
1391 if (type == MT_OOBDATA)
1392 flags |= MSG_OOB;
1393 }
1394 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1395 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1396
1397 moff = 0;
1398 offset = 0;
1399 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1400 if (m->m_type == MT_OOBDATA) {
1401 if (type != MT_OOBDATA)
1402 break;
1403 } else if (type == MT_OOBDATA)
1404 break;
1405 #ifdef DIAGNOSTIC
1406 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1407 panic("receive 3");
1408 #endif
1409 so->so_state &= ~SS_RCVATMARK;
1410 wakeup_state = 0;
1411 len = uio->uio_resid;
1412 if (so->so_oobmark && len > so->so_oobmark - offset)
1413 len = so->so_oobmark - offset;
1414 if (len > m->m_len - moff)
1415 len = m->m_len - moff;
1416 /*
1417 * If mp is set, just pass back the mbufs.
1418 * Otherwise copy them out via the uio, then free.
1419 * Sockbuf must be consistent here (points to current mbuf,
1420 * it points to next record) when we drop priority;
1421 * we must note any additions to the sockbuf when we
1422 * block interrupts again.
1423 */
1424 if (mp == NULL) {
1425 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1426 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1427 sounlock(so);
1428 splx(s);
1429 error = uiomove(mtod(m, char *) + moff, len, uio);
1430 s = splsoftnet();
1431 solock(so);
1432 if (error != 0) {
1433 /*
1434 * If any part of the record has been removed
1435 * (such as the MT_SONAME mbuf, which will
1436 * happen when PR_ADDR, and thus also
1437 * PR_ATOMIC, is set), then drop the entire
1438 * record to maintain the atomicity of the
1439 * receive operation.
1440 *
1441 * This avoids a later panic("receive 1a")
1442 * when compiled with DIAGNOSTIC.
1443 */
1444 if (m && mbuf_removed && atomic)
1445 (void) sbdroprecord(&so->so_rcv);
1446
1447 goto release;
1448 }
1449 } else
1450 uio->uio_resid -= len;
1451 if (len == m->m_len - moff) {
1452 if (m->m_flags & M_EOR)
1453 flags |= MSG_EOR;
1454 if (flags & MSG_PEEK) {
1455 m = m->m_next;
1456 moff = 0;
1457 } else {
1458 nextrecord = m->m_nextpkt;
1459 sbfree(&so->so_rcv, m);
1460 if (mp) {
1461 *mp = m;
1462 mp = &m->m_next;
1463 so->so_rcv.sb_mb = m = m->m_next;
1464 *mp = NULL;
1465 } else {
1466 MFREE(m, so->so_rcv.sb_mb);
1467 m = so->so_rcv.sb_mb;
1468 }
1469 /*
1470 * If m != NULL, we also know that
1471 * so->so_rcv.sb_mb != NULL.
1472 */
1473 KASSERT(so->so_rcv.sb_mb == m);
1474 if (m) {
1475 m->m_nextpkt = nextrecord;
1476 if (nextrecord == NULL)
1477 so->so_rcv.sb_lastrecord = m;
1478 } else {
1479 so->so_rcv.sb_mb = nextrecord;
1480 SB_EMPTY_FIXUP(&so->so_rcv);
1481 }
1482 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1483 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1484 }
1485 } else if (flags & MSG_PEEK)
1486 moff += len;
1487 else {
1488 if (mp != NULL) {
1489 mt = m_copym(m, 0, len, M_NOWAIT);
1490 if (__predict_false(mt == NULL)) {
1491 sounlock(so);
1492 mt = m_copym(m, 0, len, M_WAIT);
1493 solock(so);
1494 }
1495 *mp = mt;
1496 }
1497 m->m_data += len;
1498 m->m_len -= len;
1499 so->so_rcv.sb_cc -= len;
1500 }
1501 if (so->so_oobmark) {
1502 if ((flags & MSG_PEEK) == 0) {
1503 so->so_oobmark -= len;
1504 if (so->so_oobmark == 0) {
1505 so->so_state |= SS_RCVATMARK;
1506 break;
1507 }
1508 } else {
1509 offset += len;
1510 if (offset == so->so_oobmark)
1511 break;
1512 }
1513 }
1514 if (flags & MSG_EOR)
1515 break;
1516 /*
1517 * If the MSG_WAITALL flag is set (for non-atomic socket),
1518 * we must not quit until "uio->uio_resid == 0" or an error
1519 * termination. If a signal/timeout occurs, return
1520 * with a short count but without error.
