Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.235.2.1
      1 /*	$NetBSD: uipc_socket.c,v 1.235.2.1 2015/04/06 15:18:20 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 /*
     66  * Socket operation routines.
     67  *
     68  * These routines are called by the routines in sys_socket.c or from a
     69  * system process, and implement the semantics of socket operations by
     70  * switching out to the protocol specific routines.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.235.2.1 2015/04/06 15:18:20 skrll Exp $");
     75 
     76 #include "opt_compat_netbsd.h"
     77 #include "opt_sock_counters.h"
     78 #include "opt_sosend_loan.h"
     79 #include "opt_mbuftrace.h"
     80 #include "opt_somaxkva.h"
     81 #include "opt_multiprocessor.h"	/* XXX */
     82 
     83 #include <sys/param.h>
     84 #include <sys/systm.h>
     85 #include <sys/proc.h>
     86 #include <sys/file.h>
     87 #include <sys/filedesc.h>
     88 #include <sys/kmem.h>
     89 #include <sys/mbuf.h>
     90 #include <sys/domain.h>
     91 #include <sys/kernel.h>
     92 #include <sys/protosw.h>
     93 #include <sys/socket.h>
     94 #include <sys/socketvar.h>
     95 #include <sys/signalvar.h>
     96 #include <sys/resourcevar.h>
     97 #include <sys/uidinfo.h>
     98 #include <sys/event.h>
     99 #include <sys/poll.h>
    100 #include <sys/kauth.h>
    101 #include <sys/mutex.h>
    102 #include <sys/condvar.h>
    103 #include <sys/kthread.h>
    104 
    105 #ifdef COMPAT_50
    106 #include <compat/sys/time.h>
    107 #include <compat/sys/socket.h>
    108 #endif
    109 
    110 #include <uvm/uvm_extern.h>
    111 #include <uvm/uvm_loan.h>
    112 #include <uvm/uvm_page.h>
    113 
    114 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    115 
    116 extern const struct fileops socketops;
    117 
    118 extern int	somaxconn;			/* patchable (XXX sysctl) */
    119 int		somaxconn = SOMAXCONN;
    120 kmutex_t	*softnet_lock;
    121 
    122 #ifdef SOSEND_COUNTERS
    123 #include <sys/device.h>
    124 
    125 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    126     NULL, "sosend", "loan big");
    127 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    128     NULL, "sosend", "copy big");
    129 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    130     NULL, "sosend", "copy small");
    131 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    132     NULL, "sosend", "kva limit");
    133 
    134 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    135 
    136 EVCNT_ATTACH_STATIC(sosend_loan_big);
    137 EVCNT_ATTACH_STATIC(sosend_copy_big);
    138 EVCNT_ATTACH_STATIC(sosend_copy_small);
    139 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    140 #else
    141 
    142 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    143 
    144 #endif /* SOSEND_COUNTERS */
    145 
    146 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    147 int sock_loan_thresh = -1;
    148 #else
    149 int sock_loan_thresh = 4096;
    150 #endif
    151 
    152 static kmutex_t so_pendfree_lock;
    153 static struct mbuf *so_pendfree = NULL;
    154 
    155 #ifndef SOMAXKVA
    156 #define	SOMAXKVA (16 * 1024 * 1024)
    157 #endif
    158 int somaxkva = SOMAXKVA;
    159 static int socurkva;
    160 static kcondvar_t socurkva_cv;
    161 
    162 static kauth_listener_t socket_listener;
    163 
    164 #define	SOCK_LOAN_CHUNK		65536
    165 
    166 static void sopendfree_thread(void *);
    167 static kcondvar_t pendfree_thread_cv;
    168 static lwp_t *sopendfree_lwp;
    169 
    170 static void sysctl_kern_socket_setup(void);
    171 static struct sysctllog *socket_sysctllog;
    172 
    173 static vsize_t
    174 sokvareserve(struct socket *so, vsize_t len)
    175 {
    176 	int error;
    177 
    178 	mutex_enter(&so_pendfree_lock);
    179 	while (socurkva + len > somaxkva) {
    180 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    181 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    182 		if (error) {
    183 			len = 0;
    184 			break;
    185 		}
    186 	}
    187 	socurkva += len;
    188 	mutex_exit(&so_pendfree_lock);
    189 	return len;
    190 }
    191 
    192 static void
    193 sokvaunreserve(vsize_t len)
    194 {
    195 
    196 	mutex_enter(&so_pendfree_lock);
    197 	socurkva -= len;
    198 	cv_broadcast(&socurkva_cv);
    199 	mutex_exit(&so_pendfree_lock);
    200 }
    201 
    202 /*
    203  * sokvaalloc: allocate kva for loan.
    204  */
    205 
    206 vaddr_t
    207 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
    208 {
    209 	vaddr_t lva;
    210 
    211 	/*
    212 	 * reserve kva.
    213 	 */
    214 
    215 	if (sokvareserve(so, len) == 0)
    216 		return 0;
    217 
    218 	/*
    219 	 * allocate kva.
    220 	 */
    221 
    222 	lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
    223 	    UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    224 	if (lva == 0) {
    225 		sokvaunreserve(len);
    226 		return (0);
    227 	}
    228 
    229 	return lva;
    230 }
    231 
    232 /*
    233  * sokvafree: free kva for loan.
    234  */
    235 
    236 void
    237 sokvafree(vaddr_t sva, vsize_t len)
    238 {
    239 
    240 	/*
    241 	 * free kva.
    242 	 */
    243 
    244 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    245 
    246 	/*
    247 	 * unreserve kva.
    248 	 */
    249 
    250 	sokvaunreserve(len);
    251 }
    252 
    253 static void
    254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    255 {
    256 	vaddr_t sva, eva;
    257 	vsize_t len;
    258 	int npgs;
    259 
    260 	KASSERT(pgs != NULL);
    261 
    262 	eva = round_page((vaddr_t) buf + size);
    263 	sva = trunc_page((vaddr_t) buf);
    264 	len = eva - sva;
    265 	npgs = len >> PAGE_SHIFT;
    266 
    267 	pmap_kremove(sva, len);
    268 	pmap_update(pmap_kernel());
    269 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    270 	sokvafree(sva, len);
    271 }
    272 
    273 /*
    274  * sopendfree_thread: free mbufs on "pendfree" list.
    275  * unlock and relock so_pendfree_lock when freeing mbufs.
    276  */
    277 
    278 static void
    279 sopendfree_thread(void *v)
    280 {
    281 	struct mbuf *m, *next;
    282 	size_t rv;
    283 
    284 	mutex_enter(&so_pendfree_lock);
    285 
    286 	for (;;) {
    287 		rv = 0;
    288 		while (so_pendfree != NULL) {
    289 			m = so_pendfree;
    290 			so_pendfree = NULL;
    291 			mutex_exit(&so_pendfree_lock);
    292 
    293 			for (; m != NULL; m = next) {
    294 				next = m->m_next;
    295 				KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
    296 				KASSERT(m->m_ext.ext_refcnt == 0);
    297 
    298 				rv += m->m_ext.ext_size;
    299 				sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    300 				    m->m_ext.ext_size);
    301 				pool_cache_put(mb_cache, m);
    302 			}
    303 
    304 			mutex_enter(&so_pendfree_lock);
    305 		}
    306 		if (rv)
    307 			cv_broadcast(&socurkva_cv);
    308 		cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
    309 	}
    310 	panic("sopendfree_thread");
    311 	/* NOTREACHED */
    312 }
    313 
    314 void
    315 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    316 {
    317 
    318 	KASSERT(m != NULL);
    319 
    320 	/*
    321 	 * postpone freeing mbuf.
    322 	 *
    323 	 * we can't do it in interrupt context
    324 	 * because we need to put kva back to kernel_map.
