Home | History | Annotate | Line # | Download | only in kern
uipc_socket.c revision 1.241
      1 /*	$NetBSD: uipc_socket.c,v 1.241 2015/05/02 20:10:26 rtr Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 2004 The FreeBSD Foundation
     34  * Copyright (c) 2004 Robert Watson
     35  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     36  *	The Regents of the University of California.  All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. Neither the name of the University nor the names of its contributors
     47  *    may be used to endorse or promote products derived from this software
     48  *    without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     51  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     52  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     53  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     54  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     55  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     56  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     58  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     59  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     60  * SUCH DAMAGE.
     61  *
     62  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
     63  */
     64 
     65 /*
     66  * Socket operation routines.
     67  *
     68  * These routines are called by the routines in sys_socket.c or from a
     69  * system process, and implement the semantics of socket operations by
     70  * switching out to the protocol specific routines.
     71  */
     72 
     73 #include <sys/cdefs.h>
     74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.241 2015/05/02 20:10:26 rtr Exp $");
     75 
     76 #include "opt_compat_netbsd.h"
     77 #include "opt_sock_counters.h"
     78 #include "opt_sosend_loan.h"
     79 #include "opt_mbuftrace.h"
     80 #include "opt_somaxkva.h"
     81 #include "opt_multiprocessor.h"	/* XXX */
     82 
     83 #include <sys/param.h>
     84 #include <sys/systm.h>
     85 #include <sys/proc.h>
     86 #include <sys/file.h>
     87 #include <sys/filedesc.h>
     88 #include <sys/kmem.h>
     89 #include <sys/mbuf.h>
     90 #include <sys/domain.h>
     91 #include <sys/kernel.h>
     92 #include <sys/protosw.h>
     93 #include <sys/socket.h>
     94 #include <sys/socketvar.h>
     95 #include <sys/signalvar.h>
     96 #include <sys/resourcevar.h>
     97 #include <sys/uidinfo.h>
     98 #include <sys/event.h>
     99 #include <sys/poll.h>
    100 #include <sys/kauth.h>
    101 #include <sys/mutex.h>
    102 #include <sys/condvar.h>
    103 #include <sys/kthread.h>
    104 
    105 #ifdef COMPAT_50
    106 #include <compat/sys/time.h>
    107 #include <compat/sys/socket.h>
    108 #endif
    109 
    110 #include <uvm/uvm_extern.h>
    111 #include <uvm/uvm_loan.h>
    112 #include <uvm/uvm_page.h>
    113 
    114 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
    115 
    116 extern const struct fileops socketops;
    117 
    118 extern int	somaxconn;			/* patchable (XXX sysctl) */
    119 int		somaxconn = SOMAXCONN;
    120 kmutex_t	*softnet_lock;
    121 
    122 #ifdef SOSEND_COUNTERS
    123 #include <sys/device.h>
    124 
    125 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    126     NULL, "sosend", "loan big");
    127 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    128     NULL, "sosend", "copy big");
    129 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    130     NULL, "sosend", "copy small");
    131 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    132     NULL, "sosend", "kva limit");
    133 
    134 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
    135 
    136 EVCNT_ATTACH_STATIC(sosend_loan_big);
    137 EVCNT_ATTACH_STATIC(sosend_copy_big);
    138 EVCNT_ATTACH_STATIC(sosend_copy_small);
    139 EVCNT_ATTACH_STATIC(sosend_kvalimit);
    140 #else
    141 
    142 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
    143 
    144 #endif /* SOSEND_COUNTERS */
    145 
    146 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
    147 int sock_loan_thresh = -1;
    148 #else
    149 int sock_loan_thresh = 4096;
    150 #endif
    151 
    152 static kmutex_t so_pendfree_lock;
    153 static struct mbuf *so_pendfree = NULL;
    154 
    155 #ifndef SOMAXKVA
    156 #define	SOMAXKVA (16 * 1024 * 1024)
    157 #endif
    158 int somaxkva = SOMAXKVA;
    159 static int socurkva;
    160 static kcondvar_t socurkva_cv;
    161 
    162 static kauth_listener_t socket_listener;
    163 
    164 #define	SOCK_LOAN_CHUNK		65536
    165 
    166 static void sopendfree_thread(void *);
    167 static kcondvar_t pendfree_thread_cv;
    168 static lwp_t *sopendfree_lwp;
    169 
    170 static void sysctl_kern_socket_setup(void);
    171 static struct sysctllog *socket_sysctllog;
    172 
    173 static vsize_t
    174 sokvareserve(struct socket *so, vsize_t len)
    175 {
    176 	int error;
    177 
    178 	mutex_enter(&so_pendfree_lock);
    179 	while (socurkva + len > somaxkva) {
    180 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
    181 		error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
    182 		if (error) {
    183 			len = 0;
    184 			break;
    185 		}
    186 	}
    187 	socurkva += len;
    188 	mutex_exit(&so_pendfree_lock);
    189 	return len;
    190 }
    191 
    192 static void
    193 sokvaunreserve(vsize_t len)
    194 {
    195 
    196 	mutex_enter(&so_pendfree_lock);
    197 	socurkva -= len;
    198 	cv_broadcast(&socurkva_cv);
    199 	mutex_exit(&so_pendfree_lock);
    200 }
    201 
    202 /*
    203  * sokvaalloc: allocate kva for loan.
    204  */
    205 
    206 vaddr_t
    207 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
    208 {
    209 	vaddr_t lva;
    210 
    211 	/*
    212 	 * reserve kva.
    213 	 */
    214 
    215 	if (sokvareserve(so, len) == 0)
    216 		return 0;
    217 
    218 	/*
    219 	 * allocate kva.
    220 	 */
    221 
    222 	lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
    223 	    UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
    224 	if (lva == 0) {
    225 		sokvaunreserve(len);
    226 		return (0);
    227 	}
    228 
    229 	return lva;
    230 }
    231 
    232 /*
    233  * sokvafree: free kva for loan.
    234  */
    235 
    236 void
    237 sokvafree(vaddr_t sva, vsize_t len)
    238 {
    239 
    240 	/*
    241 	 * free kva.
    242 	 */
    243 
    244 	uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
    245 
    246 	/*
    247 	 * unreserve kva.
    248 	 */
    249 
    250 	sokvaunreserve(len);
    251 }
    252 
    253 static void
    254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
    255 {
    256 	vaddr_t sva, eva;
    257 	vsize_t len;
    258 	int npgs;
    259 
    260 	KASSERT(pgs != NULL);
    261 
    262 	eva = round_page((vaddr_t) buf + size);
    263 	sva = trunc_page((vaddr_t) buf);
    264 	len = eva - sva;
    265 	npgs = len >> PAGE_SHIFT;
    266 
    267 	pmap_kremove(sva, len);
    268 	pmap_update(pmap_kernel());
    269 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
    270 	sokvafree(sva, len);
    271 }
    272 
    273 /*
    274  * sopendfree_thread: free mbufs on "pendfree" list.
    275  * unlock and relock so_pendfree_lock when freeing mbufs.
    276  */
    277 
    278 static void
    279 sopendfree_thread(void *v)
    280 {
    281 	struct mbuf *m, *next;
    282 	size_t rv;
    283 
    284 	mutex_enter(&so_pendfree_lock);
    285 
    286 	for (;;) {
    287 		rv = 0;
    288 		while (so_pendfree != NULL) {
    289 			m = so_pendfree;
    290 			so_pendfree = NULL;
    291 			mutex_exit(&so_pendfree_lock);
    292 
    293 			for (; m != NULL; m = next) {
    294 				next = m->m_next;
    295 				KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
    296 				KASSERT(m->m_ext.ext_refcnt == 0);
    297 
    298 				rv += m->m_ext.ext_size;
    299 				sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
    300 				    m->m_ext.ext_size);
    301 				pool_cache_put(mb_cache, m);
    302 			}
    303 
    304 			mutex_enter(&so_pendfree_lock);
    305 		}
    306 		if (rv)
    307 			cv_broadcast(&socurkva_cv);
    308 		cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
    309 	}
    310 	panic("sopendfree_thread");
    311 	/* NOTREACHED */
    312 }
    313 
    314 void
    315 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
    316 {
    317 
    318 	KASSERT(m != NULL);
    319 
    320 	/*
    321 	 * postpone freeing mbuf.
    322 	 *
    323 	 * we can't do it in interrupt context
    324 	 * because we need to put kva back to kernel_map.
