uipc_socket.c revision 1.226 1 /* $NetBSD: uipc_socket.c,v 1.226 2014/07/23 13:17:18 rtr Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 /*
66 * Socket operation routines.
67 *
68 * These routines are called by the routines in sys_socket.c or from a
69 * system process, and implement the semantics of socket operations by
70 * switching out to the protocol specific routines.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.226 2014/07/23 13:17:18 rtr Exp $");
75
76 #include "opt_compat_netbsd.h"
77 #include "opt_sock_counters.h"
78 #include "opt_sosend_loan.h"
79 #include "opt_mbuftrace.h"
80 #include "opt_somaxkva.h"
81 #include "opt_multiprocessor.h" /* XXX */
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/proc.h>
86 #include <sys/file.h>
87 #include <sys/filedesc.h>
88 #include <sys/kmem.h>
89 #include <sys/mbuf.h>
90 #include <sys/domain.h>
91 #include <sys/kernel.h>
92 #include <sys/protosw.h>
93 #include <sys/socket.h>
94 #include <sys/socketvar.h>
95 #include <sys/signalvar.h>
96 #include <sys/resourcevar.h>
97 #include <sys/uidinfo.h>
98 #include <sys/event.h>
99 #include <sys/poll.h>
100 #include <sys/kauth.h>
101 #include <sys/mutex.h>
102 #include <sys/condvar.h>
103 #include <sys/kthread.h>
104
105 #ifdef COMPAT_50
106 #include <compat/sys/time.h>
107 #include <compat/sys/socket.h>
108 #endif
109
110 #include <uvm/uvm_extern.h>
111 #include <uvm/uvm_loan.h>
112 #include <uvm/uvm_page.h>
113
114 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
115
116 extern const struct fileops socketops;
117
118 extern int somaxconn; /* patchable (XXX sysctl) */
119 int somaxconn = SOMAXCONN;
120 kmutex_t *softnet_lock;
121
122 #ifdef SOSEND_COUNTERS
123 #include <sys/device.h>
124
125 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
126 NULL, "sosend", "loan big");
127 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
128 NULL, "sosend", "copy big");
129 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
130 NULL, "sosend", "copy small");
131 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
132 NULL, "sosend", "kva limit");
133
134 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
135
136 EVCNT_ATTACH_STATIC(sosend_loan_big);
137 EVCNT_ATTACH_STATIC(sosend_copy_big);
138 EVCNT_ATTACH_STATIC(sosend_copy_small);
139 EVCNT_ATTACH_STATIC(sosend_kvalimit);
140 #else
141
142 #define SOSEND_COUNTER_INCR(ev) /* nothing */
143
144 #endif /* SOSEND_COUNTERS */
145
146 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
147 int sock_loan_thresh = -1;
148 #else
149 int sock_loan_thresh = 4096;
150 #endif
151
152 static kmutex_t so_pendfree_lock;
153 static struct mbuf *so_pendfree = NULL;
154
155 #ifndef SOMAXKVA
156 #define SOMAXKVA (16 * 1024 * 1024)
157 #endif
158 int somaxkva = SOMAXKVA;
159 static int socurkva;
160 static kcondvar_t socurkva_cv;
161
162 static kauth_listener_t socket_listener;
163
164 #define SOCK_LOAN_CHUNK 65536
165
166 static void sopendfree_thread(void *);
167 static kcondvar_t pendfree_thread_cv;
168 static lwp_t *sopendfree_lwp;
169
170 static void sysctl_kern_socket_setup(void);
171 static struct sysctllog *socket_sysctllog;
172
173 static vsize_t
174 sokvareserve(struct socket *so, vsize_t len)
175 {
176 int error;
177
178 mutex_enter(&so_pendfree_lock);
179 while (socurkva + len > somaxkva) {
180 SOSEND_COUNTER_INCR(&sosend_kvalimit);
181 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
182 if (error) {
183 len = 0;
184 break;
185 }
186 }
187 socurkva += len;
188 mutex_exit(&so_pendfree_lock);
189 return len;
190 }
191
192 static void
193 sokvaunreserve(vsize_t len)
194 {
195
196 mutex_enter(&so_pendfree_lock);
197 socurkva -= len;
198 cv_broadcast(&socurkva_cv);
199 mutex_exit(&so_pendfree_lock);
200 }
201
202 /*
203 * sokvaalloc: allocate kva for loan.
204 */
205
206 vaddr_t
207 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
208 {
209 vaddr_t lva;
210
211 /*
212 * reserve kva.
213 */
214
215 if (sokvareserve(so, len) == 0)
216 return 0;
217
218 /*
219 * allocate kva.
220 */
221
222 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
223 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
224 if (lva == 0) {
225 sokvaunreserve(len);
226 return (0);
227 }
228
229 return lva;
230 }
231
232 /*
233 * sokvafree: free kva for loan.
234 */
235
236 void
237 sokvafree(vaddr_t sva, vsize_t len)
238 {
239
240 /*
241 * free kva.
242 */
243
244 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
245
246 /*
247 * unreserve kva.
248 */
249
250 sokvaunreserve(len);
251 }
252
253 static void
254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
255 {
256 vaddr_t sva, eva;
257 vsize_t len;
258 int npgs;
259
260 KASSERT(pgs != NULL);
261
262 eva = round_page((vaddr_t) buf + size);
263 sva = trunc_page((vaddr_t) buf);
264 len = eva - sva;
265 npgs = len >> PAGE_SHIFT;
266
267 pmap_kremove(sva, len);
268 pmap_update(pmap_kernel());
269 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
270 sokvafree(sva, len);
271 }
272
273 /*
274 * sopendfree_thread: free mbufs on "pendfree" list.
275 * unlock and relock so_pendfree_lock when freeing mbufs.
276 */
277
278 static void
279 sopendfree_thread(void *v)
280 {
281 struct mbuf *m, *next;
282 size_t rv;
283
284 mutex_enter(&so_pendfree_lock);
285
286 for (;;) {
287 rv = 0;
288 while (so_pendfree != NULL) {
289 m = so_pendfree;
290 so_pendfree = NULL;
291 mutex_exit(&so_pendfree_lock);
292
293 for (; m != NULL; m = next) {
294 next = m->m_next;
295 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
296 KASSERT(m->m_ext.ext_refcnt == 0);
297
298 rv += m->m_ext.ext_size;
299 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
300 m->m_ext.ext_size);
301 pool_cache_put(mb_cache, m);
302 }
303
304 mutex_enter(&so_pendfree_lock);
305 }
306 if (rv)
307 cv_broadcast(&socurkva_cv);
308 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
309 }
310 panic("sopendfree_thread");
311 /* NOTREACHED */
312 }
313
314 void
315 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
316 {
317
318 KASSERT(m != NULL);
319
320 /*
321 * postpone freeing mbuf.
322 *
323 * we can't do it in interrupt context
324 * because we need to put kva back to kernel_map.