1521 * Keep sockbuf locked against other readers.
1522 */
1523 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1524 !sosendallatonce(so) && !nextrecord) {
1525 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1526 break;
1527 /*
1528 * If we are peeking and the socket receive buffer is
1529 * full, stop since we can't get more data to peek at.
1530 */
1531 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1532 break;
1533 /*
1534 * If we've drained the socket buffer, tell the
1535 * protocol in case it needs to do something to
1536 * get it filled again.
1537 */
1538 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1539 (*pr->pr_usrreqs->pr_generic)(so, PRU_RCVD,
1540 NULL, (struct mbuf *)(long)flags, NULL, l);
1541 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1542 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1543 if (wakeup_state & SS_RESTARTSYS)
1544 error = ERESTART;
1545 else
1546 error = sbwait(&so->so_rcv);
1547 if (error != 0) {
1548 sbunlock(&so->so_rcv);
1549 sounlock(so);
1550 splx(s);
1551 return 0;
1552 }
1553 if ((m = so->so_rcv.sb_mb) != NULL)
1554 nextrecord = m->m_nextpkt;
1555 wakeup_state = so->so_state;
1556 }
1557 }
1558
1559 if (m && atomic) {
1560 flags |= MSG_TRUNC;
1561 if ((flags & MSG_PEEK) == 0)
1562 (void) sbdroprecord(&so->so_rcv);
1563 }
1564 if ((flags & MSG_PEEK) == 0) {
1565 if (m == NULL) {
1566 /*
1567 * First part is an inline SB_EMPTY_FIXUP(). Second
1568 * part makes sure sb_lastrecord is up-to-date if
1569 * there is still data in the socket buffer.
1570 */
1571 so->so_rcv.sb_mb = nextrecord;
1572 if (so->so_rcv.sb_mb == NULL) {
1573 so->so_rcv.sb_mbtail = NULL;
1574 so->so_rcv.sb_lastrecord = NULL;
1575 } else if (nextrecord->m_nextpkt == NULL)
1576 so->so_rcv.sb_lastrecord = nextrecord;
1577 }
1578 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1579 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1580 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1581 (*pr->pr_usrreqs->pr_generic)(so, PRU_RCVD, NULL,
1582 (struct mbuf *)(long)flags, NULL, l);
1583 }
1584 if (orig_resid == uio->uio_resid && orig_resid &&
1585 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1586 sbunlock(&so->so_rcv);
1587 goto restart;
1588 }
1589
1590 if (flagsp != NULL)
1591 *flagsp |= flags;
1592 release:
1593 sbunlock(&so->so_rcv);
1594 sounlock(so);
1595 splx(s);
1596 return error;
1597 }
1598
1599 int
1600 soshutdown(struct socket *so, int how)
1601 {
1602 const struct protosw *pr;
1603 int error;
1604
1605 KASSERT(solocked(so));
1606
1607 pr = so->so_proto;
1608 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1609 return (EINVAL);
1610
1611 if (how == SHUT_RD || how == SHUT_RDWR) {
1612 sorflush(so);
1613 error = 0;
1614 }
1615 if (how == SHUT_WR || how == SHUT_RDWR)
1616 error = (*pr->pr_usrreqs->pr_generic)(so,
1617 PRU_SHUTDOWN, NULL, NULL, NULL, NULL);
1618
1619 return error;
1620 }
1621
1622 void
1623 sorestart(struct socket *so)
1624 {
1625 /*
1626 * An application has called close() on an fd on which another
1627 * of its threads has called a socket system call.