    325 	 */
    326 
    327 	mutex_enter(&so_pendfree_lock);
    328 	m->m_next = so_pendfree;
    329 	so_pendfree = m;
    330 	cv_signal(&pendfree_thread_cv);
    331 	mutex_exit(&so_pendfree_lock);
    332 }
    333 
    334 static long
    335 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
    336 {
    337 	struct iovec *iov = uio->uio_iov;
    338 	vaddr_t sva, eva;
    339 	vsize_t len;
    340 	vaddr_t lva;
    341 	int npgs, error;
    342 	vaddr_t va;
    343 	int i;
    344 
    345 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
    346 		return (0);
    347 
    348 	if (iov->iov_len < (size_t) space)
    349 		space = iov->iov_len;
    350 	if (space > SOCK_LOAN_CHUNK)
    351 		space = SOCK_LOAN_CHUNK;
    352 
    353 	eva = round_page((vaddr_t) iov->iov_base + space);
    354 	sva = trunc_page((vaddr_t) iov->iov_base);
    355 	len = eva - sva;
    356 	npgs = len >> PAGE_SHIFT;
    357 
    358 	KASSERT(npgs <= M_EXT_MAXPAGES);
    359 
    360 	lva = sokvaalloc(sva, len, so);
    361 	if (lva == 0)
    362 		return 0;
    363 
    364 	error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
    365 	    m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
    366 	if (error) {
    367 		sokvafree(lva, len);
    368 		return (0);
    369 	}
    370 
    371 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
    372 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
    373 		    VM_PROT_READ, 0);
    374 	pmap_update(pmap_kernel());
    375 
    376 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
    377 
    378 	MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
    379 	m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
    380 
    381 	uio->uio_resid -= space;
    382 	/* uio_offset not updated, not set/used for write(2) */
    383 	uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
    384 	uio->uio_iov->iov_len -= space;
    385 	if (uio->uio_iov->iov_len == 0) {
    386 		uio->uio_iov++;
    387 		uio->uio_iovcnt--;
    388 	}
    389 
    390 	return (space);
    391 }
    392 
    393 struct mbuf *
    394 getsombuf(struct socket *so, int type)
    395 {
    396 	struct mbuf *m;
    397 
    398 	m = m_get(M_WAIT, type);
    399 	MCLAIM(m, so->so_mowner);
    400 	return m;
    401 }
    402 
    403 static int
    404 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    405     void *arg0, void *arg1, void *arg2, void *arg3)
    406 {
    407 	int result;
    408 	enum kauth_network_req req;
    409 
    410 	result = KAUTH_RESULT_DEFER;
    411 	req = (enum kauth_network_req)arg0;
    412 
    413 	if ((action != KAUTH_NETWORK_SOCKET) &&
    414 	    (action != KAUTH_NETWORK_BIND))
    415 		return result;
    416 
    417 	switch (req) {
    418 	case KAUTH_REQ_NETWORK_BIND_PORT:
    419 		result = KAUTH_RESULT_ALLOW;
    420 		break;
    421 
    422 	case KAUTH_REQ_NETWORK_SOCKET_DROP: {
    423 		/* Normal users can only drop their own connections. */
    424 		struct socket *so = (struct socket *)arg1;
    425 
    426 		if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
    427 			result = KAUTH_RESULT_ALLOW;
    428 
    429 		break;
    430 		}
    431 
    432 	case KAUTH_REQ_NETWORK_SOCKET_OPEN:
    433 		/* We allow "raw" routing/bluetooth sockets to anyone. */
    434 		if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
    435 		    || (u_long)arg1 == PF_BLUETOOTH) {
    436 			result = KAUTH_RESULT_ALLOW;
    437 		} else {
    438 			/* Privileged, let secmodel handle this. */
    439 			if ((u_long)arg2 == SOCK_RAW)
    440 				break;
    441 		}
    442 
    443 		result = KAUTH_RESULT_ALLOW;
    444 
    445 		break;
    446 
    447 	case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
    448 		result = KAUTH_RESULT_ALLOW;
    449 
    450 		break;
    451 
    452 	default:
    453 		break;
    454 	}
    455 
    456 	return result;
    457 }
    458 
    459 void
    460 soinit(void)
    461 {
    462 
    463 	sysctl_kern_socket_setup();
    464 
    465 	mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
    466 	softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    467 	cv_init(&socurkva_cv, "sokva");
    468 	cv_init(&pendfree_thread_cv, "sopendfr");
    469 	soinit2();
    470 
    471 	/* Set the initial adjusted socket buffer size. */
    472 	if (sb_max_set(sb_max))
    473 		panic("bad initial sb_max value: %lu", sb_max);
    474 
    475 	socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    476 	    socket_listener_cb, NULL);
    477 }
    478 
    479 void
    480 soinit1(void)
    481 {
    482 	int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
    483 	    sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
    484 	if (error)
    485 		panic("soinit1 %d", error);
    486 }
    487 
    488 /*
    489  * socreate: create a new socket of the specified type and the protocol.
    490  *
    491  * => Caller may specify another socket for lock sharing (must not be held).
    492  * => Returns the new socket without lock held.
    493  */
    494 int
    495 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
    496 	 struct socket *lockso)
    497 {
    498 	const struct protosw	*prp;
    499 	struct socket	*so;
    500 	uid_t		uid;
    501 	int		error;
    502 	kmutex_t	*lock;
    503 
    504 	error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
    505 	    KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
    506 	    KAUTH_ARG(proto));
    507 	if (error != 0)
    508 		return error;
    509 
    510 	if (proto)
    511 		prp = pffindproto(dom, proto, type);
    512 	else
    513 		prp = pffindtype(dom, type);
    514 	if (prp == NULL) {
    515 		/* no support for domain */
    516 		if (pffinddomain(dom) == 0)
    517 			return EAFNOSUPPORT;
    518 		/* no support for socket type */
    519 		if (proto == 0 && type != 0)
    520 			return EPROTOTYPE;
    521 		return EPROTONOSUPPORT;
    522 	}
    523 	if (prp->pr_usrreqs == NULL)
    524 		return EPROTONOSUPPORT;
    525 	if (prp->pr_type != type)
    526 		return EPROTOTYPE;
    527 
    528 	so = soget(true);
    529 	so->so_type = type;
    530 	so->so_proto = prp;
    531 	so->so_send = sosend;
    532 	so->so_receive = soreceive;
    533 #ifdef MBUFTRACE
    534 	so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
    535 	so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
    536 	so->so_mowner = &prp->pr_domain->dom_mowner;
    537 #endif
    538 	uid = kauth_cred_geteuid(l->l_cred);
    539 	so->so_uidinfo = uid_find(uid);
    540 	so->so_cpid = l->l_proc->p_pid;
    541 
    542 	/*
    543 	 * Lock assigned and taken during PCB attach, unless we share
    544 	 * the lock with another socket, e.g. socketpair(2) case.
    545 	 */
    546 	if (lockso) {
    547 		lock = lockso->so_lock;
    548 		so->so_lock = lock;
    549 		mutex_obj_hold(lock);
    550 		mutex_enter(lock);
    551 	}
    552 
    553 	/* Attach the PCB (returns with the socket lock held). */
    554 	error = (*prp->pr_usrreqs->pr_attach)(so, proto);
    555 	KASSERT(solocked(so));
    556 
    557 	if (error) {
    558 		KASSERT(so->so_pcb == NULL);
    559 		so->so_state |= SS_NOFDREF;
    560 		sofree(so);
    561 		return error;
    562 	}
    563 	so->so_cred = kauth_cred_dup(l->l_cred);
    564 	sounlock(so);
    565 
    566 	*aso = so;
    567 	return 0;
    568 }
    569 
    570 /*
    571  * fsocreate: create a socket and a file descriptor associated with it.
    572  *
    573  * => On success, write file descriptor to fdout and return zero.
    574  * => On failure, return non-zero; *fdout will be undefined.
    575  */
    576 int
    577 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
    578 {
    579 	lwp_t *l = curlwp;
    580 	int error, fd, flags;
    581 	struct socket *so;
    582 	struct file *fp;
    583 
    584 	if ((error = fd_allocfile(&fp, &fd)) != 0) {
    585 		return error;
    586 	}
    587 	flags = type & SOCK_FLAGS_MASK;
    588 	fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
    589 	fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
    590 	    ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
    591 	fp->f_type = DTYPE_SOCKET;
    592 	fp->f_ops = &socketops;
    593 
    594 	type &= ~SOCK_FLAGS_MASK;
    595 	error = socreate(domain, &so, type, proto, l, NULL);
    596 	if (error) {
    597 		fd_abort(curproc, fp, fd);
    598 		return error;
    599 	}
    600 	if (flags & SOCK_NONBLOCK) {
    601 		so->so_state |= SS_NBIO;
    602 	}
    603 	fp->f_socket = so;
    604 	fd_affix(curproc, fp, fd);
    605 
    606 	if (sop != NULL) {
    607 		*sop = so;
    608 	}
    609 	*fdout = fd;
    610 	return error;
    611 }
    612 
    613 int
    614 sofamily(const struct socket *so)
    615 {
    616 	const struct protosw *pr;
    617 	const struct domain *dom;
    618 
    619 	if ((pr = so->so_proto) == NULL)
    620 		return AF_UNSPEC;
    621 	if ((dom = pr->pr_domain) == NULL)
    622 		return AF_UNSPEC;
    623 	return dom->dom_family;
    624 }
    625 
    626 int
    627 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
    628 {
    629 	int	error;
    630 
    631 	solock(so);
    632 	if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
    633 		sounlock(so);
    634 		return EAFNOSUPPORT;
    635 	}
    636 	error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
    637 	sounlock(so);
    638 	return error;
    639 }
    640 
    641 int
    642 solisten(struct socket *so, int backlog, struct lwp *l)
    643 {
    644 	int	error;
    645 
    646 	solock(so);
    647 	if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
    648 	    SS_ISDISCONNECTING)) != 0) {
    649 		sounlock(so);
    650 		return EINVAL;
    651 	}
    652 	error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
    653 	if (error != 0) {
    654 		sounlock(so);
    655 		return error;
    656 	}
    657 	if (TAILQ_EMPTY(&so->so_q))
    658 		so->so_options |= SO_ACCEPTCONN;
    659 	if (backlog < 0)
    660 		backlog = 0;
    661 	so->so_qlimit = min(backlog, somaxconn);
    662 	sounlock(so);
    663 	return 0;
    664 }
    665 
    666 void
    667 sofree(struct socket *so)
    668 {
    669 	u_int refs;
    670 
    671 	KASSERT(solocked(so));
    672 
    673 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
    674 		sounlock(so);
    675 		return;
    676 	}
    677 	if (so->so_head) {
    678 		/*
    679 		 * We must not decommission a socket that's on the accept(2)
    680 		 * queue.  If we do, then accept(2) may hang after select(2)
    681 		 * indicated that the listening socket was ready.
    682 		 */
    683 		if (!soqremque(so, 0)) {
    684 			sounlock(so);
    685 			return;
    686 		}
    687 	}
    688 	if (so->so_rcv.sb_hiwat)
    689 		(void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
    690 		    RLIM_INFINITY);
    691 	if (so->so_snd.sb_hiwat)
    692 		(void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
    693 		    RLIM_INFINITY);
    694 	sbrelease(&so->so_snd, so);
    695 	KASSERT(!cv_has_waiters(&so->so_cv));
    696 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
    697 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
    698 	sorflush(so);
    699 	refs = so->so_aborting;	/* XXX */
    700 	/* Remove acccept filter if one is present. */
    701 	if (so->so_accf != NULL)
    702 		(void)accept_filt_clear(so);
    703 	sounlock(so);
    704 	if (refs == 0)		/* XXX */
    705 		soput(so);
    706 }
    707 
    708 /*
    709  * soclose: close a socket on last file table reference removal.
    710  * Initiate disconnect if connected.  Free socket when disconnect complete.
