uipc_socket.c revision 1.235.2.3 1 /* $NetBSD: uipc_socket.c,v 1.235.2.3 2015/09/22 12:06:07 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 /*
66 * Socket operation routines.
67 *
68 * These routines are called by the routines in sys_socket.c or from a
69 * system process, and implement the semantics of socket operations by
70 * switching out to the protocol specific routines.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.235.2.3 2015/09/22 12:06:07 skrll Exp $");
75
76 #ifdef _KERNEL_OPT
77 #include "opt_compat_netbsd.h"
78 #include "opt_sock_counters.h"
79 #include "opt_sosend_loan.h"
80 #include "opt_mbuftrace.h"
81 #include "opt_somaxkva.h"
82 #include "opt_multiprocessor.h" /* XXX */
83 #endif
84
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/proc.h>
88 #include <sys/file.h>
89 #include <sys/filedesc.h>
90 #include <sys/kmem.h>
91 #include <sys/mbuf.h>
92 #include <sys/domain.h>
93 #include <sys/kernel.h>
94 #include <sys/protosw.h>
95 #include <sys/socket.h>
96 #include <sys/socketvar.h>
97 #include <sys/signalvar.h>
98 #include <sys/resourcevar.h>
99 #include <sys/uidinfo.h>
100 #include <sys/event.h>
101 #include <sys/poll.h>
102 #include <sys/kauth.h>
103 #include <sys/mutex.h>
104 #include <sys/condvar.h>
105 #include <sys/kthread.h>
106
107 #ifdef COMPAT_50
108 #include <compat/sys/time.h>
109 #include <compat/sys/socket.h>
110 #endif
111
112 #include <uvm/uvm_extern.h>
113 #include <uvm/uvm_loan.h>
114 #include <uvm/uvm_page.h>
115
116 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
117
118 extern const struct fileops socketops;
119
120 extern int somaxconn; /* patchable (XXX sysctl) */
121 int somaxconn = SOMAXCONN;
122 kmutex_t *softnet_lock;
123
124 #ifdef SOSEND_COUNTERS
125 #include <sys/device.h>
126
127 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
128 NULL, "sosend", "loan big");
129 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
130 NULL, "sosend", "copy big");
131 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
132 NULL, "sosend", "copy small");
133 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
134 NULL, "sosend", "kva limit");
135
136 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
137
138 EVCNT_ATTACH_STATIC(sosend_loan_big);
139 EVCNT_ATTACH_STATIC(sosend_copy_big);
140 EVCNT_ATTACH_STATIC(sosend_copy_small);
141 EVCNT_ATTACH_STATIC(sosend_kvalimit);
142 #else
143
144 #define SOSEND_COUNTER_INCR(ev) /* nothing */
145
146 #endif /* SOSEND_COUNTERS */
147
148 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
149 int sock_loan_thresh = -1;
150 #else
151 int sock_loan_thresh = 4096;
152 #endif
153
154 static kmutex_t so_pendfree_lock;
155 static struct mbuf *so_pendfree = NULL;
156
157 #ifndef SOMAXKVA
158 #define SOMAXKVA (16 * 1024 * 1024)
159 #endif
160 int somaxkva = SOMAXKVA;
161 static int socurkva;
162 static kcondvar_t socurkva_cv;
163
164 static kauth_listener_t socket_listener;
165
166 #define SOCK_LOAN_CHUNK 65536
167
168 static void sopendfree_thread(void *);
169 static kcondvar_t pendfree_thread_cv;
170 static lwp_t *sopendfree_lwp;
171
172 static void sysctl_kern_socket_setup(void);
173 static struct sysctllog *socket_sysctllog;
174
175 static vsize_t
176 sokvareserve(struct socket *so, vsize_t len)
177 {
178 int error;
179
180 mutex_enter(&so_pendfree_lock);
181 while (socurkva + len > somaxkva) {
182 SOSEND_COUNTER_INCR(&sosend_kvalimit);
183 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
184 if (error) {
185 len = 0;
186 break;
187 }
188 }
189 socurkva += len;
190 mutex_exit(&so_pendfree_lock);
191 return len;
192 }
193
194 static void
195 sokvaunreserve(vsize_t len)
196 {
197
198 mutex_enter(&so_pendfree_lock);
199 socurkva -= len;
200 cv_broadcast(&socurkva_cv);
201 mutex_exit(&so_pendfree_lock);
202 }
203
204 /*
205 * sokvaalloc: allocate kva for loan.
206 */
207
208 vaddr_t
209 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
210 {
211 vaddr_t lva;
212
213 /*
214 * reserve kva.
215 */
216
217 if (sokvareserve(so, len) == 0)
218 return 0;
219
220 /*
221 * allocate kva.
222 */
223
224 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
225 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
226 if (lva == 0) {
227 sokvaunreserve(len);
228 return (0);
229 }
230
231 return lva;
232 }
233
234 /*
235 * sokvafree: free kva for loan.
236 */
237
238 void
239 sokvafree(vaddr_t sva, vsize_t len)
240 {
241
242 /*
243 * free kva.
244 */
245
246 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
247
248 /*
249 * unreserve kva.
250 */
251
252 sokvaunreserve(len);
253 }
254
255 static void
256 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
257 {
258 vaddr_t sva, eva;
259 vsize_t len;
260 int npgs;
261
262 KASSERT(pgs != NULL);
263
264 eva = round_page((vaddr_t) buf + size);
265 sva = trunc_page((vaddr_t) buf);
266 len = eva - sva;
267 npgs = len >> PAGE_SHIFT;
268
269 pmap_kremove(sva, len);
270 pmap_update(pmap_kernel());
271 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
272 sokvafree(sva, len);
273 }
274
275 /*
276 * sopendfree_thread: free mbufs on "pendfree" list.
277 * unlock and relock so_pendfree_lock when freeing mbufs.
278 */
279
280 static void
281 sopendfree_thread(void *v)
282 {
283 struct mbuf *m, *next;
284 size_t rv;
285
286 mutex_enter(&so_pendfree_lock);
287
288 for (;;) {
289 rv = 0;
290 while (so_pendfree != NULL) {
291 m = so_pendfree;
292 so_pendfree = NULL;
293 mutex_exit(&so_pendfree_lock);
294
295 for (; m != NULL; m = next) {
296 next = m->m_next;
297 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
298 KASSERT(m->m_ext.ext_refcnt == 0);
299
300 rv += m->m_ext.ext_size;
301 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
302 m->m_ext.ext_size);
303 pool_cache_put(mb_cache, m);
304 }
305
306 mutex_enter(&so_pendfree_lock);
307 }
308 if (rv)
309 cv_broadcast(&socurkva_cv);
310 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
311 }
312 panic("sopendfree_thread");
313 /* NOTREACHED */
314 }
315
316 void
317 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
318 {
319
320 KASSERT(m != NULL);
321
322 /*
323 * postpone freeing mbuf.
324 *
325 * we can't do it in interrupt context
326 * because we need to put kva back to kernel_map.
