Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.224
      1 /*	$NetBSD: uipc_socket.c,v 1.224 2014/05/19 02:51:24 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 /*
     66  * Socket operation routines.
     67  *
     68  * These routines are called by the routines in sys_socket.c or from a
     69  * system process, and implement the semantics of socket operations by
     70  * switching out to the protocol specific routines.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.224 2014/05/19 02:51:24 rmind Exp $");
     75 
     76 #include "opt_compat_netbsd.h"
     77 #include "opt_sock_counters.h"
     78 #include "opt_sosend_loan.h"
     79 #include "opt_mbuftrace.h"
     80 #include "opt_somaxkva.h"
     81 #include "opt_multiprocessor.h"	/* XXX */
     82 
     83 #include <sys/param.h>
     84 #include <sys/systm.h>
     85 #include <sys/proc.h>
     86 #include <sys/file.h>
     87 #include <sys/filedesc.h>
     88 #include <sys/kmem.h>
     89 #include <sys/mbuf.h>
     90 #include <sys/domain.h>
     91 #include <sys/kernel.h>
     92 #include <sys/protosw.h>
     93 #include <sys/socket.h>
     94 #include <sys/socketvar.h>
     95 #include <sys/signalvar.h>
     96 #include <sys/resourcevar.h>
     97 #include <sys/uidinfo.h>
     98 #include <sys/event.h>
     99 #include <sys/poll.h>
    100 #include <sys/kauth.h>
    101 #include <sys/mutex.h>
    102 #include <sys/condvar.h>
    103 #include <sys/kthread.h>
    104 
    105 #ifdef COMPAT_50
    106 #include <compat/sys/time.h>
    107 #include <compat/sys/socket.h>
    108 #endif
    109 
    110 #include <uvm/uvm_extern.h>
    111 #include <uvm/uvm_loan.h>
    112 #include <uvm/uvm_page.h>
    113 
    114 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    115 
    116 extern const struct fileops socketops;
    117 
    118 extern int	somaxconn;			/* patchable (XXX sysctl) */
    119 int		somaxconn = SOMAXCONN;
    120 kmutex_t	*softnet_lock;
    121 
    122 #ifdef SOSEND_COUNTERS
    123 #include <sys/device.h>
    124 
    125 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    126     NULL, "sosend", "loan big");
    127 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    128     NULL, "sosend", "copy big");
    129 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    130     NULL, "sosend", "copy small");
    131 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    132     NULL, "sosend", "kva limit");
    133 
    134 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    135 
    136 EVCNT_ATTACH_STATIC(sosend_loan_big);
    137 EVCNT_ATTACH_STATIC(sosend_copy_big);
    138 EVCNT_ATTACH_STATIC(sosend_copy_small);
    139 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    140 #else
    141 
    142 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    143 
    144 #endif /* SOSEND_COUNTERS */
    145 
    146 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    147 int sock_loan_thresh = -1;
    148 #else
    149 int sock_loan_thresh = 4096;
    150 #endif
    151 
    152 static kmutex_t so_pendfree_lock;
    153 static struct mbuf *so_pendfree = NULL;
    154 
    155 #ifndef SOMAXKVA
    156 #define	SOMAXKVA (16 * 1024 * 1024)
    157 #endif
    158 int somaxkva = SOMAXKVA;
    159 static int socurkva;
    160 static kcondvar_t socurkva_cv;
    161 
    162 static kauth_listener_t socket_listener;
    163 
    164 #define	SOCK_LOAN_CHUNK		65536
    165 
    166 static void sopendfree_thread(void *);
    167 static kcondvar_t pendfree_thread_cv;
    168 static lwp_t *sopendfree_lwp;
    169 
    170 static void sysctl_kern_socket_setup(void);
    171 static struct sysctllog *socket_sysctllog;
    172 
    173 static vsize_t
    174 sokvareserve(struct socket *so, vsize_t len)
    175 {
    176 	int error;
    177 
    178 	mutex_enter(&so_pendfree_lock);
    179 	while (socurkva + len > somaxkva) {
    180 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    181 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    182 		if (error) {
    183 			len = 0;
    184 			break;
    185 		}
    186 	}
    187 	socurkva += len;
    188 	mutex_exit(&so_pendfree_lock);
    189 	return len;
    190 }
    191 
    192 static void
    193 sokvaunreserve(vsize_t len)
    194 {
    195 
    196 	mutex_enter(&so_pendfree_lock);
    197 	socurkva -= len;
    198 	cv_broadcast(&socurkva_cv);
    199 	mutex_exit(&so_pendfree_lock);
    200 }
    201 
    202 /*
    203  * sokvaalloc: allocate kva for loan.
    204  */
    205 
    206 vaddr_t
    207 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
    208 {
    209 	vaddr_t lva;
    210 
    211 	/*
    212 	 * reserve kva.
    213 	 */
    214 
    215 	if (sokvareserve(so, len) == 0)
    216 		return 0;
    217 
    218 	/*
    219 	 * allocate kva.
    220 	 */
    221 
    222 	lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
    223 	    UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    224 	if (lva == 0) {
    225 		sokvaunreserve(len);
    226 		return (0);
    227 	}
    228 
    229 	return lva;
    230 }
    231 
    232 /*
    233  * sokvafree: free kva for loan.
    234  */
    235 
    236 void
    237 sokvafree(vaddr_t sva, vsize_t len)
    238 {
    239 
    240 	/*
    241 	 * free kva.
    242 	 */
    243 
    244 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    245 
    246 	/*
    247 	 * unreserve kva.
    248 	 */
    249 
    250 	sokvaunreserve(len);
    251 }
    252 
    253 static void
    254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    255 {
    256 	vaddr_t sva, eva;
    257 	vsize_t len;
    258 	int npgs;
    259 
    260 	KASSERT(pgs != NULL);
    261 
    262 	eva = round_page((vaddr_t) buf + size);
    263 	sva = trunc_page((vaddr_t) buf);
    264 	len = eva - sva;
    265 	npgs = len >> PAGE_SHIFT;
    266 
    267 	pmap_kremove(sva, len);
    268 	pmap_update(pmap_kernel());
    269 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    270 	sokvafree(sva, len);
    271 }
    272 
    273 /*
    274  * sopendfree_thread: free mbufs on "pendfree" list.
    275  * unlock and relock so_pendfree_lock when freeing mbufs.
    276  */
    277 
    278 static void
    279 sopendfree_thread(void *v)
    280 {
    281 	struct mbuf *m, *next;
    282 	size_t rv;
    283 
    284 	mutex_enter(&so_pendfree_lock);
    285 
    286 	for (;;) {
    287 		rv = 0;
    288 		while (so_pendfree != NULL) {
    289 			m = so_pendfree;
    290 			so_pendfree = NULL;
    291 			mutex_exit(&so_pendfree_lock);
    292 
    293 			for (; m != NULL; m = next) {
    294 				next = m->m_next;
    295 				KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
    296 				KASSERT(m->m_ext.ext_refcnt == 0);
    297 
    298 				rv += m->m_ext.ext_size;
    299 				sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    300 				    m->m_ext.ext_size);
    301 				pool_cache_put(mb_cache, m);
    302 			}
    303 
    304 			mutex_enter(&so_pendfree_lock);
    305 		}
    306 		if (rv)
    307 			cv_broadcast(&socurkva_cv);
    308 		cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
    309 	}
    310 	panic("sopendfree_thread");
    311 	/* NOTREACHED */
    312 }
    313 
    314 void
    315 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    316 {
    317 
    318 	KASSERT(m != NULL);
    319 
    320 	/*
    321 	 * postpone freeing mbuf.
    322 	 *
    323 	 * we can't do it in interrupt context
    324 	 * because we need to put kva back to kernel_map.