    711  */
    712 int
    713 soclose(struct socket *so)
    714 {
    715 	struct socket *so2;
    716 	int error = 0;
    717 
    718 	solock(so);
    719 	if (so->so_options & SO_ACCEPTCONN) {
    720 		for (;;) {
    721 			if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
    722 				KASSERT(solocked2(so, so2));
    723 				(void) soqremque(so2, 0);
    724 				/* soabort drops the lock. */
    725 				(void) soabort(so2);
    726 				solock(so);
    727 				continue;
    728 			}
    729 			if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
    730 				KASSERT(solocked2(so, so2));
    731 				(void) soqremque(so2, 1);
    732 				/* soabort drops the lock. */
    733 				(void) soabort(so2);
    734 				solock(so);
    735 				continue;
    736 			}
    737 			break;
    738 		}
    739 	}
    740 	if (so->so_pcb == NULL)
    741 		goto discard;
    742 	if (so->so_state & SS_ISCONNECTED) {
    743 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
    744 			error = sodisconnect(so);
    745 			if (error)
    746 				goto drop;
    747 		}
    748 		if (so->so_options & SO_LINGER) {
    749 			if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
    750 			    (SS_ISDISCONNECTING|SS_NBIO))
    751 				goto drop;
    752 			while (so->so_state & SS_ISCONNECTED) {
    753 				error = sowait(so, true, so->so_linger * hz);
    754 				if (error)
    755 					break;
    756 			}
    757 		}
    758 	}
    759  drop:
    760 	if (so->so_pcb) {
    761 		KASSERT(solocked(so));
    762 		(*so->so_proto->pr_usrreqs->pr_detach)(so);
    763 	}
    764  discard:
    765 	KASSERT((so->so_state & SS_NOFDREF) == 0);
    766 	kauth_cred_free(so->so_cred);
    767 	so->so_state |= SS_NOFDREF;
    768 	sofree(so);
    769 	return error;
    770 }
    771 
    772 /*
    773  * Must be called with the socket locked..  Will return with it unlocked.
    774  */
    775 int
    776 soabort(struct socket *so)
    777 {
    778 	u_int refs;
    779 	int error;
    780 
    781 	KASSERT(solocked(so));
    782 	KASSERT(so->so_head == NULL);
    783 
    784 	so->so_aborting++;		/* XXX */
    785 	error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
    786 	refs = --so->so_aborting;	/* XXX */
    787 	if (error || (refs == 0)) {
    788 		sofree(so);
    789 	} else {
    790 		sounlock(so);
    791 	}
    792 	return error;
    793 }
    794 
    795 int
    796 soaccept(struct socket *so, struct sockaddr *nam)
    797 {
    798 	int error;
    799 
    800 	KASSERT(solocked(so));
    801 	KASSERT((so->so_state & SS_NOFDREF) != 0);
    802 
    803 	so->so_state &= ~SS_NOFDREF;
    804 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
    805 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
    806 		error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
    807 	else
    808 		error = ECONNABORTED;
    809 
    810 	return error;
    811 }
    812 
    813 int
    814 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
    815 {
    816 	int error;
    817 
    818 	KASSERT(solocked(so));
    819 
    820 	if (so->so_options & SO_ACCEPTCONN)
    821 		return EOPNOTSUPP;
    822 	/*
    823 	 * If protocol is connection-based, can only connect once.
    824 	 * Otherwise, if connected, try to disconnect first.
    825 	 * This allows user to disconnect by connecting to, e.g.,
    826 	 * a null address.
    827 	 */
    828 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
    829 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
    830 	    (error = sodisconnect(so)))) {
    831 		error = EISCONN;
    832 	} else {
    833 		if (NULL != nam &&
    834 		    nam->sa_family != so->so_proto->pr_domain->dom_family) {
    835 			return EAFNOSUPPORT;
    836 		}
    837 		error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
    838 	}
    839 
    840 	return error;
    841 }
    842 
    843 int
    844 soconnect2(struct socket *so1, struct socket *so2)
    845 {
    846 	KASSERT(solocked2(so1, so2));
    847 
    848 	return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
    849 }
    850 
    851 int
    852 sodisconnect(struct socket *so)
    853 {
    854 	int	error;
    855 
    856 	KASSERT(solocked(so));
    857 
    858 	if ((so->so_state & SS_ISCONNECTED) == 0) {
    859 		error = ENOTCONN;
    860 	} else if (so->so_state & SS_ISDISCONNECTING) {
    861 		error = EALREADY;
    862 	} else {
    863 		error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
    864 	}
    865 	return (error);
    866 }
    867 
    868 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
    869 /*
    870  * Send on a socket.
    871  * If send must go all at once and message is larger than
    872  * send buffering, then hard error.
    873  * Lock against other senders.
    874  * If must go all at once and not enough room now, then
    875  * inform user that this would block and do nothing.
    876  * Otherwise, if nonblocking, send as much as possible.
    877  * The data to be sent is described by "uio" if nonzero,
    878  * otherwise by the mbuf chain "top" (which must be null
    879  * if uio is not).  Data provided in mbuf chain must be small
    880  * enough to send all at once.
    881  *
    882  * Returns nonzero on error, timeout or signal; callers
    883  * must check for short counts if EINTR/ERESTART are returned.
    884  * Data and control buffers are freed on return.
    885  */
    886 int
    887 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
    888 	struct mbuf *control, int flags, struct lwp *l)
    889 {
    890 	struct mbuf	**mp, *m;
    891 	long		space, len, resid, clen, mlen;
    892 	int		error, s, dontroute, atomic;
    893 	short		wakeup_state = 0;
    894 
    895 	clen = 0;
    896 
    897 	/*
    898 	 * solock() provides atomicity of access.  splsoftnet() prevents
    899 	 * protocol processing soft interrupts from interrupting us and
    900 	 * blocking (expensive).
    901 	 */
    902 	s = splsoftnet();
    903 	solock(so);
    904 	atomic = sosendallatonce(so) || top;
    905 	if (uio)
    906 		resid = uio->uio_resid;
    907 	else
    908 		resid = top->m_pkthdr.len;
    909 	/*
    910 	 * In theory resid should be unsigned.
    911 	 * However, space must be signed, as it might be less than 0
    912 	 * if we over-committed, and we must use a signed comparison
    913 	 * of space and resid.  On the other hand, a negative resid
    914 	 * causes us to loop sending 0-length segments to the protocol.
    915 	 */
    916 	if (resid < 0) {
    917 		error = EINVAL;
    918 		goto out;
    919 	}
    920 	dontroute =
    921 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
    922 	    (so->so_proto->pr_flags & PR_ATOMIC);
    923 	l->l_ru.ru_msgsnd++;
    924 	if (control)
    925 		clen = control->m_len;
    926  restart:
    927 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
    928 		goto out;
    929 	do {
    930 		if (so->so_state & SS_CANTSENDMORE) {
    931 			error = EPIPE;
    932 			goto release;
    933 		}
    934 		if (so->so_error) {
    935 			error = so->so_error;
    936 			so->so_error = 0;
    937 			goto release;
    938 		}
    939 		if ((so->so_state & SS_ISCONNECTED) == 0) {
    940 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    941 				if (resid || clen == 0) {
    942 					error = ENOTCONN;
    943 					goto release;
    944 				}
    945 			} else if (addr == 0) {
    946 				error = EDESTADDRREQ;
    947 				goto release;
    948 			}
    949 		}
    950 		space = sbspace(&so->so_snd);
    951 		if (flags & MSG_OOB)
    952 			space += 1024;
    953 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
    954 		    clen > so->so_snd.sb_hiwat) {
    955 			error = EMSGSIZE;
    956 			goto release;
    957 		}
    958 		if (space < resid + clen &&
    959 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
    960 			if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
    961 				error = EWOULDBLOCK;
    962 				goto release;
    963 			}
    964 			sbunlock(&so->so_snd);
    965 			if (wakeup_state & SS_RESTARTSYS) {
    966 				error = ERESTART;
    967 				goto out;
    968 			}
    969 			error = sbwait(&so->so_snd);
    970 			if (error)
    971 				goto out;
    972 			wakeup_state = so->so_state;
    973 			goto restart;
    974 		}
    975 		wakeup_state = 0;
    976 		mp = &top;
    977 		space -= clen;
    978 		do {
    979 			if (uio == NULL) {
    980 				/*
    981 				 * Data is prepackaged in "top".
    982 				 */
    983 				resid = 0;
    984 				if (flags & MSG_EOR)
    985 					top->m_flags |= M_EOR;
    986 			} else do {
    987 				sounlock(so);
    988 				splx(s);
    989 				if (top == NULL) {
    990 					m = m_gethdr(M_WAIT, MT_DATA);
    991 					mlen = MHLEN;
    992 					m->m_pkthdr.len = 0;
    993 					m->m_pkthdr.rcvif = NULL;
    994 				} else {
    995 					m = m_get(M_WAIT, MT_DATA);
    996 					mlen = MLEN;
    997 				}
    998 				MCLAIM(m, so->so_snd.sb_mowner);
    999 				if (sock_loan_thresh >= 0 &&
   1000 				    uio->uio_iov->iov_len >= sock_loan_thresh &&
   1001 				    space >= sock_loan_thresh &&
   1002 				    (len = sosend_loan(so, uio, m,
   1003 						       space)) != 0) {
   1004 					SOSEND_COUNTER_INCR(&sosend_loan_big);
   1005 					space -= len;
   1006 					goto have_data;
   1007 				}
   1008 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
   1009 					SOSEND_COUNTER_INCR(&sosend_copy_big);
   1010 					m_clget(m, M_DONTWAIT);
   1011 					if ((m->m_flags & M_EXT) == 0)
   1012 						goto nopages;
   1013 					mlen = MCLBYTES;
   1014 					if (atomic && top == 0) {
   1015 						len = lmin(MCLBYTES - max_hdr,
   1016 						    resid);
   1017 						m->m_data += max_hdr;
   1018 					} else
   1019 						len = lmin(MCLBYTES, resid);
   1020 					space -= len;
   1021 				} else {
   1022  nopages:
   1023 					SOSEND_COUNTER_INCR(&sosend_copy_small);
   1024 					len = lmin(lmin(mlen, resid), space);
   1025 					space -= len;
   1026 					/*
   1027 					 * For datagram protocols, leave room
   1028 					 * for protocol headers in first mbuf.