    325 	 */
    326 
    327 	mutex_enter(&so_pendfree_lock);
    328 	m->m_next = so_pendfree;
    329 	so_pendfree = m;
    330 	cv_signal(&pendfree_thread_cv);
    331 	mutex_exit(&so_pendfree_lock);
    332 }
    333 
    334 static long
    335 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    336 {
    337 	struct iovec *iov = uio->uio_iov;
    338 	vaddr_t sva, eva;
    339 	vsize_t len;
    340 	vaddr_t lva;
    341 	int npgs, error;
    342 	vaddr_t va;
    343 	int i;
    344 
    345 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    346 		return (0);
    347 
    348 	if (iov->iov_len < (size_t) space)
    349 		space = iov->iov_len;
    350 	if (space > SOCK_LOAN_CHUNK)
    351 		space = SOCK_LOAN_CHUNK;
    352 
    353 	eva = round_page((vaddr_t) iov->iov_base + space);
    354 	sva = trunc_page((vaddr_t) iov->iov_base);
    355 	len = eva - sva;
    356 	npgs = len >> PAGE_SHIFT;
    357 
    358 	KASSERT(npgs <= M_EXT_MAXPAGES);
    359 
    360 	lva = sokvaalloc(sva, len, so);
    361 	if (lva == 0)
    362 		return 0;
    363 
    364 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    365 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    366 	if (error) {
    367 		sokvafree(lva, len);
    368 		return (0);
    369 	}
    370 
    371 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    372 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    373 		    VM_PROT_READ, 0);
    374 	pmap_update(pmap_kernel());
    375 
    376 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    377 
    378 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    379 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    380 
    381 	uio->uio_resid -= space;
    382 	/* uio_offset not updated, not set/used for write(2) */
    383 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    384 	uio->uio_iov->iov_len -= space;
    385 	if (uio->uio_iov->iov_len == 0) {
    386 		uio->uio_iov++;
    387 		uio->uio_iovcnt--;
    388 	}
    389 
    390 	return (space);
    391 }
    392 
    393 struct mbuf *
    394 getsombuf(struct socket *so, int type)
    395 {
    396 	struct mbuf *m;
    397 
    398 	m = m_get(M_WAIT, type);
    399 	MCLAIM(m, so->so_mowner);
    400 	return m;
    401 }
    402 
    403 static int
    404 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    405     void *arg0, void *arg1, void *arg2, void *arg3)
    406 {
    407 	int result;
    408 	enum kauth_network_req req;
    409 
    410 	result = KAUTH_RESULT_DEFER;
    411 	req = (enum kauth_network_req)arg0;
    412 
    413 	if ((action != KAUTH_NETWORK_SOCKET) &&
    414 	    (action != KAUTH_NETWORK_BIND))
    415 		return result;
    416 
    417 	switch (req) {
    418 	case KAUTH_REQ_NETWORK_BIND_PORT:
    419 		result = KAUTH_RESULT_ALLOW;
    420 		break;
    421 
    422 	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
    423 		/* Normal users can only drop their own connections. */
    424 		struct socket *so = (struct socket *)arg1;
    425 
    426 		if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
    427 			result = KAUTH_RESULT_ALLOW;
    428 
    429 		break;
    430 		}
    431 
    432 	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
    433 		/* We allow "raw" routing/bluetooth sockets to anyone. */
    434 		if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
    435 		    || (u_long)arg1 == PF_BLUETOOTH) {
    436 			result = KAUTH_RESULT_ALLOW;
    437 		} else {
    438 			/* Privileged, let secmodel handle this. */
    439 			if ((u_long)arg2 == SOCK_RAW)
    440 				break;
    441 		}
    442 
    443 		result = KAUTH_RESULT_ALLOW;
    444 
    445 		break;
    446 
    447 	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
    448 		result = KAUTH_RESULT_ALLOW;
    449 
    450 		break;
    451 
    452 	default:
    453 		break;
    454 	}
    455 
    456 	return result;
    457 }
    458 
    459 void
    460 soinit(void)
    461 {
    462 
    463 	sysctl_kern_socket_setup();
    464 
    465 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    466 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    467 	cv_init(&socurkva_cv, "sokva");
    468 	cv_init(&pendfree_thread_cv, "sopendfr");
    469 	soinit2();
    470 
    471 	/* Set the initial adjusted socket buffer size. */
    472 	if (sb_max_set(sb_max))
    473 		panic("bad initial sb_max value: %lu", sb_max);
    474 
    475 	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    476 	    socket_listener_cb, NULL);
    477 }
    478 
    479 void
    480 soinit1(void)
    481 {
    482 	int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    483 	    sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
    484 	if (error)
    485 		panic("soinit1 %d", error);
    486 }
    487 
    488 /*
    489  * socreate: create a new socket of the specified type and the protocol.
    490  *
    491  * => Caller may specify another socket for lock sharing (must not be held).
    492  * => Returns the new socket without lock held.
    493  */
    494 int
    495 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    496 	 struct socket *lockso)
    497 {
    498 	const struct protosw	*prp;
    499 	struct socket	*so;
    500 	uid_t		uid;
    501 	int		error;
    502 	kmutex_t	*lock;
    503 
    504 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    505 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    506 	    KAUTH_ARG(proto));
    507 	if (error != 0)
    508 		return error;
    509 
    510 	if (proto)
    511 		prp = pffindproto(dom, proto, type);
    512 	else
    513 		prp = pffindtype(dom, type);
    514 	if (prp == NULL) {
    515 		/* no support for domain */
    516 		if (pffinddomain(dom) == 0)
    517 			return EAFNOSUPPORT;
    518 		/* no support for socket type */
    519 		if (proto == 0 && type != 0)
    520 			return EPROTOTYPE;
    521 		return EPROTONOSUPPORT;
    522 	}
    523 	if (prp->pr_usrreqs == NULL)
    524 		return EPROTONOSUPPORT;
    525 	if (prp->pr_type != type)
    526 		return EPROTOTYPE;
    527 
    528 	so = soget(true);
    529 	so->so_type = type;
    530 	so->so_proto = prp;
    531 	so->so_send = sosend;
    532 	so->so_receive = soreceive;
    533 #ifdef MBUFTRACE
    534 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    535 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    536 	so->so_mowner = &prp->pr_domain->dom_mowner;
    537 #endif
    538 	uid = kauth_cred_geteuid(l->l_cred);
    539 	so->so_uidinfo = uid_find(uid);
    540 	so->so_cpid = l->l_proc->p_pid;
    541 
    542 	/*
    543 	 * Lock assigned and taken during PCB attach, unless we share
    544 	 * the lock with another socket, e.g. socketpair(2) case.
    545 	 */
    546 	if (lockso) {
    547 		lock = lockso->so_lock;
    548 		so->so_lock = lock;
    549 		mutex_obj_hold(lock);
    550 		mutex_enter(lock);
    551 	}
    552 
    553 	/* Attach the PCB (returns with the socket lock held). */
    554 	error = (*prp->pr_usrreqs->pr_attach)(so, proto);
    555 	KASSERT(solocked(so));
    556 
    557 	if (error) {
    558 		KASSERT(so->so_pcb == NULL);
    559 		so->so_state |= SS_NOFDREF;
    560 		sofree(so);
    561 		return error;
    562 	}
    563 	so->so_cred = kauth_cred_dup(l->l_cred);
    564 	sounlock(so);
    565 
    566 	*aso = so;
    567 	return 0;
    568 }
    569 
    570 /*
    571  * fsocreate: create a socket and a file descriptor associated with it.
    572  *
    573  * => On success, write file descriptor to fdout and return zero.
    574  * => On failure, return non-zero; *fdout will be undefined.
    575  */
    576 int
    577 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
    578 {
    579 	lwp_t *l = curlwp;
    580 	int error, fd, flags;
    581 	struct socket *so;
    582 	struct file *fp;
    583 
    584 	if ((error = fd_allocfile(&fp, &fd)) != 0) {
    585 		return error;
    586 	}
    587 	flags = type & SOCK_FLAGS_MASK;
    588 	fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
    589 	fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
    590 	    ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
    591 	fp->f_type = DTYPE_SOCKET;
    592 	fp->f_ops = &socketops;
    593 
    594 	type &= ~SOCK_FLAGS_MASK;
    595 	error = socreate(domain, &so, type, proto, l, NULL);
    596 	if (error) {
    597 		fd_abort(curproc, fp, fd);
    598 		return error;
    599 	}
    600 	if (flags & SOCK_NONBLOCK) {
    601 		so->so_state |= SS_NBIO;
    602 	}
    603 	fp->f_socket = so;
    604 	fd_affix(curproc, fp, fd);
    605 
    606 	if (sop != NULL) {
    607 		*sop = so;
    608 	}
    609 	*fdout = fd;
    610 	return error;
    611 }
    612 
    613 int
    614 sofamily(const struct socket *so)
    615 {
    616 	const struct protosw *pr;
    617 	const struct domain *dom;
    618 
    619 	if ((pr = so->so_proto) == NULL)
    620 		return AF_UNSPEC;
    621 	if ((dom = pr->pr_domain) == NULL)
    622 		return AF_UNSPEC;
    623 	return dom->dom_family;
    624 }
    625 
    626 int
    627 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
    628 {
    629 	int	error;
    630 
    631 	solock(so);
    632 	if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
    633 		sounlock(so);
    634 		return EAFNOSUPPORT;
    635 	}
    636 	error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
    637 	sounlock(so);
    638 	return error;
    639 }
    640 
    641 int
    642 solisten(struct socket *so, int backlog, struct lwp *l)
    643 {
    644 	int	error;
    645 
    646 	solock(so);
    647 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    648 	    SS_ISDISCONNECTING)) != 0) {
    649 		sounlock(so);
    650 		return EINVAL;
    651 	}
    652 	error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
    653 	if (error != 0) {
    654 		sounlock(so);
    655 		return error;
    656 	}
    657 	if (TAILQ_EMPTY(&so->so_q))
    658 		so->so_options |= SO_ACCEPTCONN;
    659 	if (backlog < 0)
    660 		backlog = 0;
    661 	so->so_qlimit = min(backlog, somaxconn);
    662 	sounlock(so);
    663 	return 0;
    664 }
    665 
    666 void
    667 sofree(struct socket *so)
    668 {
    669 	u_int refs;
    670 
    671 	KASSERT(solocked(so));
    672 
    673 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    674 		sounlock(so);
    675 		return;
    676 	}
    677 	if (so->so_head) {
    678 		/*
    679 		 * We must not decommission a socket that's on the accept(2)
    680 		 * queue.  If we do, then accept(2) may hang after select(2)
    681 		 * indicated that the listening socket was ready.
    682 		 */
    683 		if (!soqremque(so, 0)) {
    684 			sounlock(so);
    685 			return;
    686 		}
    687 	}
    688 	if (so->so_rcv.sb_hiwat)
    689 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    690 		    RLIM_INFINITY);
    691 	if (so->so_snd.sb_hiwat)
    692 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    693 		    RLIM_INFINITY);
    694 	sbrelease(&so->so_snd, so);
    695 	KASSERT(!cv_has_waiters(&so->so_cv));
    696 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    697 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    698 	sorflush(so);
    699 	refs = so->so_aborting;	/* XXX */
    700 	/* Remove acccept filter if one is present. */
    701 	if (so->so_accf != NULL)
    702 		(void)accept_filt_clear(so);
    703 	sounlock(so);
    704 	if (refs == 0)		/* XXX */
    705 		soput(so);
    706 }
    707 
    708 /*
    709  * soclose: close a socket on last file table reference removal.
