uipc_socket.c revision 1.228 1 /* $NetBSD: uipc_socket.c,v 1.228 2014/07/30 10:04:26 rtr Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 /*
66 * Socket operation routines.
67 *
68 * These routines are called by the routines in sys_socket.c or from a
69 * system process, and implement the semantics of socket operations by
70 * switching out to the protocol specific routines.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.228 2014/07/30 10:04:26 rtr Exp $");
75
76 #include "opt_compat_netbsd.h"
77 #include "opt_sock_counters.h"
78 #include "opt_sosend_loan.h"
79 #include "opt_mbuftrace.h"
80 #include "opt_somaxkva.h"
81 #include "opt_multiprocessor.h" /* XXX */
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/proc.h>
86 #include <sys/file.h>
87 #include <sys/filedesc.h>
88 #include <sys/kmem.h>
89 #include <sys/mbuf.h>
90 #include <sys/domain.h>
91 #include <sys/kernel.h>
92 #include <sys/protosw.h>
93 #include <sys/socket.h>
94 #include <sys/socketvar.h>
95 #include <sys/signalvar.h>
96 #include <sys/resourcevar.h>
97 #include <sys/uidinfo.h>
98 #include <sys/event.h>
99 #include <sys/poll.h>
100 #include <sys/kauth.h>
101 #include <sys/mutex.h>
102 #include <sys/condvar.h>
103 #include <sys/kthread.h>
104
105 #ifdef COMPAT_50
106 #include <compat/sys/time.h>
107 #include <compat/sys/socket.h>
108 #endif
109
110 #include <uvm/uvm_extern.h>
111 #include <uvm/uvm_loan.h>
112 #include <uvm/uvm_page.h>
113
114 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
115
116 extern const struct fileops socketops;
117
118 extern int somaxconn; /* patchable (XXX sysctl) */
119 int somaxconn = SOMAXCONN;
120 kmutex_t *softnet_lock;
121
122 #ifdef SOSEND_COUNTERS
123 #include <sys/device.h>
124
125 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
126 NULL, "sosend", "loan big");
127 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
128 NULL, "sosend", "copy big");
129 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
130 NULL, "sosend", "copy small");
131 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
132 NULL, "sosend", "kva limit");
133
134 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
135
136 EVCNT_ATTACH_STATIC(sosend_loan_big);
137 EVCNT_ATTACH_STATIC(sosend_copy_big);
138 EVCNT_ATTACH_STATIC(sosend_copy_small);
139 EVCNT_ATTACH_STATIC(sosend_kvalimit);
140 #else
141
142 #define SOSEND_COUNTER_INCR(ev) /* nothing */
143
144 #endif /* SOSEND_COUNTERS */
145
146 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
147 int sock_loan_thresh = -1;
148 #else
149 int sock_loan_thresh = 4096;
150 #endif
151
152 static kmutex_t so_pendfree_lock;
153 static struct mbuf *so_pendfree = NULL;
154
155 #ifndef SOMAXKVA
156 #define SOMAXKVA (16 * 1024 * 1024)
157 #endif
158 int somaxkva = SOMAXKVA;
159 static int socurkva;
160 static kcondvar_t socurkva_cv;
161
162 static kauth_listener_t socket_listener;
163
164 #define SOCK_LOAN_CHUNK 65536
165
166 static void sopendfree_thread(void *);
167 static kcondvar_t pendfree_thread_cv;
168 static lwp_t *sopendfree_lwp;
169
170 static void sysctl_kern_socket_setup(void);
171 static struct sysctllog *socket_sysctllog;
172
173 static vsize_t
174 sokvareserve(struct socket *so, vsize_t len)
175 {
176 int error;
177
178 mutex_enter(&so_pendfree_lock);
179 while (socurkva + len > somaxkva) {
180 SOSEND_COUNTER_INCR(&sosend_kvalimit);
181 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
182 if (error) {
183 len = 0;
184 break;
185 }
186 }
187 socurkva += len;
188 mutex_exit(&so_pendfree_lock);
189 return len;
190 }
191
192 static void
193 sokvaunreserve(vsize_t len)
194 {
195
196 mutex_enter(&so_pendfree_lock);
197 socurkva -= len;
198 cv_broadcast(&socurkva_cv);
199 mutex_exit(&so_pendfree_lock);
200 }
201
202 /*
203 * sokvaalloc: allocate kva for loan.
204 */
205
206 vaddr_t
207 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
208 {
209 vaddr_t lva;
210
211 /*
212 * reserve kva.
213 */
214
215 if (sokvareserve(so, len) == 0)
216 return 0;
217
218 /*
219 * allocate kva.
220 */
221
222 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
223 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
224 if (lva == 0) {
225 sokvaunreserve(len);
226 return (0);
227 }
228
229 return lva;
230 }
231
232 /*
233 * sokvafree: free kva for loan.
234 */
235
236 void
237 sokvafree(vaddr_t sva, vsize_t len)
238 {
239
240 /*
241 * free kva.
242 */
243
244 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
245
246 /*
247 * unreserve kva.
248 */
249
250 sokvaunreserve(len);
251 }
252
253 static void
254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
255 {
256 vaddr_t sva, eva;
257 vsize_t len;
258 int npgs;
259
260 KASSERT(pgs != NULL);
261
262 eva = round_page((vaddr_t) buf + size);
263 sva = trunc_page((vaddr_t) buf);
264 len = eva - sva;
265 npgs = len >> PAGE_SHIFT;
266
267 pmap_kremove(sva, len);
268 pmap_update(pmap_kernel());
269 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
270 sokvafree(sva, len);
271 }
272
273 /*
274 * sopendfree_thread: free mbufs on "pendfree" list.
275 * unlock and relock so_pendfree_lock when freeing mbufs.
276 */
277
278 static void
279 sopendfree_thread(void *v)
280 {
281 struct mbuf *m, *next;
282 size_t rv;
283
284 mutex_enter(&so_pendfree_lock);
285
286 for (;;) {
287 rv = 0;
288 while (so_pendfree != NULL) {
289 m = so_pendfree;
290 so_pendfree = NULL;
291 mutex_exit(&so_pendfree_lock);
292
293 for (; m != NULL; m = next) {
294 next = m->m_next;
295 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
296 KASSERT(m->m_ext.ext_refcnt == 0);
297
298 rv += m->m_ext.ext_size;
299 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
300 m->m_ext.ext_size);
301 pool_cache_put(mb_cache, m);
302 }
303
304 mutex_enter(&so_pendfree_lock);
305 }
306 if (rv)
307 cv_broadcast(&socurkva_cv);
308 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
309 }
310 panic("sopendfree_thread");
311 /* NOTREACHED */
312 }
313
314 void
315 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
316 {
317
318 KASSERT(m != NULL);
319
320 /*
321 * postpone freeing mbuf.
322 *
323 * we can't do it in interrupt context
324 * because we need to put kva back to kernel_map.
