uipc_socket.c revision 1.237 1 /* $NetBSD: uipc_socket.c,v 1.237 2015/04/05 02:26:39 rtr Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 /*
66 * Socket operation routines.
67 *
68 * These routines are called by the routines in sys_socket.c or from a
69 * system process, and implement the semantics of socket operations by
70 * switching out to the protocol specific routines.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.237 2015/04/05 02:26:39 rtr Exp $");
75
76 #include "opt_compat_netbsd.h"
77 #include "opt_sock_counters.h"
78 #include "opt_sosend_loan.h"
79 #include "opt_mbuftrace.h"
80 #include "opt_somaxkva.h"
81 #include "opt_multiprocessor.h" /* XXX */
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/proc.h>
86 #include <sys/file.h>
87 #include <sys/filedesc.h>
88 #include <sys/kmem.h>
89 #include <sys/mbuf.h>
90 #include <sys/domain.h>
91 #include <sys/kernel.h>
92 #include <sys/protosw.h>
93 #include <sys/socket.h>
94 #include <sys/socketvar.h>
95 #include <sys/signalvar.h>
96 #include <sys/resourcevar.h>
97 #include <sys/uidinfo.h>
98 #include <sys/event.h>
99 #include <sys/poll.h>
100 #include <sys/kauth.h>
101 #include <sys/mutex.h>
102 #include <sys/condvar.h>
103 #include <sys/kthread.h>
104
105 #ifdef COMPAT_50
106 #include <compat/sys/time.h>
107 #include <compat/sys/socket.h>
108 #endif
109
110 #include <uvm/uvm_extern.h>
111 #include <uvm/uvm_loan.h>
112 #include <uvm/uvm_page.h>
113
114 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
115
116 extern const struct fileops socketops;
117
118 extern int somaxconn; /* patchable (XXX sysctl) */
119 int somaxconn = SOMAXCONN;
120 kmutex_t *softnet_lock;
121
122 #ifdef SOSEND_COUNTERS
123 #include <sys/device.h>
124
125 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
126 NULL, "sosend", "loan big");
127 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
128 NULL, "sosend", "copy big");
129 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
130 NULL, "sosend", "copy small");
131 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
132 NULL, "sosend", "kva limit");
133
134 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
135
136 EVCNT_ATTACH_STATIC(sosend_loan_big);
137 EVCNT_ATTACH_STATIC(sosend_copy_big);
138 EVCNT_ATTACH_STATIC(sosend_copy_small);
139 EVCNT_ATTACH_STATIC(sosend_kvalimit);
140 #else
141
142 #define SOSEND_COUNTER_INCR(ev) /* nothing */
143
144 #endif /* SOSEND_COUNTERS */
145
146 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
147 int sock_loan_thresh = -1;
148 #else
149 int sock_loan_thresh = 4096;
150 #endif
151
152 static kmutex_t so_pendfree_lock;
153 static struct mbuf *so_pendfree = NULL;
154
155 #ifndef SOMAXKVA
156 #define SOMAXKVA (16 * 1024 * 1024)
157 #endif
158 int somaxkva = SOMAXKVA;
159 static int socurkva;
160 static kcondvar_t socurkva_cv;
161
162 static kauth_listener_t socket_listener;
163
164 #define SOCK_LOAN_CHUNK 65536
165
166 static void sopendfree_thread(void *);
167 static kcondvar_t pendfree_thread_cv;
168 static lwp_t *sopendfree_lwp;
169
170 static void sysctl_kern_socket_setup(void);
171 static struct sysctllog *socket_sysctllog;
172
173 static vsize_t
174 sokvareserve(struct socket *so, vsize_t len)
175 {
176 int error;
177
178 mutex_enter(&so_pendfree_lock);
179 while (socurkva + len > somaxkva) {
180 SOSEND_COUNTER_INCR(&sosend_kvalimit);
181 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
182 if (error) {
183 len = 0;
184 break;
185 }
186 }
187 socurkva += len;
188 mutex_exit(&so_pendfree_lock);
189 return len;
190 }
191
192 static void
193 sokvaunreserve(vsize_t len)
194 {
195
196 mutex_enter(&so_pendfree_lock);
197 socurkva -= len;
198 cv_broadcast(&socurkva_cv);
199 mutex_exit(&so_pendfree_lock);
200 }
201
202 /*
203 * sokvaalloc: allocate kva for loan.
204 */
205
206 vaddr_t
207 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
208 {
209 vaddr_t lva;
210
211 /*
212 * reserve kva.
213 */
214
215 if (sokvareserve(so, len) == 0)
216 return 0;
217
218 /*
219 * allocate kva.
220 */
221
222 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
223 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
224 if (lva == 0) {
225 sokvaunreserve(len);
226 return (0);
227 }
228
229 return lva;
230 }
231
232 /*
233 * sokvafree: free kva for loan.
234 */
235
236 void
237 sokvafree(vaddr_t sva, vsize_t len)
238 {
239
240 /*
241 * free kva.
242 */
243
244 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
245
246 /*
247 * unreserve kva.
248 */
249
250 sokvaunreserve(len);
251 }
252
253 static void
254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
255 {
256 vaddr_t sva, eva;
257 vsize_t len;
258 int npgs;
259
260 KASSERT(pgs != NULL);
261
262 eva = round_page((vaddr_t) buf + size);
263 sva = trunc_page((vaddr_t) buf);
264 len = eva - sva;
265 npgs = len >> PAGE_SHIFT;
266
267 pmap_kremove(sva, len);
268 pmap_update(pmap_kernel());
269 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
270 sokvafree(sva, len);
271 }
272
273 /*
274 * sopendfree_thread: free mbufs on "pendfree" list.
275 * unlock and relock so_pendfree_lock when freeing mbufs.
276 */
277
278 static void
279 sopendfree_thread(void *v)
280 {
281 struct mbuf *m, *next;
282 size_t rv;
283
284 mutex_enter(&so_pendfree_lock);
285
286 for (;;) {
287 rv = 0;
288 while (so_pendfree != NULL) {
289 m = so_pendfree;
290 so_pendfree = NULL;
291 mutex_exit(&so_pendfree_lock);
292
293 for (; m != NULL; m = next) {
294 next = m->m_next;
295 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
296 KASSERT(m->m_ext.ext_refcnt == 0);
297
298 rv += m->m_ext.ext_size;
299 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
300 m->m_ext.ext_size);
301 pool_cache_put(mb_cache, m);
302 }
303
304 mutex_enter(&so_pendfree_lock);
305 }
306 if (rv)
307 cv_broadcast(&socurkva_cv);
308 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
309 }
310 panic("sopendfree_thread");
311 /* NOTREACHED */
312 }
313
314 void
315 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
316 {
317
318 KASSERT(m != NULL);
319
320 /*
321 * postpone freeing mbuf.
322 *
323 * we can't do it in interrupt context
324 * because we need to put kva back to kernel_map.