    710  * Initiate disconnect if connected.  Free socket when disconnect complete.
    711  */
    712 int
    713 soclose(struct socket *so)
    714 {
    715 	struct socket *so2;
    716 	int error = 0;
    717 
    718 	solock(so);
    719 	if (so->so_options & SO_ACCEPTCONN) {
    720 		for (;;) {
    721 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    722 				KASSERT(solocked2(so, so2));
    723 				(void) soqremque(so2, 0);
    724 				/* soabort drops the lock. */
    725 				(void) soabort(so2);
    726 				solock(so);
    727 				continue;
    728 			}
    729 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    730 				KASSERT(solocked2(so, so2));
    731 				(void) soqremque(so2, 1);
    732 				/* soabort drops the lock. */
    733 				(void) soabort(so2);
    734 				solock(so);
    735 				continue;
    736 			}
    737 			break;
    738 		}
    739 	}
    740 	if (so->so_pcb == NULL)
    741 		goto discard;
    742 	if (so->so_state & SS_ISCONNECTED) {
    743 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    744 			error = sodisconnect(so);
    745 			if (error)
    746 				goto drop;
    747 		}
    748 		if (so->so_options & SO_LINGER) {
    749 			if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
    750 			    (SS_ISDISCONNECTING|SS_NBIO))
    751 				goto drop;
    752 			while (so->so_state & SS_ISCONNECTED) {
    753 				error = sowait(so, true, so->so_linger * hz);
    754 				if (error)
    755 					break;
    756 			}
    757 		}
    758 	}
    759  drop:
    760 	if (so->so_pcb) {
    761 		KASSERT(solocked(so));
    762 		(*so->so_proto->pr_usrreqs->pr_detach)(so);
    763 	}
    764  discard:
    765 	KASSERT((so->so_state & SS_NOFDREF) == 0);
    766 	kauth_cred_free(so->so_cred);
    767 	so->so_state |= SS_NOFDREF;
    768 	sofree(so);
    769 	return error;
    770 }
    771 
    772 /*
    773  * Must be called with the socket locked..  Will return with it unlocked.
    774  */
    775 int
    776 soabort(struct socket *so)
    777 {
    778 	u_int refs;
    779 	int error;
    780 
    781 	KASSERT(solocked(so));
    782 	KASSERT(so->so_head == NULL);
    783 
    784 	so->so_aborting++;		/* XXX */
    785 	error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
    786 	refs = --so->so_aborting;	/* XXX */
    787 	if (error || (refs == 0)) {
    788 		sofree(so);
    789 	} else {
    790 		sounlock(so);
    791 	}
    792 	return error;
    793 }
    794 
    795 int
    796 soaccept(struct socket *so, struct mbuf *nam)
    797 {
    798 	int error;
    799 
    800 	KASSERT(solocked(so));
    801 	KASSERT((so->so_state & SS_NOFDREF) != 0);
    802 
    803 	so->so_state &= ~SS_NOFDREF;
    804 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    805 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    806 		error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
    807 	else
    808 		error = ECONNABORTED;
    809 
    810 	return error;
    811 }
    812 
    813 int
    814 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
    815 {
    816 	int error;
    817 
    818 	KASSERT(solocked(so));
    819 
    820 	if (so->so_options & SO_ACCEPTCONN)
    821 		return EOPNOTSUPP;
    822 	/*
    823 	 * If protocol is connection-based, can only connect once.
    824 	 * Otherwise, if connected, try to disconnect first.
    825 	 * This allows user to disconnect by connecting to, e.g.,
    826 	 * a null address.
    827 	 */
    828 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    829 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    830 	    (error = sodisconnect(so))))
    831 		error = EISCONN;
    832 	else
    833 		error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
    834 
    835 	return error;
    836 }
    837 
    838 int
    839 soconnect2(struct socket *so1, struct socket *so2)
    840 {
    841 	KASSERT(solocked2(so1, so2));
    842 
    843 	return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
    844 }
    845 
    846 int
    847 sodisconnect(struct socket *so)
    848 {
    849 	int	error;
    850 
    851 	KASSERT(solocked(so));
    852 
    853 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    854 		error = ENOTCONN;
    855 	} else if (so->so_state & SS_ISDISCONNECTING) {
    856 		error = EALREADY;
    857 	} else {
    858 		error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
    859 	}
    860 	return (error);
    861 }
    862 
    863 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    864 /*
    865  * Send on a socket.
    866  * If send must go all at once and message is larger than
    867  * send buffering, then hard error.
    868  * Lock against other senders.
    869  * If must go all at once and not enough room now, then
    870  * inform user that this would block and do nothing.
    871  * Otherwise, if nonblocking, send as much as possible.
    872  * The data to be sent is described by "uio" if nonzero,
    873  * otherwise by the mbuf chain "top" (which must be null
    874  * if uio is not).  Data provided in mbuf chain must be small
    875  * enough to send all at once.
    876  *
    877  * Returns nonzero on error, timeout or signal; callers
    878  * must check for short counts if EINTR/ERESTART are returned.
    879  * Data and control buffers are freed on return.
    880  */
    881 int
    882 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    883 	struct mbuf *control, int flags, struct lwp *l)
    884 {
    885 	struct mbuf	**mp, *m;
    886 	long		space, len, resid, clen, mlen;
    887 	int		error, s, dontroute, atomic;
    888 	short		wakeup_state = 0;
    889 
    890 	clen = 0;
    891 
    892 	/*
    893 	 * solock() provides atomicity of access.  splsoftnet() prevents
    894 	 * protocol processing soft interrupts from interrupting us and
    895 	 * blocking (expensive).
    896 	 */
    897 	s = splsoftnet();
    898 	solock(so);
    899 	atomic = sosendallatonce(so) || top;
    900 	if (uio)
    901 		resid = uio->uio_resid;
    902 	else
    903 		resid = top->m_pkthdr.len;
    904 	/*
    905 	 * In theory resid should be unsigned.
    906 	 * However, space must be signed, as it might be less than 0
    907 	 * if we over-committed, and we must use a signed comparison
    908 	 * of space and resid.  On the other hand, a negative resid
    909 	 * causes us to loop sending 0-length segments to the protocol.
    910 	 */
    911 	if (resid < 0) {
    912 		error = EINVAL;
    913 		goto out;
    914 	}
    915 	dontroute =
    916 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    917 	    (so->so_proto->pr_flags & PR_ATOMIC);
    918 	l->l_ru.ru_msgsnd++;
    919 	if (control)
    920 		clen = control->m_len;
    921  restart:
    922 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    923 		goto out;
    924 	do {
    925 		if (so->so_state & SS_CANTSENDMORE) {
    926 			error = EPIPE;
    927 			goto release;
    928 		}
    929 		if (so->so_error) {
    930 			error = so->so_error;
    931 			so->so_error = 0;
    932 			goto release;
    933 		}
    934 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    935 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    936 				if (resid || clen == 0) {
    937 					error = ENOTCONN;
    938 					goto release;
    939 				}
    940 			} else if (addr == 0) {
    941 				error = EDESTADDRREQ;
    942 				goto release;
    943 			}
    944 		}
    945 		space = sbspace(&so->so_snd);
    946 		if (flags & MSG_OOB)
    947 			space += 1024;
    948 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    949 		    clen > so->so_snd.sb_hiwat) {
    950 			error = EMSGSIZE;
    951 			goto release;
    952 		}
    953 		if (space < resid + clen &&
    954 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    955 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
    956 				error = EWOULDBLOCK;
    957 				goto release;
    958 			}
    959 			sbunlock(&so->so_snd);
    960 			if (wakeup_state & SS_RESTARTSYS) {
    961 				error = ERESTART;
    962 				goto out;
    963 			}
    964 			error = sbwait(&so->so_snd);
    965 			if (error)
    966 				goto out;
    967 			wakeup_state = so->so_state;
    968 			goto restart;
    969 		}
    970 		wakeup_state = 0;
    971 		mp = &top;
    972 		space -= clen;
    973 		do {
    974 			if (uio == NULL) {
    975 				/*
    976 				 * Data is prepackaged in "top".
    977 				 */
    978 				resid = 0;
    979 				if (flags & MSG_EOR)
    980 					top->m_flags |= M_EOR;
    981 			} else do {
    982 				sounlock(so);
    983 				splx(s);
    984 				if (top == NULL) {
    985 					m = m_gethdr(M_WAIT, MT_DATA);
    986 					mlen = MHLEN;
    987 					m->m_pkthdr.len = 0;
    988 					m->m_pkthdr.rcvif = NULL;
    989 				} else {
    990 					m = m_get(M_WAIT, MT_DATA);
    991 					mlen = MLEN;
    992 				}
    993 				MCLAIM(m, so->so_snd.sb_mowner);
    994 				if (sock_loan_thresh >= 0 &&
    995 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
    996 				    space >= sock_loan_thresh &&
    997 				    (len = sosend_loan(so, uio, m,
    998 						       space)) != 0) {
    999 					SOSEND_COUNTER_INCR(&sosend_loan_big);
   1000 					space -= len;
   1001 					goto have_data;
   1002 				}
   1003 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
   1004 					SOSEND_COUNTER_INCR(&sosend_copy_big);
   1005 					m_clget(m, M_DONTWAIT);
   1006 					if ((m->m_flags & M_EXT) == 0)
   1007 						goto nopages;
   1008 					mlen = MCLBYTES;
   1009 					if (atomic && top == 0) {
   1010 						len = lmin(MCLBYTES - max_hdr,
   1011 						    resid);
   1012 						m->m_data += max_hdr;
   1013 					} else
   1014 						len = lmin(MCLBYTES, resid);
   1015 					space -= len;
   1016 				} else {
   1017  nopages:
   1018 					SOSEND_COUNTER_INCR(&sosend_copy_small);
   1019 					len = lmin(lmin(mlen, resid), space);
   1020 					space -= len;
   1021 					/*
   1022 					 * For datagram protocols, leave room
   1023 					 * for protocol headers in first mbuf.