    325 	 */
    326 
    327 	mutex_enter(&so_pendfree_lock);
    328 	m->m_next = so_pendfree;
    329 	so_pendfree = m;
    330 	cv_signal(&pendfree_thread_cv);
    331 	mutex_exit(&so_pendfree_lock);
    332 }
    333 
    334 static long
    335 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    336 {
    337 	struct iovec *iov = uio->uio_iov;
    338 	vaddr_t sva, eva;
    339 	vsize_t len;
    340 	vaddr_t lva;
    341 	int npgs, error;
    342 	vaddr_t va;
    343 	int i;
    344 
    345 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    346 		return (0);
    347 
    348 	if (iov->iov_len < (size_t) space)
    349 		space = iov->iov_len;
    350 	if (space > SOCK_LOAN_CHUNK)
    351 		space = SOCK_LOAN_CHUNK;
    352 
    353 	eva = round_page((vaddr_t) iov->iov_base + space);
    354 	sva = trunc_page((vaddr_t) iov->iov_base);
    355 	len = eva - sva;
    356 	npgs = len >> PAGE_SHIFT;
    357 
    358 	KASSERT(npgs <= M_EXT_MAXPAGES);
    359 
    360 	lva = sokvaalloc(sva, len, so);
    361 	if (lva == 0)
    362 		return 0;
    363 
    364 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    365 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    366 	if (error) {
    367 		sokvafree(lva, len);
    368 		return (0);
    369 	}
    370 
    371 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    372 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    373 		    VM_PROT_READ, 0);
    374 	pmap_update(pmap_kernel());
    375 
    376 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    377 
    378 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    379 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    380 
    381 	uio->uio_resid -= space;
    382 	/* uio_offset not updated, not set/used for write(2) */
    383 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    384 	uio->uio_iov->iov_len -= space;
    385 	if (uio->uio_iov->iov_len == 0) {
    386 		uio->uio_iov++;
    387 		uio->uio_iovcnt--;
    388 	}
    389 
    390 	return (space);
    391 }
    392 
    393 struct mbuf *
    394 getsombuf(struct socket *so, int type)
    395 {
    396 	struct mbuf *m;
    397 
    398 	m = m_get(M_WAIT, type);
    399 	MCLAIM(m, so->so_mowner);
    400 	return m;
    401 }
    402 
    403 static int
    404 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    405     void *arg0, void *arg1, void *arg2, void *arg3)
    406 {
    407 	int result;
    408 	enum kauth_network_req req;
    409 
    410 	result = KAUTH_RESULT_DEFER;
    411 	req = (enum kauth_network_req)arg0;
    412 
    413 	if ((action != KAUTH_NETWORK_SOCKET) &&
    414 	    (action != KAUTH_NETWORK_BIND))
    415 		return result;
    416 
    417 	switch (req) {
    418 	case KAUTH_REQ_NETWORK_BIND_PORT:
    419 		result = KAUTH_RESULT_ALLOW;
    420 		break;
    421 
    422 	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
    423 		/* Normal users can only drop their own connections. */
    424 		struct socket *so = (struct socket *)arg1;
    425 
    426 		if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
    427 			result = KAUTH_RESULT_ALLOW;
    428 
    429 		break;
    430 		}
    431 
    432 	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
    433 		/* We allow "raw" routing/bluetooth sockets to anyone. */
    434 		if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
    435 		    || (u_long)arg1 == PF_BLUETOOTH) {
    436 			result = KAUTH_RESULT_ALLOW;
    437 		} else {
    438 			/* Privileged, let secmodel handle this. */
    439 			if ((u_long)arg2 == SOCK_RAW)
    440 				break;
    441 		}
    442 
    443 		result = KAUTH_RESULT_ALLOW;
    444 
    445 		break;
    446 
    447 	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
    448 		result = KAUTH_RESULT_ALLOW;
    449 
    450 		break;
    451 
    452 	default:
    453 		break;
    454 	}
    455 
    456 	return result;
    457 }
    458 
    459 void
    460 soinit(void)
    461 {
    462 
    463 	sysctl_kern_socket_setup();
    464 
    465 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    466 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    467 	cv_init(&socurkva_cv, "sokva");
    468 	cv_init(&pendfree_thread_cv, "sopendfr");
    469 	soinit2();
    470 
    471 	/* Set the initial adjusted socket buffer size. */
    472 	if (sb_max_set(sb_max))
    473 		panic("bad initial sb_max value: %lu", sb_max);
    474 
    475 	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    476 	    socket_listener_cb, NULL);
    477 }
    478 
    479 void
    480 soinit1(void)
    481 {
    482 	int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    483 	    sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
    484 	if (error)
    485 		panic("soinit1 %d", error);
    486 }
    487 
    488 /*
    489  * socreate: create a new socket of the specified type and the protocol.
    490  *
    491  * => Caller may specify another socket for lock sharing (must not be held).
    492  * => Returns the new socket without lock held.
    493  */
    494 int
    495 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    496 	 struct socket *lockso)
    497 {
    498 	const struct protosw	*prp;
    499 	struct socket	*so;
    500 	uid_t		uid;
    501 	int		error;
    502 	kmutex_t	*lock;
    503 
    504 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    505 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    506 	    KAUTH_ARG(proto));
    507 	if (error != 0)
    508 		return error;
    509 
    510 	if (proto)
    511 		prp = pffindproto(dom, proto, type);
    512 	else
    513 		prp = pffindtype(dom, type);
    514 	if (prp == NULL) {
    515 		/* no support for domain */
    516 		if (pffinddomain(dom) == 0)
    517 			return EAFNOSUPPORT;
    518 		/* no support for socket type */
    519 		if (proto == 0 && type != 0)
    520 			return EPROTOTYPE;
    521 		return EPROTONOSUPPORT;
    522 	}
    523 	if (prp->pr_usrreqs == NULL)
    524 		return EPROTONOSUPPORT;
    525 	if (prp->pr_type != type)
    526 		return EPROTOTYPE;
    527 
    528 	so = soget(true);
    529 	so->so_type = type;
    530 	so->so_proto = prp;
    531 	so->so_send = sosend;
    532 	so->so_receive = soreceive;
    533 #ifdef MBUFTRACE
    534 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    535 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    536 	so->so_mowner = &prp->pr_domain->dom_mowner;
    537 #endif
    538 	uid = kauth_cred_geteuid(l->l_cred);
    539 	so->so_uidinfo = uid_find(uid);
    540 	so->so_cpid = l->l_proc->p_pid;
    541 
    542 	/*
    543 	 * Lock assigned and taken during PCB attach, unless we share
    544 	 * the lock with another socket, e.g. socketpair(2) case.
    545 	 */
    546 	if (lockso) {
    547 		lock = lockso->so_lock;
    548 		so->so_lock = lock;
    549 		mutex_obj_hold(lock);
    550 		mutex_enter(lock);
    551 	}
    552 
    553 	/* Attach the PCB (returns with the socket lock held). */
    554 	error = (*prp->pr_usrreqs->pr_attach)(so, proto);
    555 	KASSERT(solocked(so));
    556 
    557 	if (error) {
    558 		KASSERT(so->so_pcb == NULL);
    559 		so->so_state |= SS_NOFDREF;
    560 		sofree(so);
    561 		return error;
    562 	}
    563 	so->so_cred = kauth_cred_dup(l->l_cred);
    564 	sounlock(so);
    565 
    566 	*aso = so;
    567 	return 0;
    568 }
    569 
    570 /*
    571  * fsocreate: create a socket and a file descriptor associated with it.
    572  *
    573  * => On success, write file descriptor to fdout and return zero.
    574  * => On failure, return non-zero; *fdout will be undefined.
    575  */
    576 int
    577 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
    578 {
    579 	lwp_t *l = curlwp;
    580 	int error, fd, flags;
    581 	struct socket *so;
    582 	struct file *fp;
    583 
    584 	if ((error = fd_allocfile(&fp, &fd)) != 0) {
    585 		return error;
    586 	}
    587 	flags = type & SOCK_FLAGS_MASK;
    588 	fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
    589 	fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
    590 	    ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
    591 	fp->f_type = DTYPE_SOCKET;
    592 	fp->f_ops = &socketops;
    593 
    594 	type &= ~SOCK_FLAGS_MASK;
    595 	error = socreate(domain, &so, type, proto, l, NULL);
    596 	if (error) {
    597 		fd_abort(curproc, fp, fd);
    598 		return error;
    599 	}
    600 	if (flags & SOCK_NONBLOCK) {
    601 		so->so_state |= SS_NBIO;
    602 	}
    603 	fp->f_data = so;
    604 	fd_affix(curproc, fp, fd);
    605 
    606 	if (sop != NULL) {
    607 		*sop = so;
    608 	}
    609 	*fdout = fd;
    610 	return error;
    611 }
    612 
    613 int
    614 sofamily(const struct socket *so)
    615 {
    616 	const struct protosw *pr;
    617 	const struct domain *dom;
    618 
    619 	if ((pr = so->so_proto) == NULL)
    620 		return AF_UNSPEC;
    621 	if ((dom = pr->pr_domain) == NULL)
    622 		return AF_UNSPEC;
    623 	return dom->dom_family;
    624 }
    625 
    626 int
    627 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    628 {
    629 	int	error;
    630 
    631 	solock(so);
    632 	error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
    633 	    PRU_BIND, NULL, nam, NULL, l);
    634 	sounlock(so);
    635 	return error;
    636 }
    637 
    638 int
    639 solisten(struct socket *so, int backlog, struct lwp *l)
    640 {
    641 	int	error;
    642 
    643 	solock(so);
    644 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    645 	    SS_ISDISCONNECTING)) != 0) {
    646 		sounlock(so);
    647 		return EINVAL;
    648 	}
    649 	error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
    650 	    PRU_LISTEN, NULL, NULL, NULL, l);
    651 	if (error != 0) {
    652 		sounlock(so);
    653 		return error;
    654 	}
    655 	if (TAILQ_EMPTY(&so->so_q))
    656 		so->so_options |= SO_ACCEPTCONN;
    657 	if (backlog < 0)
    658 		backlog = 0;
    659 	so->so_qlimit = min(backlog, somaxconn);
    660 	sounlock(so);
    661 	return 0;
    662 }
    663 
    664 void
    665 sofree(struct socket *so)
    666 {
    667 	u_int refs;
    668 
    669 	KASSERT(solocked(so));
    670 
    671 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    672 		sounlock(so);
    673 		return;
    674 	}
    675 	if (so->so_head) {
    676 		/*
    677 		 * We must not decommission a socket that's on the accept(2)
    678 		 * queue.  If we do, then accept(2) may hang after select(2)
    679 		 * indicated that the listening socket was ready.
    680 		 */
    681 		if (!soqremque(so, 0)) {
    682 			sounlock(so);
    683 			return;
    684 		}
    685 	}
    686 	if (so->so_rcv.sb_hiwat)
    687 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    688 		    RLIM_INFINITY);
    689 	if (so->so_snd.sb_hiwat)
    690 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    691 		    RLIM_INFINITY);
    692 	sbrelease(&so->so_snd, so);
    693 	KASSERT(!cv_has_waiters(&so->so_cv));
    694 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    695 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    696 	sorflush(so);
    697 	refs = so->so_aborting;	/* XXX */
    698 	/* Remove acccept filter if one is present. */
    699 	if (so->so_accf != NULL)
    700 		(void)accept_filt_clear(so);
    701 	sounlock(so);
    702 	if (refs == 0)		/* XXX */
    703 		soput(so);
    704 }
    705 
    706 /*
    707  * soclose: close a socket on last file table reference removal.
    708  * Initiate disconnect if connected.  Free socket when disconnect complete.