325 */
326
327 mutex_enter(&so_pendfree_lock);
328 m->m_next = so_pendfree;
329 so_pendfree = m;
330 cv_signal(&pendfree_thread_cv);
331 mutex_exit(&so_pendfree_lock);
332 }
333
334 static long
335 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
336 {
337 struct iovec *iov = uio->uio_iov;
338 vaddr_t sva, eva;
339 vsize_t len;
340 vaddr_t lva;
341 int npgs, error;
342 vaddr_t va;
343 int i;
344
345 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
346 return (0);
347
348 if (iov->iov_len < (size_t) space)
349 space = iov->iov_len;
350 if (space > SOCK_LOAN_CHUNK)
351 space = SOCK_LOAN_CHUNK;
352
353 eva = round_page((vaddr_t) iov->iov_base + space);
354 sva = trunc_page((vaddr_t) iov->iov_base);
355 len = eva - sva;
356 npgs = len >> PAGE_SHIFT;
357
358 KASSERT(npgs <= M_EXT_MAXPAGES);
359
360 lva = sokvaalloc(sva, len, so);
361 if (lva == 0)
362 return 0;
363
364 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
365 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
366 if (error) {
367 sokvafree(lva, len);
368 return (0);
369 }
370
371 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
372 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
373 VM_PROT_READ, 0);
374 pmap_update(pmap_kernel());
375
376 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
377
378 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
379 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
380
381 uio->uio_resid -= space;
382 /* uio_offset not updated, not set/used for write(2) */
383 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
384 uio->uio_iov->iov_len -= space;
385 if (uio->uio_iov->iov_len == 0) {
386 uio->uio_iov++;
387 uio->uio_iovcnt--;
388 }
389
390 return (space);
391 }
392
393 struct mbuf *
394 getsombuf(struct socket *so, int type)
395 {
396 struct mbuf *m;
397
398 m = m_get(M_WAIT, type);
399 MCLAIM(m, so->so_mowner);
400 return m;
401 }
402
403 static int
404 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
405 void *arg0, void *arg1, void *arg2, void *arg3)
406 {
407 int result;
408 enum kauth_network_req req;
409
410 result = KAUTH_RESULT_DEFER;
411 req = (enum kauth_network_req)arg0;
412
413 if ((action != KAUTH_NETWORK_SOCKET) &&
414 (action != KAUTH_NETWORK_BIND))
415 return result;
416
417 switch (req) {
418 case KAUTH_REQ_NETWORK_BIND_PORT:
419 result = KAUTH_RESULT_ALLOW;
420 break;
421
422 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
423 /* Normal users can only drop their own connections. */
424 struct socket *so = (struct socket *)arg1;
425
426 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
427 result = KAUTH_RESULT_ALLOW;
428
429 break;
430 }
431
432 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
433 /* We allow "raw" routing/bluetooth sockets to anyone. */
434 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
435 || (u_long)arg1 == PF_BLUETOOTH) {
436 result = KAUTH_RESULT_ALLOW;
437 } else {
438 /* Privileged, let secmodel handle this. */
439 if ((u_long)arg2 == SOCK_RAW)
440 break;
441 }
442
443 result = KAUTH_RESULT_ALLOW;
444
445 break;
446
447 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
448 result = KAUTH_RESULT_ALLOW;
449
450 break;
451
452 default:
453 break;
454 }
455
456 return result;
457 }
458
459 void
460 soinit(void)
461 {
462
463 sysctl_kern_socket_setup();
464
465 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
466 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
467 cv_init(&socurkva_cv, "sokva");
468 cv_init(&pendfree_thread_cv, "sopendfr");
469 soinit2();
470
471 /* Set the initial adjusted socket buffer size. */
472 if (sb_max_set(sb_max))
473 panic("bad initial sb_max value: %lu", sb_max);
474
475 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
476 socket_listener_cb, NULL);
477 }
478
479 void
480 soinit1(void)
481 {
482 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
483 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
484 if (error)
485 panic("soinit1 %d", error);
486 }
487
488 /*
489 * socreate: create a new socket of the specified type and the protocol.
490 *
491 * => Caller may specify another socket for lock sharing (must not be held).
492 * => Returns the new socket without lock held.
493 */
494 int
495 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
496 struct socket *lockso)
497 {
498 const struct protosw *prp;
499 struct socket *so;
500 uid_t uid;
501 int error;
502 kmutex_t *lock;
503
504 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
505 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
506 KAUTH_ARG(proto));
507 if (error != 0)
508 return error;
509
510 if (proto)
511 prp = pffindproto(dom, proto, type);
512 else
513 prp = pffindtype(dom, type);
514 if (prp == NULL) {
515 /* no support for domain */
516 if (pffinddomain(dom) == 0)
517 return EAFNOSUPPORT;
518 /* no support for socket type */
519 if (proto == 0 && type != 0)
520 return EPROTOTYPE;
521 return EPROTONOSUPPORT;
522 }
523 if (prp->pr_usrreqs == NULL)
524 return EPROTONOSUPPORT;
525 if (prp->pr_type != type)
526 return EPROTOTYPE;
527
528 so = soget(true);
529 so->so_type = type;
530 so->so_proto = prp;
531 so->so_send = sosend;
532 so->so_receive = soreceive;
533 #ifdef MBUFTRACE
534 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
535 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
536 so->so_mowner = &prp->pr_domain->dom_mowner;
537 #endif
538 uid = kauth_cred_geteuid(l->l_cred);
539 so->so_uidinfo = uid_find(uid);
540 so->so_cpid = l->l_proc->p_pid;
541
542 /*
543 * Lock assigned and taken during PCB attach, unless we share
544 * the lock with another socket, e.g. socketpair(2) case.
545 */
546 if (lockso) {
547 lock = lockso->so_lock;
548 so->so_lock = lock;
549 mutex_obj_hold(lock);
550 mutex_enter(lock);
551 }
552
553 /* Attach the PCB (returns with the socket lock held). */
554 error = (*prp->pr_usrreqs->pr_attach)(so, proto);
555 KASSERT(solocked(so));
556
557 if (error) {
558 KASSERT(so->so_pcb == NULL);
559 so->so_state |= SS_NOFDREF;
560 sofree(so);
561 return error;
562 }
563 so->so_cred = kauth_cred_dup(l->l_cred);
564 sounlock(so);
565
566 *aso = so;
567 return 0;
568 }
569
570 /*
571 * fsocreate: create a socket and a file descriptor associated with it.
572 *
573 * => On success, write file descriptor to fdout and return zero.
574 * => On failure, return non-zero; *fdout will be undefined.
575 */
576 int
577 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
578 {
579 lwp_t *l = curlwp;
580 int error, fd, flags;
581 struct socket *so;
582 struct file *fp;
583
584 if ((error = fd_allocfile(&fp, &fd)) != 0) {
585 return error;
586 }
587 flags = type & SOCK_FLAGS_MASK;
588 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
589 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
590 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
591 fp->f_type = DTYPE_SOCKET;
592 fp->f_ops = &socketops;
593
594 type &= ~SOCK_FLAGS_MASK;
595 error = socreate(domain, &so, type, proto, l, NULL);
596 if (error) {
597 fd_abort(curproc, fp, fd);
598 return error;
599 }
600 if (flags & SOCK_NONBLOCK) {
601 so->so_state |= SS_NBIO;
602 }
603 fp->f_socket = so;
604 fd_affix(curproc, fp, fd);
605
606 if (sop != NULL) {
607 *sop = so;
608 }
609 *fdout = fd;
610 return error;
611 }
612
613 int
614 sofamily(const struct socket *so)
615 {
616 const struct protosw *pr;
617 const struct domain *dom;
618
619 if ((pr = so->so_proto) == NULL)
620 return AF_UNSPEC;
621 if ((dom = pr->pr_domain) == NULL)
622 return AF_UNSPEC;
623 return dom->dom_family;
624 }
625
626 int
627 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
628 {
629 int error;
630
631 solock(so);
632 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
633 sounlock(so);
634 return EINVAL;
635 }
636 error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
637 sounlock(so);
638 return error;
639 }
640
641 int
642 solisten(struct socket *so, int backlog, struct lwp *l)
643 {
644 int error;
645
646 solock(so);
647 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
648 SS_ISDISCONNECTING)) != 0) {
649 sounlock(so);
650 return EINVAL;
651 }
652 error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
653 if (error != 0) {
654 sounlock(so);
655 return error;
656 }
657 if (TAILQ_EMPTY(&so->so_q))
658 so->so_options |= SO_ACCEPTCONN;
659 if (backlog < 0)
660 backlog = 0;
661 so->so_qlimit = min(backlog, somaxconn);
662 sounlock(so);
663 return 0;
664 }
665
666 void
667 sofree(struct socket *so)
668 {
669 u_int refs;
670
671 KASSERT(solocked(so));
672
673 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
674 sounlock(so);
675 return;
676 }
677 if (so->so_head) {
678 /*
679 * We must not decommission a socket that's on the accept(2)
680 * queue. If we do, then accept(2) may hang after select(2)
681 * indicated that the listening socket was ready.
682 */
683 if (!soqremque(so, 0)) {
684 sounlock(so);
685 return;
686 }
687 }
688 if (so->so_rcv.sb_hiwat)
689 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
690 RLIM_INFINITY);
691 if (so->so_snd.sb_hiwat)
692 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
693 RLIM_INFINITY);
694 sbrelease(&so->so_snd, so);
695 KASSERT(!cv_has_waiters(&so->so_cv));
696 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
697 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
698 sorflush(so);
699 refs = so->so_aborting; /* XXX */
700 /* Remove acccept filter if one is present. */
701 if (so->so_accf != NULL)
702 (void)accept_filt_clear(so);
703 sounlock(so);
704 if (refs == 0) /* XXX */
705 soput(so);
706 }
707
708 /*
709 * soclose: close a socket on last file table reference removal.
710 * Initiate disconnect if connected. Free socket when disconnect complete.
