uipc_socket.c revision 1.240 1 /* $NetBSD: uipc_socket.c,v 1.240 2015/05/02 17:18:03 rtr Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 /*
66 * Socket operation routines.
67 *
68 * These routines are called by the routines in sys_socket.c or from a
69 * system process, and implement the semantics of socket operations by
70 * switching out to the protocol specific routines.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.240 2015/05/02 17:18:03 rtr Exp $");
75
76 #include "opt_compat_netbsd.h"
77 #include "opt_sock_counters.h"
78 #include "opt_sosend_loan.h"
79 #include "opt_mbuftrace.h"
80 #include "opt_somaxkva.h"
81 #include "opt_multiprocessor.h" /* XXX */
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/proc.h>
86 #include <sys/file.h>
87 #include <sys/filedesc.h>
88 #include <sys/kmem.h>
89 #include <sys/mbuf.h>
90 #include <sys/domain.h>
91 #include <sys/kernel.h>
92 #include <sys/protosw.h>
93 #include <sys/socket.h>
94 #include <sys/socketvar.h>
95 #include <sys/signalvar.h>
96 #include <sys/resourcevar.h>
97 #include <sys/uidinfo.h>
98 #include <sys/event.h>
99 #include <sys/poll.h>
100 #include <sys/kauth.h>
101 #include <sys/mutex.h>
102 #include <sys/condvar.h>
103 #include <sys/kthread.h>
104
105 #ifdef COMPAT_50
106 #include <compat/sys/time.h>
107 #include <compat/sys/socket.h>
108 #endif
109
110 #include <uvm/uvm_extern.h>
111 #include <uvm/uvm_loan.h>
112 #include <uvm/uvm_page.h>
113
114 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
115
116 extern const struct fileops socketops;
117
118 extern int somaxconn; /* patchable (XXX sysctl) */
119 int somaxconn = SOMAXCONN;
120 kmutex_t *softnet_lock;
121
122 #ifdef SOSEND_COUNTERS
123 #include <sys/device.h>
124
125 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
126 NULL, "sosend", "loan big");
127 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
128 NULL, "sosend", "copy big");
129 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
130 NULL, "sosend", "copy small");
131 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
132 NULL, "sosend", "kva limit");
133
134 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
135
136 EVCNT_ATTACH_STATIC(sosend_loan_big);
137 EVCNT_ATTACH_STATIC(sosend_copy_big);
138 EVCNT_ATTACH_STATIC(sosend_copy_small);
139 EVCNT_ATTACH_STATIC(sosend_kvalimit);
140 #else
141
142 #define SOSEND_COUNTER_INCR(ev) /* nothing */
143
144 #endif /* SOSEND_COUNTERS */
145
146 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
147 int sock_loan_thresh = -1;
148 #else
149 int sock_loan_thresh = 4096;
150 #endif
151
152 static kmutex_t so_pendfree_lock;
153 static struct mbuf *so_pendfree = NULL;
154
155 #ifndef SOMAXKVA
156 #define SOMAXKVA (16 * 1024 * 1024)
157 #endif
158 int somaxkva = SOMAXKVA;
159 static int socurkva;
160 static kcondvar_t socurkva_cv;
161
162 static kauth_listener_t socket_listener;
163
164 #define SOCK_LOAN_CHUNK 65536
165
166 static void sopendfree_thread(void *);
167 static kcondvar_t pendfree_thread_cv;
168 static lwp_t *sopendfree_lwp;
169
170 static void sysctl_kern_socket_setup(void);
171 static struct sysctllog *socket_sysctllog;
172
173 static vsize_t
174 sokvareserve(struct socket *so, vsize_t len)
175 {
176 int error;
177
178 mutex_enter(&so_pendfree_lock);
179 while (socurkva + len > somaxkva) {
180 SOSEND_COUNTER_INCR(&sosend_kvalimit);
181 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
182 if (error) {
183 len = 0;
184 break;
185 }
186 }
187 socurkva += len;
188 mutex_exit(&so_pendfree_lock);
189 return len;
190 }
191
192 static void
193 sokvaunreserve(vsize_t len)
194 {
195
196 mutex_enter(&so_pendfree_lock);
197 socurkva -= len;
198 cv_broadcast(&socurkva_cv);
199 mutex_exit(&so_pendfree_lock);
200 }
201
202 /*
203 * sokvaalloc: allocate kva for loan.
204 */
205
206 vaddr_t
207 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
208 {
209 vaddr_t lva;
210
211 /*
212 * reserve kva.
213 */
214
215 if (sokvareserve(so, len) == 0)
216 return 0;
217
218 /*
219 * allocate kva.
220 */
221
222 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
223 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
224 if (lva == 0) {
225 sokvaunreserve(len);
226 return (0);
227 }
228
229 return lva;
230 }
231
232 /*
233 * sokvafree: free kva for loan.
234 */
235
236 void
237 sokvafree(vaddr_t sva, vsize_t len)
238 {
239
240 /*
241 * free kva.
242 */
243
244 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
245
246 /*
247 * unreserve kva.
248 */
249
250 sokvaunreserve(len);
251 }
252
253 static void
254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
255 {
256 vaddr_t sva, eva;
257 vsize_t len;
258 int npgs;
259
260 KASSERT(pgs != NULL);
261
262 eva = round_page((vaddr_t) buf + size);
263 sva = trunc_page((vaddr_t) buf);
264 len = eva - sva;
265 npgs = len >> PAGE_SHIFT;
266
267 pmap_kremove(sva, len);
268 pmap_update(pmap_kernel());
269 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
270 sokvafree(sva, len);
271 }
272
273 /*
274 * sopendfree_thread: free mbufs on "pendfree" list.
275 * unlock and relock so_pendfree_lock when freeing mbufs.
276 */
277
278 static void
279 sopendfree_thread(void *v)
280 {
281 struct mbuf *m, *next;
282 size_t rv;
283
284 mutex_enter(&so_pendfree_lock);
285
286 for (;;) {
287 rv = 0;
288 while (so_pendfree != NULL) {
289 m = so_pendfree;
290 so_pendfree = NULL;
291 mutex_exit(&so_pendfree_lock);
292
293 for (; m != NULL; m = next) {
294 next = m->m_next;
295 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
296 KASSERT(m->m_ext.ext_refcnt == 0);
297
298 rv += m->m_ext.ext_size;
299 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
300 m->m_ext.ext_size);
301 pool_cache_put(mb_cache, m);
302 }
303
304 mutex_enter(&so_pendfree_lock);
305 }
306 if (rv)
307 cv_broadcast(&socurkva_cv);
308 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
309 }
310 panic("sopendfree_thread");
311 /* NOTREACHED */
312 }
313
314 void
315 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
316 {
317
318 KASSERT(m != NULL);
319
320 /*
321 * postpone freeing mbuf.
322 *
323 * we can't do it in interrupt context
324 * because we need to put kva back to kernel_map.