325 */
326
327 mutex_enter(&so_pendfree_lock);
328 m->m_next = so_pendfree;
329 so_pendfree = m;
330 cv_signal(&pendfree_thread_cv);
331 mutex_exit(&so_pendfree_lock);
332 }
333
334 static long
335 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
336 {
337 struct iovec *iov = uio->uio_iov;
338 vaddr_t sva, eva;
339 vsize_t len;
340 vaddr_t lva;
341 int npgs, error;
342 vaddr_t va;
343 int i;
344
345 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
346 return (0);
347
348 if (iov->iov_len < (size_t) space)
349 space = iov->iov_len;
350 if (space > SOCK_LOAN_CHUNK)
351 space = SOCK_LOAN_CHUNK;
352
353 eva = round_page((vaddr_t) iov->iov_base + space);
354 sva = trunc_page((vaddr_t) iov->iov_base);
355 len = eva - sva;
356 npgs = len >> PAGE_SHIFT;
357
358 KASSERT(npgs <= M_EXT_MAXPAGES);
359
360 lva = sokvaalloc(sva, len, so);
361 if (lva == 0)
362 return 0;
363
364 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
365 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
366 if (error) {
367 sokvafree(lva, len);
368 return (0);
369 }
370
371 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
372 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
373 VM_PROT_READ, 0);
374 pmap_update(pmap_kernel());
375
376 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
377
378 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
379 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
380
381 uio->uio_resid -= space;
382 /* uio_offset not updated, not set/used for write(2) */
383 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
384 uio->uio_iov->iov_len -= space;
385 if (uio->uio_iov->iov_len == 0) {
386 uio->uio_iov++;
387 uio->uio_iovcnt--;
388 }
389
390 return (space);
391 }
392
393 struct mbuf *
394 getsombuf(struct socket *so, int type)
395 {
396 struct mbuf *m;
397
398 m = m_get(M_WAIT, type);
399 MCLAIM(m, so->so_mowner);
400 return m;
401 }
402
403 static int
404 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
405 void *arg0, void *arg1, void *arg2, void *arg3)
406 {
407 int result;
408 enum kauth_network_req req;
409
410 result = KAUTH_RESULT_DEFER;
411 req = (enum kauth_network_req)arg0;
412
413 if ((action != KAUTH_NETWORK_SOCKET) &&
414 (action != KAUTH_NETWORK_BIND))
415 return result;
416
417 switch (req) {
418 case KAUTH_REQ_NETWORK_BIND_PORT:
419 result = KAUTH_RESULT_ALLOW;
420 break;
421
422 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
423 /* Normal users can only drop their own connections. */
424 struct socket *so = (struct socket *)arg1;
425
426 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
427 result = KAUTH_RESULT_ALLOW;
428
429 break;
430 }
431
432 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
433 /* We allow "raw" routing/bluetooth sockets to anyone. */
434 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
435 || (u_long)arg1 == PF_BLUETOOTH) {
436 result = KAUTH_RESULT_ALLOW;
437 } else {
438 /* Privileged, let secmodel handle this. */
439 if ((u_long)arg2 == SOCK_RAW)
440 break;
441 }
442
443 result = KAUTH_RESULT_ALLOW;
444
445 break;
446
447 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
448 result = KAUTH_RESULT_ALLOW;
449
450 break;
451
452 default:
453 break;
454 }
455
456 return result;
457 }
458
459 void
460 soinit(void)
461 {
462
463 sysctl_kern_socket_setup();
464
465 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
466 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
467 cv_init(&socurkva_cv, "sokva");
468 cv_init(&pendfree_thread_cv, "sopendfr");
469 soinit2();
470
471 /* Set the initial adjusted socket buffer size. */
472 if (sb_max_set(sb_max))
473 panic("bad initial sb_max value: %lu", sb_max);
474
475 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
476 socket_listener_cb, NULL);
477 }
478
479 void
480 soinit1(void)
481 {
482 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
483 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
484 if (error)
485 panic("soinit1 %d", error);
486 }
487
488 /*
489 * socreate: create a new socket of the specified type and the protocol.
490 *
491 * => Caller may specify another socket for lock sharing (must not be held).
492 * => Returns the new socket without lock held.
493 */
494 int
495 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
496 struct socket *lockso)
497 {
498 const struct protosw *prp;
499 struct socket *so;
500 uid_t uid;
501 int error;
502 kmutex_t *lock;
503
504 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
505 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
506 KAUTH_ARG(proto));
507 if (error != 0)
508 return error;
509
510 if (proto)
511 prp = pffindproto(dom, proto, type);
512 else
513 prp = pffindtype(dom, type);
514 if (prp == NULL) {
515 /* no support for domain */
516 if (pffinddomain(dom) == 0)
517 return EAFNOSUPPORT;
518 /* no support for socket type */
519 if (proto == 0 && type != 0)
520 return EPROTOTYPE;
521 return EPROTONOSUPPORT;
522 }
523 if (prp->pr_usrreqs == NULL)
524 return EPROTONOSUPPORT;
525 if (prp->pr_type != type)
526 return EPROTOTYPE;
527
528 so = soget(true);
529 so->so_type = type;
530 so->so_proto = prp;
531 so->so_send = sosend;
532 so->so_receive = soreceive;
533 #ifdef MBUFTRACE
534 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
535 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
536 so->so_mowner = &prp->pr_domain->dom_mowner;
537 #endif
538 uid = kauth_cred_geteuid(l->l_cred);
539 so->so_uidinfo = uid_find(uid);
540 so->so_cpid = l->l_proc->p_pid;
541
542 /*
543 * Lock assigned and taken during PCB attach, unless we share
544 * the lock with another socket, e.g. socketpair(2) case.
545 */
546 if (lockso) {
547 lock = lockso->so_lock;
548 so->so_lock = lock;
549 mutex_obj_hold(lock);
550 mutex_enter(lock);
551 }
552
553 /* Attach the PCB (returns with the socket lock held). */
554 error = (*prp->pr_usrreqs->pr_attach)(so, proto);
555 KASSERT(solocked(so));
556
557 if (error) {
558 KASSERT(so->so_pcb == NULL);
559 so->so_state |= SS_NOFDREF;
560 sofree(so);
561 return error;
562 }
563 so->so_cred = kauth_cred_dup(l->l_cred);
564 sounlock(so);
565
566 *aso = so;
567 return 0;
568 }
569
570 /*
571 * fsocreate: create a socket and a file descriptor associated with it.
572 *
573 * => On success, write file descriptor to fdout and return zero.
574 * => On failure, return non-zero; *fdout will be undefined.
575 */
576 int
577 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
578 {
579 lwp_t *l = curlwp;
580 int error, fd, flags;
581 struct socket *so;
582 struct file *fp;
583
584 if ((error = fd_allocfile(&fp, &fd)) != 0) {
585 return error;
586 }
587 flags = type & SOCK_FLAGS_MASK;
588 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
589 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
590 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
591 fp->f_type = DTYPE_SOCKET;
592 fp->f_ops = &socketops;
593
594 type &= ~SOCK_FLAGS_MASK;
595 error = socreate(domain, &so, type, proto, l, NULL);
596 if (error) {
597 fd_abort(curproc, fp, fd);
598 return error;
599 }
600 if (flags & SOCK_NONBLOCK) {
601 so->so_state |= SS_NBIO;
602 }
603 fp->f_data = so;
604 fd_affix(curproc, fp, fd);
605
606 if (sop != NULL) {
607 *sop = so;
608 }
609 *fdout = fd;
610 return error;
611 }
612
613 int
614 sofamily(const struct socket *so)
615 {
616 const struct protosw *pr;
617 const struct domain *dom;
618
619 if ((pr = so->so_proto) == NULL)
620 return AF_UNSPEC;
621 if ((dom = pr->pr_domain) == NULL)
622 return AF_UNSPEC;
623 return dom->dom_family;
624 }
625
626 int
627 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
628 {
629 int error;
630
631 solock(so);
632 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
633 PRU_BIND, NULL, nam, NULL, l);
634 sounlock(so);
635 return error;
636 }
637
638 int
639 solisten(struct socket *so, int backlog, struct lwp *l)
640 {
641 int error;
642
643 solock(so);
644 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
645 SS_ISDISCONNECTING)) != 0) {
646 sounlock(so);
647 return EINVAL;
648 }
649 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
650 PRU_LISTEN, NULL, NULL, NULL, l);
651 if (error != 0) {
652 sounlock(so);
653 return error;
654 }
655 if (TAILQ_EMPTY(&so->so_q))
656 so->so_options |= SO_ACCEPTCONN;
657 if (backlog < 0)
658 backlog = 0;
659 so->so_qlimit = min(backlog, somaxconn);
660 sounlock(so);
661 return 0;
662 }
663
664 void
665 sofree(struct socket *so)
666 {
667 u_int refs;
668
669 KASSERT(solocked(so));
670
671 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
672 sounlock(so);
673 return;
674 }
675 if (so->so_head) {
676 /*
677 * We must not decommission a socket that's on the accept(2)
678 * queue. If we do, then accept(2) may hang after select(2)
679 * indicated that the listening socket was ready.
680 */
681 if (!soqremque(so, 0)) {
682 sounlock(so);
683 return;
684 }
685 }
686 if (so->so_rcv.sb_hiwat)
687 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
688 RLIM_INFINITY);
689 if (so->so_snd.sb_hiwat)
690 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
691 RLIM_INFINITY);
692 sbrelease(&so->so_snd, so);
693 KASSERT(!cv_has_waiters(&so->so_cv));
694 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
695 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
696 sorflush(so);
697 refs = so->so_aborting; /* XXX */
698 /* Remove acccept filter if one is present. */
699 if (so->so_accf != NULL)
700 (void)accept_filt_clear(so);
701 sounlock(so);
702 if (refs == 0) /* XXX */
703 soput(so);
704 }
705
706 /*
707 * soclose: close a socket on last file table reference removal.
708 * Initiate disconnect if connected. Free socket when disconnect complete.
