Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.228
      1 /*	$NetBSD: uipc_socket.c,v 1.228 2014/07/30 10:04:26 rtr Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 /*
     66  * Socket operation routines.
     67  *
     68  * These routines are called by the routines in sys_socket.c or from a
     69  * system process, and implement the semantics of socket operations by
     70  * switching out to the protocol specific routines.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.228 2014/07/30 10:04:26 rtr Exp $");
     75 
     76 #include "opt_compat_netbsd.h"
     77 #include "opt_sock_counters.h"
     78 #include "opt_sosend_loan.h"
     79 #include "opt_mbuftrace.h"
     80 #include "opt_somaxkva.h"
     81 #include "opt_multiprocessor.h"	/* XXX */
     82 
     83 #include <sys/param.h>
     84 #include <sys/systm.h>
     85 #include <sys/proc.h>
     86 #include <sys/file.h>
     87 #include <sys/filedesc.h>
     88 #include <sys/kmem.h>
     89 #include <sys/mbuf.h>
     90 #include <sys/domain.h>
     91 #include <sys/kernel.h>
     92 #include <sys/protosw.h>
     93 #include <sys/socket.h>
     94 #include <sys/socketvar.h>
     95 #include <sys/signalvar.h>
     96 #include <sys/resourcevar.h>
     97 #include <sys/uidinfo.h>
     98 #include <sys/event.h>
     99 #include <sys/poll.h>
    100 #include <sys/kauth.h>
    101 #include <sys/mutex.h>
    102 #include <sys/condvar.h>
    103 #include <sys/kthread.h>
    104 
    105 #ifdef COMPAT_50
    106 #include <compat/sys/time.h>
    107 #include <compat/sys/socket.h>
    108 #endif
    109 
    110 #include <uvm/uvm_extern.h>
    111 #include <uvm/uvm_loan.h>
    112 #include <uvm/uvm_page.h>
    113 
    114 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    115 
    116 extern const struct fileops socketops;
    117 
    118 extern int	somaxconn;			/* patchable (XXX sysctl) */
    119 int		somaxconn = SOMAXCONN;
    120 kmutex_t	*softnet_lock;
    121 
    122 #ifdef SOSEND_COUNTERS
    123 #include <sys/device.h>
    124 
    125 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    126     NULL, "sosend", "loan big");
    127 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    128     NULL, "sosend", "copy big");
    129 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    130     NULL, "sosend", "copy small");
    131 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    132     NULL, "sosend", "kva limit");
    133 
    134 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    135 
    136 EVCNT_ATTACH_STATIC(sosend_loan_big);
    137 EVCNT_ATTACH_STATIC(sosend_copy_big);
    138 EVCNT_ATTACH_STATIC(sosend_copy_small);
    139 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    140 #else
    141 
    142 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    143 
    144 #endif /* SOSEND_COUNTERS */
    145 
    146 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    147 int sock_loan_thresh = -1;
    148 #else
    149 int sock_loan_thresh = 4096;
    150 #endif
    151 
    152 static kmutex_t so_pendfree_lock;
    153 static struct mbuf *so_pendfree = NULL;
    154 
    155 #ifndef SOMAXKVA
    156 #define	SOMAXKVA (16 * 1024 * 1024)
    157 #endif
    158 int somaxkva = SOMAXKVA;
    159 static int socurkva;
    160 static kcondvar_t socurkva_cv;
    161 
    162 static kauth_listener_t socket_listener;
    163 
    164 #define	SOCK_LOAN_CHUNK		65536
    165 
    166 static void sopendfree_thread(void *);
    167 static kcondvar_t pendfree_thread_cv;
    168 static lwp_t *sopendfree_lwp;
    169 
    170 static void sysctl_kern_socket_setup(void);
    171 static struct sysctllog *socket_sysctllog;
    172 
    173 static vsize_t
    174 sokvareserve(struct socket *so, vsize_t len)
    175 {
    176 	int error;
    177 
    178 	mutex_enter(&so_pendfree_lock);
    179 	while (socurkva + len > somaxkva) {
    180 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    181 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    182 		if (error) {
    183 			len = 0;
    184 			break;
    185 		}
    186 	}
    187 	socurkva += len;
    188 	mutex_exit(&so_pendfree_lock);
    189 	return len;
    190 }
    191 
    192 static void
    193 sokvaunreserve(vsize_t len)
    194 {
    195 
    196 	mutex_enter(&so_pendfree_lock);
    197 	socurkva -= len;
    198 	cv_broadcast(&socurkva_cv);
    199 	mutex_exit(&so_pendfree_lock);
    200 }
    201 
    202 /*
    203  * sokvaalloc: allocate kva for loan.
    204  */
    205 
    206 vaddr_t
    207 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
    208 {
    209 	vaddr_t lva;
    210 
    211 	/*
    212 	 * reserve kva.
    213 	 */
    214 
    215 	if (sokvareserve(so, len) == 0)
    216 		return 0;
    217 
    218 	/*
    219 	 * allocate kva.
    220 	 */
    221 
    222 	lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
    223 	    UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    224 	if (lva == 0) {
    225 		sokvaunreserve(len);
    226 		return (0);
    227 	}
    228 
    229 	return lva;
    230 }
    231 
    232 /*
    233  * sokvafree: free kva for loan.
    234  */
    235 
    236 void
    237 sokvafree(vaddr_t sva, vsize_t len)
    238 {
    239 
    240 	/*
    241 	 * free kva.
    242 	 */
    243 
    244 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    245 
    246 	/*
    247 	 * unreserve kva.
    248 	 */
    249 
    250 	sokvaunreserve(len);
    251 }
    252 
    253 static void
    254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    255 {
    256 	vaddr_t sva, eva;
    257 	vsize_t len;
    258 	int npgs;
    259 
    260 	KASSERT(pgs != NULL);
    261 
    262 	eva = round_page((vaddr_t) buf + size);
    263 	sva = trunc_page((vaddr_t) buf);
    264 	len = eva - sva;
    265 	npgs = len >> PAGE_SHIFT;
    266 
    267 	pmap_kremove(sva, len);
    268 	pmap_update(pmap_kernel());
    269 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    270 	sokvafree(sva, len);
    271 }
    272 
    273 /*
    274  * sopendfree_thread: free mbufs on "pendfree" list.
    275  * unlock and relock so_pendfree_lock when freeing mbufs.
    276  */
    277 
    278 static void
    279 sopendfree_thread(void *v)
    280 {
    281 	struct mbuf *m, *next;
    282 	size_t rv;
    283 
    284 	mutex_enter(&so_pendfree_lock);
    285 
    286 	for (;;) {
    287 		rv = 0;
    288 		while (so_pendfree != NULL) {
    289 			m = so_pendfree;
    290 			so_pendfree = NULL;
    291 			mutex_exit(&so_pendfree_lock);
    292 
    293 			for (; m != NULL; m = next) {
    294 				next = m->m_next;
    295 				KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
    296 				KASSERT(m->m_ext.ext_refcnt == 0);
    297 
    298 				rv += m->m_ext.ext_size;
    299 				sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    300 				    m->m_ext.ext_size);
    301 				pool_cache_put(mb_cache, m);
    302 			}
    303 
    304 			mutex_enter(&so_pendfree_lock);
    305 		}
    306 		if (rv)
    307 			cv_broadcast(&socurkva_cv);
    308 		cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
    309 	}
    310 	panic("sopendfree_thread");
    311 	/* NOTREACHED */
    312 }
    313 
    314 void
    315 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    316 {
    317 
    318 	KASSERT(m != NULL);
    319 
    320 	/*
    321 	 * postpone freeing mbuf.
    322 	 *
    323 	 * we can't do it in interrupt context
    324 	 * because we need to put kva back to kernel_map.