711 */
712 int
713 soclose(struct socket *so)
714 {
715 struct socket *so2;
716 int error = 0;
717
718 solock(so);
719 if (so->so_options & SO_ACCEPTCONN) {
720 for (;;) {
721 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
722 KASSERT(solocked2(so, so2));
723 (void) soqremque(so2, 0);
724 /* soabort drops the lock. */
725 (void) soabort(so2);
726 solock(so);
727 continue;
728 }
729 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
730 KASSERT(solocked2(so, so2));
731 (void) soqremque(so2, 1);
732 /* soabort drops the lock. */
733 (void) soabort(so2);
734 solock(so);
735 continue;
736 }
737 break;
738 }
739 }
740 if (so->so_pcb == NULL)
741 goto discard;
742 if (so->so_state & SS_ISCONNECTED) {
743 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
744 error = sodisconnect(so);
745 if (error)
746 goto drop;
747 }
748 if (so->so_options & SO_LINGER) {
749 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
750 (SS_ISDISCONNECTING|SS_NBIO))
751 goto drop;
752 while (so->so_state & SS_ISCONNECTED) {
753 error = sowait(so, true, so->so_linger * hz);
754 if (error)
755 break;
756 }
757 }
758 }
759 drop:
760 if (so->so_pcb) {
761 KASSERT(solocked(so));
762 (*so->so_proto->pr_usrreqs->pr_detach)(so);
763 }
764 discard:
765 KASSERT((so->so_state & SS_NOFDREF) == 0);
766 kauth_cred_free(so->so_cred);
767 so->so_state |= SS_NOFDREF;
768 sofree(so);
769 return error;
770 }
771
772 /*
773 * Must be called with the socket locked.. Will return with it unlocked.
774 */
775 int
776 soabort(struct socket *so)
777 {
778 u_int refs;
779 int error;
780
781 KASSERT(solocked(so));
782 KASSERT(so->so_head == NULL);
783
784 so->so_aborting++; /* XXX */
785 error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
786 refs = --so->so_aborting; /* XXX */
787 if (error || (refs == 0)) {
788 sofree(so);
789 } else {
790 sounlock(so);
791 }
792 return error;
793 }
794
795 int
796 soaccept(struct socket *so, struct mbuf *nam)
797 {
798 int error;
799
800 KASSERT(solocked(so));
801 KASSERT((so->so_state & SS_NOFDREF) != 0);
802
803 so->so_state &= ~SS_NOFDREF;
804 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
805 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
806 error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
807 else
808 error = ECONNABORTED;
809
810 return error;
811 }
812
813 int
814 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l)
815 {
816 int error;
817
818 KASSERT(solocked(so));
819
820 if (so->so_options & SO_ACCEPTCONN)
821 return EOPNOTSUPP;
822 /*
823 * If protocol is connection-based, can only connect once.
824 * Otherwise, if connected, try to disconnect first.
825 * This allows user to disconnect by connecting to, e.g.,
826 * a null address.
827 */
828 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
829 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
830 (error = sodisconnect(so))))
831 error = EISCONN;
832 else
833 error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
834
835 return error;
836 }
837
838 int
839 soconnect2(struct socket *so1, struct socket *so2)
840 {
841 KASSERT(solocked2(so1, so2));
842
843 return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
844 }
845
846 int
847 sodisconnect(struct socket *so)
848 {
849 int error;
850
851 KASSERT(solocked(so));
852
853 if ((so->so_state & SS_ISCONNECTED) == 0) {
854 error = ENOTCONN;
855 } else if (so->so_state & SS_ISDISCONNECTING) {
856 error = EALREADY;
857 } else {
858 error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
859 }
860 return (error);
861 }
862
863 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
864 /*
865 * Send on a socket.
866 * If send must go all at once and message is larger than
867 * send buffering, then hard error.
868 * Lock against other senders.
869 * If must go all at once and not enough room now, then
870 * inform user that this would block and do nothing.
871 * Otherwise, if nonblocking, send as much as possible.
872 * The data to be sent is described by "uio" if nonzero,
873 * otherwise by the mbuf chain "top" (which must be null
874 * if uio is not). Data provided in mbuf chain must be small
875 * enough to send all at once.
876 *
877 * Returns nonzero on error, timeout or signal; callers
878 * must check for short counts if EINTR/ERESTART are returned.
879 * Data and control buffers are freed on return.
880 */
881 int
882 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
883 struct mbuf *control, int flags, struct lwp *l)
884 {
885 struct mbuf **mp, *m;
886 long space, len, resid, clen, mlen;
887 int error, s, dontroute, atomic;
888 short wakeup_state = 0;
889
890 clen = 0;
891
892 /*
893 * solock() provides atomicity of access. splsoftnet() prevents
894 * protocol processing soft interrupts from interrupting us and
895 * blocking (expensive).
896 */
897 s = splsoftnet();
898 solock(so);
899 atomic = sosendallatonce(so) || top;
900 if (uio)
901 resid = uio->uio_resid;
902 else
903 resid = top->m_pkthdr.len;
904 /*
905 * In theory resid should be unsigned.
906 * However, space must be signed, as it might be less than 0
907 * if we over-committed, and we must use a signed comparison
908 * of space and resid. On the other hand, a negative resid
909 * causes us to loop sending 0-length segments to the protocol.
910 */
911 if (resid < 0) {
912 error = EINVAL;
913 goto out;
914 }
915 dontroute =
916 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
917 (so->so_proto->pr_flags & PR_ATOMIC);
918 l->l_ru.ru_msgsnd++;
919 if (control)
920 clen = control->m_len;
921 restart:
922 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
923 goto out;
924 do {
925 if (so->so_state & SS_CANTSENDMORE) {
926 error = EPIPE;
927 goto release;
928 }
929 if (so->so_error) {
930 error = so->so_error;
931 so->so_error = 0;
932 goto release;
933 }
934 if ((so->so_state & SS_ISCONNECTED) == 0) {
935 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
936 if (resid || clen == 0) {
937 error = ENOTCONN;
938 goto release;
939 }
940 } else if (addr == 0) {
941 error = EDESTADDRREQ;
942 goto release;
943 }
944 }
945 space = sbspace(&so->so_snd);
946 if (flags & MSG_OOB)
947 space += 1024;
948 if ((atomic && resid > so->so_snd.sb_hiwat) ||
949 clen > so->so_snd.sb_hiwat) {
950 error = EMSGSIZE;
951 goto release;
952 }
953 if (space < resid + clen &&
954 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
955 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
956 error = EWOULDBLOCK;
957 goto release;
958 }
959 sbunlock(&so->so_snd);
960 if (wakeup_state & SS_RESTARTSYS) {
961 error = ERESTART;
962 goto out;
963 }
964 error = sbwait(&so->so_snd);
965 if (error)
966 goto out;
967 wakeup_state = so->so_state;
968 goto restart;
969 }
970 wakeup_state = 0;
971 mp = ⊤
972 space -= clen;
973 do {
974 if (uio == NULL) {
975 /*
976 * Data is prepackaged in "top".
977 */
978 resid = 0;
979 if (flags & MSG_EOR)
980 top->m_flags |= M_EOR;
981 } else do {
982 sounlock(so);
983 splx(s);
984 if (top == NULL) {
985 m = m_gethdr(M_WAIT, MT_DATA);
986 mlen = MHLEN;
987 m->m_pkthdr.len = 0;
988 m->m_pkthdr.rcvif = NULL;
989 } else {
990 m = m_get(M_WAIT, MT_DATA);
991 mlen = MLEN;
992 }
993 MCLAIM(m, so->so_snd.sb_mowner);
994 if (sock_loan_thresh >= 0 &&
995 uio->uio_iov->iov_len >= sock_loan_thresh &&
996 space >= sock_loan_thresh &&
997 (len = sosend_loan(so, uio, m,
998 space)) != 0) {
999 SOSEND_COUNTER_INCR(&sosend_loan_big);
1000 space -= len;
1001 goto have_data;
1002 }
1003 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1004 SOSEND_COUNTER_INCR(&sosend_copy_big);
1005 m_clget(m, M_DONTWAIT);
1006 if ((m->m_flags & M_EXT) == 0)
1007 goto nopages;
1008 mlen = MCLBYTES;
1009 if (atomic && top == 0) {
1010 len = lmin(MCLBYTES - max_hdr,
1011 resid);
1012 m->m_data += max_hdr;
1013 } else
1014 len = lmin(MCLBYTES, resid);
1015 space -= len;
1016 } else {
1017 nopages:
1018 SOSEND_COUNTER_INCR(&sosend_copy_small);
1019 len = lmin(lmin(mlen, resid), space);
1020 space -= len;
1021 /*
1022 * For datagram protocols, leave room
1023 * for protocol headers in first mbuf.