   1029 					 */
   1030 					if (atomic && top == 0 && len < mlen)
   1031 						MH_ALIGN(m, len);
   1032 				}
   1033 				error = uiomove(mtod(m, void *), (int)len, uio);
   1034  have_data:
   1035 				resid = uio->uio_resid;
   1036 				m->m_len = len;
   1037 				*mp = m;
   1038 				top->m_pkthdr.len += len;
   1039 				s = splsoftnet();
   1040 				solock(so);
   1041 				if (error != 0)
   1042 					goto release;
   1043 				mp = &m->m_next;
   1044 				if (resid <= 0) {
   1045 					if (flags & MSG_EOR)
   1046 						top->m_flags |= M_EOR;
   1047 					break;
   1048 				}
   1049 			} while (space > 0 && atomic);
   1050 
   1051 			if (so->so_state & SS_CANTSENDMORE) {
   1052 				error = EPIPE;
   1053 				goto release;
   1054 			}
   1055 			if (dontroute)
   1056 				so->so_options |= SO_DONTROUTE;
   1057 			if (resid > 0)
   1058 				so->so_state |= SS_MORETOCOME;
   1059 			if (flags & MSG_OOB) {
   1060 				error = (*so->so_proto->pr_usrreqs->pr_sendoob)(so,
   1061 				    top, control);
   1062 			} else {
   1063 				struct sockaddr *sin = NULL;
   1064 				if (addr) {
   1065 					sin = mtod(addr, struct sockaddr *);
   1066 				}
   1067 				error = (*so->so_proto->pr_usrreqs->pr_send)(so,
   1068 				    top, sin, control, l);
   1069 			}
   1070 			if (dontroute)
   1071 				so->so_options &= ~SO_DONTROUTE;
   1072 			if (resid > 0)
   1073 				so->so_state &= ~SS_MORETOCOME;
   1074 			clen = 0;
   1075 			control = NULL;
   1076 			top = NULL;
   1077 			mp = &top;
   1078 			if (error != 0)
   1079 				goto release;
   1080 		} while (resid && space > 0);
   1081 	} while (resid);
   1082 
   1083  release:
   1084 	sbunlock(&so->so_snd);
   1085  out:
   1086 	sounlock(so);
   1087 	splx(s);
   1088 	if (top)
   1089 		m_freem(top);
   1090 	if (control)
   1091 		m_freem(control);
   1092 	return (error);
   1093 }
   1094 
   1095 /*
   1096  * Following replacement or removal of the first mbuf on the first
   1097  * mbuf chain of a socket buffer, push necessary state changes back
   1098  * into the socket buffer so that other consumers see the values
   1099  * consistently.  'nextrecord' is the callers locally stored value of
   1100  * the original value of sb->sb_mb->m_nextpkt which must be restored
   1101  * when the lead mbuf changes.  NOTE: 'nextrecord' may be NULL.
   1102  */
   1103 static void
   1104 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
   1105 {
   1106 
   1107 	KASSERT(solocked(sb->sb_so));
   1108 
   1109 	/*
   1110 	 * First, update for the new value of nextrecord.  If necessary,
   1111 	 * make it the first record.
   1112 	 */
   1113 	if (sb->sb_mb != NULL)
   1114 		sb->sb_mb->m_nextpkt = nextrecord;
   1115 	else
   1116 		sb->sb_mb = nextrecord;
   1117 
   1118         /*
   1119          * Now update any dependent socket buffer fields to reflect
   1120          * the new state.  This is an inline of SB_EMPTY_FIXUP, with
   1121          * the addition of a second clause that takes care of the
   1122          * case where sb_mb has been updated, but remains the last
   1123          * record.
   1124          */
   1125         if (sb->sb_mb == NULL) {
   1126                 sb->sb_mbtail = NULL;
   1127                 sb->sb_lastrecord = NULL;
   1128         } else if (sb->sb_mb->m_nextpkt == NULL)
   1129                 sb->sb_lastrecord = sb->sb_mb;
   1130 }
   1131 
   1132 /*
   1133  * Implement receive operations on a socket.
   1134  * We depend on the way that records are added to the sockbuf
   1135  * by sbappend*.  In particular, each record (mbufs linked through m_next)
   1136  * must begin with an address if the protocol so specifies,
   1137  * followed by an optional mbuf or mbufs containing ancillary data,
   1138  * and then zero or more mbufs of data.
   1139  * In order to avoid blocking network interrupts for the entire time here,
   1140  * we splx() while doing the actual copy to user space.
   1141  * Although the sockbuf is locked, new data may still be appended,
   1142  * and thus we must maintain consistency of the sockbuf during that time.
   1143  *
   1144  * The caller may receive the data as a single mbuf chain by supplying
   1145  * an mbuf **mp0 for use in returning the chain.  The uio is then used
   1146  * only for the count in uio_resid.
   1147  */
   1148 int
   1149 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
   1150 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
   1151 {
   1152 	struct lwp *l = curlwp;
   1153 	struct mbuf	*m, **mp, *mt;
   1154 	size_t len, offset, moff, orig_resid;
   1155 	int atomic, flags, error, s, type;
   1156 	const struct protosw	*pr;
   1157 	struct mbuf	*nextrecord;
   1158 	int		mbuf_removed = 0;
   1159 	const struct domain *dom;
   1160 	short		wakeup_state = 0;
   1161 
   1162 	pr = so->so_proto;
   1163 	atomic = pr->pr_flags & PR_ATOMIC;
   1164 	dom = pr->pr_domain;
   1165 	mp = mp0;
   1166 	type = 0;
   1167 	orig_resid = uio->uio_resid;
   1168 
   1169 	if (paddr != NULL)
   1170 		*paddr = NULL;
   1171 	if (controlp != NULL)
   1172 		*controlp = NULL;
   1173 	if (flagsp != NULL)
   1174 		flags = *flagsp &~ MSG_EOR;
   1175 	else
   1176 		flags = 0;
   1177 
   1178 	if (flags & MSG_OOB) {
   1179 		m = m_get(M_WAIT, MT_DATA);
   1180 		solock(so);
   1181 		error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
   1182 		sounlock(so);
   1183 		if (error)
   1184 			goto bad;
   1185 		do {
   1186 			error = uiomove(mtod(m, void *),
   1187 			    MIN(uio->uio_resid, m->m_len), uio);
   1188 			m = m_free(m);
   1189 		} while (uio->uio_resid > 0 && error == 0 && m);
   1190  bad:
   1191 		if (m != NULL)
   1192 			m_freem(m);
   1193 		return error;
   1194 	}
   1195 	if (mp != NULL)
   1196 		*mp = NULL;
   1197 
   1198 	/*
   1199 	 * solock() provides atomicity of access.  splsoftnet() prevents
   1200 	 * protocol processing soft interrupts from interrupting us and
   1201 	 * blocking (expensive).
   1202 	 */
   1203 	s = splsoftnet();
   1204 	solock(so);
   1205  restart:
   1206 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
   1207 		sounlock(so);
   1208 		splx(s);
   1209 		return error;
   1210 	}
   1211 
   1212 	m = so->so_rcv.sb_mb;
   1213 	/*
   1214 	 * If we have less data than requested, block awaiting more
   1215 	 * (subject to any timeout) if:
   1216 	 *   1. the current count is less than the low water mark,
   1217 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
   1218 	 *	receive operation at once if we block (resid <= hiwat), or
   1219 	 *   3. MSG_DONTWAIT is not set.
   1220 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
   1221 	 * we have to do the receive in sections, and thus risk returning
   1222 	 * a short count if a timeout or signal occurs after we start.
   1223 	 */
   1224 	if (m == NULL ||
   1225 	    ((flags & MSG_DONTWAIT) == 0 &&
   1226 	     so->so_rcv.sb_cc < uio->uio_resid &&
   1227 	     (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
   1228 	      ((flags & MSG_WAITALL) &&
   1229 	       uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
   1230 	     m->m_nextpkt == NULL && !atomic)) {
   1231 #ifdef DIAGNOSTIC
   1232 		if (m == NULL && so->so_rcv.sb_cc)
   1233 			panic("receive 1");
   1234 #endif
   1235 		if (so->so_error) {
   1236 			if (m != NULL)
   1237 				goto dontblock;
   1238 			error = so->so_error;
   1239 			if ((flags & MSG_PEEK) == 0)
   1240 				so->so_error = 0;
   1241 			goto release;
   1242 		}
   1243 		if (so->so_state & SS_CANTRCVMORE) {
   1244 			if (m != NULL)
   1245 				goto dontblock;
   1246 			else
   1247 				goto release;
   1248 		}
   1249 		for (; m != NULL; m = m->m_next)
   1250 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
   1251 				m = so->so_rcv.sb_mb;
   1252 				goto dontblock;
   1253 			}
   1254 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
   1255 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
   1256 			error = ENOTCONN;
   1257 			goto release;
   1258 		}
   1259 		if (uio->uio_resid == 0)
   1260 			goto release;
   1261 		if ((so->so_state & SS_NBIO) ||
   1262 		    (flags & (MSG_DONTWAIT|MSG_NBIO))) {
   1263 			error = EWOULDBLOCK;
   1264 			goto release;
   1265 		}
   1266 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
   1267 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
   1268 		sbunlock(&so->so_rcv);
   1269 		if (wakeup_state & SS_RESTARTSYS)
   1270 			error = ERESTART;
   1271 		else
   1272 			error = sbwait(&so->so_rcv);
   1273 		if (error != 0) {
   1274 			sounlock(so);
   1275 			splx(s);
   1276 			return error;
   1277 		}
   1278 		wakeup_state = so->so_state;
   1279 		goto restart;
   1280 	}
   1281  dontblock:
   1282 	/*
   1283 	 * On entry here, m points to the first record of the socket buffer.
   1284 	 * From this point onward, we maintain 'nextrecord' as a cache of the
   1285 	 * pointer to the next record in the socket buffer.  We must keep the
   1286 	 * various socket buffer pointers and local stack versions of the
   1287 	 * pointers in sync, pushing out modifications before dropping the
   1288 	 * socket lock, and re-reading them when picking it up.
   1289 	 *
   1290 	 * Otherwise, we will race with the network stack appending new data
   1291 	 * or records onto the socket buffer by using inconsistent/stale
   1292 	 * versions of the field, possibly resulting in socket buffer
   1293 	 * corruption.