    325 	 */
    326 
    327 	mutex_enter(&so_pendfree_lock);
    328 	m->m_next = so_pendfree;
    329 	so_pendfree = m;
    330 	cv_signal(&pendfree_thread_cv);
    331 	mutex_exit(&so_pendfree_lock);
    332 }
    333 
    334 static long
    335 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    336 {
    337 	struct iovec *iov = uio->uio_iov;
    338 	vaddr_t sva, eva;
    339 	vsize_t len;
    340 	vaddr_t lva;
    341 	int npgs, error;
    342 	vaddr_t va;
    343 	int i;
    344 
    345 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    346 		return (0);
    347 
    348 	if (iov->iov_len < (size_t) space)
    349 		space = iov->iov_len;
    350 	if (space > SOCK_LOAN_CHUNK)
    351 		space = SOCK_LOAN_CHUNK;
    352 
    353 	eva = round_page((vaddr_t) iov->iov_base + space);
    354 	sva = trunc_page((vaddr_t) iov->iov_base);
    355 	len = eva - sva;
    356 	npgs = len >> PAGE_SHIFT;
    357 
    358 	KASSERT(npgs <= M_EXT_MAXPAGES);
    359 
    360 	lva = sokvaalloc(sva, len, so);
    361 	if (lva == 0)
    362 		return 0;
    363 
    364 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    365 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    366 	if (error) {
    367 		sokvafree(lva, len);
    368 		return (0);
    369 	}
    370 
    371 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    372 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    373 		    VM_PROT_READ, 0);
    374 	pmap_update(pmap_kernel());
    375 
    376 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    377 
    378 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    379 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    380 
    381 	uio->uio_resid -= space;
    382 	/* uio_offset not updated, not set/used for write(2) */
    383 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    384 	uio->uio_iov->iov_len -= space;
    385 	if (uio->uio_iov->iov_len == 0) {
    386 		uio->uio_iov++;
    387 		uio->uio_iovcnt--;
    388 	}
    389 
    390 	return (space);
    391 }
    392 
    393 struct mbuf *
    394 getsombuf(struct socket *so, int type)
    395 {
    396 	struct mbuf *m;
    397 
    398 	m = m_get(M_WAIT, type);
    399 	MCLAIM(m, so->so_mowner);
    400 	return m;
    401 }
    402 
    403 static int
    404 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    405     void *arg0, void *arg1, void *arg2, void *arg3)
    406 {
    407 	int result;
    408 	enum kauth_network_req req;
    409 
    410 	result = KAUTH_RESULT_DEFER;
    411 	req = (enum kauth_network_req)arg0;
    412 
    413 	if ((action != KAUTH_NETWORK_SOCKET) &&
    414 	    (action != KAUTH_NETWORK_BIND))
    415 		return result;
    416 
    417 	switch (req) {
    418 	case KAUTH_REQ_NETWORK_BIND_PORT:
    419 		result = KAUTH_RESULT_ALLOW;
    420 		break;
    421 
    422 	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
    423 		/* Normal users can only drop their own connections. */
    424 		struct socket *so = (struct socket *)arg1;
    425 
    426 		if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
    427 			result = KAUTH_RESULT_ALLOW;
    428 
    429 		break;
    430 		}
    431 
    432 	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
    433 		/* We allow "raw" routing/bluetooth sockets to anyone. */
    434 		if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
    435 		    || (u_long)arg1 == PF_BLUETOOTH) {
    436 			result = KAUTH_RESULT_ALLOW;
    437 		} else {
    438 			/* Privileged, let secmodel handle this. */
    439 			if ((u_long)arg2 == SOCK_RAW)
    440 				break;
    441 		}
    442 
    443 		result = KAUTH_RESULT_ALLOW;
    444 
    445 		break;
    446 
    447 	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
    448 		result = KAUTH_RESULT_ALLOW;
    449 
    450 		break;
    451 
    452 	default:
    453 		break;
    454 	}
    455 
    456 	return result;
    457 }
    458 
    459 void
    460 soinit(void)
    461 {
    462 
    463 	sysctl_kern_socket_setup();
    464 
    465 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    466 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    467 	cv_init(&socurkva_cv, "sokva");
    468 	cv_init(&pendfree_thread_cv, "sopendfr");
    469 	soinit2();
    470 
    471 	/* Set the initial adjusted socket buffer size. */
    472 	if (sb_max_set(sb_max))
    473 		panic("bad initial sb_max value: %lu", sb_max);
    474 
    475 	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    476 	    socket_listener_cb, NULL);
    477 }
    478 
    479 void
    480 soinit1(void)
    481 {
    482 	int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    483 	    sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
    484 	if (error)
    485 		panic("soinit1 %d", error);
    486 }
    487 
    488 /*
    489  * socreate: create a new socket of the specified type and the protocol.
    490  *
    491  * => Caller may specify another socket for lock sharing (must not be held).
    492  * => Returns the new socket without lock held.
    493  */
    494 int
    495 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    496 	 struct socket *lockso)
    497 {
    498 	const struct protosw	*prp;
    499 	struct socket	*so;
    500 	uid_t		uid;
    501 	int		error;
    502 	kmutex_t	*lock;
    503 
    504 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    505 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    506 	    KAUTH_ARG(proto));
    507 	if (error != 0)
    508 		return error;
    509 
    510 	if (proto)
    511 		prp = pffindproto(dom, proto, type);
    512 	else
    513 		prp = pffindtype(dom, type);
    514 	if (prp == NULL) {
    515 		/* no support for domain */
    516 		if (pffinddomain(dom) == 0)
    517 			return EAFNOSUPPORT;
    518 		/* no support for socket type */
    519 		if (proto == 0 && type != 0)
    520 			return EPROTOTYPE;
    521 		return EPROTONOSUPPORT;
    522 	}
    523 	if (prp->pr_usrreqs == NULL)
    524 		return EPROTONOSUPPORT;
    525 	if (prp->pr_type != type)
    526 		return EPROTOTYPE;
    527 
    528 	so = soget(true);
    529 	so->so_type = type;
    530 	so->so_proto = prp;
    531 	so->so_send = sosend;
    532 	so->so_receive = soreceive;
    533 #ifdef MBUFTRACE
    534 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    535 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    536 	so->so_mowner = &prp->pr_domain->dom_mowner;
    537 #endif
    538 	uid = kauth_cred_geteuid(l->l_cred);
    539 	so->so_uidinfo = uid_find(uid);
    540 	so->so_cpid = l->l_proc->p_pid;
    541 
    542 	/*
    543 	 * Lock assigned and taken during PCB attach, unless we share
    544 	 * the lock with another socket, e.g. socketpair(2) case.
    545 	 */
    546 	if (lockso) {
    547 		lock = lockso->so_lock;
    548 		so->so_lock = lock;
    549 		mutex_obj_hold(lock);
    550 		mutex_enter(lock);
    551 	}
    552 
    553 	/* Attach the PCB (returns with the socket lock held). */
    554 	error = (*prp->pr_usrreqs->pr_attach)(so, proto);
    555 	KASSERT(solocked(so));
    556 
    557 	if (error) {
    558 		KASSERT(so->so_pcb == NULL);
    559 		so->so_state |= SS_NOFDREF;
    560 		sofree(so);
    561 		return error;
    562 	}
    563 	so->so_cred = kauth_cred_dup(l->l_cred);
    564 	sounlock(so);
    565 
    566 	*aso = so;
    567 	return 0;
    568 }
    569 
    570 /*
    571  * fsocreate: create a socket and a file descriptor associated with it.
    572  *
    573  * => On success, write file descriptor to fdout and return zero.
    574  * => On failure, return non-zero; *fdout will be undefined.
    575  */
    576 int
    577 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
    578 {
    579 	lwp_t *l = curlwp;
    580 	int error, fd, flags;
    581 	struct socket *so;
    582 	struct file *fp;
    583 
    584 	if ((error = fd_allocfile(&fp, &fd)) != 0) {
    585 		return error;
    586 	}
    587 	flags = type & SOCK_FLAGS_MASK;
    588 	fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
    589 	fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
    590 	    ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
    591 	fp->f_type = DTYPE_SOCKET;
    592 	fp->f_ops = &socketops;
    593 
    594 	type &= ~SOCK_FLAGS_MASK;
    595 	error = socreate(domain, &so, type, proto, l, NULL);
    596 	if (error) {
    597 		fd_abort(curproc, fp, fd);
    598 		return error;
    599 	}
    600 	if (flags & SOCK_NONBLOCK) {
    601 		so->so_state |= SS_NBIO;
    602 	}
    603 	fp->f_data = so;
    604 	fd_affix(curproc, fp, fd);
    605 
    606 	if (sop != NULL) {
    607 		*sop = so;
    608 	}
    609 	*fdout = fd;
    610 	return error;
    611 }
    612 
    613 int
    614 sofamily(const struct socket *so)
    615 {
    616 	const struct protosw *pr;
    617 	const struct domain *dom;
    618 
    619 	if ((pr = so->so_proto) == NULL)
    620 		return AF_UNSPEC;
    621 	if ((dom = pr->pr_domain) == NULL)
    622 		return AF_UNSPEC;
    623 	return dom->dom_family;
    624 }
    625 
    626 int
    627 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
    628 {
    629 	int	error;
    630 
    631 	solock(so);
    632 	error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam);
    633 	sounlock(so);
    634 	return error;
    635 }
    636 
    637 int
    638 solisten(struct socket *so, int backlog, struct lwp *l)
    639 {
    640 	int	error;
    641 
    642 	solock(so);
    643 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    644 	    SS_ISDISCONNECTING)) != 0) {
    645 		sounlock(so);
    646 		return EINVAL;
    647 	}
    648 	error = (*so->so_proto->pr_usrreqs->pr_listen)(so);
    649 	if (error != 0) {
    650 		sounlock(so);
    651 		return error;
    652 	}
    653 	if (TAILQ_EMPTY(&so->so_q))
    654 		so->so_options |= SO_ACCEPTCONN;
    655 	if (backlog < 0)
    656 		backlog = 0;
    657 	so->so_qlimit = min(backlog, somaxconn);
    658 	sounlock(so);
    659 	return 0;
    660 }
    661 
    662 void
    663 sofree(struct socket *so)
    664 {
    665 	u_int refs;
    666 
    667 	KASSERT(solocked(so));
    668 
    669 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    670 		sounlock(so);
    671 		return;
    672 	}
    673 	if (so->so_head) {
    674 		/*
    675 		 * We must not decommission a socket that's on the accept(2)
    676 		 * queue.  If we do, then accept(2) may hang after select(2)
    677 		 * indicated that the listening socket was ready.
    678 		 */
    679 		if (!soqremque(so, 0)) {
    680 			sounlock(so);
    681 			return;
    682 		}
    683 	}
    684 	if (so->so_rcv.sb_hiwat)
    685 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    686 		    RLIM_INFINITY);
    687 	if (so->so_snd.sb_hiwat)
    688 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    689 		    RLIM_INFINITY);
    690 	sbrelease(&so->so_snd, so);
    691 	KASSERT(!cv_has_waiters(&so->so_cv));
    692 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    693 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    694 	sorflush(so);
    695 	refs = so->so_aborting;	/* XXX */
    696 	/* Remove acccept filter if one is present. */
    697 	if (so->so_accf != NULL)
    698 		(void)accept_filt_clear(so);
    699 	sounlock(so);
    700 	if (refs == 0)		/* XXX */
    701 		soput(so);
    702 }
    703 
    704 /*
    705  * soclose: close a socket on last file table reference removal.
    706  * Initiate disconnect if connected.  Free socket when disconnect complete.