1628 * Mark this and wake everyone up, and code that would block again
1629 * instead returns ERESTART.
1630 * On system call re-entry the fd is validated and EBADF returned.
1631 * Any other fd will block again on the 2nd syscall.
1632 */
1633 solock(so);
1634 so->so_state |= SS_RESTARTSYS;
1635 cv_broadcast(&so->so_cv);
1636 cv_broadcast(&so->so_snd.sb_cv);
1637 cv_broadcast(&so->so_rcv.sb_cv);
1638 sounlock(so);
1639 }
1640
1641 void
1642 sorflush(struct socket *so)
1643 {
1644 struct sockbuf *sb, asb;
1645 const struct protosw *pr;
1646
1647 KASSERT(solocked(so));
1648
1649 sb = &so->so_rcv;
1650 pr = so->so_proto;
1651 socantrcvmore(so);
1652 sb->sb_flags |= SB_NOINTR;
1653 (void )sblock(sb, M_WAITOK);
1654 sbunlock(sb);
1655 asb = *sb;
1656 /*
1657 * Clear most of the sockbuf structure, but leave some of the
1658 * fields valid.
1659 */
1660 memset(&sb->sb_startzero, 0,
1661 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1662 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1663 sounlock(so);
1664 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1665 solock(so);
1666 }
1667 sbrelease(&asb, so);
1668 }
1669
1670 /*
1671 * internal set SOL_SOCKET options
1672 */
1673 static int
1674 sosetopt1(struct socket *so, const struct sockopt *sopt)
1675 {
1676 int error = EINVAL, opt;
1677 int optval = 0; /* XXX: gcc */
1678 struct linger l;
1679 struct timeval tv;
1680
1681 switch ((opt = sopt->sopt_name)) {
1682
1683 case SO_ACCEPTFILTER:
1684 error = accept_filt_setopt(so, sopt);
1685 KASSERT(solocked(so));
1686 break;
1687
1688 case SO_LINGER:
1689 error = sockopt_get(sopt, &l, sizeof(l));
1690 solock(so);
1691 if (error)
1692 break;
1693 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1694 l.l_linger > (INT_MAX / hz)) {
1695 error = EDOM;
1696 break;
1697 }
1698 so->so_linger = l.l_linger;
1699 if (l.l_onoff)
1700 so->so_options |= SO_LINGER;
1701 else
1702 so->so_options &= ~SO_LINGER;
1703 break;
1704
1705 case SO_DEBUG:
1706 case SO_KEEPALIVE:
1707 case SO_DONTROUTE:
1708 case SO_USELOOPBACK:
1709 case SO_BROADCAST:
1710 case SO_REUSEADDR:
1711 case SO_REUSEPORT:
1712 case SO_OOBINLINE:
1713 case SO_TIMESTAMP:
1714 case SO_NOSIGPIPE:
1715 #ifdef SO_OTIMESTAMP
1716 case SO_OTIMESTAMP:
1717 #endif
1718 error = sockopt_getint(sopt, &optval);
1719 solock(so);
1720 if (error)
1721 break;
1722 if (optval)
1723 so->so_options |= opt;
1724 else
1725 so->so_options &= ~opt;
1726 break;
1727
1728 case SO_SNDBUF:
1729 case SO_RCVBUF:
1730 case SO_SNDLOWAT:
1731 case SO_RCVLOWAT:
1732 error = sockopt_getint(sopt, &optval);
1733 solock(so);
1734 if (error)
1735 break;
1736
1737 /*
1738 * Values < 1 make no sense for any of these
1739 * options, so disallow them.
1740 */
1741 if (optval < 1) {
1742 error = EINVAL;
1743 break;
1744 }
1745
1746 switch (opt) {
1747 case SO_SNDBUF:
1748 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1749 error = ENOBUFS;
1750 break;
1751 }
1752 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1753 break;
1754
1755 case SO_RCVBUF:
1756 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1757 error = ENOBUFS;
1758 break;
1759 }
1760 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1761 break;
1762
1763 /*
1764 * Make sure the low-water is never greater than
1765 * the high-water.