    709  */
    710 int
    711 soclose(struct socket *so)
    712 {
    713 	struct socket *so2;
    714 	int error = 0;
    715 
    716 	solock(so);
    717 	if (so->so_options & SO_ACCEPTCONN) {
    718 		for (;;) {
    719 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    720 				KASSERT(solocked2(so, so2));
    721 				(void) soqremque(so2, 0);
    722 				/* soabort drops the lock. */
    723 				(void) soabort(so2);
    724 				solock(so);
    725 				continue;
    726 			}
    727 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    728 				KASSERT(solocked2(so, so2));
    729 				(void) soqremque(so2, 1);
    730 				/* soabort drops the lock. */
    731 				(void) soabort(so2);
    732 				solock(so);
    733 				continue;
    734 			}
    735 			break;
    736 		}
    737 	}
    738 	if (so->so_pcb == NULL)
    739 		goto discard;
    740 	if (so->so_state & SS_ISCONNECTED) {
    741 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    742 			error = sodisconnect(so);
    743 			if (error)
    744 				goto drop;
    745 		}
    746 		if (so->so_options & SO_LINGER) {
    747 			if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
    748 			    (SS_ISDISCONNECTING|SS_NBIO))
    749 				goto drop;
    750 			while (so->so_state & SS_ISCONNECTED) {
    751 				error = sowait(so, true, so->so_linger * hz);
    752 				if (error)
    753 					break;
    754 			}
    755 		}
    756 	}
    757  drop:
    758 	if (so->so_pcb) {
    759 		KASSERT(solocked(so));
    760 		(*so->so_proto->pr_usrreqs->pr_detach)(so);
    761 	}
    762  discard:
    763 	KASSERT((so->so_state & SS_NOFDREF) == 0);
    764 	kauth_cred_free(so->so_cred);
    765 	so->so_state |= SS_NOFDREF;
    766 	sofree(so);
    767 	return error;
    768 }
    769 
    770 /*
    771  * Must be called with the socket locked..  Will return with it unlocked.
    772  */
    773 int
    774 soabort(struct socket *so)
    775 {
    776 	u_int refs;
    777 	int error;
    778 
    779 	KASSERT(solocked(so));
    780 	KASSERT(so->so_head == NULL);
    781 
    782 	so->so_aborting++;		/* XXX */
    783 	error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
    784 	    PRU_ABORT, NULL, NULL, NULL, NULL);
    785 	refs = --so->so_aborting;	/* XXX */
    786 	if (error || (refs == 0)) {
    787 		sofree(so);
    788 	} else {
    789 		sounlock(so);
    790 	}
    791 	return error;
    792 }
    793 
    794 int
    795 soaccept(struct socket *so, struct mbuf *nam)
    796 {
    797 	int error;
    798 
    799 	KASSERT(solocked(so));
    800 	KASSERT((so->so_state & SS_NOFDREF) != 0);
    801 
    802 	so->so_state &= ~SS_NOFDREF;
    803 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    804 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    805 		error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
    806 		    PRU_ACCEPT, NULL, nam, NULL, NULL);
    807 	else
    808 		error = ECONNABORTED;
    809 
    810 	return error;
    811 }
    812 
    813 int
    814 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    815 {
    816 	int error;
    817 
    818 	KASSERT(solocked(so));
    819 
    820 	if (so->so_options & SO_ACCEPTCONN)
    821 		return EOPNOTSUPP;
    822 	/*
    823 	 * If protocol is connection-based, can only connect once.
    824 	 * Otherwise, if connected, try to disconnect first.
    825 	 * This allows user to disconnect by connecting to, e.g.,
    826 	 * a null address.
    827 	 */
    828 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    829 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    830 	    (error = sodisconnect(so))))
    831 		error = EISCONN;
    832 	else
    833 		error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
    834 		    PRU_CONNECT, NULL, nam, NULL, l);
    835 
    836 	return error;
    837 }
    838 
    839 int
    840 soconnect2(struct socket *so1, struct socket *so2)
    841 {
    842 	KASSERT(solocked2(so1, so2));
    843 
    844 	return (*so1->so_proto->pr_usrreqs->pr_generic)(so1,
    845 	    PRU_CONNECT2, NULL, (struct mbuf *)so2, NULL, NULL);
    846 }
    847 
    848 int
    849 sodisconnect(struct socket *so)
    850 {
    851 	int	error;
    852 
    853 	KASSERT(solocked(so));
    854 
    855 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    856 		error = ENOTCONN;
    857 	} else if (so->so_state & SS_ISDISCONNECTING) {
    858 		error = EALREADY;
    859 	} else {
    860 		error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
    861 		    PRU_DISCONNECT, NULL, NULL, NULL, NULL);
    862 	}
    863 	return (error);
    864 }
    865 
    866 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    867 /*
    868  * Send on a socket.
    869  * If send must go all at once and message is larger than
    870  * send buffering, then hard error.
    871  * Lock against other senders.
    872  * If must go all at once and not enough room now, then
    873  * inform user that this would block and do nothing.
    874  * Otherwise, if nonblocking, send as much as possible.
    875  * The data to be sent is described by "uio" if nonzero,
    876  * otherwise by the mbuf chain "top" (which must be null
    877  * if uio is not).  Data provided in mbuf chain must be small
    878  * enough to send all at once.
    879  *
    880  * Returns nonzero on error, timeout or signal; callers
    881  * must check for short counts if EINTR/ERESTART are returned.
    882  * Data and control buffers are freed on return.
    883  */
    884 int
    885 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    886 	struct mbuf *control, int flags, struct lwp *l)
    887 {
    888 	struct mbuf	**mp, *m;
    889 	long		space, len, resid, clen, mlen;
    890 	int		error, s, dontroute, atomic;
    891 	short		wakeup_state = 0;
    892 
    893 	clen = 0;
    894 
    895 	/*
    896 	 * solock() provides atomicity of access.  splsoftnet() prevents
    897 	 * protocol processing soft interrupts from interrupting us and
    898 	 * blocking (expensive).
    899 	 */
    900 	s = splsoftnet();
    901 	solock(so);
    902 	atomic = sosendallatonce(so) || top;
    903 	if (uio)
    904 		resid = uio->uio_resid;
    905 	else
    906 		resid = top->m_pkthdr.len;
    907 	/*
    908 	 * In theory resid should be unsigned.
    909 	 * However, space must be signed, as it might be less than 0
    910 	 * if we over-committed, and we must use a signed comparison
    911 	 * of space and resid.  On the other hand, a negative resid
    912 	 * causes us to loop sending 0-length segments to the protocol.
    913 	 */
    914 	if (resid < 0) {
    915 		error = EINVAL;
    916 		goto out;
    917 	}
    918 	dontroute =
    919 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    920 	    (so->so_proto->pr_flags & PR_ATOMIC);
    921 	l->l_ru.ru_msgsnd++;
    922 	if (control)
    923 		clen = control->m_len;
    924  restart:
    925 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    926 		goto out;
    927 	do {
    928 		if (so->so_state & SS_CANTSENDMORE) {
    929 			error = EPIPE;
    930 			goto release;
    931 		}
    932 		if (so->so_error) {
    933 			error = so->so_error;
    934 			so->so_error = 0;
    935 			goto release;
    936 		}
    937 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    938 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    939 				if (resid || clen == 0) {
    940 					error = ENOTCONN;
    941 					goto release;
    942 				}
    943 			} else if (addr == 0) {
    944 				error = EDESTADDRREQ;
    945 				goto release;
    946 			}
    947 		}
    948 		space = sbspace(&so->so_snd);
    949 		if (flags & MSG_OOB)
    950 			space += 1024;
    951 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    952 		    clen > so->so_snd.sb_hiwat) {
    953 			error = EMSGSIZE;
    954 			goto release;
    955 		}
    956 		if (space < resid + clen &&
    957 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    958 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
    959 				error = EWOULDBLOCK;
    960 				goto release;
    961 			}
    962 			sbunlock(&so->so_snd);
    963 			if (wakeup_state & SS_RESTARTSYS) {
    964 				error = ERESTART;
    965 				goto out;
    966 			}
    967 			error = sbwait(&so->so_snd);
    968 			if (error)
    969 				goto out;
    970 			wakeup_state = so->so_state;
    971 			goto restart;
    972 		}
    973 		wakeup_state = 0;
    974 		mp = &top;
    975 		space -= clen;
    976 		do {
    977 			if (uio == NULL) {
    978 				/*
    979 				 * Data is prepackaged in "top".
    980 				 */
    981 				resid = 0;
    982 				if (flags & MSG_EOR)
    983 					top->m_flags |= M_EOR;
    984 			} else do {
    985 				sounlock(so);
    986 				splx(s);
    987 				if (top == NULL) {
    988 					m = m_gethdr(M_WAIT, MT_DATA);
    989 					mlen = MHLEN;
    990 					m->m_pkthdr.len = 0;
    991 					m->m_pkthdr.rcvif = NULL;
    992 				} else {
    993 					m = m_get(M_WAIT, MT_DATA);
    994 					mlen = MLEN;
    995 				}
    996 				MCLAIM(m, so->so_snd.sb_mowner);
    997 				if (sock_loan_thresh >= 0 &&
    998 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
    999 				    space >= sock_loan_thresh &&
   1000 				    (len = sosend_loan(so, uio, m,
   1001 						       space)) != 0) {
   1002 					SOSEND_COUNTER_INCR(&sosend_loan_big);
   1003 					space -= len;
   1004 					goto have_data;
   1005 				}
   1006 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
   1007 					SOSEND_COUNTER_INCR(&sosend_copy_big);
   1008 					m_clget(m, M_DONTWAIT);
   1009 					if ((m->m_flags & M_EXT) == 0)
   1010 						goto nopages;
   1011 					mlen = MCLBYTES;
   1012 					if (atomic && top == 0) {
   1013 						len = lmin(MCLBYTES - max_hdr,
   1014 						    resid);
   1015 						m->m_data += max_hdr;
   1016 					} else
   1017 						len = lmin(MCLBYTES, resid);
   1018 					space -= len;
   1019 				} else {
   1020  nopages:
   1021 					SOSEND_COUNTER_INCR(&sosend_copy_small);
   1022 					len = lmin(lmin(mlen, resid), space);
   1023 					space -= len;
   1024 					/*
   1025 					 * For datagram protocols, leave room
   1026 					 * for protocol headers in first mbuf.