709 */
710 int
711 soclose(struct socket *so)
712 {
713 struct socket *so2;
714 int error = 0;
715
716 solock(so);
717 if (so->so_options & SO_ACCEPTCONN) {
718 for (;;) {
719 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
720 KASSERT(solocked2(so, so2));
721 (void) soqremque(so2, 0);
722 /* soabort drops the lock. */
723 (void) soabort(so2);
724 solock(so);
725 continue;
726 }
727 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
728 KASSERT(solocked2(so, so2));
729 (void) soqremque(so2, 1);
730 /* soabort drops the lock. */
731 (void) soabort(so2);
732 solock(so);
733 continue;
734 }
735 break;
736 }
737 }
738 if (so->so_pcb == NULL)
739 goto discard;
740 if (so->so_state & SS_ISCONNECTED) {
741 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
742 error = sodisconnect(so);
743 if (error)
744 goto drop;
745 }
746 if (so->so_options & SO_LINGER) {
747 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
748 (SS_ISDISCONNECTING|SS_NBIO))
749 goto drop;
750 while (so->so_state & SS_ISCONNECTED) {
751 error = sowait(so, true, so->so_linger * hz);
752 if (error)
753 break;
754 }
755 }
756 }
757 drop:
758 if (so->so_pcb) {
759 KASSERT(solocked(so));
760 (*so->so_proto->pr_usrreqs->pr_detach)(so);
761 }
762 discard:
763 KASSERT((so->so_state & SS_NOFDREF) == 0);
764 kauth_cred_free(so->so_cred);
765 so->so_state |= SS_NOFDREF;
766 sofree(so);
767 return error;
768 }
769
770 /*
771 * Must be called with the socket locked.. Will return with it unlocked.
772 */
773 int
774 soabort(struct socket *so)
775 {
776 u_int refs;
777 int error;
778
779 KASSERT(solocked(so));
780 KASSERT(so->so_head == NULL);
781
782 so->so_aborting++; /* XXX */
783 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
784 PRU_ABORT, NULL, NULL, NULL, NULL);
785 refs = --so->so_aborting; /* XXX */
786 if (error || (refs == 0)) {
787 sofree(so);
788 } else {
789 sounlock(so);
790 }
791 return error;
792 }
793
794 int
795 soaccept(struct socket *so, struct mbuf *nam)
796 {
797 int error;
798
799 KASSERT(solocked(so));
800 KASSERT((so->so_state & SS_NOFDREF) != 0);
801
802 so->so_state &= ~SS_NOFDREF;
803 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
804 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
805 error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
806 else
807 error = ECONNABORTED;
808
809 return error;
810 }
811
812 int
813 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
814 {
815 int error;
816
817 KASSERT(solocked(so));
818
819 if (so->so_options & SO_ACCEPTCONN)
820 return EOPNOTSUPP;
821 /*
822 * If protocol is connection-based, can only connect once.
823 * Otherwise, if connected, try to disconnect first.
824 * This allows user to disconnect by connecting to, e.g.,
825 * a null address.
826 */
827 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
828 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
829 (error = sodisconnect(so))))
830 error = EISCONN;
831 else
832 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
833 PRU_CONNECT, NULL, nam, NULL, l);
834
835 return error;
836 }
837
838 int
839 soconnect2(struct socket *so1, struct socket *so2)
840 {
841 KASSERT(solocked2(so1, so2));
842
843 return (*so1->so_proto->pr_usrreqs->pr_generic)(so1,
844 PRU_CONNECT2, NULL, (struct mbuf *)so2, NULL, NULL);
845 }
846
847 int
848 sodisconnect(struct socket *so)
849 {
850 int error;
851
852 KASSERT(solocked(so));
853
854 if ((so->so_state & SS_ISCONNECTED) == 0) {
855 error = ENOTCONN;
856 } else if (so->so_state & SS_ISDISCONNECTING) {
857 error = EALREADY;
858 } else {
859 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
860 PRU_DISCONNECT, NULL, NULL, NULL, NULL);
861 }
862 return (error);
863 }
864
865 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
866 /*
867 * Send on a socket.
868 * If send must go all at once and message is larger than
869 * send buffering, then hard error.
870 * Lock against other senders.
871 * If must go all at once and not enough room now, then
872 * inform user that this would block and do nothing.
873 * Otherwise, if nonblocking, send as much as possible.
874 * The data to be sent is described by "uio" if nonzero,
875 * otherwise by the mbuf chain "top" (which must be null
876 * if uio is not). Data provided in mbuf chain must be small
877 * enough to send all at once.
878 *
879 * Returns nonzero on error, timeout or signal; callers
880 * must check for short counts if EINTR/ERESTART are returned.
881 * Data and control buffers are freed on return.
882 */
883 int
884 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
885 struct mbuf *control, int flags, struct lwp *l)
886 {
887 struct mbuf **mp, *m;
888 long space, len, resid, clen, mlen;
889 int error, s, dontroute, atomic;
890 short wakeup_state = 0;
891
892 clen = 0;
893
894 /*
895 * solock() provides atomicity of access. splsoftnet() prevents
896 * protocol processing soft interrupts from interrupting us and
897 * blocking (expensive).
898 */
899 s = splsoftnet();
900 solock(so);
901 atomic = sosendallatonce(so) || top;
902 if (uio)
903 resid = uio->uio_resid;
904 else
905 resid = top->m_pkthdr.len;
906 /*
907 * In theory resid should be unsigned.
908 * However, space must be signed, as it might be less than 0
909 * if we over-committed, and we must use a signed comparison
910 * of space and resid. On the other hand, a negative resid
911 * causes us to loop sending 0-length segments to the protocol.
912 */
913 if (resid < 0) {
914 error = EINVAL;
915 goto out;
916 }
917 dontroute =
918 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
919 (so->so_proto->pr_flags & PR_ATOMIC);
920 l->l_ru.ru_msgsnd++;
921 if (control)
922 clen = control->m_len;
923 restart:
924 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
925 goto out;
926 do {
927 if (so->so_state & SS_CANTSENDMORE) {
928 error = EPIPE;
929 goto release;
930 }
931 if (so->so_error) {
932 error = so->so_error;
933 so->so_error = 0;
934 goto release;
935 }
936 if ((so->so_state & SS_ISCONNECTED) == 0) {
937 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
938 if (resid || clen == 0) {
939 error = ENOTCONN;
940 goto release;
941 }
942 } else if (addr == 0) {
943 error = EDESTADDRREQ;
944 goto release;
945 }
946 }
947 space = sbspace(&so->so_snd);
948 if (flags & MSG_OOB)
949 space += 1024;
950 if ((atomic && resid > so->so_snd.sb_hiwat) ||
951 clen > so->so_snd.sb_hiwat) {
952 error = EMSGSIZE;
953 goto release;
954 }
955 if (space < resid + clen &&
956 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
957 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
958 error = EWOULDBLOCK;
959 goto release;
960 }
961 sbunlock(&so->so_snd);
962 if (wakeup_state & SS_RESTARTSYS) {
963 error = ERESTART;
964 goto out;
965 }
966 error = sbwait(&so->so_snd);
967 if (error)
968 goto out;
969 wakeup_state = so->so_state;
970 goto restart;
971 }
972 wakeup_state = 0;
973 mp = ⊤
974 space -= clen;
975 do {
976 if (uio == NULL) {
977 /*
978 * Data is prepackaged in "top".
979 */
980 resid = 0;
981 if (flags & MSG_EOR)
982 top->m_flags |= M_EOR;
983 } else do {
984 sounlock(so);
985 splx(s);
986 if (top == NULL) {
987 m = m_gethdr(M_WAIT, MT_DATA);
988 mlen = MHLEN;
989 m->m_pkthdr.len = 0;
990 m->m_pkthdr.rcvif = NULL;
991 } else {
992 m = m_get(M_WAIT, MT_DATA);
993 mlen = MLEN;
994 }
995 MCLAIM(m, so->so_snd.sb_mowner);
996 if (sock_loan_thresh >= 0 &&
997 uio->uio_iov->iov_len >= sock_loan_thresh &&
998 space >= sock_loan_thresh &&
999 (len = sosend_loan(so, uio, m,
1000 space)) != 0) {
1001 SOSEND_COUNTER_INCR(&sosend_loan_big);
1002 space -= len;
1003 goto have_data;
1004 }
1005 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1006 SOSEND_COUNTER_INCR(&sosend_copy_big);
1007 m_clget(m, M_DONTWAIT);
1008 if ((m->m_flags & M_EXT) == 0)
1009 goto nopages;
1010 mlen = MCLBYTES;
1011 if (atomic && top == 0) {
1012 len = lmin(MCLBYTES - max_hdr,
1013 resid);
1014 m->m_data += max_hdr;
1015 } else
1016 len = lmin(MCLBYTES, resid);
1017 space -= len;
1018 } else {
1019 nopages:
1020 SOSEND_COUNTER_INCR(&sosend_copy_small);
1021 len = lmin(lmin(mlen, resid), space);
1022 space -= len;
1023 /*
1024 * For datagram protocols, leave room
1025 * for protocol headers in first mbuf.