1766 */
1767 case SO_SNDLOWAT:
1768 if (optval > so->so_snd.sb_hiwat)
1769 optval = so->so_snd.sb_hiwat;
1770
1771 so->so_snd.sb_lowat = optval;
1772 break;
1773
1774 case SO_RCVLOWAT:
1775 if (optval > so->so_rcv.sb_hiwat)
1776 optval = so->so_rcv.sb_hiwat;
1777
1778 so->so_rcv.sb_lowat = optval;
1779 break;
1780 }
1781 break;
1782
1783 #ifdef COMPAT_50
1784 case SO_OSNDTIMEO:
1785 case SO_ORCVTIMEO: {
1786 struct timeval50 otv;
1787 error = sockopt_get(sopt, &otv, sizeof(otv));
1788 if (error) {
1789 solock(so);
1790 break;
1791 }
1792 timeval50_to_timeval(&otv, &tv);
1793 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1794 error = 0;
1795 /*FALLTHROUGH*/
1796 }
1797 #endif /* COMPAT_50 */
1798
1799 case SO_SNDTIMEO:
1800 case SO_RCVTIMEO:
1801 if (error)
1802 error = sockopt_get(sopt, &tv, sizeof(tv));
1803 solock(so);
1804 if (error)
1805 break;
1806
1807 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1808 error = EDOM;
1809 break;
1810 }
1811
1812 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1813 if (optval == 0 && tv.tv_usec != 0)
1814 optval = 1;
1815
1816 switch (opt) {
1817 case SO_SNDTIMEO:
1818 so->so_snd.sb_timeo = optval;
1819 break;
1820 case SO_RCVTIMEO:
1821 so->so_rcv.sb_timeo = optval;
1822 break;
1823 }
1824 break;
1825
1826 default:
1827 solock(so);
1828 error = ENOPROTOOPT;
1829 break;
1830 }
1831 KASSERT(solocked(so));
1832 return error;
1833 }
1834
1835 int
1836 sosetopt(struct socket *so, struct sockopt *sopt)
1837 {
1838 int error, prerr;
1839
1840 if (sopt->sopt_level == SOL_SOCKET) {
1841 error = sosetopt1(so, sopt);
1842 KASSERT(solocked(so));
1843 } else {
1844 error = ENOPROTOOPT;
1845 solock(so);
1846 }
1847
1848 if ((error == 0 || error == ENOPROTOOPT) &&
1849 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1850 /* give the protocol stack a shot */
1851 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1852 if (prerr == 0)
1853 error = 0;
1854 else if (prerr != ENOPROTOOPT)
1855 error = prerr;
1856 }
1857 sounlock(so);
1858 return error;
1859 }
1860
1861 /*
1862 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1863 */
1864 int
1865 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1866 const void *val, size_t valsize)
1867 {
1868 struct sockopt sopt;
1869 int error;
1870
1871 KASSERT(valsize == 0 || val != NULL);
1872
1873 sockopt_init(&sopt, level, name, valsize);
1874 sockopt_set(&sopt, val, valsize);
1875
1876 error = sosetopt(so, &sopt);
1877
1878 sockopt_destroy(&sopt);
1879
1880 return error;
1881 }
1882
1883 /*
1884 * internal get SOL_SOCKET options
1885 */
1886 static int
1887 sogetopt1(struct socket *so, struct sockopt *sopt)
1888 {
1889 int error, optval, opt;
1890 struct linger l;
1891 struct timeval tv;
1892
1893 switch ((opt = sopt->sopt_name)) {
1894
1895 case SO_ACCEPTFILTER:
1896 error = accept_filt_getopt(so, sopt);
1897 break;
1898
1899 case SO_LINGER:
1900 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1901 l.l_linger = so->so_linger;
1902
1903 error = sockopt_set(sopt, &l, sizeof(l));
1904 break;
1905
1906 case SO_USELOOPBACK:
1907 case SO_DONTROUTE:
1908 case SO_DEBUG:
1909 case SO_KEEPALIVE:
1910 case SO_REUSEADDR:
1911 case SO_REUSEPORT:
1912 case SO_BROADCAST:
1913 case SO_OOBINLINE:
1914 case SO_TIMESTAMP:
1915 case SO_NOSIGPIPE:
1916 #ifdef SO_OTIMESTAMP
1917 case SO_OTIMESTAMP:
1918 #endif
1919 case SO_ACCEPTCONN:
1920 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1921 break;
1922
1923 case SO_TYPE:
1924 error = sockopt_setint(sopt, so->so_type);
1925 break;
1926
1927 case SO_ERROR:
1928 error = sockopt_setint(sopt, so->so_error);
1929 so->so_error = 0;
1930 break;
1931
1932 case SO_SNDBUF:
1933 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1934 break;
1935
1936 case SO_RCVBUF:
1937 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1938 break;
1939
1940 case SO_SNDLOWAT:
1941 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1942 break;
1943
1944 case SO_RCVLOWAT:
1945 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1946 break;
1947
1948 #ifdef COMPAT_50
1949 case SO_OSNDTIMEO:
1950 case SO_ORCVTIMEO: {
1951 struct timeval50 otv;
1952
1953 optval = (opt == SO_OSNDTIMEO ?
1954 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1955
1956 otv.tv_sec = optval / hz;
1957 otv.tv_usec = (optval % hz) * tick;
1958
1959 error = sockopt_set(sopt, &otv, sizeof(otv));
1960 break;
1961 }
1962 #endif /* COMPAT_50 */
1963
1964 case SO_SNDTIMEO:
1965 case SO_RCVTIMEO:
1966 optval = (opt == SO_SNDTIMEO ?
1967 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1968
1969 tv.tv_sec = optval / hz;
1970 tv.tv_usec = (optval % hz) * tick;
1971
1972 error = sockopt_set(sopt, &tv, sizeof(tv));
1973 break;
1974
1975 case SO_OVERFLOWED:
1976 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1977 break;
1978
1979 default:
1980 error = ENOPROTOOPT;
1981 break;
1982 }
1983
1984 return (error);
1985 }
1986
1987 int
1988 sogetopt(struct socket *so, struct sockopt *sopt)
1989 {
1990 int error;
1991
1992 solock(so);
1993 if (sopt->sopt_level != SOL_SOCKET) {
1994 if (so->so_proto && so->so_proto->pr_ctloutput) {
1995 error = ((*so->so_proto->pr_ctloutput)
1996 (PRCO_GETOPT, so, sopt));
1997 } else
1998 error = (ENOPROTOOPT);
1999 } else {
2000 error = sogetopt1(so, sopt);
2001 }
2002 sounlock(so);
2003 return (error);
2004 }
2005
2006 /*
2007 * alloc sockopt data buffer buffer
2008 * - will be released at destroy
2009 */
2010 static int
2011 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2012 {
2013
2014 KASSERT(sopt->sopt_size == 0);
2015
2016 if (len > sizeof(sopt->sopt_buf)) {
2017 sopt->sopt_data = kmem_zalloc(len, kmflag);
2018 if (sopt->sopt_data == NULL)
2019 return ENOMEM;
2020 } else
2021 sopt->sopt_data = sopt->sopt_buf;
2022
2023 sopt->sopt_size = len;
2024 return 0;
2025 }
2026
2027 /*
2028 * initialise sockopt storage
2029 * - MAY sleep during allocation
2030 */
2031 void
2032 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2033 {
2034
2035 memset(sopt, 0, sizeof(*sopt));
2036
2037 sopt->sopt_level = level;
2038 sopt->sopt_name = name;
2039 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2040 }
2041
2042 /*
2043 * destroy sockopt storage
2044 * - will release any held memory references
2045 */
2046 void
2047 sockopt_destroy(struct sockopt *sopt)
2048 {
2049
2050 if (sopt->sopt_data != sopt->sopt_buf)
2051 kmem_free(sopt->sopt_data, sopt->sopt_size);
2052
2053 memset(sopt, 0, sizeof(*sopt));
2054 }
2055
2056 /*
2057 * set sockopt value
2058 * - value is copied into sockopt
2059 * - memory is allocated when necessary, will not sleep
2060 */
2061 int
2062 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2063 {
2064 int error;
2065
2066 if (sopt->sopt_size == 0) {