   1027 					 */
   1028 					if (atomic && top == 0 && len < mlen)
   1029 						MH_ALIGN(m, len);
   1030 				}
   1031 				error = uiomove(mtod(m, void *), (int)len, uio);
   1032  have_data:
   1033 				resid = uio->uio_resid;
   1034 				m->m_len = len;
   1035 				*mp = m;
   1036 				top->m_pkthdr.len += len;
   1037 				s = splsoftnet();
   1038 				solock(so);
   1039 				if (error != 0)
   1040 					goto release;
   1041 				mp = &m->m_next;
   1042 				if (resid <= 0) {
   1043 					if (flags & MSG_EOR)
   1044 						top->m_flags |= M_EOR;
   1045 					break;
   1046 				}
   1047 			} while (space > 0 && atomic);
   1048 
   1049 			if (so->so_state & SS_CANTSENDMORE) {
   1050 				error = EPIPE;
   1051 				goto release;
   1052 			}
   1053 			if (dontroute)
   1054 				so->so_options |= SO_DONTROUTE;
   1055 			if (resid > 0)
   1056 				so->so_state |= SS_MORETOCOME;
   1057 			error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
   1058 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
   1059 			    top, addr, control, curlwp);
   1060 			if (dontroute)
   1061 				so->so_options &= ~SO_DONTROUTE;
   1062 			if (resid > 0)
   1063 				so->so_state &= ~SS_MORETOCOME;
   1064 			clen = 0;
   1065 			control = NULL;
   1066 			top = NULL;
   1067 			mp = &top;
   1068 			if (error != 0)
   1069 				goto release;
   1070 		} while (resid && space > 0);
   1071 	} while (resid);
   1072 
   1073  release:
   1074 	sbunlock(&so->so_snd);
   1075  out:
   1076 	sounlock(so);
   1077 	splx(s);
   1078 	if (top)
   1079 		m_freem(top);
   1080 	if (control)
   1081 		m_freem(control);
   1082 	return (error);
   1083 }
   1084 
   1085 /*
   1086  * Following replacement or removal of the first mbuf on the first
   1087  * mbuf chain of a socket buffer, push necessary state changes back
   1088  * into the socket buffer so that other consumers see the values
   1089  * consistently.  'nextrecord' is the callers locally stored value of
   1090  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1091  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1092  */
   1093 static void
   1094 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1095 {
   1096 
   1097 	KASSERT(solocked(sb->sb_so));
   1098 
   1099 	/*
   1100 	 * First, update for the new value of nextrecord.  If necessary,
   1101 	 * make it the first record.
   1102 	 */
   1103 	if (sb->sb_mb != NULL)
   1104 		sb->sb_mb->m_nextpkt = nextrecord;
   1105 	else
   1106 		sb->sb_mb = nextrecord;
   1107 
   1108         /*
   1109          * Now update any dependent socket buffer fields to reflect
   1110          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1111          * the addition of a second clause that takes care of the
   1112          * case where sb_mb has been updated, but remains the last
   1113          * record.
   1114          */
   1115         if (sb->sb_mb == NULL) {
   1116                 sb->sb_mbtail = NULL;
   1117                 sb->sb_lastrecord = NULL;
   1118         } else if (sb->sb_mb->m_nextpkt == NULL)
   1119                 sb->sb_lastrecord = sb->sb_mb;
   1120 }
   1121 
   1122 /*
   1123  * Implement receive operations on a socket.
   1124  * We depend on the way that records are added to the sockbuf
   1125  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1126  * must begin with an address if the protocol so specifies,
   1127  * followed by an optional mbuf or mbufs containing ancillary data,
   1128  * and then zero or more mbufs of data.
   1129  * In order to avoid blocking network interrupts for the entire time here,
   1130  * we splx() while doing the actual copy to user space.
   1131  * Although the sockbuf is locked, new data may still be appended,
   1132  * and thus we must maintain consistency of the sockbuf during that time.
   1133  *
   1134  * The caller may receive the data as a single mbuf chain by supplying
   1135  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1136  * only for the count in uio_resid.
   1137  */
   1138 int
   1139 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1140 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1141 {
   1142 	struct lwp *l = curlwp;
   1143 	struct mbuf	*m, **mp, *mt;
   1144 	size_t len, offset, moff, orig_resid;
   1145 	int atomic, flags, error, s, type;
   1146 	const struct protosw	*pr;
   1147 	struct mbuf	*nextrecord;
   1148 	int		mbuf_removed = 0;
   1149 	const struct domain *dom;
   1150 	short		wakeup_state = 0;
   1151 
   1152 	pr = so->so_proto;
   1153 	atomic = pr->pr_flags & PR_ATOMIC;
   1154 	dom = pr->pr_domain;
   1155 	mp = mp0;
   1156 	type = 0;
   1157 	orig_resid = uio->uio_resid;
   1158 
   1159 	if (paddr != NULL)
   1160 		*paddr = NULL;
   1161 	if (controlp != NULL)
   1162 		*controlp = NULL;
   1163 	if (flagsp != NULL)
   1164 		flags = *flagsp &~ MSG_EOR;
   1165 	else
   1166 		flags = 0;
   1167 
   1168 	if (flags & MSG_OOB) {
   1169 		m = m_get(M_WAIT, MT_DATA);
   1170 		solock(so);
   1171 		error = (*pr->pr_usrreqs->pr_generic)(so, PRU_RCVOOB, m,
   1172 		    (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l);
   1173 		sounlock(so);
   1174 		if (error)
   1175 			goto bad;
   1176 		do {
   1177 			error = uiomove(mtod(m, void *),
   1178 			    MIN(uio->uio_resid, m->m_len), uio);
   1179 			m = m_free(m);
   1180 		} while (uio->uio_resid > 0 && error == 0 && m);
   1181  bad:
   1182 		if (m != NULL)
   1183 			m_freem(m);
   1184 		return error;
   1185 	}
   1186 	if (mp != NULL)
   1187 		*mp = NULL;
   1188 
   1189 	/*
   1190 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1191 	 * protocol processing soft interrupts from interrupting us and
   1192 	 * blocking (expensive).
   1193 	 */
   1194 	s = splsoftnet();
   1195 	solock(so);
   1196  restart:
   1197 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1198 		sounlock(so);
   1199 		splx(s);
   1200 		return error;
   1201 	}
   1202 
   1203 	m = so->so_rcv.sb_mb;
   1204 	/*
   1205 	 * If we have less data than requested, block awaiting more
   1206 	 * (subject to any timeout) if:
   1207 	 *   1. the current count is less than the low water mark,
   1208 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1209 	 *	receive operation at once if we block (resid <= hiwat), or
   1210 	 *   3. MSG_DONTWAIT is not set.
   1211 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1212 	 * we have to do the receive in sections, and thus risk returning
   1213 	 * a short count if a timeout or signal occurs after we start.
   1214 	 */
   1215 	if (m == NULL ||
   1216 	    ((flags & MSG_DONTWAIT) == 0 &&
   1217 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1218 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1219 	      ((flags & MSG_WAITALL) &&
   1220 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1221 	     m->m_nextpkt == NULL && !atomic)) {
   1222 #ifdef DIAGNOSTIC
   1223 		if (m == NULL && so->so_rcv.sb_cc)
   1224 			panic("receive 1");
   1225 #endif
   1226 		if (so->so_error) {
   1227 			if (m != NULL)
   1228 				goto dontblock;
   1229 			error = so->so_error;
   1230 			if ((flags & MSG_PEEK) == 0)
   1231 				so->so_error = 0;
   1232 			goto release;
   1233 		}
   1234 		if (so->so_state & SS_CANTRCVMORE) {
   1235 			if (m != NULL)
   1236 				goto dontblock;
   1237 			else
   1238 				goto release;
   1239 		}
   1240 		for (; m != NULL; m = m->m_next)
   1241 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1242 				m = so->so_rcv.sb_mb;
   1243 				goto dontblock;
   1244 			}
   1245 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1246 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1247 			error = ENOTCONN;
   1248 			goto release;
   1249 		}
   1250 		if (uio->uio_resid == 0)
   1251 			goto release;
   1252 		if ((so->so_state & SS_NBIO) ||
   1253 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
   1254 			error = EWOULDBLOCK;
   1255 			goto release;
   1256 		}
   1257 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1258 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1259 		sbunlock(&so->so_rcv);
   1260 		if (wakeup_state & SS_RESTARTSYS)
   1261 			error = ERESTART;
   1262 		else
   1263 			error = sbwait(&so->so_rcv);
   1264 		if (error != 0) {
   1265 			sounlock(so);
   1266 			splx(s);
   1267 			return error;
   1268 		}
   1269 		wakeup_state = so->so_state;
   1270 		goto restart;
   1271 	}
   1272  dontblock:
   1273 	/*
   1274 	 * On entry here, m points to the first record of the socket buffer.
   1275 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1276 	 * pointer to the next record in the socket buffer.  We must keep the
   1277 	 * various socket buffer pointers and local stack versions of the
   1278 	 * pointers in sync, pushing out modifications before dropping the
   1279 	 * socket lock, and re-reading them when picking it up.