327 */
328
329 mutex_enter(&so_pendfree_lock);
330 m->m_next = so_pendfree;
331 so_pendfree = m;
332 cv_signal(&pendfree_thread_cv);
333 mutex_exit(&so_pendfree_lock);
334 }
335
336 static long
337 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
338 {
339 struct iovec *iov = uio->uio_iov;
340 vaddr_t sva, eva;
341 vsize_t len;
342 vaddr_t lva;
343 int npgs, error;
344 vaddr_t va;
345 int i;
346
347 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
348 return (0);
349
350 if (iov->iov_len < (size_t) space)
351 space = iov->iov_len;
352 if (space > SOCK_LOAN_CHUNK)
353 space = SOCK_LOAN_CHUNK;
354
355 eva = round_page((vaddr_t) iov->iov_base + space);
356 sva = trunc_page((vaddr_t) iov->iov_base);
357 len = eva - sva;
358 npgs = len >> PAGE_SHIFT;
359
360 KASSERT(npgs <= M_EXT_MAXPAGES);
361
362 lva = sokvaalloc(sva, len, so);
363 if (lva == 0)
364 return 0;
365
366 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
367 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
368 if (error) {
369 sokvafree(lva, len);
370 return (0);
371 }
372
373 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
374 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
375 VM_PROT_READ, 0);
376 pmap_update(pmap_kernel());
377
378 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
379
380 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
381 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
382
383 uio->uio_resid -= space;
384 /* uio_offset not updated, not set/used for write(2) */
385 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
386 uio->uio_iov->iov_len -= space;
387 if (uio->uio_iov->iov_len == 0) {
388 uio->uio_iov++;
389 uio->uio_iovcnt--;
390 }
391
392 return (space);
393 }
394
395 struct mbuf *
396 getsombuf(struct socket *so, int type)
397 {
398 struct mbuf *m;
399
400 m = m_get(M_WAIT, type);
401 MCLAIM(m, so->so_mowner);
402 return m;
403 }
404
405 static int
406 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
407 void *arg0, void *arg1, void *arg2, void *arg3)
408 {
409 int result;
410 enum kauth_network_req req;
411
412 result = KAUTH_RESULT_DEFER;
413 req = (enum kauth_network_req)arg0;
414
415 if ((action != KAUTH_NETWORK_SOCKET) &&
416 (action != KAUTH_NETWORK_BIND))
417 return result;
418
419 switch (req) {
420 case KAUTH_REQ_NETWORK_BIND_PORT:
421 result = KAUTH_RESULT_ALLOW;
422 break;
423
424 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
425 /* Normal users can only drop their own connections. */
426 struct socket *so = (struct socket *)arg1;
427
428 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
429 result = KAUTH_RESULT_ALLOW;
430
431 break;
432 }
433
434 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
435 /* We allow "raw" routing/bluetooth sockets to anyone. */
436 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
437 || (u_long)arg1 == PF_BLUETOOTH) {
438 result = KAUTH_RESULT_ALLOW;
439 } else {
440 /* Privileged, let secmodel handle this. */
441 if ((u_long)arg2 == SOCK_RAW)
442 break;
443 }
444
445 result = KAUTH_RESULT_ALLOW;
446
447 break;
448
449 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
450 result = KAUTH_RESULT_ALLOW;
451
452 break;
453
454 default:
455 break;
456 }
457
458 return result;
459 }
460
461 void
462 soinit(void)
463 {
464
465 sysctl_kern_socket_setup();
466
467 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
468 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
469 cv_init(&socurkva_cv, "sokva");
470 cv_init(&pendfree_thread_cv, "sopendfr");
471 soinit2();
472
473 /* Set the initial adjusted socket buffer size. */
474 if (sb_max_set(sb_max))
475 panic("bad initial sb_max value: %lu", sb_max);
476
477 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
478 socket_listener_cb, NULL);
479 }
480
481 void
482 soinit1(void)
483 {
484 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
485 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
486 if (error)
487 panic("soinit1 %d", error);
488 }
489
490 /*
491 * socreate: create a new socket of the specified type and the protocol.
492 *
493 * => Caller may specify another socket for lock sharing (must not be held).
494 * => Returns the new socket without lock held.
495 */
496 int
497 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
498 struct socket *lockso)
499 {
500 const struct protosw *prp;
501 struct socket *so;
502 uid_t uid;
503 int error;
504 kmutex_t *lock;
505
506 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
507 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
508 KAUTH_ARG(proto));
509 if (error != 0)
510 return error;
511
512 if (proto)
513 prp = pffindproto(dom, proto, type);
514 else
515 prp = pffindtype(dom, type);
516 if (prp == NULL) {
517 /* no support for domain */
518 if (pffinddomain(dom) == 0)
519 return EAFNOSUPPORT;
520 /* no support for socket type */
521 if (proto == 0 && type != 0)
522 return EPROTOTYPE;
523 return EPROTONOSUPPORT;
524 }
525 if (prp->pr_usrreqs == NULL)
526 return EPROTONOSUPPORT;
527 if (prp->pr_type != type)
528 return EPROTOTYPE;
529
530 so = soget(true);
531 so->so_type = type;
532 so->so_proto = prp;
533 so->so_send = sosend;
534 so->so_receive = soreceive;
535 #ifdef MBUFTRACE
536 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
537 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
538 so->so_mowner = &prp->pr_domain->dom_mowner;
539 #endif
540 uid = kauth_cred_geteuid(l->l_cred);
541 so->so_uidinfo = uid_find(uid);
542 so->so_cpid = l->l_proc->p_pid;
543
544 /*
545 * Lock assigned and taken during PCB attach, unless we share
546 * the lock with another socket, e.g. socketpair(2) case.
547 */
548 if (lockso) {
549 lock = lockso->so_lock;
550 so->so_lock = lock;
551 mutex_obj_hold(lock);
552 mutex_enter(lock);
553 }
554
555 /* Attach the PCB (returns with the socket lock held). */
556 error = (*prp->pr_usrreqs->pr_attach)(so, proto);
557 KASSERT(solocked(so));
558
559 if (error) {
560 KASSERT(so->so_pcb == NULL);
561 so->so_state |= SS_NOFDREF;
562 sofree(so);
563 return error;
564 }
565 so->so_cred = kauth_cred_dup(l->l_cred);
566 sounlock(so);
567
568 *aso = so;
569 return 0;
570 }
571
572 /*
573 * fsocreate: create a socket and a file descriptor associated with it.
574 *
575 * => On success, write file descriptor to fdout and return zero.
576 * => On failure, return non-zero; *fdout will be undefined.
577 */
578 int
579 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
580 {
581 lwp_t *l = curlwp;
582 int error, fd, flags;
583 struct socket *so;
584 struct file *fp;
585
586 if ((error = fd_allocfile(&fp, &fd)) != 0) {
587 return error;
588 }
589 flags = type & SOCK_FLAGS_MASK;
590 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
591 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
592 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
593 fp->f_type = DTYPE_SOCKET;
594 fp->f_ops = &socketops;
595
596 type &= ~SOCK_FLAGS_MASK;
597 error = socreate(domain, &so, type, proto, l, NULL);
598 if (error) {
599 fd_abort(curproc, fp, fd);
600 return error;
601 }
602 if (flags & SOCK_NONBLOCK) {
603 so->so_state |= SS_NBIO;
604 }
605 fp->f_socket = so;
606 fd_affix(curproc, fp, fd);
607
608 if (sop != NULL) {
609 *sop = so;
610 }
611 *fdout = fd;
612 return error;
613 }
614
615 int
616 sofamily(const struct socket *so)
617 {
618 const struct protosw *pr;
619 const struct domain *dom;
620
621 if ((pr = so->so_proto) == NULL)
622 return AF_UNSPEC;
623 if ((dom = pr->pr_domain) == NULL)
624 return AF_UNSPEC;
625 return dom->dom_family;
626 }
627
628 int
629 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
630 {
631 int error;
632
633 solock(so);
634 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
635 sounlock(so);
636 return EAFNOSUPPORT;
637 }
638 error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
639 sounlock(so);
640 return error;
641 }
642
643 int
644 solisten(struct socket *so, int backlog, struct lwp *l)
645 {
646 int error;
647
648 solock(so);
649 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
650 SS_ISDISCONNECTING)) != 0) {
651 sounlock(so);
652 return EINVAL;
653 }
654 error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
655 if (error != 0) {
656 sounlock(so);
657 return error;
658 }
659 if (TAILQ_EMPTY(&so->so_q))
660 so->so_options |= SO_ACCEPTCONN;
661 if (backlog < 0)
662 backlog = 0;
663 so->so_qlimit = min(backlog, somaxconn);
664 sounlock(so);
665 return 0;
666 }
667
668 void
669 sofree(struct socket *so)
670 {
671 u_int refs;
672
673 KASSERT(solocked(so));
674
675 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
676 sounlock(so);
677 return;
678 }
679 if (so->so_head) {
680 /*
681 * We must not decommission a socket that's on the accept(2)
682 * queue. If we do, then accept(2) may hang after select(2)
683 * indicated that the listening socket was ready.
684 */
685 if (!soqremque(so, 0)) {
686 sounlock(so);
687 return;
688 }
689 }
690 if (so->so_rcv.sb_hiwat)
691 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
692 RLIM_INFINITY);
693 if (so->so_snd.sb_hiwat)
694 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
695 RLIM_INFINITY);
696 sbrelease(&so->so_snd, so);
697 KASSERT(!cv_has_waiters(&so->so_cv));
698 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
699 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
700 sorflush(so);
701 refs = so->so_aborting; /* XXX */
702 /* Remove acccept filter if one is present. */
703 if (so->so_accf != NULL)
704 (void)accept_filt_clear(so);
705 sounlock(so);
706 if (refs == 0) /* XXX */
707 soput(so);
708 }
709
710 /*
711 * soclose: close a socket on last file table reference removal.
712 * Initiate disconnect if connected. Free socket when disconnect complete.