325 */
326
327 mutex_enter(&so_pendfree_lock);
328 m->m_next = so_pendfree;
329 so_pendfree = m;
330 cv_signal(&pendfree_thread_cv);
331 mutex_exit(&so_pendfree_lock);
332 }
333
334 static long
335 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
336 {
337 struct iovec *iov = uio->uio_iov;
338 vaddr_t sva, eva;
339 vsize_t len;
340 vaddr_t lva;
341 int npgs, error;
342 vaddr_t va;
343 int i;
344
345 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
346 return (0);
347
348 if (iov->iov_len < (size_t) space)
349 space = iov->iov_len;
350 if (space > SOCK_LOAN_CHUNK)
351 space = SOCK_LOAN_CHUNK;
352
353 eva = round_page((vaddr_t) iov->iov_base + space);
354 sva = trunc_page((vaddr_t) iov->iov_base);
355 len = eva - sva;
356 npgs = len >> PAGE_SHIFT;
357
358 KASSERT(npgs <= M_EXT_MAXPAGES);
359
360 lva = sokvaalloc(sva, len, so);
361 if (lva == 0)
362 return 0;
363
364 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
365 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
366 if (error) {
367 sokvafree(lva, len);
368 return (0);
369 }
370
371 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
372 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
373 VM_PROT_READ, 0);
374 pmap_update(pmap_kernel());
375
376 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
377
378 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
379 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
380
381 uio->uio_resid -= space;
382 /* uio_offset not updated, not set/used for write(2) */
383 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
384 uio->uio_iov->iov_len -= space;
385 if (uio->uio_iov->iov_len == 0) {
386 uio->uio_iov++;
387 uio->uio_iovcnt--;
388 }
389
390 return (space);
391 }
392
393 struct mbuf *
394 getsombuf(struct socket *so, int type)
395 {
396 struct mbuf *m;
397
398 m = m_get(M_WAIT, type);
399 MCLAIM(m, so->so_mowner);
400 return m;
401 }
402
403 static int
404 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
405 void *arg0, void *arg1, void *arg2, void *arg3)
406 {
407 int result;
408 enum kauth_network_req req;
409
410 result = KAUTH_RESULT_DEFER;
411 req = (enum kauth_network_req)arg0;
412
413 if ((action != KAUTH_NETWORK_SOCKET) &&
414 (action != KAUTH_NETWORK_BIND))
415 return result;
416
417 switch (req) {
418 case KAUTH_REQ_NETWORK_BIND_PORT:
419 result = KAUTH_RESULT_ALLOW;
420 break;
421
422 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
423 /* Normal users can only drop their own connections. */
424 struct socket *so = (struct socket *)arg1;
425
426 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
427 result = KAUTH_RESULT_ALLOW;
428
429 break;
430 }
431
432 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
433 /* We allow "raw" routing/bluetooth sockets to anyone. */
434 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
435 || (u_long)arg1 == PF_BLUETOOTH) {
436 result = KAUTH_RESULT_ALLOW;
437 } else {
438 /* Privileged, let secmodel handle this. */
439 if ((u_long)arg2 == SOCK_RAW)
440 break;
441 }
442
443 result = KAUTH_RESULT_ALLOW;
444
445 break;
446
447 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
448 result = KAUTH_RESULT_ALLOW;
449
450 break;
451
452 default:
453 break;
454 }
455
456 return result;
457 }
458
459 void
460 soinit(void)
461 {
462
463 sysctl_kern_socket_setup();
464
465 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
466 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
467 cv_init(&socurkva_cv, "sokva");
468 cv_init(&pendfree_thread_cv, "sopendfr");
469 soinit2();
470
471 /* Set the initial adjusted socket buffer size. */
472 if (sb_max_set(sb_max))
473 panic("bad initial sb_max value: %lu", sb_max);
474
475 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
476 socket_listener_cb, NULL);
477 }
478
479 void
480 soinit1(void)
481 {
482 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
483 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
484 if (error)
485 panic("soinit1 %d", error);
486 }
487
488 /*
489 * socreate: create a new socket of the specified type and the protocol.
490 *
491 * => Caller may specify another socket for lock sharing (must not be held).
492 * => Returns the new socket without lock held.
493 */
494 int
495 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
496 struct socket *lockso)
497 {
498 const struct protosw *prp;
499 struct socket *so;
500 uid_t uid;
501 int error;
502 kmutex_t *lock;
503
504 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
505 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
506 KAUTH_ARG(proto));
507 if (error != 0)
508 return error;
509
510 if (proto)
511 prp = pffindproto(dom, proto, type);
512 else
513 prp = pffindtype(dom, type);
514 if (prp == NULL) {
515 /* no support for domain */
516 if (pffinddomain(dom) == 0)
517 return EAFNOSUPPORT;
518 /* no support for socket type */
519 if (proto == 0 && type != 0)
520 return EPROTOTYPE;
521 return EPROTONOSUPPORT;
522 }
523 if (prp->pr_usrreqs == NULL)
524 return EPROTONOSUPPORT;
525 if (prp->pr_type != type)
526 return EPROTOTYPE;
527
528 so = soget(true);
529 so->so_type = type;
530 so->so_proto = prp;
531 so->so_send = sosend;
532 so->so_receive = soreceive;
533 #ifdef MBUFTRACE
534 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
535 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
536 so->so_mowner = &prp->pr_domain->dom_mowner;
537 #endif
538 uid = kauth_cred_geteuid(l->l_cred);
539 so->so_uidinfo = uid_find(uid);
540 so->so_cpid = l->l_proc->p_pid;
541
542 /*
543 * Lock assigned and taken during PCB attach, unless we share
544 * the lock with another socket, e.g. socketpair(2) case.
545 */
546 if (lockso) {
547 lock = lockso->so_lock;
548 so->so_lock = lock;
549 mutex_obj_hold(lock);
550 mutex_enter(lock);
551 }
552
553 /* Attach the PCB (returns with the socket lock held). */
554 error = (*prp->pr_usrreqs->pr_attach)(so, proto);
555 KASSERT(solocked(so));
556
557 if (error) {
558 KASSERT(so->so_pcb == NULL);
559 so->so_state |= SS_NOFDREF;
560 sofree(so);
561 return error;
562 }
563 so->so_cred = kauth_cred_dup(l->l_cred);
564 sounlock(so);
565
566 *aso = so;
567 return 0;
568 }
569
570 /*
571 * fsocreate: create a socket and a file descriptor associated with it.
572 *
573 * => On success, write file descriptor to fdout and return zero.
574 * => On failure, return non-zero; *fdout will be undefined.
575 */
576 int
577 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
578 {
579 lwp_t *l = curlwp;
580 int error, fd, flags;
581 struct socket *so;
582 struct file *fp;
583
584 if ((error = fd_allocfile(&fp, &fd)) != 0) {
585 return error;
586 }
587 flags = type & SOCK_FLAGS_MASK;
588 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
589 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
590 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
591 fp->f_type = DTYPE_SOCKET;
592 fp->f_ops = &socketops;
593
594 type &= ~SOCK_FLAGS_MASK;
595 error = socreate(domain, &so, type, proto, l, NULL);
596 if (error) {
597 fd_abort(curproc, fp, fd);
598 return error;
599 }
600 if (flags & SOCK_NONBLOCK) {
601 so->so_state |= SS_NBIO;
602 }
603 fp->f_socket = so;
604 fd_affix(curproc, fp, fd);
605
606 if (sop != NULL) {
607 *sop = so;
608 }
609 *fdout = fd;
610 return error;
611 }
612
613 int
614 sofamily(const struct socket *so)
615 {
616 const struct protosw *pr;
617 const struct domain *dom;
618
619 if ((pr = so->so_proto) == NULL)
620 return AF_UNSPEC;
621 if ((dom = pr->pr_domain) == NULL)
622 return AF_UNSPEC;
623 return dom->dom_family;
624 }
625
626 int
627 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
628 {
629 int error;
630
631 solock(so);
632 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
633 sounlock(so);
634 return EAFNOSUPPORT;
635 }
636 error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
637 sounlock(so);
638 return error;
639 }
640
641 int
642 solisten(struct socket *so, int backlog, struct lwp *l)
643 {
644 int error;
645
646 solock(so);
647 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
648 SS_ISDISCONNECTING)) != 0) {
649 sounlock(so);
650 return EINVAL;
651 }
652 error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
653 if (error != 0) {
654 sounlock(so);
655 return error;
656 }
657 if (TAILQ_EMPTY(&so->so_q))
658 so->so_options |= SO_ACCEPTCONN;
659 if (backlog < 0)
660 backlog = 0;
661 so->so_qlimit = min(backlog, somaxconn);
662 sounlock(so);
663 return 0;
664 }
665
666 void
667 sofree(struct socket *so)
668 {
669 u_int refs;
670
671 KASSERT(solocked(so));
672
673 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
674 sounlock(so);
675 return;
676 }
677 if (so->so_head) {
678 /*
679 * We must not decommission a socket that's on the accept(2)
680 * queue. If we do, then accept(2) may hang after select(2)
681 * indicated that the listening socket was ready.
682 */
683 if (!soqremque(so, 0)) {
684 sounlock(so);
685 return;
686 }
687 }
688 if (so->so_rcv.sb_hiwat)
689 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
690 RLIM_INFINITY);
691 if (so->so_snd.sb_hiwat)
692 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
693 RLIM_INFINITY);
694 sbrelease(&so->so_snd, so);
695 KASSERT(!cv_has_waiters(&so->so_cv));
696 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
697 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
698 sorflush(so);
699 refs = so->so_aborting; /* XXX */
700 /* Remove acccept filter if one is present. */
701 if (so->so_accf != NULL)
702 (void)accept_filt_clear(so);
703 sounlock(so);
704 if (refs == 0) /* XXX */
705 soput(so);
706 }
707
708 /*
709 * soclose: close a socket on last file table reference removal.
710 * Initiate disconnect if connected. Free socket when disconnect complete.