   1280 	 *
   1281 	 * Otherwise, we will race with the network stack appending new data
   1282 	 * or records onto the socket buffer by using inconsistent/stale
   1283 	 * versions of the field, possibly resulting in socket buffer
   1284 	 * corruption.
   1285 	 *
   1286 	 * By holding the high-level sblock(), we prevent simultaneous
   1287 	 * readers from pulling off the front of the socket buffer.
   1288 	 */
   1289 	if (l != NULL)
   1290 		l->l_ru.ru_msgrcv++;
   1291 	KASSERT(m == so->so_rcv.sb_mb);
   1292 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1293 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1294 	nextrecord = m->m_nextpkt;
   1295 	if (pr->pr_flags & PR_ADDR) {
   1296 #ifdef DIAGNOSTIC
   1297 		if (m->m_type != MT_SONAME)
   1298 			panic("receive 1a");
   1299 #endif
   1300 		orig_resid = 0;
   1301 		if (flags & MSG_PEEK) {
   1302 			if (paddr)
   1303 				*paddr = m_copy(m, 0, m->m_len);
   1304 			m = m->m_next;
   1305 		} else {
   1306 			sbfree(&so->so_rcv, m);
   1307 			mbuf_removed = 1;
   1308 			if (paddr != NULL) {
   1309 				*paddr = m;
   1310 				so->so_rcv.sb_mb = m->m_next;
   1311 				m->m_next = NULL;
   1312 				m = so->so_rcv.sb_mb;
   1313 			} else {
   1314 				MFREE(m, so->so_rcv.sb_mb);
   1315 				m = so->so_rcv.sb_mb;
   1316 			}
   1317 			sbsync(&so->so_rcv, nextrecord);
   1318 		}
   1319 	}
   1320 
   1321 	/*
   1322 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1323 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1324 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1325 	 * perform externalization (or freeing if controlp == NULL).
   1326 	 */
   1327 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1328 		struct mbuf *cm = NULL, *cmn;
   1329 		struct mbuf **cme = &cm;
   1330 
   1331 		do {
   1332 			if (flags & MSG_PEEK) {
   1333 				if (controlp != NULL) {
   1334 					*controlp = m_copy(m, 0, m->m_len);
   1335 					controlp = &(*controlp)->m_next;
   1336 				}
   1337 				m = m->m_next;
   1338 			} else {
   1339 				sbfree(&so->so_rcv, m);
   1340 				so->so_rcv.sb_mb = m->m_next;
   1341 				m->m_next = NULL;
   1342 				*cme = m;
   1343 				cme = &(*cme)->m_next;
   1344 				m = so->so_rcv.sb_mb;
   1345 			}
   1346 		} while (m != NULL && m->m_type == MT_CONTROL);
   1347 		if ((flags & MSG_PEEK) == 0)
   1348 			sbsync(&so->so_rcv, nextrecord);
   1349 		for (; cm != NULL; cm = cmn) {
   1350 			cmn = cm->m_next;
   1351 			cm->m_next = NULL;
   1352 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1353 			if (controlp != NULL) {
   1354 				if (dom->dom_externalize != NULL &&
   1355 				    type == SCM_RIGHTS) {
   1356 					sounlock(so);
   1357 					splx(s);
   1358 					error = (*dom->dom_externalize)(cm, l,
   1359 					    (flags & MSG_CMSG_CLOEXEC) ?
   1360 					    O_CLOEXEC : 0);
   1361 					s = splsoftnet();
   1362 					solock(so);
   1363 				}
   1364 				*controlp = cm;
   1365 				while (*controlp != NULL)
   1366 					controlp = &(*controlp)->m_next;
   1367 			} else {
   1368 				/*
   1369 				 * Dispose of any SCM_RIGHTS message that went
   1370 				 * through the read path rather than recv.
   1371 				 */
   1372 				if (dom->dom_dispose != NULL &&
   1373 				    type == SCM_RIGHTS) {
   1374 				    	sounlock(so);
   1375 					(*dom->dom_dispose)(cm);
   1376 					solock(so);
   1377 				}
   1378 				m_freem(cm);
   1379 			}
   1380 		}
   1381 		if (m != NULL)
   1382 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1383 		else
   1384 			nextrecord = so->so_rcv.sb_mb;
   1385 		orig_resid = 0;
   1386 	}
   1387 
   1388 	/* If m is non-NULL, we have some data to read. */
   1389 	if (__predict_true(m != NULL)) {
   1390 		type = m->m_type;
   1391 		if (type == MT_OOBDATA)
   1392 			flags |= MSG_OOB;
   1393 	}
   1394 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1395 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1396 
   1397 	moff = 0;
   1398 	offset = 0;
   1399 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1400 		if (m->m_type == MT_OOBDATA) {
   1401 			if (type != MT_OOBDATA)
   1402 				break;
   1403 		} else if (type == MT_OOBDATA)
   1404 			break;
   1405 #ifdef DIAGNOSTIC
   1406 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1407 			panic("receive 3");
   1408 #endif
   1409 		so->so_state &= ~SS_RCVATMARK;
   1410 		wakeup_state = 0;
   1411 		len = uio->uio_resid;
   1412 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1413 			len = so->so_oobmark - offset;
   1414 		if (len > m->m_len - moff)
   1415 			len = m->m_len - moff;
   1416 		/*
   1417 		 * If mp is set, just pass back the mbufs.
   1418 		 * Otherwise copy them out via the uio, then free.
   1419 		 * Sockbuf must be consistent here (points to current mbuf,
   1420 		 * it points to next record) when we drop priority;
   1421 		 * we must note any additions to the sockbuf when we
   1422 		 * block interrupts again.
   1423 		 */
   1424 		if (mp == NULL) {
   1425 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1426 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1427 			sounlock(so);
   1428 			splx(s);
   1429 			error = uiomove(mtod(m, char *) + moff, len, uio);
   1430 			s = splsoftnet();
   1431 			solock(so);
   1432 			if (error != 0) {
   1433 				/*
   1434 				 * If any part of the record has been removed
   1435 				 * (such as the MT_SONAME mbuf, which will
   1436 				 * happen when PR_ADDR, and thus also
   1437 				 * PR_ATOMIC, is set), then drop the entire
   1438 				 * record to maintain the atomicity of the
   1439 				 * receive operation.
   1440 				 *
   1441 				 * This avoids a later panic("receive 1a")
   1442 				 * when compiled with DIAGNOSTIC.
   1443 				 */
   1444 				if (m && mbuf_removed && atomic)
   1445 					(void) sbdroprecord(&so->so_rcv);
   1446 
   1447 				goto release;
   1448 			}
   1449 		} else
   1450 			uio->uio_resid -= len;
   1451 		if (len == m->m_len - moff) {
   1452 			if (m->m_flags & M_EOR)
   1453 				flags |= MSG_EOR;
   1454 			if (flags & MSG_PEEK) {
   1455 				m = m->m_next;
   1456 				moff = 0;
   1457 			} else {
   1458 				nextrecord = m->m_nextpkt;
   1459 				sbfree(&so->so_rcv, m);
   1460 				if (mp) {
   1461 					*mp = m;
   1462 					mp = &m->m_next;
   1463 					so->so_rcv.sb_mb = m = m->m_next;
   1464 					*mp = NULL;
   1465 				} else {
   1466 					MFREE(m, so->so_rcv.sb_mb);
   1467 					m = so->so_rcv.sb_mb;
   1468 				}
   1469 				/*
   1470 				 * If m != NULL, we also know that
   1471 				 * so->so_rcv.sb_mb != NULL.
   1472 				 */
   1473 				KASSERT(so->so_rcv.sb_mb == m);
   1474 				if (m) {
   1475 					m->m_nextpkt = nextrecord;
   1476 					if (nextrecord == NULL)
   1477 						so->so_rcv.sb_lastrecord = m;
   1478 				} else {
   1479 					so->so_rcv.sb_mb = nextrecord;
   1480 					SB_EMPTY_FIXUP(&so->so_rcv);
   1481 				}
   1482 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1483 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1484 			}
   1485 		} else if (flags & MSG_PEEK)
   1486 			moff += len;
   1487 		else {
   1488 			if (mp != NULL) {
   1489 				mt = m_copym(m, 0, len, M_NOWAIT);
   1490 				if (__predict_false(mt == NULL)) {
   1491 					sounlock(so);
   1492 					mt = m_copym(m, 0, len, M_WAIT);
   1493 					solock(so);
   1494 				}
   1495 				*mp = mt;
   1496 			}
   1497 			m->m_data += len;
   1498 			m->m_len -= len;
   1499 			so->so_rcv.sb_cc -= len;
   1500 		}
   1501 		if (so->so_oobmark) {
   1502 			if ((flags & MSG_PEEK) == 0) {
   1503 				so->so_oobmark -= len;
   1504 				if (so->so_oobmark == 0) {
   1505 					so->so_state |= SS_RCVATMARK;
   1506 					break;
   1507 				}
   1508 			} else {
   1509 				offset += len;
   1510 				if (offset == so->so_oobmark)
   1511 					break;
   1512 			}
   1513 		}
   1514 		if (flags & MSG_EOR)
   1515 			break;
   1516 		/*
   1517 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1518 		 * we must not quit until "uio->uio_resid == 0" or an error
   1519 		 * termination.  If a signal/timeout occurs, return
   1520 		 * with a short count but without error.
   1521 		 * Keep sockbuf locked against other readers.
   1522 		 */
   1523 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1524 		    !sosendallatonce(so) && !nextrecord) {
   1525 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1526 				break;
   1527 			/*
   1528 			 * If we are peeking and the socket receive buffer is
   1529 			 * full, stop since we can't get more data to peek at.
   1530 			 */
   1531 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1532 				break;
   1533 			/*
   1534 			 * If we've drained the socket buffer, tell the
   1535 			 * protocol in case it needs to do something to
   1536 			 * get it filled again.