   1294 	 *
   1295 	 * By holding the high-level sblock(), we prevent simultaneous
   1296 	 * readers from pulling off the front of the socket buffer.
   1297 	 */
   1298 	if (l != NULL)
   1299 		l->l_ru.ru_msgrcv++;
   1300 	KASSERT(m == so->so_rcv.sb_mb);
   1301 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
   1302 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
   1303 	nextrecord = m->m_nextpkt;
   1304 	if (pr->pr_flags & PR_ADDR) {
   1305 #ifdef DIAGNOSTIC
   1306 		if (m->m_type != MT_SONAME)
   1307 			panic("receive 1a");
   1308 #endif
   1309 		orig_resid = 0;
   1310 		if (flags & MSG_PEEK) {
   1311 			if (paddr)
   1312 				*paddr = m_copy(m, 0, m->m_len);
   1313 			m = m->m_next;
   1314 		} else {
   1315 			sbfree(&so->so_rcv, m);
   1316 			mbuf_removed = 1;
   1317 			if (paddr != NULL) {
   1318 				*paddr = m;
   1319 				so->so_rcv.sb_mb = m->m_next;
   1320 				m->m_next = NULL;
   1321 				m = so->so_rcv.sb_mb;
   1322 			} else {
   1323 				MFREE(m, so->so_rcv.sb_mb);
   1324 				m = so->so_rcv.sb_mb;
   1325 			}
   1326 			sbsync(&so->so_rcv, nextrecord);
   1327 		}
   1328 	}
   1329 
   1330 	/*
   1331 	 * Process one or more MT_CONTROL mbufs present before any data mbufs
   1332 	 * in the first mbuf chain on the socket buffer.  If MSG_PEEK, we
   1333 	 * just copy the data; if !MSG_PEEK, we call into the protocol to
   1334 	 * perform externalization (or freeing if controlp == NULL).
   1335 	 */
   1336 	if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
   1337 		struct mbuf *cm = NULL, *cmn;
   1338 		struct mbuf **cme = &cm;
   1339 
   1340 		do {
   1341 			if (flags & MSG_PEEK) {
   1342 				if (controlp != NULL) {
   1343 					*controlp = m_copy(m, 0, m->m_len);
   1344 					controlp = &(*controlp)->m_next;
   1345 				}
   1346 				m = m->m_next;
   1347 			} else {
   1348 				sbfree(&so->so_rcv, m);
   1349 				so->so_rcv.sb_mb = m->m_next;
   1350 				m->m_next = NULL;
   1351 				*cme = m;
   1352 				cme = &(*cme)->m_next;
   1353 				m = so->so_rcv.sb_mb;
   1354 			}
   1355 		} while (m != NULL && m->m_type == MT_CONTROL);
   1356 		if ((flags & MSG_PEEK) == 0)
   1357 			sbsync(&so->so_rcv, nextrecord);
   1358 		for (; cm != NULL; cm = cmn) {
   1359 			cmn = cm->m_next;
   1360 			cm->m_next = NULL;
   1361 			type = mtod(cm, struct cmsghdr *)->cmsg_type;
   1362 			if (controlp != NULL) {
   1363 				if (dom->dom_externalize != NULL &&
   1364 				    type == SCM_RIGHTS) {
   1365 					sounlock(so);
   1366 					splx(s);
   1367 					error = (*dom->dom_externalize)(cm, l,
   1368 					    (flags & MSG_CMSG_CLOEXEC) ?
   1369 					    O_CLOEXEC : 0);
   1370 					s = splsoftnet();
   1371 					solock(so);
   1372 				}
   1373 				*controlp = cm;
   1374 				while (*controlp != NULL)
   1375 					controlp = &(*controlp)->m_next;
   1376 			} else {
   1377 				/*
   1378 				 * Dispose of any SCM_RIGHTS message that went
   1379 				 * through the read path rather than recv.
   1380 				 */
   1381 				if (dom->dom_dispose != NULL &&
   1382 				    type == SCM_RIGHTS) {
   1383 				    	sounlock(so);
   1384 					(*dom->dom_dispose)(cm);
   1385 					solock(so);
   1386 				}
   1387 				m_freem(cm);
   1388 			}
   1389 		}
   1390 		if (m != NULL)
   1391 			nextrecord = so->so_rcv.sb_mb->m_nextpkt;
   1392 		else
   1393 			nextrecord = so->so_rcv.sb_mb;
   1394 		orig_resid = 0;
   1395 	}
   1396 
   1397 	/* If m is non-NULL, we have some data to read. */
   1398 	if (__predict_true(m != NULL)) {
   1399 		type = m->m_type;
   1400 		if (type == MT_OOBDATA)
   1401 			flags |= MSG_OOB;
   1402 	}
   1403 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
   1404 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
   1405 
   1406 	moff = 0;
   1407 	offset = 0;
   1408 	while (m != NULL && uio->uio_resid > 0 && error == 0) {
   1409 		if (m->m_type == MT_OOBDATA) {
   1410 			if (type != MT_OOBDATA)
   1411 				break;
   1412 		} else if (type == MT_OOBDATA)
   1413 			break;
   1414 #ifdef DIAGNOSTIC
   1415 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
   1416 			panic("receive 3");
   1417 #endif
   1418 		so->so_state &= ~SS_RCVATMARK;
   1419 		wakeup_state = 0;
   1420 		len = uio->uio_resid;
   1421 		if (so->so_oobmark && len > so->so_oobmark - offset)
   1422 			len = so->so_oobmark - offset;
   1423 		if (len > m->m_len - moff)
   1424 			len = m->m_len - moff;
   1425 		/*
   1426 		 * If mp is set, just pass back the mbufs.
   1427 		 * Otherwise copy them out via the uio, then free.
   1428 		 * Sockbuf must be consistent here (points to current mbuf,
   1429 		 * it points to next record) when we drop priority;
   1430 		 * we must note any additions to the sockbuf when we
   1431 		 * block interrupts again.
   1432 		 */
   1433 		if (mp == NULL) {
   1434 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
   1435 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
   1436 			sounlock(so);
   1437 			splx(s);
   1438 			error = uiomove(mtod(m, char *) + moff, len, uio);
   1439 			s = splsoftnet();
   1440 			solock(so);
   1441 			if (error != 0) {
   1442 				/*
   1443 				 * If any part of the record has been removed
   1444 				 * (such as the MT_SONAME mbuf, which will
   1445 				 * happen when PR_ADDR, and thus also
   1446 				 * PR_ATOMIC, is set), then drop the entire
   1447 				 * record to maintain the atomicity of the
   1448 				 * receive operation.
   1449 				 *
   1450 				 * This avoids a later panic("receive 1a")
   1451 				 * when compiled with DIAGNOSTIC.
   1452 				 */
   1453 				if (m && mbuf_removed && atomic)
   1454 					(void) sbdroprecord(&so->so_rcv);
   1455 
   1456 				goto release;
   1457 			}
   1458 		} else
   1459 			uio->uio_resid -= len;
   1460 		if (len == m->m_len - moff) {
   1461 			if (m->m_flags & M_EOR)
   1462 				flags |= MSG_EOR;
   1463 			if (flags & MSG_PEEK) {
   1464 				m = m->m_next;
   1465 				moff = 0;
   1466 			} else {
   1467 				nextrecord = m->m_nextpkt;
   1468 				sbfree(&so->so_rcv, m);
   1469 				if (mp) {
   1470 					*mp = m;
   1471 					mp = &m->m_next;
   1472 					so->so_rcv.sb_mb = m = m->m_next;
   1473 					*mp = NULL;
   1474 				} else {
   1475 					MFREE(m, so->so_rcv.sb_mb);
   1476 					m = so->so_rcv.sb_mb;
   1477 				}
   1478 				/*
   1479 				 * If m != NULL, we also know that
   1480 				 * so->so_rcv.sb_mb != NULL.
   1481 				 */
   1482 				KASSERT(so->so_rcv.sb_mb == m);
   1483 				if (m) {
   1484 					m->m_nextpkt = nextrecord;
   1485 					if (nextrecord == NULL)
   1486 						so->so_rcv.sb_lastrecord = m;
   1487 				} else {
   1488 					so->so_rcv.sb_mb = nextrecord;
   1489 					SB_EMPTY_FIXUP(&so->so_rcv);
   1490 				}
   1491 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
   1492 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
   1493 			}
   1494 		} else if (flags & MSG_PEEK)
   1495 			moff += len;
   1496 		else {
   1497 			if (mp != NULL) {
   1498 				mt = m_copym(m, 0, len, M_NOWAIT);
   1499 				if (__predict_false(mt == NULL)) {
   1500 					sounlock(so);
   1501 					mt = m_copym(m, 0, len, M_WAIT);
   1502 					solock(so);
   1503 				}
   1504 				*mp = mt;
   1505 			}
   1506 			m->m_data += len;
   1507 			m->m_len -= len;
   1508 			so->so_rcv.sb_cc -= len;
   1509 		}
   1510 		if (so->so_oobmark) {
   1511 			if ((flags & MSG_PEEK) == 0) {
   1512 				so->so_oobmark -= len;
   1513 				if (so->so_oobmark == 0) {
   1514 					so->so_state |= SS_RCVATMARK;
   1515 					break;
   1516 				}
   1517 			} else {
   1518 				offset += len;
   1519 				if (offset == so->so_oobmark)
   1520 					break;
   1521 			}
   1522 		}
   1523 		if (flags & MSG_EOR)
   1524 			break;
   1525 		/*
   1526 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
   1527 		 * we must not quit until "uio->uio_resid == 0" or an error
   1528 		 * termination.  If a signal/timeout occurs, return
   1529 		 * with a short count but without error.
   1530 		 * Keep sockbuf locked against other readers.
   1531 		 */
   1532 		while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
   1533 		    !sosendallatonce(so) && !nextrecord) {
   1534 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
   1535 				break;
   1536 			/*
   1537 			 * If we are peeking and the socket receive buffer is
   1538 			 * full, stop since we can't get more data to peek at.
   1539 			 */
   1540 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
   1541 				break;
   1542 			/*
   1543 			 * If we've drained the socket buffer, tell the
   1544 			 * protocol in case it needs to do something to
   1545 			 * get it filled again.