325 */
326
327 mutex_enter(&so_pendfree_lock);
328 m->m_next = so_pendfree;
329 so_pendfree = m;
330 cv_signal(&pendfree_thread_cv);
331 mutex_exit(&so_pendfree_lock);
332 }
333
334 static long
335 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
336 {
337 struct iovec *iov = uio->uio_iov;
338 vaddr_t sva, eva;
339 vsize_t len;
340 vaddr_t lva;
341 int npgs, error;
342 vaddr_t va;
343 int i;
344
345 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
346 return (0);
347
348 if (iov->iov_len < (size_t) space)
349 space = iov->iov_len;
350 if (space > SOCK_LOAN_CHUNK)
351 space = SOCK_LOAN_CHUNK;
352
353 eva = round_page((vaddr_t) iov->iov_base + space);
354 sva = trunc_page((vaddr_t) iov->iov_base);
355 len = eva - sva;
356 npgs = len >> PAGE_SHIFT;
357
358 KASSERT(npgs <= M_EXT_MAXPAGES);
359
360 lva = sokvaalloc(sva, len, so);
361 if (lva == 0)
362 return 0;
363
364 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
365 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
366 if (error) {
367 sokvafree(lva, len);
368 return (0);
369 }
370
371 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
372 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
373 VM_PROT_READ, 0);
374 pmap_update(pmap_kernel());
375
376 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
377
378 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
379 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
380
381 uio->uio_resid -= space;
382 /* uio_offset not updated, not set/used for write(2) */
383 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
384 uio->uio_iov->iov_len -= space;
385 if (uio->uio_iov->iov_len == 0) {
386 uio->uio_iov++;
387 uio->uio_iovcnt--;
388 }
389
390 return (space);
391 }
392
393 struct mbuf *
394 getsombuf(struct socket *so, int type)
395 {
396 struct mbuf *m;
397
398 m = m_get(M_WAIT, type);
399 MCLAIM(m, so->so_mowner);
400 return m;
401 }
402
403 static int
404 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
405 void *arg0, void *arg1, void *arg2, void *arg3)
406 {
407 int result;
408 enum kauth_network_req req;
409
410 result = KAUTH_RESULT_DEFER;
411 req = (enum kauth_network_req)arg0;
412
413 if ((action != KAUTH_NETWORK_SOCKET) &&
414 (action != KAUTH_NETWORK_BIND))
415 return result;
416
417 switch (req) {
418 case KAUTH_REQ_NETWORK_BIND_PORT:
419 result = KAUTH_RESULT_ALLOW;
420 break;
421
422 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
423 /* Normal users can only drop their own connections. */
424 struct socket *so = (struct socket *)arg1;
425
426 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
427 result = KAUTH_RESULT_ALLOW;
428
429 break;
430 }
431
432 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
433 /* We allow "raw" routing/bluetooth sockets to anyone. */
434 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
435 || (u_long)arg1 == PF_BLUETOOTH) {
436 result = KAUTH_RESULT_ALLOW;
437 } else {
438 /* Privileged, let secmodel handle this. */
439 if ((u_long)arg2 == SOCK_RAW)
440 break;
441 }
442
443 result = KAUTH_RESULT_ALLOW;
444
445 break;
446
447 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
448 result = KAUTH_RESULT_ALLOW;
449
450 break;
451
452 default:
453 break;
454 }
455
456 return result;
457 }
458
459 void
460 soinit(void)
461 {
462
463 sysctl_kern_socket_setup();
464
465 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
466 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
467 cv_init(&socurkva_cv, "sokva");
468 cv_init(&pendfree_thread_cv, "sopendfr");
469 soinit2();
470
471 /* Set the initial adjusted socket buffer size. */
472 if (sb_max_set(sb_max))
473 panic("bad initial sb_max value: %lu", sb_max);
474
475 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
476 socket_listener_cb, NULL);
477 }
478
479 void
480 soinit1(void)
481 {
482 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
483 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
484 if (error)
485 panic("soinit1 %d", error);
486 }
487
488 /*
489 * socreate: create a new socket of the specified type and the protocol.
490 *
491 * => Caller may specify another socket for lock sharing (must not be held).
492 * => Returns the new socket without lock held.
493 */
494 int
495 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
496 struct socket *lockso)
497 {
498 const struct protosw *prp;
499 struct socket *so;
500 uid_t uid;
501 int error;
502 kmutex_t *lock;
503
504 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
505 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
506 KAUTH_ARG(proto));
507 if (error != 0)
508 return error;
509
510 if (proto)
511 prp = pffindproto(dom, proto, type);
512 else
513 prp = pffindtype(dom, type);
514 if (prp == NULL) {
515 /* no support for domain */
516 if (pffinddomain(dom) == 0)
517 return EAFNOSUPPORT;
518 /* no support for socket type */
519 if (proto == 0 && type != 0)
520 return EPROTOTYPE;
521 return EPROTONOSUPPORT;
522 }
523 if (prp->pr_usrreqs == NULL)
524 return EPROTONOSUPPORT;
525 if (prp->pr_type != type)
526 return EPROTOTYPE;
527
528 so = soget(true);
529 so->so_type = type;
530 so->so_proto = prp;
531 so->so_send = sosend;
532 so->so_receive = soreceive;
533 #ifdef MBUFTRACE
534 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
535 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
536 so->so_mowner = &prp->pr_domain->dom_mowner;
537 #endif
538 uid = kauth_cred_geteuid(l->l_cred);
539 so->so_uidinfo = uid_find(uid);
540 so->so_cpid = l->l_proc->p_pid;
541
542 /*
543 * Lock assigned and taken during PCB attach, unless we share
544 * the lock with another socket, e.g. socketpair(2) case.
545 */
546 if (lockso) {
547 lock = lockso->so_lock;
548 so->so_lock = lock;
549 mutex_obj_hold(lock);
550 mutex_enter(lock);
551 }
552
553 /* Attach the PCB (returns with the socket lock held). */
554 error = (*prp->pr_usrreqs->pr_attach)(so, proto);
555 KASSERT(solocked(so));
556
557 if (error) {
558 KASSERT(so->so_pcb == NULL);
559 so->so_state |= SS_NOFDREF;
560 sofree(so);
561 return error;
562 }
563 so->so_cred = kauth_cred_dup(l->l_cred);
564 sounlock(so);
565
566 *aso = so;
567 return 0;
568 }
569
570 /*
571 * fsocreate: create a socket and a file descriptor associated with it.
572 *
573 * => On success, write file descriptor to fdout and return zero.
574 * => On failure, return non-zero; *fdout will be undefined.
575 */
576 int
577 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
578 {
579 lwp_t *l = curlwp;
580 int error, fd, flags;
581 struct socket *so;
582 struct file *fp;
583
584 if ((error = fd_allocfile(&fp, &fd)) != 0) {
585 return error;
586 }
587 flags = type & SOCK_FLAGS_MASK;
588 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
589 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
590 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
591 fp->f_type = DTYPE_SOCKET;
592 fp->f_ops = &socketops;
593
594 type &= ~SOCK_FLAGS_MASK;
595 error = socreate(domain, &so, type, proto, l, NULL);
596 if (error) {
597 fd_abort(curproc, fp, fd);
598 return error;
599 }
600 if (flags & SOCK_NONBLOCK) {
601 so->so_state |= SS_NBIO;
602 }
603 fp->f_data = so;
604 fd_affix(curproc, fp, fd);
605
606 if (sop != NULL) {
607 *sop = so;
608 }
609 *fdout = fd;
610 return error;
611 }
612
613 int
614 sofamily(const struct socket *so)
615 {
616 const struct protosw *pr;
617 const struct domain *dom;
618
619 if ((pr = so->so_proto) == NULL)
620 return AF_UNSPEC;
621 if ((dom = pr->pr_domain) == NULL)
622 return AF_UNSPEC;
623 return dom->dom_family;
624 }
625
626 int
627 sobind(struct socket *so, struct mbuf *nam, struct lwp *l)
628 {
629 int error;
630
631 solock(so);
632 error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam);
633 sounlock(so);
634 return error;
635 }
636
637 int
638 solisten(struct socket *so, int backlog, struct lwp *l)
639 {
640 int error;
641
642 solock(so);
643 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
644 SS_ISDISCONNECTING)) != 0) {
645 sounlock(so);
646 return EINVAL;
647 }
648 error = (*so->so_proto->pr_usrreqs->pr_listen)(so);
649 if (error != 0) {
650 sounlock(so);
651 return error;
652 }
653 if (TAILQ_EMPTY(&so->so_q))
654 so->so_options |= SO_ACCEPTCONN;
655 if (backlog < 0)
656 backlog = 0;
657 so->so_qlimit = min(backlog, somaxconn);
658 sounlock(so);
659 return 0;
660 }
661
662 void
663 sofree(struct socket *so)
664 {
665 u_int refs;
666
667 KASSERT(solocked(so));
668
669 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
670 sounlock(so);
671 return;
672 }
673 if (so->so_head) {
674 /*
675 * We must not decommission a socket that's on the accept(2)
676 * queue. If we do, then accept(2) may hang after select(2)
677 * indicated that the listening socket was ready.
678 */
679 if (!soqremque(so, 0)) {
680 sounlock(so);
681 return;
682 }
683 }
684 if (so->so_rcv.sb_hiwat)
685 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
686 RLIM_INFINITY);
687 if (so->so_snd.sb_hiwat)
688 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
689 RLIM_INFINITY);
690 sbrelease(&so->so_snd, so);
691 KASSERT(!cv_has_waiters(&so->so_cv));
692 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
693 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
694 sorflush(so);
695 refs = so->so_aborting; /* XXX */
696 /* Remove acccept filter if one is present. */
697 if (so->so_accf != NULL)
698 (void)accept_filt_clear(so);
699 sounlock(so);
700 if (refs == 0) /* XXX */
701 soput(so);
702 }
703
704 /*
705 * soclose: close a socket on last file table reference removal.
706 * Initiate disconnect if connected. Free socket when disconnect complete.
