Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.235.2.3
      1 /*	$NetBSD: uipc_socket.c,v 1.235.2.3 2015/09/22 12:06:07 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 /*
     66  * Socket operation routines.
     67  *
     68  * These routines are called by the routines in sys_socket.c or from a
     69  * system process, and implement the semantics of socket operations by
     70  * switching out to the protocol specific routines.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.235.2.3 2015/09/22 12:06:07 skrll Exp $");
     75 
     76 #ifdef _KERNEL_OPT
     77 #include "opt_compat_netbsd.h"
     78 #include "opt_sock_counters.h"
     79 #include "opt_sosend_loan.h"
     80 #include "opt_mbuftrace.h"
     81 #include "opt_somaxkva.h"
     82 #include "opt_multiprocessor.h"	/* XXX */
     83 #endif
     84 
     85 #include <sys/param.h>
     86 #include <sys/systm.h>
     87 #include <sys/proc.h>
     88 #include <sys/file.h>
     89 #include <sys/filedesc.h>
     90 #include <sys/kmem.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/domain.h>
     93 #include <sys/kernel.h>
     94 #include <sys/protosw.h>
     95 #include <sys/socket.h>
     96 #include <sys/socketvar.h>
     97 #include <sys/signalvar.h>
     98 #include <sys/resourcevar.h>
     99 #include <sys/uidinfo.h>
    100 #include <sys/event.h>
    101 #include <sys/poll.h>
    102 #include <sys/kauth.h>
    103 #include <sys/mutex.h>
    104 #include <sys/condvar.h>
    105 #include <sys/kthread.h>
    106 
    107 #ifdef COMPAT_50
    108 #include <compat/sys/time.h>
    109 #include <compat/sys/socket.h>
    110 #endif
    111 
    112 #include <uvm/uvm_extern.h>
    113 #include <uvm/uvm_loan.h>
    114 #include <uvm/uvm_page.h>
    115 
    116 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    117 
    118 extern const struct fileops socketops;
    119 
    120 extern int	somaxconn;			/* patchable (XXX sysctl) */
    121 int		somaxconn = SOMAXCONN;
    122 kmutex_t	*softnet_lock;
    123 
    124 #ifdef SOSEND_COUNTERS
    125 #include <sys/device.h>
    126 
    127 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    128     NULL, "sosend", "loan big");
    129 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    130     NULL, "sosend", "copy big");
    131 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    132     NULL, "sosend", "copy small");
    133 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    134     NULL, "sosend", "kva limit");
    135 
    136 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    137 
    138 EVCNT_ATTACH_STATIC(sosend_loan_big);
    139 EVCNT_ATTACH_STATIC(sosend_copy_big);
    140 EVCNT_ATTACH_STATIC(sosend_copy_small);
    141 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    142 #else
    143 
    144 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    145 
    146 #endif /* SOSEND_COUNTERS */
    147 
    148 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    149 int sock_loan_thresh = -1;
    150 #else
    151 int sock_loan_thresh = 4096;
    152 #endif
    153 
    154 static kmutex_t so_pendfree_lock;
    155 static struct mbuf *so_pendfree = NULL;
    156 
    157 #ifndef SOMAXKVA
    158 #define	SOMAXKVA (16 * 1024 * 1024)
    159 #endif
    160 int somaxkva = SOMAXKVA;
    161 static int socurkva;
    162 static kcondvar_t socurkva_cv;
    163 
    164 static kauth_listener_t socket_listener;
    165 
    166 #define	SOCK_LOAN_CHUNK		65536
    167 
    168 static void sopendfree_thread(void *);
    169 static kcondvar_t pendfree_thread_cv;
    170 static lwp_t *sopendfree_lwp;
    171 
    172 static void sysctl_kern_socket_setup(void);
    173 static struct sysctllog *socket_sysctllog;
    174 
    175 static vsize_t
    176 sokvareserve(struct socket *so, vsize_t len)
    177 {
    178 	int error;
    179 
    180 	mutex_enter(&so_pendfree_lock);
    181 	while (socurkva + len > somaxkva) {
    182 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    183 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    184 		if (error) {
    185 			len = 0;
    186 			break;
    187 		}
    188 	}
    189 	socurkva += len;
    190 	mutex_exit(&so_pendfree_lock);
    191 	return len;
    192 }
    193 
    194 static void
    195 sokvaunreserve(vsize_t len)
    196 {
    197 
    198 	mutex_enter(&so_pendfree_lock);
    199 	socurkva -= len;
    200 	cv_broadcast(&socurkva_cv);
    201 	mutex_exit(&so_pendfree_lock);
    202 }
    203 
    204 /*
    205  * sokvaalloc: allocate kva for loan.
    206  */
    207 
    208 vaddr_t
    209 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
    210 {
    211 	vaddr_t lva;
    212 
    213 	/*
    214 	 * reserve kva.
    215 	 */
    216 
    217 	if (sokvareserve(so, len) == 0)
    218 		return 0;
    219 
    220 	/*
    221 	 * allocate kva.
    222 	 */
    223 
    224 	lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
    225 	    UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    226 	if (lva == 0) {
    227 		sokvaunreserve(len);
    228 		return (0);
    229 	}
    230 
    231 	return lva;
    232 }
    233 
    234 /*
    235  * sokvafree: free kva for loan.
    236  */
    237 
    238 void
    239 sokvafree(vaddr_t sva, vsize_t len)
    240 {
    241 
    242 	/*
    243 	 * free kva.
    244 	 */
    245 
    246 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    247 
    248 	/*
    249 	 * unreserve kva.
    250 	 */
    251 
    252 	sokvaunreserve(len);
    253 }
    254 
    255 static void
    256 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    257 {
    258 	vaddr_t sva, eva;
    259 	vsize_t len;
    260 	int npgs;
    261 
    262 	KASSERT(pgs != NULL);
    263 
    264 	eva = round_page((vaddr_t) buf + size);
    265 	sva = trunc_page((vaddr_t) buf);
    266 	len = eva - sva;
    267 	npgs = len >> PAGE_SHIFT;
    268 
    269 	pmap_kremove(sva, len);
    270 	pmap_update(pmap_kernel());
    271 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    272 	sokvafree(sva, len);
    273 }
    274 
    275 /*
    276  * sopendfree_thread: free mbufs on "pendfree" list.
    277  * unlock and relock so_pendfree_lock when freeing mbufs.
    278  */
    279 
    280 static void
    281 sopendfree_thread(void *v)
    282 {
    283 	struct mbuf *m, *next;
    284 	size_t rv;
    285 
    286 	mutex_enter(&so_pendfree_lock);
    287 
    288 	for (;;) {
    289 		rv = 0;
    290 		while (so_pendfree != NULL) {
    291 			m = so_pendfree;
    292 			so_pendfree = NULL;
    293 			mutex_exit(&so_pendfree_lock);
    294 
    295 			for (; m != NULL; m = next) {
    296 				next = m->m_next;
    297 				KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
    298 				KASSERT(m->m_ext.ext_refcnt == 0);
    299 
    300 				rv += m->m_ext.ext_size;
    301 				sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    302 				    m->m_ext.ext_size);
    303 				pool_cache_put(mb_cache, m);
    304 			}
    305 
    306 			mutex_enter(&so_pendfree_lock);
    307 		}
    308 		if (rv)
    309 			cv_broadcast(&socurkva_cv);
    310 		cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
    311 	}
    312 	panic("sopendfree_thread");
    313 	/* NOTREACHED */
    314 }
    315 
    316 void
    317 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    318 {
    319 
    320 	KASSERT(m != NULL);
    321 
    322 	/*
    323 	 * postpone freeing mbuf.
    324 	 *
    325 	 * we can't do it in interrupt context
    326 	 * because we need to put kva back to kernel_map.