713 */
714 int
715 soclose(struct socket *so)
716 {
717 struct socket *so2;
718 int error = 0;
719
720 solock(so);
721 if (so->so_options & SO_ACCEPTCONN) {
722 for (;;) {
723 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
724 KASSERT(solocked2(so, so2));
725 (void) soqremque(so2, 0);
726 /* soabort drops the lock. */
727 (void) soabort(so2);
728 solock(so);
729 continue;
730 }
731 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
732 KASSERT(solocked2(so, so2));
733 (void) soqremque(so2, 1);
734 /* soabort drops the lock. */
735 (void) soabort(so2);
736 solock(so);
737 continue;
738 }
739 break;
740 }
741 }
742 if (so->so_pcb == NULL)
743 goto discard;
744 if (so->so_state & SS_ISCONNECTED) {
745 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
746 error = sodisconnect(so);
747 if (error)
748 goto drop;
749 }
750 if (so->so_options & SO_LINGER) {
751 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
752 (SS_ISDISCONNECTING|SS_NBIO))
753 goto drop;
754 while (so->so_state & SS_ISCONNECTED) {
755 error = sowait(so, true, so->so_linger * hz);
756 if (error)
757 break;
758 }
759 }
760 }
761 drop:
762 if (so->so_pcb) {
763 KASSERT(solocked(so));
764 (*so->so_proto->pr_usrreqs->pr_detach)(so);
765 }
766 discard:
767 KASSERT((so->so_state & SS_NOFDREF) == 0);
768 kauth_cred_free(so->so_cred);
769 so->so_state |= SS_NOFDREF;
770 sofree(so);
771 return error;
772 }
773
774 /*
775 * Must be called with the socket locked.. Will return with it unlocked.
776 */
777 int
778 soabort(struct socket *so)
779 {
780 u_int refs;
781 int error;
782
783 KASSERT(solocked(so));
784 KASSERT(so->so_head == NULL);
785
786 so->so_aborting++; /* XXX */
787 error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
788 refs = --so->so_aborting; /* XXX */
789 if (error || (refs == 0)) {
790 sofree(so);
791 } else {
792 sounlock(so);
793 }
794 return error;
795 }
796
797 int
798 soaccept(struct socket *so, struct sockaddr *nam)
799 {
800 int error;
801
802 KASSERT(solocked(so));
803 KASSERT((so->so_state & SS_NOFDREF) != 0);
804
805 so->so_state &= ~SS_NOFDREF;
806 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
807 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
808 error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
809 else
810 error = ECONNABORTED;
811
812 return error;
813 }
814
815 int
816 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
817 {
818 int error;
819
820 KASSERT(solocked(so));
821
822 if (so->so_options & SO_ACCEPTCONN)
823 return EOPNOTSUPP;
824 /*
825 * If protocol is connection-based, can only connect once.
826 * Otherwise, if connected, try to disconnect first.
827 * This allows user to disconnect by connecting to, e.g.,
828 * a null address.
829 */
830 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
831 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
832 (error = sodisconnect(so)))) {
833 error = EISCONN;
834 } else {
835 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
836 return EAFNOSUPPORT;
837 }
838 error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
839 }
840
841 return error;
842 }
843
844 int
845 soconnect2(struct socket *so1, struct socket *so2)
846 {
847 KASSERT(solocked2(so1, so2));
848
849 return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
850 }
851
852 int
853 sodisconnect(struct socket *so)
854 {
855 int error;
856
857 KASSERT(solocked(so));
858
859 if ((so->so_state & SS_ISCONNECTED) == 0) {
860 error = ENOTCONN;
861 } else if (so->so_state & SS_ISDISCONNECTING) {
862 error = EALREADY;
863 } else {
864 error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
865 }
866 return (error);
867 }
868
869 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
870 /*
871 * Send on a socket.
872 * If send must go all at once and message is larger than
873 * send buffering, then hard error.
874 * Lock against other senders.
875 * If must go all at once and not enough room now, then
876 * inform user that this would block and do nothing.
877 * Otherwise, if nonblocking, send as much as possible.
878 * The data to be sent is described by "uio" if nonzero,
879 * otherwise by the mbuf chain "top" (which must be null
880 * if uio is not). Data provided in mbuf chain must be small
881 * enough to send all at once.
882 *
883 * Returns nonzero on error, timeout or signal; callers
884 * must check for short counts if EINTR/ERESTART are returned.
885 * Data and control buffers are freed on return.
886 */
887 int
888 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
889 struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
890 {
891 struct mbuf **mp, *m;
892 long space, len, resid, clen, mlen;
893 int error, s, dontroute, atomic;
894 short wakeup_state = 0;
895
896 clen = 0;
897
898 /*
899 * solock() provides atomicity of access. splsoftnet() prevents
900 * protocol processing soft interrupts from interrupting us and
901 * blocking (expensive).
902 */
903 s = splsoftnet();
904 solock(so);
905 atomic = sosendallatonce(so) || top;
906 if (uio)
907 resid = uio->uio_resid;
908 else
909 resid = top->m_pkthdr.len;
910 /*
911 * In theory resid should be unsigned.
912 * However, space must be signed, as it might be less than 0
913 * if we over-committed, and we must use a signed comparison
914 * of space and resid. On the other hand, a negative resid
915 * causes us to loop sending 0-length segments to the protocol.
916 */
917 if (resid < 0) {
918 error = EINVAL;
919 goto out;
920 }
921 dontroute =
922 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
923 (so->so_proto->pr_flags & PR_ATOMIC);
924 l->l_ru.ru_msgsnd++;
925 if (control)
926 clen = control->m_len;
927 restart:
928 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
929 goto out;
930 do {
931 if (so->so_state & SS_CANTSENDMORE) {
932 error = EPIPE;
933 goto release;
934 }
935 if (so->so_error) {
936 error = so->so_error;
937 so->so_error = 0;
938 goto release;
939 }
940 if ((so->so_state & SS_ISCONNECTED) == 0) {
941 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
942 if (resid || clen == 0) {
943 error = ENOTCONN;
944 goto release;
945 }
946 } else if (addr == NULL) {
947 error = EDESTADDRREQ;
948 goto release;
949 }
950 }
951 space = sbspace(&so->so_snd);
952 if (flags & MSG_OOB)
953 space += 1024;
954 if ((atomic && resid > so->so_snd.sb_hiwat) ||
955 clen > so->so_snd.sb_hiwat) {
956 error = EMSGSIZE;
957 goto release;
958 }
959 if (space < resid + clen &&
960 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
961 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
962 error = EWOULDBLOCK;
963 goto release;
964 }
965 sbunlock(&so->so_snd);
966 if (wakeup_state & SS_RESTARTSYS) {
967 error = ERESTART;
968 goto out;
969 }
970 error = sbwait(&so->so_snd);
971 if (error)
972 goto out;
973 wakeup_state = so->so_state;
974 goto restart;
975 }
976 wakeup_state = 0;
977 mp = ⊤
978 space -= clen;
979 do {
980 if (uio == NULL) {
981 /*
982 * Data is prepackaged in "top".
983 */
984 resid = 0;
985 if (flags & MSG_EOR)
986 top->m_flags |= M_EOR;
987 } else do {
988 sounlock(so);
989 splx(s);
990 if (top == NULL) {
991 m = m_gethdr(M_WAIT, MT_DATA);
992 mlen = MHLEN;
993 m->m_pkthdr.len = 0;
994 m->m_pkthdr.rcvif = NULL;
995 } else {
996 m = m_get(M_WAIT, MT_DATA);
997 mlen = MLEN;
998 }
999 MCLAIM(m, so->so_snd.sb_mowner);
1000 if (sock_loan_thresh >= 0 &&
1001 uio->uio_iov->iov_len >= sock_loan_thresh &&
1002 space >= sock_loan_thresh &&
1003 (len = sosend_loan(so, uio, m,
1004 space)) != 0) {
1005 SOSEND_COUNTER_INCR(&sosend_loan_big);
1006 space -= len;
1007 goto have_data;
1008 }
1009 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1010 SOSEND_COUNTER_INCR(&sosend_copy_big);
1011 m_clget(m, M_DONTWAIT);
1012 if ((m->m_flags & M_EXT) == 0)
1013 goto nopages;
1014 mlen = MCLBYTES;
1015 if (atomic && top == 0) {
1016 len = lmin(MCLBYTES - max_hdr,
1017 resid);
1018 m->m_data += max_hdr;
1019 } else
1020 len = lmin(MCLBYTES, resid);
1021 space -= len;
1022 } else {
1023 nopages:
1024 SOSEND_COUNTER_INCR(&sosend_copy_small);
1025 len = lmin(lmin(mlen, resid), space);
1026 space -= len;
1027 /*
1028 * For datagram protocols, leave room
1029 * for protocol headers in first mbuf.