1024 */
1025 if (atomic && top == 0 && len < mlen)
1026 MH_ALIGN(m, len);
1027 }
1028 error = uiomove(mtod(m, void *), (int)len, uio);
1029 have_data:
1030 resid = uio->uio_resid;
1031 m->m_len = len;
1032 *mp = m;
1033 top->m_pkthdr.len += len;
1034 s = splsoftnet();
1035 solock(so);
1036 if (error != 0)
1037 goto release;
1038 mp = &m->m_next;
1039 if (resid <= 0) {
1040 if (flags & MSG_EOR)
1041 top->m_flags |= M_EOR;
1042 break;
1043 }
1044 } while (space > 0 && atomic);
1045
1046 if (so->so_state & SS_CANTSENDMORE) {
1047 error = EPIPE;
1048 goto release;
1049 }
1050 if (dontroute)
1051 so->so_options |= SO_DONTROUTE;
1052 if (resid > 0)
1053 so->so_state |= SS_MORETOCOME;
1054 if (flags & MSG_OOB)
1055 error = (*so->so_proto->pr_usrreqs->pr_sendoob)(so,
1056 top, control);
1057 else
1058 error = (*so->so_proto->pr_usrreqs->pr_send)(so,
1059 top, addr, control, l);
1060 if (dontroute)
1061 so->so_options &= ~SO_DONTROUTE;
1062 if (resid > 0)
1063 so->so_state &= ~SS_MORETOCOME;
1064 clen = 0;
1065 control = NULL;
1066 top = NULL;
1067 mp = ⊤
1068 if (error != 0)
1069 goto release;
1070 } while (resid && space > 0);
1071 } while (resid);
1072
1073 release:
1074 sbunlock(&so->so_snd);
1075 out:
1076 sounlock(so);
1077 splx(s);
1078 if (top)
1079 m_freem(top);
1080 if (control)
1081 m_freem(control);
1082 return (error);
1083 }
1084
1085 /*
1086 * Following replacement or removal of the first mbuf on the first
1087 * mbuf chain of a socket buffer, push necessary state changes back
1088 * into the socket buffer so that other consumers see the values
1089 * consistently. 'nextrecord' is the callers locally stored value of
1090 * the original value of sb->sb_mb->m_nextpkt which must be restored
1091 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1092 */
1093 static void
1094 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1095 {
1096
1097 KASSERT(solocked(sb->sb_so));
1098
1099 /*
1100 * First, update for the new value of nextrecord. If necessary,
1101 * make it the first record.
1102 */
1103 if (sb->sb_mb != NULL)
1104 sb->sb_mb->m_nextpkt = nextrecord;
1105 else
1106 sb->sb_mb = nextrecord;
1107
1108 /*
1109 * Now update any dependent socket buffer fields to reflect
1110 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1111 * the addition of a second clause that takes care of the
1112 * case where sb_mb has been updated, but remains the last
1113 * record.
1114 */
1115 if (sb->sb_mb == NULL) {
1116 sb->sb_mbtail = NULL;
1117 sb->sb_lastrecord = NULL;
1118 } else if (sb->sb_mb->m_nextpkt == NULL)
1119 sb->sb_lastrecord = sb->sb_mb;
1120 }
1121
1122 /*
1123 * Implement receive operations on a socket.
1124 * We depend on the way that records are added to the sockbuf
1125 * by sbappend*. In particular, each record (mbufs linked through m_next)
1126 * must begin with an address if the protocol so specifies,
1127 * followed by an optional mbuf or mbufs containing ancillary data,
1128 * and then zero or more mbufs of data.
1129 * In order to avoid blocking network interrupts for the entire time here,
1130 * we splx() while doing the actual copy to user space.
1131 * Although the sockbuf is locked, new data may still be appended,
1132 * and thus we must maintain consistency of the sockbuf during that time.
1133 *
1134 * The caller may receive the data as a single mbuf chain by supplying
1135 * an mbuf **mp0 for use in returning the chain. The uio is then used
1136 * only for the count in uio_resid.
1137 */
1138 int
1139 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1140 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1141 {
1142 struct lwp *l = curlwp;
1143 struct mbuf *m, **mp, *mt;
1144 size_t len, offset, moff, orig_resid;
1145 int atomic, flags, error, s, type;
1146 const struct protosw *pr;
1147 struct mbuf *nextrecord;
1148 int mbuf_removed = 0;
1149 const struct domain *dom;
1150 short wakeup_state = 0;
1151
1152 pr = so->so_proto;
1153 atomic = pr->pr_flags & PR_ATOMIC;
1154 dom = pr->pr_domain;
1155 mp = mp0;
1156 type = 0;
1157 orig_resid = uio->uio_resid;
1158
1159 if (paddr != NULL)
1160 *paddr = NULL;
1161 if (controlp != NULL)
1162 *controlp = NULL;
1163 if (flagsp != NULL)
1164 flags = *flagsp &~ MSG_EOR;
1165 else
1166 flags = 0;
1167
1168 if (flags & MSG_OOB) {
1169 m = m_get(M_WAIT, MT_DATA);
1170 solock(so);
1171 error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
1172 sounlock(so);
1173 if (error)
1174 goto bad;
1175 do {
1176 error = uiomove(mtod(m, void *),
1177 MIN(uio->uio_resid, m->m_len), uio);
1178 m = m_free(m);
1179 } while (uio->uio_resid > 0 && error == 0 && m);
1180 bad:
1181 if (m != NULL)
1182 m_freem(m);
1183 return error;
1184 }
1185 if (mp != NULL)
1186 *mp = NULL;
1187
1188 /*
1189 * solock() provides atomicity of access. splsoftnet() prevents
1190 * protocol processing soft interrupts from interrupting us and
1191 * blocking (expensive).
1192 */
1193 s = splsoftnet();
1194 solock(so);
1195 restart:
1196 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1197 sounlock(so);
1198 splx(s);
1199 return error;
1200 }
1201
1202 m = so->so_rcv.sb_mb;
1203 /*
1204 * If we have less data than requested, block awaiting more
1205 * (subject to any timeout) if:
1206 * 1. the current count is less than the low water mark,
1207 * 2. MSG_WAITALL is set, and it is possible to do the entire
1208 * receive operation at once if we block (resid <= hiwat), or
1209 * 3. MSG_DONTWAIT is not set.
1210 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1211 * we have to do the receive in sections, and thus risk returning
1212 * a short count if a timeout or signal occurs after we start.
1213 */
1214 if (m == NULL ||
1215 ((flags & MSG_DONTWAIT) == 0 &&
1216 so->so_rcv.sb_cc < uio->uio_resid &&
1217 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1218 ((flags & MSG_WAITALL) &&
1219 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1220 m->m_nextpkt == NULL && !atomic)) {
1221 #ifdef DIAGNOSTIC
1222 if (m == NULL && so->so_rcv.sb_cc)
1223 panic("receive 1");
1224 #endif
1225 if (so->so_error) {
1226 if (m != NULL)
1227 goto dontblock;
1228 error = so->so_error;
1229 if ((flags & MSG_PEEK) == 0)
1230 so->so_error = 0;
1231 goto release;
1232 }
1233 if (so->so_state & SS_CANTRCVMORE) {
1234 if (m != NULL)
1235 goto dontblock;
1236 else
1237 goto release;
1238 }
1239 for (; m != NULL; m = m->m_next)
1240 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1241 m = so->so_rcv.sb_mb;
1242 goto dontblock;
1243 }
1244 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1245 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1246 error = ENOTCONN;
1247 goto release;
1248 }
1249 if (uio->uio_resid == 0)
1250 goto release;
1251 if ((so->so_state & SS_NBIO) ||
1252 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1253 error = EWOULDBLOCK;
1254 goto release;
1255 }
1256 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1257 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1258 sbunlock(&so->so_rcv);
1259 if (wakeup_state & SS_RESTARTSYS)
1260 error = ERESTART;
1261 else
1262 error = sbwait(&so->so_rcv);
1263 if (error != 0) {
1264 sounlock(so);
1265 splx(s);
1266 return error;
1267 }
1268 wakeup_state = so->so_state;
1269 goto restart;
1270 }
1271 dontblock:
1272 /*
1273 * On entry here, m points to the first record of the socket buffer.
1274 * From this point onward, we maintain 'nextrecord' as a cache of the
1275 * pointer to the next record in the socket buffer. We must keep the
1276 * various socket buffer pointers and local stack versions of the
1277 * pointers in sync, pushing out modifications before dropping the
1278 * socket lock, and re-reading them when picking it up.
1279 *
1280 * Otherwise, we will race with the network stack appending new data
1281 * or records onto the socket buffer by using inconsistent/stale
1282 * versions of the field, possibly resulting in socket buffer
1283 * corruption.
1284 *
1285 * By holding the high-level sblock(), we prevent simultaneous
1286 * readers from pulling off the front of the socket buffer.