    327 	 */
    328 
    329 	mutex_enter(&so_pendfree_lock);
    330 	m->m_next = so_pendfree;
    331 	so_pendfree = m;
    332 	cv_signal(&pendfree_thread_cv);
    333 	mutex_exit(&so_pendfree_lock);
    334 }
    335 
    336 static long
    337 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    338 {
    339 	struct iovec *iov = uio->uio_iov;
    340 	vaddr_t sva, eva;
    341 	vsize_t len;
    342 	vaddr_t lva;
    343 	int npgs, error;
    344 	vaddr_t va;
    345 	int i;
    346 
    347 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    348 		return (0);
    349 
    350 	if (iov->iov_len < (size_t) space)
    351 		space = iov->iov_len;
    352 	if (space > SOCK_LOAN_CHUNK)
    353 		space = SOCK_LOAN_CHUNK;
    354 
    355 	eva = round_page((vaddr_t) iov->iov_base + space);
    356 	sva = trunc_page((vaddr_t) iov->iov_base);
    357 	len = eva - sva;
    358 	npgs = len >> PAGE_SHIFT;
    359 
    360 	KASSERT(npgs <= M_EXT_MAXPAGES);
    361 
    362 	lva = sokvaalloc(sva, len, so);
    363 	if (lva == 0)
    364 		return 0;
    365 
    366 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    367 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    368 	if (error) {
    369 		sokvafree(lva, len);
    370 		return (0);
    371 	}
    372 
    373 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    374 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    375 		    VM_PROT_READ, 0);
    376 	pmap_update(pmap_kernel());
    377 
    378 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    379 
    380 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    381 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    382 
    383 	uio->uio_resid -= space;
    384 	/* uio_offset not updated, not set/used for write(2) */
    385 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    386 	uio->uio_iov->iov_len -= space;
    387 	if (uio->uio_iov->iov_len == 0) {
    388 		uio->uio_iov++;
    389 		uio->uio_iovcnt--;
    390 	}
    391 
    392 	return (space);
    393 }
    394 
    395 struct mbuf *
    396 getsombuf(struct socket *so, int type)
    397 {
    398 	struct mbuf *m;
    399 
    400 	m = m_get(M_WAIT, type);
    401 	MCLAIM(m, so->so_mowner);
    402 	return m;
    403 }
    404 
    405 static int
    406 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    407     void *arg0, void *arg1, void *arg2, void *arg3)
    408 {
    409 	int result;
    410 	enum kauth_network_req req;
    411 
    412 	result = KAUTH_RESULT_DEFER;
    413 	req = (enum kauth_network_req)arg0;
    414 
    415 	if ((action != KAUTH_NETWORK_SOCKET) &&
    416 	    (action != KAUTH_NETWORK_BIND))
    417 		return result;
    418 
    419 	switch (req) {
    420 	case KAUTH_REQ_NETWORK_BIND_PORT:
    421 		result = KAUTH_RESULT_ALLOW;
    422 		break;
    423 
    424 	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
    425 		/* Normal users can only drop their own connections. */
    426 		struct socket *so = (struct socket *)arg1;
    427 
    428 		if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
    429 			result = KAUTH_RESULT_ALLOW;
    430 
    431 		break;
    432 		}
    433 
    434 	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
    435 		/* We allow "raw" routing/bluetooth sockets to anyone. */
    436 		if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
    437 		    || (u_long)arg1 == PF_BLUETOOTH) {
    438 			result = KAUTH_RESULT_ALLOW;
    439 		} else {
    440 			/* Privileged, let secmodel handle this. */
    441 			if ((u_long)arg2 == SOCK_RAW)
    442 				break;
    443 		}
    444 
    445 		result = KAUTH_RESULT_ALLOW;
    446 
    447 		break;
    448 
    449 	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
    450 		result = KAUTH_RESULT_ALLOW;
    451 
    452 		break;
    453 
    454 	default:
    455 		break;
    456 	}
    457 
    458 	return result;
    459 }
    460 
    461 void
    462 soinit(void)
    463 {
    464 
    465 	sysctl_kern_socket_setup();
    466 
    467 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    468 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    469 	cv_init(&socurkva_cv, "sokva");
    470 	cv_init(&pendfree_thread_cv, "sopendfr");
    471 	soinit2();
    472 
    473 	/* Set the initial adjusted socket buffer size. */
    474 	if (sb_max_set(sb_max))
    475 		panic("bad initial sb_max value: %lu", sb_max);
    476 
    477 	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    478 	    socket_listener_cb, NULL);
    479 }
    480 
    481 void
    482 soinit1(void)
    483 {
    484 	int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    485 	    sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
    486 	if (error)
    487 		panic("soinit1 %d", error);
    488 }
    489 
    490 /*
    491  * socreate: create a new socket of the specified type and the protocol.
    492  *
    493  * => Caller may specify another socket for lock sharing (must not be held).
    494  * => Returns the new socket without lock held.
    495  */
    496 int
    497 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    498 	 struct socket *lockso)
    499 {
    500 	const struct protosw	*prp;
    501 	struct socket	*so;
    502 	uid_t		uid;
    503 	int		error;
    504 	kmutex_t	*lock;
    505 
    506 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    507 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    508 	    KAUTH_ARG(proto));
    509 	if (error != 0)
    510 		return error;
    511 
    512 	if (proto)
    513 		prp = pffindproto(dom, proto, type);
    514 	else
    515 		prp = pffindtype(dom, type);
    516 	if (prp == NULL) {
    517 		/* no support for domain */
    518 		if (pffinddomain(dom) == 0)
    519 			return EAFNOSUPPORT;
    520 		/* no support for socket type */
    521 		if (proto == 0 && type != 0)
    522 			return EPROTOTYPE;
    523 		return EPROTONOSUPPORT;
    524 	}
    525 	if (prp->pr_usrreqs == NULL)
    526 		return EPROTONOSUPPORT;
    527 	if (prp->pr_type != type)
    528 		return EPROTOTYPE;
    529 
    530 	so = soget(true);
    531 	so->so_type = type;
    532 	so->so_proto = prp;
    533 	so->so_send = sosend;
    534 	so->so_receive = soreceive;
    535 #ifdef MBUFTRACE
    536 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    537 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    538 	so->so_mowner = &prp->pr_domain->dom_mowner;
    539 #endif
    540 	uid = kauth_cred_geteuid(l->l_cred);
    541 	so->so_uidinfo = uid_find(uid);
    542 	so->so_cpid = l->l_proc->p_pid;
    543 
    544 	/*
    545 	 * Lock assigned and taken during PCB attach, unless we share
    546 	 * the lock with another socket, e.g. socketpair(2) case.
    547 	 */
    548 	if (lockso) {
    549 		lock = lockso->so_lock;
    550 		so->so_lock = lock;
    551 		mutex_obj_hold(lock);
    552 		mutex_enter(lock);
    553 	}
    554 
    555 	/* Attach the PCB (returns with the socket lock held). */
    556 	error = (*prp->pr_usrreqs->pr_attach)(so, proto);
    557 	KASSERT(solocked(so));
    558 
    559 	if (error) {
    560 		KASSERT(so->so_pcb == NULL);
    561 		so->so_state |= SS_NOFDREF;
    562 		sofree(so);
    563 		return error;
    564 	}
    565 	so->so_cred = kauth_cred_dup(l->l_cred);
    566 	sounlock(so);
    567 
    568 	*aso = so;
    569 	return 0;
    570 }
    571 
    572 /*
    573  * fsocreate: create a socket and a file descriptor associated with it.
    574  *
    575  * => On success, write file descriptor to fdout and return zero.
    576  * => On failure, return non-zero; *fdout will be undefined.
    577  */
    578 int
    579 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
    580 {
    581 	lwp_t *l = curlwp;
    582 	int error, fd, flags;
    583 	struct socket *so;
    584 	struct file *fp;
    585 
    586 	if ((error = fd_allocfile(&fp, &fd)) != 0) {
    587 		return error;
    588 	}
    589 	flags = type & SOCK_FLAGS_MASK;
    590 	fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
    591 	fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
    592 	    ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
    593 	fp->f_type = DTYPE_SOCKET;
    594 	fp->f_ops = &socketops;
    595 
    596 	type &= ~SOCK_FLAGS_MASK;
    597 	error = socreate(domain, &so, type, proto, l, NULL);
    598 	if (error) {
    599 		fd_abort(curproc, fp, fd);
    600 		return error;
    601 	}
    602 	if (flags & SOCK_NONBLOCK) {
    603 		so->so_state |= SS_NBIO;
    604 	}
    605 	fp->f_socket = so;
    606 	fd_affix(curproc, fp, fd);
    607 
    608 	if (sop != NULL) {
    609 		*sop = so;
    610 	}
    611 	*fdout = fd;
    612 	return error;
    613 }
    614 
    615 int
    616 sofamily(const struct socket *so)
    617 {
    618 	const struct protosw *pr;
    619 	const struct domain *dom;
    620 
    621 	if ((pr = so->so_proto) == NULL)
    622 		return AF_UNSPEC;
    623 	if ((dom = pr->pr_domain) == NULL)
    624 		return AF_UNSPEC;
    625 	return dom->dom_family;
    626 }
    627 
    628 int
    629 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
    630 {
    631 	int	error;
    632 
    633 	solock(so);
    634 	if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
    635 		sounlock(so);
    636 		return EAFNOSUPPORT;
    637 	}
    638 	error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
    639 	sounlock(so);
    640 	return error;
    641 }
    642 
    643 int
    644 solisten(struct socket *so, int backlog, struct lwp *l)
    645 {
    646 	int	error;
    647 
    648 	solock(so);
    649 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    650 	    SS_ISDISCONNECTING)) != 0) {
    651 		sounlock(so);
    652 		return EINVAL;
    653 	}
    654 	error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
    655 	if (error != 0) {
    656 		sounlock(so);
    657 		return error;
    658 	}
    659 	if (TAILQ_EMPTY(&so->so_q))
    660 		so->so_options |= SO_ACCEPTCONN;
    661 	if (backlog < 0)
    662 		backlog = 0;
    663 	so->so_qlimit = min(backlog, somaxconn);
    664 	sounlock(so);
    665 	return 0;
    666 }
    667 
    668 void
    669 sofree(struct socket *so)
    670 {
    671 	u_int refs;
    672 
    673 	KASSERT(solocked(so));
    674 
    675 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    676 		sounlock(so);
    677 		return;
    678 	}
    679 	if (so->so_head) {
    680 		/*
    681 		 * We must not decommission a socket that's on the accept(2)
    682 		 * queue.  If we do, then accept(2) may hang after select(2)
    683 		 * indicated that the listening socket was ready.
    684 		 */
    685 		if (!soqremque(so, 0)) {
    686 			sounlock(so);
    687 			return;
    688 		}
    689 	}
    690 	if (so->so_rcv.sb_hiwat)
    691 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    692 		    RLIM_INFINITY);
    693 	if (so->so_snd.sb_hiwat)
    694 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    695 		    RLIM_INFINITY);
    696 	sbrelease(&so->so_snd, so);
    697 	KASSERT(!cv_has_waiters(&so->so_cv));
    698 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    699 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    700 	sorflush(so);
    701 	refs = so->so_aborting;	/* XXX */
    702 	/* Remove acccept filter if one is present. */
    703 	if (so->so_accf != NULL)
    704 		(void)accept_filt_clear(so);
    705 	sounlock(so);
    706 	if (refs == 0)		/* XXX */
    707 		soput(so);
    708 }
    709 
    710 /*
    711  * soclose: close a socket on last file table reference removal.