1030 */
1031 if (atomic && top == 0 && len < mlen)
1032 MH_ALIGN(m, len);
1033 }
1034 error = uiomove(mtod(m, void *), (int)len, uio);
1035 have_data:
1036 resid = uio->uio_resid;
1037 m->m_len = len;
1038 *mp = m;
1039 top->m_pkthdr.len += len;
1040 s = splsoftnet();
1041 solock(so);
1042 if (error != 0)
1043 goto release;
1044 mp = &m->m_next;
1045 if (resid <= 0) {
1046 if (flags & MSG_EOR)
1047 top->m_flags |= M_EOR;
1048 break;
1049 }
1050 } while (space > 0 && atomic);
1051
1052 if (so->so_state & SS_CANTSENDMORE) {
1053 error = EPIPE;
1054 goto release;
1055 }
1056 if (dontroute)
1057 so->so_options |= SO_DONTROUTE;
1058 if (resid > 0)
1059 so->so_state |= SS_MORETOCOME;
1060 if (flags & MSG_OOB) {
1061 error = (*so->so_proto->pr_usrreqs->pr_sendoob)(so,
1062 top, control);
1063 } else {
1064 error = (*so->so_proto->pr_usrreqs->pr_send)(so,
1065 top, addr, control, l);
1066 }
1067 if (dontroute)
1068 so->so_options &= ~SO_DONTROUTE;
1069 if (resid > 0)
1070 so->so_state &= ~SS_MORETOCOME;
1071 clen = 0;
1072 control = NULL;
1073 top = NULL;
1074 mp = ⊤
1075 if (error != 0)
1076 goto release;
1077 } while (resid && space > 0);
1078 } while (resid);
1079
1080 release:
1081 sbunlock(&so->so_snd);
1082 out:
1083 sounlock(so);
1084 splx(s);
1085 if (top)
1086 m_freem(top);
1087 if (control)
1088 m_freem(control);
1089 return (error);
1090 }
1091
1092 /*
1093 * Following replacement or removal of the first mbuf on the first
1094 * mbuf chain of a socket buffer, push necessary state changes back
1095 * into the socket buffer so that other consumers see the values
1096 * consistently. 'nextrecord' is the callers locally stored value of
1097 * the original value of sb->sb_mb->m_nextpkt which must be restored
1098 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1099 */
1100 static void
1101 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1102 {
1103
1104 KASSERT(solocked(sb->sb_so));
1105
1106 /*
1107 * First, update for the new value of nextrecord. If necessary,
1108 * make it the first record.
1109 */
1110 if (sb->sb_mb != NULL)
1111 sb->sb_mb->m_nextpkt = nextrecord;
1112 else
1113 sb->sb_mb = nextrecord;
1114
1115 /*
1116 * Now update any dependent socket buffer fields to reflect
1117 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1118 * the addition of a second clause that takes care of the
1119 * case where sb_mb has been updated, but remains the last
1120 * record.
1121 */
1122 if (sb->sb_mb == NULL) {
1123 sb->sb_mbtail = NULL;
1124 sb->sb_lastrecord = NULL;
1125 } else if (sb->sb_mb->m_nextpkt == NULL)
1126 sb->sb_lastrecord = sb->sb_mb;
1127 }
1128
1129 /*
1130 * Implement receive operations on a socket.
1131 * We depend on the way that records are added to the sockbuf
1132 * by sbappend*. In particular, each record (mbufs linked through m_next)
1133 * must begin with an address if the protocol so specifies,
1134 * followed by an optional mbuf or mbufs containing ancillary data,
1135 * and then zero or more mbufs of data.
1136 * In order to avoid blocking network interrupts for the entire time here,
1137 * we splx() while doing the actual copy to user space.
1138 * Although the sockbuf is locked, new data may still be appended,
1139 * and thus we must maintain consistency of the sockbuf during that time.
1140 *
1141 * The caller may receive the data as a single mbuf chain by supplying
1142 * an mbuf **mp0 for use in returning the chain. The uio is then used
1143 * only for the count in uio_resid.
1144 */
1145 int
1146 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1147 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1148 {
1149 struct lwp *l = curlwp;
1150 struct mbuf *m, **mp, *mt;
1151 size_t len, offset, moff, orig_resid;
1152 int atomic, flags, error, s, type;
1153 const struct protosw *pr;
1154 struct mbuf *nextrecord;
1155 int mbuf_removed = 0;
1156 const struct domain *dom;
1157 short wakeup_state = 0;
1158
1159 pr = so->so_proto;
1160 atomic = pr->pr_flags & PR_ATOMIC;
1161 dom = pr->pr_domain;
1162 mp = mp0;
1163 type = 0;
1164 orig_resid = uio->uio_resid;
1165
1166 if (paddr != NULL)
1167 *paddr = NULL;
1168 if (controlp != NULL)
1169 *controlp = NULL;
1170 if (flagsp != NULL)
1171 flags = *flagsp &~ MSG_EOR;
1172 else
1173 flags = 0;
1174
1175 if (flags & MSG_OOB) {
1176 m = m_get(M_WAIT, MT_DATA);
1177 solock(so);
1178 error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
1179 sounlock(so);
1180 if (error)
1181 goto bad;
1182 do {
1183 error = uiomove(mtod(m, void *),
1184 MIN(uio->uio_resid, m->m_len), uio);
1185 m = m_free(m);
1186 } while (uio->uio_resid > 0 && error == 0 && m);
1187 bad:
1188 if (m != NULL)
1189 m_freem(m);
1190 return error;
1191 }
1192 if (mp != NULL)
1193 *mp = NULL;
1194
1195 /*
1196 * solock() provides atomicity of access. splsoftnet() prevents
1197 * protocol processing soft interrupts from interrupting us and
1198 * blocking (expensive).
1199 */
1200 s = splsoftnet();
1201 solock(so);
1202 restart:
1203 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1204 sounlock(so);
1205 splx(s);
1206 return error;
1207 }
1208
1209 m = so->so_rcv.sb_mb;
1210 /*
1211 * If we have less data than requested, block awaiting more
1212 * (subject to any timeout) if:
1213 * 1. the current count is less than the low water mark,
1214 * 2. MSG_WAITALL is set, and it is possible to do the entire
1215 * receive operation at once if we block (resid <= hiwat), or
1216 * 3. MSG_DONTWAIT is not set.
1217 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1218 * we have to do the receive in sections, and thus risk returning
1219 * a short count if a timeout or signal occurs after we start.
1220 */
1221 if (m == NULL ||
1222 ((flags & MSG_DONTWAIT) == 0 &&
1223 so->so_rcv.sb_cc < uio->uio_resid &&
1224 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1225 ((flags & MSG_WAITALL) &&
1226 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1227 m->m_nextpkt == NULL && !atomic)) {
1228 #ifdef DIAGNOSTIC
1229 if (m == NULL && so->so_rcv.sb_cc)
1230 panic("receive 1");
1231 #endif
1232 if (so->so_error) {
1233 if (m != NULL)
1234 goto dontblock;
1235 error = so->so_error;
1236 if ((flags & MSG_PEEK) == 0)
1237 so->so_error = 0;
1238 goto release;
1239 }
1240 if (so->so_state & SS_CANTRCVMORE) {
1241 if (m != NULL)
1242 goto dontblock;
1243 else
1244 goto release;
1245 }
1246 for (; m != NULL; m = m->m_next)
1247 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1248 m = so->so_rcv.sb_mb;
1249 goto dontblock;
1250 }
1251 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1252 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1253 error = ENOTCONN;
1254 goto release;
1255 }
1256 if (uio->uio_resid == 0)
1257 goto release;
1258 if ((so->so_state & SS_NBIO) ||
1259 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1260 error = EWOULDBLOCK;
1261 goto release;
1262 }
1263 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1264 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1265 sbunlock(&so->so_rcv);
1266 if (wakeup_state & SS_RESTARTSYS)
1267 error = ERESTART;
1268 else
1269 error = sbwait(&so->so_rcv);
1270 if (error != 0) {
1271 sounlock(so);
1272 splx(s);
1273 return error;
1274 }
1275 wakeup_state = so->so_state;
1276 goto restart;
1277 }
1278 dontblock:
1279 /*
1280 * On entry here, m points to the first record of the socket buffer.
1281 * From this point onward, we maintain 'nextrecord' as a cache of the
1282 * pointer to the next record in the socket buffer. We must keep the
1283 * various socket buffer pointers and local stack versions of the
1284 * pointers in sync, pushing out modifications before dropping the
1285 * socket lock, and re-reading them when picking it up.
1286 *
1287 * Otherwise, we will race with the network stack appending new data
1288 * or records onto the socket buffer by using inconsistent/stale
1289 * versions of the field, possibly resulting in socket buffer
1290 * corruption.