1287 */
1288 if (l != NULL)
1289 l->l_ru.ru_msgrcv++;
1290 KASSERT(m == so->so_rcv.sb_mb);
1291 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1292 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1293 nextrecord = m->m_nextpkt;
1294 if (pr->pr_flags & PR_ADDR) {
1295 #ifdef DIAGNOSTIC
1296 if (m->m_type != MT_SONAME)
1297 panic("receive 1a");
1298 #endif
1299 orig_resid = 0;
1300 if (flags & MSG_PEEK) {
1301 if (paddr)
1302 *paddr = m_copy(m, 0, m->m_len);
1303 m = m->m_next;
1304 } else {
1305 sbfree(&so->so_rcv, m);
1306 mbuf_removed = 1;
1307 if (paddr != NULL) {
1308 *paddr = m;
1309 so->so_rcv.sb_mb = m->m_next;
1310 m->m_next = NULL;
1311 m = so->so_rcv.sb_mb;
1312 } else {
1313 MFREE(m, so->so_rcv.sb_mb);
1314 m = so->so_rcv.sb_mb;
1315 }
1316 sbsync(&so->so_rcv, nextrecord);
1317 }
1318 }
1319
1320 /*
1321 * Process one or more MT_CONTROL mbufs present before any data mbufs
1322 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1323 * just copy the data; if !MSG_PEEK, we call into the protocol to
1324 * perform externalization (or freeing if controlp == NULL).
1325 */
1326 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1327 struct mbuf *cm = NULL, *cmn;
1328 struct mbuf **cme = &cm;
1329
1330 do {
1331 if (flags & MSG_PEEK) {
1332 if (controlp != NULL) {
1333 *controlp = m_copy(m, 0, m->m_len);
1334 controlp = &(*controlp)->m_next;
1335 }
1336 m = m->m_next;
1337 } else {
1338 sbfree(&so->so_rcv, m);
1339 so->so_rcv.sb_mb = m->m_next;
1340 m->m_next = NULL;
1341 *cme = m;
1342 cme = &(*cme)->m_next;
1343 m = so->so_rcv.sb_mb;
1344 }
1345 } while (m != NULL && m->m_type == MT_CONTROL);
1346 if ((flags & MSG_PEEK) == 0)
1347 sbsync(&so->so_rcv, nextrecord);
1348 for (; cm != NULL; cm = cmn) {
1349 cmn = cm->m_next;
1350 cm->m_next = NULL;
1351 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1352 if (controlp != NULL) {
1353 if (dom->dom_externalize != NULL &&
1354 type == SCM_RIGHTS) {
1355 sounlock(so);
1356 splx(s);
1357 error = (*dom->dom_externalize)(cm, l,
1358 (flags & MSG_CMSG_CLOEXEC) ?
1359 O_CLOEXEC : 0);
1360 s = splsoftnet();
1361 solock(so);
1362 }
1363 *controlp = cm;
1364 while (*controlp != NULL)
1365 controlp = &(*controlp)->m_next;
1366 } else {
1367 /*
1368 * Dispose of any SCM_RIGHTS message that went
1369 * through the read path rather than recv.
1370 */
1371 if (dom->dom_dispose != NULL &&
1372 type == SCM_RIGHTS) {
1373 sounlock(so);
1374 (*dom->dom_dispose)(cm);
1375 solock(so);
1376 }
1377 m_freem(cm);
1378 }
1379 }
1380 if (m != NULL)
1381 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1382 else
1383 nextrecord = so->so_rcv.sb_mb;
1384 orig_resid = 0;
1385 }
1386
1387 /* If m is non-NULL, we have some data to read. */
1388 if (__predict_true(m != NULL)) {
1389 type = m->m_type;
1390 if (type == MT_OOBDATA)
1391 flags |= MSG_OOB;
1392 }
1393 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1394 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1395
1396 moff = 0;
1397 offset = 0;
1398 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1399 if (m->m_type == MT_OOBDATA) {
1400 if (type != MT_OOBDATA)
1401 break;
1402 } else if (type == MT_OOBDATA)
1403 break;
1404 #ifdef DIAGNOSTIC
1405 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1406 panic("receive 3");
1407 #endif
1408 so->so_state &= ~SS_RCVATMARK;
1409 wakeup_state = 0;
1410 len = uio->uio_resid;
1411 if (so->so_oobmark && len > so->so_oobmark - offset)
1412 len = so->so_oobmark - offset;
1413 if (len > m->m_len - moff)
1414 len = m->m_len - moff;
1415 /*
1416 * If mp is set, just pass back the mbufs.
1417 * Otherwise copy them out via the uio, then free.
1418 * Sockbuf must be consistent here (points to current mbuf,
1419 * it points to next record) when we drop priority;
1420 * we must note any additions to the sockbuf when we
1421 * block interrupts again.
1422 */
1423 if (mp == NULL) {
1424 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1425 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1426 sounlock(so);
1427 splx(s);
1428 error = uiomove(mtod(m, char *) + moff, len, uio);
1429 s = splsoftnet();
1430 solock(so);
1431 if (error != 0) {
1432 /*
1433 * If any part of the record has been removed
1434 * (such as the MT_SONAME mbuf, which will
1435 * happen when PR_ADDR, and thus also
1436 * PR_ATOMIC, is set), then drop the entire
1437 * record to maintain the atomicity of the
1438 * receive operation.
1439 *
1440 * This avoids a later panic("receive 1a")
1441 * when compiled with DIAGNOSTIC.
1442 */
1443 if (m && mbuf_removed && atomic)
1444 (void) sbdroprecord(&so->so_rcv);
1445
1446 goto release;
1447 }
1448 } else
1449 uio->uio_resid -= len;
1450 if (len == m->m_len - moff) {
1451 if (m->m_flags & M_EOR)
1452 flags |= MSG_EOR;
1453 if (flags & MSG_PEEK) {
1454 m = m->m_next;
1455 moff = 0;
1456 } else {
1457 nextrecord = m->m_nextpkt;
1458 sbfree(&so->so_rcv, m);
1459 if (mp) {
1460 *mp = m;
1461 mp = &m->m_next;
1462 so->so_rcv.sb_mb = m = m->m_next;
1463 *mp = NULL;
1464 } else {
1465 MFREE(m, so->so_rcv.sb_mb);
1466 m = so->so_rcv.sb_mb;
1467 }
1468 /*
1469 * If m != NULL, we also know that
1470 * so->so_rcv.sb_mb != NULL.
1471 */
1472 KASSERT(so->so_rcv.sb_mb == m);
1473 if (m) {
1474 m->m_nextpkt = nextrecord;
1475 if (nextrecord == NULL)
1476 so->so_rcv.sb_lastrecord = m;
1477 } else {
1478 so->so_rcv.sb_mb = nextrecord;
1479 SB_EMPTY_FIXUP(&so->so_rcv);
1480 }
1481 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1482 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1483 }
1484 } else if (flags & MSG_PEEK)
1485 moff += len;
1486 else {
1487 if (mp != NULL) {
1488 mt = m_copym(m, 0, len, M_NOWAIT);
1489 if (__predict_false(mt == NULL)) {
1490 sounlock(so);
1491 mt = m_copym(m, 0, len, M_WAIT);
1492 solock(so);
1493 }
1494 *mp = mt;
1495 }
1496 m->m_data += len;
1497 m->m_len -= len;
1498 so->so_rcv.sb_cc -= len;
1499 }
1500 if (so->so_oobmark) {
1501 if ((flags & MSG_PEEK) == 0) {
1502 so->so_oobmark -= len;
1503 if (so->so_oobmark == 0) {
1504 so->so_state |= SS_RCVATMARK;
1505 break;
1506 }
1507 } else {
1508 offset += len;
1509 if (offset == so->so_oobmark)
1510 break;
1511 }
1512 }
1513 if (flags & MSG_EOR)
1514 break;
1515 /*
1516 * If the MSG_WAITALL flag is set (for non-atomic socket),
1517 * we must not quit until "uio->uio_resid == 0" or an error
1518 * termination. If a signal/timeout occurs, return
1519 * with a short count but without error.
1520 * Keep sockbuf locked against other readers.
1521 */
1522 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1523 !sosendallatonce(so) && !nextrecord) {
1524 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1525 break;
1526 /*
1527 * If we are peeking and the socket receive buffer is
1528 * full, stop since we can't get more data to peek at.
1529 */
1530 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1531 break;
1532 /*
1533 * If we've drained the socket buffer, tell the
1534 * protocol in case it needs to do something to
1535 * get it filled again.