1026 */
1027 if (atomic && top == 0 && len < mlen)
1028 MH_ALIGN(m, len);
1029 }
1030 error = uiomove(mtod(m, void *), (int)len, uio);
1031 have_data:
1032 resid = uio->uio_resid;
1033 m->m_len = len;
1034 *mp = m;
1035 top->m_pkthdr.len += len;
1036 s = splsoftnet();
1037 solock(so);
1038 if (error != 0)
1039 goto release;
1040 mp = &m->m_next;
1041 if (resid <= 0) {
1042 if (flags & MSG_EOR)
1043 top->m_flags |= M_EOR;
1044 break;
1045 }
1046 } while (space > 0 && atomic);
1047
1048 if (so->so_state & SS_CANTSENDMORE) {
1049 error = EPIPE;
1050 goto release;
1051 }
1052 if (dontroute)
1053 so->so_options |= SO_DONTROUTE;
1054 if (resid > 0)
1055 so->so_state |= SS_MORETOCOME;
1056 if (flags & MSG_OOB)
1057 error = (*so->so_proto->pr_usrreqs->pr_sendoob)(so,
1058 top, control);
1059 else
1060 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
1061 PRU_SEND, top, addr, control, curlwp);
1062 if (dontroute)
1063 so->so_options &= ~SO_DONTROUTE;
1064 if (resid > 0)
1065 so->so_state &= ~SS_MORETOCOME;
1066 clen = 0;
1067 control = NULL;
1068 top = NULL;
1069 mp = ⊤
1070 if (error != 0)
1071 goto release;
1072 } while (resid && space > 0);
1073 } while (resid);
1074
1075 release:
1076 sbunlock(&so->so_snd);
1077 out:
1078 sounlock(so);
1079 splx(s);
1080 if (top)
1081 m_freem(top);
1082 if (control)
1083 m_freem(control);
1084 return (error);
1085 }
1086
1087 /*
1088 * Following replacement or removal of the first mbuf on the first
1089 * mbuf chain of a socket buffer, push necessary state changes back
1090 * into the socket buffer so that other consumers see the values
1091 * consistently. 'nextrecord' is the callers locally stored value of
1092 * the original value of sb->sb_mb->m_nextpkt which must be restored
1093 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1094 */
1095 static void
1096 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1097 {
1098
1099 KASSERT(solocked(sb->sb_so));
1100
1101 /*
1102 * First, update for the new value of nextrecord. If necessary,
1103 * make it the first record.
1104 */
1105 if (sb->sb_mb != NULL)
1106 sb->sb_mb->m_nextpkt = nextrecord;
1107 else
1108 sb->sb_mb = nextrecord;
1109
1110 /*
1111 * Now update any dependent socket buffer fields to reflect
1112 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1113 * the addition of a second clause that takes care of the
1114 * case where sb_mb has been updated, but remains the last
1115 * record.
1116 */
1117 if (sb->sb_mb == NULL) {
1118 sb->sb_mbtail = NULL;
1119 sb->sb_lastrecord = NULL;
1120 } else if (sb->sb_mb->m_nextpkt == NULL)
1121 sb->sb_lastrecord = sb->sb_mb;
1122 }
1123
1124 /*
1125 * Implement receive operations on a socket.
1126 * We depend on the way that records are added to the sockbuf
1127 * by sbappend*. In particular, each record (mbufs linked through m_next)
1128 * must begin with an address if the protocol so specifies,
1129 * followed by an optional mbuf or mbufs containing ancillary data,
1130 * and then zero or more mbufs of data.
1131 * In order to avoid blocking network interrupts for the entire time here,
1132 * we splx() while doing the actual copy to user space.
1133 * Although the sockbuf is locked, new data may still be appended,
1134 * and thus we must maintain consistency of the sockbuf during that time.
1135 *
1136 * The caller may receive the data as a single mbuf chain by supplying
1137 * an mbuf **mp0 for use in returning the chain. The uio is then used
1138 * only for the count in uio_resid.
1139 */
1140 int
1141 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1142 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1143 {
1144 struct lwp *l = curlwp;
1145 struct mbuf *m, **mp, *mt;
1146 size_t len, offset, moff, orig_resid;
1147 int atomic, flags, error, s, type;
1148 const struct protosw *pr;
1149 struct mbuf *nextrecord;
1150 int mbuf_removed = 0;
1151 const struct domain *dom;
1152 short wakeup_state = 0;
1153
1154 pr = so->so_proto;
1155 atomic = pr->pr_flags & PR_ATOMIC;
1156 dom = pr->pr_domain;
1157 mp = mp0;
1158 type = 0;
1159 orig_resid = uio->uio_resid;
1160
1161 if (paddr != NULL)
1162 *paddr = NULL;
1163 if (controlp != NULL)
1164 *controlp = NULL;
1165 if (flagsp != NULL)
1166 flags = *flagsp &~ MSG_EOR;
1167 else
1168 flags = 0;
1169
1170 if (flags & MSG_OOB) {
1171 m = m_get(M_WAIT, MT_DATA);
1172 solock(so);
1173 error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
1174 sounlock(so);
1175 if (error)
1176 goto bad;
1177 do {
1178 error = uiomove(mtod(m, void *),
1179 MIN(uio->uio_resid, m->m_len), uio);
1180 m = m_free(m);
1181 } while (uio->uio_resid > 0 && error == 0 && m);
1182 bad:
1183 if (m != NULL)
1184 m_freem(m);
1185 return error;
1186 }
1187 if (mp != NULL)
1188 *mp = NULL;
1189
1190 /*
1191 * solock() provides atomicity of access. splsoftnet() prevents
1192 * protocol processing soft interrupts from interrupting us and
1193 * blocking (expensive).
1194 */
1195 s = splsoftnet();
1196 solock(so);
1197 restart:
1198 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1199 sounlock(so);
1200 splx(s);
1201 return error;
1202 }
1203
1204 m = so->so_rcv.sb_mb;
1205 /*
1206 * If we have less data than requested, block awaiting more
1207 * (subject to any timeout) if:
1208 * 1. the current count is less than the low water mark,
1209 * 2. MSG_WAITALL is set, and it is possible to do the entire
1210 * receive operation at once if we block (resid <= hiwat), or
1211 * 3. MSG_DONTWAIT is not set.
1212 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1213 * we have to do the receive in sections, and thus risk returning
1214 * a short count if a timeout or signal occurs after we start.
1215 */
1216 if (m == NULL ||
1217 ((flags & MSG_DONTWAIT) == 0 &&
1218 so->so_rcv.sb_cc < uio->uio_resid &&
1219 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1220 ((flags & MSG_WAITALL) &&
1221 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1222 m->m_nextpkt == NULL && !atomic)) {
1223 #ifdef DIAGNOSTIC
1224 if (m == NULL && so->so_rcv.sb_cc)
1225 panic("receive 1");
1226 #endif
1227 if (so->so_error) {
1228 if (m != NULL)
1229 goto dontblock;
1230 error = so->so_error;
1231 if ((flags & MSG_PEEK) == 0)
1232 so->so_error = 0;
1233 goto release;
1234 }
1235 if (so->so_state & SS_CANTRCVMORE) {
1236 if (m != NULL)
1237 goto dontblock;
1238 else
1239 goto release;
1240 }
1241 for (; m != NULL; m = m->m_next)
1242 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1243 m = so->so_rcv.sb_mb;
1244 goto dontblock;
1245 }
1246 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1247 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1248 error = ENOTCONN;
1249 goto release;
1250 }
1251 if (uio->uio_resid == 0)
1252 goto release;
1253 if ((so->so_state & SS_NBIO) ||
1254 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1255 error = EWOULDBLOCK;
1256 goto release;
1257 }
1258 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1259 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1260 sbunlock(&so->so_rcv);
1261 if (wakeup_state & SS_RESTARTSYS)
1262 error = ERESTART;
1263 else
1264 error = sbwait(&so->so_rcv);
1265 if (error != 0) {
1266 sounlock(so);
1267 splx(s);
1268 return error;
1269 }
1270 wakeup_state = so->so_state;
1271 goto restart;
1272 }
1273 dontblock:
1274 /*
1275 * On entry here, m points to the first record of the socket buffer.
1276 * From this point onward, we maintain 'nextrecord' as a cache of the
1277 * pointer to the next record in the socket buffer. We must keep the
1278 * various socket buffer pointers and local stack versions of the
1279 * pointers in sync, pushing out modifications before dropping the
1280 * socket lock, and re-reading them when picking it up.
1281 *
1282 * Otherwise, we will race with the network stack appending new data
1283 * or records onto the socket buffer by using inconsistent/stale
1284 * versions of the field, possibly resulting in socket buffer
1285 * corruption.
1286 *
1287 * By holding the high-level sblock(), we prevent simultaneous
1288 * readers from pulling off the front of the socket buffer.