711 */
712 int
713 soclose(struct socket *so)
714 {
715 struct socket *so2;
716 int error = 0;
717
718 solock(so);
719 if (so->so_options & SO_ACCEPTCONN) {
720 for (;;) {
721 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
722 KASSERT(solocked2(so, so2));
723 (void) soqremque(so2, 0);
724 /* soabort drops the lock. */
725 (void) soabort(so2);
726 solock(so);
727 continue;
728 }
729 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
730 KASSERT(solocked2(so, so2));
731 (void) soqremque(so2, 1);
732 /* soabort drops the lock. */
733 (void) soabort(so2);
734 solock(so);
735 continue;
736 }
737 break;
738 }
739 }
740 if (so->so_pcb == NULL)
741 goto discard;
742 if (so->so_state & SS_ISCONNECTED) {
743 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
744 error = sodisconnect(so);
745 if (error)
746 goto drop;
747 }
748 if (so->so_options & SO_LINGER) {
749 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
750 (SS_ISDISCONNECTING|SS_NBIO))
751 goto drop;
752 while (so->so_state & SS_ISCONNECTED) {
753 error = sowait(so, true, so->so_linger * hz);
754 if (error)
755 break;
756 }
757 }
758 }
759 drop:
760 if (so->so_pcb) {
761 KASSERT(solocked(so));
762 (*so->so_proto->pr_usrreqs->pr_detach)(so);
763 }
764 discard:
765 KASSERT((so->so_state & SS_NOFDREF) == 0);
766 kauth_cred_free(so->so_cred);
767 so->so_state |= SS_NOFDREF;
768 sofree(so);
769 return error;
770 }
771
772 /*
773 * Must be called with the socket locked.. Will return with it unlocked.
774 */
775 int
776 soabort(struct socket *so)
777 {
778 u_int refs;
779 int error;
780
781 KASSERT(solocked(so));
782 KASSERT(so->so_head == NULL);
783
784 so->so_aborting++; /* XXX */
785 error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
786 refs = --so->so_aborting; /* XXX */
787 if (error || (refs == 0)) {
788 sofree(so);
789 } else {
790 sounlock(so);
791 }
792 return error;
793 }
794
795 int
796 soaccept(struct socket *so, struct sockaddr *nam)
797 {
798 int error;
799
800 KASSERT(solocked(so));
801 KASSERT((so->so_state & SS_NOFDREF) != 0);
802
803 so->so_state &= ~SS_NOFDREF;
804 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
805 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
806 error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
807 else
808 error = ECONNABORTED;
809
810 return error;
811 }
812
813 int
814 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
815 {
816 int error;
817
818 KASSERT(solocked(so));
819
820 if (so->so_options & SO_ACCEPTCONN)
821 return EOPNOTSUPP;
822 /*
823 * If protocol is connection-based, can only connect once.
824 * Otherwise, if connected, try to disconnect first.
825 * This allows user to disconnect by connecting to, e.g.,
826 * a null address.
827 */
828 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
829 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
830 (error = sodisconnect(so))))
831 error = EISCONN;
832 else
833 error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
834
835 return error;
836 }
837
838 int
839 soconnect2(struct socket *so1, struct socket *so2)
840 {
841 KASSERT(solocked2(so1, so2));
842
843 return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
844 }
845
846 int
847 sodisconnect(struct socket *so)
848 {
849 int error;
850
851 KASSERT(solocked(so));
852
853 if ((so->so_state & SS_ISCONNECTED) == 0) {
854 error = ENOTCONN;
855 } else if (so->so_state & SS_ISDISCONNECTING) {
856 error = EALREADY;
857 } else {
858 error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
859 }
860 return (error);
861 }
862
863 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
864 /*
865 * Send on a socket.
866 * If send must go all at once and message is larger than
867 * send buffering, then hard error.
868 * Lock against other senders.
869 * If must go all at once and not enough room now, then
870 * inform user that this would block and do nothing.
871 * Otherwise, if nonblocking, send as much as possible.
872 * The data to be sent is described by "uio" if nonzero,
873 * otherwise by the mbuf chain "top" (which must be null
874 * if uio is not). Data provided in mbuf chain must be small
875 * enough to send all at once.
876 *
877 * Returns nonzero on error, timeout or signal; callers
878 * must check for short counts if EINTR/ERESTART are returned.
879 * Data and control buffers are freed on return.
880 */
881 int
882 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
883 struct mbuf *control, int flags, struct lwp *l)
884 {
885 struct mbuf **mp, *m;
886 long space, len, resid, clen, mlen;
887 int error, s, dontroute, atomic;
888 short wakeup_state = 0;
889
890 clen = 0;
891
892 /*
893 * solock() provides atomicity of access. splsoftnet() prevents
894 * protocol processing soft interrupts from interrupting us and
895 * blocking (expensive).
896 */
897 s = splsoftnet();
898 solock(so);
899 atomic = sosendallatonce(so) || top;
900 if (uio)
901 resid = uio->uio_resid;
902 else
903 resid = top->m_pkthdr.len;
904 /*
905 * In theory resid should be unsigned.
906 * However, space must be signed, as it might be less than 0
907 * if we over-committed, and we must use a signed comparison
908 * of space and resid. On the other hand, a negative resid
909 * causes us to loop sending 0-length segments to the protocol.
910 */
911 if (resid < 0) {
912 error = EINVAL;
913 goto out;
914 }
915 dontroute =
916 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
917 (so->so_proto->pr_flags & PR_ATOMIC);
918 l->l_ru.ru_msgsnd++;
919 if (control)
920 clen = control->m_len;
921 restart:
922 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
923 goto out;
924 do {
925 if (so->so_state & SS_CANTSENDMORE) {
926 error = EPIPE;
927 goto release;
928 }
929 if (so->so_error) {
930 error = so->so_error;
931 so->so_error = 0;
932 goto release;
933 }
934 if ((so->so_state & SS_ISCONNECTED) == 0) {
935 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
936 if (resid || clen == 0) {
937 error = ENOTCONN;
938 goto release;
939 }
940 } else if (addr == 0) {
941 error = EDESTADDRREQ;
942 goto release;
943 }
944 }
945 space = sbspace(&so->so_snd);
946 if (flags & MSG_OOB)
947 space += 1024;
948 if ((atomic && resid > so->so_snd.sb_hiwat) ||
949 clen > so->so_snd.sb_hiwat) {
950 error = EMSGSIZE;
951 goto release;
952 }
953 if (space < resid + clen &&
954 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
955 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
956 error = EWOULDBLOCK;
957 goto release;
958 }
959 sbunlock(&so->so_snd);
960 if (wakeup_state & SS_RESTARTSYS) {
961 error = ERESTART;
962 goto out;
963 }
964 error = sbwait(&so->so_snd);
965 if (error)
966 goto out;
967 wakeup_state = so->so_state;
968 goto restart;
969 }
970 wakeup_state = 0;
971 mp = ⊤
972 space -= clen;
973 do {
974 if (uio == NULL) {
975 /*
976 * Data is prepackaged in "top".
977 */
978 resid = 0;
979 if (flags & MSG_EOR)
980 top->m_flags |= M_EOR;
981 } else do {
982 sounlock(so);
983 splx(s);
984 if (top == NULL) {
985 m = m_gethdr(M_WAIT, MT_DATA);
986 mlen = MHLEN;
987 m->m_pkthdr.len = 0;
988 m->m_pkthdr.rcvif = NULL;
989 } else {
990 m = m_get(M_WAIT, MT_DATA);
991 mlen = MLEN;
992 }
993 MCLAIM(m, so->so_snd.sb_mowner);
994 if (sock_loan_thresh >= 0 &&
995 uio->uio_iov->iov_len >= sock_loan_thresh &&
996 space >= sock_loan_thresh &&
997 (len = sosend_loan(so, uio, m,
998 space)) != 0) {
999 SOSEND_COUNTER_INCR(&sosend_loan_big);
1000 space -= len;
1001 goto have_data;
1002 }
1003 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1004 SOSEND_COUNTER_INCR(&sosend_copy_big);
1005 m_clget(m, M_DONTWAIT);
1006 if ((m->m_flags & M_EXT) == 0)
1007 goto nopages;
1008 mlen = MCLBYTES;
1009 if (atomic && top == 0) {
1010 len = lmin(MCLBYTES - max_hdr,
1011 resid);
1012 m->m_data += max_hdr;
1013 } else
1014 len = lmin(MCLBYTES, resid);
1015 space -= len;
1016 } else {
1017 nopages:
1018 SOSEND_COUNTER_INCR(&sosend_copy_small);
1019 len = lmin(lmin(mlen, resid), space);
1020 space -= len;
1021 /*
1022 * For datagram protocols, leave room
1023 * for protocol headers in first mbuf.