   1537 			 */
   1538 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1539 				(*pr->pr_usrreqs->pr_generic)(so, PRU_RCVD,
   1540 				    NULL, (struct mbuf *)(long)flags, NULL, l);
   1541 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1542 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1543 			if (wakeup_state & SS_RESTARTSYS)
   1544 				error = ERESTART;
   1545 			else
   1546 				error = sbwait(&so->so_rcv);
   1547 			if (error != 0) {
   1548 				sbunlock(&so->so_rcv);
   1549 				sounlock(so);
   1550 				splx(s);
   1551 				return 0;
   1552 			}
   1553 			if ((m = so->so_rcv.sb_mb) != NULL)
   1554 				nextrecord = m->m_nextpkt;
   1555 			wakeup_state = so->so_state;
   1556 		}
   1557 	}
   1558 
   1559 	if (m && atomic) {
   1560 		flags |= MSG_TRUNC;
   1561 		if ((flags & MSG_PEEK) == 0)
   1562 			(void) sbdroprecord(&so->so_rcv);
   1563 	}
   1564 	if ((flags & MSG_PEEK) == 0) {
   1565 		if (m == NULL) {
   1566 			/*
   1567 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1568 			 * part makes sure sb_lastrecord is up-to-date if
   1569 			 * there is still data in the socket buffer.
   1570 			 */
   1571 			so->so_rcv.sb_mb = nextrecord;
   1572 			if (so->so_rcv.sb_mb == NULL) {
   1573 				so->so_rcv.sb_mbtail = NULL;
   1574 				so->so_rcv.sb_lastrecord = NULL;
   1575 			} else if (nextrecord->m_nextpkt == NULL)
   1576 				so->so_rcv.sb_lastrecord = nextrecord;
   1577 		}
   1578 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1579 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1580 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1581 			(*pr->pr_usrreqs->pr_generic)(so, PRU_RCVD, NULL,
   1582 			    (struct mbuf *)(long)flags, NULL, l);
   1583 	}
   1584 	if (orig_resid == uio->uio_resid && orig_resid &&
   1585 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1586 		sbunlock(&so->so_rcv);
   1587 		goto restart;
   1588 	}
   1589 
   1590 	if (flagsp != NULL)
   1591 		*flagsp |= flags;
   1592  release:
   1593 	sbunlock(&so->so_rcv);
   1594 	sounlock(so);
   1595 	splx(s);
   1596 	return error;
   1597 }
   1598 
   1599 int
   1600 soshutdown(struct socket *so, int how)
   1601 {
   1602 	const struct protosw	*pr;
   1603 	int	error;
   1604 
   1605 	KASSERT(solocked(so));
   1606 
   1607 	pr = so->so_proto;
   1608 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1609 		return (EINVAL);
   1610 
   1611 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1612 		sorflush(so);
   1613 		error = 0;
   1614 	}
   1615 	if (how == SHUT_WR || how == SHUT_RDWR)
   1616 		error = (*pr->pr_usrreqs->pr_generic)(so,
   1617 		    PRU_SHUTDOWN, NULL, NULL, NULL, NULL);
   1618 
   1619 	return error;
   1620 }
   1621 
   1622 void
   1623 sorestart(struct socket *so)
   1624 {
   1625 	/*
   1626 	 * An application has called close() on an fd on which another
   1627 	 * of its threads has called a socket system call.
   1628 	 * Mark this and wake everyone up, and code that would block again
   1629 	 * instead returns ERESTART.
   1630 	 * On system call re-entry the fd is validated and EBADF returned.
   1631 	 * Any other fd will block again on the 2nd syscall.
   1632 	 */
   1633 	solock(so);
   1634 	so->so_state |= SS_RESTARTSYS;
   1635 	cv_broadcast(&so->so_cv);
   1636 	cv_broadcast(&so->so_snd.sb_cv);
   1637 	cv_broadcast(&so->so_rcv.sb_cv);
   1638 	sounlock(so);
   1639 }
   1640 
   1641 void
   1642 sorflush(struct socket *so)
   1643 {
   1644 	struct sockbuf	*sb, asb;
   1645 	const struct protosw	*pr;
   1646 
   1647 	KASSERT(solocked(so));
   1648 
   1649 	sb = &so->so_rcv;
   1650 	pr = so->so_proto;
   1651 	socantrcvmore(so);
   1652 	sb->sb_flags |= SB_NOINTR;
   1653 	(void )sblock(sb, M_WAITOK);
   1654 	sbunlock(sb);
   1655 	asb = *sb;
   1656 	/*
   1657 	 * Clear most of the sockbuf structure, but leave some of the
   1658 	 * fields valid.
   1659 	 */
   1660 	memset(&sb->sb_startzero, 0,
   1661 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1662 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1663 		sounlock(so);
   1664 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1665 		solock(so);
   1666 	}
   1667 	sbrelease(&asb, so);
   1668 }
   1669 
   1670 /*
   1671  * internal set SOL_SOCKET options
   1672  */
   1673 static int
   1674 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1675 {
   1676 	int error = EINVAL, opt;
   1677 	int optval = 0; /* XXX: gcc */
   1678 	struct linger l;
   1679 	struct timeval tv;
   1680 
   1681 	switch ((opt = sopt->sopt_name)) {
   1682 
   1683 	case SO_ACCEPTFILTER:
   1684 		error = accept_filt_setopt(so, sopt);
   1685 		KASSERT(solocked(so));
   1686 		break;
   1687 
   1688   	case SO_LINGER:
   1689  		error = sockopt_get(sopt, &l, sizeof(l));
   1690 		solock(so);
   1691  		if (error)
   1692  			break;
   1693  		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1694  		    l.l_linger > (INT_MAX / hz)) {
   1695 			error = EDOM;
   1696 			break;
   1697 		}
   1698  		so->so_linger = l.l_linger;
   1699  		if (l.l_onoff)
   1700  			so->so_options |= SO_LINGER;
   1701  		else
   1702  			so->so_options &= ~SO_LINGER;
   1703    		break;
   1704 
   1705 	case SO_DEBUG:
   1706 	case SO_KEEPALIVE:
   1707 	case SO_DONTROUTE:
   1708 	case SO_USELOOPBACK:
   1709 	case SO_BROADCAST:
   1710 	case SO_REUSEADDR:
   1711 	case SO_REUSEPORT:
   1712 	case SO_OOBINLINE:
   1713 	case SO_TIMESTAMP:
   1714 	case SO_NOSIGPIPE:
   1715 #ifdef SO_OTIMESTAMP
   1716 	case SO_OTIMESTAMP:
   1717 #endif
   1718 		error = sockopt_getint(sopt, &optval);
   1719 		solock(so);
   1720 		if (error)
   1721 			break;
   1722 		if (optval)
   1723 			so->so_options |= opt;
   1724 		else
   1725 			so->so_options &= ~opt;
   1726 		break;
   1727 
   1728 	case SO_SNDBUF:
   1729 	case SO_RCVBUF:
   1730 	case SO_SNDLOWAT:
   1731 	case SO_RCVLOWAT:
   1732 		error = sockopt_getint(sopt, &optval);
   1733 		solock(so);
   1734 		if (error)
   1735 			break;
   1736 
   1737 		/*
   1738 		 * Values < 1 make no sense for any of these
   1739 		 * options, so disallow them.
   1740 		 */
   1741 		if (optval < 1) {
   1742 			error = EINVAL;
   1743 			break;
   1744 		}
   1745 
   1746 		switch (opt) {
   1747 		case SO_SNDBUF:
   1748 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
   1749 				error = ENOBUFS;
   1750 				break;
   1751 			}
   1752 			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1753 			break;
   1754 
   1755 		case SO_RCVBUF:
   1756 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
   1757 				error = ENOBUFS;
   1758 				break;
   1759 			}
   1760 			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1761 			break;
   1762 
   1763 		/*
   1764 		 * Make sure the low-water is never greater than
   1765 		 * the high-water.