1289 */
1290 if (l != NULL)
1291 l->l_ru.ru_msgrcv++;
1292 KASSERT(m == so->so_rcv.sb_mb);
1293 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1294 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1295 nextrecord = m->m_nextpkt;
1296 if (pr->pr_flags & PR_ADDR) {
1297 #ifdef DIAGNOSTIC
1298 if (m->m_type != MT_SONAME)
1299 panic("receive 1a");
1300 #endif
1301 orig_resid = 0;
1302 if (flags & MSG_PEEK) {
1303 if (paddr)
1304 *paddr = m_copy(m, 0, m->m_len);
1305 m = m->m_next;
1306 } else {
1307 sbfree(&so->so_rcv, m);
1308 mbuf_removed = 1;
1309 if (paddr != NULL) {
1310 *paddr = m;
1311 so->so_rcv.sb_mb = m->m_next;
1312 m->m_next = NULL;
1313 m = so->so_rcv.sb_mb;
1314 } else {
1315 MFREE(m, so->so_rcv.sb_mb);
1316 m = so->so_rcv.sb_mb;
1317 }
1318 sbsync(&so->so_rcv, nextrecord);
1319 }
1320 }
1321
1322 /*
1323 * Process one or more MT_CONTROL mbufs present before any data mbufs
1324 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1325 * just copy the data; if !MSG_PEEK, we call into the protocol to
1326 * perform externalization (or freeing if controlp == NULL).
1327 */
1328 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1329 struct mbuf *cm = NULL, *cmn;
1330 struct mbuf **cme = &cm;
1331
1332 do {
1333 if (flags & MSG_PEEK) {
1334 if (controlp != NULL) {
1335 *controlp = m_copy(m, 0, m->m_len);
1336 controlp = &(*controlp)->m_next;
1337 }
1338 m = m->m_next;
1339 } else {
1340 sbfree(&so->so_rcv, m);
1341 so->so_rcv.sb_mb = m->m_next;
1342 m->m_next = NULL;
1343 *cme = m;
1344 cme = &(*cme)->m_next;
1345 m = so->so_rcv.sb_mb;
1346 }
1347 } while (m != NULL && m->m_type == MT_CONTROL);
1348 if ((flags & MSG_PEEK) == 0)
1349 sbsync(&so->so_rcv, nextrecord);
1350 for (; cm != NULL; cm = cmn) {
1351 cmn = cm->m_next;
1352 cm->m_next = NULL;
1353 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1354 if (controlp != NULL) {
1355 if (dom->dom_externalize != NULL &&
1356 type == SCM_RIGHTS) {
1357 sounlock(so);
1358 splx(s);
1359 error = (*dom->dom_externalize)(cm, l,
1360 (flags & MSG_CMSG_CLOEXEC) ?
1361 O_CLOEXEC : 0);
1362 s = splsoftnet();
1363 solock(so);
1364 }
1365 *controlp = cm;
1366 while (*controlp != NULL)
1367 controlp = &(*controlp)->m_next;
1368 } else {
1369 /*
1370 * Dispose of any SCM_RIGHTS message that went
1371 * through the read path rather than recv.
1372 */
1373 if (dom->dom_dispose != NULL &&
1374 type == SCM_RIGHTS) {
1375 sounlock(so);
1376 (*dom->dom_dispose)(cm);
1377 solock(so);
1378 }
1379 m_freem(cm);
1380 }
1381 }
1382 if (m != NULL)
1383 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1384 else
1385 nextrecord = so->so_rcv.sb_mb;
1386 orig_resid = 0;
1387 }
1388
1389 /* If m is non-NULL, we have some data to read. */
1390 if (__predict_true(m != NULL)) {
1391 type = m->m_type;
1392 if (type == MT_OOBDATA)
1393 flags |= MSG_OOB;
1394 }
1395 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1396 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1397
1398 moff = 0;
1399 offset = 0;
1400 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1401 if (m->m_type == MT_OOBDATA) {
1402 if (type != MT_OOBDATA)
1403 break;
1404 } else if (type == MT_OOBDATA)
1405 break;
1406 #ifdef DIAGNOSTIC
1407 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1408 panic("receive 3");
1409 #endif
1410 so->so_state &= ~SS_RCVATMARK;
1411 wakeup_state = 0;
1412 len = uio->uio_resid;
1413 if (so->so_oobmark && len > so->so_oobmark - offset)
1414 len = so->so_oobmark - offset;
1415 if (len > m->m_len - moff)
1416 len = m->m_len - moff;
1417 /*
1418 * If mp is set, just pass back the mbufs.
1419 * Otherwise copy them out via the uio, then free.
1420 * Sockbuf must be consistent here (points to current mbuf,
1421 * it points to next record) when we drop priority;
1422 * we must note any additions to the sockbuf when we
1423 * block interrupts again.
1424 */
1425 if (mp == NULL) {
1426 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1427 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1428 sounlock(so);
1429 splx(s);
1430 error = uiomove(mtod(m, char *) + moff, len, uio);
1431 s = splsoftnet();
1432 solock(so);
1433 if (error != 0) {
1434 /*
1435 * If any part of the record has been removed
1436 * (such as the MT_SONAME mbuf, which will
1437 * happen when PR_ADDR, and thus also
1438 * PR_ATOMIC, is set), then drop the entire
1439 * record to maintain the atomicity of the
1440 * receive operation.
1441 *
1442 * This avoids a later panic("receive 1a")
1443 * when compiled with DIAGNOSTIC.
1444 */
1445 if (m && mbuf_removed && atomic)
1446 (void) sbdroprecord(&so->so_rcv);
1447
1448 goto release;
1449 }
1450 } else
1451 uio->uio_resid -= len;
1452 if (len == m->m_len - moff) {
1453 if (m->m_flags & M_EOR)
1454 flags |= MSG_EOR;
1455 if (flags & MSG_PEEK) {
1456 m = m->m_next;
1457 moff = 0;
1458 } else {
1459 nextrecord = m->m_nextpkt;
1460 sbfree(&so->so_rcv, m);
1461 if (mp) {
1462 *mp = m;
1463 mp = &m->m_next;
1464 so->so_rcv.sb_mb = m = m->m_next;
1465 *mp = NULL;
1466 } else {
1467 MFREE(m, so->so_rcv.sb_mb);
1468 m = so->so_rcv.sb_mb;
1469 }
1470 /*
1471 * If m != NULL, we also know that
1472 * so->so_rcv.sb_mb != NULL.
1473 */
1474 KASSERT(so->so_rcv.sb_mb == m);
1475 if (m) {
1476 m->m_nextpkt = nextrecord;
1477 if (nextrecord == NULL)
1478 so->so_rcv.sb_lastrecord = m;
1479 } else {
1480 so->so_rcv.sb_mb = nextrecord;
1481 SB_EMPTY_FIXUP(&so->so_rcv);
1482 }
1483 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1484 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1485 }
1486 } else if (flags & MSG_PEEK)
1487 moff += len;
1488 else {
1489 if (mp != NULL) {
1490 mt = m_copym(m, 0, len, M_NOWAIT);
1491 if (__predict_false(mt == NULL)) {
1492 sounlock(so);
1493 mt = m_copym(m, 0, len, M_WAIT);
1494 solock(so);
1495 }
1496 *mp = mt;
1497 }
1498 m->m_data += len;
1499 m->m_len -= len;
1500 so->so_rcv.sb_cc -= len;
1501 }
1502 if (so->so_oobmark) {
1503 if ((flags & MSG_PEEK) == 0) {
1504 so->so_oobmark -= len;
1505 if (so->so_oobmark == 0) {
1506 so->so_state |= SS_RCVATMARK;
1507 break;
1508 }
1509 } else {
1510 offset += len;
1511 if (offset == so->so_oobmark)
1512 break;
1513 }
1514 }
1515 if (flags & MSG_EOR)
1516 break;
1517 /*
1518 * If the MSG_WAITALL flag is set (for non-atomic socket),
1519 * we must not quit until "uio->uio_resid == 0" or an error
1520 * termination. If a signal/timeout occurs, return
1521 * with a short count but without error.
1522 * Keep sockbuf locked against other readers.
1523 */
1524 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1525 !sosendallatonce(so) && !nextrecord) {
1526 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1527 break;
1528 /*
1529 * If we are peeking and the socket receive buffer is
1530 * full, stop since we can't get more data to peek at.
1531 */
1532 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1533 break;
1534 /*
1535 * If we've drained the socket buffer, tell the
1536 * protocol in case it needs to do something to
1537 * get it filled again.