   1546 			 */
   1547 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
   1548 				(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1549 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
   1550 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
   1551 			if (wakeup_state & SS_RESTARTSYS)
   1552 				error = ERESTART;
   1553 			else
   1554 				error = sbwait(&so->so_rcv);
   1555 			if (error != 0) {
   1556 				sbunlock(&so->so_rcv);
   1557 				sounlock(so);
   1558 				splx(s);
   1559 				return 0;
   1560 			}
   1561 			if ((m = so->so_rcv.sb_mb) != NULL)
   1562 				nextrecord = m->m_nextpkt;
   1563 			wakeup_state = so->so_state;
   1564 		}
   1565 	}
   1566 
   1567 	if (m && atomic) {
   1568 		flags |= MSG_TRUNC;
   1569 		if ((flags & MSG_PEEK) == 0)
   1570 			(void) sbdroprecord(&so->so_rcv);
   1571 	}
   1572 	if ((flags & MSG_PEEK) == 0) {
   1573 		if (m == NULL) {
   1574 			/*
   1575 			 * First part is an inline SB_EMPTY_FIXUP().  Second
   1576 			 * part makes sure sb_lastrecord is up-to-date if
   1577 			 * there is still data in the socket buffer.
   1578 			 */
   1579 			so->so_rcv.sb_mb = nextrecord;
   1580 			if (so->so_rcv.sb_mb == NULL) {
   1581 				so->so_rcv.sb_mbtail = NULL;
   1582 				so->so_rcv.sb_lastrecord = NULL;
   1583 			} else if (nextrecord->m_nextpkt == NULL)
   1584 				so->so_rcv.sb_lastrecord = nextrecord;
   1585 		}
   1586 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
   1587 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
   1588 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
   1589 			(*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
   1590 	}
   1591 	if (orig_resid == uio->uio_resid && orig_resid &&
   1592 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
   1593 		sbunlock(&so->so_rcv);
   1594 		goto restart;
   1595 	}
   1596 
   1597 	if (flagsp != NULL)
   1598 		*flagsp |= flags;
   1599  release:
   1600 	sbunlock(&so->so_rcv);
   1601 	sounlock(so);
   1602 	splx(s);
   1603 	return error;
   1604 }
   1605 
   1606 int
   1607 soshutdown(struct socket *so, int how)
   1608 {
   1609 	const struct protosw	*pr;
   1610 	int	error;
   1611 
   1612 	KASSERT(solocked(so));
   1613 
   1614 	pr = so->so_proto;
   1615 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
   1616 		return (EINVAL);
   1617 
   1618 	if (how == SHUT_RD || how == SHUT_RDWR) {
   1619 		sorflush(so);
   1620 		error = 0;
   1621 	}
   1622 	if (how == SHUT_WR || how == SHUT_RDWR)
   1623 		error = (*pr->pr_usrreqs->pr_shutdown)(so);
   1624 
   1625 	return error;
   1626 }
   1627 
   1628 void
   1629 sorestart(struct socket *so)
   1630 {
   1631 	/*
   1632 	 * An application has called close() on an fd on which another
   1633 	 * of its threads has called a socket system call.
   1634 	 * Mark this and wake everyone up, and code that would block again
   1635 	 * instead returns ERESTART.
   1636 	 * On system call re-entry the fd is validated and EBADF returned.
   1637 	 * Any other fd will block again on the 2nd syscall.
   1638 	 */
   1639 	solock(so);
   1640 	so->so_state |= SS_RESTARTSYS;
   1641 	cv_broadcast(&so->so_cv);
   1642 	cv_broadcast(&so->so_snd.sb_cv);
   1643 	cv_broadcast(&so->so_rcv.sb_cv);
   1644 	sounlock(so);
   1645 }
   1646 
   1647 void
   1648 sorflush(struct socket *so)
   1649 {
   1650 	struct sockbuf	*sb, asb;
   1651 	const struct protosw	*pr;
   1652 
   1653 	KASSERT(solocked(so));
   1654 
   1655 	sb = &so->so_rcv;
   1656 	pr = so->so_proto;
   1657 	socantrcvmore(so);
   1658 	sb->sb_flags |= SB_NOINTR;
   1659 	(void )sblock(sb, M_WAITOK);
   1660 	sbunlock(sb);
   1661 	asb = *sb;
   1662 	/*
   1663 	 * Clear most of the sockbuf structure, but leave some of the
   1664 	 * fields valid.
   1665 	 */
   1666 	memset(&sb->sb_startzero, 0,
   1667 	    sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
   1668 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
   1669 		sounlock(so);
   1670 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
   1671 		solock(so);
   1672 	}
   1673 	sbrelease(&asb, so);
   1674 }
   1675 
   1676 /*
   1677  * internal set SOL_SOCKET options
   1678  */
   1679 static int
   1680 sosetopt1(struct socket *so, const struct sockopt *sopt)
   1681 {
   1682 	int error = EINVAL, opt;
   1683 	int optval = 0; /* XXX: gcc */
   1684 	struct linger l;
   1685 	struct timeval tv;
   1686 
   1687 	switch ((opt = sopt->sopt_name)) {
   1688 
   1689 	case SO_ACCEPTFILTER:
   1690 		error = accept_filt_setopt(so, sopt);
   1691 		KASSERT(solocked(so));
   1692 		break;
   1693 
   1694   	case SO_LINGER:
   1695  		error = sockopt_get(sopt, &l, sizeof(l));
   1696 		solock(so);
   1697  		if (error)
   1698  			break;
   1699  		if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
   1700  		    l.l_linger > (INT_MAX / hz)) {
   1701 			error = EDOM;
   1702 			break;
   1703 		}
   1704  		so->so_linger = l.l_linger;
   1705  		if (l.l_onoff)
   1706  			so->so_options |= SO_LINGER;
   1707  		else
   1708  			so->so_options &= ~SO_LINGER;
   1709    		break;
   1710 
   1711 	case SO_DEBUG:
   1712 	case SO_KEEPALIVE:
   1713 	case SO_DONTROUTE:
   1714 	case SO_USELOOPBACK:
   1715 	case SO_BROADCAST:
   1716 	case SO_REUSEADDR:
   1717 	case SO_REUSEPORT:
   1718 	case SO_OOBINLINE:
   1719 	case SO_TIMESTAMP:
   1720 	case SO_NOSIGPIPE:
   1721 #ifdef SO_OTIMESTAMP
   1722 	case SO_OTIMESTAMP:
   1723 #endif
   1724 		error = sockopt_getint(sopt, &optval);
   1725 		solock(so);
   1726 		if (error)
   1727 			break;
   1728 		if (optval)
   1729 			so->so_options |= opt;
   1730 		else
   1731 			so->so_options &= ~opt;
   1732 		break;
   1733 
   1734 	case SO_SNDBUF:
   1735 	case SO_RCVBUF:
   1736 	case SO_SNDLOWAT:
   1737 	case SO_RCVLOWAT:
   1738 		error = sockopt_getint(sopt, &optval);
   1739 		solock(so);
   1740 		if (error)
   1741 			break;
   1742 
   1743 		/*
   1744 		 * Values < 1 make no sense for any of these
   1745 		 * options, so disallow them.
   1746 		 */
   1747 		if (optval < 1) {
   1748 			error = EINVAL;
   1749 			break;
   1750 		}
   1751 
   1752 		switch (opt) {
   1753 		case SO_SNDBUF:
   1754 			if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
   1755 				error = ENOBUFS;
   1756 				break;
   1757 			}
   1758 			so->so_snd.sb_flags &= ~SB_AUTOSIZE;
   1759 			break;
   1760 
   1761 		case SO_RCVBUF:
   1762 			if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
   1763 				error = ENOBUFS;
   1764 				break;
   1765 			}
   1766 			so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1767 			break;
   1768 
   1769 		/*
   1770 		 * Make sure the low-water is never greater than
   1771 		 * the high-water.