1024 */
1025 if (atomic && top == 0 && len < mlen)
1026 MH_ALIGN(m, len);
1027 }
1028 error = uiomove(mtod(m, void *), (int)len, uio);
1029 have_data:
1030 resid = uio->uio_resid;
1031 m->m_len = len;
1032 *mp = m;
1033 top->m_pkthdr.len += len;
1034 s = splsoftnet();
1035 solock(so);
1036 if (error != 0)
1037 goto release;
1038 mp = &m->m_next;
1039 if (resid <= 0) {
1040 if (flags & MSG_EOR)
1041 top->m_flags |= M_EOR;
1042 break;
1043 }
1044 } while (space > 0 && atomic);
1045
1046 if (so->so_state & SS_CANTSENDMORE) {
1047 error = EPIPE;
1048 goto release;
1049 }
1050 if (dontroute)
1051 so->so_options |= SO_DONTROUTE;
1052 if (resid > 0)
1053 so->so_state |= SS_MORETOCOME;
1054 if (flags & MSG_OOB) {
1055 error = (*so->so_proto->pr_usrreqs->pr_sendoob)(so,
1056 top, control);
1057 } else {
1058 struct sockaddr *sin = NULL;
1059 if (addr) {
1060 sin = mtod(addr, struct sockaddr *);
1061 }
1062 error = (*so->so_proto->pr_usrreqs->pr_send)(so,
1063 top, sin, control, l);
1064 }
1065 if (dontroute)
1066 so->so_options &= ~SO_DONTROUTE;
1067 if (resid > 0)
1068 so->so_state &= ~SS_MORETOCOME;
1069 clen = 0;
1070 control = NULL;
1071 top = NULL;
1072 mp = ⊤
1073 if (error != 0)
1074 goto release;
1075 } while (resid && space > 0);
1076 } while (resid);
1077
1078 release:
1079 sbunlock(&so->so_snd);
1080 out:
1081 sounlock(so);
1082 splx(s);
1083 if (top)
1084 m_freem(top);
1085 if (control)
1086 m_freem(control);
1087 return (error);
1088 }
1089
1090 /*
1091 * Following replacement or removal of the first mbuf on the first
1092 * mbuf chain of a socket buffer, push necessary state changes back
1093 * into the socket buffer so that other consumers see the values
1094 * consistently. 'nextrecord' is the callers locally stored value of
1095 * the original value of sb->sb_mb->m_nextpkt which must be restored
1096 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1097 */
1098 static void
1099 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1100 {
1101
1102 KASSERT(solocked(sb->sb_so));
1103
1104 /*
1105 * First, update for the new value of nextrecord. If necessary,
1106 * make it the first record.
1107 */
1108 if (sb->sb_mb != NULL)
1109 sb->sb_mb->m_nextpkt = nextrecord;
1110 else
1111 sb->sb_mb = nextrecord;
1112
1113 /*
1114 * Now update any dependent socket buffer fields to reflect
1115 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1116 * the addition of a second clause that takes care of the
1117 * case where sb_mb has been updated, but remains the last
1118 * record.
1119 */
1120 if (sb->sb_mb == NULL) {
1121 sb->sb_mbtail = NULL;
1122 sb->sb_lastrecord = NULL;
1123 } else if (sb->sb_mb->m_nextpkt == NULL)
1124 sb->sb_lastrecord = sb->sb_mb;
1125 }
1126
1127 /*
1128 * Implement receive operations on a socket.
1129 * We depend on the way that records are added to the sockbuf
1130 * by sbappend*. In particular, each record (mbufs linked through m_next)
1131 * must begin with an address if the protocol so specifies,
1132 * followed by an optional mbuf or mbufs containing ancillary data,
1133 * and then zero or more mbufs of data.
1134 * In order to avoid blocking network interrupts for the entire time here,
1135 * we splx() while doing the actual copy to user space.
1136 * Although the sockbuf is locked, new data may still be appended,
1137 * and thus we must maintain consistency of the sockbuf during that time.
1138 *
1139 * The caller may receive the data as a single mbuf chain by supplying
1140 * an mbuf **mp0 for use in returning the chain. The uio is then used
1141 * only for the count in uio_resid.
1142 */
1143 int
1144 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1145 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1146 {
1147 struct lwp *l = curlwp;
1148 struct mbuf *m, **mp, *mt;
1149 size_t len, offset, moff, orig_resid;
1150 int atomic, flags, error, s, type;
1151 const struct protosw *pr;
1152 struct mbuf *nextrecord;
1153 int mbuf_removed = 0;
1154 const struct domain *dom;
1155 short wakeup_state = 0;
1156
1157 pr = so->so_proto;
1158 atomic = pr->pr_flags & PR_ATOMIC;
1159 dom = pr->pr_domain;
1160 mp = mp0;
1161 type = 0;
1162 orig_resid = uio->uio_resid;
1163
1164 if (paddr != NULL)
1165 *paddr = NULL;
1166 if (controlp != NULL)
1167 *controlp = NULL;
1168 if (flagsp != NULL)
1169 flags = *flagsp &~ MSG_EOR;
1170 else
1171 flags = 0;
1172
1173 if (flags & MSG_OOB) {
1174 m = m_get(M_WAIT, MT_DATA);
1175 solock(so);
1176 error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
1177 sounlock(so);
1178 if (error)
1179 goto bad;
1180 do {
1181 error = uiomove(mtod(m, void *),
1182 MIN(uio->uio_resid, m->m_len), uio);
1183 m = m_free(m);
1184 } while (uio->uio_resid > 0 && error == 0 && m);
1185 bad:
1186 if (m != NULL)
1187 m_freem(m);
1188 return error;
1189 }
1190 if (mp != NULL)
1191 *mp = NULL;
1192
1193 /*
1194 * solock() provides atomicity of access. splsoftnet() prevents
1195 * protocol processing soft interrupts from interrupting us and
1196 * blocking (expensive).
1197 */
1198 s = splsoftnet();
1199 solock(so);
1200 restart:
1201 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1202 sounlock(so);
1203 splx(s);
1204 return error;
1205 }
1206
1207 m = so->so_rcv.sb_mb;
1208 /*
1209 * If we have less data than requested, block awaiting more
1210 * (subject to any timeout) if:
1211 * 1. the current count is less than the low water mark,
1212 * 2. MSG_WAITALL is set, and it is possible to do the entire
1213 * receive operation at once if we block (resid <= hiwat), or
1214 * 3. MSG_DONTWAIT is not set.
1215 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1216 * we have to do the receive in sections, and thus risk returning
1217 * a short count if a timeout or signal occurs after we start.
1218 */
1219 if (m == NULL ||
1220 ((flags & MSG_DONTWAIT) == 0 &&
1221 so->so_rcv.sb_cc < uio->uio_resid &&
1222 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1223 ((flags & MSG_WAITALL) &&
1224 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1225 m->m_nextpkt == NULL && !atomic)) {
1226 #ifdef DIAGNOSTIC
1227 if (m == NULL && so->so_rcv.sb_cc)
1228 panic("receive 1");
1229 #endif
1230 if (so->so_error) {
1231 if (m != NULL)
1232 goto dontblock;
1233 error = so->so_error;
1234 if ((flags & MSG_PEEK) == 0)
1235 so->so_error = 0;
1236 goto release;
1237 }
1238 if (so->so_state & SS_CANTRCVMORE) {
1239 if (m != NULL)
1240 goto dontblock;
1241 else
1242 goto release;
1243 }
1244 for (; m != NULL; m = m->m_next)
1245 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1246 m = so->so_rcv.sb_mb;
1247 goto dontblock;
1248 }
1249 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1250 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1251 error = ENOTCONN;
1252 goto release;
1253 }
1254 if (uio->uio_resid == 0)
1255 goto release;
1256 if ((so->so_state & SS_NBIO) ||
1257 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1258 error = EWOULDBLOCK;
1259 goto release;
1260 }
1261 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1262 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1263 sbunlock(&so->so_rcv);
1264 if (wakeup_state & SS_RESTARTSYS)
1265 error = ERESTART;
1266 else
1267 error = sbwait(&so->so_rcv);
1268 if (error != 0) {
1269 sounlock(so);
1270 splx(s);
1271 return error;
1272 }
1273 wakeup_state = so->so_state;
1274 goto restart;
1275 }
1276 dontblock:
1277 /*
1278 * On entry here, m points to the first record of the socket buffer.
1279 * From this point onward, we maintain 'nextrecord' as a cache of the
1280 * pointer to the next record in the socket buffer. We must keep the
1281 * various socket buffer pointers and local stack versions of the
1282 * pointers in sync, pushing out modifications before dropping the
1283 * socket lock, and re-reading them when picking it up.
1284 *
1285 * Otherwise, we will race with the network stack appending new data
1286 * or records onto the socket buffer by using inconsistent/stale
1287 * versions of the field, possibly resulting in socket buffer
1288 * corruption.