1538 */
1539 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1540 (*pr->pr_usrreqs->pr_generic)(so, PRU_RCVD,
1541 NULL, (struct mbuf *)(long)flags, NULL, l);
1542 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1543 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1544 if (wakeup_state & SS_RESTARTSYS)
1545 error = ERESTART;
1546 else
1547 error = sbwait(&so->so_rcv);
1548 if (error != 0) {
1549 sbunlock(&so->so_rcv);
1550 sounlock(so);
1551 splx(s);
1552 return 0;
1553 }
1554 if ((m = so->so_rcv.sb_mb) != NULL)
1555 nextrecord = m->m_nextpkt;
1556 wakeup_state = so->so_state;
1557 }
1558 }
1559
1560 if (m && atomic) {
1561 flags |= MSG_TRUNC;
1562 if ((flags & MSG_PEEK) == 0)
1563 (void) sbdroprecord(&so->so_rcv);
1564 }
1565 if ((flags & MSG_PEEK) == 0) {
1566 if (m == NULL) {
1567 /*
1568 * First part is an inline SB_EMPTY_FIXUP(). Second
1569 * part makes sure sb_lastrecord is up-to-date if
1570 * there is still data in the socket buffer.
1571 */
1572 so->so_rcv.sb_mb = nextrecord;
1573 if (so->so_rcv.sb_mb == NULL) {
1574 so->so_rcv.sb_mbtail = NULL;
1575 so->so_rcv.sb_lastrecord = NULL;
1576 } else if (nextrecord->m_nextpkt == NULL)
1577 so->so_rcv.sb_lastrecord = nextrecord;
1578 }
1579 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1580 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1581 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1582 (*pr->pr_usrreqs->pr_generic)(so, PRU_RCVD, NULL,
1583 (struct mbuf *)(long)flags, NULL, l);
1584 }
1585 if (orig_resid == uio->uio_resid && orig_resid &&
1586 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1587 sbunlock(&so->so_rcv);
1588 goto restart;
1589 }
1590
1591 if (flagsp != NULL)
1592 *flagsp |= flags;
1593 release:
1594 sbunlock(&so->so_rcv);
1595 sounlock(so);
1596 splx(s);
1597 return error;
1598 }
1599
1600 int
1601 soshutdown(struct socket *so, int how)
1602 {
1603 const struct protosw *pr;
1604 int error;
1605
1606 KASSERT(solocked(so));
1607
1608 pr = so->so_proto;
1609 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1610 return (EINVAL);
1611
1612 if (how == SHUT_RD || how == SHUT_RDWR) {
1613 sorflush(so);
1614 error = 0;
1615 }
1616 if (how == SHUT_WR || how == SHUT_RDWR)
1617 error = (*pr->pr_usrreqs->pr_generic)(so,
1618 PRU_SHUTDOWN, NULL, NULL, NULL, NULL);
1619
1620 return error;
1621 }
1622
1623 void
1624 sorestart(struct socket *so)
1625 {
1626 /*
1627 * An application has called close() on an fd on which another
1628 * of its threads has called a socket system call.
1629 * Mark this and wake everyone up, and code that would block again
1630 * instead returns ERESTART.
1631 * On system call re-entry the fd is validated and EBADF returned.
1632 * Any other fd will block again on the 2nd syscall.
1633 */
1634 solock(so);
1635 so->so_state |= SS_RESTARTSYS;
1636 cv_broadcast(&so->so_cv);
1637 cv_broadcast(&so->so_snd.sb_cv);
1638 cv_broadcast(&so->so_rcv.sb_cv);
1639 sounlock(so);
1640 }
1641
1642 void
1643 sorflush(struct socket *so)
1644 {
1645 struct sockbuf *sb, asb;
1646 const struct protosw *pr;
1647
1648 KASSERT(solocked(so));
1649
1650 sb = &so->so_rcv;
1651 pr = so->so_proto;
1652 socantrcvmore(so);
1653 sb->sb_flags |= SB_NOINTR;
1654 (void )sblock(sb, M_WAITOK);
1655 sbunlock(sb);
1656 asb = *sb;
1657 /*
1658 * Clear most of the sockbuf structure, but leave some of the
1659 * fields valid.
1660 */
1661 memset(&sb->sb_startzero, 0,
1662 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1663 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1664 sounlock(so);
1665 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1666 solock(so);
1667 }
1668 sbrelease(&asb, so);
1669 }
1670
1671 /*
1672 * internal set SOL_SOCKET options
1673 */
1674 static int
1675 sosetopt1(struct socket *so, const struct sockopt *sopt)
1676 {
1677 int error = EINVAL, opt;
1678 int optval = 0; /* XXX: gcc */
1679 struct linger l;
1680 struct timeval tv;
1681
1682 switch ((opt = sopt->sopt_name)) {
1683
1684 case SO_ACCEPTFILTER:
1685 error = accept_filt_setopt(so, sopt);
1686 KASSERT(solocked(so));
1687 break;
1688
1689 case SO_LINGER:
1690 error = sockopt_get(sopt, &l, sizeof(l));
1691 solock(so);
1692 if (error)
1693 break;
1694 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1695 l.l_linger > (INT_MAX / hz)) {
1696 error = EDOM;
1697 break;
1698 }
1699 so->so_linger = l.l_linger;
1700 if (l.l_onoff)
1701 so->so_options |= SO_LINGER;
1702 else
1703 so->so_options &= ~SO_LINGER;
1704 break;
1705
1706 case SO_DEBUG:
1707 case SO_KEEPALIVE:
1708 case SO_DONTROUTE:
1709 case SO_USELOOPBACK:
1710 case SO_BROADCAST:
1711 case SO_REUSEADDR:
1712 case SO_REUSEPORT:
1713 case SO_OOBINLINE:
1714 case SO_TIMESTAMP:
1715 case SO_NOSIGPIPE:
1716 #ifdef SO_OTIMESTAMP
1717 case SO_OTIMESTAMP:
1718 #endif
1719 error = sockopt_getint(sopt, &optval);
1720 solock(so);
1721 if (error)
1722 break;
1723 if (optval)
1724 so->so_options |= opt;
1725 else
1726 so->so_options &= ~opt;
1727 break;
1728
1729 case SO_SNDBUF:
1730 case SO_RCVBUF:
1731 case SO_SNDLOWAT:
1732 case SO_RCVLOWAT:
1733 error = sockopt_getint(sopt, &optval);
1734 solock(so);
1735 if (error)
1736 break;
1737
1738 /*
1739 * Values < 1 make no sense for any of these
1740 * options, so disallow them.
1741 */
1742 if (optval < 1) {
1743 error = EINVAL;
1744 break;
1745 }
1746
1747 switch (opt) {
1748 case SO_SNDBUF:
1749 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1750 error = ENOBUFS;
1751 break;
1752 }
1753 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1754 break;
1755
1756 case SO_RCVBUF:
1757 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1758 error = ENOBUFS;
1759 break;
1760 }
1761 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1762 break;
1763
1764 /*
1765 * Make sure the low-water is never greater than
1766 * the high-water.