   1024 					 */
   1025 					if (atomic && top == 0 && len < mlen)
   1026 						MH_ALIGN(m, len);
   1027 				}
   1028 				error = uiomove(mtod(m, void *), (int)len, uio);
   1029  have_data:
   1030 				resid = uio->uio_resid;
   1031 				m->m_len = len;
   1032 				*mp = m;
   1033 				top->m_pkthdr.len += len;
   1034 				s = splsoftnet();
   1035 				solock(so);
   1036 				if (error != 0)
   1037 					goto release;
   1038 				mp = &m->m_next;
   1039 				if (resid <= 0) {
   1040 					if (flags & MSG_EOR)
   1041 						top->m_flags |= M_EOR;
   1042 					break;
   1043 				}
   1044 			} while (space > 0 && atomic);
   1045 
   1046 			if (so->so_state & SS_CANTSENDMORE) {
   1047 				error = EPIPE;
   1048 				goto release;
   1049 			}
   1050 			if (dontroute)
   1051 				so->so_options |= SO_DONTROUTE;
   1052 			if (resid > 0)
   1053 				so->so_state |= SS_MORETOCOME;
   1054 			if (flags & MSG_OOB)
   1055 				error = (*so->so_proto->pr_usrreqs->pr_sendoob)(so,
   1056 				    top, control);
   1057 			else
   1058 				error = (*so->so_proto->pr_usrreqs->pr_send)(so,
   1059 				    top, addr, control, l);
   1060 			if (dontroute)
   1061 				so->so_options &= ~SO_DONTROUTE;
   1062 			if (resid > 0)
   1063 				so->so_state &= ~SS_MORETOCOME;
   1064 			clen = 0;
   1065 			control = NULL;
   1066 			top = NULL;
   1067 			mp = &top;
   1068 			if (error != 0)
   1069 				goto release;
   1070 		} while (resid && space > 0);
   1071 	} while (resid);
   1072 
   1073  release:
   1074 	sbunlock(&so->so_snd);
   1075  out:
   1076 	sounlock(so);
   1077 	splx(s);
   1078 	if (top)
   1079 		m_freem(top);
   1080 	if (control)
   1081 		m_freem(control);
   1082 	return (error);
   1083 }
   1084 
   1085 /*
   1086  * Following replacement or removal of the first mbuf on the first
   1087  * mbuf chain of a socket buffer, push necessary state changes back
   1088  * into the socket buffer so that other consumers see the values
   1089  * consistently.  'nextrecord' is the callers locally stored value of
   1090  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1091  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1092  */
   1093 static void
   1094 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1095 {
   1096 
   1097 	KASSERT(solocked(sb->sb_so));
   1098 
   1099 	/*
   1100 	 * First, update for the new value of nextrecord.  If necessary,
   1101 	 * make it the first record.
   1102 	 */
   1103 	if (sb->sb_mb != NULL)
   1104 		sb->sb_mb->m_nextpkt = nextrecord;
   1105 	else
   1106 		sb->sb_mb = nextrecord;
   1107 
   1108         /*
   1109          * Now update any dependent socket buffer fields to reflect
   1110          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1111          * the addition of a second clause that takes care of the
   1112          * case where sb_mb has been updated, but remains the last
   1113          * record.
   1114          */
   1115         if (sb->sb_mb == NULL) {
   1116                 sb->sb_mbtail = NULL;
   1117                 sb->sb_lastrecord = NULL;
   1118         } else if (sb->sb_mb->m_nextpkt == NULL)
   1119                 sb->sb_lastrecord = sb->sb_mb;
   1120 }
   1121 
   1122 /*
   1123  * Implement receive operations on a socket.
   1124  * We depend on the way that records are added to the sockbuf
   1125  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1126  * must begin with an address if the protocol so specifies,
   1127  * followed by an optional mbuf or mbufs containing ancillary data,
   1128  * and then zero or more mbufs of data.
   1129  * In order to avoid blocking network interrupts for the entire time here,
   1130  * we splx() while doing the actual copy to user space.
   1131  * Although the sockbuf is locked, new data may still be appended,
   1132  * and thus we must maintain consistency of the sockbuf during that time.
   1133  *
   1134  * The caller may receive the data as a single mbuf chain by supplying
   1135  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1136  * only for the count in uio_resid.
   1137  */
   1138 int
   1139 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1140 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1141 {
   1142 	struct lwp *l = curlwp;
   1143 	struct mbuf	*m, **mp, *mt;
   1144 	size_t len, offset, moff, orig_resid;
   1145 	int atomic, flags, error, s, type;
   1146 	const struct protosw	*pr;
   1147 	struct mbuf	*nextrecord;
   1148 	int		mbuf_removed = 0;
   1149 	const struct domain *dom;
   1150 	short		wakeup_state = 0;
   1151 
   1152 	pr = so->so_proto;
   1153 	atomic = pr->pr_flags & PR_ATOMIC;
   1154 	dom = pr->pr_domain;
   1155 	mp = mp0;
   1156 	type = 0;
   1157 	orig_resid = uio->uio_resid;
   1158 
   1159 	if (paddr != NULL)
   1160 		*paddr = NULL;
   1161 	if (controlp != NULL)
   1162 		*controlp = NULL;
   1163 	if (flagsp != NULL)
   1164 		flags = *flagsp &~ MSG_EOR;
   1165 	else
   1166 		flags = 0;
   1167 
   1168 	if (flags & MSG_OOB) {
   1169 		m = m_get(M_WAIT, MT_DATA);
   1170 		solock(so);
   1171 		error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
   1172 		sounlock(so);
   1173 		if (error)
   1174 			goto bad;
   1175 		do {
   1176 			error = uiomove(mtod(m, void *),
   1177 			    MIN(uio->uio_resid, m->m_len), uio);
   1178 			m = m_free(m);
   1179 		} while (uio->uio_resid > 0 && error == 0 && m);
   1180  bad:
   1181 		if (m != NULL)
   1182 			m_freem(m);
   1183 		return error;
   1184 	}
   1185 	if (mp != NULL)
   1186 		*mp = NULL;
   1187 
   1188 	/*
   1189 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1190 	 * protocol processing soft interrupts from interrupting us and
   1191 	 * blocking (expensive).
   1192 	 */
   1193 	s = splsoftnet();
   1194 	solock(so);
   1195  restart:
   1196 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1197 		sounlock(so);
   1198 		splx(s);
   1199 		return error;
   1200 	}
   1201 
   1202 	m = so->so_rcv.sb_mb;
   1203 	/*
   1204 	 * If we have less data than requested, block awaiting more
   1205 	 * (subject to any timeout) if:
   1206 	 *   1. the current count is less than the low water mark,
   1207 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1208 	 *	receive operation at once if we block (resid <= hiwat), or
   1209 	 *   3. MSG_DONTWAIT is not set.
   1210 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1211 	 * we have to do the receive in sections, and thus risk returning
   1212 	 * a short count if a timeout or signal occurs after we start.
   1213 	 */
   1214 	if (m == NULL ||
   1215 	    ((flags & MSG_DONTWAIT) == 0 &&
   1216 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1217 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1218 	      ((flags & MSG_WAITALL) &&
   1219 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1220 	     m->m_nextpkt == NULL && !atomic)) {
   1221 #ifdef DIAGNOSTIC
   1222 		if (m == NULL && so->so_rcv.sb_cc)
   1223 			panic("receive 1");
   1224 #endif
   1225 		if (so->so_error) {
   1226 			if (m != NULL)
   1227 				goto dontblock;
   1228 			error = so->so_error;
   1229 			if ((flags & MSG_PEEK) == 0)
   1230 				so->so_error = 0;
   1231 			goto release;
   1232 		}
   1233 		if (so->so_state & SS_CANTRCVMORE) {
   1234 			if (m != NULL)
   1235 				goto dontblock;
   1236 			else
   1237 				goto release;
   1238 		}
   1239 		for (; m != NULL; m = m->m_next)
   1240 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1241 				m = so->so_rcv.sb_mb;
   1242 				goto dontblock;
   1243 			}
   1244 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1245 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1246 			error = ENOTCONN;
   1247 			goto release;
   1248 		}
   1249 		if (uio->uio_resid == 0)
   1250 			goto release;
   1251 		if ((so->so_state & SS_NBIO) ||
   1252 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
   1253 			error = EWOULDBLOCK;
   1254 			goto release;
   1255 		}
   1256 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1257 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1258 		sbunlock(&so->so_rcv);
   1259 		if (wakeup_state & SS_RESTARTSYS)
   1260 			error = ERESTART;
   1261 		else
   1262 			error = sbwait(&so->so_rcv);
   1263 		if (error != 0) {
   1264 			sounlock(so);
   1265 			splx(s);
   1266 			return error;
   1267 		}
   1268 		wakeup_state = so->so_state;
   1269 		goto restart;
   1270 	}
   1271  dontblock:
   1272 	/*
   1273 	 * On entry here, m points to the first record of the socket buffer.
   1274 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1275 	 * pointer to the next record in the socket buffer.  We must keep the
   1276 	 * various socket buffer pointers and local stack versions of the
   1277 	 * pointers in sync, pushing out modifications before dropping the
   1278 	 * socket lock, and re-reading them when picking it up.