    712  * Initiate disconnect if connected.  Free socket when disconnect complete.
    713  */
    714 int
    715 soclose(struct socket *so)
    716 {
    717 	struct socket *so2;
    718 	int error = 0;
    719 
    720 	solock(so);
    721 	if (so->so_options & SO_ACCEPTCONN) {
    722 		for (;;) {
    723 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    724 				KASSERT(solocked2(so, so2));
    725 				(void) soqremque(so2, 0);
    726 				/* soabort drops the lock. */
    727 				(void) soabort(so2);
    728 				solock(so);
    729 				continue;
    730 			}
    731 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    732 				KASSERT(solocked2(so, so2));
    733 				(void) soqremque(so2, 1);
    734 				/* soabort drops the lock. */
    735 				(void) soabort(so2);
    736 				solock(so);
    737 				continue;
    738 			}
    739 			break;
    740 		}
    741 	}
    742 	if (so->so_pcb == NULL)
    743 		goto discard;
    744 	if (so->so_state & SS_ISCONNECTED) {
    745 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    746 			error = sodisconnect(so);
    747 			if (error)
    748 				goto drop;
    749 		}
    750 		if (so->so_options & SO_LINGER) {
    751 			if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
    752 			    (SS_ISDISCONNECTING|SS_NBIO))
    753 				goto drop;
    754 			while (so->so_state & SS_ISCONNECTED) {
    755 				error = sowait(so, true, so->so_linger * hz);
    756 				if (error)
    757 					break;
    758 			}
    759 		}
    760 	}
    761  drop:
    762 	if (so->so_pcb) {
    763 		KASSERT(solocked(so));
    764 		(*so->so_proto->pr_usrreqs->pr_detach)(so);
    765 	}
    766  discard:
    767 	KASSERT((so->so_state & SS_NOFDREF) == 0);
    768 	kauth_cred_free(so->so_cred);
    769 	so->so_state |= SS_NOFDREF;
    770 	sofree(so);
    771 	return error;
    772 }
    773 
    774 /*
    775  * Must be called with the socket locked..  Will return with it unlocked.
    776  */
    777 int
    778 soabort(struct socket *so)
    779 {
    780 	u_int refs;
    781 	int error;
    782 
    783 	KASSERT(solocked(so));
    784 	KASSERT(so->so_head == NULL);
    785 
    786 	so->so_aborting++;		/* XXX */
    787 	error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
    788 	refs = --so->so_aborting;	/* XXX */
    789 	if (error || (refs == 0)) {
    790 		sofree(so);
    791 	} else {
    792 		sounlock(so);
    793 	}
    794 	return error;
    795 }
    796 
    797 int
    798 soaccept(struct socket *so, struct sockaddr *nam)
    799 {
    800 	int error;
    801 
    802 	KASSERT(solocked(so));
    803 	KASSERT((so->so_state & SS_NOFDREF) != 0);
    804 
    805 	so->so_state &= ~SS_NOFDREF;
    806 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    807 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    808 		error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
    809 	else
    810 		error = ECONNABORTED;
    811 
    812 	return error;
    813 }
    814 
    815 int
    816 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
    817 {
    818 	int error;
    819 
    820 	KASSERT(solocked(so));
    821 
    822 	if (so->so_options & SO_ACCEPTCONN)
    823 		return EOPNOTSUPP;
    824 	/*
    825 	 * If protocol is connection-based, can only connect once.
    826 	 * Otherwise, if connected, try to disconnect first.
    827 	 * This allows user to disconnect by connecting to, e.g.,
    828 	 * a null address.
    829 	 */
    830 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    831 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    832 	    (error = sodisconnect(so)))) {
    833 		error = EISCONN;
    834 	} else {
    835 		if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
    836 			return EAFNOSUPPORT;
    837 		}
    838 		error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
    839 	}
    840 
    841 	return error;
    842 }
    843 
    844 int
    845 soconnect2(struct socket *so1, struct socket *so2)
    846 {
    847 	KASSERT(solocked2(so1, so2));
    848 
    849 	return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
    850 }
    851 
    852 int
    853 sodisconnect(struct socket *so)
    854 {
    855 	int	error;
    856 
    857 	KASSERT(solocked(so));
    858 
    859 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    860 		error = ENOTCONN;
    861 	} else if (so->so_state & SS_ISDISCONNECTING) {
    862 		error = EALREADY;
    863 	} else {
    864 		error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
    865 	}
    866 	return (error);
    867 }
    868 
    869 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    870 /*
    871  * Send on a socket.
    872  * If send must go all at once and message is larger than
    873  * send buffering, then hard error.
    874  * Lock against other senders.
    875  * If must go all at once and not enough room now, then
    876  * inform user that this would block and do nothing.
    877  * Otherwise, if nonblocking, send as much as possible.
    878  * The data to be sent is described by "uio" if nonzero,
    879  * otherwise by the mbuf chain "top" (which must be null
    880  * if uio is not).  Data provided in mbuf chain must be small
    881  * enough to send all at once.
    882  *
    883  * Returns nonzero on error, timeout or signal; callers
    884  * must check for short counts if EINTR/ERESTART are returned.
    885  * Data and control buffers are freed on return.
    886  */
    887 int
    888 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio,
    889 	struct mbuf *top, struct mbuf *control, int flags, struct lwp *l)
    890 {
    891 	struct mbuf	**mp, *m;
    892 	long		space, len, resid, clen, mlen;
    893 	int		error, s, dontroute, atomic;
    894 	short		wakeup_state = 0;
    895 
    896 	clen = 0;
    897 
    898 	/*
    899 	 * solock() provides atomicity of access.  splsoftnet() prevents
    900 	 * protocol processing soft interrupts from interrupting us and
    901 	 * blocking (expensive).
    902 	 */
    903 	s = splsoftnet();
    904 	solock(so);
    905 	atomic = sosendallatonce(so) || top;
    906 	if (uio)
    907 		resid = uio->uio_resid;
    908 	else
    909 		resid = top->m_pkthdr.len;
    910 	/*
    911 	 * In theory resid should be unsigned.
    912 	 * However, space must be signed, as it might be less than 0
    913 	 * if we over-committed, and we must use a signed comparison
    914 	 * of space and resid.  On the other hand, a negative resid
    915 	 * causes us to loop sending 0-length segments to the protocol.
    916 	 */
    917 	if (resid < 0) {
    918 		error = EINVAL;
    919 		goto out;
    920 	}
    921 	dontroute =
    922 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    923 	    (so->so_proto->pr_flags & PR_ATOMIC);
    924 	l->l_ru.ru_msgsnd++;
    925 	if (control)
    926 		clen = control->m_len;
    927  restart:
    928 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    929 		goto out;
    930 	do {
    931 		if (so->so_state & SS_CANTSENDMORE) {
    932 			error = EPIPE;
    933 			goto release;
    934 		}
    935 		if (so->so_error) {
    936 			error = so->so_error;
    937 			so->so_error = 0;
    938 			goto release;
    939 		}
    940 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    941 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    942 				if (resid || clen == 0) {
    943 					error = ENOTCONN;
    944 					goto release;
    945 				}
    946 			} else if (addr == NULL) {
    947 				error = EDESTADDRREQ;
    948 				goto release;
    949 			}
    950 		}
    951 		space = sbspace(&so->so_snd);
    952 		if (flags & MSG_OOB)
    953 			space += 1024;
    954 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    955 		    clen > so->so_snd.sb_hiwat) {
    956 			error = EMSGSIZE;
    957 			goto release;
    958 		}
    959 		if (space < resid + clen &&
    960 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    961 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
    962 				error = EWOULDBLOCK;
    963 				goto release;
    964 			}
    965 			sbunlock(&so->so_snd);
    966 			if (wakeup_state & SS_RESTARTSYS) {
    967 				error = ERESTART;
    968 				goto out;
    969 			}
    970 			error = sbwait(&so->so_snd);
    971 			if (error)
    972 				goto out;
    973 			wakeup_state = so->so_state;
    974 			goto restart;
    975 		}
    976 		wakeup_state = 0;
    977 		mp = &top;
    978 		space -= clen;
    979 		do {
    980 			if (uio == NULL) {
    981 				/*
    982 				 * Data is prepackaged in "top".
    983 				 */
    984 				resid = 0;
    985 				if (flags & MSG_EOR)
    986 					top->m_flags |= M_EOR;
    987 			} else do {
    988 				sounlock(so);
    989 				splx(s);
    990 				if (top == NULL) {
    991 					m = m_gethdr(M_WAIT, MT_DATA);
    992 					mlen = MHLEN;
    993 					m->m_pkthdr.len = 0;
    994 					m->m_pkthdr.rcvif = NULL;
    995 				} else {
    996 					m = m_get(M_WAIT, MT_DATA);
    997 					mlen = MLEN;
    998 				}
    999 				MCLAIM(m, so->so_snd.sb_mowner);
   1000 				if (sock_loan_thresh >= 0 &&
   1001 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
   1002 				    space >= sock_loan_thresh &&
   1003 				    (len = sosend_loan(so, uio, m,
   1004 						       space)) != 0) {
   1005 					SOSEND_COUNTER_INCR(&sosend_loan_big);
   1006 					space -= len;
   1007 					goto have_data;
   1008 				}
   1009 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
   1010 					SOSEND_COUNTER_INCR(&sosend_copy_big);
   1011 					m_clget(m, M_DONTWAIT);
   1012 					if ((m->m_flags & M_EXT) == 0)
   1013 						goto nopages;
   1014 					mlen = MCLBYTES;
   1015 					if (atomic && top == 0) {
   1016 						len = lmin(MCLBYTES - max_hdr,
   1017 						    resid);
   1018 						m->m_data += max_hdr;
   1019 					} else
   1020 						len = lmin(MCLBYTES, resid);
   1021 					space -= len;
   1022 				} else {
   1023  nopages:
   1024 					SOSEND_COUNTER_INCR(&sosend_copy_small);
   1025 					len = lmin(lmin(mlen, resid), space);
   1026 					space -= len;
   1027 					/*
   1028 					 * For datagram protocols, leave room
   1029 					 * for protocol headers in first mbuf.