   1766 		 */
   1767 		case SO_SNDLOWAT:
   1768 			if (optval > so->so_snd.sb_hiwat)
   1769 				optval = so->so_snd.sb_hiwat;
   1770 
   1771 			so->so_snd.sb_lowat = optval;
   1772 			break;
   1773 
   1774 		case SO_RCVLOWAT:
   1775 			if (optval > so->so_rcv.sb_hiwat)
   1776 				optval = so->so_rcv.sb_hiwat;
   1777 
   1778 			so->so_rcv.sb_lowat = optval;
   1779 			break;
   1780 		}
   1781 		break;
   1782 
   1783 #ifdef COMPAT_50
   1784 	case SO_OSNDTIMEO:
   1785 	case SO_ORCVTIMEO: {
   1786 		struct timeval50 otv;
   1787 		error = sockopt_get(sopt, &otv, sizeof(otv));
   1788 		if (error) {
   1789 			solock(so);
   1790 			break;
   1791 		}
   1792 		timeval50_to_timeval(&otv, &tv);
   1793 		opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
   1794 		error = 0;
   1795 		/*FALLTHROUGH*/
   1796 	}
   1797 #endif /* COMPAT_50 */
   1798 
   1799 	case SO_SNDTIMEO:
   1800 	case SO_RCVTIMEO:
   1801 		if (error)
   1802 			error = sockopt_get(sopt, &tv, sizeof(tv));
   1803 		solock(so);
   1804 		if (error)
   1805 			break;
   1806 
   1807 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
   1808 			error = EDOM;
   1809 			break;
   1810 		}
   1811 
   1812 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1813 		if (optval == 0 && tv.tv_usec != 0)
   1814 			optval = 1;
   1815 
   1816 		switch (opt) {
   1817 		case SO_SNDTIMEO:
   1818 			so->so_snd.sb_timeo = optval;
   1819 			break;
   1820 		case SO_RCVTIMEO:
   1821 			so->so_rcv.sb_timeo = optval;
   1822 			break;
   1823 		}
   1824 		break;
   1825 
   1826 	default:
   1827 		solock(so);
   1828 		error = ENOPROTOOPT;
   1829 		break;
   1830 	}
   1831 	KASSERT(solocked(so));
   1832 	return error;
   1833 }
   1834 
   1835 int
   1836 sosetopt(struct socket *so, struct sockopt *sopt)
   1837 {
   1838 	int error, prerr;
   1839 
   1840 	if (sopt->sopt_level == SOL_SOCKET) {
   1841 		error = sosetopt1(so, sopt);
   1842 		KASSERT(solocked(so));
   1843 	} else {
   1844 		error = ENOPROTOOPT;
   1845 		solock(so);
   1846 	}
   1847 
   1848 	if ((error == 0 || error == ENOPROTOOPT) &&
   1849 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1850 		/* give the protocol stack a shot */
   1851 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1852 		if (prerr == 0)
   1853 			error = 0;
   1854 		else if (prerr != ENOPROTOOPT)
   1855 			error = prerr;
   1856 	}
   1857 	sounlock(so);
   1858 	return error;
   1859 }
   1860 
   1861 /*
   1862  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1863  */
   1864 int
   1865 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1866     const void *val, size_t valsize)
   1867 {
   1868 	struct sockopt sopt;
   1869 	int error;
   1870 
   1871 	KASSERT(valsize == 0 || val != NULL);
   1872 
   1873 	sockopt_init(&sopt, level, name, valsize);
   1874 	sockopt_set(&sopt, val, valsize);
   1875 
   1876 	error = sosetopt(so, &sopt);
   1877 
   1878 	sockopt_destroy(&sopt);
   1879 
   1880 	return error;
   1881 }
   1882 
   1883 /*
   1884  * internal get SOL_SOCKET options
   1885  */
   1886 static int
   1887 sogetopt1(struct socket *so, struct sockopt *sopt)
   1888 {
   1889 	int error, optval, opt;
   1890 	struct linger l;
   1891 	struct timeval tv;
   1892 
   1893 	switch ((opt = sopt->sopt_name)) {
   1894 
   1895 	case SO_ACCEPTFILTER:
   1896 		error = accept_filt_getopt(so, sopt);
   1897 		break;
   1898 
   1899 	case SO_LINGER:
   1900 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1901 		l.l_linger = so->so_linger;
   1902 
   1903 		error = sockopt_set(sopt, &l, sizeof(l));
   1904 		break;
   1905 
   1906 	case SO_USELOOPBACK:
   1907 	case SO_DONTROUTE:
   1908 	case SO_DEBUG:
   1909 	case SO_KEEPALIVE:
   1910 	case SO_REUSEADDR:
   1911 	case SO_REUSEPORT:
   1912 	case SO_BROADCAST:
   1913 	case SO_OOBINLINE:
   1914 	case SO_TIMESTAMP:
   1915 	case SO_NOSIGPIPE:
   1916 #ifdef SO_OTIMESTAMP
   1917 	case SO_OTIMESTAMP:
   1918 #endif
   1919 	case SO_ACCEPTCONN:
   1920 		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
   1921 		break;
   1922 
   1923 	case SO_TYPE:
   1924 		error = sockopt_setint(sopt, so->so_type);
   1925 		break;
   1926 
   1927 	case SO_ERROR:
   1928 		error = sockopt_setint(sopt, so->so_error);
   1929 		so->so_error = 0;
   1930 		break;
   1931 
   1932 	case SO_SNDBUF:
   1933 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1934 		break;
   1935 
   1936 	case SO_RCVBUF:
   1937 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1938 		break;
   1939 
   1940 	case SO_SNDLOWAT:
   1941 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1942 		break;
   1943 
   1944 	case SO_RCVLOWAT:
   1945 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1946 		break;
   1947 
   1948 #ifdef COMPAT_50
   1949 	case SO_OSNDTIMEO:
   1950 	case SO_ORCVTIMEO: {
   1951 		struct timeval50 otv;
   1952 
   1953 		optval = (opt == SO_OSNDTIMEO ?
   1954 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1955 
   1956 		otv.tv_sec = optval / hz;
   1957 		otv.tv_usec = (optval % hz) * tick;
   1958 
   1959 		error = sockopt_set(sopt, &otv, sizeof(otv));
   1960 		break;
   1961 	}
   1962 #endif /* COMPAT_50 */
   1963 
   1964 	case SO_SNDTIMEO:
   1965 	case SO_RCVTIMEO:
   1966 		optval = (opt == SO_SNDTIMEO ?
   1967 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1968 
   1969 		tv.tv_sec = optval / hz;
   1970 		tv.tv_usec = (optval % hz) * tick;
   1971 
   1972 		error = sockopt_set(sopt, &tv, sizeof(tv));
   1973 		break;
   1974 
   1975 	case SO_OVERFLOWED:
   1976 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   1977 		break;
   1978 
   1979 	default:
   1980 		error = ENOPROTOOPT;
   1981 		break;
   1982 	}
   1983 
   1984 	return (error);
   1985 }
   1986 
   1987 int
   1988 sogetopt(struct socket *so, struct sockopt *sopt)
   1989 {
   1990 	int		error;
   1991 
   1992 	solock(so);
   1993 	if (sopt->sopt_level != SOL_SOCKET) {
   1994 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1995 			error = ((*so->so_proto->pr_ctloutput)
   1996 			    (PRCO_GETOPT, so, sopt));
   1997 		} else
   1998 			error = (ENOPROTOOPT);
   1999 	} else {
   2000 		error = sogetopt1(so, sopt);
   2001 	}
   2002 	sounlock(so);
   2003 	return (error);
   2004 }
   2005 
   2006 /*
   2007  * alloc sockopt data buffer buffer
   2008  *	- will be released at destroy
   2009  */
   2010 static int
   2011 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
   2012 {
   2013 
   2014 	KASSERT(sopt->sopt_size == 0);
   2015 
   2016 	if (len > sizeof(sopt->sopt_buf)) {
   2017 		sopt->sopt_data = kmem_zalloc(len, kmflag);
   2018 		if (sopt->sopt_data == NULL)
   2019 			return ENOMEM;
   2020 	} else
   2021 		sopt->sopt_data = sopt->sopt_buf;
   2022 
   2023 	sopt->sopt_size = len;
   2024 	return 0;
   2025 }
   2026 
   2027 /*
   2028  * initialise sockopt storage
   2029  *	- MAY sleep during allocation
   2030  */
   2031 void
   2032 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   2033 {
   2034 
   2035 	memset(sopt, 0, sizeof(*sopt));
   2036 
   2037 	sopt->sopt_level = level;
   2038 	sopt->sopt_name = name;
   2039 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
   2040 }
   2041 
   2042 /*
   2043  * destroy sockopt storage
   2044  *	- will release any held memory references
   2045  */
   2046 void
   2047 sockopt_destroy(struct sockopt *sopt)
   2048 {
   2049 
   2050 	if (sopt->sopt_data != sopt->sopt_buf)
   2051 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   2052 
   2053 	memset(sopt, 0, sizeof(*sopt));
   2054 }
   2055 
   2056 /*
   2057  * set sockopt value
   2058  *	- value is copied into sockopt
   2059  * 	- memory is allocated when necessary, will not sleep
   2060  */
   2061 int
   2062 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   2063 {
   2064 	int error;
   2065 
   2066 	if (sopt->sopt_size == 0) {
   2067 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2068 		if (error)
   2069 			return error;
   2070 	}
   2071 
   2072 	KASSERT(sopt->sopt_size == len);
   2073 	memcpy(sopt->sopt_data, buf, len);
   2074 	return 0;
   2075 }
   2076 
   2077 /*
   2078  * common case of set sockopt integer value
   2079  */
   2080 int
   2081 sockopt_setint(struct sockopt *sopt, int val)
   2082 {
   2083 
   2084 	return sockopt_set(sopt, &val, sizeof(int));
   2085 }
   2086 
   2087 /*
   2088  * get sockopt value
   2089  *	- correct size must be given
   2090  */
   2091 int
   2092 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   2093 {
   2094 
   2095 	if (sopt->sopt_size != len)
   2096 		return EINVAL;
   2097 
   2098 	memcpy(buf, sopt->sopt_data, len);
   2099 	return 0;
   2100 }
   2101 
   2102 /*
   2103  * common case of get sockopt integer value
   2104  */
   2105 int
   2106 sockopt_getint(const struct sockopt *sopt, int *valp)
   2107 {
   2108 
   2109 	return sockopt_get(sopt, valp, sizeof(int));
   2110 }
   2111 
   2112 /*
   2113  * set sockopt value from mbuf
   2114  *	- ONLY for legacy code
   2115  *	- mbuf is released by sockopt
   2116  *	- will not sleep
   2117  */
   2118 int
   2119 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   2120 {
   2121 	size_t len;
   2122 	int error;
   2123 
   2124 	len = m_length(m);
   2125 
   2126 	if (sopt->sopt_size == 0) {
   2127 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2128 		if (error)
   2129 			return error;
   2130 	}
   2131 
   2132 	KASSERT(sopt->sopt_size == len);