   1279 	 *
   1280 	 * Otherwise, we will race with the network stack appending new data
   1281 	 * or records onto the socket buffer by using inconsistent/stale
   1282 	 * versions of the field, possibly resulting in socket buffer
   1283 	 * corruption.
   1284 	 *
   1285 	 * By holding the high-level sblock(), we prevent simultaneous
   1286 	 * readers from pulling off the front of the socket buffer.
   1287 	 */
   1288 	if (l != NULL)
   1289 		l->l_ru.ru_msgrcv++;
   1290 	KASSERT(m == so->so_rcv.sb_mb);
   1291 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1292 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1293 	nextrecord = m->m_nextpkt;
   1294 	if (pr->pr_flags & PR_ADDR) {
   1295 #ifdef DIAGNOSTIC
   1296 		if (m->m_type != MT_SONAME)
   1297 			panic("receive 1a");
   1298 #endif
   1299 		orig_resid = 0;
   1300 		if (flags & MSG_PEEK) {
   1301 			if (paddr)
   1302 				*paddr = m_copy(m, 0, m->m_len);
   1303 			m = m->m_next;
   1304 		} else {
   1305 			sbfree(&so->so_rcv, m);
   1306 			mbuf_removed = 1;
   1307 			if (paddr != NULL) {
   1308 				*paddr = m;
   1309 				so->so_rcv.sb_mb = m->m_next;
   1310 				m->m_next = NULL;
   1311 				m = so->so_rcv.sb_mb;
   1312 			} else {
   1313 				MFREE(m, so->so_rcv.sb_mb);
   1314 				m = so->so_rcv.sb_mb;
   1315 			}
   1316 			sbsync(&so->so_rcv, nextrecord);
   1317 		}
   1318 	}
   1319 
   1320 	/*
   1321 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1322 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1323 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1324 	 * perform externalization (or freeing if controlp == NULL).
   1325 	 */
   1326 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1327 		struct mbuf *cm = NULL, *cmn;
   1328 		struct mbuf **cme = &cm;
   1329 
   1330 		do {
   1331 			if (flags & MSG_PEEK) {
   1332 				if (controlp != NULL) {
   1333 					*controlp = m_copy(m, 0, m->m_len);
   1334 					controlp = &(*controlp)->m_next;
   1335 				}
   1336 				m = m->m_next;
   1337 			} else {
   1338 				sbfree(&so->so_rcv, m);
   1339 				so->so_rcv.sb_mb = m->m_next;
   1340 				m->m_next = NULL;
   1341 				*cme = m;
   1342 				cme = &(*cme)->m_next;
   1343 				m = so->so_rcv.sb_mb;
   1344 			}
   1345 		} while (m != NULL && m->m_type == MT_CONTROL);
   1346 		if ((flags & MSG_PEEK) == 0)
   1347 			sbsync(&so->so_rcv, nextrecord);
   1348 		for (; cm != NULL; cm = cmn) {
   1349 			cmn = cm->m_next;
   1350 			cm->m_next = NULL;
   1351 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1352 			if (controlp != NULL) {
   1353 				if (dom->dom_externalize != NULL &&
   1354 				    type == SCM_RIGHTS) {
   1355 					sounlock(so);
   1356 					splx(s);
   1357 					error = (*dom->dom_externalize)(cm, l,
   1358 					    (flags & MSG_CMSG_CLOEXEC) ?
   1359 					    O_CLOEXEC : 0);
   1360 					s = splsoftnet();
   1361 					solock(so);
   1362 				}
   1363 				*controlp = cm;
   1364 				while (*controlp != NULL)
   1365 					controlp = &(*controlp)->m_next;
   1366 			} else {
   1367 				/*
   1368 				 * Dispose of any SCM_RIGHTS message that went
   1369 				 * through the read path rather than recv.
   1370 				 */
   1371 				if (dom->dom_dispose != NULL &&
   1372 				    type == SCM_RIGHTS) {
   1373 				    	sounlock(so);
   1374 					(*dom->dom_dispose)(cm);
   1375 					solock(so);
   1376 				}
   1377 				m_freem(cm);
   1378 			}
   1379 		}
   1380 		if (m != NULL)
   1381 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1382 		else
   1383 			nextrecord = so->so_rcv.sb_mb;
   1384 		orig_resid = 0;
   1385 	}
   1386 
   1387 	/* If m is non-NULL, we have some data to read. */
   1388 	if (__predict_true(m != NULL)) {
   1389 		type = m->m_type;
   1390 		if (type == MT_OOBDATA)
   1391 			flags |= MSG_OOB;
   1392 	}
   1393 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1394 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1395 
   1396 	moff = 0;
   1397 	offset = 0;
   1398 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1399 		if (m->m_type == MT_OOBDATA) {
   1400 			if (type != MT_OOBDATA)
   1401 				break;
   1402 		} else if (type == MT_OOBDATA)
   1403 			break;
   1404 #ifdef DIAGNOSTIC
   1405 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1406 			panic("receive 3");
   1407 #endif
   1408 		so->so_state &= ~SS_RCVATMARK;
   1409 		wakeup_state = 0;
   1410 		len = uio->uio_resid;
   1411 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1412 			len = so->so_oobmark - offset;
   1413 		if (len > m->m_len - moff)
   1414 			len = m->m_len - moff;
   1415 		/*
   1416 		 * If mp is set, just pass back the mbufs.
   1417 		 * Otherwise copy them out via the uio, then free.
   1418 		 * Sockbuf must be consistent here (points to current mbuf,
   1419 		 * it points to next record) when we drop priority;
   1420 		 * we must note any additions to the sockbuf when we
   1421 		 * block interrupts again.
   1422 		 */
   1423 		if (mp == NULL) {
   1424 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1425 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1426 			sounlock(so);
   1427 			splx(s);
   1428 			error = uiomove(mtod(m, char *) + moff, len, uio);
   1429 			s = splsoftnet();
   1430 			solock(so);
   1431 			if (error != 0) {
   1432 				/*
   1433 				 * If any part of the record has been removed
   1434 				 * (such as the MT_SONAME mbuf, which will
   1435 				 * happen when PR_ADDR, and thus also
   1436 				 * PR_ATOMIC, is set), then drop the entire
   1437 				 * record to maintain the atomicity of the
   1438 				 * receive operation.
   1439 				 *
   1440 				 * This avoids a later panic("receive 1a")
   1441 				 * when compiled with DIAGNOSTIC.
   1442 				 */
   1443 				if (m && mbuf_removed && atomic)
   1444 					(void) sbdroprecord(&so->so_rcv);
   1445 
   1446 				goto release;
   1447 			}
   1448 		} else
   1449 			uio->uio_resid -= len;
   1450 		if (len == m->m_len - moff) {
   1451 			if (m->m_flags & M_EOR)
   1452 				flags |= MSG_EOR;
   1453 			if (flags & MSG_PEEK) {
   1454 				m = m->m_next;
   1455 				moff = 0;
   1456 			} else {
   1457 				nextrecord = m->m_nextpkt;
   1458 				sbfree(&so->so_rcv, m);
   1459 				if (mp) {
   1460 					*mp = m;
   1461 					mp = &m->m_next;
   1462 					so->so_rcv.sb_mb = m = m->m_next;
   1463 					*mp = NULL;
   1464 				} else {
   1465 					MFREE(m, so->so_rcv.sb_mb);
   1466 					m = so->so_rcv.sb_mb;
   1467 				}
   1468 				/*
   1469 				 * If m != NULL, we also know that
   1470 				 * so->so_rcv.sb_mb != NULL.
   1471 				 */
   1472 				KASSERT(so->so_rcv.sb_mb == m);
   1473 				if (m) {
   1474 					m->m_nextpkt = nextrecord;
   1475 					if (nextrecord == NULL)
   1476 						so->so_rcv.sb_lastrecord = m;
   1477 				} else {
   1478 					so->so_rcv.sb_mb = nextrecord;
   1479 					SB_EMPTY_FIXUP(&so->so_rcv);
   1480 				}
   1481 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1482 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1483 			}
   1484 		} else if (flags & MSG_PEEK)
   1485 			moff += len;
   1486 		else {
   1487 			if (mp != NULL) {
   1488 				mt = m_copym(m, 0, len, M_NOWAIT);
   1489 				if (__predict_false(mt == NULL)) {
   1490 					sounlock(so);
   1491 					mt = m_copym(m, 0, len, M_WAIT);
   1492 					solock(so);
   1493 				}
   1494 				*mp = mt;
   1495 			}
   1496 			m->m_data += len;
   1497 			m->m_len -= len;
   1498 			so->so_rcv.sb_cc -= len;
   1499 		}
   1500 		if (so->so_oobmark) {
   1501 			if ((flags & MSG_PEEK) == 0) {
   1502 				so->so_oobmark -= len;
   1503 				if (so->so_oobmark == 0) {
   1504 					so->so_state |= SS_RCVATMARK;
   1505 					break;
   1506 				}
   1507 			} else {
   1508 				offset += len;
   1509 				if (offset == so->so_oobmark)
   1510 					break;
   1511 			}
   1512 		}
   1513 		if (flags & MSG_EOR)
   1514 			break;
   1515 		/*
   1516 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1517 		 * we must not quit until "uio->uio_resid == 0" or an error
   1518 		 * termination.  If a signal/timeout occurs, return
   1519 		 * with a short count but without error.
   1520 		 * Keep sockbuf locked against other readers.
   1521 		 */
   1522 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1523 		    !sosendallatonce(so) && !nextrecord) {
   1524 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1525 				break;
   1526 			/*
   1527 			 * If we are peeking and the socket receive buffer is
   1528 			 * full, stop since we can't get more data to peek at.