707 */
708 int
709 soclose(struct socket *so)
710 {
711 struct socket *so2;
712 int error = 0;
713
714 solock(so);
715 if (so->so_options & SO_ACCEPTCONN) {
716 for (;;) {
717 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
718 KASSERT(solocked2(so, so2));
719 (void) soqremque(so2, 0);
720 /* soabort drops the lock. */
721 (void) soabort(so2);
722 solock(so);
723 continue;
724 }
725 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
726 KASSERT(solocked2(so, so2));
727 (void) soqremque(so2, 1);
728 /* soabort drops the lock. */
729 (void) soabort(so2);
730 solock(so);
731 continue;
732 }
733 break;
734 }
735 }
736 if (so->so_pcb == NULL)
737 goto discard;
738 if (so->so_state & SS_ISCONNECTED) {
739 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
740 error = sodisconnect(so);
741 if (error)
742 goto drop;
743 }
744 if (so->so_options & SO_LINGER) {
745 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
746 (SS_ISDISCONNECTING|SS_NBIO))
747 goto drop;
748 while (so->so_state & SS_ISCONNECTED) {
749 error = sowait(so, true, so->so_linger * hz);
750 if (error)
751 break;
752 }
753 }
754 }
755 drop:
756 if (so->so_pcb) {
757 KASSERT(solocked(so));
758 (*so->so_proto->pr_usrreqs->pr_detach)(so);
759 }
760 discard:
761 KASSERT((so->so_state & SS_NOFDREF) == 0);
762 kauth_cred_free(so->so_cred);
763 so->so_state |= SS_NOFDREF;
764 sofree(so);
765 return error;
766 }
767
768 /*
769 * Must be called with the socket locked.. Will return with it unlocked.
770 */
771 int
772 soabort(struct socket *so)
773 {
774 u_int refs;
775 int error;
776
777 KASSERT(solocked(so));
778 KASSERT(so->so_head == NULL);
779
780 so->so_aborting++; /* XXX */
781 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
782 PRU_ABORT, NULL, NULL, NULL, NULL);
783 refs = --so->so_aborting; /* XXX */
784 if (error || (refs == 0)) {
785 sofree(so);
786 } else {
787 sounlock(so);
788 }
789 return error;
790 }
791
792 int
793 soaccept(struct socket *so, struct mbuf *nam)
794 {
795 int error;
796
797 KASSERT(solocked(so));
798 KASSERT((so->so_state & SS_NOFDREF) != 0);
799
800 so->so_state &= ~SS_NOFDREF;
801 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
802 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
803 error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
804 else
805 error = ECONNABORTED;
806
807 return error;
808 }
809
810 int
811 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
812 {
813 int error;
814
815 KASSERT(solocked(so));
816
817 if (so->so_options & SO_ACCEPTCONN)
818 return EOPNOTSUPP;
819 /*
820 * If protocol is connection-based, can only connect once.
821 * Otherwise, if connected, try to disconnect first.
822 * This allows user to disconnect by connecting to, e.g.,
823 * a null address.
824 */
825 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
826 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
827 (error = sodisconnect(so))))
828 error = EISCONN;
829 else
830 error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam);
831
832 return error;
833 }
834
835 int
836 soconnect2(struct socket *so1, struct socket *so2)
837 {
838 KASSERT(solocked2(so1, so2));
839
840 return (*so1->so_proto->pr_usrreqs->pr_generic)(so1,
841 PRU_CONNECT2, NULL, (struct mbuf *)so2, NULL, NULL);
842 }
843
844 int
845 sodisconnect(struct socket *so)
846 {
847 int error;
848
849 KASSERT(solocked(so));
850
851 if ((so->so_state & SS_ISCONNECTED) == 0) {
852 error = ENOTCONN;
853 } else if (so->so_state & SS_ISDISCONNECTING) {
854 error = EALREADY;
855 } else {
856 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
857 PRU_DISCONNECT, NULL, NULL, NULL, NULL);
858 }
859 return (error);
860 }
861
862 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
863 /*
864 * Send on a socket.
865 * If send must go all at once and message is larger than
866 * send buffering, then hard error.
867 * Lock against other senders.
868 * If must go all at once and not enough room now, then
869 * inform user that this would block and do nothing.
870 * Otherwise, if nonblocking, send as much as possible.
871 * The data to be sent is described by "uio" if nonzero,
872 * otherwise by the mbuf chain "top" (which must be null
873 * if uio is not). Data provided in mbuf chain must be small
874 * enough to send all at once.
875 *
876 * Returns nonzero on error, timeout or signal; callers
877 * must check for short counts if EINTR/ERESTART are returned.
878 * Data and control buffers are freed on return.
879 */
880 int
881 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
882 struct mbuf *control, int flags, struct lwp *l)
883 {
884 struct mbuf **mp, *m;
885 long space, len, resid, clen, mlen;
886 int error, s, dontroute, atomic;
887 short wakeup_state = 0;
888
889 clen = 0;
890
891 /*
892 * solock() provides atomicity of access. splsoftnet() prevents
893 * protocol processing soft interrupts from interrupting us and
894 * blocking (expensive).
895 */
896 s = splsoftnet();
897 solock(so);
898 atomic = sosendallatonce(so) || top;
899 if (uio)
900 resid = uio->uio_resid;
901 else
902 resid = top->m_pkthdr.len;
903 /*
904 * In theory resid should be unsigned.
905 * However, space must be signed, as it might be less than 0
906 * if we over-committed, and we must use a signed comparison
907 * of space and resid. On the other hand, a negative resid
908 * causes us to loop sending 0-length segments to the protocol.
909 */
910 if (resid < 0) {
911 error = EINVAL;
912 goto out;
913 }
914 dontroute =
915 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
916 (so->so_proto->pr_flags & PR_ATOMIC);
917 l->l_ru.ru_msgsnd++;
918 if (control)
919 clen = control->m_len;
920 restart:
921 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
922 goto out;
923 do {
924 if (so->so_state & SS_CANTSENDMORE) {
925 error = EPIPE;
926 goto release;
927 }
928 if (so->so_error) {
929 error = so->so_error;
930 so->so_error = 0;
931 goto release;
932 }
933 if ((so->so_state & SS_ISCONNECTED) == 0) {
934 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
935 if (resid || clen == 0) {
936 error = ENOTCONN;
937 goto release;
938 }
939 } else if (addr == 0) {
940 error = EDESTADDRREQ;
941 goto release;
942 }
943 }
944 space = sbspace(&so->so_snd);
945 if (flags & MSG_OOB)
946 space += 1024;
947 if ((atomic && resid > so->so_snd.sb_hiwat) ||
948 clen > so->so_snd.sb_hiwat) {
949 error = EMSGSIZE;
950 goto release;
951 }
952 if (space < resid + clen &&
953 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
954 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
955 error = EWOULDBLOCK;
956 goto release;
957 }
958 sbunlock(&so->so_snd);
959 if (wakeup_state & SS_RESTARTSYS) {
960 error = ERESTART;
961 goto out;
962 }
963 error = sbwait(&so->so_snd);
964 if (error)
965 goto out;
966 wakeup_state = so->so_state;
967 goto restart;
968 }
969 wakeup_state = 0;
970 mp = ⊤
971 space -= clen;
972 do {
973 if (uio == NULL) {
974 /*
975 * Data is prepackaged in "top".
976 */
977 resid = 0;
978 if (flags & MSG_EOR)
979 top->m_flags |= M_EOR;
980 } else do {
981 sounlock(so);
982 splx(s);
983 if (top == NULL) {
984 m = m_gethdr(M_WAIT, MT_DATA);
985 mlen = MHLEN;
986 m->m_pkthdr.len = 0;
987 m->m_pkthdr.rcvif = NULL;
988 } else {
989 m = m_get(M_WAIT, MT_DATA);
990 mlen = MLEN;
991 }
992 MCLAIM(m, so->so_snd.sb_mowner);
993 if (sock_loan_thresh >= 0 &&
994 uio->uio_iov->iov_len >= sock_loan_thresh &&
995 space >= sock_loan_thresh &&
996 (len = sosend_loan(so, uio, m,
997 space)) != 0) {
998 SOSEND_COUNTER_INCR(&sosend_loan_big);
999 space -= len;
1000 goto have_data;
1001 }
1002 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1003 SOSEND_COUNTER_INCR(&sosend_copy_big);
1004 m_clget(m, M_DONTWAIT);
1005 if ((m->m_flags & M_EXT) == 0)
1006 goto nopages;
1007 mlen = MCLBYTES;
1008 if (atomic && top == 0) {
1009 len = lmin(MCLBYTES - max_hdr,
1010 resid);
1011 m->m_data += max_hdr;
1012 } else
1013 len = lmin(MCLBYTES, resid);
1014 space -= len;
1015 } else {
1016 nopages:
1017 SOSEND_COUNTER_INCR(&sosend_copy_small);
1018 len = lmin(lmin(mlen, resid), space);
1019 space -= len;
1020 /*
1021 * For datagram protocols, leave room
1022 * for protocol headers in first mbuf.