    707  */
    708 int
    709 soclose(struct socket *so)
    710 {
    711 	struct socket *so2;
    712 	int error = 0;
    713 
    714 	solock(so);
    715 	if (so->so_options & SO_ACCEPTCONN) {
    716 		for (;;) {
    717 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    718 				KASSERT(solocked2(so, so2));
    719 				(void) soqremque(so2, 0);
    720 				/* soabort drops the lock. */
    721 				(void) soabort(so2);
    722 				solock(so);
    723 				continue;
    724 			}
    725 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    726 				KASSERT(solocked2(so, so2));
    727 				(void) soqremque(so2, 1);
    728 				/* soabort drops the lock. */
    729 				(void) soabort(so2);
    730 				solock(so);
    731 				continue;
    732 			}
    733 			break;
    734 		}
    735 	}
    736 	if (so->so_pcb == NULL)
    737 		goto discard;
    738 	if (so->so_state & SS_ISCONNECTED) {
    739 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    740 			error = sodisconnect(so);
    741 			if (error)
    742 				goto drop;
    743 		}
    744 		if (so->so_options & SO_LINGER) {
    745 			if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
    746 			    (SS_ISDISCONNECTING|SS_NBIO))
    747 				goto drop;
    748 			while (so->so_state & SS_ISCONNECTED) {
    749 				error = sowait(so, true, so->so_linger * hz);
    750 				if (error)
    751 					break;
    752 			}
    753 		}
    754 	}
    755  drop:
    756 	if (so->so_pcb) {
    757 		KASSERT(solocked(so));
    758 		(*so->so_proto->pr_usrreqs->pr_detach)(so);
    759 	}
    760  discard:
    761 	KASSERT((so->so_state & SS_NOFDREF) == 0);
    762 	kauth_cred_free(so->so_cred);
    763 	so->so_state |= SS_NOFDREF;
    764 	sofree(so);
    765 	return error;
    766 }
    767 
    768 /*
    769  * Must be called with the socket locked..  Will return with it unlocked.
    770  */
    771 int
    772 soabort(struct socket *so)
    773 {
    774 	u_int refs;
    775 	int error;
    776 
    777 	KASSERT(solocked(so));
    778 	KASSERT(so->so_head == NULL);
    779 
    780 	so->so_aborting++;		/* XXX */
    781 	error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
    782 	    PRU_ABORT, NULL, NULL, NULL, NULL);
    783 	refs = --so->so_aborting;	/* XXX */
    784 	if (error || (refs == 0)) {
    785 		sofree(so);
    786 	} else {
    787 		sounlock(so);
    788 	}
    789 	return error;
    790 }
    791 
    792 int
    793 soaccept(struct socket *so, struct mbuf *nam)
    794 {
    795 	int error;
    796 
    797 	KASSERT(solocked(so));
    798 	KASSERT((so->so_state & SS_NOFDREF) != 0);
    799 
    800 	so->so_state &= ~SS_NOFDREF;
    801 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    802 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    803 		error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
    804 	else
    805 		error = ECONNABORTED;
    806 
    807 	return error;
    808 }
    809 
    810 int
    811 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    812 {
    813 	int error;
    814 
    815 	KASSERT(solocked(so));
    816 
    817 	if (so->so_options & SO_ACCEPTCONN)
    818 		return EOPNOTSUPP;
    819 	/*
    820 	 * If protocol is connection-based, can only connect once.
    821 	 * Otherwise, if connected, try to disconnect first.
    822 	 * This allows user to disconnect by connecting to, e.g.,
    823 	 * a null address.
    824 	 */
    825 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    826 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    827 	    (error = sodisconnect(so))))
    828 		error = EISCONN;
    829 	else
    830 		error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam);
    831 
    832 	return error;
    833 }
    834 
    835 int
    836 soconnect2(struct socket *so1, struct socket *so2)
    837 {
    838 	KASSERT(solocked2(so1, so2));
    839 
    840 	return (*so1->so_proto->pr_usrreqs->pr_generic)(so1,
    841 	    PRU_CONNECT2, NULL, (struct mbuf *)so2, NULL, NULL);
    842 }
    843 
    844 int
    845 sodisconnect(struct socket *so)
    846 {
    847 	int	error;
    848 
    849 	KASSERT(solocked(so));
    850 
    851 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    852 		error = ENOTCONN;
    853 	} else if (so->so_state & SS_ISDISCONNECTING) {
    854 		error = EALREADY;
    855 	} else {
    856 		error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
    857 		    PRU_DISCONNECT, NULL, NULL, NULL, NULL);
    858 	}
    859 	return (error);
    860 }
    861 
    862 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    863 /*
    864  * Send on a socket.
    865  * If send must go all at once and message is larger than
    866  * send buffering, then hard error.
    867  * Lock against other senders.
    868  * If must go all at once and not enough room now, then
    869  * inform user that this would block and do nothing.
    870  * Otherwise, if nonblocking, send as much as possible.
    871  * The data to be sent is described by "uio" if nonzero,
    872  * otherwise by the mbuf chain "top" (which must be null
    873  * if uio is not).  Data provided in mbuf chain must be small
    874  * enough to send all at once.
    875  *
    876  * Returns nonzero on error, timeout or signal; callers
    877  * must check for short counts if EINTR/ERESTART are returned.
    878  * Data and control buffers are freed on return.
    879  */
    880 int
    881 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    882 	struct mbuf *control, int flags, struct lwp *l)
    883 {
    884 	struct mbuf	**mp, *m;
    885 	long		space, len, resid, clen, mlen;
    886 	int		error, s, dontroute, atomic;
    887 	short		wakeup_state = 0;
    888 
    889 	clen = 0;
    890 
    891 	/*
    892 	 * solock() provides atomicity of access.  splsoftnet() prevents
    893 	 * protocol processing soft interrupts from interrupting us and
    894 	 * blocking (expensive).
    895 	 */
    896 	s = splsoftnet();
    897 	solock(so);
    898 	atomic = sosendallatonce(so) || top;
    899 	if (uio)
    900 		resid = uio->uio_resid;
    901 	else
    902 		resid = top->m_pkthdr.len;
    903 	/*
    904 	 * In theory resid should be unsigned.
    905 	 * However, space must be signed, as it might be less than 0
    906 	 * if we over-committed, and we must use a signed comparison
    907 	 * of space and resid.  On the other hand, a negative resid
    908 	 * causes us to loop sending 0-length segments to the protocol.
    909 	 */
    910 	if (resid < 0) {
    911 		error = EINVAL;
    912 		goto out;
    913 	}
    914 	dontroute =
    915 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    916 	    (so->so_proto->pr_flags & PR_ATOMIC);
    917 	l->l_ru.ru_msgsnd++;
    918 	if (control)
    919 		clen = control->m_len;
    920  restart:
    921 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    922 		goto out;
    923 	do {
    924 		if (so->so_state & SS_CANTSENDMORE) {
    925 			error = EPIPE;
    926 			goto release;
    927 		}
    928 		if (so->so_error) {
    929 			error = so->so_error;
    930 			so->so_error = 0;
    931 			goto release;
    932 		}
    933 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    934 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    935 				if (resid || clen == 0) {
    936 					error = ENOTCONN;
    937 					goto release;
    938 				}
    939 			} else if (addr == 0) {
    940 				error = EDESTADDRREQ;
    941 				goto release;
    942 			}
    943 		}
    944 		space = sbspace(&so->so_snd);
    945 		if (flags & MSG_OOB)
    946 			space += 1024;
    947 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    948 		    clen > so->so_snd.sb_hiwat) {
    949 			error = EMSGSIZE;
    950 			goto release;
    951 		}
    952 		if (space < resid + clen &&
    953 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    954 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
    955 				error = EWOULDBLOCK;
    956 				goto release;
    957 			}
    958 			sbunlock(&so->so_snd);
    959 			if (wakeup_state & SS_RESTARTSYS) {
    960 				error = ERESTART;
    961 				goto out;
    962 			}
    963 			error = sbwait(&so->so_snd);
    964 			if (error)
    965 				goto out;
    966 			wakeup_state = so->so_state;
    967 			goto restart;
    968 		}
    969 		wakeup_state = 0;
    970 		mp = &top;
    971 		space -= clen;
    972 		do {
    973 			if (uio == NULL) {
    974 				/*
    975 				 * Data is prepackaged in "top".
    976 				 */
    977 				resid = 0;
    978 				if (flags & MSG_EOR)
    979 					top->m_flags |= M_EOR;
    980 			} else do {
    981 				sounlock(so);
    982 				splx(s);
    983 				if (top == NULL) {
    984 					m = m_gethdr(M_WAIT, MT_DATA);
    985 					mlen = MHLEN;
    986 					m->m_pkthdr.len = 0;
    987 					m->m_pkthdr.rcvif = NULL;
    988 				} else {
    989 					m = m_get(M_WAIT, MT_DATA);
    990 					mlen = MLEN;
    991 				}
    992 				MCLAIM(m, so->so_snd.sb_mowner);
    993 				if (sock_loan_thresh >= 0 &&
    994 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
    995 				    space >= sock_loan_thresh &&
    996 				    (len = sosend_loan(so, uio, m,
    997 						       space)) != 0) {
    998 					SOSEND_COUNTER_INCR(&sosend_loan_big);
    999 					space -= len;
   1000 					goto have_data;
   1001 				}
   1002 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
   1003 					SOSEND_COUNTER_INCR(&sosend_copy_big);
   1004 					m_clget(m, M_DONTWAIT);
   1005 					if ((m->m_flags & M_EXT) == 0)
   1006 						goto nopages;
   1007 					mlen = MCLBYTES;
   1008 					if (atomic && top == 0) {
   1009 						len = lmin(MCLBYTES - max_hdr,
   1010 						    resid);
   1011 						m->m_data += max_hdr;
   1012 					} else
   1013 						len = lmin(MCLBYTES, resid);
   1014 					space -= len;
   1015 				} else {
   1016  nopages:
   1017 					SOSEND_COUNTER_INCR(&sosend_copy_small);
   1018 					len = lmin(lmin(mlen, resid), space);
   1019 					space -= len;
   1020 					/*
   1021 					 * For datagram protocols, leave room
   1022 					 * for protocol headers in first mbuf.