1536 */
1537 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1538 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1539 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1540 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1541 if (wakeup_state & SS_RESTARTSYS)
1542 error = ERESTART;
1543 else
1544 error = sbwait(&so->so_rcv);
1545 if (error != 0) {
1546 sbunlock(&so->so_rcv);
1547 sounlock(so);
1548 splx(s);
1549 return 0;
1550 }
1551 if ((m = so->so_rcv.sb_mb) != NULL)
1552 nextrecord = m->m_nextpkt;
1553 wakeup_state = so->so_state;
1554 }
1555 }
1556
1557 if (m && atomic) {
1558 flags |= MSG_TRUNC;
1559 if ((flags & MSG_PEEK) == 0)
1560 (void) sbdroprecord(&so->so_rcv);
1561 }
1562 if ((flags & MSG_PEEK) == 0) {
1563 if (m == NULL) {
1564 /*
1565 * First part is an inline SB_EMPTY_FIXUP(). Second
1566 * part makes sure sb_lastrecord is up-to-date if
1567 * there is still data in the socket buffer.
1568 */
1569 so->so_rcv.sb_mb = nextrecord;
1570 if (so->so_rcv.sb_mb == NULL) {
1571 so->so_rcv.sb_mbtail = NULL;
1572 so->so_rcv.sb_lastrecord = NULL;
1573 } else if (nextrecord->m_nextpkt == NULL)
1574 so->so_rcv.sb_lastrecord = nextrecord;
1575 }
1576 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1577 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1578 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1579 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1580 }
1581 if (orig_resid == uio->uio_resid && orig_resid &&
1582 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1583 sbunlock(&so->so_rcv);
1584 goto restart;
1585 }
1586
1587 if (flagsp != NULL)
1588 *flagsp |= flags;
1589 release:
1590 sbunlock(&so->so_rcv);
1591 sounlock(so);
1592 splx(s);
1593 return error;
1594 }
1595
1596 int
1597 soshutdown(struct socket *so, int how)
1598 {
1599 const struct protosw *pr;
1600 int error;
1601
1602 KASSERT(solocked(so));
1603
1604 pr = so->so_proto;
1605 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1606 return (EINVAL);
1607
1608 if (how == SHUT_RD || how == SHUT_RDWR) {
1609 sorflush(so);
1610 error = 0;
1611 }
1612 if (how == SHUT_WR || how == SHUT_RDWR)
1613 error = (*pr->pr_usrreqs->pr_shutdown)(so);
1614
1615 return error;
1616 }
1617
1618 void
1619 sorestart(struct socket *so)
1620 {
1621 /*
1622 * An application has called close() on an fd on which another
1623 * of its threads has called a socket system call.
1624 * Mark this and wake everyone up, and code that would block again
1625 * instead returns ERESTART.
1626 * On system call re-entry the fd is validated and EBADF returned.
1627 * Any other fd will block again on the 2nd syscall.
1628 */
1629 solock(so);
1630 so->so_state |= SS_RESTARTSYS;
1631 cv_broadcast(&so->so_cv);
1632 cv_broadcast(&so->so_snd.sb_cv);
1633 cv_broadcast(&so->so_rcv.sb_cv);
1634 sounlock(so);
1635 }
1636
1637 void
1638 sorflush(struct socket *so)
1639 {
1640 struct sockbuf *sb, asb;
1641 const struct protosw *pr;
1642
1643 KASSERT(solocked(so));
1644
1645 sb = &so->so_rcv;
1646 pr = so->so_proto;
1647 socantrcvmore(so);
1648 sb->sb_flags |= SB_NOINTR;
1649 (void )sblock(sb, M_WAITOK);
1650 sbunlock(sb);
1651 asb = *sb;
1652 /*
1653 * Clear most of the sockbuf structure, but leave some of the
1654 * fields valid.
1655 */
1656 memset(&sb->sb_startzero, 0,
1657 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1658 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1659 sounlock(so);
1660 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1661 solock(so);
1662 }
1663 sbrelease(&asb, so);
1664 }
1665
1666 /*
1667 * internal set SOL_SOCKET options
1668 */
1669 static int
1670 sosetopt1(struct socket *so, const struct sockopt *sopt)
1671 {
1672 int error = EINVAL, opt;
1673 int optval = 0; /* XXX: gcc */
1674 struct linger l;
1675 struct timeval tv;
1676
1677 switch ((opt = sopt->sopt_name)) {
1678
1679 case SO_ACCEPTFILTER:
1680 error = accept_filt_setopt(so, sopt);
1681 KASSERT(solocked(so));
1682 break;
1683
1684 case SO_LINGER:
1685 error = sockopt_get(sopt, &l, sizeof(l));
1686 solock(so);
1687 if (error)
1688 break;
1689 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1690 l.l_linger > (INT_MAX / hz)) {
1691 error = EDOM;
1692 break;
1693 }
1694 so->so_linger = l.l_linger;
1695 if (l.l_onoff)
1696 so->so_options |= SO_LINGER;
1697 else
1698 so->so_options &= ~SO_LINGER;
1699 break;
1700
1701 case SO_DEBUG:
1702 case SO_KEEPALIVE:
1703 case SO_DONTROUTE:
1704 case SO_USELOOPBACK:
1705 case SO_BROADCAST:
1706 case SO_REUSEADDR:
1707 case SO_REUSEPORT:
1708 case SO_OOBINLINE:
1709 case SO_TIMESTAMP:
1710 case SO_NOSIGPIPE:
1711 #ifdef SO_OTIMESTAMP
1712 case SO_OTIMESTAMP:
1713 #endif
1714 error = sockopt_getint(sopt, &optval);
1715 solock(so);
1716 if (error)
1717 break;
1718 if (optval)
1719 so->so_options |= opt;
1720 else
1721 so->so_options &= ~opt;
1722 break;
1723
1724 case SO_SNDBUF:
1725 case SO_RCVBUF:
1726 case SO_SNDLOWAT:
1727 case SO_RCVLOWAT:
1728 error = sockopt_getint(sopt, &optval);
1729 solock(so);
1730 if (error)
1731 break;
1732
1733 /*
1734 * Values < 1 make no sense for any of these
1735 * options, so disallow them.
1736 */
1737 if (optval < 1) {
1738 error = EINVAL;
1739 break;
1740 }
1741
1742 switch (opt) {
1743 case SO_SNDBUF:
1744 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1745 error = ENOBUFS;
1746 break;
1747 }
1748 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1749 break;
1750
1751 case SO_RCVBUF:
1752 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1753 error = ENOBUFS;
1754 break;
1755 }
1756 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1757 break;
1758
1759 /*
1760 * Make sure the low-water is never greater than
1761 * the high-water.