1291 *
1292 * By holding the high-level sblock(), we prevent simultaneous
1293 * readers from pulling off the front of the socket buffer.
1294 */
1295 if (l != NULL)
1296 l->l_ru.ru_msgrcv++;
1297 KASSERT(m == so->so_rcv.sb_mb);
1298 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1299 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1300 nextrecord = m->m_nextpkt;
1301 if (pr->pr_flags & PR_ADDR) {
1302 #ifdef DIAGNOSTIC
1303 if (m->m_type != MT_SONAME)
1304 panic("receive 1a");
1305 #endif
1306 orig_resid = 0;
1307 if (flags & MSG_PEEK) {
1308 if (paddr)
1309 *paddr = m_copy(m, 0, m->m_len);
1310 m = m->m_next;
1311 } else {
1312 sbfree(&so->so_rcv, m);
1313 mbuf_removed = 1;
1314 if (paddr != NULL) {
1315 *paddr = m;
1316 so->so_rcv.sb_mb = m->m_next;
1317 m->m_next = NULL;
1318 m = so->so_rcv.sb_mb;
1319 } else {
1320 MFREE(m, so->so_rcv.sb_mb);
1321 m = so->so_rcv.sb_mb;
1322 }
1323 sbsync(&so->so_rcv, nextrecord);
1324 }
1325 }
1326
1327 /*
1328 * Process one or more MT_CONTROL mbufs present before any data mbufs
1329 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1330 * just copy the data; if !MSG_PEEK, we call into the protocol to
1331 * perform externalization (or freeing if controlp == NULL).
1332 */
1333 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1334 struct mbuf *cm = NULL, *cmn;
1335 struct mbuf **cme = &cm;
1336
1337 do {
1338 if (flags & MSG_PEEK) {
1339 if (controlp != NULL) {
1340 *controlp = m_copy(m, 0, m->m_len);
1341 controlp = &(*controlp)->m_next;
1342 }
1343 m = m->m_next;
1344 } else {
1345 sbfree(&so->so_rcv, m);
1346 so->so_rcv.sb_mb = m->m_next;
1347 m->m_next = NULL;
1348 *cme = m;
1349 cme = &(*cme)->m_next;
1350 m = so->so_rcv.sb_mb;
1351 }
1352 } while (m != NULL && m->m_type == MT_CONTROL);
1353 if ((flags & MSG_PEEK) == 0)
1354 sbsync(&so->so_rcv, nextrecord);
1355 for (; cm != NULL; cm = cmn) {
1356 cmn = cm->m_next;
1357 cm->m_next = NULL;
1358 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1359 if (controlp != NULL) {
1360 if (dom->dom_externalize != NULL &&
1361 type == SCM_RIGHTS) {
1362 sounlock(so);
1363 splx(s);
1364 error = (*dom->dom_externalize)(cm, l,
1365 (flags & MSG_CMSG_CLOEXEC) ?
1366 O_CLOEXEC : 0);
1367 s = splsoftnet();
1368 solock(so);
1369 }
1370 *controlp = cm;
1371 while (*controlp != NULL)
1372 controlp = &(*controlp)->m_next;
1373 } else {
1374 /*
1375 * Dispose of any SCM_RIGHTS message that went
1376 * through the read path rather than recv.
1377 */
1378 if (dom->dom_dispose != NULL &&
1379 type == SCM_RIGHTS) {
1380 sounlock(so);
1381 (*dom->dom_dispose)(cm);
1382 solock(so);
1383 }
1384 m_freem(cm);
1385 }
1386 }
1387 if (m != NULL)
1388 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1389 else
1390 nextrecord = so->so_rcv.sb_mb;
1391 orig_resid = 0;
1392 }
1393
1394 /* If m is non-NULL, we have some data to read. */
1395 if (__predict_true(m != NULL)) {
1396 type = m->m_type;
1397 if (type == MT_OOBDATA)
1398 flags |= MSG_OOB;
1399 }
1400 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1401 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1402
1403 moff = 0;
1404 offset = 0;
1405 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1406 if (m->m_type == MT_OOBDATA) {
1407 if (type != MT_OOBDATA)
1408 break;
1409 } else if (type == MT_OOBDATA)
1410 break;
1411 #ifdef DIAGNOSTIC
1412 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1413 panic("receive 3");
1414 #endif
1415 so->so_state &= ~SS_RCVATMARK;
1416 wakeup_state = 0;
1417 len = uio->uio_resid;
1418 if (so->so_oobmark && len > so->so_oobmark - offset)
1419 len = so->so_oobmark - offset;
1420 if (len > m->m_len - moff)
1421 len = m->m_len - moff;
1422 /*
1423 * If mp is set, just pass back the mbufs.
1424 * Otherwise copy them out via the uio, then free.
1425 * Sockbuf must be consistent here (points to current mbuf,
1426 * it points to next record) when we drop priority;
1427 * we must note any additions to the sockbuf when we
1428 * block interrupts again.
1429 */
1430 if (mp == NULL) {
1431 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1432 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1433 sounlock(so);
1434 splx(s);
1435 error = uiomove(mtod(m, char *) + moff, len, uio);
1436 s = splsoftnet();
1437 solock(so);
1438 if (error != 0) {
1439 /*
1440 * If any part of the record has been removed
1441 * (such as the MT_SONAME mbuf, which will
1442 * happen when PR_ADDR, and thus also
1443 * PR_ATOMIC, is set), then drop the entire
1444 * record to maintain the atomicity of the
1445 * receive operation.
1446 *
1447 * This avoids a later panic("receive 1a")
1448 * when compiled with DIAGNOSTIC.
1449 */
1450 if (m && mbuf_removed && atomic)
1451 (void) sbdroprecord(&so->so_rcv);
1452
1453 goto release;
1454 }
1455 } else
1456 uio->uio_resid -= len;
1457 if (len == m->m_len - moff) {
1458 if (m->m_flags & M_EOR)
1459 flags |= MSG_EOR;
1460 if (flags & MSG_PEEK) {
1461 m = m->m_next;
1462 moff = 0;
1463 } else {
1464 nextrecord = m->m_nextpkt;
1465 sbfree(&so->so_rcv, m);
1466 if (mp) {
1467 *mp = m;
1468 mp = &m->m_next;
1469 so->so_rcv.sb_mb = m = m->m_next;
1470 *mp = NULL;
1471 } else {
1472 MFREE(m, so->so_rcv.sb_mb);
1473 m = so->so_rcv.sb_mb;
1474 }
1475 /*
1476 * If m != NULL, we also know that
1477 * so->so_rcv.sb_mb != NULL.
1478 */
1479 KASSERT(so->so_rcv.sb_mb == m);
1480 if (m) {
1481 m->m_nextpkt = nextrecord;
1482 if (nextrecord == NULL)
1483 so->so_rcv.sb_lastrecord = m;
1484 } else {
1485 so->so_rcv.sb_mb = nextrecord;
1486 SB_EMPTY_FIXUP(&so->so_rcv);
1487 }
1488 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1489 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1490 }
1491 } else if (flags & MSG_PEEK)
1492 moff += len;
1493 else {
1494 if (mp != NULL) {
1495 mt = m_copym(m, 0, len, M_NOWAIT);
1496 if (__predict_false(mt == NULL)) {
1497 sounlock(so);
1498 mt = m_copym(m, 0, len, M_WAIT);
1499 solock(so);
1500 }
1501 *mp = mt;
1502 }
1503 m->m_data += len;
1504 m->m_len -= len;
1505 so->so_rcv.sb_cc -= len;
1506 }
1507 if (so->so_oobmark) {
1508 if ((flags & MSG_PEEK) == 0) {
1509 so->so_oobmark -= len;
1510 if (so->so_oobmark == 0) {
1511 so->so_state |= SS_RCVATMARK;
1512 break;
1513 }
1514 } else {
1515 offset += len;
1516 if (offset == so->so_oobmark)
1517 break;
1518 }
1519 }
1520 if (flags & MSG_EOR)
1521 break;
1522 /*
1523 * If the MSG_WAITALL flag is set (for non-atomic socket),
1524 * we must not quit until "uio->uio_resid == 0" or an error
1525 * termination. If a signal/timeout occurs, return
1526 * with a short count but without error.
1527 * Keep sockbuf locked against other readers.
1528 */
1529 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1530 !sosendallatonce(so) && !nextrecord) {
1531 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1532 break;
1533 /*
1534 * If we are peeking and the socket receive buffer is
1535 * full, stop since we can't get more data to peek at.
1536 */
1537 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1538 break;
1539 /*
1540 * If we've drained the socket buffer, tell the
1541 * protocol in case it needs to do something to
1542 * get it filled again.