   1772 		 */
   1773 		case SO_SNDLOWAT:
   1774 			if (optval > so->so_snd.sb_hiwat)
   1775 				optval = so->so_snd.sb_hiwat;
   1776 
   1777 			so->so_snd.sb_lowat = optval;
   1778 			break;
   1779 
   1780 		case SO_RCVLOWAT:
   1781 			if (optval > so->so_rcv.sb_hiwat)
   1782 				optval = so->so_rcv.sb_hiwat;
   1783 
   1784 			so->so_rcv.sb_lowat = optval;
   1785 			break;
   1786 		}
   1787 		break;
   1788 
   1789 #ifdef COMPAT_50
   1790 	case SO_OSNDTIMEO:
   1791 	case SO_ORCVTIMEO: {
   1792 		struct timeval50 otv;
   1793 		error = sockopt_get(sopt, &otv, sizeof(otv));
   1794 		if (error) {
   1795 			solock(so);
   1796 			break;
   1797 		}
   1798 		timeval50_to_timeval(&otv, &tv);
   1799 		opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
   1800 		error = 0;
   1801 		/*FALLTHROUGH*/
   1802 	}
   1803 #endif /* COMPAT_50 */
   1804 
   1805 	case SO_SNDTIMEO:
   1806 	case SO_RCVTIMEO:
   1807 		if (error)
   1808 			error = sockopt_get(sopt, &tv, sizeof(tv));
   1809 		solock(so);
   1810 		if (error)
   1811 			break;
   1812 
   1813 		if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
   1814 			error = EDOM;
   1815 			break;
   1816 		}
   1817 
   1818 		optval = tv.tv_sec * hz + tv.tv_usec / tick;
   1819 		if (optval == 0 && tv.tv_usec != 0)
   1820 			optval = 1;
   1821 
   1822 		switch (opt) {
   1823 		case SO_SNDTIMEO:
   1824 			so->so_snd.sb_timeo = optval;
   1825 			break;
   1826 		case SO_RCVTIMEO:
   1827 			so->so_rcv.sb_timeo = optval;
   1828 			break;
   1829 		}
   1830 		break;
   1831 
   1832 	default:
   1833 		solock(so);
   1834 		error = ENOPROTOOPT;
   1835 		break;
   1836 	}
   1837 	KASSERT(solocked(so));
   1838 	return error;
   1839 }
   1840 
   1841 int
   1842 sosetopt(struct socket *so, struct sockopt *sopt)
   1843 {
   1844 	int error, prerr;
   1845 
   1846 	if (sopt->sopt_level == SOL_SOCKET) {
   1847 		error = sosetopt1(so, sopt);
   1848 		KASSERT(solocked(so));
   1849 	} else {
   1850 		error = ENOPROTOOPT;
   1851 		solock(so);
   1852 	}
   1853 
   1854 	if ((error == 0 || error == ENOPROTOOPT) &&
   1855 	    so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
   1856 		/* give the protocol stack a shot */
   1857 		prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
   1858 		if (prerr == 0)
   1859 			error = 0;
   1860 		else if (prerr != ENOPROTOOPT)
   1861 			error = prerr;
   1862 	}
   1863 	sounlock(so);
   1864 	return error;
   1865 }
   1866 
   1867 /*
   1868  * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
   1869  */
   1870 int
   1871 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
   1872     const void *val, size_t valsize)
   1873 {
   1874 	struct sockopt sopt;
   1875 	int error;
   1876 
   1877 	KASSERT(valsize == 0 || val != NULL);
   1878 
   1879 	sockopt_init(&sopt, level, name, valsize);
   1880 	sockopt_set(&sopt, val, valsize);
   1881 
   1882 	error = sosetopt(so, &sopt);
   1883 
   1884 	sockopt_destroy(&sopt);
   1885 
   1886 	return error;
   1887 }
   1888 
   1889 /*
   1890  * internal get SOL_SOCKET options
   1891  */
   1892 static int
   1893 sogetopt1(struct socket *so, struct sockopt *sopt)
   1894 {
   1895 	int error, optval, opt;
   1896 	struct linger l;
   1897 	struct timeval tv;
   1898 
   1899 	switch ((opt = sopt->sopt_name)) {
   1900 
   1901 	case SO_ACCEPTFILTER:
   1902 		error = accept_filt_getopt(so, sopt);
   1903 		break;
   1904 
   1905 	case SO_LINGER:
   1906 		l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
   1907 		l.l_linger = so->so_linger;
   1908 
   1909 		error = sockopt_set(sopt, &l, sizeof(l));
   1910 		break;
   1911 
   1912 	case SO_USELOOPBACK:
   1913 	case SO_DONTROUTE:
   1914 	case SO_DEBUG:
   1915 	case SO_KEEPALIVE:
   1916 	case SO_REUSEADDR:
   1917 	case SO_REUSEPORT:
   1918 	case SO_BROADCAST:
   1919 	case SO_OOBINLINE:
   1920 	case SO_TIMESTAMP:
   1921 	case SO_NOSIGPIPE:
   1922 #ifdef SO_OTIMESTAMP
   1923 	case SO_OTIMESTAMP:
   1924 #endif
   1925 	case SO_ACCEPTCONN:
   1926 		error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
   1927 		break;
   1928 
   1929 	case SO_TYPE:
   1930 		error = sockopt_setint(sopt, so->so_type);
   1931 		break;
   1932 
   1933 	case SO_ERROR:
   1934 		error = sockopt_setint(sopt, so->so_error);
   1935 		so->so_error = 0;
   1936 		break;
   1937 
   1938 	case SO_SNDBUF:
   1939 		error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
   1940 		break;
   1941 
   1942 	case SO_RCVBUF:
   1943 		error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
   1944 		break;
   1945 
   1946 	case SO_SNDLOWAT:
   1947 		error = sockopt_setint(sopt, so->so_snd.sb_lowat);
   1948 		break;
   1949 
   1950 	case SO_RCVLOWAT:
   1951 		error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
   1952 		break;
   1953 
   1954 #ifdef COMPAT_50
   1955 	case SO_OSNDTIMEO:
   1956 	case SO_ORCVTIMEO: {
   1957 		struct timeval50 otv;
   1958 
   1959 		optval = (opt == SO_OSNDTIMEO ?
   1960 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1961 
   1962 		otv.tv_sec = optval / hz;
   1963 		otv.tv_usec = (optval % hz) * tick;
   1964 
   1965 		error = sockopt_set(sopt, &otv, sizeof(otv));
   1966 		break;
   1967 	}
   1968 #endif /* COMPAT_50 */
   1969 
   1970 	case SO_SNDTIMEO:
   1971 	case SO_RCVTIMEO:
   1972 		optval = (opt == SO_SNDTIMEO ?
   1973 		     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
   1974 
   1975 		tv.tv_sec = optval / hz;
   1976 		tv.tv_usec = (optval % hz) * tick;
   1977 
   1978 		error = sockopt_set(sopt, &tv, sizeof(tv));
   1979 		break;
   1980 
   1981 	case SO_OVERFLOWED:
   1982 		error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
   1983 		break;
   1984 
   1985 	default:
   1986 		error = ENOPROTOOPT;
   1987 		break;
   1988 	}
   1989 
   1990 	return (error);
   1991 }
   1992 
   1993 int
   1994 sogetopt(struct socket *so, struct sockopt *sopt)
   1995 {
   1996 	int		error;
   1997 
   1998 	solock(so);
   1999 	if (sopt->sopt_level != SOL_SOCKET) {
   2000 		if (so->so_proto && so->so_proto->pr_ctloutput) {
   2001 			error = ((*so->so_proto->pr_ctloutput)
   2002 			    (PRCO_GETOPT, so, sopt));
   2003 		} else
   2004 			error = (ENOPROTOOPT);
   2005 	} else {
   2006 		error = sogetopt1(so, sopt);
   2007 	}
   2008 	sounlock(so);
   2009 	return (error);
   2010 }
   2011 
   2012 /*
   2013  * alloc sockopt data buffer buffer
   2014  *	- will be released at destroy
   2015  */
   2016 static int
   2017 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
   2018 {
   2019 
   2020 	KASSERT(sopt->sopt_size == 0);
   2021 
   2022 	if (len > sizeof(sopt->sopt_buf)) {
   2023 		sopt->sopt_data = kmem_zalloc(len, kmflag);
   2024 		if (sopt->sopt_data == NULL)
   2025 			return ENOMEM;
   2026 	} else
   2027 		sopt->sopt_data = sopt->sopt_buf;
   2028 
   2029 	sopt->sopt_size = len;
   2030 	return 0;
   2031 }
   2032 
   2033 /*
   2034  * initialise sockopt storage
   2035  *	- MAY sleep during allocation
   2036  */
   2037 void
   2038 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
   2039 {
   2040 
   2041 	memset(sopt, 0, sizeof(*sopt));
   2042 
   2043 	sopt->sopt_level = level;
   2044 	sopt->sopt_name = name;
   2045 	(void)sockopt_alloc(sopt, size, KM_SLEEP);
   2046 }
   2047 
   2048 /*
   2049  * destroy sockopt storage
   2050  *	- will release any held memory references
   2051  */
   2052 void
   2053 sockopt_destroy(struct sockopt *sopt)
   2054 {
   2055 
   2056 	if (sopt->sopt_data != sopt->sopt_buf)
   2057 		kmem_free(sopt->sopt_data, sopt->sopt_size);
   2058 
   2059 	memset(sopt, 0, sizeof(*sopt));
   2060 }
   2061 
   2062 /*
   2063  * set sockopt value
   2064  *	- value is copied into sockopt
   2065  * 	- memory is allocated when necessary, will not sleep
   2066  */
   2067 int
   2068 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
   2069 {
   2070 	int error;
   2071 
   2072 	if (sopt->sopt_size == 0) {
   2073 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2074 		if (error)
   2075 			return error;
   2076 	}
   2077 
   2078 	KASSERT(sopt->sopt_size == len);
   2079 	memcpy(sopt->sopt_data, buf, len);
   2080 	return 0;
   2081 }
   2082 
   2083 /*
   2084  * common case of set sockopt integer value
   2085  */
   2086 int
   2087 sockopt_setint(struct sockopt *sopt, int val)
   2088 {
   2089 
   2090 	return sockopt_set(sopt, &val, sizeof(int));
   2091 }
   2092 
   2093 /*
   2094  * get sockopt value
   2095  *	- correct size must be given
   2096  */
   2097 int
   2098 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
   2099 {
   2100 
   2101 	if (sopt->sopt_size != len)
   2102 		return EINVAL;
   2103 
   2104 	memcpy(buf, sopt->sopt_data, len);
   2105 	return 0;
   2106 }
   2107 
   2108 /*
   2109  * common case of get sockopt integer value
   2110  */
   2111 int
   2112 sockopt_getint(const struct sockopt *sopt, int *valp)
   2113 {
   2114 
   2115 	return sockopt_get(sopt, valp, sizeof(int));
   2116 }
   2117 
   2118 /*
   2119  * set sockopt value from mbuf
   2120  *	- ONLY for legacy code
   2121  *	- mbuf is released by sockopt
   2122  *	- will not sleep
   2123  */
   2124 int
   2125 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
   2126 {
   2127 	size_t len;
   2128 	int error;
   2129 
   2130 	len = m_length(m);
   2131 
   2132 	if (sopt->sopt_size == 0) {
   2133 		error = sockopt_alloc(sopt, len, KM_NOSLEEP);
   2134 		if (error)
   2135 			return error;
   2136 	}
   2137 