2067 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2068 if (error)
2069 return error;
2070 }
2071
2072 KASSERT(sopt->sopt_size == len);
2073 memcpy(sopt->sopt_data, buf, len);
2074 return 0;
2075 }
2076
2077 /*
2078 * common case of set sockopt integer value
2079 */
2080 int
2081 sockopt_setint(struct sockopt *sopt, int val)
2082 {
2083
2084 return sockopt_set(sopt, &val, sizeof(int));
2085 }
2086
2087 /*
2088 * get sockopt value
2089 * - correct size must be given
2090 */
2091 int
2092 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2093 {
2094
2095 if (sopt->sopt_size != len)
2096 return EINVAL;
2097
2098 memcpy(buf, sopt->sopt_data, len);
2099 return 0;
2100 }
2101
2102 /*
2103 * common case of get sockopt integer value
2104 */
2105 int
2106 sockopt_getint(const struct sockopt *sopt, int *valp)
2107 {
2108
2109 return sockopt_get(sopt, valp, sizeof(int));
2110 }
2111
2112 /*
2113 * set sockopt value from mbuf
2114 * - ONLY for legacy code
2115 * - mbuf is released by sockopt
2116 * - will not sleep
2117 */
2118 int
2119 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2120 {
2121 size_t len;
2122 int error;
2123
2124 len = m_length(m);
2125
2126 if (sopt->sopt_size == 0) {
2127 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2128 if (error)
2129 return error;
2130 }
2131
2132 KASSERT(sopt->sopt_size == len);
2133 m_copydata(m, 0, len, sopt->sopt_data);
2134 m_freem(m);
2135
2136 return 0;
2137 }
2138
2139 /*
2140 * get sockopt value into mbuf
2141 * - ONLY for legacy code
2142 * - mbuf to be released by the caller
2143 * - will not sleep
2144 */
2145 struct mbuf *
2146 sockopt_getmbuf(const struct sockopt *sopt)
2147 {
2148 struct mbuf *m;
2149
2150 if (sopt->sopt_size > MCLBYTES)
2151 return NULL;
2152
2153 m = m_get(M_DONTWAIT, MT_SOOPTS);
2154 if (m == NULL)
2155 return NULL;
2156
2157 if (sopt->sopt_size > MLEN) {
2158 MCLGET(m, M_DONTWAIT);
2159 if ((m->m_flags & M_EXT) == 0) {
2160 m_free(m);
2161 return NULL;
2162 }
2163 }
2164
2165 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2166 m->m_len = sopt->sopt_size;
2167
2168 return m;
2169 }
2170
2171 void
2172 sohasoutofband(struct socket *so)
2173 {
2174
2175 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2176 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2177 }
2178
2179 static void
2180 filt_sordetach(struct knote *kn)
2181 {
2182 struct socket *so;
2183
2184 so = ((file_t *)kn->kn_obj)->f_data;
2185 solock(so);
2186 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2187 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2188 so->so_rcv.sb_flags &= ~SB_KNOTE;
2189 sounlock(so);
2190 }
2191
2192 /*ARGSUSED*/
2193 static int
2194 filt_soread(struct knote *kn, long hint)
2195 {
2196 struct socket *so;
2197 int rv;
2198
2199 so = ((file_t *)kn->kn_obj)->f_data;
2200 if (hint != NOTE_SUBMIT)
2201 solock(so);
2202 kn->kn_data = so->so_rcv.sb_cc;
2203 if (so->so_state & SS_CANTRCVMORE) {
2204 kn->kn_flags |= EV_EOF;
2205 kn->kn_fflags = so->so_error;
2206 rv = 1;
2207 } else if (so->so_error) /* temporary udp error */
2208 rv = 1;
2209 else if (kn->kn_sfflags & NOTE_LOWAT)
2210 rv = (kn->kn_data >= kn->kn_sdata);
2211 else
2212 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2213 if (hint != NOTE_SUBMIT)
2214 sounlock(so);
2215 return rv;
2216 }
2217
2218 static void
2219 filt_sowdetach(struct knote *kn)
2220 {
2221 struct socket *so;