1543 */
1544 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1545 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1546 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1547 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1548 if (wakeup_state & SS_RESTARTSYS)
1549 error = ERESTART;
1550 else
1551 error = sbwait(&so->so_rcv);
1552 if (error != 0) {
1553 sbunlock(&so->so_rcv);
1554 sounlock(so);
1555 splx(s);
1556 return 0;
1557 }
1558 if ((m = so->so_rcv.sb_mb) != NULL)
1559 nextrecord = m->m_nextpkt;
1560 wakeup_state = so->so_state;
1561 }
1562 }
1563
1564 if (m && atomic) {
1565 flags |= MSG_TRUNC;
1566 if ((flags & MSG_PEEK) == 0)
1567 (void) sbdroprecord(&so->so_rcv);
1568 }
1569 if ((flags & MSG_PEEK) == 0) {
1570 if (m == NULL) {
1571 /*
1572 * First part is an inline SB_EMPTY_FIXUP(). Second
1573 * part makes sure sb_lastrecord is up-to-date if
1574 * there is still data in the socket buffer.
1575 */
1576 so->so_rcv.sb_mb = nextrecord;
1577 if (so->so_rcv.sb_mb == NULL) {
1578 so->so_rcv.sb_mbtail = NULL;
1579 so->so_rcv.sb_lastrecord = NULL;
1580 } else if (nextrecord->m_nextpkt == NULL)
1581 so->so_rcv.sb_lastrecord = nextrecord;
1582 }
1583 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1584 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1585 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1586 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1587 }
1588 if (orig_resid == uio->uio_resid && orig_resid &&
1589 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1590 sbunlock(&so->so_rcv);
1591 goto restart;
1592 }
1593
1594 if (flagsp != NULL)
1595 *flagsp |= flags;
1596 release:
1597 sbunlock(&so->so_rcv);
1598 sounlock(so);
1599 splx(s);
1600 return error;
1601 }
1602
1603 int
1604 soshutdown(struct socket *so, int how)
1605 {
1606 const struct protosw *pr;
1607 int error;
1608
1609 KASSERT(solocked(so));
1610
1611 pr = so->so_proto;
1612 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1613 return (EINVAL);
1614
1615 if (how == SHUT_RD || how == SHUT_RDWR) {
1616 sorflush(so);
1617 error = 0;
1618 }
1619 if (how == SHUT_WR || how == SHUT_RDWR)
1620 error = (*pr->pr_usrreqs->pr_shutdown)(so);
1621
1622 return error;
1623 }
1624
1625 void
1626 sorestart(struct socket *so)
1627 {
1628 /*
1629 * An application has called close() on an fd on which another
1630 * of its threads has called a socket system call.
1631 * Mark this and wake everyone up, and code that would block again
1632 * instead returns ERESTART.
1633 * On system call re-entry the fd is validated and EBADF returned.
1634 * Any other fd will block again on the 2nd syscall.
1635 */
1636 solock(so);
1637 so->so_state |= SS_RESTARTSYS;
1638 cv_broadcast(&so->so_cv);
1639 cv_broadcast(&so->so_snd.sb_cv);
1640 cv_broadcast(&so->so_rcv.sb_cv);
1641 sounlock(so);
1642 }
1643
1644 void
1645 sorflush(struct socket *so)
1646 {
1647 struct sockbuf *sb, asb;
1648 const struct protosw *pr;
1649
1650 KASSERT(solocked(so));
1651
1652 sb = &so->so_rcv;
1653 pr = so->so_proto;
1654 socantrcvmore(so);
1655 sb->sb_flags |= SB_NOINTR;
1656 (void )sblock(sb, M_WAITOK);
1657 sbunlock(sb);
1658 asb = *sb;
1659 /*
1660 * Clear most of the sockbuf structure, but leave some of the
1661 * fields valid.
1662 */
1663 memset(&sb->sb_startzero, 0,
1664 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1665 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1666 sounlock(so);
1667 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1668 solock(so);
1669 }
1670 sbrelease(&asb, so);
1671 }
1672
1673 /*
1674 * internal set SOL_SOCKET options
1675 */
1676 static int
1677 sosetopt1(struct socket *so, const struct sockopt *sopt)
1678 {
1679 int error = EINVAL, opt;
1680 int optval = 0; /* XXX: gcc */
1681 struct linger l;
1682 struct timeval tv;
1683
1684 switch ((opt = sopt->sopt_name)) {
1685
1686 case SO_ACCEPTFILTER:
1687 error = accept_filt_setopt(so, sopt);
1688 KASSERT(solocked(so));
1689 break;
1690
1691 case SO_LINGER:
1692 error = sockopt_get(sopt, &l, sizeof(l));
1693 solock(so);
1694 if (error)
1695 break;
1696 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1697 l.l_linger > (INT_MAX / hz)) {
1698 error = EDOM;
1699 break;
1700 }
1701 so->so_linger = l.l_linger;
1702 if (l.l_onoff)
1703 so->so_options |= SO_LINGER;
1704 else
1705 so->so_options &= ~SO_LINGER;
1706 break;
1707
1708 case SO_DEBUG:
1709 case SO_KEEPALIVE:
1710 case SO_DONTROUTE:
1711 case SO_USELOOPBACK:
1712 case SO_BROADCAST:
1713 case SO_REUSEADDR:
1714 case SO_REUSEPORT:
1715 case SO_OOBINLINE:
1716 case SO_TIMESTAMP:
1717 case SO_NOSIGPIPE:
1718 #ifdef SO_OTIMESTAMP
1719 case SO_OTIMESTAMP:
1720 #endif
1721 error = sockopt_getint(sopt, &optval);
1722 solock(so);
1723 if (error)
1724 break;
1725 if (optval)
1726 so->so_options |= opt;
1727 else
1728 so->so_options &= ~opt;
1729 break;
1730
1731 case SO_SNDBUF:
1732 case SO_RCVBUF:
1733 case SO_SNDLOWAT:
1734 case SO_RCVLOWAT:
1735 error = sockopt_getint(sopt, &optval);
1736 solock(so);
1737 if (error)
1738 break;
1739
1740 /*
1741 * Values < 1 make no sense for any of these
1742 * options, so disallow them.
1743 */
1744 if (optval < 1) {
1745 error = EINVAL;
1746 break;
1747 }
1748
1749 switch (opt) {
1750 case SO_SNDBUF:
1751 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1752 error = ENOBUFS;
1753 break;
1754 }
1755 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1756 break;
1757
1758 case SO_RCVBUF:
1759 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1760 error = ENOBUFS;
1761 break;
1762 }
1763 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1764 break;
1765
1766 /*
1767 * Make sure the low-water is never greater than
1768 * the high-water.