   1030 					 */
   1031 					if (atomic && top == 0 && len < mlen)
   1032 						MH_ALIGN(m, len);
   1033 				}
   1034 				error = uiomove(mtod(m, void *), (int)len, uio);
   1035  have_data:
   1036 				resid = uio->uio_resid;
   1037 				m->m_len = len;
   1038 				*mp = m;
   1039 				top->m_pkthdr.len += len;
   1040 				s = splsoftnet();
   1041 				solock(so);
   1042 				if (error != 0)
   1043 					goto release;
   1044 				mp = &m->m_next;
   1045 				if (resid <= 0) {
   1046 					if (flags & MSG_EOR)
   1047 						top->m_flags |= M_EOR;
   1048 					break;
   1049 				}
   1050 			} while (space > 0 && atomic);
   1051 
   1052 			if (so->so_state & SS_CANTSENDMORE) {
   1053 				error = EPIPE;
   1054 				goto release;
   1055 			}
   1056 			if (dontroute)
   1057 				so->so_options |= SO_DONTROUTE;
   1058 			if (resid > 0)
   1059 				so->so_state |= SS_MORETOCOME;
   1060 			if (flags & MSG_OOB) {
   1061 				error = (*so->so_proto->pr_usrreqs->pr_sendoob)(so,
   1062 				    top, control);
   1063 			} else {
   1064 				error = (*so->so_proto->pr_usrreqs->pr_send)(so,
   1065 				    top, addr, control, l);
   1066 			}
   1067 			if (dontroute)
   1068 				so->so_options &= ~SO_DONTROUTE;
   1069 			if (resid > 0)
   1070 				so->so_state &= ~SS_MORETOCOME;
   1071 			clen = 0;
   1072 			control = NULL;
   1073 			top = NULL;
   1074 			mp = &top;
   1075 			if (error != 0)
   1076 				goto release;
   1077 		} while (resid && space > 0);
   1078 	} while (resid);
   1079 
   1080  release:
   1081 	sbunlock(&so->so_snd);
   1082  out:
   1083 	sounlock(so);
   1084 	splx(s);
   1085 	if (top)
   1086 		m_freem(top);
   1087 	if (control)
   1088 		m_freem(control);
   1089 	return (error);
   1090 }
   1091 
   1092 /*
   1093  * Following replacement or removal of the first mbuf on the first
   1094  * mbuf chain of a socket buffer, push necessary state changes back
   1095  * into the socket buffer so that other consumers see the values
   1096  * consistently.  'nextrecord' is the callers locally stored value of
   1097  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1098  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1099  */
   1100 static void
   1101 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1102 {
   1103 
   1104 	KASSERT(solocked(sb->sb_so));
   1105 
   1106 	/*
   1107 	 * First, update for the new value of nextrecord.  If necessary,
   1108 	 * make it the first record.
   1109 	 */
   1110 	if (sb->sb_mb != NULL)
   1111 		sb->sb_mb->m_nextpkt = nextrecord;
   1112 	else
   1113 		sb->sb_mb = nextrecord;
   1114 
   1115         /*
   1116          * Now update any dependent socket buffer fields to reflect
   1117          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1118          * the addition of a second clause that takes care of the
   1119          * case where sb_mb has been updated, but remains the last
   1120          * record.
   1121          */
   1122         if (sb->sb_mb == NULL) {
   1123                 sb->sb_mbtail = NULL;
   1124                 sb->sb_lastrecord = NULL;
   1125         } else if (sb->sb_mb->m_nextpkt == NULL)
   1126                 sb->sb_lastrecord = sb->sb_mb;
   1127 }
   1128 
   1129 /*
   1130  * Implement receive operations on a socket.
   1131  * We depend on the way that records are added to the sockbuf
   1132  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1133  * must begin with an address if the protocol so specifies,
   1134  * followed by an optional mbuf or mbufs containing ancillary data,
   1135  * and then zero or more mbufs of data.
   1136  * In order to avoid blocking network interrupts for the entire time here,
   1137  * we splx() while doing the actual copy to user space.
   1138  * Although the sockbuf is locked, new data may still be appended,
   1139  * and thus we must maintain consistency of the sockbuf during that time.
   1140  *
   1141  * The caller may receive the data as a single mbuf chain by supplying
   1142  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1143  * only for the count in uio_resid.
   1144  */
   1145 int
   1146 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1147 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1148 {
   1149 	struct lwp *l = curlwp;
   1150 	struct mbuf	*m, **mp, *mt;
   1151 	size_t len, offset, moff, orig_resid;
   1152 	int atomic, flags, error, s, type;
   1153 	const struct protosw	*pr;
   1154 	struct mbuf	*nextrecord;
   1155 	int		mbuf_removed = 0;
   1156 	const struct domain *dom;
   1157 	short		wakeup_state = 0;
   1158 
   1159 	pr = so->so_proto;
   1160 	atomic = pr->pr_flags & PR_ATOMIC;
   1161 	dom = pr->pr_domain;
   1162 	mp = mp0;
   1163 	type = 0;
   1164 	orig_resid = uio->uio_resid;
   1165 
   1166 	if (paddr != NULL)
   1167 		*paddr = NULL;
   1168 	if (controlp != NULL)
   1169 		*controlp = NULL;
   1170 	if (flagsp != NULL)
   1171 		flags = *flagsp &~ MSG_EOR;
   1172 	else
   1173 		flags = 0;
   1174 
   1175 	if (flags & MSG_OOB) {
   1176 		m = m_get(M_WAIT, MT_DATA);
   1177 		solock(so);
   1178 		error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
   1179 		sounlock(so);
   1180 		if (error)
   1181 			goto bad;
   1182 		do {
   1183 			error = uiomove(mtod(m, void *),
   1184 			    MIN(uio->uio_resid, m->m_len), uio);
   1185 			m = m_free(m);
   1186 		} while (uio->uio_resid > 0 && error == 0 && m);
   1187  bad:
   1188 		if (m != NULL)
   1189 			m_freem(m);
   1190 		return error;
   1191 	}
   1192 	if (mp != NULL)
   1193 		*mp = NULL;
   1194 
   1195 	/*
   1196 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1197 	 * protocol processing soft interrupts from interrupting us and
   1198 	 * blocking (expensive).
   1199 	 */
   1200 	s = splsoftnet();
   1201 	solock(so);
   1202  restart:
   1203 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1204 		sounlock(so);
   1205 		splx(s);
   1206 		return error;
   1207 	}
   1208 
   1209 	m = so->so_rcv.sb_mb;
   1210 	/*
   1211 	 * If we have less data than requested, block awaiting more
   1212 	 * (subject to any timeout) if:
   1213 	 *   1. the current count is less than the low water mark,
   1214 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1215 	 *	receive operation at once if we block (resid <= hiwat), or
   1216 	 *   3. MSG_DONTWAIT is not set.
   1217 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1218 	 * we have to do the receive in sections, and thus risk returning
   1219 	 * a short count if a timeout or signal occurs after we start.
   1220 	 */
   1221 	if (m == NULL ||
   1222 	    ((flags & MSG_DONTWAIT) == 0 &&
   1223 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1224 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1225 	      ((flags & MSG_WAITALL) &&
   1226 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1227 	     m->m_nextpkt == NULL && !atomic)) {
   1228 #ifdef DIAGNOSTIC
   1229 		if (m == NULL && so->so_rcv.sb_cc)
   1230 			panic("receive 1");
   1231 #endif
   1232 		if (so->so_error) {
   1233 			if (m != NULL)
   1234 				goto dontblock;
   1235 			error = so->so_error;
   1236 			if ((flags & MSG_PEEK) == 0)
   1237 				so->so_error = 0;
   1238 			goto release;
   1239 		}
   1240 		if (so->so_state & SS_CANTRCVMORE) {
   1241 			if (m != NULL)
   1242 				goto dontblock;
   1243 			else
   1244 				goto release;
   1245 		}
   1246 		for (; m != NULL; m = m->m_next)
   1247 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1248 				m = so->so_rcv.sb_mb;
   1249 				goto dontblock;
   1250 			}
   1251 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1252 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1253 			error = ENOTCONN;
   1254 			goto release;
   1255 		}
   1256 		if (uio->uio_resid == 0)
   1257 			goto release;
   1258 		if ((so->so_state & SS_NBIO) ||
   1259 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
   1260 			error = EWOULDBLOCK;
   1261 			goto release;
   1262 		}
   1263 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1264 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1265 		sbunlock(&so->so_rcv);
   1266 		if (wakeup_state & SS_RESTARTSYS)
   1267 			error = ERESTART;
   1268 		else
   1269 			error = sbwait(&so->so_rcv);
   1270 		if (error != 0) {
   1271 			sounlock(so);
   1272 			splx(s);
   1273 			return error;
   1274 		}
   1275 		wakeup_state = so->so_state;
   1276 		goto restart;
   1277 	}
   1278  dontblock:
   1279 	/*
   1280 	 * On entry here, m points to the first record of the socket buffer.
   1281 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1282 	 * pointer to the next record in the socket buffer.  We must keep the
   1283 	 * various socket buffer pointers and local stack versions of the
   1284 	 * pointers in sync, pushing out modifications before dropping the
   1285 	 * socket lock, and re-reading them when picking it up.