2222
2223 so = ((file_t *)kn->kn_obj)->f_data;
2224 solock(so);
2225 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2226 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2227 so->so_snd.sb_flags &= ~SB_KNOTE;
2228 sounlock(so);
2229 }
2230
2231 /*ARGSUSED*/
2232 static int
2233 filt_sowrite(struct knote *kn, long hint)
2234 {
2235 struct socket *so;
2236 int rv;
2237
2238 so = ((file_t *)kn->kn_obj)->f_data;
2239 if (hint != NOTE_SUBMIT)
2240 solock(so);
2241 kn->kn_data = sbspace(&so->so_snd);
2242 if (so->so_state & SS_CANTSENDMORE) {
2243 kn->kn_flags |= EV_EOF;
2244 kn->kn_fflags = so->so_error;
2245 rv = 1;
2246 } else if (so->so_error) /* temporary udp error */
2247 rv = 1;
2248 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2249 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2250 rv = 0;
2251 else if (kn->kn_sfflags & NOTE_LOWAT)
2252 rv = (kn->kn_data >= kn->kn_sdata);
2253 else
2254 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2255 if (hint != NOTE_SUBMIT)
2256 sounlock(so);
2257 return rv;
2258 }
2259
2260 /*ARGSUSED*/
2261 static int
2262 filt_solisten(struct knote *kn, long hint)
2263 {
2264 struct socket *so;
2265 int rv;
2266
2267 so = ((file_t *)kn->kn_obj)->f_data;
2268
2269 /*
2270 * Set kn_data to number of incoming connections, not
2271 * counting partial (incomplete) connections.
2272 */
2273 if (hint != NOTE_SUBMIT)
2274 solock(so);
2275 kn->kn_data = so->so_qlen;
2276 rv = (kn->kn_data > 0);
2277 if (hint != NOTE_SUBMIT)
2278 sounlock(so);
2279 return rv;
2280 }
2281
2282 static const struct filterops solisten_filtops =
2283 { 1, NULL, filt_sordetach, filt_solisten };
2284 static const struct filterops soread_filtops =
2285 { 1, NULL, filt_sordetach, filt_soread };
2286 static const struct filterops sowrite_filtops =
2287 { 1, NULL, filt_sowdetach, filt_sowrite };
2288
2289 int
2290 soo_kqfilter(struct file *fp, struct knote *kn)
2291 {
2292 struct socket *so;
2293 struct sockbuf *sb;
2294
2295 so = ((file_t *)kn->kn_obj)->f_data;
2296 solock(so);
2297 switch (kn->kn_filter) {
2298 case EVFILT_READ:
2299 if (so->so_options & SO_ACCEPTCONN)
2300 kn->kn_fop = &solisten_filtops;
2301 else
2302 kn->kn_fop = &soread_filtops;
2303 sb = &so->so_rcv;
2304 break;
2305 case EVFILT_WRITE:
2306 kn->kn_fop = &sowrite_filtops;
2307 sb = &so->so_snd;
2308 break;
2309 default:
2310 sounlock(so);
2311 return (EINVAL);
2312 }
2313 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2314 sb->sb_flags |= SB_KNOTE;
2315 sounlock(so);
2316 return (0);
2317 }
2318
2319 static int
2320 sodopoll(struct socket *so, int events)
2321 {
2322 int revents;
2323
2324 revents = 0;
2325
2326 if (events & (POLLIN | POLLRDNORM))
2327 if (soreadable(so))
2328 revents |= events & (POLLIN | POLLRDNORM);
2329
2330 if (events & (POLLOUT | POLLWRNORM))
2331 if (sowritable(so))
2332 revents |= events & (POLLOUT | POLLWRNORM);
2333
2334 if (events & (POLLPRI | POLLRDBAND))
2335 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2336 revents |= events & (POLLPRI | POLLRDBAND);
2337
2338 return revents;
2339 }
2340
2341 int
2342 sopoll(struct socket *so, int events)
2343 {
2344 int revents = 0;
2345
2346 #ifndef DIAGNOSTIC
2347 /*
2348 * Do a quick, unlocked check in expectation that the socket
2349 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2350 * as the solocked() assertions will fail.