1769 */
1770 case SO_SNDLOWAT:
1771 if (optval > so->so_snd.sb_hiwat)
1772 optval = so->so_snd.sb_hiwat;
1773
1774 so->so_snd.sb_lowat = optval;
1775 break;
1776
1777 case SO_RCVLOWAT:
1778 if (optval > so->so_rcv.sb_hiwat)
1779 optval = so->so_rcv.sb_hiwat;
1780
1781 so->so_rcv.sb_lowat = optval;
1782 break;
1783 }
1784 break;
1785
1786 #ifdef COMPAT_50
1787 case SO_OSNDTIMEO:
1788 case SO_ORCVTIMEO: {
1789 struct timeval50 otv;
1790 error = sockopt_get(sopt, &otv, sizeof(otv));
1791 if (error) {
1792 solock(so);
1793 break;
1794 }
1795 timeval50_to_timeval(&otv, &tv);
1796 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1797 error = 0;
1798 /*FALLTHROUGH*/
1799 }
1800 #endif /* COMPAT_50 */
1801
1802 case SO_SNDTIMEO:
1803 case SO_RCVTIMEO:
1804 if (error)
1805 error = sockopt_get(sopt, &tv, sizeof(tv));
1806 solock(so);
1807 if (error)
1808 break;
1809
1810 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1811 error = EDOM;
1812 break;
1813 }
1814
1815 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1816 if (optval == 0 && tv.tv_usec != 0)
1817 optval = 1;
1818
1819 switch (opt) {
1820 case SO_SNDTIMEO:
1821 so->so_snd.sb_timeo = optval;
1822 break;
1823 case SO_RCVTIMEO:
1824 so->so_rcv.sb_timeo = optval;
1825 break;
1826 }
1827 break;
1828
1829 default:
1830 solock(so);
1831 error = ENOPROTOOPT;
1832 break;
1833 }
1834 KASSERT(solocked(so));
1835 return error;
1836 }
1837
1838 int
1839 sosetopt(struct socket *so, struct sockopt *sopt)
1840 {
1841 int error, prerr;
1842
1843 if (sopt->sopt_level == SOL_SOCKET) {
1844 error = sosetopt1(so, sopt);
1845 KASSERT(solocked(so));
1846 } else {
1847 error = ENOPROTOOPT;
1848 solock(so);
1849 }
1850
1851 if ((error == 0 || error == ENOPROTOOPT) &&
1852 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1853 /* give the protocol stack a shot */
1854 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1855 if (prerr == 0)
1856 error = 0;
1857 else if (prerr != ENOPROTOOPT)
1858 error = prerr;
1859 }
1860 sounlock(so);
1861 return error;
1862 }
1863
1864 /*
1865 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1866 */
1867 int
1868 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1869 const void *val, size_t valsize)
1870 {
1871 struct sockopt sopt;
1872 int error;
1873
1874 KASSERT(valsize == 0 || val != NULL);
1875
1876 sockopt_init(&sopt, level, name, valsize);
1877 sockopt_set(&sopt, val, valsize);
1878
1879 error = sosetopt(so, &sopt);
1880
1881 sockopt_destroy(&sopt);
1882
1883 return error;
1884 }
1885
1886 /*
1887 * internal get SOL_SOCKET options
1888 */
1889 static int
1890 sogetopt1(struct socket *so, struct sockopt *sopt)
1891 {
1892 int error, optval, opt;
1893 struct linger l;
1894 struct timeval tv;
1895
1896 switch ((opt = sopt->sopt_name)) {
1897
1898 case SO_ACCEPTFILTER:
1899 error = accept_filt_getopt(so, sopt);
1900 break;
1901
1902 case SO_LINGER:
1903 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1904 l.l_linger = so->so_linger;
1905
1906 error = sockopt_set(sopt, &l, sizeof(l));
1907 break;
1908
1909 case SO_USELOOPBACK:
1910 case SO_DONTROUTE:
1911 case SO_DEBUG:
1912 case SO_KEEPALIVE:
1913 case SO_REUSEADDR:
1914 case SO_REUSEPORT:
1915 case SO_BROADCAST:
1916 case SO_OOBINLINE:
1917 case SO_TIMESTAMP:
1918 case SO_NOSIGPIPE:
1919 #ifdef SO_OTIMESTAMP
1920 case SO_OTIMESTAMP:
1921 #endif
1922 case SO_ACCEPTCONN:
1923 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1924 break;
1925
1926 case SO_TYPE:
1927 error = sockopt_setint(sopt, so->so_type);
1928 break;
1929
1930 case SO_ERROR:
1931 error = sockopt_setint(sopt, so->so_error);
1932 so->so_error = 0;
1933 break;
1934
1935 case SO_SNDBUF:
1936 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1937 break;
1938
1939 case SO_RCVBUF:
1940 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1941 break;
1942
1943 case SO_SNDLOWAT:
1944 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1945 break;
1946
1947 case SO_RCVLOWAT:
1948 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1949 break;
1950
1951 #ifdef COMPAT_50
1952 case SO_OSNDTIMEO:
1953 case SO_ORCVTIMEO: {
1954 struct timeval50 otv;
1955
1956 optval = (opt == SO_OSNDTIMEO ?
1957 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1958
1959 otv.tv_sec = optval / hz;
1960 otv.tv_usec = (optval % hz) * tick;
1961
1962 error = sockopt_set(sopt, &otv, sizeof(otv));
1963 break;
1964 }
1965 #endif /* COMPAT_50 */
1966
1967 case SO_SNDTIMEO:
1968 case SO_RCVTIMEO:
1969 optval = (opt == SO_SNDTIMEO ?
1970 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1971
1972 tv.tv_sec = optval / hz;
1973 tv.tv_usec = (optval % hz) * tick;
1974
1975 error = sockopt_set(sopt, &tv, sizeof(tv));
1976 break;
1977
1978 case SO_OVERFLOWED:
1979 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1980 break;
1981
1982 default:
1983 error = ENOPROTOOPT;
1984 break;
1985 }
1986
1987 return (error);
1988 }
1989
1990 int
1991 sogetopt(struct socket *so, struct sockopt *sopt)
1992 {
1993 int error;
1994
1995 solock(so);
1996 if (sopt->sopt_level != SOL_SOCKET) {
1997 if (so->so_proto && so->so_proto->pr_ctloutput) {
1998 error = ((*so->so_proto->pr_ctloutput)
1999 (PRCO_GETOPT, so, sopt));
2000 } else
2001 error = (ENOPROTOOPT);
2002 } else {
2003 error = sogetopt1(so, sopt);
2004 }
2005 sounlock(so);
2006 return (error);
2007 }
2008
2009 /*
2010 * alloc sockopt data buffer buffer
2011 * - will be released at destroy
2012 */
2013 static int
2014 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2015 {
2016
2017 KASSERT(sopt->sopt_size == 0);
2018
2019 if (len > sizeof(sopt->sopt_buf)) {
2020 sopt->sopt_data = kmem_zalloc(len, kmflag);
2021 if (sopt->sopt_data == NULL)
2022 return ENOMEM;
2023 } else
2024 sopt->sopt_data = sopt->sopt_buf;
2025
2026 sopt->sopt_size = len;
2027 return 0;
2028 }
2029
2030 /*
2031 * initialise sockopt storage
2032 * - MAY sleep during allocation
2033 */
2034 void
2035 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2036 {
2037
2038 memset(sopt, 0, sizeof(*sopt));
2039
2040 sopt->sopt_level = level;
2041 sopt->sopt_name = name;
2042 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2043 }
2044
2045 /*
2046 * destroy sockopt storage
2047 * - will release any held memory references
2048 */
2049 void
2050 sockopt_destroy(struct sockopt *sopt)
2051 {
2052
2053 if (sopt->sopt_data != sopt->sopt_buf)
2054 kmem_free(sopt->sopt_data, sopt->sopt_size);
2055
2056 memset(sopt, 0, sizeof(*sopt));
2057 }
2058
2059 /*
2060 * set sockopt value
2061 * - value is copied into sockopt
2062 * - memory is allocated when necessary, will not sleep
2063 */
2064 int
2065 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2066 {
2067 int error;
2068
2069 if (sopt->sopt_size == 0) {
2070 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2071 if (error)
2072 return error;
2073 }
2074
2075 KASSERT(sopt->sopt_size == len);
2076 memcpy(sopt->sopt_data, buf, len);
2077 return 0;
2078 }
2079
2080 /*
2081 * common case of set sockopt integer value
2082 */
2083 int
2084 sockopt_setint(struct sockopt *sopt, int val)
2085 {
2086
2087 return sockopt_set(sopt, &val, sizeof(int));
2088 }
2089
2090 /*
2091 * get sockopt value
2092 * - correct size must be given
2093 */
2094 int
2095 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2096 {
2097
2098 if (sopt->sopt_size != len)
2099 return EINVAL;
2100
2101 memcpy(buf, sopt->sopt_data, len);
2102 return 0;
2103 }
2104
2105 /*
2106 * common case of get sockopt integer value
2107 */
2108 int
2109 sockopt_getint(const struct sockopt *sopt, int *valp)
2110 {
2111
2112 return sockopt_get(sopt, valp, sizeof(int));
2113 }
2114
2115 /*
2116 * set sockopt value from mbuf
2117 * - ONLY for legacy code
2118 * - mbuf is released by sockopt
2119 * - will not sleep
2120 */
2121 int
2122 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2123 {
2124 size_t len;
2125 int error;
2126
2127 len = m_length(m);
2128
2129 if (sopt->sopt_size == 0) {
2130 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2131 if (error)
2132 return error;
2133 }
2134
2135 KASSERT(sopt->sopt_size == len);
2136 m_copydata(m, 0, len, sopt->sopt_data);
2137 m_freem(m);
2138