1023 */
1024 if (atomic && top == 0 && len < mlen)
1025 MH_ALIGN(m, len);
1026 }
1027 error = uiomove(mtod(m, void *), (int)len, uio);
1028 have_data:
1029 resid = uio->uio_resid;
1030 m->m_len = len;
1031 *mp = m;
1032 top->m_pkthdr.len += len;
1033 s = splsoftnet();
1034 solock(so);
1035 if (error != 0)
1036 goto release;
1037 mp = &m->m_next;
1038 if (resid <= 0) {
1039 if (flags & MSG_EOR)
1040 top->m_flags |= M_EOR;
1041 break;
1042 }
1043 } while (space > 0 && atomic);
1044
1045 if (so->so_state & SS_CANTSENDMORE) {
1046 error = EPIPE;
1047 goto release;
1048 }
1049 if (dontroute)
1050 so->so_options |= SO_DONTROUTE;
1051 if (resid > 0)
1052 so->so_state |= SS_MORETOCOME;
1053 if (flags & MSG_OOB)
1054 error = (*so->so_proto->pr_usrreqs->pr_sendoob)(so,
1055 top, control);
1056 else
1057 error = (*so->so_proto->pr_usrreqs->pr_generic)(so,
1058 PRU_SEND, top, addr, control, curlwp);
1059 if (dontroute)
1060 so->so_options &= ~SO_DONTROUTE;
1061 if (resid > 0)
1062 so->so_state &= ~SS_MORETOCOME;
1063 clen = 0;
1064 control = NULL;
1065 top = NULL;
1066 mp = ⊤
1067 if (error != 0)
1068 goto release;
1069 } while (resid && space > 0);
1070 } while (resid);
1071
1072 release:
1073 sbunlock(&so->so_snd);
1074 out:
1075 sounlock(so);
1076 splx(s);
1077 if (top)
1078 m_freem(top);
1079 if (control)
1080 m_freem(control);
1081 return (error);
1082 }
1083
1084 /*
1085 * Following replacement or removal of the first mbuf on the first
1086 * mbuf chain of a socket buffer, push necessary state changes back
1087 * into the socket buffer so that other consumers see the values
1088 * consistently. 'nextrecord' is the callers locally stored value of
1089 * the original value of sb->sb_mb->m_nextpkt which must be restored
1090 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1091 */
1092 static void
1093 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1094 {
1095
1096 KASSERT(solocked(sb->sb_so));
1097
1098 /*
1099 * First, update for the new value of nextrecord. If necessary,
1100 * make it the first record.
1101 */
1102 if (sb->sb_mb != NULL)
1103 sb->sb_mb->m_nextpkt = nextrecord;
1104 else
1105 sb->sb_mb = nextrecord;
1106
1107 /*
1108 * Now update any dependent socket buffer fields to reflect
1109 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1110 * the addition of a second clause that takes care of the
1111 * case where sb_mb has been updated, but remains the last
1112 * record.
1113 */
1114 if (sb->sb_mb == NULL) {
1115 sb->sb_mbtail = NULL;
1116 sb->sb_lastrecord = NULL;
1117 } else if (sb->sb_mb->m_nextpkt == NULL)
1118 sb->sb_lastrecord = sb->sb_mb;
1119 }
1120
1121 /*
1122 * Implement receive operations on a socket.
1123 * We depend on the way that records are added to the sockbuf
1124 * by sbappend*. In particular, each record (mbufs linked through m_next)
1125 * must begin with an address if the protocol so specifies,
1126 * followed by an optional mbuf or mbufs containing ancillary data,
1127 * and then zero or more mbufs of data.
1128 * In order to avoid blocking network interrupts for the entire time here,
1129 * we splx() while doing the actual copy to user space.
1130 * Although the sockbuf is locked, new data may still be appended,
1131 * and thus we must maintain consistency of the sockbuf during that time.
1132 *
1133 * The caller may receive the data as a single mbuf chain by supplying
1134 * an mbuf **mp0 for use in returning the chain. The uio is then used
1135 * only for the count in uio_resid.
1136 */
1137 int
1138 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1139 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1140 {
1141 struct lwp *l = curlwp;
1142 struct mbuf *m, **mp, *mt;
1143 size_t len, offset, moff, orig_resid;
1144 int atomic, flags, error, s, type;
1145 const struct protosw *pr;
1146 struct mbuf *nextrecord;
1147 int mbuf_removed = 0;
1148 const struct domain *dom;
1149 short wakeup_state = 0;
1150
1151 pr = so->so_proto;
1152 atomic = pr->pr_flags & PR_ATOMIC;
1153 dom = pr->pr_domain;
1154 mp = mp0;
1155 type = 0;
1156 orig_resid = uio->uio_resid;
1157
1158 if (paddr != NULL)
1159 *paddr = NULL;
1160 if (controlp != NULL)
1161 *controlp = NULL;
1162 if (flagsp != NULL)
1163 flags = *flagsp &~ MSG_EOR;
1164 else
1165 flags = 0;
1166
1167 if (flags & MSG_OOB) {
1168 m = m_get(M_WAIT, MT_DATA);
1169 solock(so);
1170 error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
1171 sounlock(so);
1172 if (error)
1173 goto bad;
1174 do {
1175 error = uiomove(mtod(m, void *),
1176 MIN(uio->uio_resid, m->m_len), uio);
1177 m = m_free(m);
1178 } while (uio->uio_resid > 0 && error == 0 && m);
1179 bad:
1180 if (m != NULL)
1181 m_freem(m);
1182 return error;
1183 }
1184 if (mp != NULL)
1185 *mp = NULL;
1186
1187 /*
1188 * solock() provides atomicity of access. splsoftnet() prevents
1189 * protocol processing soft interrupts from interrupting us and
1190 * blocking (expensive).
1191 */
1192 s = splsoftnet();
1193 solock(so);
1194 restart:
1195 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1196 sounlock(so);
1197 splx(s);
1198 return error;
1199 }
1200
1201 m = so->so_rcv.sb_mb;
1202 /*
1203 * If we have less data than requested, block awaiting more
1204 * (subject to any timeout) if:
1205 * 1. the current count is less than the low water mark,
1206 * 2. MSG_WAITALL is set, and it is possible to do the entire
1207 * receive operation at once if we block (resid <= hiwat), or
1208 * 3. MSG_DONTWAIT is not set.
1209 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1210 * we have to do the receive in sections, and thus risk returning
1211 * a short count if a timeout or signal occurs after we start.
1212 */
1213 if (m == NULL ||
1214 ((flags & MSG_DONTWAIT) == 0 &&
1215 so->so_rcv.sb_cc < uio->uio_resid &&
1216 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1217 ((flags & MSG_WAITALL) &&
1218 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1219 m->m_nextpkt == NULL && !atomic)) {
1220 #ifdef DIAGNOSTIC
1221 if (m == NULL && so->so_rcv.sb_cc)
1222 panic("receive 1");
1223 #endif
1224 if (so->so_error) {
1225 if (m != NULL)
1226 goto dontblock;
1227 error = so->so_error;
1228 if ((flags & MSG_PEEK) == 0)
1229 so->so_error = 0;
1230 goto release;
1231 }
1232 if (so->so_state & SS_CANTRCVMORE) {
1233 if (m != NULL)
1234 goto dontblock;
1235 else
1236 goto release;
1237 }
1238 for (; m != NULL; m = m->m_next)
1239 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1240 m = so->so_rcv.sb_mb;
1241 goto dontblock;
1242 }
1243 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1244 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1245 error = ENOTCONN;
1246 goto release;
1247 }
1248 if (uio->uio_resid == 0)
1249 goto release;
1250 if ((so->so_state & SS_NBIO) ||
1251 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1252 error = EWOULDBLOCK;
1253 goto release;
1254 }
1255 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1256 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1257 sbunlock(&so->so_rcv);
1258 if (wakeup_state & SS_RESTARTSYS)
1259 error = ERESTART;
1260 else
1261 error = sbwait(&so->so_rcv);
1262 if (error != 0) {
1263 sounlock(so);
1264 splx(s);
1265 return error;
1266 }
1267 wakeup_state = so->so_state;
1268 goto restart;
1269 }
1270 dontblock:
1271 /*
1272 * On entry here, m points to the first record of the socket buffer.
1273 * From this point onward, we maintain 'nextrecord' as a cache of the
1274 * pointer to the next record in the socket buffer. We must keep the
1275 * various socket buffer pointers and local stack versions of the
1276 * pointers in sync, pushing out modifications before dropping the
1277 * socket lock, and re-reading them when picking it up.
1278 *
1279 * Otherwise, we will race with the network stack appending new data
1280 * or records onto the socket buffer by using inconsistent/stale
1281 * versions of the field, possibly resulting in socket buffer
1282 * corruption.
1283 *
1284 * By holding the high-level sblock(), we prevent simultaneous
1285 * readers from pulling off the front of the socket buffer.