   1023 					 */
   1024 					if (atomic && top == 0 && len < mlen)
   1025 						MH_ALIGN(m, len);
   1026 				}
   1027 				error = uiomove(mtod(m, void *), (int)len, uio);
   1028  have_data:
   1029 				resid = uio->uio_resid;
   1030 				m->m_len = len;
   1031 				*mp = m;
   1032 				top->m_pkthdr.len += len;
   1033 				s = splsoftnet();
   1034 				solock(so);
   1035 				if (error != 0)
   1036 					goto release;
   1037 				mp = &m->m_next;
   1038 				if (resid <= 0) {
   1039 					if (flags & MSG_EOR)
   1040 						top->m_flags |= M_EOR;
   1041 					break;
   1042 				}
   1043 			} while (space > 0 && atomic);
   1044 
   1045 			if (so->so_state & SS_CANTSENDMORE) {
   1046 				error = EPIPE;
   1047 				goto release;
   1048 			}
   1049 			if (dontroute)
   1050 				so->so_options |= SO_DONTROUTE;
   1051 			if (resid > 0)
   1052 				so->so_state |= SS_MORETOCOME;
   1053 			if (flags & MSG_OOB)
   1054 				error = (*so->so_proto->pr_usrreqs->pr_sendoob)(so,
   1055 				    top, control);
   1056 			else
   1057 				error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
   1058 				    PRU_SEND, top, addr, control, curlwp);
   1059 			if (dontroute)
   1060 				so->so_options &= ~SO_DONTROUTE;
   1061 			if (resid > 0)
   1062 				so->so_state &= ~SS_MORETOCOME;
   1063 			clen = 0;
   1064 			control = NULL;
   1065 			top = NULL;
   1066 			mp = &top;
   1067 			if (error != 0)
   1068 				goto release;
   1069 		} while (resid && space > 0);
   1070 	} while (resid);
   1071 
   1072  release:
   1073 	sbunlock(&so->so_snd);
   1074  out:
   1075 	sounlock(so);
   1076 	splx(s);
   1077 	if (top)
   1078 		m_freem(top);
   1079 	if (control)
   1080 		m_freem(control);
   1081 	return (error);
   1082 }
   1083 
   1084 /*
   1085  * Following replacement or removal of the first mbuf on the first
   1086  * mbuf chain of a socket buffer, push necessary state changes back
   1087  * into the socket buffer so that other consumers see the values
   1088  * consistently.  'nextrecord' is the callers locally stored value of
   1089  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1090  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1091  */
   1092 static void
   1093 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1094 {
   1095 
   1096 	KASSERT(solocked(sb->sb_so));
   1097 
   1098 	/*
   1099 	 * First, update for the new value of nextrecord.  If necessary,
   1100 	 * make it the first record.
   1101 	 */
   1102 	if (sb->sb_mb != NULL)
   1103 		sb->sb_mb->m_nextpkt = nextrecord;
   1104 	else
   1105 		sb->sb_mb = nextrecord;
   1106 
   1107         /*
   1108          * Now update any dependent socket buffer fields to reflect
   1109          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1110          * the addition of a second clause that takes care of the
   1111          * case where sb_mb has been updated, but remains the last
   1112          * record.
   1113          */
   1114         if (sb->sb_mb == NULL) {
   1115                 sb->sb_mbtail = NULL;
   1116                 sb->sb_lastrecord = NULL;
   1117         } else if (sb->sb_mb->m_nextpkt == NULL)
   1118                 sb->sb_lastrecord = sb->sb_mb;
   1119 }
   1120 
   1121 /*
   1122  * Implement receive operations on a socket.
   1123  * We depend on the way that records are added to the sockbuf
   1124  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1125  * must begin with an address if the protocol so specifies,
   1126  * followed by an optional mbuf or mbufs containing ancillary data,
   1127  * and then zero or more mbufs of data.
   1128  * In order to avoid blocking network interrupts for the entire time here,
   1129  * we splx() while doing the actual copy to user space.
   1130  * Although the sockbuf is locked, new data may still be appended,
   1131  * and thus we must maintain consistency of the sockbuf during that time.
   1132  *
   1133  * The caller may receive the data as a single mbuf chain by supplying
   1134  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1135  * only for the count in uio_resid.
   1136  */
   1137 int
   1138 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1139 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1140 {
   1141 	struct lwp *l = curlwp;
   1142 	struct mbuf	*m, **mp, *mt;
   1143 	size_t len, offset, moff, orig_resid;
   1144 	int atomic, flags, error, s, type;
   1145 	const struct protosw	*pr;
   1146 	struct mbuf	*nextrecord;
   1147 	int		mbuf_removed = 0;
   1148 	const struct domain *dom;
   1149 	short		wakeup_state = 0;
   1150 
   1151 	pr = so->so_proto;
   1152 	atomic = pr->pr_flags & PR_ATOMIC;
   1153 	dom = pr->pr_domain;
   1154 	mp = mp0;
   1155 	type = 0;
   1156 	orig_resid = uio->uio_resid;
   1157 
   1158 	if (paddr != NULL)
   1159 		*paddr = NULL;
   1160 	if (controlp != NULL)
   1161 		*controlp = NULL;
   1162 	if (flagsp != NULL)
   1163 		flags = *flagsp &~ MSG_EOR;
   1164 	else
   1165 		flags = 0;
   1166 
   1167 	if (flags & MSG_OOB) {
   1168 		m = m_get(M_WAIT, MT_DATA);
   1169 		solock(so);
   1170 		error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
   1171 		sounlock(so);
   1172 		if (error)
   1173 			goto bad;
   1174 		do {
   1175 			error = uiomove(mtod(m, void *),
   1176 			    MIN(uio->uio_resid, m->m_len), uio);
   1177 			m = m_free(m);
   1178 		} while (uio->uio_resid > 0 && error == 0 && m);
   1179  bad:
   1180 		if (m != NULL)
   1181 			m_freem(m);
   1182 		return error;
   1183 	}
   1184 	if (mp != NULL)
   1185 		*mp = NULL;
   1186 
   1187 	/*
   1188 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1189 	 * protocol processing soft interrupts from interrupting us and
   1190 	 * blocking (expensive).
   1191 	 */
   1192 	s = splsoftnet();
   1193 	solock(so);
   1194  restart:
   1195 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1196 		sounlock(so);
   1197 		splx(s);
   1198 		return error;
   1199 	}
   1200 
   1201 	m = so->so_rcv.sb_mb;
   1202 	/*
   1203 	 * If we have less data than requested, block awaiting more
   1204 	 * (subject to any timeout) if:
   1205 	 *   1. the current count is less than the low water mark,
   1206 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1207 	 *	receive operation at once if we block (resid <= hiwat), or
   1208 	 *   3. MSG_DONTWAIT is not set.
   1209 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1210 	 * we have to do the receive in sections, and thus risk returning
   1211 	 * a short count if a timeout or signal occurs after we start.
   1212 	 */
   1213 	if (m == NULL ||
   1214 	    ((flags & MSG_DONTWAIT) == 0 &&
   1215 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1216 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1217 	      ((flags & MSG_WAITALL) &&
   1218 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1219 	     m->m_nextpkt == NULL && !atomic)) {
   1220 #ifdef DIAGNOSTIC
   1221 		if (m == NULL && so->so_rcv.sb_cc)
   1222 			panic("receive 1");
   1223 #endif
   1224 		if (so->so_error) {
   1225 			if (m != NULL)
   1226 				goto dontblock;
   1227 			error = so->so_error;
   1228 			if ((flags & MSG_PEEK) == 0)
   1229 				so->so_error = 0;
   1230 			goto release;
   1231 		}
   1232 		if (so->so_state & SS_CANTRCVMORE) {
   1233 			if (m != NULL)
   1234 				goto dontblock;
   1235 			else
   1236 				goto release;
   1237 		}
   1238 		for (; m != NULL; m = m->m_next)
   1239 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1240 				m = so->so_rcv.sb_mb;
   1241 				goto dontblock;
   1242 			}
   1243 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1244 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1245 			error = ENOTCONN;
   1246 			goto release;
   1247 		}
   1248 		if (uio->uio_resid == 0)
   1249 			goto release;
   1250 		if ((so->so_state & SS_NBIO) ||
   1251 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
   1252 			error = EWOULDBLOCK;
   1253 			goto release;
   1254 		}
   1255 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1256 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1257 		sbunlock(&so->so_rcv);
   1258 		if (wakeup_state & SS_RESTARTSYS)
   1259 			error = ERESTART;
   1260 		else
   1261 			error = sbwait(&so->so_rcv);
   1262 		if (error != 0) {
   1263 			sounlock(so);
   1264 			splx(s);
   1265 			return error;
   1266 		}
   1267 		wakeup_state = so->so_state;
   1268 		goto restart;
   1269 	}
   1270  dontblock:
   1271 	/*
   1272 	 * On entry here, m points to the first record of the socket buffer.
   1273 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1274 	 * pointer to the next record in the socket buffer.  We must keep the
   1275 	 * various socket buffer pointers and local stack versions of the
   1276 	 * pointers in sync, pushing out modifications before dropping the
   1277 	 * socket lock, and re-reading them when picking it up.
   1278 	 *
   1279 	 * Otherwise, we will race with the network stack appending new data
   1280 	 * or records onto the socket buffer by using inconsistent/stale
   1281 	 * versions of the field, possibly resulting in socket buffer
   1282 	 * corruption.