2139 return 0;
2140 }
2141
2142 /*
2143 * get sockopt value into mbuf
2144 * - ONLY for legacy code
2145 * - mbuf to be released by the caller
2146 * - will not sleep
2147 */
2148 struct mbuf *
2149 sockopt_getmbuf(const struct sockopt *sopt)
2150 {
2151 struct mbuf *m;
2152
2153 if (sopt->sopt_size > MCLBYTES)
2154 return NULL;
2155
2156 m = m_get(M_DONTWAIT, MT_SOOPTS);
2157 if (m == NULL)
2158 return NULL;
2159
2160 if (sopt->sopt_size > MLEN) {
2161 MCLGET(m, M_DONTWAIT);
2162 if ((m->m_flags & M_EXT) == 0) {
2163 m_free(m);
2164 return NULL;
2165 }
2166 }
2167
2168 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2169 m->m_len = sopt->sopt_size;
2170
2171 return m;
2172 }
2173
2174 void
2175 sohasoutofband(struct socket *so)
2176 {
2177
2178 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2179 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2180 }
2181
2182 static void
2183 filt_sordetach(struct knote *kn)
2184 {
2185 struct socket *so;
2186
2187 so = ((file_t *)kn->kn_obj)->f_socket;
2188 solock(so);
2189 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2190 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2191 so->so_rcv.sb_flags &= ~SB_KNOTE;
2192 sounlock(so);
2193 }
2194
2195 /*ARGSUSED*/
2196 static int
2197 filt_soread(struct knote *kn, long hint)
2198 {
2199 struct socket *so;
2200 int rv;
2201
2202 so = ((file_t *)kn->kn_obj)->f_socket;
2203 if (hint != NOTE_SUBMIT)
2204 solock(so);
2205 kn->kn_data = so->so_rcv.sb_cc;
2206 if (so->so_state & SS_CANTRCVMORE) {
2207 kn->kn_flags |= EV_EOF;
2208 kn->kn_fflags = so->so_error;
2209 rv = 1;
2210 } else if (so->so_error) /* temporary udp error */
2211 rv = 1;
2212 else if (kn->kn_sfflags & NOTE_LOWAT)
2213 rv = (kn->kn_data >= kn->kn_sdata);
2214 else
2215 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2216 if (hint != NOTE_SUBMIT)
2217 sounlock(so);
2218 return rv;
2219 }
2220
2221 static void
2222 filt_sowdetach(struct knote *kn)
2223 {
2224 struct socket *so;
2225
2226 so = ((file_t *)kn->kn_obj)->f_socket;
2227 solock(so);
2228 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2229 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2230 so->so_snd.sb_flags &= ~SB_KNOTE;
2231 sounlock(so);
2232 }
2233
2234 /*ARGSUSED*/
2235 static int
2236 filt_sowrite(struct knote *kn, long hint)
2237 {
2238 struct socket *so;
2239 int rv;
2240
2241 so = ((file_t *)kn->kn_obj)->f_socket;
2242 if (hint != NOTE_SUBMIT)
2243 solock(so);
2244 kn->kn_data = sbspace(&so->so_snd);
2245 if (so->so_state & SS_CANTSENDMORE) {
2246 kn->kn_flags |= EV_EOF;
2247 kn->kn_fflags = so->so_error;
2248 rv = 1;
2249 } else if (so->so_error) /* temporary udp error */
2250 rv = 1;
2251 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2252 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2253 rv = 0;
2254 else if (kn->kn_sfflags & NOTE_LOWAT)
2255 rv = (kn->kn_data >= kn->kn_sdata);
2256 else
2257 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2258 if (hint != NOTE_SUBMIT)
2259 sounlock(so);
2260 return rv;
2261 }
2262
2263 /*ARGSUSED*/
2264 static int
2265 filt_solisten(struct knote *kn, long hint)
2266 {
2267 struct socket *so;
2268 int rv;
2269
2270 so = ((file_t *)kn->kn_obj)->f_socket;
2271
2272 /*
2273 * Set kn_data to number of incoming connections, not
2274 * counting partial (incomplete) connections.
2275 */
2276 if (hint != NOTE_SUBMIT)
2277 solock(so);
2278 kn->kn_data = so->so_qlen;
2279 rv = (kn->kn_data > 0);
2280 if (hint != NOTE_SUBMIT)
2281 sounlock(so);
2282 return rv;
2283 }
2284
2285 static const struct filterops solisten_filtops =
2286 { 1, NULL, filt_sordetach, filt_solisten };
2287 static const struct filterops soread_filtops =
2288 { 1, NULL, filt_sordetach, filt_soread };
2289 static const struct filterops sowrite_filtops =
2290 { 1, NULL, filt_sowdetach, filt_sowrite };
2291
2292 int
2293 soo_kqfilter(struct file *fp, struct knote *kn)
2294 {
2295 struct socket *so;
2296 struct sockbuf *sb;
2297
2298 so = ((file_t *)kn->kn_obj)->f_socket;
2299 solock(so);
2300 switch (kn->kn_filter) {
2301 case EVFILT_READ:
2302 if (so->so_options & SO_ACCEPTCONN)
2303 kn->kn_fop = &solisten_filtops;
2304 else
2305 kn->kn_fop = &soread_filtops;
2306 sb = &so->so_rcv;
2307 break;
2308 case EVFILT_WRITE:
2309 kn->kn_fop = &sowrite_filtops;
2310 sb = &so->so_snd;
2311 break;
2312 default:
2313 sounlock(so);
2314 return (EINVAL);
2315 }
2316 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2317 sb->sb_flags |= SB_KNOTE;
2318 sounlock(so);
2319 return (0);
2320 }
2321
2322 static int
2323 sodopoll(struct socket *so, int events)
2324 {
2325 int revents;
2326
2327 revents = 0;
2328
2329 if (events & (POLLIN | POLLRDNORM))
2330 if (soreadable(so))
2331 revents |= events & (POLLIN | POLLRDNORM);
2332
2333 if (events & (POLLOUT | POLLWRNORM))
2334 if (sowritable(so))
2335 revents |= events & (POLLOUT | POLLWRNORM);
2336
2337 if (events & (POLLPRI | POLLRDBAND))
2338 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2339 revents |= events & (POLLPRI | POLLRDBAND);
2340
2341 return revents;
2342 }
2343
2344 int
2345 sopoll(struct socket *so, int events)
2346 {
2347 int revents = 0;
2348
2349 #ifndef DIAGNOSTIC
2350 /*
2351 * Do a quick, unlocked check in expectation that the socket
2352 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2353 * as the solocked() assertions will fail.
2354 */
2355 if ((revents = sodopoll(so, events)) != 0)
2356 return revents;
2357 #endif
2358
2359 solock(so);
2360 if ((revents = sodopoll(so, events)) == 0) {
2361 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2362 selrecord(curlwp, &so->so_rcv.sb_sel);
2363 so->so_rcv.sb_flags |= SB_NOTIFY;
2364 }
2365
2366 if (events & (POLLOUT | POLLWRNORM)) {
2367 selrecord(curlwp, &so->so_snd.sb_sel);
2368 so->so_snd.sb_flags |= SB_NOTIFY;
2369 }
2370 }
2371 sounlock(so);
2372
2373 return revents;
2374 }
2375
2376
2377 #include <sys/sysctl.h>
2378
2379 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2380 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2381
2382 /*
2383 * sysctl helper routine for kern.somaxkva. ensures that the given
2384 * value is not too small.
2385 * (XXX should we maybe make sure it's not too large as well?)
2386 */
2387 static int
2388 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2389 {
2390 int error, new_somaxkva;
2391 struct sysctlnode node;
2392
2393 new_somaxkva = somaxkva;
2394 node = *rnode;
2395 node.sysctl_data = &new_somaxkva;
2396 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2397 if (error || newp == NULL)
2398 return (error);
2399
2400 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2401 return (EINVAL);
2402
2403 mutex_enter(&so_pendfree_lock);
2404 somaxkva = new_somaxkva;
2405 cv_broadcast(&socurkva_cv);
2406 mutex_exit(&so_pendfree_lock);
2407
2408 return (error);
2409 }
2410
2411 /*
2412 * sysctl helper routine for kern.sbmax. Basically just ensures that
2413 * any new value is not too small.
2414 */
2415 static int
2416 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2417 {
2418 int error, new_sbmax;
2419 struct sysctlnode node;
2420
2421 new_sbmax = sb_max;
2422 node = *rnode;
2423 node.sysctl_data = &new_sbmax;
2424 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2425 if (error || newp == NULL)
2426 return (error);
2427
2428 KERNEL_LOCK(1, NULL);
2429 error = sb_max_set(new_sbmax);
2430 KERNEL_UNLOCK_ONE(NULL);
2431
2432 return (error);
2433 }
2434
2435 static void
2436 sysctl_kern_socket_setup(void)
2437 {
2438
2439 KASSERT(socket_sysctllog == NULL);
2440
2441 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2442 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2443 CTLTYPE_INT, "somaxkva",
2444 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2445 "used for socket buffers"),
2446 sysctl_kern_somaxkva, 0, NULL, 0,
2447 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2448
2449 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2450 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2451 CTLTYPE_INT, "sbmax",
2452 SYSCTL_DESCR("Maximum socket buffer size"),
2453 sysctl_kern_sbmax, 0, NULL, 0,
2454 CTL_KERN, KERN_SBMAX, CTL_EOL);
2455 }
2456