1767 */
1768 case SO_SNDLOWAT:
1769 if (optval > so->so_snd.sb_hiwat)
1770 optval = so->so_snd.sb_hiwat;
1771
1772 so->so_snd.sb_lowat = optval;
1773 break;
1774
1775 case SO_RCVLOWAT:
1776 if (optval > so->so_rcv.sb_hiwat)
1777 optval = so->so_rcv.sb_hiwat;
1778
1779 so->so_rcv.sb_lowat = optval;
1780 break;
1781 }
1782 break;
1783
1784 #ifdef COMPAT_50
1785 case SO_OSNDTIMEO:
1786 case SO_ORCVTIMEO: {
1787 struct timeval50 otv;
1788 error = sockopt_get(sopt, &otv, sizeof(otv));
1789 if (error) {
1790 solock(so);
1791 break;
1792 }
1793 timeval50_to_timeval(&otv, &tv);
1794 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1795 error = 0;
1796 /*FALLTHROUGH*/
1797 }
1798 #endif /* COMPAT_50 */
1799
1800 case SO_SNDTIMEO:
1801 case SO_RCVTIMEO:
1802 if (error)
1803 error = sockopt_get(sopt, &tv, sizeof(tv));
1804 solock(so);
1805 if (error)
1806 break;
1807
1808 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1809 error = EDOM;
1810 break;
1811 }
1812
1813 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1814 if (optval == 0 && tv.tv_usec != 0)
1815 optval = 1;
1816
1817 switch (opt) {
1818 case SO_SNDTIMEO:
1819 so->so_snd.sb_timeo = optval;
1820 break;
1821 case SO_RCVTIMEO:
1822 so->so_rcv.sb_timeo = optval;
1823 break;
1824 }
1825 break;
1826
1827 default:
1828 solock(so);
1829 error = ENOPROTOOPT;
1830 break;
1831 }
1832 KASSERT(solocked(so));
1833 return error;
1834 }
1835
1836 int
1837 sosetopt(struct socket *so, struct sockopt *sopt)
1838 {
1839 int error, prerr;
1840
1841 if (sopt->sopt_level == SOL_SOCKET) {
1842 error = sosetopt1(so, sopt);
1843 KASSERT(solocked(so));
1844 } else {
1845 error = ENOPROTOOPT;
1846 solock(so);
1847 }
1848
1849 if ((error == 0 || error == ENOPROTOOPT) &&
1850 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1851 /* give the protocol stack a shot */
1852 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1853 if (prerr == 0)
1854 error = 0;
1855 else if (prerr != ENOPROTOOPT)
1856 error = prerr;
1857 }
1858 sounlock(so);
1859 return error;
1860 }
1861
1862 /*
1863 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1864 */
1865 int
1866 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1867 const void *val, size_t valsize)
1868 {
1869 struct sockopt sopt;
1870 int error;
1871
1872 KASSERT(valsize == 0 || val != NULL);
1873
1874 sockopt_init(&sopt, level, name, valsize);
1875 sockopt_set(&sopt, val, valsize);
1876
1877 error = sosetopt(so, &sopt);
1878
1879 sockopt_destroy(&sopt);
1880
1881 return error;
1882 }
1883
1884 /*
1885 * internal get SOL_SOCKET options
1886 */
1887 static int
1888 sogetopt1(struct socket *so, struct sockopt *sopt)
1889 {
1890 int error, optval, opt;
1891 struct linger l;
1892 struct timeval tv;
1893
1894 switch ((opt = sopt->sopt_name)) {
1895
1896 case SO_ACCEPTFILTER:
1897 error = accept_filt_getopt(so, sopt);
1898 break;
1899
1900 case SO_LINGER:
1901 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1902 l.l_linger = so->so_linger;
1903
1904 error = sockopt_set(sopt, &l, sizeof(l));
1905 break;
1906
1907 case SO_USELOOPBACK:
1908 case SO_DONTROUTE:
1909 case SO_DEBUG:
1910 case SO_KEEPALIVE:
1911 case SO_REUSEADDR:
1912 case SO_REUSEPORT:
1913 case SO_BROADCAST:
1914 case SO_OOBINLINE:
1915 case SO_TIMESTAMP:
1916 case SO_NOSIGPIPE:
1917 #ifdef SO_OTIMESTAMP
1918 case SO_OTIMESTAMP:
1919 #endif
1920 case SO_ACCEPTCONN:
1921 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1922 break;
1923
1924 case SO_TYPE:
1925 error = sockopt_setint(sopt, so->so_type);
1926 break;
1927
1928 case SO_ERROR:
1929 error = sockopt_setint(sopt, so->so_error);
1930 so->so_error = 0;
1931 break;
1932
1933 case SO_SNDBUF:
1934 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1935 break;
1936
1937 case SO_RCVBUF:
1938 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1939 break;
1940
1941 case SO_SNDLOWAT:
1942 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1943 break;
1944
1945 case SO_RCVLOWAT:
1946 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1947 break;
1948
1949 #ifdef COMPAT_50
1950 case SO_OSNDTIMEO:
1951 case SO_ORCVTIMEO: {
1952 struct timeval50 otv;
1953
1954 optval = (opt == SO_OSNDTIMEO ?
1955 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1956
1957 otv.tv_sec = optval / hz;
1958 otv.tv_usec = (optval % hz) * tick;
1959
1960 error = sockopt_set(sopt, &otv, sizeof(otv));
1961 break;
1962 }
1963 #endif /* COMPAT_50 */
1964
1965 case SO_SNDTIMEO:
1966 case SO_RCVTIMEO:
1967 optval = (opt == SO_SNDTIMEO ?
1968 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1969
1970 tv.tv_sec = optval / hz;
1971 tv.tv_usec = (optval % hz) * tick;
1972
1973 error = sockopt_set(sopt, &tv, sizeof(tv));
1974 break;
1975
1976 case SO_OVERFLOWED:
1977 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1978 break;
1979
1980 default:
1981 error = ENOPROTOOPT;
1982 break;
1983 }
1984
1985 return (error);
1986 }
1987
1988 int
1989 sogetopt(struct socket *so, struct sockopt *sopt)
1990 {
1991 int error;
1992
1993 solock(so);
1994 if (sopt->sopt_level != SOL_SOCKET) {
1995 if (so->so_proto && so->so_proto->pr_ctloutput) {
1996 error = ((*so->so_proto->pr_ctloutput)
1997 (PRCO_GETOPT, so, sopt));
1998 } else
1999 error = (ENOPROTOOPT);
2000 } else {
2001 error = sogetopt1(so, sopt);
2002 }
2003 sounlock(so);
2004 return (error);
2005 }
2006
2007 /*
2008 * alloc sockopt data buffer buffer
2009 * - will be released at destroy
2010 */
2011 static int
2012 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2013 {
2014
2015 KASSERT(sopt->sopt_size == 0);
2016
2017 if (len > sizeof(sopt->sopt_buf)) {
2018 sopt->sopt_data = kmem_zalloc(len, kmflag);
2019 if (sopt->sopt_data == NULL)
2020 return ENOMEM;
2021 } else
2022 sopt->sopt_data = sopt->sopt_buf;
2023
2024 sopt->sopt_size = len;
2025 return 0;
2026 }
2027
2028 /*
2029 * initialise sockopt storage
2030 * - MAY sleep during allocation
2031 */
2032 void
2033 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2034 {
2035
2036 memset(sopt, 0, sizeof(*sopt));
2037
2038 sopt->sopt_level = level;
2039 sopt->sopt_name = name;
2040 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2041 }
2042
2043 /*
2044 * destroy sockopt storage
2045 * - will release any held memory references
2046 */
2047 void
2048 sockopt_destroy(struct sockopt *sopt)
2049 {
2050
2051 if (sopt->sopt_data != sopt->sopt_buf)
2052 kmem_free(sopt->sopt_data, sopt->sopt_size);
2053
2054 memset(sopt, 0, sizeof(*sopt));
2055 }
2056
2057 /*
2058 * set sockopt value
2059 * - value is copied into sockopt
2060 * - memory is allocated when necessary, will not sleep
2061 */
2062 int
2063 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2064 {
2065 int error;
2066
2067 if (sopt->sopt_size == 0) {
2068 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2069 if (error)
2070 return error;
2071 }
2072
2073 KASSERT(sopt->sopt_size == len);
2074 memcpy(sopt->sopt_data, buf, len);
2075 return 0;
2076 }
2077
2078 /*
2079 * common case of set sockopt integer value
2080 */
2081 int
2082 sockopt_setint(struct sockopt *sopt, int val)
2083 {
2084
2085 return sockopt_set(sopt, &val, sizeof(int));
2086 }
2087
2088 /*
2089 * get sockopt value
2090 * - correct size must be given
2091 */
2092 int
2093 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2094 {
2095
2096 if (sopt->sopt_size != len)
2097 return EINVAL;
2098
2099 memcpy(buf, sopt->sopt_data, len);
2100 return 0;
2101 }
2102
2103 /*
2104 * common case of get sockopt integer value
2105 */
2106 int
2107 sockopt_getint(const struct sockopt *sopt, int *valp)
2108 {
2109
2110 return sockopt_get(sopt, valp, sizeof(int));
2111 }
2112
2113 /*
2114 * set sockopt value from mbuf
2115 * - ONLY for legacy code
2116 * - mbuf is released by sockopt
2117 * - will not sleep
2118 */
2119 int
2120 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2121 {
2122 size_t len;
2123 int error;
2124
2125 len = m_length(m);
2126
2127 if (sopt->sopt_size == 0) {
2128 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2129 if (error)
2130 return error;
2131 }
2132
2133 KASSERT(sopt->sopt_size == len);
2134 m_copydata(m, 0, len, sopt->sopt_data);
2135 m_freem(m);
2136