   1286 	 *
   1287 	 * Otherwise, we will race with the network stack appending new data
   1288 	 * or records onto the socket buffer by using inconsistent/stale
   1289 	 * versions of the field, possibly resulting in socket buffer
   1290 	 * corruption.
   1291 	 *
   1292 	 * By holding the high-level sblock(), we prevent simultaneous
   1293 	 * readers from pulling off the front of the socket buffer.
   1294 	 */
   1295 	if (l != NULL)
   1296 		l->l_ru.ru_msgrcv++;
   1297 	KASSERT(m == so->so_rcv.sb_mb);
   1298 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1299 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1300 	nextrecord = m->m_nextpkt;
   1301 	if (pr->pr_flags & PR_ADDR) {
   1302 #ifdef DIAGNOSTIC
   1303 		if (m->m_type != MT_SONAME)
   1304 			panic("receive 1a");
   1305 #endif
   1306 		orig_resid = 0;
   1307 		if (flags & MSG_PEEK) {
   1308 			if (paddr)
   1309 				*paddr = m_copy(m, 0, m->m_len);
   1310 			m = m->m_next;
   1311 		} else {
   1312 			sbfree(&so->so_rcv, m);
   1313 			mbuf_removed = 1;
   1314 			if (paddr != NULL) {
   1315 				*paddr = m;
   1316 				so->so_rcv.sb_mb = m->m_next;
   1317 				m->m_next = NULL;
   1318 				m = so->so_rcv.sb_mb;
   1319 			} else {
   1320 				MFREE(m, so->so_rcv.sb_mb);
   1321 				m = so->so_rcv.sb_mb;
   1322 			}
   1323 			sbsync(&so->so_rcv, nextrecord);
   1324 		}
   1325 	}
   1326 
   1327 	/*
   1328 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1329 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1330 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1331 	 * perform externalization (or freeing if controlp == NULL).
   1332 	 */
   1333 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1334 		struct mbuf *cm = NULL, *cmn;
   1335 		struct mbuf **cme = &cm;
   1336 
   1337 		do {
   1338 			if (flags & MSG_PEEK) {
   1339 				if (controlp != NULL) {
   1340 					*controlp = m_copy(m, 0, m->m_len);
   1341 					controlp = &(*controlp)->m_next;
   1342 				}
   1343 				m = m->m_next;
   1344 			} else {
   1345 				sbfree(&so->so_rcv, m);
   1346 				so->so_rcv.sb_mb = m->m_next;
   1347 				m->m_next = NULL;
   1348 				*cme = m;
   1349 				cme = &(*cme)->m_next;
   1350 				m = so->so_rcv.sb_mb;
   1351 			}
   1352 		} while (m != NULL && m->m_type == MT_CONTROL);
   1353 		if ((flags & MSG_PEEK) == 0)
   1354 			sbsync(&so->so_rcv, nextrecord);
   1355 		for (; cm != NULL; cm = cmn) {
   1356 			cmn = cm->m_next;
   1357 			cm->m_next = NULL;
   1358 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1359 			if (controlp != NULL) {
   1360 				if (dom->dom_externalize != NULL &&
   1361 				    type == SCM_RIGHTS) {
   1362 					sounlock(so);
   1363 					splx(s);
   1364 					error = (*dom->dom_externalize)(cm, l,
   1365 					    (flags & MSG_CMSG_CLOEXEC) ?
   1366 					    O_CLOEXEC : 0);
   1367 					s = splsoftnet();
   1368 					solock(so);
   1369 				}
   1370 				*controlp = cm;
   1371 				while (*controlp != NULL)
   1372 					controlp = &(*controlp)->m_next;
   1373 			} else {
   1374 				/*
   1375 				 * Dispose of any SCM_RIGHTS message that went
   1376 				 * through the read path rather than recv.
   1377 				 */
   1378 				if (dom->dom_dispose != NULL &&
   1379 				    type == SCM_RIGHTS) {
   1380 				    	sounlock(so);
   1381 					(*dom->dom_dispose)(cm);
   1382 					solock(so);
   1383 				}
   1384 				m_freem(cm);
   1385 			}
   1386 		}
   1387 		if (m != NULL)
   1388 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1389 		else
   1390 			nextrecord = so->so_rcv.sb_mb;
   1391 		orig_resid = 0;
   1392 	}
   1393 
   1394 	/* If m is non-NULL, we have some data to read. */
   1395 	if (__predict_true(m != NULL)) {
   1396 		type = m->m_type;
   1397 		if (type == MT_OOBDATA)
   1398 			flags |= MSG_OOB;
   1399 	}
   1400 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1401 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1402 
   1403 	moff = 0;
   1404 	offset = 0;
   1405 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1406 		if (m->m_type == MT_OOBDATA) {
   1407 			if (type != MT_OOBDATA)
   1408 				break;
   1409 		} else if (type == MT_OOBDATA)
   1410 			break;
   1411 #ifdef DIAGNOSTIC
   1412 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1413 			panic("receive 3");
   1414 #endif
   1415 		so->so_state &= ~SS_RCVATMARK;
   1416 		wakeup_state = 0;
   1417 		len = uio->uio_resid;
   1418 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1419 			len = so->so_oobmark - offset;
   1420 		if (len > m->m_len - moff)
   1421 			len = m->m_len - moff;
   1422 		/*
   1423 		 * If mp is set, just pass back the mbufs.
   1424 		 * Otherwise copy them out via the uio, then free.
   1425 		 * Sockbuf must be consistent here (points to current mbuf,
   1426 		 * it points to next record) when we drop priority;
   1427 		 * we must note any additions to the sockbuf when we
   1428 		 * block interrupts again.
   1429 		 */
   1430 		if (mp == NULL) {
   1431 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1432 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1433 			sounlock(so);
   1434 			splx(s);
   1435 			error = uiomove(mtod(m, char *) + moff, len, uio);
   1436 			s = splsoftnet();
   1437 			solock(so);
   1438 			if (error != 0) {
   1439 				/*
   1440 				 * If any part of the record has been removed
   1441 				 * (such as the MT_SONAME mbuf, which will
   1442 				 * happen when PR_ADDR, and thus also
   1443 				 * PR_ATOMIC, is set), then drop the entire
   1444 				 * record to maintain the atomicity of the
   1445 				 * receive operation.
   1446 				 *
   1447 				 * This avoids a later panic("receive 1a")
   1448 				 * when compiled with DIAGNOSTIC.
   1449 				 */
   1450 				if (m && mbuf_removed && atomic)
   1451 					(void) sbdroprecord(&so->so_rcv);
   1452 
   1453 				goto release;
   1454 			}
   1455 		} else
   1456 			uio->uio_resid -= len;
   1457 		if (len == m->m_len - moff) {
   1458 			if (m->m_flags & M_EOR)
   1459 				flags |= MSG_EOR;
   1460 			if (flags & MSG_PEEK) {
   1461 				m = m->m_next;
   1462 				moff = 0;
   1463 			} else {
   1464 				nextrecord = m->m_nextpkt;
   1465 				sbfree(&so->so_rcv, m);
   1466 				if (mp) {
   1467 					*mp = m;
   1468 					mp = &m->m_next;
   1469 					so->so_rcv.sb_mb = m = m->m_next;
   1470 					*mp = NULL;
   1471 				} else {
   1472 					MFREE(m, so->so_rcv.sb_mb);
   1473 					m = so->so_rcv.sb_mb;
   1474 				}
   1475 				/*
   1476 				 * If m != NULL, we also know that
   1477 				 * so->so_rcv.sb_mb != NULL.
   1478 				 */
   1479 				KASSERT(so->so_rcv.sb_mb == m);
   1480 				if (m) {
   1481 					m->m_nextpkt = nextrecord;
   1482 					if (nextrecord == NULL)
   1483 						so->so_rcv.sb_lastrecord = m;
   1484 				} else {
   1485 					so->so_rcv.sb_mb = nextrecord;
   1486 					SB_EMPTY_FIXUP(&so->so_rcv);
   1487 				}
   1488 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1489 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1490 			}
   1491 		} else if (flags & MSG_PEEK)
   1492 			moff += len;
   1493 		else {
   1494 			if (mp != NULL) {
   1495 				mt = m_copym(m, 0, len, M_NOWAIT);
   1496 				if (__predict_false(mt == NULL)) {
   1497 					sounlock(so);
   1498 					mt = m_copym(m, 0, len, M_WAIT);
   1499 					solock(so);
   1500 				}
   1501 				*mp = mt;
   1502 			}
   1503 			m->m_data += len;
   1504 			m->m_len -= len;
   1505 			so->so_rcv.sb_cc -= len;
   1506 		}
   1507 		if (so->so_oobmark) {
   1508 			if ((flags & MSG_PEEK) == 0) {
   1509 				so->so_oobmark -= len;
   1510 				if (so->so_oobmark == 0) {
   1511 					so->so_state |= SS_RCVATMARK;
   1512 					break;
   1513 				}
   1514 			} else {
   1515 				offset += len;
   1516 				if (offset == so->so_oobmark)
   1517 					break;
   1518 			}
   1519 		}
   1520 		if (flags & MSG_EOR)
   1521 			break;
   1522 		/*
   1523 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1524 		 * we must not quit until "uio->uio_resid == 0" or an error
   1525 		 * termination.  If a signal/timeout occurs, return
   1526 		 * with a short count but without error.
   1527 		 * Keep sockbuf locked against other readers.
   1528 		 */
   1529 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1530 		    !sosendallatonce(so) && !nextrecord) {
   1531 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1532 				break;
   1533 			/*
   1534 			 * If we are peeking and the socket receive buffer is
   1535 			 * full, stop since we can't get more data to peek at.