   1283 	 *
   1284 	 * By holding the high-level sblock(), we prevent simultaneous
   1285 	 * readers from pulling off the front of the socket buffer.
   1286 	 */
   1287 	if (l != NULL)
   1288 		l->l_ru.ru_msgrcv++;
   1289 	KASSERT(m == so->so_rcv.sb_mb);
   1290 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1291 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1292 	nextrecord = m->m_nextpkt;
   1293 	if (pr->pr_flags & PR_ADDR) {
   1294 #ifdef DIAGNOSTIC
   1295 		if (m->m_type != MT_SONAME)
   1296 			panic("receive 1a");
   1297 #endif
   1298 		orig_resid = 0;
   1299 		if (flags & MSG_PEEK) {
   1300 			if (paddr)
   1301 				*paddr = m_copy(m, 0, m->m_len);
   1302 			m = m->m_next;
   1303 		} else {
   1304 			sbfree(&so->so_rcv, m);
   1305 			mbuf_removed = 1;
   1306 			if (paddr != NULL) {
   1307 				*paddr = m;
   1308 				so->so_rcv.sb_mb = m->m_next;
   1309 				m->m_next = NULL;
   1310 				m = so->so_rcv.sb_mb;
   1311 			} else {
   1312 				MFREE(m, so->so_rcv.sb_mb);
   1313 				m = so->so_rcv.sb_mb;
   1314 			}
   1315 			sbsync(&so->so_rcv, nextrecord);
   1316 		}
   1317 	}
   1318 
   1319 	/*
   1320 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1321 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1322 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1323 	 * perform externalization (or freeing if controlp == NULL).
   1324 	 */
   1325 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1326 		struct mbuf *cm = NULL, *cmn;
   1327 		struct mbuf **cme = &cm;
   1328 
   1329 		do {
   1330 			if (flags & MSG_PEEK) {
   1331 				if (controlp != NULL) {
   1332 					*controlp = m_copy(m, 0, m->m_len);
   1333 					controlp = &(*controlp)->m_next;
   1334 				}
   1335 				m = m->m_next;
   1336 			} else {
   1337 				sbfree(&so->so_rcv, m);
   1338 				so->so_rcv.sb_mb = m->m_next;
   1339 				m->m_next = NULL;
   1340 				*cme = m;
   1341 				cme = &(*cme)->m_next;
   1342 				m = so->so_rcv.sb_mb;
   1343 			}
   1344 		} while (m != NULL && m->m_type == MT_CONTROL);
   1345 		if ((flags & MSG_PEEK) == 0)
   1346 			sbsync(&so->so_rcv, nextrecord);
   1347 		for (; cm != NULL; cm = cmn) {
   1348 			cmn = cm->m_next;
   1349 			cm->m_next = NULL;
   1350 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1351 			if (controlp != NULL) {
   1352 				if (dom->dom_externalize != NULL &&
   1353 				    type == SCM_RIGHTS) {
   1354 					sounlock(so);
   1355 					splx(s);
   1356 					error = (*dom->dom_externalize)(cm, l,
   1357 					    (flags & MSG_CMSG_CLOEXEC) ?
   1358 					    O_CLOEXEC : 0);
   1359 					s = splsoftnet();
   1360 					solock(so);
   1361 				}
   1362 				*controlp = cm;
   1363 				while (*controlp != NULL)
   1364 					controlp = &(*controlp)->m_next;
   1365 			} else {
   1366 				/*
   1367 				 * Dispose of any SCM_RIGHTS message that went
   1368 				 * through the read path rather than recv.
   1369 				 */
   1370 				if (dom->dom_dispose != NULL &&
   1371 				    type == SCM_RIGHTS) {
   1372 				    	sounlock(so);
   1373 					(*dom->dom_dispose)(cm);
   1374 					solock(so);
   1375 				}
   1376 				m_freem(cm);
   1377 			}
   1378 		}
   1379 		if (m != NULL)
   1380 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1381 		else
   1382 			nextrecord = so->so_rcv.sb_mb;
   1383 		orig_resid = 0;
   1384 	}
   1385 
   1386 	/* If m is non-NULL, we have some data to read. */
   1387 	if (__predict_true(m != NULL)) {
   1388 		type = m->m_type;
   1389 		if (type == MT_OOBDATA)
   1390 			flags |= MSG_OOB;
   1391 	}
   1392 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1393 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1394 
   1395 	moff = 0;
   1396 	offset = 0;
   1397 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1398 		if (m->m_type == MT_OOBDATA) {
   1399 			if (type != MT_OOBDATA)
   1400 				break;
   1401 		} else if (type == MT_OOBDATA)
   1402 			break;
   1403 #ifdef DIAGNOSTIC
   1404 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1405 			panic("receive 3");
   1406 #endif
   1407 		so->so_state &= ~SS_RCVATMARK;
   1408 		wakeup_state = 0;
   1409 		len = uio->uio_resid;
   1410 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1411 			len = so->so_oobmark - offset;
   1412 		if (len > m->m_len - moff)
   1413 			len = m->m_len - moff;
   1414 		/*
   1415 		 * If mp is set, just pass back the mbufs.
   1416 		 * Otherwise copy them out via the uio, then free.
   1417 		 * Sockbuf must be consistent here (points to current mbuf,
   1418 		 * it points to next record) when we drop priority;
   1419 		 * we must note any additions to the sockbuf when we
   1420 		 * block interrupts again.
   1421 		 */
   1422 		if (mp == NULL) {
   1423 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1424 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1425 			sounlock(so);
   1426 			splx(s);
   1427 			error = uiomove(mtod(m, char *) + moff, len, uio);
   1428 			s = splsoftnet();
   1429 			solock(so);
   1430 			if (error != 0) {
   1431 				/*
   1432 				 * If any part of the record has been removed
   1433 				 * (such as the MT_SONAME mbuf, which will
   1434 				 * happen when PR_ADDR, and thus also
   1435 				 * PR_ATOMIC, is set), then drop the entire
   1436 				 * record to maintain the atomicity of the
   1437 				 * receive operation.
   1438 				 *
   1439 				 * This avoids a later panic("receive 1a")
   1440 				 * when compiled with DIAGNOSTIC.
   1441 				 */
   1442 				if (m && mbuf_removed && atomic)
   1443 					(void) sbdroprecord(&so->so_rcv);
   1444 
   1445 				goto release;
   1446 			}
   1447 		} else
   1448 			uio->uio_resid -= len;
   1449 		if (len == m->m_len - moff) {
   1450 			if (m->m_flags & M_EOR)
   1451 				flags |= MSG_EOR;
   1452 			if (flags & MSG_PEEK) {
   1453 				m = m->m_next;
   1454 				moff = 0;
   1455 			} else {
   1456 				nextrecord = m->m_nextpkt;
   1457 				sbfree(&so->so_rcv, m);
   1458 				if (mp) {
   1459 					*mp = m;
   1460 					mp = &m->m_next;
   1461 					so->so_rcv.sb_mb = m = m->m_next;
   1462 					*mp = NULL;
   1463 				} else {
   1464 					MFREE(m, so->so_rcv.sb_mb);
   1465 					m = so->so_rcv.sb_mb;
   1466 				}
   1467 				/*
   1468 				 * If m != NULL, we also know that
   1469 				 * so->so_rcv.sb_mb != NULL.
   1470 				 */
   1471 				KASSERT(so->so_rcv.sb_mb == m);
   1472 				if (m) {
   1473 					m->m_nextpkt = nextrecord;
   1474 					if (nextrecord == NULL)
   1475 						so->so_rcv.sb_lastrecord = m;
   1476 				} else {
   1477 					so->so_rcv.sb_mb = nextrecord;
   1478 					SB_EMPTY_FIXUP(&so->so_rcv);
   1479 				}
   1480 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1481 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1482 			}
   1483 		} else if (flags & MSG_PEEK)
   1484 			moff += len;
   1485 		else {
   1486 			if (mp != NULL) {
   1487 				mt = m_copym(m, 0, len, M_NOWAIT);
   1488 				if (__predict_false(mt == NULL)) {
   1489 					sounlock(so);
   1490 					mt = m_copym(m, 0, len, M_WAIT);
   1491 					solock(so);
   1492 				}
   1493 				*mp = mt;
   1494 			}
   1495 			m->m_data += len;
   1496 			m->m_len -= len;
   1497 			so->so_rcv.sb_cc -= len;
   1498 		}
   1499 		if (so->so_oobmark) {
   1500 			if ((flags & MSG_PEEK) == 0) {
   1501 				so->so_oobmark -= len;
   1502 				if (so->so_oobmark == 0) {
   1503 					so->so_state |= SS_RCVATMARK;
   1504 					break;
   1505 				}
   1506 			} else {
   1507 				offset += len;
   1508 				if (offset == so->so_oobmark)
   1509 					break;
   1510 			}
   1511 		}
   1512 		if (flags & MSG_EOR)
   1513 			break;
   1514 		/*
   1515 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1516 		 * we must not quit until "uio->uio_resid == 0" or an error
   1517 		 * termination.  If a signal/timeout occurs, return
   1518 		 * with a short count but without error.
   1519 		 * Keep sockbuf locked against other readers.
   1520 		 */
   1521 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1522 		    !sosendallatonce(so) && !nextrecord) {
   1523 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1524 				break;
   1525 			/*
   1526 			 * If we are peeking and the socket receive buffer is
   1527 			 * full, stop since we can't get more data to peek at.
   1528 			 */
   1529 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1530 				break;
   1531 			/*
   1532 			 * If we've drained the socket buffer, tell the
   1533 			 * protocol in case it needs to do something to
   1534 			 * get it filled again.