   1529 			 */
   1530 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1531 				break;
   1532 			/*
   1533 			 * If we've drained the socket buffer, tell the
   1534 			 * protocol in case it needs to do something to
   1535 			 * get it filled again.
   1536 			 */
   1537 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1538 				(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1539 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1540 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1541 			if (wakeup_state & SS_RESTARTSYS)
   1542 				error = ERESTART;
   1543 			else
   1544 				error = sbwait(&so->so_rcv);
   1545 			if (error != 0) {
   1546 				sbunlock(&so->so_rcv);
   1547 				sounlock(so);
   1548 				splx(s);
   1549 				return 0;
   1550 			}
   1551 			if ((m = so->so_rcv.sb_mb) != NULL)
   1552 				nextrecord = m->m_nextpkt;
   1553 			wakeup_state = so->so_state;
   1554 		}
   1555 	}
   1556 
   1557 	if (m && atomic) {
   1558 		flags |= MSG_TRUNC;
   1559 		if ((flags & MSG_PEEK) == 0)
   1560 			(void) sbdroprecord(&so->so_rcv);
   1561 	}
   1562 	if ((flags & MSG_PEEK) == 0) {
   1563 		if (m == NULL) {
   1564 			/*
   1565 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1566 			 * part makes sure sb_lastrecord is up-to-date if
   1567 			 * there is still data in the socket buffer.
   1568 			 */
   1569 			so->so_rcv.sb_mb = nextrecord;
   1570 			if (so->so_rcv.sb_mb == NULL) {
   1571 				so->so_rcv.sb_mbtail = NULL;
   1572 				so->so_rcv.sb_lastrecord = NULL;
   1573 			} else if (nextrecord->m_nextpkt == NULL)
   1574 				so->so_rcv.sb_lastrecord = nextrecord;
   1575 		}
   1576 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1577 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1578 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1579 			(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1580 	}
   1581 	if (orig_resid == uio->uio_resid && orig_resid &&
   1582 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1583 		sbunlock(&so->so_rcv);
   1584 		goto restart;
   1585 	}
   1586 
   1587 	if (flagsp != NULL)
   1588 		*flagsp |= flags;
   1589  release:
   1590 	sbunlock(&so->so_rcv);
   1591 	sounlock(so);
   1592 	splx(s);
   1593 	return error;
   1594 }
   1595 
   1596 int
   1597 soshutdown(struct socket *so, int how)
   1598 {
   1599 	const struct protosw	*pr;
   1600 	int	error;
   1601 
   1602 	KASSERT(solocked(so));
   1603 
   1604 	pr = so->so_proto;
   1605 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1606 		return (EINVAL);
   1607 
   1608 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1609 		sorflush(so);
   1610 		error = 0;
   1611 	}
   1612 	if (how == SHUT_WR || how == SHUT_RDWR)
   1613 		error = (*pr->pr_usrreqs->pr_shutdown)(so);
   1614 
   1615 	return error;
   1616 }
   1617 
   1618 void
   1619 sorestart(struct socket *so)
   1620 {
   1621 	/*
   1622 	 * An application has called close() on an fd on which another
   1623 	 * of its threads has called a socket system call.
   1624 	 * Mark this and wake everyone up, and code that would block again
   1625 	 * instead returns ERESTART.
   1626 	 * On system call re-entry the fd is validated and EBADF returned.
   1627 	 * Any other fd will block again on the 2nd syscall.
   1628 	 */
   1629 	solock(so);
   1630 	so->so_state |= SS_RESTARTSYS;
   1631 	cv_broadcast(&so->so_cv);
   1632 	cv_broadcast(&so->so_snd.sb_cv);
   1633 	cv_broadcast(&so->so_rcv.sb_cv);
   1634 	sounlock(so);
   1635 }
   1636 
   1637 void
   1638 sorflush(struct socket *so)
   1639 {
   1640 	struct sockbuf	*sb, asb;
   1641 	const struct protosw	*pr;
   1642 
   1643 	KASSERT(solocked(so));
   1644 
   1645 	sb = &so->so_rcv;
   1646 	pr = so->so_proto;
   1647 	socantrcvmore(so);
   1648 	sb->sb_flags |= SB_NOINTR;
   1649 	(void )sblock(sb, M_WAITOK);
   1650 	sbunlock(sb);
   1651 	asb = *sb;
   1652 	/*
   1653 	 * Clear most of the sockbuf structure, but leave some of the
   1654 	 * fields valid.
   1655 	 */
   1656 	memset(&sb->sb_startzero, 0,
   1657 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1658 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1659 		sounlock(so);
   1660 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1661 		solock(so);
   1662 	}
   1663 	sbrelease(&asb, so);
   1664 }
   1665 
   1666 /*
   1667  * internal set SOL_SOCKET options
   1668  */
   1669 static int
   1670 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1671 {
   1672 	int error = EINVAL, opt;
   1673 	int optval = 0; /* XXX: gcc */
   1674 	struct linger l;
   1675 	struct timeval tv;
   1676 
   1677 	switch ((opt = sopt->sopt_name)) {
   1678 
   1679 	case SO_ACCEPTFILTER:
   1680 		error = accept_filt_setopt(so, sopt);
   1681 		KASSERT(solocked(so));
   1682 		break;
   1683 
   1684   	case SO_LINGER:
   1685  		error = sockopt_get(sopt, &l, sizeof(l));
   1686 		solock(so);
   1687  		if (error)
   1688  			break;
   1689  		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1690  		    l.l_linger > (INT_MAX / hz)) {
   1691 			error = EDOM;
   1692 			break;
   1693 		}
   1694  		so->so_linger = l.l_linger;
   1695  		if (l.l_onoff)
   1696  			so->so_options |= SO_LINGER;
   1697  		else
   1698  			so->so_options &= ~SO_LINGER;
   1699    		break;
   1700 
   1701 	case SO_DEBUG:
   1702 	case SO_KEEPALIVE:
   1703 	case SO_DONTROUTE:
   1704 	case SO_USELOOPBACK:
   1705 	case SO_BROADCAST:
   1706 	case SO_REUSEADDR:
   1707 	case SO_REUSEPORT:
   1708 	case SO_OOBINLINE:
   1709 	case SO_TIMESTAMP:
   1710 	case SO_NOSIGPIPE:
   1711 #ifdef SO_OTIMESTAMP
   1712 	case SO_OTIMESTAMP:
   1713 #endif
   1714 		error = sockopt_getint(sopt, &optval);
   1715 		solock(so);
   1716 		if (error)
   1717 			break;
   1718 		if (optval)
   1719 			so->so_options |= opt;
   1720 		else
   1721 			so->so_options &= ~opt;
   1722 		break;
   1723 
   1724 	case SO_SNDBUF:
   1725 	case SO_RCVBUF:
   1726 	case SO_SNDLOWAT:
   1727 	case SO_RCVLOWAT:
   1728 		error = sockopt_getint(sopt, &optval);
   1729 		solock(so);
   1730 		if (error)
   1731 			break;
   1732 
   1733 		/*
   1734 		 * Values < 1 make no sense for any of these
   1735 		 * options, so disallow them.
   1736 		 */
   1737 		if (optval < 1) {
   1738 			error = EINVAL;
   1739 			break;
   1740 		}
   1741 
   1742 		switch (opt) {
   1743 		case SO_SNDBUF:
   1744 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
   1745 				error = ENOBUFS;
   1746 				break;
   1747 			}
   1748 			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1749 			break;
   1750 
   1751 		case SO_RCVBUF:
   1752 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
   1753 				error = ENOBUFS;
   1754 				break;
   1755 			}
   1756 			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1757 			break;
   1758 
   1759 		/*
   1760 		 * Make sure the low-water is never greater than
   1761 		 * the high-water.