   2138 	KASSERT(sopt->sopt_size == len);
   2139 	m_copydata(m, 0, len, sopt->sopt_data);
   2140 	m_freem(m);
   2141 
   2142 	return 0;
   2143 }
   2144 
   2145 /*
   2146  * get sockopt value into mbuf
   2147  *	- ONLY for legacy code
   2148  *	- mbuf to be released by the caller
   2149  *	- will not sleep
   2150  */
   2151 struct mbuf *
   2152 sockopt_getmbuf(const struct sockopt *sopt)
   2153 {
   2154 	struct mbuf *m;
   2155 
   2156 	if (sopt->sopt_size > MCLBYTES)
   2157 		return NULL;
   2158 
   2159 	m = m_get(M_DONTWAIT, MT_SOOPTS);
   2160 	if (m == NULL)
   2161 		return NULL;
   2162 
   2163 	if (sopt->sopt_size > MLEN) {
   2164 		MCLGET(m, M_DONTWAIT);
   2165 		if ((m->m_flags & M_EXT) == 0) {
   2166 			m_free(m);
   2167 			return NULL;
   2168 		}
   2169 	}
   2170 
   2171 	memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
   2172 	m->m_len = sopt->sopt_size;
   2173 
   2174 	return m;
   2175 }
   2176 
   2177 void
   2178 sohasoutofband(struct socket *so)
   2179 {
   2180 
   2181 	fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
   2182 	selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
   2183 }
   2184 
   2185 static void
   2186 filt_sordetach(struct knote *kn)
   2187 {
   2188 	struct socket	*so;
   2189 
   2190 	so = ((file_t *)kn->kn_obj)->f_socket;
   2191 	solock(so);
   2192 	SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
   2193 	if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
   2194 		so->so_rcv.sb_flags &= ~SB_KNOTE;
   2195 	sounlock(so);
   2196 }
   2197 
   2198 /*ARGSUSED*/
   2199 static int
   2200 filt_soread(struct knote *kn, long hint)
   2201 {
   2202 	struct socket	*so;
   2203 	int rv;
   2204 
   2205 	so = ((file_t *)kn->kn_obj)->f_socket;
   2206 	if (hint != NOTE_SUBMIT)
   2207 		solock(so);
   2208 	kn->kn_data = so->so_rcv.sb_cc;
   2209 	if (so->so_state & SS_CANTRCVMORE) {
   2210 		kn->kn_flags |= EV_EOF;
   2211 		kn->kn_fflags = so->so_error;
   2212 		rv = 1;
   2213 	} else if (so->so_error)	/* temporary udp error */
   2214 		rv = 1;
   2215 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2216 		rv = (kn->kn_data >= kn->kn_sdata);
   2217 	else
   2218 		rv = (kn->kn_data >= so->so_rcv.sb_lowat);
   2219 	if (hint != NOTE_SUBMIT)
   2220 		sounlock(so);
   2221 	return rv;
   2222 }
   2223 
   2224 static void
   2225 filt_sowdetach(struct knote *kn)
   2226 {
   2227 	struct socket	*so;
   2228 
   2229 	so = ((file_t *)kn->kn_obj)->f_socket;
   2230 	solock(so);
   2231 	SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
   2232 	if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
   2233 		so->so_snd.sb_flags &= ~SB_KNOTE;
   2234 	sounlock(so);
   2235 }
   2236 
   2237 /*ARGSUSED*/
   2238 static int
   2239 filt_sowrite(struct knote *kn, long hint)
   2240 {
   2241 	struct socket	*so;
   2242 	int rv;
   2243 
   2244 	so = ((file_t *)kn->kn_obj)->f_socket;
   2245 	if (hint != NOTE_SUBMIT)
   2246 		solock(so);
   2247 	kn->kn_data = sbspace(&so->so_snd);
   2248 	if (so->so_state & SS_CANTSENDMORE) {
   2249 		kn->kn_flags |= EV_EOF;
   2250 		kn->kn_fflags = so->so_error;
   2251 		rv = 1;
   2252 	} else if (so->so_error)	/* temporary udp error */
   2253 		rv = 1;
   2254 	else if (((so->so_state & SS_ISCONNECTED) == 0) &&
   2255 	    (so->so_proto->pr_flags & PR_CONNREQUIRED))
   2256 		rv = 0;
   2257 	else if (kn->kn_sfflags & NOTE_LOWAT)
   2258 		rv = (kn->kn_data >= kn->kn_sdata);
   2259 	else
   2260 		rv = (kn->kn_data >= so->so_snd.sb_lowat);
   2261 	if (hint != NOTE_SUBMIT)
   2262 		sounlock(so);
   2263 	return rv;
   2264 }
   2265 
   2266 /*ARGSUSED*/
   2267 static int
   2268 filt_solisten(struct knote *kn, long hint)
   2269 {
   2270 	struct socket	*so;
   2271 	int rv;
   2272 
   2273 	so = ((file_t *)kn->kn_obj)->f_socket;
   2274 
   2275 	/*
   2276 	 * Set kn_data to number of incoming connections, not
   2277 	 * counting partial (incomplete) connections.
   2278 	 */
   2279 	if (hint != NOTE_SUBMIT)
   2280 		solock(so);
   2281 	kn->kn_data = so->so_qlen;
   2282 	rv = (kn->kn_data > 0);
   2283 	if (hint != NOTE_SUBMIT)
   2284 		sounlock(so);
   2285 	return rv;
   2286 }
   2287 
   2288 static const struct filterops solisten_filtops =
   2289 	{ 1, NULL, filt_sordetach, filt_solisten };
   2290 static const struct filterops soread_filtops =
   2291 	{ 1, NULL, filt_sordetach, filt_soread };
   2292 static const struct filterops sowrite_filtops =
   2293 	{ 1, NULL, filt_sowdetach, filt_sowrite };
   2294 
   2295 int
   2296 soo_kqfilter(struct file *fp, struct knote *kn)
   2297 {
   2298 	struct socket	*so;
   2299 	struct sockbuf	*sb;
   2300 
   2301 	so = ((file_t *)kn->kn_obj)->f_socket;
   2302 	solock(so);
   2303 	switch (kn->kn_filter) {
   2304 	case EVFILT_READ:
   2305 		if (so->so_options & SO_ACCEPTCONN)
   2306 			kn->kn_fop = &solisten_filtops;
   2307 		else
   2308 			kn->kn_fop = &soread_filtops;
   2309 		sb = &so->so_rcv;
   2310 		break;
   2311 	case EVFILT_WRITE:
   2312 		kn->kn_fop = &sowrite_filtops;
   2313 		sb = &so->so_snd;
   2314 		break;
   2315 	default:
   2316 		sounlock(so);
   2317 		return (EINVAL);
   2318 	}
   2319 	SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
   2320 	sb->sb_flags |= SB_KNOTE;
   2321 	sounlock(so);
   2322 	return (0);
   2323 }
   2324 
   2325 static int
   2326 sodopoll(struct socket *so, int events)
   2327 {
   2328 	int revents;
   2329 
   2330 	revents = 0;
   2331 
   2332 	if (events & (POLLIN | POLLRDNORM))
   2333 		if (soreadable(so))
   2334 			revents |= events & (POLLIN | POLLRDNORM);
   2335 
   2336 	if (events & (POLLOUT | POLLWRNORM))
   2337 		if (sowritable(so))
   2338 			revents |= events & (POLLOUT | POLLWRNORM);
   2339 
   2340 	if (events & (POLLPRI | POLLRDBAND))
   2341 		if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
   2342 			revents |= events & (POLLPRI | POLLRDBAND);
   2343 
   2344 	return revents;
   2345 }
   2346 
   2347 int
   2348 sopoll(struct socket *so, int events)
   2349 {
   2350 	int revents = 0;
   2351 
   2352 #ifndef DIAGNOSTIC
   2353 	/*
   2354 	 * Do a quick, unlocked check in expectation that the socket
   2355 	 * will be ready for I/O.  Don't do this check if DIAGNOSTIC,
   2356 	 * as the solocked() assertions will fail.
   2357 	 */
   2358 	if ((revents = sodopoll(so, events)) != 0)
   2359 		return revents;
   2360 #endif
   2361 
   2362 	solock(so);
   2363 	if ((revents = sodopoll(so, events)) == 0) {
   2364 		if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
   2365 			selrecord(curlwp, &so->so_rcv.sb_sel);
   2366 			so->so_rcv.sb_flags |= SB_NOTIFY;
   2367 		}
   2368 
   2369 		if (events & (POLLOUT | POLLWRNORM)) {
   2370 			selrecord(curlwp, &so->so_snd.sb_sel);
   2371 			so->so_snd.sb_flags |= SB_NOTIFY;
   2372 		}
   2373 	}
   2374 	sounlock(so);
   2375 
   2376 	return revents;
   2377 }
   2378 
   2379 
   2380 #include <sys/sysctl.h>
   2381 
   2382 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
   2383 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
   2384 
   2385 /*
   2386  * sysctl helper routine for kern.somaxkva.  ensures that the given
   2387  * value is not too small.
   2388  * (XXX should we maybe make sure it's not too large as well?)
   2389  */
   2390 static int
   2391 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
   2392 {
   2393 	int error, new_somaxkva;
   2394 	struct sysctlnode node;
   2395 
   2396 	new_somaxkva = somaxkva;
   2397 	node = *rnode;
   2398 	node.sysctl_data = &new_somaxkva;
   2399 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2400 	if (error || newp == NULL)
   2401 		return (error);
   2402 
   2403 	if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
   2404 		return (EINVAL);
   2405 
   2406 	mutex_enter(&so_pendfree_lock);
   2407 	somaxkva = new_somaxkva;
   2408 	cv_broadcast(&socurkva_cv);
   2409 	mutex_exit(&so_pendfree_lock);
   2410 
   2411 	return (error);
   2412 }
   2413 
   2414 /*
   2415  * sysctl helper routine for kern.sbmax. Basically just ensures that
   2416  * any new value is not too small.
   2417  */
   2418 static int
   2419 sysctl_kern_sbmax(SYSCTLFN_ARGS)
   2420 {
   2421 	int error, new_sbmax;
   2422 	struct sysctlnode node;
   2423 
   2424 	new_sbmax = sb_max;
   2425 	node = *rnode;
   2426 	node.sysctl_data = &new_sbmax;
   2427 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2428 	if (error || newp == NULL)
   2429 		return (error);
   2430 
   2431 	KERNEL_LOCK(1, NULL);
   2432 	error = sb_max_set(new_sbmax);
   2433 	KERNEL_UNLOCK_ONE(NULL);
   2434 
   2435 	return (error);
   2436 }
   2437 
   2438 static void
   2439 sysctl_kern_socket_setup(void)
   2440 {
   2441 
   2442 	KASSERT(socket_sysctllog == NULL);
   2443 
   2444 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2445 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2446 		       CTLTYPE_INT, "somaxkva",
   2447 		       SYSCTL_DESCR("Maximum amount of kernel memory to be "
   2448 				    "used for socket buffers"),
   2449 		       sysctl_kern_somaxkva, 0, NULL, 0,
   2450 		       CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
   2451 
   2452 	sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
   2453 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
   2454 		       CTLTYPE_INT, "sbmax",
   2455 		       SYSCTL_DESCR("Maximum socket buffer size"),
   2456 		       sysctl_kern_sbmax, 0, NULL, 0,
   2457 		       CTL_KERN, KERN_SBMAX, CTL_EOL);
   2458 }
   2459