1762 */
1763 case SO_SNDLOWAT:
1764 if (optval > so->so_snd.sb_hiwat)
1765 optval = so->so_snd.sb_hiwat;
1766
1767 so->so_snd.sb_lowat = optval;
1768 break;
1769
1770 case SO_RCVLOWAT:
1771 if (optval > so->so_rcv.sb_hiwat)
1772 optval = so->so_rcv.sb_hiwat;
1773
1774 so->so_rcv.sb_lowat = optval;
1775 break;
1776 }
1777 break;
1778
1779 #ifdef COMPAT_50
1780 case SO_OSNDTIMEO:
1781 case SO_ORCVTIMEO: {
1782 struct timeval50 otv;
1783 error = sockopt_get(sopt, &otv, sizeof(otv));
1784 if (error) {
1785 solock(so);
1786 break;
1787 }
1788 timeval50_to_timeval(&otv, &tv);
1789 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1790 error = 0;
1791 /*FALLTHROUGH*/
1792 }
1793 #endif /* COMPAT_50 */
1794
1795 case SO_SNDTIMEO:
1796 case SO_RCVTIMEO:
1797 if (error)
1798 error = sockopt_get(sopt, &tv, sizeof(tv));
1799 solock(so);
1800 if (error)
1801 break;
1802
1803 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1804 error = EDOM;
1805 break;
1806 }
1807
1808 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1809 if (optval == 0 && tv.tv_usec != 0)
1810 optval = 1;
1811
1812 switch (opt) {
1813 case SO_SNDTIMEO:
1814 so->so_snd.sb_timeo = optval;
1815 break;
1816 case SO_RCVTIMEO:
1817 so->so_rcv.sb_timeo = optval;
1818 break;
1819 }
1820 break;
1821
1822 default:
1823 solock(so);
1824 error = ENOPROTOOPT;
1825 break;
1826 }
1827 KASSERT(solocked(so));
1828 return error;
1829 }
1830
1831 int
1832 sosetopt(struct socket *so, struct sockopt *sopt)
1833 {
1834 int error, prerr;
1835
1836 if (sopt->sopt_level == SOL_SOCKET) {
1837 error = sosetopt1(so, sopt);
1838 KASSERT(solocked(so));
1839 } else {
1840 error = ENOPROTOOPT;
1841 solock(so);
1842 }
1843
1844 if ((error == 0 || error == ENOPROTOOPT) &&
1845 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1846 /* give the protocol stack a shot */
1847 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1848 if (prerr == 0)
1849 error = 0;
1850 else if (prerr != ENOPROTOOPT)
1851 error = prerr;
1852 }
1853 sounlock(so);
1854 return error;
1855 }
1856
1857 /*
1858 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1859 */
1860 int
1861 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1862 const void *val, size_t valsize)
1863 {
1864 struct sockopt sopt;
1865 int error;
1866
1867 KASSERT(valsize == 0 || val != NULL);
1868
1869 sockopt_init(&sopt, level, name, valsize);
1870 sockopt_set(&sopt, val, valsize);
1871
1872 error = sosetopt(so, &sopt);
1873
1874 sockopt_destroy(&sopt);
1875
1876 return error;
1877 }
1878
1879 /*
1880 * internal get SOL_SOCKET options
1881 */
1882 static int
1883 sogetopt1(struct socket *so, struct sockopt *sopt)
1884 {
1885 int error, optval, opt;
1886 struct linger l;
1887 struct timeval tv;
1888
1889 switch ((opt = sopt->sopt_name)) {
1890
1891 case SO_ACCEPTFILTER:
1892 error = accept_filt_getopt(so, sopt);
1893 break;
1894
1895 case SO_LINGER:
1896 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1897 l.l_linger = so->so_linger;
1898
1899 error = sockopt_set(sopt, &l, sizeof(l));
1900 break;
1901
1902 case SO_USELOOPBACK:
1903 case SO_DONTROUTE:
1904 case SO_DEBUG:
1905 case SO_KEEPALIVE:
1906 case SO_REUSEADDR:
1907 case SO_REUSEPORT:
1908 case SO_BROADCAST:
1909 case SO_OOBINLINE:
1910 case SO_TIMESTAMP:
1911 case SO_NOSIGPIPE:
1912 #ifdef SO_OTIMESTAMP
1913 case SO_OTIMESTAMP:
1914 #endif
1915 case SO_ACCEPTCONN:
1916 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1917 break;
1918
1919 case SO_TYPE:
1920 error = sockopt_setint(sopt, so->so_type);
1921 break;
1922
1923 case SO_ERROR:
1924 error = sockopt_setint(sopt, so->so_error);
1925 so->so_error = 0;
1926 break;
1927
1928 case SO_SNDBUF:
1929 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1930 break;
1931
1932 case SO_RCVBUF:
1933 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1934 break;
1935
1936 case SO_SNDLOWAT:
1937 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1938 break;
1939
1940 case SO_RCVLOWAT:
1941 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1942 break;
1943
1944 #ifdef COMPAT_50
1945 case SO_OSNDTIMEO:
1946 case SO_ORCVTIMEO: {
1947 struct timeval50 otv;
1948
1949 optval = (opt == SO_OSNDTIMEO ?
1950 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1951
1952 otv.tv_sec = optval / hz;
1953 otv.tv_usec = (optval % hz) * tick;
1954
1955 error = sockopt_set(sopt, &otv, sizeof(otv));
1956 break;
1957 }
1958 #endif /* COMPAT_50 */
1959
1960 case SO_SNDTIMEO:
1961 case SO_RCVTIMEO:
1962 optval = (opt == SO_SNDTIMEO ?
1963 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1964
1965 tv.tv_sec = optval / hz;
1966 tv.tv_usec = (optval % hz) * tick;
1967
1968 error = sockopt_set(sopt, &tv, sizeof(tv));
1969 break;
1970
1971 case SO_OVERFLOWED:
1972 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1973 break;
1974
1975 default:
1976 error = ENOPROTOOPT;
1977 break;
1978 }
1979
1980 return (error);
1981 }
1982
1983 int
1984 sogetopt(struct socket *so, struct sockopt *sopt)
1985 {
1986 int error;
1987
1988 solock(so);
1989 if (sopt->sopt_level != SOL_SOCKET) {
1990 if (so->so_proto && so->so_proto->pr_ctloutput) {
1991 error = ((*so->so_proto->pr_ctloutput)
1992 (PRCO_GETOPT, so, sopt));
1993 } else
1994 error = (ENOPROTOOPT);
1995 } else {
1996 error = sogetopt1(so, sopt);
1997 }
1998 sounlock(so);
1999 return (error);
2000 }
2001
2002 /*
2003 * alloc sockopt data buffer buffer
2004 * - will be released at destroy
2005 */
2006 static int
2007 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2008 {
2009
2010 KASSERT(sopt->sopt_size == 0);
2011
2012 if (len > sizeof(sopt->sopt_buf)) {
2013 sopt->sopt_data = kmem_zalloc(len, kmflag);
2014 if (sopt->sopt_data == NULL)
2015 return ENOMEM;
2016 } else
2017 sopt->sopt_data = sopt->sopt_buf;
2018
2019 sopt->sopt_size = len;
2020 return 0;
2021 }
2022
2023 /*
2024 * initialise sockopt storage
2025 * - MAY sleep during allocation
2026 */
2027 void
2028 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2029 {
2030
2031 memset(sopt, 0, sizeof(*sopt));
2032
2033 sopt->sopt_level = level;
2034 sopt->sopt_name = name;
2035 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2036 }
2037
2038 /*
2039 * destroy sockopt storage
2040 * - will release any held memory references
2041 */
2042 void
2043 sockopt_destroy(struct sockopt *sopt)
2044 {
2045
2046 if (sopt->sopt_data != sopt->sopt_buf)
2047 kmem_free(sopt->sopt_data, sopt->sopt_size);
2048
2049 memset(sopt, 0, sizeof(*sopt));
2050 }
2051
2052 /*
2053 * set sockopt value
2054 * - value is copied into sockopt
2055 * - memory is allocated when necessary, will not sleep
2056 */
2057 int
2058 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2059 {
2060 int error;
2061
2062 if (sopt->sopt_size == 0) {
2063 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2064 if (error)
2065 return error;
2066 }
2067
2068 KASSERT(sopt->sopt_size == len);
2069 memcpy(sopt->sopt_data, buf, len);
2070 return 0;
2071 }
2072
2073 /*
2074 * common case of set sockopt integer value
2075 */
2076 int
2077 sockopt_setint(struct sockopt *sopt, int val)
2078 {
2079
2080 return sockopt_set(sopt, &val, sizeof(int));
2081 }
2082
2083 /*
2084 * get sockopt value
2085 * - correct size must be given
2086 */
2087 int
2088 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2089 {
2090
2091 if (sopt->sopt_size != len)
2092 return EINVAL;
2093
2094 memcpy(buf, sopt->sopt_data, len);
2095 return 0;
2096 }
2097
2098 /*
2099 * common case of get sockopt integer value
2100 */
2101 int
2102 sockopt_getint(const struct sockopt *sopt, int *valp)
2103 {
2104
2105 return sockopt_get(sopt, valp, sizeof(int));
2106 }
2107
2108 /*
2109 * set sockopt value from mbuf
2110 * - ONLY for legacy code
2111 * - mbuf is released by sockopt
2112 * - will not sleep
2113 */
2114 int
2115 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2116 {
2117 size_t len;
2118 int error;
2119
2120 len = m_length(m);
2121
2122 if (sopt->sopt_size == 0) {
2123 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2124 if (error)
2125 return error;
2126 }
2127
2128 KASSERT(sopt->sopt_size == len);
2129 m_copydata(m, 0, len, sopt->sopt_data);
2130 m_freem(m);
2131