   1762 		 */
   1763 		case SO_SNDLOWAT:
   1764 			if (optval > so->so_snd.sb_hiwat)
   1765 				optval = so->so_snd.sb_hiwat;
   1766 
   1767 			so->so_snd.sb_lowat = optval;
   1768 			break;
   1769 
   1770 		case SO_RCVLOWAT:
   1771 			if (optval > so->so_rcv.sb_hiwat)
   1772 				optval = so->so_rcv.sb_hiwat;
   1773 
   1774 			so->so_rcv.sb_lowat = optval;
   1775 			break;
   1776 		}
   1777 		break;
   1778 
   1779 #ifdef COMPAT_50
   1780 	case SO_OSNDTIMEO:
   1781 	case SO_ORCVTIMEO: {
   1782 		struct timeval50 otv;
   1783 		error = sockopt_get(sopt, &otv, sizeof(otv));
   1784 		if (error) {
   1785 			solock(so);
   1786 			break;
   1787 		}
   1788 		timeval50_to_timeval(&otv, &tv);
   1789 		opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
   1790 		error = 0;
   1791 		/*FALLTHROUGH*/
   1792 	}
   1793 #endif /* COMPAT_50 */
   1794 
   1795 	case SO_SNDTIMEO:
   1796 	case SO_RCVTIMEO:
   1797 		if (error)
   1798 			error = sockopt_get(sopt, &tv, sizeof(tv));
   1799 		solock(so);
   1800 		if (error)
   1801 			break;
   1802 
   1803 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
   1804 			error = EDOM;
   1805 			break;
   1806 		}
   1807 
   1808 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1809 		if (optval == 0 && tv.tv_usec != 0)
   1810 			optval = 1;
   1811 
   1812 		switch (opt) {
   1813 		case SO_SNDTIMEO:
   1814 			so->so_snd.sb_timeo = optval;
   1815 			break;
   1816 		case SO_RCVTIMEO:
   1817 			so->so_rcv.sb_timeo = optval;
   1818 			break;
   1819 		}
   1820 		break;
   1821 
   1822 	default:
   1823 		solock(so);
   1824 		error = ENOPROTOOPT;
   1825 		break;
   1826 	}
   1827 	KASSERT(solocked(so));
   1828 	return error;
   1829 }
   1830 
   1831 int
   1832 sosetopt(struct socket *so, struct sockopt *sopt)
   1833 {
   1834 	int error, prerr;
   1835 
   1836 	if (sopt->sopt_level == SOL_SOCKET) {
   1837 		error = sosetopt1(so, sopt);
   1838 		KASSERT(solocked(so));
   1839 	} else {
   1840 		error = ENOPROTOOPT;
   1841 		solock(so);
   1842 	}
   1843 
   1844 	if ((error == 0 || error == ENOPROTOOPT) &&
   1845 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1846 		/* give the protocol stack a shot */
   1847 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1848 		if (prerr == 0)
   1849 			error = 0;
   1850 		else if (prerr != ENOPROTOOPT)
   1851 			error = prerr;
   1852 	}
   1853 	sounlock(so);
   1854 	return error;
   1855 }
   1856 
   1857 /*
   1858  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1859  */
   1860 int
   1861 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1862     const void *val, size_t valsize)
   1863 {
   1864 	struct sockopt sopt;
   1865 	int error;
   1866 
   1867 	KASSERT(valsize == 0 || val != NULL);
   1868 
   1869 	sockopt_init(&sopt, level, name, valsize);
   1870 	sockopt_set(&sopt, val, valsize);
   1871 
   1872 	error = sosetopt(so, &sopt);
   1873 
   1874 	sockopt_destroy(&sopt);
   1875 
   1876 	return error;
   1877 }
   1878 
   1879 /*
   1880  * internal get SOL_SOCKET options
   1881  */
   1882 static int
   1883 sogetopt1(struct socket *so, struct sockopt *sopt)
   1884 {
   1885 	int error, optval, opt;
   1886 	struct linger l;
   1887 	struct timeval tv;
   1888 
   1889 	switch ((opt = sopt->sopt_name)) {
   1890 
   1891 	case SO_ACCEPTFILTER:
   1892 		error = accept_filt_getopt(so, sopt);
   1893 		break;
   1894 
   1895 	case SO_LINGER:
   1896 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1897 		l.l_linger = so->so_linger;
   1898 
   1899 		error = sockopt_set(sopt, &l, sizeof(l));
   1900 		break;
   1901 
   1902 	case SO_USELOOPBACK:
   1903 	case SO_DONTROUTE:
   1904 	case SO_DEBUG:
   1905 	case SO_KEEPALIVE:
   1906 	case SO_REUSEADDR:
   1907 	case SO_REUSEPORT:
   1908 	case SO_BROADCAST:
   1909 	case SO_OOBINLINE:
   1910 	case SO_TIMESTAMP:
   1911 	case SO_NOSIGPIPE:
   1912 #ifdef SO_OTIMESTAMP
   1913 	case SO_OTIMESTAMP:
   1914 #endif
   1915 	case SO_ACCEPTCONN:
   1916 		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
   1917 		break;
   1918 
   1919 	case SO_TYPE:
   1920 		error = sockopt_setint(sopt, so->so_type);
   1921 		break;
   1922 
   1923 	case SO_ERROR:
   1924 		error = sockopt_setint(sopt, so->so_error);
   1925 		so->so_error = 0;
   1926 		break;
   1927 
   1928 	case SO_SNDBUF:
   1929 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1930 		break;
   1931 
   1932 	case SO_RCVBUF:
   1933 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1934 		break;
   1935 
   1936 	case SO_SNDLOWAT:
   1937 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1938 		break;
   1939 
   1940 	case SO_RCVLOWAT:
   1941 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1942 		break;
   1943 
   1944 #ifdef COMPAT_50
   1945 	case SO_OSNDTIMEO:
   1946 	case SO_ORCVTIMEO: {
   1947 		struct timeval50 otv;
   1948 
   1949 		optval = (opt == SO_OSNDTIMEO ?
   1950 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1951 
   1952 		otv.tv_sec = optval / hz;
   1953 		otv.tv_usec = (optval % hz) * tick;
   1954 
   1955 		error = sockopt_set(sopt, &otv, sizeof(otv));
   1956 		break;
   1957 	}
   1958 #endif /* COMPAT_50 */
   1959 
   1960 	case SO_SNDTIMEO:
   1961 	case SO_RCVTIMEO:
   1962 		optval = (opt == SO_SNDTIMEO ?
   1963 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1964 
   1965 		tv.tv_sec = optval / hz;
   1966 		tv.tv_usec = (optval % hz) * tick;
   1967 
   1968 		error = sockopt_set(sopt, &tv, sizeof(tv));
   1969 		break;
   1970 
   1971 	case SO_OVERFLOWED:
   1972 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   1973 		break;
   1974 
   1975 	default:
   1976 		error = ENOPROTOOPT;
   1977 		break;
   1978 	}
   1979 
   1980 	return (error);
   1981 }
   1982 
   1983 int
   1984 sogetopt(struct socket *so, struct sockopt *sopt)
   1985 {
   1986 	int		error;
   1987 
   1988 	solock(so);
   1989 	if (sopt->sopt_level != SOL_SOCKET) {
   1990 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1991 			error = ((*so->so_proto->pr_ctloutput)
   1992 			    (PRCO_GETOPT, so, sopt));
   1993 		} else
   1994 			error = (ENOPROTOOPT);
   1995 	} else {
   1996 		error = sogetopt1(so, sopt);
   1997 	}
   1998 	sounlock(so);
   1999 	return (error);
   2000 }
   2001 
   2002 /*
   2003  * alloc sockopt data buffer buffer
   2004  *	- will be released at destroy
   2005  */
   2006 static int
   2007 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
   2008 {
   2009 
   2010 	KASSERT(sopt->sopt_size == 0);
   2011 
   2012 	if (len > sizeof(sopt->sopt_buf)) {
   2013 		sopt->sopt_data = kmem_zalloc(len, kmflag);
   2014 		if (sopt->sopt_data == NULL)
   2015 			return ENOMEM;
   2016 	} else
   2017 		sopt->sopt_data = sopt->sopt_buf;
   2018 
   2019 	sopt->sopt_size = len;
   2020 	return 0;
   2021 }
   2022 
   2023 /*
   2024  * initialise sockopt storage
   2025  *	- MAY sleep during allocation
   2026  */
   2027 void
   2028 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   2029 {
   2030 
   2031 	memset(sopt, 0, sizeof(*sopt));
   2032 
   2033 	sopt->sopt_level = level;
   2034 	sopt->sopt_name = name;
   2035 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
   2036 }
   2037 
   2038 /*
   2039  * destroy sockopt storage
   2040  *	- will release any held memory references
   2041  */
   2042 void
   2043 sockopt_destroy(struct sockopt *sopt)
   2044 {
   2045 
   2046 	if (sopt->sopt_data != sopt->sopt_buf)
   2047 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   2048 
   2049 	memset(sopt, 0, sizeof(*sopt));
   2050 }
   2051 
   2052 /*
   2053  * set sockopt value
   2054  *	- value is copied into sockopt
   2055  * 	- memory is allocated when necessary, will not sleep
   2056  */
   2057 int
   2058 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   2059 {
   2060 	int error;
   2061 
   2062 	if (sopt->sopt_size == 0) {
   2063 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2064 		if (error)
   2065 			return error;
   2066 	}
   2067 
   2068 	KASSERT(sopt->sopt_size == len);
   2069 	memcpy(sopt->sopt_data, buf, len);
   2070 	return 0;
   2071 }
   2072 
   2073 /*
   2074  * common case of set sockopt integer value
   2075  */
   2076 int
   2077 sockopt_setint(struct sockopt *sopt, int val)
   2078 {
   2079 
   2080 	return sockopt_set(sopt, &val, sizeof(int));
   2081 }
   2082 
   2083 /*
   2084  * get sockopt value
   2085  *	- correct size must be given
   2086  */
   2087 int
   2088 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   2089 {
   2090 
   2091 	if (sopt->sopt_size != len)
   2092 		return EINVAL;
   2093 
   2094 	memcpy(buf, sopt->sopt_data, len);
   2095 	return 0;
   2096 }
   2097 
   2098 /*
   2099  * common case of get sockopt integer value
   2100  */
   2101 int
   2102 sockopt_getint(const struct sockopt *sopt, int *valp)
   2103 {
   2104 
   2105 	return sockopt_get(sopt, valp, sizeof(int));
   2106 }
   2107 
   2108 /*
   2109  * set sockopt value from mbuf
   2110  *	- ONLY for legacy code
   2111  *	- mbuf is released by sockopt
   2112  *	- will not sleep
   2113  */
   2114 int
   2115 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   2116 {
   2117 	size_t len;
   2118 	int error;
   2119 
   2120 	len = m_length(m);
   2121 
   2122 	if (sopt->sopt_size == 0) {
   2123 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2124 		if (error)
   2125 			return error;
   2126 	}
   2127 
   2128 	KASSERT(sopt->sopt_size == len);