   1536 			 */
   1537 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1538 				break;
   1539 			/*
   1540 			 * If we've drained the socket buffer, tell the
   1541 			 * protocol in case it needs to do something to
   1542 			 * get it filled again.
   1543 			 */
   1544 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1545 				(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1546 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1547 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1548 			if (wakeup_state & SS_RESTARTSYS)
   1549 				error = ERESTART;
   1550 			else
   1551 				error = sbwait(&so->so_rcv);
   1552 			if (error != 0) {
   1553 				sbunlock(&so->so_rcv);
   1554 				sounlock(so);
   1555 				splx(s);
   1556 				return 0;
   1557 			}
   1558 			if ((m = so->so_rcv.sb_mb) != NULL)
   1559 				nextrecord = m->m_nextpkt;
   1560 			wakeup_state = so->so_state;
   1561 		}
   1562 	}
   1563 
   1564 	if (m && atomic) {
   1565 		flags |= MSG_TRUNC;
   1566 		if ((flags & MSG_PEEK) == 0)
   1567 			(void) sbdroprecord(&so->so_rcv);
   1568 	}
   1569 	if ((flags & MSG_PEEK) == 0) {
   1570 		if (m == NULL) {
   1571 			/*
   1572 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1573 			 * part makes sure sb_lastrecord is up-to-date if
   1574 			 * there is still data in the socket buffer.
   1575 			 */
   1576 			so->so_rcv.sb_mb = nextrecord;
   1577 			if (so->so_rcv.sb_mb == NULL) {
   1578 				so->so_rcv.sb_mbtail = NULL;
   1579 				so->so_rcv.sb_lastrecord = NULL;
   1580 			} else if (nextrecord->m_nextpkt == NULL)
   1581 				so->so_rcv.sb_lastrecord = nextrecord;
   1582 		}
   1583 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1584 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1585 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1586 			(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1587 	}
   1588 	if (orig_resid == uio->uio_resid && orig_resid &&
   1589 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1590 		sbunlock(&so->so_rcv);
   1591 		goto restart;
   1592 	}
   1593 
   1594 	if (flagsp != NULL)
   1595 		*flagsp |= flags;
   1596  release:
   1597 	sbunlock(&so->so_rcv);
   1598 	sounlock(so);
   1599 	splx(s);
   1600 	return error;
   1601 }
   1602 
   1603 int
   1604 soshutdown(struct socket *so, int how)
   1605 {
   1606 	const struct protosw	*pr;
   1607 	int	error;
   1608 
   1609 	KASSERT(solocked(so));
   1610 
   1611 	pr = so->so_proto;
   1612 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1613 		return (EINVAL);
   1614 
   1615 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1616 		sorflush(so);
   1617 		error = 0;
   1618 	}
   1619 	if (how == SHUT_WR || how == SHUT_RDWR)
   1620 		error = (*pr->pr_usrreqs->pr_shutdown)(so);
   1621 
   1622 	return error;
   1623 }
   1624 
   1625 void
   1626 sorestart(struct socket *so)
   1627 {
   1628 	/*
   1629 	 * An application has called close() on an fd on which another
   1630 	 * of its threads has called a socket system call.
   1631 	 * Mark this and wake everyone up, and code that would block again
   1632 	 * instead returns ERESTART.
   1633 	 * On system call re-entry the fd is validated and EBADF returned.
   1634 	 * Any other fd will block again on the 2nd syscall.
   1635 	 */
   1636 	solock(so);
   1637 	so->so_state |= SS_RESTARTSYS;
   1638 	cv_broadcast(&so->so_cv);
   1639 	cv_broadcast(&so->so_snd.sb_cv);
   1640 	cv_broadcast(&so->so_rcv.sb_cv);
   1641 	sounlock(so);
   1642 }
   1643 
   1644 void
   1645 sorflush(struct socket *so)
   1646 {
   1647 	struct sockbuf	*sb, asb;
   1648 	const struct protosw	*pr;
   1649 
   1650 	KASSERT(solocked(so));
   1651 
   1652 	sb = &so->so_rcv;
   1653 	pr = so->so_proto;
   1654 	socantrcvmore(so);
   1655 	sb->sb_flags |= SB_NOINTR;
   1656 	(void )sblock(sb, M_WAITOK);
   1657 	sbunlock(sb);
   1658 	asb = *sb;
   1659 	/*
   1660 	 * Clear most of the sockbuf structure, but leave some of the
   1661 	 * fields valid.
   1662 	 */
   1663 	memset(&sb->sb_startzero, 0,
   1664 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1665 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1666 		sounlock(so);
   1667 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1668 		solock(so);
   1669 	}
   1670 	sbrelease(&asb, so);
   1671 }
   1672 
   1673 /*
   1674  * internal set SOL_SOCKET options
   1675  */
   1676 static int
   1677 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1678 {
   1679 	int error = EINVAL, opt;
   1680 	int optval = 0; /* XXX: gcc */
   1681 	struct linger l;
   1682 	struct timeval tv;
   1683 
   1684 	switch ((opt = sopt->sopt_name)) {
   1685 
   1686 	case SO_ACCEPTFILTER:
   1687 		error = accept_filt_setopt(so, sopt);
   1688 		KASSERT(solocked(so));
   1689 		break;
   1690 
   1691   	case SO_LINGER:
   1692  		error = sockopt_get(sopt, &l, sizeof(l));
   1693 		solock(so);
   1694  		if (error)
   1695  			break;
   1696  		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1697  		    l.l_linger > (INT_MAX / hz)) {
   1698 			error = EDOM;
   1699 			break;
   1700 		}
   1701  		so->so_linger = l.l_linger;
   1702  		if (l.l_onoff)
   1703  			so->so_options |= SO_LINGER;
   1704  		else
   1705  			so->so_options &= ~SO_LINGER;
   1706    		break;
   1707 
   1708 	case SO_DEBUG:
   1709 	case SO_KEEPALIVE:
   1710 	case SO_DONTROUTE:
   1711 	case SO_USELOOPBACK:
   1712 	case SO_BROADCAST:
   1713 	case SO_REUSEADDR:
   1714 	case SO_REUSEPORT:
   1715 	case SO_OOBINLINE:
   1716 	case SO_TIMESTAMP:
   1717 	case SO_NOSIGPIPE:
   1718 #ifdef SO_OTIMESTAMP
   1719 	case SO_OTIMESTAMP:
   1720 #endif
   1721 		error = sockopt_getint(sopt, &optval);
   1722 		solock(so);
   1723 		if (error)
   1724 			break;
   1725 		if (optval)
   1726 			so->so_options |= opt;
   1727 		else
   1728 			so->so_options &= ~opt;
   1729 		break;
   1730 
   1731 	case SO_SNDBUF:
   1732 	case SO_RCVBUF:
   1733 	case SO_SNDLOWAT:
   1734 	case SO_RCVLOWAT:
   1735 		error = sockopt_getint(sopt, &optval);
   1736 		solock(so);
   1737 		if (error)
   1738 			break;
   1739 
   1740 		/*
   1741 		 * Values < 1 make no sense for any of these
   1742 		 * options, so disallow them.
   1743 		 */
   1744 		if (optval < 1) {
   1745 			error = EINVAL;
   1746 			break;
   1747 		}
   1748 
   1749 		switch (opt) {
   1750 		case SO_SNDBUF:
   1751 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
   1752 				error = ENOBUFS;
   1753 				break;
   1754 			}
   1755 			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1756 			break;
   1757 
   1758 		case SO_RCVBUF:
   1759 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
   1760 				error = ENOBUFS;
   1761 				break;
   1762 			}
   1763 			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1764 			break;
   1765 
   1766 		/*
   1767 		 * Make sure the low-water is never greater than
   1768 		 * the high-water.