   1535 			 */
   1536 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1537 				(*pr->pr_usrreqs->pr_generic)(so, PRU_RCVD,
   1538 				    NULL, (struct mbuf *)(long)flags, NULL, l);
   1539 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1540 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1541 			if (wakeup_state & SS_RESTARTSYS)
   1542 				error = ERESTART;
   1543 			else
   1544 				error = sbwait(&so->so_rcv);
   1545 			if (error != 0) {
   1546 				sbunlock(&so->so_rcv);
   1547 				sounlock(so);
   1548 				splx(s);
   1549 				return 0;
   1550 			}
   1551 			if ((m = so->so_rcv.sb_mb) != NULL)
   1552 				nextrecord = m->m_nextpkt;
   1553 			wakeup_state = so->so_state;
   1554 		}
   1555 	}
   1556 
   1557 	if (m && atomic) {
   1558 		flags |= MSG_TRUNC;
   1559 		if ((flags & MSG_PEEK) == 0)
   1560 			(void) sbdroprecord(&so->so_rcv);
   1561 	}
   1562 	if ((flags & MSG_PEEK) == 0) {
   1563 		if (m == NULL) {
   1564 			/*
   1565 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1566 			 * part makes sure sb_lastrecord is up-to-date if
   1567 			 * there is still data in the socket buffer.
   1568 			 */
   1569 			so->so_rcv.sb_mb = nextrecord;
   1570 			if (so->so_rcv.sb_mb == NULL) {
   1571 				so->so_rcv.sb_mbtail = NULL;
   1572 				so->so_rcv.sb_lastrecord = NULL;
   1573 			} else if (nextrecord->m_nextpkt == NULL)
   1574 				so->so_rcv.sb_lastrecord = nextrecord;
   1575 		}
   1576 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1577 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1578 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1579 			(*pr->pr_usrreqs->pr_generic)(so, PRU_RCVD, NULL,
   1580 			    (struct mbuf *)(long)flags, NULL, l);
   1581 	}
   1582 	if (orig_resid == uio->uio_resid && orig_resid &&
   1583 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1584 		sbunlock(&so->so_rcv);
   1585 		goto restart;
   1586 	}
   1587 
   1588 	if (flagsp != NULL)
   1589 		*flagsp |= flags;
   1590  release:
   1591 	sbunlock(&so->so_rcv);
   1592 	sounlock(so);
   1593 	splx(s);
   1594 	return error;
   1595 }
   1596 
   1597 int
   1598 soshutdown(struct socket *so, int how)
   1599 {
   1600 	const struct protosw	*pr;
   1601 	int	error;
   1602 
   1603 	KASSERT(solocked(so));
   1604 
   1605 	pr = so->so_proto;
   1606 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1607 		return (EINVAL);
   1608 
   1609 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1610 		sorflush(so);
   1611 		error = 0;
   1612 	}
   1613 	if (how == SHUT_WR || how == SHUT_RDWR)
   1614 		error = (*pr->pr_usrreqs->pr_generic)(so,
   1615 		    PRU_SHUTDOWN, NULL, NULL, NULL, NULL);
   1616 
   1617 	return error;
   1618 }
   1619 
   1620 void
   1621 sorestart(struct socket *so)
   1622 {
   1623 	/*
   1624 	 * An application has called close() on an fd on which another
   1625 	 * of its threads has called a socket system call.
   1626 	 * Mark this and wake everyone up, and code that would block again
   1627 	 * instead returns ERESTART.
   1628 	 * On system call re-entry the fd is validated and EBADF returned.
   1629 	 * Any other fd will block again on the 2nd syscall.
   1630 	 */
   1631 	solock(so);
   1632 	so->so_state |= SS_RESTARTSYS;
   1633 	cv_broadcast(&so->so_cv);
   1634 	cv_broadcast(&so->so_snd.sb_cv);
   1635 	cv_broadcast(&so->so_rcv.sb_cv);
   1636 	sounlock(so);
   1637 }
   1638 
   1639 void
   1640 sorflush(struct socket *so)
   1641 {
   1642 	struct sockbuf	*sb, asb;
   1643 	const struct protosw	*pr;
   1644 
   1645 	KASSERT(solocked(so));
   1646 
   1647 	sb = &so->so_rcv;
   1648 	pr = so->so_proto;
   1649 	socantrcvmore(so);
   1650 	sb->sb_flags |= SB_NOINTR;
   1651 	(void )sblock(sb, M_WAITOK);
   1652 	sbunlock(sb);
   1653 	asb = *sb;
   1654 	/*
   1655 	 * Clear most of the sockbuf structure, but leave some of the
   1656 	 * fields valid.
   1657 	 */
   1658 	memset(&sb->sb_startzero, 0,
   1659 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1660 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1661 		sounlock(so);
   1662 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1663 		solock(so);
   1664 	}
   1665 	sbrelease(&asb, so);
   1666 }
   1667 
   1668 /*
   1669  * internal set SOL_SOCKET options
   1670  */
   1671 static int
   1672 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1673 {
   1674 	int error = EINVAL, opt;
   1675 	int optval = 0; /* XXX: gcc */
   1676 	struct linger l;
   1677 	struct timeval tv;
   1678 
   1679 	switch ((opt = sopt->sopt_name)) {
   1680 
   1681 	case SO_ACCEPTFILTER:
   1682 		error = accept_filt_setopt(so, sopt);
   1683 		KASSERT(solocked(so));
   1684 		break;
   1685 
   1686   	case SO_LINGER:
   1687  		error = sockopt_get(sopt, &l, sizeof(l));
   1688 		solock(so);
   1689  		if (error)
   1690  			break;
   1691  		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1692  		    l.l_linger > (INT_MAX / hz)) {
   1693 			error = EDOM;
   1694 			break;
   1695 		}
   1696  		so->so_linger = l.l_linger;
   1697  		if (l.l_onoff)
   1698  			so->so_options |= SO_LINGER;
   1699  		else
   1700  			so->so_options &= ~SO_LINGER;
   1701    		break;
   1702 
   1703 	case SO_DEBUG:
   1704 	case SO_KEEPALIVE:
   1705 	case SO_DONTROUTE:
   1706 	case SO_USELOOPBACK:
   1707 	case SO_BROADCAST:
   1708 	case SO_REUSEADDR:
   1709 	case SO_REUSEPORT:
   1710 	case SO_OOBINLINE:
   1711 	case SO_TIMESTAMP:
   1712 	case SO_NOSIGPIPE:
   1713 #ifdef SO_OTIMESTAMP
   1714 	case SO_OTIMESTAMP:
   1715 #endif
   1716 		error = sockopt_getint(sopt, &optval);
   1717 		solock(so);
   1718 		if (error)
   1719 			break;
   1720 		if (optval)
   1721 			so->so_options |= opt;
   1722 		else
   1723 			so->so_options &= ~opt;
   1724 		break;
   1725 
   1726 	case SO_SNDBUF:
   1727 	case SO_RCVBUF:
   1728 	case SO_SNDLOWAT:
   1729 	case SO_RCVLOWAT:
   1730 		error = sockopt_getint(sopt, &optval);
   1731 		solock(so);
   1732 		if (error)
   1733 			break;
   1734 
   1735 		/*
   1736 		 * Values < 1 make no sense for any of these
   1737 		 * options, so disallow them.
   1738 		 */
   1739 		if (optval < 1) {
   1740 			error = EINVAL;
   1741 			break;
   1742 		}
   1743 
   1744 		switch (opt) {
   1745 		case SO_SNDBUF:
   1746 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
   1747 				error = ENOBUFS;
   1748 				break;
   1749 			}
   1750 			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1751 			break;
   1752 
   1753 		case SO_RCVBUF:
   1754 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
   1755 				error = ENOBUFS;
   1756 				break;
   1757 			}
   1758 			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1759 			break;
   1760 
   1761 		/*
   1762 		 * Make sure the low-water is never greater than
   1763 		 * the high-water.