1286 */
1287 if (l != NULL)
1288 l->l_ru.ru_msgrcv++;
1289 KASSERT(m == so->so_rcv.sb_mb);
1290 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1291 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1292 nextrecord = m->m_nextpkt;
1293 if (pr->pr_flags & PR_ADDR) {
1294 #ifdef DIAGNOSTIC
1295 if (m->m_type != MT_SONAME)
1296 panic("receive 1a");
1297 #endif
1298 orig_resid = 0;
1299 if (flags & MSG_PEEK) {
1300 if (paddr)
1301 *paddr = m_copy(m, 0, m->m_len);
1302 m = m->m_next;
1303 } else {
1304 sbfree(&so->so_rcv, m);
1305 mbuf_removed = 1;
1306 if (paddr != NULL) {
1307 *paddr = m;
1308 so->so_rcv.sb_mb = m->m_next;
1309 m->m_next = NULL;
1310 m = so->so_rcv.sb_mb;
1311 } else {
1312 MFREE(m, so->so_rcv.sb_mb);
1313 m = so->so_rcv.sb_mb;
1314 }
1315 sbsync(&so->so_rcv, nextrecord);
1316 }
1317 }
1318
1319 /*
1320 * Process one or more MT_CONTROL mbufs present before any data mbufs
1321 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1322 * just copy the data; if !MSG_PEEK, we call into the protocol to
1323 * perform externalization (or freeing if controlp == NULL).
1324 */
1325 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1326 struct mbuf *cm = NULL, *cmn;
1327 struct mbuf **cme = &cm;
1328
1329 do {
1330 if (flags & MSG_PEEK) {
1331 if (controlp != NULL) {
1332 *controlp = m_copy(m, 0, m->m_len);
1333 controlp = &(*controlp)->m_next;
1334 }
1335 m = m->m_next;
1336 } else {
1337 sbfree(&so->so_rcv, m);
1338 so->so_rcv.sb_mb = m->m_next;
1339 m->m_next = NULL;
1340 *cme = m;
1341 cme = &(*cme)->m_next;
1342 m = so->so_rcv.sb_mb;
1343 }
1344 } while (m != NULL && m->m_type == MT_CONTROL);
1345 if ((flags & MSG_PEEK) == 0)
1346 sbsync(&so->so_rcv, nextrecord);
1347 for (; cm != NULL; cm = cmn) {
1348 cmn = cm->m_next;
1349 cm->m_next = NULL;
1350 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1351 if (controlp != NULL) {
1352 if (dom->dom_externalize != NULL &&
1353 type == SCM_RIGHTS) {
1354 sounlock(so);
1355 splx(s);
1356 error = (*dom->dom_externalize)(cm, l,
1357 (flags & MSG_CMSG_CLOEXEC) ?
1358 O_CLOEXEC : 0);
1359 s = splsoftnet();
1360 solock(so);
1361 }
1362 *controlp = cm;
1363 while (*controlp != NULL)
1364 controlp = &(*controlp)->m_next;
1365 } else {
1366 /*
1367 * Dispose of any SCM_RIGHTS message that went
1368 * through the read path rather than recv.
1369 */
1370 if (dom->dom_dispose != NULL &&
1371 type == SCM_RIGHTS) {
1372 sounlock(so);
1373 (*dom->dom_dispose)(cm);
1374 solock(so);
1375 }
1376 m_freem(cm);
1377 }
1378 }
1379 if (m != NULL)
1380 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1381 else
1382 nextrecord = so->so_rcv.sb_mb;
1383 orig_resid = 0;
1384 }
1385
1386 /* If m is non-NULL, we have some data to read. */
1387 if (__predict_true(m != NULL)) {
1388 type = m->m_type;
1389 if (type == MT_OOBDATA)
1390 flags |= MSG_OOB;
1391 }
1392 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1393 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1394
1395 moff = 0;
1396 offset = 0;
1397 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1398 if (m->m_type == MT_OOBDATA) {
1399 if (type != MT_OOBDATA)
1400 break;
1401 } else if (type == MT_OOBDATA)
1402 break;
1403 #ifdef DIAGNOSTIC
1404 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1405 panic("receive 3");
1406 #endif
1407 so->so_state &= ~SS_RCVATMARK;
1408 wakeup_state = 0;
1409 len = uio->uio_resid;
1410 if (so->so_oobmark && len > so->so_oobmark - offset)
1411 len = so->so_oobmark - offset;
1412 if (len > m->m_len - moff)
1413 len = m->m_len - moff;
1414 /*
1415 * If mp is set, just pass back the mbufs.
1416 * Otherwise copy them out via the uio, then free.
1417 * Sockbuf must be consistent here (points to current mbuf,
1418 * it points to next record) when we drop priority;
1419 * we must note any additions to the sockbuf when we
1420 * block interrupts again.
1421 */
1422 if (mp == NULL) {
1423 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1424 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1425 sounlock(so);
1426 splx(s);
1427 error = uiomove(mtod(m, char *) + moff, len, uio);
1428 s = splsoftnet();
1429 solock(so);
1430 if (error != 0) {
1431 /*
1432 * If any part of the record has been removed
1433 * (such as the MT_SONAME mbuf, which will
1434 * happen when PR_ADDR, and thus also
1435 * PR_ATOMIC, is set), then drop the entire
1436 * record to maintain the atomicity of the
1437 * receive operation.
1438 *
1439 * This avoids a later panic("receive 1a")
1440 * when compiled with DIAGNOSTIC.
1441 */
1442 if (m && mbuf_removed && atomic)
1443 (void) sbdroprecord(&so->so_rcv);
1444
1445 goto release;
1446 }
1447 } else
1448 uio->uio_resid -= len;
1449 if (len == m->m_len - moff) {
1450 if (m->m_flags & M_EOR)
1451 flags |= MSG_EOR;
1452 if (flags & MSG_PEEK) {
1453 m = m->m_next;
1454 moff = 0;
1455 } else {
1456 nextrecord = m->m_nextpkt;
1457 sbfree(&so->so_rcv, m);
1458 if (mp) {
1459 *mp = m;
1460 mp = &m->m_next;
1461 so->so_rcv.sb_mb = m = m->m_next;
1462 *mp = NULL;
1463 } else {
1464 MFREE(m, so->so_rcv.sb_mb);
1465 m = so->so_rcv.sb_mb;
1466 }
1467 /*
1468 * If m != NULL, we also know that
1469 * so->so_rcv.sb_mb != NULL.
1470 */
1471 KASSERT(so->so_rcv.sb_mb == m);
1472 if (m) {
1473 m->m_nextpkt = nextrecord;
1474 if (nextrecord == NULL)
1475 so->so_rcv.sb_lastrecord = m;
1476 } else {
1477 so->so_rcv.sb_mb = nextrecord;
1478 SB_EMPTY_FIXUP(&so->so_rcv);
1479 }
1480 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1481 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1482 }
1483 } else if (flags & MSG_PEEK)
1484 moff += len;
1485 else {
1486 if (mp != NULL) {
1487 mt = m_copym(m, 0, len, M_NOWAIT);
1488 if (__predict_false(mt == NULL)) {
1489 sounlock(so);
1490 mt = m_copym(m, 0, len, M_WAIT);
1491 solock(so);
1492 }
1493 *mp = mt;
1494 }
1495 m->m_data += len;
1496 m->m_len -= len;
1497 so->so_rcv.sb_cc -= len;
1498 }
1499 if (so->so_oobmark) {
1500 if ((flags & MSG_PEEK) == 0) {
1501 so->so_oobmark -= len;
1502 if (so->so_oobmark == 0) {
1503 so->so_state |= SS_RCVATMARK;
1504 break;
1505 }
1506 } else {
1507 offset += len;
1508 if (offset == so->so_oobmark)
1509 break;
1510 }
1511 }
1512 if (flags & MSG_EOR)
1513 break;
1514 /*
1515 * If the MSG_WAITALL flag is set (for non-atomic socket),
1516 * we must not quit until "uio->uio_resid == 0" or an error
1517 * termination. If a signal/timeout occurs, return
1518 * with a short count but without error.
1519 * Keep sockbuf locked against other readers.
1520 */
1521 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1522 !sosendallatonce(so) && !nextrecord) {
1523 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1524 break;
1525 /*
1526 * If we are peeking and the socket receive buffer is
1527 * full, stop since we can't get more data to peek at.
1528 */
1529 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1530 break;
1531 /*
1532 * If we've drained the socket buffer, tell the
1533 * protocol in case it needs to do something to
1534 * get it filled again.