1289 *
1290 * By holding the high-level sblock(), we prevent simultaneous
1291 * readers from pulling off the front of the socket buffer.
1292 */
1293 if (l != NULL)
1294 l->l_ru.ru_msgrcv++;
1295 KASSERT(m == so->so_rcv.sb_mb);
1296 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1297 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1298 nextrecord = m->m_nextpkt;
1299 if (pr->pr_flags & PR_ADDR) {
1300 #ifdef DIAGNOSTIC
1301 if (m->m_type != MT_SONAME)
1302 panic("receive 1a");
1303 #endif
1304 orig_resid = 0;
1305 if (flags & MSG_PEEK) {
1306 if (paddr)
1307 *paddr = m_copy(m, 0, m->m_len);
1308 m = m->m_next;
1309 } else {
1310 sbfree(&so->so_rcv, m);
1311 mbuf_removed = 1;
1312 if (paddr != NULL) {
1313 *paddr = m;
1314 so->so_rcv.sb_mb = m->m_next;
1315 m->m_next = NULL;
1316 m = so->so_rcv.sb_mb;
1317 } else {
1318 MFREE(m, so->so_rcv.sb_mb);
1319 m = so->so_rcv.sb_mb;
1320 }
1321 sbsync(&so->so_rcv, nextrecord);
1322 }
1323 }
1324
1325 /*
1326 * Process one or more MT_CONTROL mbufs present before any data mbufs
1327 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1328 * just copy the data; if !MSG_PEEK, we call into the protocol to
1329 * perform externalization (or freeing if controlp == NULL).
1330 */
1331 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1332 struct mbuf *cm = NULL, *cmn;
1333 struct mbuf **cme = &cm;
1334
1335 do {
1336 if (flags & MSG_PEEK) {
1337 if (controlp != NULL) {
1338 *controlp = m_copy(m, 0, m->m_len);
1339 controlp = &(*controlp)->m_next;
1340 }
1341 m = m->m_next;
1342 } else {
1343 sbfree(&so->so_rcv, m);
1344 so->so_rcv.sb_mb = m->m_next;
1345 m->m_next = NULL;
1346 *cme = m;
1347 cme = &(*cme)->m_next;
1348 m = so->so_rcv.sb_mb;
1349 }
1350 } while (m != NULL && m->m_type == MT_CONTROL);
1351 if ((flags & MSG_PEEK) == 0)
1352 sbsync(&so->so_rcv, nextrecord);
1353 for (; cm != NULL; cm = cmn) {
1354 cmn = cm->m_next;
1355 cm->m_next = NULL;
1356 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1357 if (controlp != NULL) {
1358 if (dom->dom_externalize != NULL &&
1359 type == SCM_RIGHTS) {
1360 sounlock(so);
1361 splx(s);
1362 error = (*dom->dom_externalize)(cm, l,
1363 (flags & MSG_CMSG_CLOEXEC) ?
1364 O_CLOEXEC : 0);
1365 s = splsoftnet();
1366 solock(so);
1367 }
1368 *controlp = cm;
1369 while (*controlp != NULL)
1370 controlp = &(*controlp)->m_next;
1371 } else {
1372 /*
1373 * Dispose of any SCM_RIGHTS message that went
1374 * through the read path rather than recv.
1375 */
1376 if (dom->dom_dispose != NULL &&
1377 type == SCM_RIGHTS) {
1378 sounlock(so);
1379 (*dom->dom_dispose)(cm);
1380 solock(so);
1381 }
1382 m_freem(cm);
1383 }
1384 }
1385 if (m != NULL)
1386 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1387 else
1388 nextrecord = so->so_rcv.sb_mb;
1389 orig_resid = 0;
1390 }
1391
1392 /* If m is non-NULL, we have some data to read. */
1393 if (__predict_true(m != NULL)) {
1394 type = m->m_type;
1395 if (type == MT_OOBDATA)
1396 flags |= MSG_OOB;
1397 }
1398 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1399 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1400
1401 moff = 0;
1402 offset = 0;
1403 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1404 if (m->m_type == MT_OOBDATA) {
1405 if (type != MT_OOBDATA)
1406 break;
1407 } else if (type == MT_OOBDATA)
1408 break;
1409 #ifdef DIAGNOSTIC
1410 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1411 panic("receive 3");
1412 #endif
1413 so->so_state &= ~SS_RCVATMARK;
1414 wakeup_state = 0;
1415 len = uio->uio_resid;
1416 if (so->so_oobmark && len > so->so_oobmark - offset)
1417 len = so->so_oobmark - offset;
1418 if (len > m->m_len - moff)
1419 len = m->m_len - moff;
1420 /*
1421 * If mp is set, just pass back the mbufs.
1422 * Otherwise copy them out via the uio, then free.
1423 * Sockbuf must be consistent here (points to current mbuf,
1424 * it points to next record) when we drop priority;
1425 * we must note any additions to the sockbuf when we
1426 * block interrupts again.
1427 */
1428 if (mp == NULL) {
1429 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1430 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1431 sounlock(so);
1432 splx(s);
1433 error = uiomove(mtod(m, char *) + moff, len, uio);
1434 s = splsoftnet();
1435 solock(so);
1436 if (error != 0) {
1437 /*
1438 * If any part of the record has been removed
1439 * (such as the MT_SONAME mbuf, which will
1440 * happen when PR_ADDR, and thus also
1441 * PR_ATOMIC, is set), then drop the entire
1442 * record to maintain the atomicity of the
1443 * receive operation.
1444 *
1445 * This avoids a later panic("receive 1a")
1446 * when compiled with DIAGNOSTIC.
1447 */
1448 if (m && mbuf_removed && atomic)
1449 (void) sbdroprecord(&so->so_rcv);
1450
1451 goto release;
1452 }
1453 } else
1454 uio->uio_resid -= len;
1455 if (len == m->m_len - moff) {
1456 if (m->m_flags & M_EOR)
1457 flags |= MSG_EOR;
1458 if (flags & MSG_PEEK) {
1459 m = m->m_next;
1460 moff = 0;
1461 } else {
1462 nextrecord = m->m_nextpkt;
1463 sbfree(&so->so_rcv, m);
1464 if (mp) {
1465 *mp = m;
1466 mp = &m->m_next;
1467 so->so_rcv.sb_mb = m = m->m_next;
1468 *mp = NULL;
1469 } else {
1470 MFREE(m, so->so_rcv.sb_mb);
1471 m = so->so_rcv.sb_mb;
1472 }
1473 /*
1474 * If m != NULL, we also know that
1475 * so->so_rcv.sb_mb != NULL.
1476 */
1477 KASSERT(so->so_rcv.sb_mb == m);
1478 if (m) {
1479 m->m_nextpkt = nextrecord;
1480 if (nextrecord == NULL)
1481 so->so_rcv.sb_lastrecord = m;
1482 } else {
1483 so->so_rcv.sb_mb = nextrecord;
1484 SB_EMPTY_FIXUP(&so->so_rcv);
1485 }
1486 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1487 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1488 }
1489 } else if (flags & MSG_PEEK)
1490 moff += len;
1491 else {
1492 if (mp != NULL) {
1493 mt = m_copym(m, 0, len, M_NOWAIT);
1494 if (__predict_false(mt == NULL)) {
1495 sounlock(so);
1496 mt = m_copym(m, 0, len, M_WAIT);
1497 solock(so);
1498 }
1499 *mp = mt;
1500 }
1501 m->m_data += len;
1502 m->m_len -= len;
1503 so->so_rcv.sb_cc -= len;
1504 }
1505 if (so->so_oobmark) {
1506 if ((flags & MSG_PEEK) == 0) {
1507 so->so_oobmark -= len;
1508 if (so->so_oobmark == 0) {
1509 so->so_state |= SS_RCVATMARK;
1510 break;
1511 }
1512 } else {
1513 offset += len;
1514 if (offset == so->so_oobmark)
1515 break;
1516 }
1517 }
1518 if (flags & MSG_EOR)
1519 break;
1520 /*
1521 * If the MSG_WAITALL flag is set (for non-atomic socket),
1522 * we must not quit until "uio->uio_resid == 0" or an error
1523 * termination. If a signal/timeout occurs, return
1524 * with a short count but without error.
1525 * Keep sockbuf locked against other readers.
1526 */
1527 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1528 !sosendallatonce(so) && !nextrecord) {
1529 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1530 break;
1531 /*
1532 * If we are peeking and the socket receive buffer is
1533 * full, stop since we can't get more data to peek at.
1534 */
1535 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1536 break;
1537 /*
1538 * If we've drained the socket buffer, tell the
1539 * protocol in case it needs to do something to
1540 * get it filled again.