2132 return 0;
2133 }
2134
2135 /*
2136 * get sockopt value into mbuf
2137 * - ONLY for legacy code
2138 * - mbuf to be released by the caller
2139 * - will not sleep
2140 */
2141 struct mbuf *
2142 sockopt_getmbuf(const struct sockopt *sopt)
2143 {
2144 struct mbuf *m;
2145
2146 if (sopt->sopt_size > MCLBYTES)
2147 return NULL;
2148
2149 m = m_get(M_DONTWAIT, MT_SOOPTS);
2150 if (m == NULL)
2151 return NULL;
2152
2153 if (sopt->sopt_size > MLEN) {
2154 MCLGET(m, M_DONTWAIT);
2155 if ((m->m_flags & M_EXT) == 0) {
2156 m_free(m);
2157 return NULL;
2158 }
2159 }
2160
2161 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2162 m->m_len = sopt->sopt_size;
2163
2164 return m;
2165 }
2166
2167 void
2168 sohasoutofband(struct socket *so)
2169 {
2170
2171 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2172 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2173 }
2174
2175 static void
2176 filt_sordetach(struct knote *kn)
2177 {
2178 struct socket *so;
2179
2180 so = ((file_t *)kn->kn_obj)->f_socket;
2181 solock(so);
2182 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2183 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2184 so->so_rcv.sb_flags &= ~SB_KNOTE;
2185 sounlock(so);
2186 }
2187
2188 /*ARGSUSED*/
2189 static int
2190 filt_soread(struct knote *kn, long hint)
2191 {
2192 struct socket *so;
2193 int rv;
2194
2195 so = ((file_t *)kn->kn_obj)->f_socket;
2196 if (hint != NOTE_SUBMIT)
2197 solock(so);
2198 kn->kn_data = so->so_rcv.sb_cc;
2199 if (so->so_state & SS_CANTRCVMORE) {
2200 kn->kn_flags |= EV_EOF;
2201 kn->kn_fflags = so->so_error;
2202 rv = 1;
2203 } else if (so->so_error) /* temporary udp error */
2204 rv = 1;
2205 else if (kn->kn_sfflags & NOTE_LOWAT)
2206 rv = (kn->kn_data >= kn->kn_sdata);
2207 else
2208 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2209 if (hint != NOTE_SUBMIT)
2210 sounlock(so);
2211 return rv;
2212 }
2213
2214 static void
2215 filt_sowdetach(struct knote *kn)
2216 {
2217 struct socket *so;
2218
2219 so = ((file_t *)kn->kn_obj)->f_socket;
2220 solock(so);
2221 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2222 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2223 so->so_snd.sb_flags &= ~SB_KNOTE;
2224 sounlock(so);
2225 }
2226
2227 /*ARGSUSED*/
2228 static int
2229 filt_sowrite(struct knote *kn, long hint)
2230 {
2231 struct socket *so;
2232 int rv;
2233
2234 so = ((file_t *)kn->kn_obj)->f_socket;
2235 if (hint != NOTE_SUBMIT)
2236 solock(so);
2237 kn->kn_data = sbspace(&so->so_snd);
2238 if (so->so_state & SS_CANTSENDMORE) {
2239 kn->kn_flags |= EV_EOF;
2240 kn->kn_fflags = so->so_error;
2241 rv = 1;
2242 } else if (so->so_error) /* temporary udp error */
2243 rv = 1;
2244 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2245 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2246 rv = 0;
2247 else if (kn->kn_sfflags & NOTE_LOWAT)
2248 rv = (kn->kn_data >= kn->kn_sdata);
2249 else
2250 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2251 if (hint != NOTE_SUBMIT)
2252 sounlock(so);
2253 return rv;
2254 }
2255
2256 /*ARGSUSED*/
2257 static int
2258 filt_solisten(struct knote *kn, long hint)
2259 {
2260 struct socket *so;
2261 int rv;
2262
2263 so = ((file_t *)kn->kn_obj)->f_socket;
2264
2265 /*
2266 * Set kn_data to number of incoming connections, not
2267 * counting partial (incomplete) connections.
2268 */
2269 if (hint != NOTE_SUBMIT)
2270 solock(so);
2271 kn->kn_data = so->so_qlen;
2272 rv = (kn->kn_data > 0);
2273 if (hint != NOTE_SUBMIT)
2274 sounlock(so);
2275 return rv;
2276 }
2277
2278 static const struct filterops solisten_filtops =
2279 { 1, NULL, filt_sordetach, filt_solisten };
2280 static const struct filterops soread_filtops =
2281 { 1, NULL, filt_sordetach, filt_soread };
2282 static const struct filterops sowrite_filtops =
2283 { 1, NULL, filt_sowdetach, filt_sowrite };
2284
2285 int
2286 soo_kqfilter(struct file *fp, struct knote *kn)
2287 {
2288 struct socket *so;
2289 struct sockbuf *sb;
2290
2291 so = ((file_t *)kn->kn_obj)->f_socket;
2292 solock(so);
2293 switch (kn->kn_filter) {
2294 case EVFILT_READ:
2295 if (so->so_options & SO_ACCEPTCONN)
2296 kn->kn_fop = &solisten_filtops;
2297 else
2298 kn->kn_fop = &soread_filtops;
2299 sb = &so->so_rcv;
2300 break;
2301 case EVFILT_WRITE:
2302 kn->kn_fop = &sowrite_filtops;
2303 sb = &so->so_snd;
2304 break;
2305 default:
2306 sounlock(so);
2307 return (EINVAL);
2308 }
2309 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2310 sb->sb_flags |= SB_KNOTE;
2311 sounlock(so);
2312 return (0);
2313 }
2314
2315 static int
2316 sodopoll(struct socket *so, int events)
2317 {
2318 int revents;
2319
2320 revents = 0;
2321
2322 if (events & (POLLIN | POLLRDNORM))
2323 if (soreadable(so))
2324 revents |= events & (POLLIN | POLLRDNORM);
2325
2326 if (events & (POLLOUT | POLLWRNORM))
2327 if (sowritable(so))
2328 revents |= events & (POLLOUT | POLLWRNORM);
2329
2330 if (events & (POLLPRI | POLLRDBAND))
2331 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2332 revents |= events & (POLLPRI | POLLRDBAND);
2333
2334 return revents;
2335 }
2336
2337 int
2338 sopoll(struct socket *so, int events)
2339 {
2340 int revents = 0;
2341
2342 #ifndef DIAGNOSTIC
2343 /*
2344 * Do a quick, unlocked check in expectation that the socket
2345 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2346 * as the solocked() assertions will fail.
2347 */
2348 if ((revents = sodopoll(so, events)) != 0)
2349 return revents;
2350 #endif
2351
2352 solock(so);
2353 if ((revents = sodopoll(so, events)) == 0) {
2354 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2355 selrecord(curlwp, &so->so_rcv.sb_sel);
2356 so->so_rcv.sb_flags |= SB_NOTIFY;
2357 }
2358
2359 if (events & (POLLOUT | POLLWRNORM)) {
2360 selrecord(curlwp, &so->so_snd.sb_sel);
2361 so->so_snd.sb_flags |= SB_NOTIFY;
2362 }
2363 }
2364 sounlock(so);
2365
2366 return revents;
2367 }
2368
2369
2370 #include <sys/sysctl.h>
2371
2372 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2373 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2374
2375 /*
2376 * sysctl helper routine for kern.somaxkva. ensures that the given
2377 * value is not too small.
2378 * (XXX should we maybe make sure it's not too large as well?)
2379 */
2380 static int
2381 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2382 {
2383 int error, new_somaxkva;
2384 struct sysctlnode node;
2385
2386 new_somaxkva = somaxkva;
2387 node = *rnode;
2388 node.sysctl_data = &new_somaxkva;
2389 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2390 if (error || newp == NULL)
2391 return (error);
2392
2393 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2394 return (EINVAL);
2395
2396 mutex_enter(&so_pendfree_lock);
2397 somaxkva = new_somaxkva;
2398 cv_broadcast(&socurkva_cv);
2399 mutex_exit(&so_pendfree_lock);
2400
2401 return (error);
2402 }
2403
2404 /*
2405 * sysctl helper routine for kern.sbmax. Basically just ensures that
2406 * any new value is not too small.
2407 */
2408 static int
2409 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2410 {
2411 int error, new_sbmax;
2412 struct sysctlnode node;
2413
2414 new_sbmax = sb_max;
2415 node = *rnode;
2416 node.sysctl_data = &new_sbmax;
2417 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2418 if (error || newp == NULL)
2419 return (error);
2420
2421 KERNEL_LOCK(1, NULL);
2422 error = sb_max_set(new_sbmax);
2423 KERNEL_UNLOCK_ONE(NULL);
2424
2425 return (error);
2426 }
2427
2428 static void
2429 sysctl_kern_socket_setup(void)
2430 {
2431
2432 KASSERT(socket_sysctllog == NULL);
2433
2434 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2435 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2436 CTLTYPE_INT, "somaxkva",
2437 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2438 "used for socket buffers"),
2439 sysctl_kern_somaxkva, 0, NULL, 0,
2440 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2441
2442 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2443 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2444 CTLTYPE_INT, "sbmax",
2445 SYSCTL_DESCR("Maximum socket buffer size"),
2446 sysctl_kern_sbmax, 0, NULL, 0,
2447 CTL_KERN, KERN_SBMAX, CTL_EOL);
2448 }
2449