   1769 		 */
   1770 		case SO_SNDLOWAT:
   1771 			if (optval > so->so_snd.sb_hiwat)
   1772 				optval = so->so_snd.sb_hiwat;
   1773 
   1774 			so->so_snd.sb_lowat = optval;
   1775 			break;
   1776 
   1777 		case SO_RCVLOWAT:
   1778 			if (optval > so->so_rcv.sb_hiwat)
   1779 				optval = so->so_rcv.sb_hiwat;
   1780 
   1781 			so->so_rcv.sb_lowat = optval;
   1782 			break;
   1783 		}
   1784 		break;
   1785 
   1786 #ifdef COMPAT_50
   1787 	case SO_OSNDTIMEO:
   1788 	case SO_ORCVTIMEO: {
   1789 		struct timeval50 otv;
   1790 		error = sockopt_get(sopt, &otv, sizeof(otv));
   1791 		if (error) {
   1792 			solock(so);
   1793 			break;
   1794 		}
   1795 		timeval50_to_timeval(&otv, &tv);
   1796 		opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
   1797 		error = 0;
   1798 		/*FALLTHROUGH*/
   1799 	}
   1800 #endif /* COMPAT_50 */
   1801 
   1802 	case SO_SNDTIMEO:
   1803 	case SO_RCVTIMEO:
   1804 		if (error)
   1805 			error = sockopt_get(sopt, &tv, sizeof(tv));
   1806 		solock(so);
   1807 		if (error)
   1808 			break;
   1809 
   1810 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
   1811 			error = EDOM;
   1812 			break;
   1813 		}
   1814 
   1815 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1816 		if (optval == 0 && tv.tv_usec != 0)
   1817 			optval = 1;
   1818 
   1819 		switch (opt) {
   1820 		case SO_SNDTIMEO:
   1821 			so->so_snd.sb_timeo = optval;
   1822 			break;
   1823 		case SO_RCVTIMEO:
   1824 			so->so_rcv.sb_timeo = optval;
   1825 			break;
   1826 		}
   1827 		break;
   1828 
   1829 	default:
   1830 		solock(so);
   1831 		error = ENOPROTOOPT;
   1832 		break;
   1833 	}
   1834 	KASSERT(solocked(so));
   1835 	return error;
   1836 }
   1837 
   1838 int
   1839 sosetopt(struct socket *so, struct sockopt *sopt)
   1840 {
   1841 	int error, prerr;
   1842 
   1843 	if (sopt->sopt_level == SOL_SOCKET) {
   1844 		error = sosetopt1(so, sopt);
   1845 		KASSERT(solocked(so));
   1846 	} else {
   1847 		error = ENOPROTOOPT;
   1848 		solock(so);
   1849 	}
   1850 
   1851 	if ((error == 0 || error == ENOPROTOOPT) &&
   1852 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1853 		/* give the protocol stack a shot */
   1854 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1855 		if (prerr == 0)
   1856 			error = 0;
   1857 		else if (prerr != ENOPROTOOPT)
   1858 			error = prerr;
   1859 	}
   1860 	sounlock(so);
   1861 	return error;
   1862 }
   1863 
   1864 /*
   1865  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1866  */
   1867 int
   1868 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1869     const void *val, size_t valsize)
   1870 {
   1871 	struct sockopt sopt;
   1872 	int error;
   1873 
   1874 	KASSERT(valsize == 0 || val != NULL);
   1875 
   1876 	sockopt_init(&sopt, level, name, valsize);
   1877 	sockopt_set(&sopt, val, valsize);
   1878 
   1879 	error = sosetopt(so, &sopt);
   1880 
   1881 	sockopt_destroy(&sopt);
   1882 
   1883 	return error;
   1884 }
   1885 
   1886 /*
   1887  * internal get SOL_SOCKET options
   1888  */
   1889 static int
   1890 sogetopt1(struct socket *so, struct sockopt *sopt)
   1891 {
   1892 	int error, optval, opt;
   1893 	struct linger l;
   1894 	struct timeval tv;
   1895 
   1896 	switch ((opt = sopt->sopt_name)) {
   1897 
   1898 	case SO_ACCEPTFILTER:
   1899 		error = accept_filt_getopt(so, sopt);
   1900 		break;
   1901 
   1902 	case SO_LINGER:
   1903 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1904 		l.l_linger = so->so_linger;
   1905 
   1906 		error = sockopt_set(sopt, &l, sizeof(l));
   1907 		break;
   1908 
   1909 	case SO_USELOOPBACK:
   1910 	case SO_DONTROUTE:
   1911 	case SO_DEBUG:
   1912 	case SO_KEEPALIVE:
   1913 	case SO_REUSEADDR:
   1914 	case SO_REUSEPORT:
   1915 	case SO_BROADCAST:
   1916 	case SO_OOBINLINE:
   1917 	case SO_TIMESTAMP:
   1918 	case SO_NOSIGPIPE:
   1919 #ifdef SO_OTIMESTAMP
   1920 	case SO_OTIMESTAMP:
   1921 #endif
   1922 	case SO_ACCEPTCONN:
   1923 		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
   1924 		break;
   1925 
   1926 	case SO_TYPE:
   1927 		error = sockopt_setint(sopt, so->so_type);
   1928 		break;
   1929 
   1930 	case SO_ERROR:
   1931 		error = sockopt_setint(sopt, so->so_error);
   1932 		so->so_error = 0;
   1933 		break;
   1934 
   1935 	case SO_SNDBUF:
   1936 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1937 		break;
   1938 
   1939 	case SO_RCVBUF:
   1940 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1941 		break;
   1942 
   1943 	case SO_SNDLOWAT:
   1944 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1945 		break;
   1946 
   1947 	case SO_RCVLOWAT:
   1948 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1949 		break;
   1950 
   1951 #ifdef COMPAT_50
   1952 	case SO_OSNDTIMEO:
   1953 	case SO_ORCVTIMEO: {
   1954 		struct timeval50 otv;
   1955 
   1956 		optval = (opt == SO_OSNDTIMEO ?
   1957 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1958 
   1959 		otv.tv_sec = optval / hz;
   1960 		otv.tv_usec = (optval % hz) * tick;
   1961 
   1962 		error = sockopt_set(sopt, &otv, sizeof(otv));
   1963 		break;
   1964 	}
   1965 #endif /* COMPAT_50 */
   1966 
   1967 	case SO_SNDTIMEO:
   1968 	case SO_RCVTIMEO:
   1969 		optval = (opt == SO_SNDTIMEO ?
   1970 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1971 
   1972 		tv.tv_sec = optval / hz;
   1973 		tv.tv_usec = (optval % hz) * tick;
   1974 
   1975 		error = sockopt_set(sopt, &tv, sizeof(tv));
   1976 		break;
   1977 
   1978 	case SO_OVERFLOWED:
   1979 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   1980 		break;
   1981 
   1982 	default:
   1983 		error = ENOPROTOOPT;
   1984 		break;
   1985 	}
   1986 
   1987 	return (error);
   1988 }
   1989 
   1990 int
   1991 sogetopt(struct socket *so, struct sockopt *sopt)
   1992 {
   1993 	int		error;
   1994 
   1995 	solock(so);
   1996 	if (sopt->sopt_level != SOL_SOCKET) {
   1997 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   1998 			error = ((*so->so_proto->pr_ctloutput)
   1999 			    (PRCO_GETOPT, so, sopt));
   2000 		} else
   2001 			error = (ENOPROTOOPT);
   2002 	} else {
   2003 		error = sogetopt1(so, sopt);
   2004 	}
   2005 	sounlock(so);
   2006 	return (error);
   2007 }
   2008 
   2009 /*
   2010  * alloc sockopt data buffer buffer
   2011  *	- will be released at destroy
   2012  */
   2013 static int
   2014 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
   2015 {
   2016 
   2017 	KASSERT(sopt->sopt_size == 0);
   2018 
   2019 	if (len > sizeof(sopt->sopt_buf)) {
   2020 		sopt->sopt_data = kmem_zalloc(len, kmflag);
   2021 		if (sopt->sopt_data == NULL)
   2022 			return ENOMEM;
   2023 	} else
   2024 		sopt->sopt_data = sopt->sopt_buf;
   2025 
   2026 	sopt->sopt_size = len;
   2027 	return 0;
   2028 }
   2029 
   2030 /*
   2031  * initialise sockopt storage
   2032  *	- MAY sleep during allocation
   2033  */
   2034 void
   2035 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   2036 {
   2037 
   2038 	memset(sopt, 0, sizeof(*sopt));
   2039 
   2040 	sopt->sopt_level = level;
   2041 	sopt->sopt_name = name;
   2042 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
   2043 }
   2044 
   2045 /*
   2046  * destroy sockopt storage
   2047  *	- will release any held memory references
   2048  */
   2049 void
   2050 sockopt_destroy(struct sockopt *sopt)
   2051 {
   2052 
   2053 	if (sopt->sopt_data != sopt->sopt_buf)
   2054 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   2055 
   2056 	memset(sopt, 0, sizeof(*sopt));
   2057 }
   2058 
   2059 /*
   2060  * set sockopt value
   2061  *	- value is copied into sockopt
   2062  * 	- memory is allocated when necessary, will not sleep
   2063  */
   2064 int
   2065 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   2066 {
   2067 	int error;
   2068 
   2069 	if (sopt->sopt_size == 0) {
   2070 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2071 		if (error)
   2072 			return error;
   2073 	}
   2074 
   2075 	KASSERT(sopt->sopt_size == len);
   2076 	memcpy(sopt->sopt_data, buf, len);
   2077 	return 0;
   2078 }
   2079 
   2080 /*
   2081  * common case of set sockopt integer value
   2082  */
   2083 int
   2084 sockopt_setint(struct sockopt *sopt, int val)
   2085 {
   2086 
   2087 	return sockopt_set(sopt, &val, sizeof(int));
   2088 }
   2089 
   2090 /*
   2091  * get sockopt value
   2092  *	- correct size must be given
   2093  */
   2094 int
   2095 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   2096 {
   2097 
   2098 	if (sopt->sopt_size != len)
   2099 		return EINVAL;
   2100 
   2101 	memcpy(buf, sopt->sopt_data, len);
   2102 	return 0;
   2103 }
   2104 
   2105 /*
   2106  * common case of get sockopt integer value
   2107  */
   2108 int
   2109 sockopt_getint(const struct sockopt *sopt, int *valp)
   2110 {
   2111 
   2112 	return sockopt_get(sopt, valp, sizeof(int));
   2113 }
   2114 
   2115 /*
   2116  * set sockopt value from mbuf
   2117  *	- ONLY for legacy code
   2118  *	- mbuf is released by sockopt
   2119  *	- will not sleep
   2120  */
   2121 int
   2122 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   2123 {
   2124 	size_t len;
   2125 	int error;
   2126 
   2127 	len = m_length(m);
   2128 
   2129 	if (sopt->sopt_size == 0) {
   2130 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2131 		if (error)
   2132 			return error;
   2133 	}
   2134 
   2135 	KASSERT(sopt->sopt_size == len);