1541 */
1542 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1543 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1544 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1545 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1546 if (wakeup_state & SS_RESTARTSYS)
1547 error = ERESTART;
1548 else
1549 error = sbwait(&so->so_rcv);
1550 if (error != 0) {
1551 sbunlock(&so->so_rcv);
1552 sounlock(so);
1553 splx(s);
1554 return 0;
1555 }
1556 if ((m = so->so_rcv.sb_mb) != NULL)
1557 nextrecord = m->m_nextpkt;
1558 wakeup_state = so->so_state;
1559 }
1560 }
1561
1562 if (m && atomic) {
1563 flags |= MSG_TRUNC;
1564 if ((flags & MSG_PEEK) == 0)
1565 (void) sbdroprecord(&so->so_rcv);
1566 }
1567 if ((flags & MSG_PEEK) == 0) {
1568 if (m == NULL) {
1569 /*
1570 * First part is an inline SB_EMPTY_FIXUP(). Second
1571 * part makes sure sb_lastrecord is up-to-date if
1572 * there is still data in the socket buffer.
1573 */
1574 so->so_rcv.sb_mb = nextrecord;
1575 if (so->so_rcv.sb_mb == NULL) {
1576 so->so_rcv.sb_mbtail = NULL;
1577 so->so_rcv.sb_lastrecord = NULL;
1578 } else if (nextrecord->m_nextpkt == NULL)
1579 so->so_rcv.sb_lastrecord = nextrecord;
1580 }
1581 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1582 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1583 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1584 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1585 }
1586 if (orig_resid == uio->uio_resid && orig_resid &&
1587 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1588 sbunlock(&so->so_rcv);
1589 goto restart;
1590 }
1591
1592 if (flagsp != NULL)
1593 *flagsp |= flags;
1594 release:
1595 sbunlock(&so->so_rcv);
1596 sounlock(so);
1597 splx(s);
1598 return error;
1599 }
1600
1601 int
1602 soshutdown(struct socket *so, int how)
1603 {
1604 const struct protosw *pr;
1605 int error;
1606
1607 KASSERT(solocked(so));
1608
1609 pr = so->so_proto;
1610 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1611 return (EINVAL);
1612
1613 if (how == SHUT_RD || how == SHUT_RDWR) {
1614 sorflush(so);
1615 error = 0;
1616 }
1617 if (how == SHUT_WR || how == SHUT_RDWR)
1618 error = (*pr->pr_usrreqs->pr_shutdown)(so);
1619
1620 return error;
1621 }
1622
1623 void
1624 sorestart(struct socket *so)
1625 {
1626 /*
1627 * An application has called close() on an fd on which another
1628 * of its threads has called a socket system call.
1629 * Mark this and wake everyone up, and code that would block again
1630 * instead returns ERESTART.
1631 * On system call re-entry the fd is validated and EBADF returned.
1632 * Any other fd will block again on the 2nd syscall.
1633 */
1634 solock(so);
1635 so->so_state |= SS_RESTARTSYS;
1636 cv_broadcast(&so->so_cv);
1637 cv_broadcast(&so->so_snd.sb_cv);
1638 cv_broadcast(&so->so_rcv.sb_cv);
1639 sounlock(so);
1640 }
1641
1642 void
1643 sorflush(struct socket *so)
1644 {
1645 struct sockbuf *sb, asb;
1646 const struct protosw *pr;
1647
1648 KASSERT(solocked(so));
1649
1650 sb = &so->so_rcv;
1651 pr = so->so_proto;
1652 socantrcvmore(so);
1653 sb->sb_flags |= SB_NOINTR;
1654 (void )sblock(sb, M_WAITOK);
1655 sbunlock(sb);
1656 asb = *sb;
1657 /*
1658 * Clear most of the sockbuf structure, but leave some of the
1659 * fields valid.
1660 */
1661 memset(&sb->sb_startzero, 0,
1662 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1663 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1664 sounlock(so);
1665 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1666 solock(so);
1667 }
1668 sbrelease(&asb, so);
1669 }
1670
1671 /*
1672 * internal set SOL_SOCKET options
1673 */
1674 static int
1675 sosetopt1(struct socket *so, const struct sockopt *sopt)
1676 {
1677 int error = EINVAL, opt;
1678 int optval = 0; /* XXX: gcc */
1679 struct linger l;
1680 struct timeval tv;
1681
1682 switch ((opt = sopt->sopt_name)) {
1683
1684 case SO_ACCEPTFILTER:
1685 error = accept_filt_setopt(so, sopt);
1686 KASSERT(solocked(so));
1687 break;
1688
1689 case SO_LINGER:
1690 error = sockopt_get(sopt, &l, sizeof(l));
1691 solock(so);
1692 if (error)
1693 break;
1694 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1695 l.l_linger > (INT_MAX / hz)) {
1696 error = EDOM;
1697 break;
1698 }
1699 so->so_linger = l.l_linger;
1700 if (l.l_onoff)
1701 so->so_options |= SO_LINGER;
1702 else
1703 so->so_options &= ~SO_LINGER;
1704 break;
1705
1706 case SO_DEBUG:
1707 case SO_KEEPALIVE:
1708 case SO_DONTROUTE:
1709 case SO_USELOOPBACK:
1710 case SO_BROADCAST:
1711 case SO_REUSEADDR:
1712 case SO_REUSEPORT:
1713 case SO_OOBINLINE:
1714 case SO_TIMESTAMP:
1715 case SO_NOSIGPIPE:
1716 #ifdef SO_OTIMESTAMP
1717 case SO_OTIMESTAMP:
1718 #endif
1719 error = sockopt_getint(sopt, &optval);
1720 solock(so);
1721 if (error)
1722 break;
1723 if (optval)
1724 so->so_options |= opt;
1725 else
1726 so->so_options &= ~opt;
1727 break;
1728
1729 case SO_SNDBUF:
1730 case SO_RCVBUF:
1731 case SO_SNDLOWAT:
1732 case SO_RCVLOWAT:
1733 error = sockopt_getint(sopt, &optval);
1734 solock(so);
1735 if (error)
1736 break;
1737
1738 /*
1739 * Values < 1 make no sense for any of these
1740 * options, so disallow them.
1741 */
1742 if (optval < 1) {
1743 error = EINVAL;
1744 break;
1745 }
1746
1747 switch (opt) {
1748 case SO_SNDBUF:
1749 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1750 error = ENOBUFS;
1751 break;
1752 }
1753 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1754 break;
1755
1756 case SO_RCVBUF:
1757 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1758 error = ENOBUFS;
1759 break;
1760 }
1761 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1762 break;
1763
1764 /*
1765 * Make sure the low-water is never greater than
1766 * the high-water.