1535 */
1536 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1537 (*pr->pr_usrreqs->pr_generic)(so, PRU_RCVD,
1538 NULL, (struct mbuf *)(long)flags, NULL, l);
1539 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1540 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1541 if (wakeup_state & SS_RESTARTSYS)
1542 error = ERESTART;
1543 else
1544 error = sbwait(&so->so_rcv);
1545 if (error != 0) {
1546 sbunlock(&so->so_rcv);
1547 sounlock(so);
1548 splx(s);
1549 return 0;
1550 }
1551 if ((m = so->so_rcv.sb_mb) != NULL)
1552 nextrecord = m->m_nextpkt;
1553 wakeup_state = so->so_state;
1554 }
1555 }
1556
1557 if (m && atomic) {
1558 flags |= MSG_TRUNC;
1559 if ((flags & MSG_PEEK) == 0)
1560 (void) sbdroprecord(&so->so_rcv);
1561 }
1562 if ((flags & MSG_PEEK) == 0) {
1563 if (m == NULL) {
1564 /*
1565 * First part is an inline SB_EMPTY_FIXUP(). Second
1566 * part makes sure sb_lastrecord is up-to-date if
1567 * there is still data in the socket buffer.
1568 */
1569 so->so_rcv.sb_mb = nextrecord;
1570 if (so->so_rcv.sb_mb == NULL) {
1571 so->so_rcv.sb_mbtail = NULL;
1572 so->so_rcv.sb_lastrecord = NULL;
1573 } else if (nextrecord->m_nextpkt == NULL)
1574 so->so_rcv.sb_lastrecord = nextrecord;
1575 }
1576 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1577 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1578 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1579 (*pr->pr_usrreqs->pr_generic)(so, PRU_RCVD, NULL,
1580 (struct mbuf *)(long)flags, NULL, l);
1581 }
1582 if (orig_resid == uio->uio_resid && orig_resid &&
1583 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1584 sbunlock(&so->so_rcv);
1585 goto restart;
1586 }
1587
1588 if (flagsp != NULL)
1589 *flagsp |= flags;
1590 release:
1591 sbunlock(&so->so_rcv);
1592 sounlock(so);
1593 splx(s);
1594 return error;
1595 }
1596
1597 int
1598 soshutdown(struct socket *so, int how)
1599 {
1600 const struct protosw *pr;
1601 int error;
1602
1603 KASSERT(solocked(so));
1604
1605 pr = so->so_proto;
1606 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1607 return (EINVAL);
1608
1609 if (how == SHUT_RD || how == SHUT_RDWR) {
1610 sorflush(so);
1611 error = 0;
1612 }
1613 if (how == SHUT_WR || how == SHUT_RDWR)
1614 error = (*pr->pr_usrreqs->pr_generic)(so,
1615 PRU_SHUTDOWN, NULL, NULL, NULL, NULL);
1616
1617 return error;
1618 }
1619
1620 void
1621 sorestart(struct socket *so)
1622 {
1623 /*
1624 * An application has called close() on an fd on which another
1625 * of its threads has called a socket system call.
1626 * Mark this and wake everyone up, and code that would block again
1627 * instead returns ERESTART.
1628 * On system call re-entry the fd is validated and EBADF returned.
1629 * Any other fd will block again on the 2nd syscall.
1630 */
1631 solock(so);
1632 so->so_state |= SS_RESTARTSYS;
1633 cv_broadcast(&so->so_cv);
1634 cv_broadcast(&so->so_snd.sb_cv);
1635 cv_broadcast(&so->so_rcv.sb_cv);
1636 sounlock(so);
1637 }
1638
1639 void
1640 sorflush(struct socket *so)
1641 {
1642 struct sockbuf *sb, asb;
1643 const struct protosw *pr;
1644
1645 KASSERT(solocked(so));
1646
1647 sb = &so->so_rcv;
1648 pr = so->so_proto;
1649 socantrcvmore(so);
1650 sb->sb_flags |= SB_NOINTR;
1651 (void )sblock(sb, M_WAITOK);
1652 sbunlock(sb);
1653 asb = *sb;
1654 /*
1655 * Clear most of the sockbuf structure, but leave some of the
1656 * fields valid.
1657 */
1658 memset(&sb->sb_startzero, 0,
1659 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1660 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1661 sounlock(so);
1662 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1663 solock(so);
1664 }
1665 sbrelease(&asb, so);
1666 }
1667
1668 /*
1669 * internal set SOL_SOCKET options
1670 */
1671 static int
1672 sosetopt1(struct socket *so, const struct sockopt *sopt)
1673 {
1674 int error = EINVAL, opt;
1675 int optval = 0; /* XXX: gcc */
1676 struct linger l;
1677 struct timeval tv;
1678
1679 switch ((opt = sopt->sopt_name)) {
1680
1681 case SO_ACCEPTFILTER:
1682 error = accept_filt_setopt(so, sopt);
1683 KASSERT(solocked(so));
1684 break;
1685
1686 case SO_LINGER:
1687 error = sockopt_get(sopt, &l, sizeof(l));
1688 solock(so);
1689 if (error)
1690 break;
1691 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1692 l.l_linger > (INT_MAX / hz)) {
1693 error = EDOM;
1694 break;
1695 }
1696 so->so_linger = l.l_linger;
1697 if (l.l_onoff)
1698 so->so_options |= SO_LINGER;
1699 else
1700 so->so_options &= ~SO_LINGER;
1701 break;
1702
1703 case SO_DEBUG:
1704 case SO_KEEPALIVE:
1705 case SO_DONTROUTE:
1706 case SO_USELOOPBACK:
1707 case SO_BROADCAST:
1708 case SO_REUSEADDR:
1709 case SO_REUSEPORT:
1710 case SO_OOBINLINE:
1711 case SO_TIMESTAMP:
1712 case SO_NOSIGPIPE:
1713 #ifdef SO_OTIMESTAMP
1714 case SO_OTIMESTAMP:
1715 #endif
1716 error = sockopt_getint(sopt, &optval);
1717 solock(so);
1718 if (error)
1719 break;
1720 if (optval)
1721 so->so_options |= opt;
1722 else
1723 so->so_options &= ~opt;
1724 break;
1725
1726 case SO_SNDBUF:
1727 case SO_RCVBUF:
1728 case SO_SNDLOWAT:
1729 case SO_RCVLOWAT:
1730 error = sockopt_getint(sopt, &optval);
1731 solock(so);
1732 if (error)
1733 break;
1734
1735 /*
1736 * Values < 1 make no sense for any of these
1737 * options, so disallow them.
1738 */
1739 if (optval < 1) {
1740 error = EINVAL;
1741 break;
1742 }
1743
1744 switch (opt) {
1745 case SO_SNDBUF:
1746 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1747 error = ENOBUFS;
1748 break;
1749 }
1750 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1751 break;
1752
1753 case SO_RCVBUF:
1754 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1755 error = ENOBUFS;
1756 break;
1757 }
1758 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1759 break;
1760
1761 /*
1762 * Make sure the low-water is never greater than
1763 * the high-water.