2137 return 0;
2138 }
2139
2140 /*
2141 * get sockopt value into mbuf
2142 * - ONLY for legacy code
2143 * - mbuf to be released by the caller
2144 * - will not sleep
2145 */
2146 struct mbuf *
2147 sockopt_getmbuf(const struct sockopt *sopt)
2148 {
2149 struct mbuf *m;
2150
2151 if (sopt->sopt_size > MCLBYTES)
2152 return NULL;
2153
2154 m = m_get(M_DONTWAIT, MT_SOOPTS);
2155 if (m == NULL)
2156 return NULL;
2157
2158 if (sopt->sopt_size > MLEN) {
2159 MCLGET(m, M_DONTWAIT);
2160 if ((m->m_flags & M_EXT) == 0) {
2161 m_free(m);
2162 return NULL;
2163 }
2164 }
2165
2166 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2167 m->m_len = sopt->sopt_size;
2168
2169 return m;
2170 }
2171
2172 void
2173 sohasoutofband(struct socket *so)
2174 {
2175
2176 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2177 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2178 }
2179
2180 static void
2181 filt_sordetach(struct knote *kn)
2182 {
2183 struct socket *so;
2184
2185 so = ((file_t *)kn->kn_obj)->f_data;
2186 solock(so);
2187 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2188 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2189 so->so_rcv.sb_flags &= ~SB_KNOTE;
2190 sounlock(so);
2191 }
2192
2193 /*ARGSUSED*/
2194 static int
2195 filt_soread(struct knote *kn, long hint)
2196 {
2197 struct socket *so;
2198 int rv;
2199
2200 so = ((file_t *)kn->kn_obj)->f_data;
2201 if (hint != NOTE_SUBMIT)
2202 solock(so);
2203 kn->kn_data = so->so_rcv.sb_cc;
2204 if (so->so_state & SS_CANTRCVMORE) {
2205 kn->kn_flags |= EV_EOF;
2206 kn->kn_fflags = so->so_error;
2207 rv = 1;
2208 } else if (so->so_error) /* temporary udp error */
2209 rv = 1;
2210 else if (kn->kn_sfflags & NOTE_LOWAT)
2211 rv = (kn->kn_data >= kn->kn_sdata);
2212 else
2213 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2214 if (hint != NOTE_SUBMIT)
2215 sounlock(so);
2216 return rv;
2217 }
2218
2219 static void
2220 filt_sowdetach(struct knote *kn)
2221 {
2222 struct socket *so;
2223
2224 so = ((file_t *)kn->kn_obj)->f_data;
2225 solock(so);
2226 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2227 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2228 so->so_snd.sb_flags &= ~SB_KNOTE;
2229 sounlock(so);
2230 }
2231
2232 /*ARGSUSED*/
2233 static int
2234 filt_sowrite(struct knote *kn, long hint)
2235 {
2236 struct socket *so;
2237 int rv;
2238
2239 so = ((file_t *)kn->kn_obj)->f_data;
2240 if (hint != NOTE_SUBMIT)
2241 solock(so);
2242 kn->kn_data = sbspace(&so->so_snd);
2243 if (so->so_state & SS_CANTSENDMORE) {
2244 kn->kn_flags |= EV_EOF;
2245 kn->kn_fflags = so->so_error;
2246 rv = 1;
2247 } else if (so->so_error) /* temporary udp error */
2248 rv = 1;
2249 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2250 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2251 rv = 0;
2252 else if (kn->kn_sfflags & NOTE_LOWAT)
2253 rv = (kn->kn_data >= kn->kn_sdata);
2254 else
2255 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2256 if (hint != NOTE_SUBMIT)
2257 sounlock(so);
2258 return rv;
2259 }
2260
2261 /*ARGSUSED*/
2262 static int
2263 filt_solisten(struct knote *kn, long hint)
2264 {
2265 struct socket *so;
2266 int rv;
2267
2268 so = ((file_t *)kn->kn_obj)->f_data;
2269
2270 /*
2271 * Set kn_data to number of incoming connections, not
2272 * counting partial (incomplete) connections.
2273 */
2274 if (hint != NOTE_SUBMIT)
2275 solock(so);
2276 kn->kn_data = so->so_qlen;
2277 rv = (kn->kn_data > 0);
2278 if (hint != NOTE_SUBMIT)
2279 sounlock(so);
2280 return rv;
2281 }
2282
2283 static const struct filterops solisten_filtops =
2284 { 1, NULL, filt_sordetach, filt_solisten };
2285 static const struct filterops soread_filtops =
2286 { 1, NULL, filt_sordetach, filt_soread };
2287 static const struct filterops sowrite_filtops =
2288 { 1, NULL, filt_sowdetach, filt_sowrite };
2289
2290 int
2291 soo_kqfilter(struct file *fp, struct knote *kn)
2292 {
2293 struct socket *so;
2294 struct sockbuf *sb;
2295
2296 so = ((file_t *)kn->kn_obj)->f_data;
2297 solock(so);
2298 switch (kn->kn_filter) {
2299 case EVFILT_READ:
2300 if (so->so_options & SO_ACCEPTCONN)
2301 kn->kn_fop = &solisten_filtops;
2302 else
2303 kn->kn_fop = &soread_filtops;
2304 sb = &so->so_rcv;
2305 break;
2306 case EVFILT_WRITE:
2307 kn->kn_fop = &sowrite_filtops;
2308 sb = &so->so_snd;
2309 break;
2310 default:
2311 sounlock(so);
2312 return (EINVAL);
2313 }
2314 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2315 sb->sb_flags |= SB_KNOTE;
2316 sounlock(so);
2317 return (0);
2318 }
2319
2320 static int
2321 sodopoll(struct socket *so, int events)
2322 {
2323 int revents;
2324
2325 revents = 0;
2326
2327 if (events & (POLLIN | POLLRDNORM))
2328 if (soreadable(so))
2329 revents |= events & (POLLIN | POLLRDNORM);
2330
2331 if (events & (POLLOUT | POLLWRNORM))
2332 if (sowritable(so))
2333 revents |= events & (POLLOUT | POLLWRNORM);
2334
2335 if (events & (POLLPRI | POLLRDBAND))
2336 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2337 revents |= events & (POLLPRI | POLLRDBAND);
2338
2339 return revents;
2340 }
2341
2342 int
2343 sopoll(struct socket *so, int events)
2344 {
2345 int revents = 0;
2346
2347 #ifndef DIAGNOSTIC
2348 /*
2349 * Do a quick, unlocked check in expectation that the socket
2350 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2351 * as the solocked() assertions will fail.
2352 */
2353 if ((revents = sodopoll(so, events)) != 0)
2354 return revents;
2355 #endif
2356
2357 solock(so);
2358 if ((revents = sodopoll(so, events)) == 0) {
2359 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2360 selrecord(curlwp, &so->so_rcv.sb_sel);
2361 so->so_rcv.sb_flags |= SB_NOTIFY;
2362 }
2363
2364 if (events & (POLLOUT | POLLWRNORM)) {
2365 selrecord(curlwp, &so->so_snd.sb_sel);
2366 so->so_snd.sb_flags |= SB_NOTIFY;
2367 }
2368 }
2369 sounlock(so);
2370
2371 return revents;
2372 }
2373
2374
2375 #include <sys/sysctl.h>
2376
2377 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2378 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2379
2380 /*
2381 * sysctl helper routine for kern.somaxkva. ensures that the given
2382 * value is not too small.
2383 * (XXX should we maybe make sure it's not too large as well?)
2384 */
2385 static int
2386 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2387 {
2388 int error, new_somaxkva;
2389 struct sysctlnode node;
2390
2391 new_somaxkva = somaxkva;
2392 node = *rnode;
2393 node.sysctl_data = &new_somaxkva;
2394 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2395 if (error || newp == NULL)
2396 return (error);
2397
2398 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2399 return (EINVAL);
2400
2401 mutex_enter(&so_pendfree_lock);
2402 somaxkva = new_somaxkva;
2403 cv_broadcast(&socurkva_cv);
2404 mutex_exit(&so_pendfree_lock);
2405
2406 return (error);
2407 }
2408
2409 /*
2410 * sysctl helper routine for kern.sbmax. Basically just ensures that
2411 * any new value is not too small.
2412 */
2413 static int
2414 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2415 {
2416 int error, new_sbmax;
2417 struct sysctlnode node;
2418
2419 new_sbmax = sb_max;
2420 node = *rnode;
2421 node.sysctl_data = &new_sbmax;
2422 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2423 if (error || newp == NULL)
2424 return (error);
2425
2426 KERNEL_LOCK(1, NULL);
2427 error = sb_max_set(new_sbmax);
2428 KERNEL_UNLOCK_ONE(NULL);
2429
2430 return (error);
2431 }
2432
2433 static void
2434 sysctl_kern_socket_setup(void)
2435 {
2436
2437 KASSERT(socket_sysctllog == NULL);
2438
2439 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2440 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2441 CTLTYPE_INT, "somaxkva",
2442 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2443 "used for socket buffers"),
2444 sysctl_kern_somaxkva, 0, NULL, 0,
2445 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2446
2447 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2448 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2449 CTLTYPE_INT, "sbmax",
2450 SYSCTL_DESCR("Maximum socket buffer size"),
2451 sysctl_kern_sbmax, 0, NULL, 0,
2452 CTL_KERN, KERN_SBMAX, CTL_EOL);
2453 }
2454