1767 */
1768 case SO_SNDLOWAT:
1769 if (optval > so->so_snd.sb_hiwat)
1770 optval = so->so_snd.sb_hiwat;
1771
1772 so->so_snd.sb_lowat = optval;
1773 break;
1774
1775 case SO_RCVLOWAT:
1776 if (optval > so->so_rcv.sb_hiwat)
1777 optval = so->so_rcv.sb_hiwat;
1778
1779 so->so_rcv.sb_lowat = optval;
1780 break;
1781 }
1782 break;
1783
1784 #ifdef COMPAT_50
1785 case SO_OSNDTIMEO:
1786 case SO_ORCVTIMEO: {
1787 struct timeval50 otv;
1788 error = sockopt_get(sopt, &otv, sizeof(otv));
1789 if (error) {
1790 solock(so);
1791 break;
1792 }
1793 timeval50_to_timeval(&otv, &tv);
1794 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1795 error = 0;
1796 /*FALLTHROUGH*/
1797 }
1798 #endif /* COMPAT_50 */
1799
1800 case SO_SNDTIMEO:
1801 case SO_RCVTIMEO:
1802 if (error)
1803 error = sockopt_get(sopt, &tv, sizeof(tv));
1804 solock(so);
1805 if (error)
1806 break;
1807
1808 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1809 error = EDOM;
1810 break;
1811 }
1812
1813 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1814 if (optval == 0 && tv.tv_usec != 0)
1815 optval = 1;
1816
1817 switch (opt) {
1818 case SO_SNDTIMEO:
1819 so->so_snd.sb_timeo = optval;
1820 break;
1821 case SO_RCVTIMEO:
1822 so->so_rcv.sb_timeo = optval;
1823 break;
1824 }
1825 break;
1826
1827 default:
1828 solock(so);
1829 error = ENOPROTOOPT;
1830 break;
1831 }
1832 KASSERT(solocked(so));
1833 return error;
1834 }
1835
1836 int
1837 sosetopt(struct socket *so, struct sockopt *sopt)
1838 {
1839 int error, prerr;
1840
1841 if (sopt->sopt_level == SOL_SOCKET) {
1842 error = sosetopt1(so, sopt);
1843 KASSERT(solocked(so));
1844 } else {
1845 error = ENOPROTOOPT;
1846 solock(so);
1847 }
1848
1849 if ((error == 0 || error == ENOPROTOOPT) &&
1850 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1851 /* give the protocol stack a shot */
1852 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1853 if (prerr == 0)
1854 error = 0;
1855 else if (prerr != ENOPROTOOPT)
1856 error = prerr;
1857 }
1858 sounlock(so);
1859 return error;
1860 }
1861
1862 /*
1863 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1864 */
1865 int
1866 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1867 const void *val, size_t valsize)
1868 {
1869 struct sockopt sopt;
1870 int error;
1871
1872 KASSERT(valsize == 0 || val != NULL);
1873
1874 sockopt_init(&sopt, level, name, valsize);
1875 sockopt_set(&sopt, val, valsize);
1876
1877 error = sosetopt(so, &sopt);
1878
1879 sockopt_destroy(&sopt);
1880
1881 return error;
1882 }
1883
1884 /*
1885 * internal get SOL_SOCKET options
1886 */
1887 static int
1888 sogetopt1(struct socket *so, struct sockopt *sopt)
1889 {
1890 int error, optval, opt;
1891 struct linger l;
1892 struct timeval tv;
1893
1894 switch ((opt = sopt->sopt_name)) {
1895
1896 case SO_ACCEPTFILTER:
1897 error = accept_filt_getopt(so, sopt);
1898 break;
1899
1900 case SO_LINGER:
1901 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1902 l.l_linger = so->so_linger;
1903
1904 error = sockopt_set(sopt, &l, sizeof(l));
1905 break;
1906
1907 case SO_USELOOPBACK:
1908 case SO_DONTROUTE:
1909 case SO_DEBUG:
1910 case SO_KEEPALIVE:
1911 case SO_REUSEADDR:
1912 case SO_REUSEPORT:
1913 case SO_BROADCAST:
1914 case SO_OOBINLINE:
1915 case SO_TIMESTAMP:
1916 case SO_NOSIGPIPE:
1917 #ifdef SO_OTIMESTAMP
1918 case SO_OTIMESTAMP:
1919 #endif
1920 case SO_ACCEPTCONN:
1921 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1922 break;
1923
1924 case SO_TYPE:
1925 error = sockopt_setint(sopt, so->so_type);
1926 break;
1927
1928 case SO_ERROR:
1929 error = sockopt_setint(sopt, so->so_error);
1930 so->so_error = 0;
1931 break;
1932
1933 case SO_SNDBUF:
1934 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1935 break;
1936
1937 case SO_RCVBUF:
1938 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1939 break;
1940
1941 case SO_SNDLOWAT:
1942 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1943 break;
1944
1945 case SO_RCVLOWAT:
1946 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1947 break;
1948
1949 #ifdef COMPAT_50
1950 case SO_OSNDTIMEO:
1951 case SO_ORCVTIMEO: {
1952 struct timeval50 otv;
1953
1954 optval = (opt == SO_OSNDTIMEO ?
1955 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1956
1957 otv.tv_sec = optval / hz;
1958 otv.tv_usec = (optval % hz) * tick;
1959
1960 error = sockopt_set(sopt, &otv, sizeof(otv));
1961 break;
1962 }
1963 #endif /* COMPAT_50 */
1964
1965 case SO_SNDTIMEO:
1966 case SO_RCVTIMEO:
1967 optval = (opt == SO_SNDTIMEO ?
1968 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1969
1970 tv.tv_sec = optval / hz;
1971 tv.tv_usec = (optval % hz) * tick;
1972
1973 error = sockopt_set(sopt, &tv, sizeof(tv));
1974 break;
1975
1976 case SO_OVERFLOWED:
1977 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1978 break;
1979
1980 default:
1981 error = ENOPROTOOPT;
1982 break;
1983 }
1984
1985 return (error);
1986 }
1987
1988 int
1989 sogetopt(struct socket *so, struct sockopt *sopt)
1990 {
1991 int error;
1992
1993 solock(so);
1994 if (sopt->sopt_level != SOL_SOCKET) {
1995 if (so->so_proto && so->so_proto->pr_ctloutput) {
1996 error = ((*so->so_proto->pr_ctloutput)
1997 (PRCO_GETOPT, so, sopt));
1998 } else
1999 error = (ENOPROTOOPT);
2000 } else {
2001 error = sogetopt1(so, sopt);
2002 }
2003 sounlock(so);
2004 return (error);
2005 }
2006
2007 /*
2008 * alloc sockopt data buffer buffer
2009 * - will be released at destroy
2010 */
2011 static int
2012 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2013 {
2014
2015 KASSERT(sopt->sopt_size == 0);
2016
2017 if (len > sizeof(sopt->sopt_buf)) {
2018 sopt->sopt_data = kmem_zalloc(len, kmflag);
2019 if (sopt->sopt_data == NULL)
2020 return ENOMEM;
2021 } else
2022 sopt->sopt_data = sopt->sopt_buf;
2023
2024 sopt->sopt_size = len;
2025 return 0;
2026 }
2027
2028 /*
2029 * initialise sockopt storage
2030 * - MAY sleep during allocation
2031 */
2032 void
2033 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2034 {
2035
2036 memset(sopt, 0, sizeof(*sopt));
2037
2038 sopt->sopt_level = level;
2039 sopt->sopt_name = name;
2040 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2041 }
2042
2043 /*
2044 * destroy sockopt storage
2045 * - will release any held memory references
2046 */
2047 void
2048 sockopt_destroy(struct sockopt *sopt)
2049 {
2050
2051 if (sopt->sopt_data != sopt->sopt_buf)
2052 kmem_free(sopt->sopt_data, sopt->sopt_size);
2053
2054 memset(sopt, 0, sizeof(*sopt));
2055 }
2056
2057 /*
2058 * set sockopt value
2059 * - value is copied into sockopt
2060 * - memory is allocated when necessary, will not sleep
2061 */
2062 int
2063 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2064 {
2065 int error;
2066
2067 if (sopt->sopt_size == 0) {
2068 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2069 if (error)
2070 return error;
2071 }
2072
2073 KASSERT(sopt->sopt_size == len);
2074 memcpy(sopt->sopt_data, buf, len);
2075 return 0;
2076 }
2077
2078 /*
2079 * common case of set sockopt integer value
2080 */
2081 int
2082 sockopt_setint(struct sockopt *sopt, int val)
2083 {
2084
2085 return sockopt_set(sopt, &val, sizeof(int));
2086 }
2087
2088 /*
2089 * get sockopt value
2090 * - correct size must be given
2091 */
2092 int
2093 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2094 {
2095
2096 if (sopt->sopt_size != len)
2097 return EINVAL;
2098
2099 memcpy(buf, sopt->sopt_data, len);
2100 return 0;
2101 }
2102
2103 /*
2104 * common case of get sockopt integer value
2105 */
2106 int
2107 sockopt_getint(const struct sockopt *sopt, int *valp)
2108 {
2109
2110 return sockopt_get(sopt, valp, sizeof(int));
2111 }
2112
2113 /*
2114 * set sockopt value from mbuf
2115 * - ONLY for legacy code
2116 * - mbuf is released by sockopt
2117 * - will not sleep
2118 */
2119 int
2120 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2121 {
2122 size_t len;
2123 int error;
2124
2125 len = m_length(m);
2126
2127 if (sopt->sopt_size == 0) {
2128 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2129 if (error)
2130 return error;
2131 }
2132
2133 KASSERT(sopt->sopt_size == len);
2134 m_copydata(m, 0, len, sopt->sopt_data);
2135 m_freem(m);
2136