1764 */
1765 case SO_SNDLOWAT:
1766 if (optval > so->so_snd.sb_hiwat)
1767 optval = so->so_snd.sb_hiwat;
1768
1769 so->so_snd.sb_lowat = optval;
1770 break;
1771
1772 case SO_RCVLOWAT:
1773 if (optval > so->so_rcv.sb_hiwat)
1774 optval = so->so_rcv.sb_hiwat;
1775
1776 so->so_rcv.sb_lowat = optval;
1777 break;
1778 }
1779 break;
1780
1781 #ifdef COMPAT_50
1782 case SO_OSNDTIMEO:
1783 case SO_ORCVTIMEO: {
1784 struct timeval50 otv;
1785 error = sockopt_get(sopt, &otv, sizeof(otv));
1786 if (error) {
1787 solock(so);
1788 break;
1789 }
1790 timeval50_to_timeval(&otv, &tv);
1791 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1792 error = 0;
1793 /*FALLTHROUGH*/
1794 }
1795 #endif /* COMPAT_50 */
1796
1797 case SO_SNDTIMEO:
1798 case SO_RCVTIMEO:
1799 if (error)
1800 error = sockopt_get(sopt, &tv, sizeof(tv));
1801 solock(so);
1802 if (error)
1803 break;
1804
1805 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1806 error = EDOM;
1807 break;
1808 }
1809
1810 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1811 if (optval == 0 && tv.tv_usec != 0)
1812 optval = 1;
1813
1814 switch (opt) {
1815 case SO_SNDTIMEO:
1816 so->so_snd.sb_timeo = optval;
1817 break;
1818 case SO_RCVTIMEO:
1819 so->so_rcv.sb_timeo = optval;
1820 break;
1821 }
1822 break;
1823
1824 default:
1825 solock(so);
1826 error = ENOPROTOOPT;
1827 break;
1828 }
1829 KASSERT(solocked(so));
1830 return error;
1831 }
1832
1833 int
1834 sosetopt(struct socket *so, struct sockopt *sopt)
1835 {
1836 int error, prerr;
1837
1838 if (sopt->sopt_level == SOL_SOCKET) {
1839 error = sosetopt1(so, sopt);
1840 KASSERT(solocked(so));
1841 } else {
1842 error = ENOPROTOOPT;
1843 solock(so);
1844 }
1845
1846 if ((error == 0 || error == ENOPROTOOPT) &&
1847 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1848 /* give the protocol stack a shot */
1849 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1850 if (prerr == 0)
1851 error = 0;
1852 else if (prerr != ENOPROTOOPT)
1853 error = prerr;
1854 }
1855 sounlock(so);
1856 return error;
1857 }
1858
1859 /*
1860 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1861 */
1862 int
1863 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1864 const void *val, size_t valsize)
1865 {
1866 struct sockopt sopt;
1867 int error;
1868
1869 KASSERT(valsize == 0 || val != NULL);
1870
1871 sockopt_init(&sopt, level, name, valsize);
1872 sockopt_set(&sopt, val, valsize);
1873
1874 error = sosetopt(so, &sopt);
1875
1876 sockopt_destroy(&sopt);
1877
1878 return error;
1879 }
1880
1881 /*
1882 * internal get SOL_SOCKET options
1883 */
1884 static int
1885 sogetopt1(struct socket *so, struct sockopt *sopt)
1886 {
1887 int error, optval, opt;
1888 struct linger l;
1889 struct timeval tv;
1890
1891 switch ((opt = sopt->sopt_name)) {
1892
1893 case SO_ACCEPTFILTER:
1894 error = accept_filt_getopt(so, sopt);
1895 break;
1896
1897 case SO_LINGER:
1898 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1899 l.l_linger = so->so_linger;
1900
1901 error = sockopt_set(sopt, &l, sizeof(l));
1902 break;
1903
1904 case SO_USELOOPBACK:
1905 case SO_DONTROUTE:
1906 case SO_DEBUG:
1907 case SO_KEEPALIVE:
1908 case SO_REUSEADDR:
1909 case SO_REUSEPORT:
1910 case SO_BROADCAST:
1911 case SO_OOBINLINE:
1912 case SO_TIMESTAMP:
1913 case SO_NOSIGPIPE:
1914 #ifdef SO_OTIMESTAMP
1915 case SO_OTIMESTAMP:
1916 #endif
1917 case SO_ACCEPTCONN:
1918 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1919 break;
1920
1921 case SO_TYPE:
1922 error = sockopt_setint(sopt, so->so_type);
1923 break;
1924
1925 case SO_ERROR:
1926 error = sockopt_setint(sopt, so->so_error);
1927 so->so_error = 0;
1928 break;
1929
1930 case SO_SNDBUF:
1931 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1932 break;
1933
1934 case SO_RCVBUF:
1935 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1936 break;
1937
1938 case SO_SNDLOWAT:
1939 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1940 break;
1941
1942 case SO_RCVLOWAT:
1943 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1944 break;
1945
1946 #ifdef COMPAT_50
1947 case SO_OSNDTIMEO:
1948 case SO_ORCVTIMEO: {
1949 struct timeval50 otv;
1950
1951 optval = (opt == SO_OSNDTIMEO ?
1952 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1953
1954 otv.tv_sec = optval / hz;
1955 otv.tv_usec = (optval % hz) * tick;
1956
1957 error = sockopt_set(sopt, &otv, sizeof(otv));
1958 break;
1959 }
1960 #endif /* COMPAT_50 */
1961
1962 case SO_SNDTIMEO:
1963 case SO_RCVTIMEO:
1964 optval = (opt == SO_SNDTIMEO ?
1965 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1966
1967 tv.tv_sec = optval / hz;
1968 tv.tv_usec = (optval % hz) * tick;
1969
1970 error = sockopt_set(sopt, &tv, sizeof(tv));
1971 break;
1972
1973 case SO_OVERFLOWED:
1974 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1975 break;
1976
1977 default:
1978 error = ENOPROTOOPT;
1979 break;
1980 }
1981
1982 return (error);
1983 }
1984
1985 int
1986 sogetopt(struct socket *so, struct sockopt *sopt)
1987 {
1988 int error;
1989
1990 solock(so);
1991 if (sopt->sopt_level != SOL_SOCKET) {
1992 if (so->so_proto && so->so_proto->pr_ctloutput) {
1993 error = ((*so->so_proto->pr_ctloutput)
1994 (PRCO_GETOPT, so, sopt));
1995 } else
1996 error = (ENOPROTOOPT);
1997 } else {
1998 error = sogetopt1(so, sopt);
1999 }
2000 sounlock(so);
2001 return (error);
2002 }
2003
2004 /*
2005 * alloc sockopt data buffer buffer
2006 * - will be released at destroy
2007 */
2008 static int
2009 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2010 {
2011
2012 KASSERT(sopt->sopt_size == 0);
2013
2014 if (len > sizeof(sopt->sopt_buf)) {
2015 sopt->sopt_data = kmem_zalloc(len, kmflag);
2016 if (sopt->sopt_data == NULL)
2017 return ENOMEM;
2018 } else
2019 sopt->sopt_data = sopt->sopt_buf;
2020
2021 sopt->sopt_size = len;
2022 return 0;
2023 }
2024
2025 /*
2026 * initialise sockopt storage
2027 * - MAY sleep during allocation
2028 */
2029 void
2030 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2031 {
2032
2033 memset(sopt, 0, sizeof(*sopt));
2034
2035 sopt->sopt_level = level;
2036 sopt->sopt_name = name;
2037 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2038 }
2039
2040 /*
2041 * destroy sockopt storage
2042 * - will release any held memory references
2043 */
2044 void
2045 sockopt_destroy(struct sockopt *sopt)
2046 {
2047
2048 if (sopt->sopt_data != sopt->sopt_buf)
2049 kmem_free(sopt->sopt_data, sopt->sopt_size);
2050
2051 memset(sopt, 0, sizeof(*sopt));
2052 }
2053
2054 /*
2055 * set sockopt value
2056 * - value is copied into sockopt
2057 * - memory is allocated when necessary, will not sleep
2058 */
2059 int
2060 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2061 {
2062 int error;
2063
2064 if (sopt->sopt_size == 0) {
2065 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2066 if (error)
2067 return error;
2068 }
2069
2070 KASSERT(sopt->sopt_size == len);
2071 memcpy(sopt->sopt_data, buf, len);
2072 return 0;
2073 }
2074
2075 /*
2076 * common case of set sockopt integer value
2077 */
2078 int
2079 sockopt_setint(struct sockopt *sopt, int val)
2080 {
2081
2082 return sockopt_set(sopt, &val, sizeof(int));
2083 }
2084
2085 /*
2086 * get sockopt value
2087 * - correct size must be given
2088 */
2089 int
2090 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2091 {
2092
2093 if (sopt->sopt_size != len)
2094 return EINVAL;
2095
2096 memcpy(buf, sopt->sopt_data, len);
2097 return 0;
2098 }
2099
2100 /*
2101 * common case of get sockopt integer value
2102 */
2103 int
2104 sockopt_getint(const struct sockopt *sopt, int *valp)
2105 {
2106
2107 return sockopt_get(sopt, valp, sizeof(int));
2108 }
2109
2110 /*
2111 * set sockopt value from mbuf
2112 * - ONLY for legacy code
2113 * - mbuf is released by sockopt
2114 * - will not sleep
2115 */
2116 int
2117 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2118 {
2119 size_t len;
2120 int error;
2121
2122 len = m_length(m);
2123
2124 if (sopt->sopt_size == 0) {
2125 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2126 if (error)
2127 return error;
2128 }
2129
2130 KASSERT(sopt->sopt_size == len);
2131 m_copydata(m, 0, len, sopt->sopt_data);
2132 m_freem(m);
2133