   2136 	m_copydata(m, 0, len, sopt->sopt_data);
   2137 	m_freem(m);
   2138 
   2139 	return 0;
   2140 }
   2141 
   2142 /*
   2143  * get sockopt value into mbuf
   2144  *	- ONLY for legacy code
   2145  *	- mbuf to be released by the caller
   2146  *	- will not sleep
   2147  */
   2148 struct mbuf *
   2149 sockopt_getmbuf(const struct sockopt *sopt)
   2150 {
   2151 	struct mbuf *m;
   2152 
   2153 	if (sopt->sopt_size > MCLBYTES)
   2154 		return NULL;
   2155 
   2156 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   2157 	if (m == NULL)
   2158 		return NULL;
   2159 
   2160 	if (sopt->sopt_size > MLEN) {
   2161 		MCLGET(m, M_DONTWAIT);
   2162 		if ((m->m_flags & M_EXT) == 0) {
   2163 			m_free(m);
   2164 			return NULL;
   2165 		}
   2166 	}
   2167 
   2168 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
   2169 	m->m_len = sopt->sopt_size;
   2170 
   2171 	return m;
   2172 }
   2173 
   2174 void
   2175 sohasoutofband(struct socket *so)
   2176 {
   2177 
   2178 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2179 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
   2180 }
   2181 
   2182 static void
   2183 filt_sordetach(struct knote *kn)
   2184 {
   2185 	struct socket	*so;
   2186 
   2187 	so = ((file_t *)kn->kn_obj)->f_socket;
   2188 	solock(so);
   2189 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   2190 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   2191 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2192 	sounlock(so);
   2193 }
   2194 
   2195 /*ARGSUSED*/
   2196 static int
   2197 filt_soread(struct knote *kn, long hint)
   2198 {
   2199 	struct socket	*so;
   2200 	int rv;
   2201 
   2202 	so = ((file_t *)kn->kn_obj)->f_socket;
   2203 	if (hint != NOTE_SUBMIT)
   2204 		solock(so);
   2205 	kn->kn_data = so->so_rcv.sb_cc;
   2206 	if (so->so_state & SS_CANTRCVMORE) {
   2207 		kn->kn_flags |= EV_EOF;
   2208 		kn->kn_fflags = so->so_error;
   2209 		rv = 1;
   2210 	} else if (so->so_error)	/* temporary udp error */
   2211 		rv = 1;
   2212 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2213 		rv = (kn->kn_data >= kn->kn_sdata);
   2214 	else
   2215 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2216 	if (hint != NOTE_SUBMIT)
   2217 		sounlock(so);
   2218 	return rv;
   2219 }
   2220 
   2221 static void
   2222 filt_sowdetach(struct knote *kn)
   2223 {
   2224 	struct socket	*so;
   2225 
   2226 	so = ((file_t *)kn->kn_obj)->f_socket;
   2227 	solock(so);
   2228 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   2229 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   2230 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2231 	sounlock(so);
   2232 }
   2233 
   2234 /*ARGSUSED*/
   2235 static int
   2236 filt_sowrite(struct knote *kn, long hint)
   2237 {
   2238 	struct socket	*so;
   2239 	int rv;
   2240 
   2241 	so = ((file_t *)kn->kn_obj)->f_socket;
   2242 	if (hint != NOTE_SUBMIT)
   2243 		solock(so);
   2244 	kn->kn_data = sbspace(&so->so_snd);
   2245 	if (so->so_state & SS_CANTSENDMORE) {
   2246 		kn->kn_flags |= EV_EOF;
   2247 		kn->kn_fflags = so->so_error;
   2248 		rv = 1;
   2249 	} else if (so->so_error)	/* temporary udp error */
   2250 		rv = 1;
   2251 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2252 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2253 		rv = 0;
   2254 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2255 		rv = (kn->kn_data >= kn->kn_sdata);
   2256 	else
   2257 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2258 	if (hint != NOTE_SUBMIT)
   2259 		sounlock(so);
   2260 	return rv;
   2261 }
   2262 
   2263 /*ARGSUSED*/
   2264 static int
   2265 filt_solisten(struct knote *kn, long hint)
   2266 {
   2267 	struct socket	*so;
   2268 	int rv;
   2269 
   2270 	so = ((file_t *)kn->kn_obj)->f_socket;
   2271 
   2272 	/*
   2273 	 * Set kn_data to number of incoming connections, not
   2274 	 * counting partial (incomplete) connections.
   2275 	 */
   2276 	if (hint != NOTE_SUBMIT)
   2277 		solock(so);
   2278 	kn->kn_data = so->so_qlen;
   2279 	rv = (kn->kn_data > 0);
   2280 	if (hint != NOTE_SUBMIT)
   2281 		sounlock(so);
   2282 	return rv;
   2283 }
   2284 
   2285 static const struct filterops solisten_filtops =
   2286 	{ 1, NULL, filt_sordetach, filt_solisten };
   2287 static const struct filterops soread_filtops =
   2288 	{ 1, NULL, filt_sordetach, filt_soread };
   2289 static const struct filterops sowrite_filtops =
   2290 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   2291 
   2292 int
   2293 soo_kqfilter(struct file *fp, struct knote *kn)
   2294 {
   2295 	struct socket	*so;
   2296 	struct sockbuf	*sb;
   2297 
   2298 	so = ((file_t *)kn->kn_obj)->f_socket;
   2299 	solock(so);
   2300 	switch (kn->kn_filter) {
   2301 	case EVFILT_READ:
   2302 		if (so->so_options & SO_ACCEPTCONN)
   2303 			kn->kn_fop = &solisten_filtops;
   2304 		else
   2305 			kn->kn_fop = &soread_filtops;
   2306 		sb = &so->so_rcv;
   2307 		break;
   2308 	case EVFILT_WRITE:
   2309 		kn->kn_fop = &sowrite_filtops;
   2310 		sb = &so->so_snd;
   2311 		break;
   2312 	default:
   2313 		sounlock(so);
   2314 		return (EINVAL);
   2315 	}
   2316 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   2317 	sb->sb_flags |= SB_KNOTE;
   2318 	sounlock(so);
   2319 	return (0);
   2320 }
   2321 
   2322 static int
   2323 sodopoll(struct socket *so, int events)
   2324 {
   2325 	int revents;
   2326 
   2327 	revents = 0;
   2328 
   2329 	if (events & (POLLIN | POLLRDNORM))
   2330 		if (soreadable(so))
   2331 			revents |= events & (POLLIN | POLLRDNORM);
   2332 
   2333 	if (events & (POLLOUT | POLLWRNORM))
   2334 		if (sowritable(so))
   2335 			revents |= events & (POLLOUT | POLLWRNORM);
   2336 
   2337 	if (events & (POLLPRI | POLLRDBAND))
   2338 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   2339 			revents |= events & (POLLPRI | POLLRDBAND);
   2340 
   2341 	return revents;
   2342 }
   2343 
   2344 int
   2345 sopoll(struct socket *so, int events)
   2346 {
   2347 	int revents = 0;
   2348 
   2349 #ifndef DIAGNOSTIC
   2350 	/*
   2351 	 * Do a quick, unlocked check in expectation that the socket
   2352 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2353 	 * as the solocked() assertions will fail.
   2354 	 */
   2355 	if ((revents = sodopoll(so, events)) != 0)
   2356 		return revents;
   2357 #endif
   2358 
   2359 	solock(so);
   2360 	if ((revents = sodopoll(so, events)) == 0) {
   2361 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2362 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2363 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2364 		}
   2365 
   2366 		if (events & (POLLOUT | POLLWRNORM)) {
   2367 			selrecord(curlwp, &so->so_snd.sb_sel);
   2368 			so->so_snd.sb_flags |= SB_NOTIFY;
   2369 		}
   2370 	}
   2371 	sounlock(so);
   2372 
   2373 	return revents;
   2374 }
   2375 
   2376 
   2377 #include <sys/sysctl.h>
   2378 
   2379 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2380 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
   2381 
   2382 /*
   2383  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2384  * value is not too small.
   2385  * (XXX should we maybe make sure it's not too large as well?)
   2386  */
   2387 static int
   2388 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2389 {
   2390 	int error, new_somaxkva;
   2391 	struct sysctlnode node;
   2392 
   2393 	new_somaxkva = somaxkva;
   2394 	node = *rnode;
   2395 	node.sysctl_data = &new_somaxkva;
   2396 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2397 	if (error || newp == NULL)
   2398 		return (error);
   2399 
   2400 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2401 		return (EINVAL);
   2402 
   2403 	mutex_enter(&so_pendfree_lock);
   2404 	somaxkva = new_somaxkva;
   2405 	cv_broadcast(&socurkva_cv);
   2406 	mutex_exit(&so_pendfree_lock);
   2407 
   2408 	return (error);
   2409 }
   2410 
   2411 /*
   2412  * sysctl helper routine for kern.sbmax. Basically just ensures that
   2413  * any new value is not too small.
   2414  */
   2415 static int
   2416 sysctl_kern_sbmax(SYSCTLFN_ARGS)
   2417 {
   2418 	int error, new_sbmax;
   2419 	struct sysctlnode node;
   2420 
   2421 	new_sbmax = sb_max;
   2422 	node = *rnode;
   2423 	node.sysctl_data = &new_sbmax;
   2424 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2425 	if (error || newp == NULL)
   2426 		return (error);
   2427 
   2428 	KERNEL_LOCK(1, NULL);
   2429 	error = sb_max_set(new_sbmax);
   2430 	KERNEL_UNLOCK_ONE(NULL);
   2431 
   2432 	return (error);
   2433 }
   2434 
   2435 static void
   2436 sysctl_kern_socket_setup(void)
   2437 {
   2438 
   2439 	KASSERT(socket_sysctllog == NULL);
   2440 
   2441 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2442 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2443 		       CTLTYPE_INT, "somaxkva",
   2444 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2445 				    "used for socket buffers"),
   2446 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2447 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2448 
   2449 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2450 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2451 		       CTLTYPE_INT, "sbmax",
   2452 		       SYSCTL_DESCR("Maximum socket buffer size"),
   2453 		       sysctl_kern_sbmax, 0, NULL, 0,
   2454 		       CTL_KERN, KERN_SBMAX, CTL_EOL);
   2455 }
   2456