2137 return 0;
2138 }
2139
2140 /*
2141 * get sockopt value into mbuf
2142 * - ONLY for legacy code
2143 * - mbuf to be released by the caller
2144 * - will not sleep
2145 */
2146 struct mbuf *
2147 sockopt_getmbuf(const struct sockopt *sopt)
2148 {
2149 struct mbuf *m;
2150
2151 if (sopt->sopt_size > MCLBYTES)
2152 return NULL;
2153
2154 m = m_get(M_DONTWAIT, MT_SOOPTS);
2155 if (m == NULL)
2156 return NULL;
2157
2158 if (sopt->sopt_size > MLEN) {
2159 MCLGET(m, M_DONTWAIT);
2160 if ((m->m_flags & M_EXT) == 0) {
2161 m_free(m);
2162 return NULL;
2163 }
2164 }
2165
2166 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2167 m->m_len = sopt->sopt_size;
2168
2169 return m;
2170 }
2171
2172 void
2173 sohasoutofband(struct socket *so)
2174 {
2175
2176 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2177 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2178 }
2179
2180 static void
2181 filt_sordetach(struct knote *kn)
2182 {
2183 struct socket *so;
2184
2185 so = ((file_t *)kn->kn_obj)->f_socket;
2186 solock(so);
2187 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2188 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2189 so->so_rcv.sb_flags &= ~SB_KNOTE;
2190 sounlock(so);
2191 }
2192
2193 /*ARGSUSED*/
2194 static int
2195 filt_soread(struct knote *kn, long hint)
2196 {
2197 struct socket *so;
2198 int rv;
2199
2200 so = ((file_t *)kn->kn_obj)->f_socket;
2201 if (hint != NOTE_SUBMIT)
2202 solock(so);
2203 kn->kn_data = so->so_rcv.sb_cc;
2204 if (so->so_state & SS_CANTRCVMORE) {
2205 kn->kn_flags |= EV_EOF;
2206 kn->kn_fflags = so->so_error;
2207 rv = 1;
2208 } else if (so->so_error) /* temporary udp error */
2209 rv = 1;
2210 else if (kn->kn_sfflags & NOTE_LOWAT)
2211 rv = (kn->kn_data >= kn->kn_sdata);
2212 else
2213 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2214 if (hint != NOTE_SUBMIT)
2215 sounlock(so);
2216 return rv;
2217 }
2218
2219 static void
2220 filt_sowdetach(struct knote *kn)
2221 {
2222 struct socket *so;
2223
2224 so = ((file_t *)kn->kn_obj)->f_socket;
2225 solock(so);
2226 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2227 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2228 so->so_snd.sb_flags &= ~SB_KNOTE;
2229 sounlock(so);
2230 }
2231
2232 /*ARGSUSED*/
2233 static int
2234 filt_sowrite(struct knote *kn, long hint)
2235 {
2236 struct socket *so;
2237 int rv;
2238
2239 so = ((file_t *)kn->kn_obj)->f_socket;
2240 if (hint != NOTE_SUBMIT)
2241 solock(so);
2242 kn->kn_data = sbspace(&so->so_snd);
2243 if (so->so_state & SS_CANTSENDMORE) {
2244 kn->kn_flags |= EV_EOF;
2245 kn->kn_fflags = so->so_error;
2246 rv = 1;
2247 } else if (so->so_error) /* temporary udp error */
2248 rv = 1;
2249 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2250 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2251 rv = 0;
2252 else if (kn->kn_sfflags & NOTE_LOWAT)
2253 rv = (kn->kn_data >= kn->kn_sdata);
2254 else
2255 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2256 if (hint != NOTE_SUBMIT)
2257 sounlock(so);
2258 return rv;
2259 }
2260
2261 /*ARGSUSED*/
2262 static int
2263 filt_solisten(struct knote *kn, long hint)
2264 {
2265 struct socket *so;
2266 int rv;
2267
2268 so = ((file_t *)kn->kn_obj)->f_socket;
2269
2270 /*
2271 * Set kn_data to number of incoming connections, not
2272 * counting partial (incomplete) connections.
2273 */
2274 if (hint != NOTE_SUBMIT)
2275 solock(so);
2276 kn->kn_data = so->so_qlen;
2277 rv = (kn->kn_data > 0);
2278 if (hint != NOTE_SUBMIT)
2279 sounlock(so);
2280 return rv;
2281 }
2282
2283 static const struct filterops solisten_filtops =
2284 { 1, NULL, filt_sordetach, filt_solisten };
2285 static const struct filterops soread_filtops =
2286 { 1, NULL, filt_sordetach, filt_soread };
2287 static const struct filterops sowrite_filtops =
2288 { 1, NULL, filt_sowdetach, filt_sowrite };
2289
2290 int
2291 soo_kqfilter(struct file *fp, struct knote *kn)
2292 {
2293 struct socket *so;
2294 struct sockbuf *sb;
2295
2296 so = ((file_t *)kn->kn_obj)->f_socket;
2297 solock(so);
2298 switch (kn->kn_filter) {
2299 case EVFILT_READ:
2300 if (so->so_options & SO_ACCEPTCONN)
2301 kn->kn_fop = &solisten_filtops;
2302 else
2303 kn->kn_fop = &soread_filtops;
2304 sb = &so->so_rcv;
2305 break;
2306 case EVFILT_WRITE:
2307 kn->kn_fop = &sowrite_filtops;
2308 sb = &so->so_snd;
2309 break;
2310 default:
2311 sounlock(so);
2312 return (EINVAL);
2313 }
2314 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2315 sb->sb_flags |= SB_KNOTE;
2316 sounlock(so);
2317 return (0);
2318 }
2319
2320 static int
2321 sodopoll(struct socket *so, int events)
2322 {
2323 int revents;
2324
2325 revents = 0;
2326
2327 if (events & (POLLIN | POLLRDNORM))
2328 if (soreadable(so))
2329 revents |= events & (POLLIN | POLLRDNORM);
2330
2331 if (events & (POLLOUT | POLLWRNORM))
2332 if (sowritable(so))
2333 revents |= events & (POLLOUT | POLLWRNORM);
2334
2335 if (events & (POLLPRI | POLLRDBAND))
2336 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2337 revents |= events & (POLLPRI | POLLRDBAND);
2338
2339 return revents;
2340 }
2341
2342 int
2343 sopoll(struct socket *so, int events)
2344 {
2345 int revents = 0;
2346
2347 #ifndef DIAGNOSTIC
2348 /*
2349 * Do a quick, unlocked check in expectation that the socket
2350 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2351 * as the solocked() assertions will fail.
2352 */
2353 if ((revents = sodopoll(so, events)) != 0)
2354 return revents;
2355 #endif
2356
2357 solock(so);
2358 if ((revents = sodopoll(so, events)) == 0) {
2359 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2360 selrecord(curlwp, &so->so_rcv.sb_sel);
2361 so->so_rcv.sb_flags |= SB_NOTIFY;
2362 }
2363
2364 if (events & (POLLOUT | POLLWRNORM)) {
2365 selrecord(curlwp, &so->so_snd.sb_sel);
2366 so->so_snd.sb_flags |= SB_NOTIFY;
2367 }
2368 }
2369 sounlock(so);
2370
2371 return revents;
2372 }
2373
2374
2375 #include <sys/sysctl.h>
2376
2377 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2378 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2379
2380 /*
2381 * sysctl helper routine for kern.somaxkva. ensures that the given
2382 * value is not too small.
2383 * (XXX should we maybe make sure it's not too large as well?)
2384 */
2385 static int
2386 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2387 {
2388 int error, new_somaxkva;
2389 struct sysctlnode node;
2390
2391 new_somaxkva = somaxkva;
2392 node = *rnode;
2393 node.sysctl_data = &new_somaxkva;
2394 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2395 if (error || newp == NULL)
2396 return (error);
2397
2398 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2399 return (EINVAL);
2400
2401 mutex_enter(&so_pendfree_lock);
2402 somaxkva = new_somaxkva;
2403 cv_broadcast(&socurkva_cv);
2404 mutex_exit(&so_pendfree_lock);
2405
2406 return (error);
2407 }
2408
2409 /*
2410 * sysctl helper routine for kern.sbmax. Basically just ensures that
2411 * any new value is not too small.
2412 */
2413 static int
2414 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2415 {
2416 int error, new_sbmax;
2417 struct sysctlnode node;
2418
2419 new_sbmax = sb_max;
2420 node = *rnode;
2421 node.sysctl_data = &new_sbmax;
2422 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2423 if (error || newp == NULL)
2424 return (error);
2425
2426 KERNEL_LOCK(1, NULL);
2427 error = sb_max_set(new_sbmax);
2428 KERNEL_UNLOCK_ONE(NULL);
2429
2430 return (error);
2431 }
2432
2433 static void
2434 sysctl_kern_socket_setup(void)
2435 {
2436
2437 KASSERT(socket_sysctllog == NULL);
2438
2439 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2440 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2441 CTLTYPE_INT, "somaxkva",
2442 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2443 "used for socket buffers"),
2444 sysctl_kern_somaxkva, 0, NULL, 0,
2445 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2446
2447 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2448 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2449 CTLTYPE_INT, "sbmax",
2450 SYSCTL_DESCR("Maximum socket buffer size"),
2451 sysctl_kern_sbmax, 0, NULL, 0,
2452 CTL_KERN, KERN_SBMAX, CTL_EOL);
2453 }
2454