   2133 	m_copydata(m, 0, len, sopt->sopt_data);
   2134 	m_freem(m);
   2135 
   2136 	return 0;
   2137 }
   2138 
   2139 /*
   2140  * get sockopt value into mbuf
   2141  *	- ONLY for legacy code
   2142  *	- mbuf to be released by the caller
   2143  *	- will not sleep
   2144  */
   2145 struct mbuf *
   2146 sockopt_getmbuf(const struct sockopt *sopt)
   2147 {
   2148 	struct mbuf *m;
   2149 
   2150 	if (sopt->sopt_size > MCLBYTES)
   2151 		return NULL;
   2152 
   2153 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   2154 	if (m == NULL)
   2155 		return NULL;
   2156 
   2157 	if (sopt->sopt_size > MLEN) {
   2158 		MCLGET(m, M_DONTWAIT);
   2159 		if ((m->m_flags & M_EXT) == 0) {
   2160 			m_free(m);
   2161 			return NULL;
   2162 		}
   2163 	}
   2164 
   2165 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
   2166 	m->m_len = sopt->sopt_size;
   2167 
   2168 	return m;
   2169 }
   2170 
   2171 void
   2172 sohasoutofband(struct socket *so)
   2173 {
   2174 
   2175 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2176 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
   2177 }
   2178 
   2179 static void
   2180 filt_sordetach(struct knote *kn)
   2181 {
   2182 	struct socket	*so;
   2183 
   2184 	so = ((file_t *)kn->kn_obj)->f_data;
   2185 	solock(so);
   2186 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   2187 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   2188 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2189 	sounlock(so);
   2190 }
   2191 
   2192 /*ARGSUSED*/
   2193 static int
   2194 filt_soread(struct knote *kn, long hint)
   2195 {
   2196 	struct socket	*so;
   2197 	int rv;
   2198 
   2199 	so = ((file_t *)kn->kn_obj)->f_data;
   2200 	if (hint != NOTE_SUBMIT)
   2201 		solock(so);
   2202 	kn->kn_data = so->so_rcv.sb_cc;
   2203 	if (so->so_state & SS_CANTRCVMORE) {
   2204 		kn->kn_flags |= EV_EOF;
   2205 		kn->kn_fflags = so->so_error;
   2206 		rv = 1;
   2207 	} else if (so->so_error)	/* temporary udp error */
   2208 		rv = 1;
   2209 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2210 		rv = (kn->kn_data >= kn->kn_sdata);
   2211 	else
   2212 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2213 	if (hint != NOTE_SUBMIT)
   2214 		sounlock(so);
   2215 	return rv;
   2216 }
   2217 
   2218 static void
   2219 filt_sowdetach(struct knote *kn)
   2220 {
   2221 	struct socket	*so;
   2222 
   2223 	so = ((file_t *)kn->kn_obj)->f_data;
   2224 	solock(so);
   2225 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   2226 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   2227 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2228 	sounlock(so);
   2229 }
   2230 
   2231 /*ARGSUSED*/
   2232 static int
   2233 filt_sowrite(struct knote *kn, long hint)
   2234 {
   2235 	struct socket	*so;
   2236 	int rv;
   2237 
   2238 	so = ((file_t *)kn->kn_obj)->f_data;
   2239 	if (hint != NOTE_SUBMIT)
   2240 		solock(so);
   2241 	kn->kn_data = sbspace(&so->so_snd);
   2242 	if (so->so_state & SS_CANTSENDMORE) {
   2243 		kn->kn_flags |= EV_EOF;
   2244 		kn->kn_fflags = so->so_error;
   2245 		rv = 1;
   2246 	} else if (so->so_error)	/* temporary udp error */
   2247 		rv = 1;
   2248 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2249 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2250 		rv = 0;
   2251 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2252 		rv = (kn->kn_data >= kn->kn_sdata);
   2253 	else
   2254 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2255 	if (hint != NOTE_SUBMIT)
   2256 		sounlock(so);
   2257 	return rv;
   2258 }
   2259 
   2260 /*ARGSUSED*/
   2261 static int
   2262 filt_solisten(struct knote *kn, long hint)
   2263 {
   2264 	struct socket	*so;
   2265 	int rv;
   2266 
   2267 	so = ((file_t *)kn->kn_obj)->f_data;
   2268 
   2269 	/*
   2270 	 * Set kn_data to number of incoming connections, not
   2271 	 * counting partial (incomplete) connections.
   2272 	 */
   2273 	if (hint != NOTE_SUBMIT)
   2274 		solock(so);
   2275 	kn->kn_data = so->so_qlen;
   2276 	rv = (kn->kn_data > 0);
   2277 	if (hint != NOTE_SUBMIT)
   2278 		sounlock(so);
   2279 	return rv;
   2280 }
   2281 
   2282 static const struct filterops solisten_filtops =
   2283 	{ 1, NULL, filt_sordetach, filt_solisten };
   2284 static const struct filterops soread_filtops =
   2285 	{ 1, NULL, filt_sordetach, filt_soread };
   2286 static const struct filterops sowrite_filtops =
   2287 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   2288 
   2289 int
   2290 soo_kqfilter(struct file *fp, struct knote *kn)
   2291 {
   2292 	struct socket	*so;
   2293 	struct sockbuf	*sb;
   2294 
   2295 	so = ((file_t *)kn->kn_obj)->f_data;
   2296 	solock(so);
   2297 	switch (kn->kn_filter) {
   2298 	case EVFILT_READ:
   2299 		if (so->so_options & SO_ACCEPTCONN)
   2300 			kn->kn_fop = &solisten_filtops;
   2301 		else
   2302 			kn->kn_fop = &soread_filtops;
   2303 		sb = &so->so_rcv;
   2304 		break;
   2305 	case EVFILT_WRITE:
   2306 		kn->kn_fop = &sowrite_filtops;
   2307 		sb = &so->so_snd;
   2308 		break;
   2309 	default:
   2310 		sounlock(so);
   2311 		return (EINVAL);
   2312 	}
   2313 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   2314 	sb->sb_flags |= SB_KNOTE;
   2315 	sounlock(so);
   2316 	return (0);
   2317 }
   2318 
   2319 static int
   2320 sodopoll(struct socket *so, int events)
   2321 {
   2322 	int revents;
   2323 
   2324 	revents = 0;
   2325 
   2326 	if (events & (POLLIN | POLLRDNORM))
   2327 		if (soreadable(so))
   2328 			revents |= events & (POLLIN | POLLRDNORM);
   2329 
   2330 	if (events & (POLLOUT | POLLWRNORM))
   2331 		if (sowritable(so))
   2332 			revents |= events & (POLLOUT | POLLWRNORM);
   2333 
   2334 	if (events & (POLLPRI | POLLRDBAND))
   2335 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   2336 			revents |= events & (POLLPRI | POLLRDBAND);
   2337 
   2338 	return revents;
   2339 }
   2340 
   2341 int
   2342 sopoll(struct socket *so, int events)
   2343 {
   2344 	int revents = 0;
   2345 
   2346 #ifndef DIAGNOSTIC
   2347 	/*
   2348 	 * Do a quick, unlocked check in expectation that the socket
   2349 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2350 	 * as the solocked() assertions will fail.
   2351 	 */
   2352 	if ((revents = sodopoll(so, events)) != 0)
   2353 		return revents;
   2354 #endif
   2355 
   2356 	solock(so);
   2357 	if ((revents = sodopoll(so, events)) == 0) {
   2358 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2359 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2360 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2361 		}
   2362 
   2363 		if (events & (POLLOUT | POLLWRNORM)) {
   2364 			selrecord(curlwp, &so->so_snd.sb_sel);
   2365 			so->so_snd.sb_flags |= SB_NOTIFY;
   2366 		}
   2367 	}
   2368 	sounlock(so);
   2369 
   2370 	return revents;
   2371 }
   2372 
   2373 
   2374 #include <sys/sysctl.h>
   2375 
   2376 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2377 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
   2378 
   2379 /*
   2380  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2381  * value is not too small.
   2382  * (XXX should we maybe make sure it's not too large as well?)
   2383  */
   2384 static int
   2385 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2386 {
   2387 	int error, new_somaxkva;
   2388 	struct sysctlnode node;
   2389 
   2390 	new_somaxkva = somaxkva;
   2391 	node = *rnode;
   2392 	node.sysctl_data = &new_somaxkva;
   2393 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2394 	if (error || newp == NULL)
   2395 		return (error);
   2396 
   2397 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2398 		return (EINVAL);
   2399 
   2400 	mutex_enter(&so_pendfree_lock);
   2401 	somaxkva = new_somaxkva;
   2402 	cv_broadcast(&socurkva_cv);
   2403 	mutex_exit(&so_pendfree_lock);
   2404 
   2405 	return (error);
   2406 }
   2407 
   2408 /*
   2409  * sysctl helper routine for kern.sbmax. Basically just ensures that
   2410  * any new value is not too small.
   2411  */
   2412 static int
   2413 sysctl_kern_sbmax(SYSCTLFN_ARGS)
   2414 {
   2415 	int error, new_sbmax;
   2416 	struct sysctlnode node;
   2417 
   2418 	new_sbmax = sb_max;
   2419 	node = *rnode;
   2420 	node.sysctl_data = &new_sbmax;
   2421 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2422 	if (error || newp == NULL)
   2423 		return (error);
   2424 
   2425 	KERNEL_LOCK(1, NULL);
   2426 	error = sb_max_set(new_sbmax);
   2427 	KERNEL_UNLOCK_ONE(NULL);
   2428 
   2429 	return (error);
   2430 }
   2431 
   2432 static void
   2433 sysctl_kern_socket_setup(void)
   2434 {
   2435 
   2436 	KASSERT(socket_sysctllog == NULL);
   2437 
   2438 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2439 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2440 		       CTLTYPE_INT, "somaxkva",
   2441 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2442 				    "used for socket buffers"),
   2443 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2444 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2445 
   2446 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2447 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2448 		       CTLTYPE_INT, "sbmax",
   2449 		       SYSCTL_DESCR("Maximum socket buffer size"),
   2450 		       sysctl_kern_sbmax, 0, NULL, 0,
   2451 		       CTL_KERN, KERN_SBMAX, CTL_EOL);
   2452 }
   2453