2134 return 0;
2135 }
2136
2137 /*
2138 * get sockopt value into mbuf
2139 * - ONLY for legacy code
2140 * - mbuf to be released by the caller
2141 * - will not sleep
2142 */
2143 struct mbuf *
2144 sockopt_getmbuf(const struct sockopt *sopt)
2145 {
2146 struct mbuf *m;
2147
2148 if (sopt->sopt_size > MCLBYTES)
2149 return NULL;
2150
2151 m = m_get(M_DONTWAIT, MT_SOOPTS);
2152 if (m == NULL)
2153 return NULL;
2154
2155 if (sopt->sopt_size > MLEN) {
2156 MCLGET(m, M_DONTWAIT);
2157 if ((m->m_flags & M_EXT) == 0) {
2158 m_free(m);
2159 return NULL;
2160 }
2161 }
2162
2163 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2164 m->m_len = sopt->sopt_size;
2165
2166 return m;
2167 }
2168
2169 void
2170 sohasoutofband(struct socket *so)
2171 {
2172
2173 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2174 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2175 }
2176
2177 static void
2178 filt_sordetach(struct knote *kn)
2179 {
2180 struct socket *so;
2181
2182 so = ((file_t *)kn->kn_obj)->f_data;
2183 solock(so);
2184 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2185 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2186 so->so_rcv.sb_flags &= ~SB_KNOTE;
2187 sounlock(so);
2188 }
2189
2190 /*ARGSUSED*/
2191 static int
2192 filt_soread(struct knote *kn, long hint)
2193 {
2194 struct socket *so;
2195 int rv;
2196
2197 so = ((file_t *)kn->kn_obj)->f_data;
2198 if (hint != NOTE_SUBMIT)
2199 solock(so);
2200 kn->kn_data = so->so_rcv.sb_cc;
2201 if (so->so_state & SS_CANTRCVMORE) {
2202 kn->kn_flags |= EV_EOF;
2203 kn->kn_fflags = so->so_error;
2204 rv = 1;
2205 } else if (so->so_error) /* temporary udp error */
2206 rv = 1;
2207 else if (kn->kn_sfflags & NOTE_LOWAT)
2208 rv = (kn->kn_data >= kn->kn_sdata);
2209 else
2210 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2211 if (hint != NOTE_SUBMIT)
2212 sounlock(so);
2213 return rv;
2214 }
2215
2216 static void
2217 filt_sowdetach(struct knote *kn)
2218 {
2219 struct socket *so;
2220
2221 so = ((file_t *)kn->kn_obj)->f_data;
2222 solock(so);
2223 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2224 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2225 so->so_snd.sb_flags &= ~SB_KNOTE;
2226 sounlock(so);
2227 }
2228
2229 /*ARGSUSED*/
2230 static int
2231 filt_sowrite(struct knote *kn, long hint)
2232 {
2233 struct socket *so;
2234 int rv;
2235
2236 so = ((file_t *)kn->kn_obj)->f_data;
2237 if (hint != NOTE_SUBMIT)
2238 solock(so);
2239 kn->kn_data = sbspace(&so->so_snd);
2240 if (so->so_state & SS_CANTSENDMORE) {
2241 kn->kn_flags |= EV_EOF;
2242 kn->kn_fflags = so->so_error;
2243 rv = 1;
2244 } else if (so->so_error) /* temporary udp error */
2245 rv = 1;
2246 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2247 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2248 rv = 0;
2249 else if (kn->kn_sfflags & NOTE_LOWAT)
2250 rv = (kn->kn_data >= kn->kn_sdata);
2251 else
2252 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2253 if (hint != NOTE_SUBMIT)
2254 sounlock(so);
2255 return rv;
2256 }
2257
2258 /*ARGSUSED*/
2259 static int
2260 filt_solisten(struct knote *kn, long hint)
2261 {
2262 struct socket *so;
2263 int rv;
2264
2265 so = ((file_t *)kn->kn_obj)->f_data;
2266
2267 /*
2268 * Set kn_data to number of incoming connections, not
2269 * counting partial (incomplete) connections.
2270 */
2271 if (hint != NOTE_SUBMIT)
2272 solock(so);
2273 kn->kn_data = so->so_qlen;
2274 rv = (kn->kn_data > 0);
2275 if (hint != NOTE_SUBMIT)
2276 sounlock(so);
2277 return rv;
2278 }
2279
2280 static const struct filterops solisten_filtops =
2281 { 1, NULL, filt_sordetach, filt_solisten };
2282 static const struct filterops soread_filtops =
2283 { 1, NULL, filt_sordetach, filt_soread };
2284 static const struct filterops sowrite_filtops =
2285 { 1, NULL, filt_sowdetach, filt_sowrite };
2286
2287 int
2288 soo_kqfilter(struct file *fp, struct knote *kn)
2289 {
2290 struct socket *so;
2291 struct sockbuf *sb;
2292
2293 so = ((file_t *)kn->kn_obj)->f_data;
2294 solock(so);
2295 switch (kn->kn_filter) {
2296 case EVFILT_READ:
2297 if (so->so_options & SO_ACCEPTCONN)
2298 kn->kn_fop = &solisten_filtops;
2299 else
2300 kn->kn_fop = &soread_filtops;
2301 sb = &so->so_rcv;
2302 break;
2303 case EVFILT_WRITE:
2304 kn->kn_fop = &sowrite_filtops;
2305 sb = &so->so_snd;
2306 break;
2307 default:
2308 sounlock(so);
2309 return (EINVAL);
2310 }
2311 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2312 sb->sb_flags |= SB_KNOTE;
2313 sounlock(so);
2314 return (0);
2315 }
2316
2317 static int
2318 sodopoll(struct socket *so, int events)
2319 {
2320 int revents;
2321
2322 revents = 0;
2323
2324 if (events & (POLLIN | POLLRDNORM))
2325 if (soreadable(so))
2326 revents |= events & (POLLIN | POLLRDNORM);
2327
2328 if (events & (POLLOUT | POLLWRNORM))
2329 if (sowritable(so))
2330 revents |= events & (POLLOUT | POLLWRNORM);
2331
2332 if (events & (POLLPRI | POLLRDBAND))
2333 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2334 revents |= events & (POLLPRI | POLLRDBAND);
2335
2336 return revents;
2337 }
2338
2339 int
2340 sopoll(struct socket *so, int events)
2341 {
2342 int revents = 0;
2343
2344 #ifndef DIAGNOSTIC
2345 /*
2346 * Do a quick, unlocked check in expectation that the socket
2347 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2348 * as the solocked() assertions will fail.
2349 */
2350 if ((revents = sodopoll(so, events)) != 0)
2351 return revents;
2352 #endif
2353
2354 solock(so);
2355 if ((revents = sodopoll(so, events)) == 0) {
2356 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2357 selrecord(curlwp, &so->so_rcv.sb_sel);
2358 so->so_rcv.sb_flags |= SB_NOTIFY;
2359 }
2360
2361 if (events & (POLLOUT | POLLWRNORM)) {
2362 selrecord(curlwp, &so->so_snd.sb_sel);
2363 so->so_snd.sb_flags |= SB_NOTIFY;
2364 }
2365 }
2366 sounlock(so);
2367
2368 return revents;
2369 }
2370
2371
2372 #include <sys/sysctl.h>
2373
2374 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2375 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2376
2377 /*
2378 * sysctl helper routine for kern.somaxkva. ensures that the given
2379 * value is not too small.
2380 * (XXX should we maybe make sure it's not too large as well?)
2381 */
2382 static int
2383 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2384 {
2385 int error, new_somaxkva;
2386 struct sysctlnode node;
2387
2388 new_somaxkva = somaxkva;
2389 node = *rnode;
2390 node.sysctl_data = &new_somaxkva;
2391 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2392 if (error || newp == NULL)
2393 return (error);
2394
2395 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2396 return (EINVAL);
2397
2398 mutex_enter(&so_pendfree_lock);
2399 somaxkva = new_somaxkva;
2400 cv_broadcast(&socurkva_cv);
2401 mutex_exit(&so_pendfree_lock);
2402
2403 return (error);
2404 }
2405
2406 /*
2407 * sysctl helper routine for kern.sbmax. Basically just ensures that
2408 * any new value is not too small.
2409 */
2410 static int
2411 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2412 {
2413 int error, new_sbmax;
2414 struct sysctlnode node;
2415
2416 new_sbmax = sb_max;
2417 node = *rnode;
2418 node.sysctl_data = &new_sbmax;
2419 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2420 if (error || newp == NULL)
2421 return (error);
2422
2423 KERNEL_LOCK(1, NULL);
2424 error = sb_max_set(new_sbmax);
2425 KERNEL_UNLOCK_ONE(NULL);
2426
2427 return (error);
2428 }
2429
2430 static void
2431 sysctl_kern_socket_setup(void)
2432 {
2433
2434 KASSERT(socket_sysctllog == NULL);
2435
2436 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2437 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2438 CTLTYPE_INT, "somaxkva",
2439 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2440 "used for socket buffers"),
2441 sysctl_kern_somaxkva, 0, NULL, 0,
2442 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2443
2444 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2445 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2446 CTLTYPE_INT, "sbmax",
2447 SYSCTL_DESCR("Maximum socket buffer size"),
2448 sysctl_kern_sbmax, 0, NULL, 0,
2449 CTL_KERN, KERN_SBMAX, CTL_EOL);
2450 }
2451