   2129 	m_copydata(m, 0, len, sopt->sopt_data);
   2130 	m_freem(m);
   2131 
   2132 	return 0;
   2133 }
   2134 
   2135 /*
   2136  * get sockopt value into mbuf
   2137  *	- ONLY for legacy code
   2138  *	- mbuf to be released by the caller
   2139  *	- will not sleep
   2140  */
   2141 struct mbuf *
   2142 sockopt_getmbuf(const struct sockopt *sopt)
   2143 {
   2144 	struct mbuf *m;
   2145 
   2146 	if (sopt->sopt_size > MCLBYTES)
   2147 		return NULL;
   2148 
   2149 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   2150 	if (m == NULL)
   2151 		return NULL;
   2152 
   2153 	if (sopt->sopt_size > MLEN) {
   2154 		MCLGET(m, M_DONTWAIT);
   2155 		if ((m->m_flags & M_EXT) == 0) {
   2156 			m_free(m);
   2157 			return NULL;
   2158 		}
   2159 	}
   2160 
   2161 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
   2162 	m->m_len = sopt->sopt_size;
   2163 
   2164 	return m;
   2165 }
   2166 
   2167 void
   2168 sohasoutofband(struct socket *so)
   2169 {
   2170 
   2171 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2172 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
   2173 }
   2174 
   2175 static void
   2176 filt_sordetach(struct knote *kn)
   2177 {
   2178 	struct socket	*so;
   2179 
   2180 	so = ((file_t *)kn->kn_obj)->f_socket;
   2181 	solock(so);
   2182 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   2183 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   2184 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2185 	sounlock(so);
   2186 }
   2187 
   2188 /*ARGSUSED*/
   2189 static int
   2190 filt_soread(struct knote *kn, long hint)
   2191 {
   2192 	struct socket	*so;
   2193 	int rv;
   2194 
   2195 	so = ((file_t *)kn->kn_obj)->f_socket;
   2196 	if (hint != NOTE_SUBMIT)
   2197 		solock(so);
   2198 	kn->kn_data = so->so_rcv.sb_cc;
   2199 	if (so->so_state & SS_CANTRCVMORE) {
   2200 		kn->kn_flags |= EV_EOF;
   2201 		kn->kn_fflags = so->so_error;
   2202 		rv = 1;
   2203 	} else if (so->so_error)	/* temporary udp error */
   2204 		rv = 1;
   2205 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2206 		rv = (kn->kn_data >= kn->kn_sdata);
   2207 	else
   2208 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2209 	if (hint != NOTE_SUBMIT)
   2210 		sounlock(so);
   2211 	return rv;
   2212 }
   2213 
   2214 static void
   2215 filt_sowdetach(struct knote *kn)
   2216 {
   2217 	struct socket	*so;
   2218 
   2219 	so = ((file_t *)kn->kn_obj)->f_socket;
   2220 	solock(so);
   2221 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   2222 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   2223 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2224 	sounlock(so);
   2225 }
   2226 
   2227 /*ARGSUSED*/
   2228 static int
   2229 filt_sowrite(struct knote *kn, long hint)
   2230 {
   2231 	struct socket	*so;
   2232 	int rv;
   2233 
   2234 	so = ((file_t *)kn->kn_obj)->f_socket;
   2235 	if (hint != NOTE_SUBMIT)
   2236 		solock(so);
   2237 	kn->kn_data = sbspace(&so->so_snd);
   2238 	if (so->so_state & SS_CANTSENDMORE) {
   2239 		kn->kn_flags |= EV_EOF;
   2240 		kn->kn_fflags = so->so_error;
   2241 		rv = 1;
   2242 	} else if (so->so_error)	/* temporary udp error */
   2243 		rv = 1;
   2244 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2245 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2246 		rv = 0;
   2247 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2248 		rv = (kn->kn_data >= kn->kn_sdata);
   2249 	else
   2250 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2251 	if (hint != NOTE_SUBMIT)
   2252 		sounlock(so);
   2253 	return rv;
   2254 }
   2255 
   2256 /*ARGSUSED*/
   2257 static int
   2258 filt_solisten(struct knote *kn, long hint)
   2259 {
   2260 	struct socket	*so;
   2261 	int rv;
   2262 
   2263 	so = ((file_t *)kn->kn_obj)->f_socket;
   2264 
   2265 	/*
   2266 	 * Set kn_data to number of incoming connections, not
   2267 	 * counting partial (incomplete) connections.
   2268 	 */
   2269 	if (hint != NOTE_SUBMIT)
   2270 		solock(so);
   2271 	kn->kn_data = so->so_qlen;
   2272 	rv = (kn->kn_data > 0);
   2273 	if (hint != NOTE_SUBMIT)
   2274 		sounlock(so);
   2275 	return rv;
   2276 }
   2277 
   2278 static const struct filterops solisten_filtops =
   2279 	{ 1, NULL, filt_sordetach, filt_solisten };
   2280 static const struct filterops soread_filtops =
   2281 	{ 1, NULL, filt_sordetach, filt_soread };
   2282 static const struct filterops sowrite_filtops =
   2283 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   2284 
   2285 int
   2286 soo_kqfilter(struct file *fp, struct knote *kn)
   2287 {
   2288 	struct socket	*so;
   2289 	struct sockbuf	*sb;
   2290 
   2291 	so = ((file_t *)kn->kn_obj)->f_socket;
   2292 	solock(so);
   2293 	switch (kn->kn_filter) {
   2294 	case EVFILT_READ:
   2295 		if (so->so_options & SO_ACCEPTCONN)
   2296 			kn->kn_fop = &solisten_filtops;
   2297 		else
   2298 			kn->kn_fop = &soread_filtops;
   2299 		sb = &so->so_rcv;
   2300 		break;
   2301 	case EVFILT_WRITE:
   2302 		kn->kn_fop = &sowrite_filtops;
   2303 		sb = &so->so_snd;
   2304 		break;
   2305 	default:
   2306 		sounlock(so);
   2307 		return (EINVAL);
   2308 	}
   2309 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   2310 	sb->sb_flags |= SB_KNOTE;
   2311 	sounlock(so);
   2312 	return (0);
   2313 }
   2314 
   2315 static int
   2316 sodopoll(struct socket *so, int events)
   2317 {
   2318 	int revents;
   2319 
   2320 	revents = 0;
   2321 
   2322 	if (events & (POLLIN | POLLRDNORM))
   2323 		if (soreadable(so))
   2324 			revents |= events & (POLLIN | POLLRDNORM);
   2325 
   2326 	if (events & (POLLOUT | POLLWRNORM))
   2327 		if (sowritable(so))
   2328 			revents |= events & (POLLOUT | POLLWRNORM);
   2329 
   2330 	if (events & (POLLPRI | POLLRDBAND))
   2331 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   2332 			revents |= events & (POLLPRI | POLLRDBAND);
   2333 
   2334 	return revents;
   2335 }
   2336 
   2337 int
   2338 sopoll(struct socket *so, int events)
   2339 {
   2340 	int revents = 0;
   2341 
   2342 #ifndef DIAGNOSTIC
   2343 	/*
   2344 	 * Do a quick, unlocked check in expectation that the socket
   2345 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2346 	 * as the solocked() assertions will fail.
   2347 	 */
   2348 	if ((revents = sodopoll(so, events)) != 0)
   2349 		return revents;
   2350 #endif
   2351 
   2352 	solock(so);
   2353 	if ((revents = sodopoll(so, events)) == 0) {
   2354 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2355 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2356 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2357 		}
   2358 
   2359 		if (events & (POLLOUT | POLLWRNORM)) {
   2360 			selrecord(curlwp, &so->so_snd.sb_sel);
   2361 			so->so_snd.sb_flags |= SB_NOTIFY;
   2362 		}
   2363 	}
   2364 	sounlock(so);
   2365 
   2366 	return revents;
   2367 }
   2368 
   2369 
   2370 #include <sys/sysctl.h>
   2371 
   2372 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2373 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
   2374 
   2375 /*
   2376  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2377  * value is not too small.
   2378  * (XXX should we maybe make sure it's not too large as well?)
   2379  */
   2380 static int
   2381 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2382 {
   2383 	int error, new_somaxkva;
   2384 	struct sysctlnode node;
   2385 
   2386 	new_somaxkva = somaxkva;
   2387 	node = *rnode;
   2388 	node.sysctl_data = &new_somaxkva;
   2389 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2390 	if (error || newp == NULL)
   2391 		return (error);
   2392 
   2393 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2394 		return (EINVAL);
   2395 
   2396 	mutex_enter(&so_pendfree_lock);
   2397 	somaxkva = new_somaxkva;
   2398 	cv_broadcast(&socurkva_cv);
   2399 	mutex_exit(&so_pendfree_lock);
   2400 
   2401 	return (error);
   2402 }
   2403 
   2404 /*
   2405  * sysctl helper routine for kern.sbmax. Basically just ensures that
   2406  * any new value is not too small.
   2407  */
   2408 static int
   2409 sysctl_kern_sbmax(SYSCTLFN_ARGS)
   2410 {
   2411 	int error, new_sbmax;
   2412 	struct sysctlnode node;
   2413 
   2414 	new_sbmax = sb_max;
   2415 	node = *rnode;
   2416 	node.sysctl_data = &new_sbmax;
   2417 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2418 	if (error || newp == NULL)
   2419 		return (error);
   2420 
   2421 	KERNEL_LOCK(1, NULL);
   2422 	error = sb_max_set(new_sbmax);
   2423 	KERNEL_UNLOCK_ONE(NULL);
   2424 
   2425 	return (error);
   2426 }
   2427 
   2428 static void
   2429 sysctl_kern_socket_setup(void)
   2430 {
   2431 
   2432 	KASSERT(socket_sysctllog == NULL);
   2433 
   2434 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2435 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2436 		       CTLTYPE_INT, "somaxkva",
   2437 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2438 				    "used for socket buffers"),
   2439 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2440 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2441 
   2442 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2443 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2444 		       CTLTYPE_INT, "sbmax",
   2445 		       SYSCTL_DESCR("Maximum socket buffer size"),
   2446 		       sysctl_kern_sbmax, 0, NULL, 0,
   2447 		       CTL_KERN, KERN_SBMAX, CTL_EOL);
   2448 }
   2449