2351 */
2352 if ((revents = sodopoll(so, events)) != 0)
2353 return revents;
2354 #endif
2355
2356 solock(so);
2357 if ((revents = sodopoll(so, events)) == 0) {
2358 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2359 selrecord(curlwp, &so->so_rcv.sb_sel);
2360 so->so_rcv.sb_flags |= SB_NOTIFY;
2361 }
2362
2363 if (events & (POLLOUT | POLLWRNORM)) {
2364 selrecord(curlwp, &so->so_snd.sb_sel);
2365 so->so_snd.sb_flags |= SB_NOTIFY;
2366 }
2367 }
2368 sounlock(so);
2369
2370 return revents;
2371 }
2372
2373
2374 #include <sys/sysctl.h>
2375
2376 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2377 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2378
2379 /*
2380 * sysctl helper routine for kern.somaxkva. ensures that the given
2381 * value is not too small.
2382 * (XXX should we maybe make sure it's not too large as well?)
2383 */
2384 static int
2385 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2386 {
2387 int error, new_somaxkva;
2388 struct sysctlnode node;
2389
2390 new_somaxkva = somaxkva;
2391 node = *rnode;
2392 node.sysctl_data = &new_somaxkva;
2393 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2394 if (error || newp == NULL)
2395 return (error);
2396
2397 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2398 return (EINVAL);
2399
2400 mutex_enter(&so_pendfree_lock);
2401 somaxkva = new_somaxkva;
2402 cv_broadcast(&socurkva_cv);
2403 mutex_exit(&so_pendfree_lock);
2404
2405 return (error);
2406 }
2407
2408 /*
2409 * sysctl helper routine for kern.sbmax. Basically just ensures that
2410 * any new value is not too small.
2411 */
2412 static int
2413 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2414 {
2415 int error, new_sbmax;
2416 struct sysctlnode node;
2417
2418 new_sbmax = sb_max;
2419 node = *rnode;
2420 node.sysctl_data = &new_sbmax;
2421 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2422 if (error || newp == NULL)
2423 return (error);
2424
2425 KERNEL_LOCK(1, NULL);
2426 error = sb_max_set(new_sbmax);
2427 KERNEL_UNLOCK_ONE(NULL);
2428
2429 return (error);
2430 }
2431
2432 static void
2433 sysctl_kern_socket_setup(void)
2434 {
2435
2436 KASSERT(socket_sysctllog == NULL);
2437
2438 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2439 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2440 CTLTYPE_INT, "somaxkva",
2441 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2442 "used for socket buffers"),
2443 sysctl_kern_somaxkva, 0, NULL, 0,
2444 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2445
2446 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2447 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2448 CTLTYPE_INT, "sbmax",
2449 SYSCTL_DESCR("Maximum socket buffer size"),
2450 sysctl_kern_sbmax, 0, NULL, 0,
2451 CTL_KERN, KERN_SBMAX, CTL_EOL);
2452 }
2453