   1764 		 */
   1765 		case SO_SNDLOWAT:
   1766 			if (optval > so->so_snd.sb_hiwat)
   1767 				optval = so->so_snd.sb_hiwat;
   1768 
   1769 			so->so_snd.sb_lowat = optval;
   1770 			break;
   1771 
   1772 		case SO_RCVLOWAT:
   1773 			if (optval > so->so_rcv.sb_hiwat)
   1774 				optval = so->so_rcv.sb_hiwat;
   1775 
   1776 			so->so_rcv.sb_lowat = optval;
   1777 			break;
   1778 		}
   1779 		break;
   1780 
   1781 #ifdef COMPAT_50
   1782 	case SO_OSNDTIMEO:
   1783 	case SO_ORCVTIMEO: {
   1784 		struct timeval50 otv;
   1785 		error = sockopt_get(sopt, &otv, sizeof(otv));
   1786 		if (error) {
   1787 			solock(so);
   1788 			break;
   1789 		}
   1790 		timeval50_to_timeval(&otv, &tv);
   1791 		opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
   1792 		error = 0;
   1793 		/*FALLTHROUGH*/
   1794 	}
   1795 #endif /* COMPAT_50 */
   1796 
   1797 	case SO_SNDTIMEO:
   1798 	case SO_RCVTIMEO:
   1799 		if (error)
   1800 			error = sockopt_get(sopt, &tv, sizeof(tv));
   1801 		solock(so);
   1802 		if (error)
   1803 			break;
   1804 
   1805 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
   1806 			error = EDOM;
   1807 			break;
   1808 		}
   1809 
   1810 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1811 		if (optval == 0 && tv.tv_usec != 0)
   1812 			optval = 1;
   1813 
   1814 		switch (opt) {
   1815 		case SO_SNDTIMEO:
   1816 			so->so_snd.sb_timeo = optval;
   1817 			break;
   1818 		case SO_RCVTIMEO:
   1819 			so->so_rcv.sb_timeo = optval;
   1820 			break;
   1821 		}
   1822 		break;
   1823 
   1824 	default:
   1825 		solock(so);
   1826 		error = ENOPROTOOPT;
   1827 		break;
   1828 	}
   1829 	KASSERT(solocked(so));
   1830 	return error;
   1831 }
   1832 
   1833 int
   1834 sosetopt(struct socket *so, struct sockopt *sopt)
   1835 {
   1836 	int error, prerr;
   1837 
   1838 	if (sopt->sopt_level == SOL_SOCKET) {
   1839 		error = sosetopt1(so, sopt);
   1840 		KASSERT(solocked(so));
   1841 	} else {
   1842 		error = ENOPROTOOPT;
   1843 		solock(so);
   1844 	}
   1845 
   1846 	if ((error == 0 || error == ENOPROTOOPT) &&
   1847 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1848 		/* give the protocol stack a shot */
   1849 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1850 		if (prerr == 0)
   1851 			error = 0;
   1852 		else if (prerr != ENOPROTOOPT)
   1853 			error = prerr;
   1854 	}
   1855 	sounlock(so);
   1856 	return error;
   1857 }
   1858 
   1859 /*
   1860  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1861  */
   1862 int
   1863 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1864     const void *val, size_t valsize)
   1865 {
   1866 	struct sockopt sopt;
   1867 	int error;
   1868 
   1869 	KASSERT(valsize == 0 || val != NULL);
   1870 
   1871 	sockopt_init(&sopt, level, name, valsize);
   1872 	sockopt_set(&sopt, val, valsize);
   1873 
   1874 	error = sosetopt(so, &sopt);
   1875 
   1876 	sockopt_destroy(&sopt);
   1877 
   1878 	return error;
   1879 }
   1880 
   1881 /*
   1882  * internal get SOL_SOCKET options
   1883  */
   1884 static int
   1885 sogetopt1(struct socket *so, struct sockopt *sopt)
   1886 {
   1887 	int error, optval, opt;
   1888 	struct linger l;
   1889 	struct timeval tv;
   1890 
   1891 	switch ((opt = sopt->sopt_name)) {
   1892 
   1893 	case SO_ACCEPTFILTER:
   1894 		error = accept_filt_getopt(so, sopt);
   1895 		break;
   1896 
   1897 	case SO_LINGER:
   1898 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1899 		l.l_linger = so->so_linger;
   1900 
   1901 		error = sockopt_set(sopt, &l, sizeof(l));
   1902 		break;
   1903 
   1904 	case SO_USELOOPBACK:
   1905 	case SO_DONTROUTE:
   1906 	case SO_DEBUG:
   1907 	case SO_KEEPALIVE:
   1908 	case SO_REUSEADDR:
   1909 	case SO_REUSEPORT:
   1910 	case SO_BROADCAST:
   1911 	case SO_OOBINLINE:
   1912 	case SO_TIMESTAMP:
   1913 	case SO_NOSIGPIPE:
   1914 #ifdef SO_OTIMESTAMP
   1915 	case SO_OTIMESTAMP:
   1916 #endif
   1917 	case SO_ACCEPTCONN:
   1918 		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
   1919 		break;
   1920 
   1921 	case SO_TYPE:
   1922 		error = sockopt_setint(sopt, so->so_type);
   1923 		break;
   1924 
   1925 	case SO_ERROR:
   1926 		error = sockopt_setint(sopt, so->so_error);
   1927 		so->so_error = 0;
   1928 		break;
   1929 
   1930 	case SO_SNDBUF:
   1931 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1932 		break;
   1933 
   1934 	case SO_RCVBUF:
   1935 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1936 		break;
   1937 
   1938 	case SO_SNDLOWAT:
   1939 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1940 		break;
   1941 
   1942 	case SO_RCVLOWAT:
   1943 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1944 		break;
   1945 
   1946 #ifdef COMPAT_50
   1947 	case SO_OSNDTIMEO:
   1948 	case SO_ORCVTIMEO: {
   1949 		struct timeval50 otv;
   1950 
   1951 		optval = (opt == SO_OSNDTIMEO ?
   1952 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1953 
   1954 		otv.tv_sec = optval / hz;
   1955 		otv.tv_usec = (optval % hz) * tick;
   1956 
   1957 		error = sockopt_set(sopt, &otv, sizeof(otv));
   1958 		break;
   1959 	}
   1960 #endif /* COMPAT_50 */
   1961 
   1962 	case SO_SNDTIMEO:
   1963 	case SO_RCVTIMEO:
   1964 		optval = (opt == SO_SNDTIMEO ?
   1965 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1966 
   1967 		tv.tv_sec = optval / hz;
   1968 		tv.tv_usec = (optval % hz) * tick;
   1969 
   1970 		error = sockopt_set(sopt, &tv, sizeof(tv));
   1971 		break;
   1972 
   1973 	case SO_OVERFLOWED:
   1974 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   1975 		break;
   1976 
   1977 	default:
   1978 		error = ENOPROTOOPT;
   1979 		break;
   1980 	}
   1981 
   1982 	return (error);
   1983 }
   1984 
   1985 int
   1986 sogetopt(struct socket *so, struct sockopt *sopt)
   1987 {
   1988 	int		error;
   1989 
   1990 	solock(so);
   1991 	if (sopt->sopt_level != SOL_SOCKET) {
   1992 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1993 			error = ((*so->so_proto->pr_ctloutput)
   1994 			    (PRCO_GETOPT, so, sopt));
   1995 		} else
   1996 			error = (ENOPROTOOPT);
   1997 	} else {
   1998 		error = sogetopt1(so, sopt);
   1999 	}
   2000 	sounlock(so);
   2001 	return (error);
   2002 }
   2003 
   2004 /*
   2005  * alloc sockopt data buffer buffer
   2006  *	- will be released at destroy
   2007  */
   2008 static int
   2009 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
   2010 {
   2011 
   2012 	KASSERT(sopt->sopt_size == 0);
   2013 
   2014 	if (len > sizeof(sopt->sopt_buf)) {
   2015 		sopt->sopt_data = kmem_zalloc(len, kmflag);
   2016 		if (sopt->sopt_data == NULL)
   2017 			return ENOMEM;
   2018 	} else
   2019 		sopt->sopt_data = sopt->sopt_buf;
   2020 
   2021 	sopt->sopt_size = len;
   2022 	return 0;
   2023 }
   2024 
   2025 /*
   2026  * initialise sockopt storage
   2027  *	- MAY sleep during allocation
   2028  */
   2029 void
   2030 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   2031 {
   2032 
   2033 	memset(sopt, 0, sizeof(*sopt));
   2034 
   2035 	sopt->sopt_level = level;
   2036 	sopt->sopt_name = name;
   2037 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
   2038 }
   2039 
   2040 /*
   2041  * destroy sockopt storage
   2042  *	- will release any held memory references
   2043  */
   2044 void
   2045 sockopt_destroy(struct sockopt *sopt)
   2046 {
   2047 
   2048 	if (sopt->sopt_data != sopt->sopt_buf)
   2049 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   2050 
   2051 	memset(sopt, 0, sizeof(*sopt));
   2052 }
   2053 
   2054 /*
   2055  * set sockopt value
   2056  *	- value is copied into sockopt
   2057  * 	- memory is allocated when necessary, will not sleep
   2058  */
   2059 int
   2060 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   2061 {
   2062 	int error;
   2063 
   2064 	if (sopt->sopt_size == 0) {
   2065 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2066 		if (error)
   2067 			return error;
   2068 	}
   2069 
   2070 	KASSERT(sopt->sopt_size == len);
   2071 	memcpy(sopt->sopt_data, buf, len);
   2072 	return 0;
   2073 }
   2074 
   2075 /*
   2076  * common case of set sockopt integer value
   2077  */
   2078 int
   2079 sockopt_setint(struct sockopt *sopt, int val)
   2080 {
   2081 
   2082 	return sockopt_set(sopt, &val, sizeof(int));
   2083 }
   2084 
   2085 /*
   2086  * get sockopt value
   2087  *	- correct size must be given
   2088  */
   2089 int
   2090 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   2091 {
   2092 
   2093 	if (sopt->sopt_size != len)
   2094 		return EINVAL;
   2095 
   2096 	memcpy(buf, sopt->sopt_data, len);
   2097 	return 0;
   2098 }
   2099 
   2100 /*
   2101  * common case of get sockopt integer value
   2102  */
   2103 int
   2104 sockopt_getint(const struct sockopt *sopt, int *valp)
   2105 {
   2106 
   2107 	return sockopt_get(sopt, valp, sizeof(int));
   2108 }
   2109 
   2110 /*
   2111  * set sockopt value from mbuf
   2112  *	- ONLY for legacy code
   2113  *	- mbuf is released by sockopt
   2114  *	- will not sleep
   2115  */
   2116 int
   2117 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   2118 {
   2119 	size_t len;
   2120 	int error;
   2121 
   2122 	len = m_length(m);
   2123 
   2124 	if (sopt->sopt_size == 0) {
   2125 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2126 		if (error)
   2127 			return error;
   2128 	}
   2129 
   2130 	KASSERT(sopt->sopt_size == len);
   2131 	m_copydata(m, 0, len, sopt->sopt_data);
   2132 	m_freem(m);
   2133 
   2134 	return 0;
   2135 }
   2136 
   2137 /*
   2138  * get sockopt value into mbuf
   2139  *	- ONLY for legacy code
   2140  *	- mbuf to be released by the caller
   2141  *	- will not sleep
   2142  */
   2143 struct mbuf *
   2144 sockopt_getmbuf(const struct sockopt *sopt)
   2145 {
   2146 	struct mbuf *m;
   2147 
   2148 	if (sopt->sopt_size > MCLBYTES)
   2149 		return NULL;
   2150 
   2151 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   2152 	if (m == NULL)
   2153 		return NULL;
   2154 
   2155 	if (sopt->sopt_size > MLEN) {
   2156 		MCLGET(m, M_DONTWAIT);
   2157 		if ((m->m_flags & M_EXT) == 0) {
   2158 			m_free(m);
   2159 			return NULL;
   2160 		}
   2161 	}
   2162 
   2163 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
   2164 	m->m_len = sopt->sopt_size;
   2165 
   2166 	return m;
   2167 }
   2168 
   2169 void
   2170 sohasoutofband(struct socket *so)
   2171 {
   2172 
   2173 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2174 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
   2175 }
   2176 
   2177 static void
   2178 filt_sordetach(struct knote *kn)
   2179 {
   2180 	struct socket	*so;
   2181 
   2182 	so = ((file_t *)kn->kn_obj)->f_data;
   2183 	solock(so);
   2184 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   2185 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   2186 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2187 	sounlock(so);
   2188 }
   2189 
   2190 /*ARGSUSED*/
   2191 static int
   2192 filt_soread(struct knote *kn, long hint)
   2193 {
   2194 	struct socket	*so;
   2195 	int rv;
   2196 
   2197 	so = ((file_t *)kn->kn_obj)->f_data;
   2198 	if (hint != NOTE_SUBMIT)
   2199 		solock(so);
   2200 	kn->kn_data = so->so_rcv.sb_cc;
   2201 	if (so->so_state & SS_CANTRCVMORE) {
   2202 		kn->kn_flags |= EV_EOF;
   2203 		kn->kn_fflags = so->so_error;
   2204 		rv = 1;
   2205 	} else if (so->so_error)	/* temporary udp error */
   2206 		rv = 1;
   2207 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2208 		rv = (kn->kn_data >= kn->kn_sdata);
   2209 	else
   2210 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2211 	if (hint != NOTE_SUBMIT)
   2212 		sounlock(so);
   2213 	return rv;
   2214 }
   2215 
   2216 static void
   2217 filt_sowdetach(struct knote *kn)
   2218 {
   2219 	struct socket	*so;
   2220 
   2221 	so = ((file_t *)kn->kn_obj)->f_data;
   2222 	solock(so);
   2223 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   2224 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   2225 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2226 	sounlock(so);
   2227 }
   2228 
   2229 /*ARGSUSED*/
   2230 static int
   2231 filt_sowrite(struct knote *kn, long hint)
   2232 {
   2233 	struct socket	*so;
   2234 	int rv;
   2235 
   2236 	so = ((file_t *)kn->kn_obj)->f_data;
   2237 	if (hint != NOTE_SUBMIT)
   2238 		solock(so);
   2239 	kn->kn_data = sbspace(&so->so_snd);
   2240 	if (so->so_state & SS_CANTSENDMORE) {
   2241 		kn->kn_flags |= EV_EOF;
   2242 		kn->kn_fflags = so->so_error;
   2243 		rv = 1;
   2244 	} else if (so->so_error)	/* temporary udp error */
   2245 		rv = 1;
   2246 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2247 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2248 		rv = 0;
   2249 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2250 		rv = (kn->kn_data >= kn->kn_sdata);
   2251 	else
   2252 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2253 	if (hint != NOTE_SUBMIT)
   2254 		sounlock(so);
   2255 	return rv;
   2256 }
   2257 
   2258 /*ARGSUSED*/
   2259 static int
   2260 filt_solisten(struct knote *kn, long hint)
   2261 {
   2262 	struct socket	*so;
   2263 	int rv;
   2264 
   2265 	so = ((file_t *)kn->kn_obj)->f_data;
   2266 
   2267 	/*
   2268 	 * Set kn_data to number of incoming connections, not
   2269 	 * counting partial (incomplete) connections.
   2270 	 */
   2271 	if (hint != NOTE_SUBMIT)
   2272 		solock(so);
   2273 	kn->kn_data = so->so_qlen;
   2274 	rv = (kn->kn_data > 0);
   2275 	if (hint != NOTE_SUBMIT)
   2276 		sounlock(so);
   2277 	return rv;
   2278 }
   2279 
   2280 static const struct filterops solisten_filtops =
   2281 	{ 1, NULL, filt_sordetach, filt_solisten };
   2282 static const struct filterops soread_filtops =
   2283 	{ 1, NULL, filt_sordetach, filt_soread };
   2284 static const struct filterops sowrite_filtops =
   2285 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   2286 
   2287 int
   2288 soo_kqfilter(struct file *fp, struct knote *kn)
   2289 {
   2290 	struct socket	*so;
   2291 	struct sockbuf	*sb;
   2292 
   2293 	so = ((file_t *)kn->kn_obj)->f_data;
   2294 	solock(so);
   2295 	switch (kn->kn_filter) {
   2296 	case EVFILT_READ:
   2297 		if (so->so_options & SO_ACCEPTCONN)
   2298 			kn->kn_fop = &solisten_filtops;
   2299 		else
   2300 			kn->kn_fop = &soread_filtops;
   2301 		sb = &so->so_rcv;
   2302 		break;
   2303 	case EVFILT_WRITE:
   2304 		kn->kn_fop = &sowrite_filtops;
   2305 		sb = &so->so_snd;
   2306 		break;
   2307 	default:
   2308 		sounlock(so);
   2309 		return (EINVAL);
   2310 	}
   2311 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   2312 	sb->sb_flags |= SB_KNOTE;
   2313 	sounlock(so);
   2314 	return (0);
   2315 }
   2316 
   2317 static int
   2318 sodopoll(struct socket *so, int events)
   2319 {
   2320 	int revents;
   2321 
   2322 	revents = 0;
   2323 
   2324 	if (events & (POLLIN | POLLRDNORM))
   2325 		if (soreadable(so))
   2326 			revents |= events & (POLLIN | POLLRDNORM);
   2327 
   2328 	if (events & (POLLOUT | POLLWRNORM))
   2329 		if (sowritable(so))
   2330 			revents |= events & (POLLOUT | POLLWRNORM);
   2331 
   2332 	if (events & (POLLPRI | POLLRDBAND))
   2333 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   2334 			revents |= events & (POLLPRI | POLLRDBAND);
   2335 
   2336 	return revents;
   2337 }
   2338 
   2339 int
   2340 sopoll(struct socket *so, int events)
   2341 {
   2342 	int revents = 0;
   2343 
   2344 #ifndef DIAGNOSTIC
   2345 	/*
   2346 	 * Do a quick, unlocked check in expectation that the socket
   2347 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2348 	 * as the solocked() assertions will fail.
   2349 	 */
   2350 	if ((revents = sodopoll(so, events)) != 0)
   2351 		return revents;
   2352 #endif
   2353 
   2354 	solock(so);
   2355 	if ((revents = sodopoll(so, events)) == 0) {
   2356 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2357 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2358 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2359 		}
   2360 
   2361 		if (events & (POLLOUT | POLLWRNORM)) {
   2362 			selrecord(curlwp, &so->so_snd.sb_sel);
   2363 			so->so_snd.sb_flags |= SB_NOTIFY;
   2364 		}
   2365 	}
   2366 	sounlock(so);
   2367 
   2368 	return revents;
   2369 }
   2370 
   2371 
   2372 #include <sys/sysctl.h>
   2373 
   2374 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2375 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
   2376 
   2377 /*
   2378  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2379  * value is not too small.
   2380  * (XXX should we maybe make sure it's not too large as well?)
   2381  */
   2382 static int
   2383 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2384 {
   2385 	int error, new_somaxkva;
   2386 	struct sysctlnode node;
   2387 
   2388 	new_somaxkva = somaxkva;
   2389 	node = *rnode;
   2390 	node.sysctl_data = &new_somaxkva;
   2391 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2392 	if (error || newp == NULL)
   2393 		return (error);
   2394 
   2395 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2396 		return (EINVAL);
   2397 
   2398 	mutex_enter(&so_pendfree_lock);
   2399 	somaxkva = new_somaxkva;
   2400 	cv_broadcast(&socurkva_cv);
   2401 	mutex_exit(&so_pendfree_lock);
   2402 
   2403 	return (error);
   2404 }
   2405 
   2406 /*
   2407  * sysctl helper routine for kern.sbmax. Basically just ensures that
   2408  * any new value is not too small.
   2409  */
   2410 static int
   2411 sysctl_kern_sbmax(SYSCTLFN_ARGS)
   2412 {
   2413 	int error, new_sbmax;
   2414 	struct sysctlnode node;
   2415 
   2416 	new_sbmax = sb_max;
   2417 	node = *rnode;
   2418 	node.sysctl_data = &new_sbmax;
   2419 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2420 	if (error || newp == NULL)
   2421 		return (error);
   2422 
   2423 	KERNEL_LOCK(1, NULL);
   2424 	error = sb_max_set(new_sbmax);
   2425 	KERNEL_UNLOCK_ONE(NULL);
   2426 
   2427 	return (error);
   2428 }
   2429 
   2430 static void
   2431 sysctl_kern_socket_setup(void)
   2432 {
   2433 
   2434 	KASSERT(socket_sysctllog == NULL);
   2435 
   2436 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2437 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2438 		       CTLTYPE_INT, "somaxkva",
   2439 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2440 				    "used for socket buffers"),
   2441 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2442 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2443 
   2444 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2445 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2446 		       CTLTYPE_INT, "sbmax",
   2447 		       SYSCTL_DESCR("Maximum socket buffer size"),
   2448 		       sysctl_kern_sbmax, 0, NULL, 0,
   2449 		       CTL_KERN, KERN_SBMAX, CTL_EOL);
   2450 }
   2451