uipc_socket.c revision 1.241 1 /* $NetBSD: uipc_socket.c,v 1.241 2015/05/02 20:10:26 rtr Exp $ */
2
3 /*-
4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 2004 The FreeBSD Foundation
34 * Copyright (c) 2004 Robert Watson
35 * Copyright (c) 1982, 1986, 1988, 1990, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95
63 */
64
65 /*
66 * Socket operation routines.
67 *
68 * These routines are called by the routines in sys_socket.c or from a
69 * system process, and implement the semantics of socket operations by
70 * switching out to the protocol specific routines.
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.241 2015/05/02 20:10:26 rtr Exp $");
75
76 #include "opt_compat_netbsd.h"
77 #include "opt_sock_counters.h"
78 #include "opt_sosend_loan.h"
79 #include "opt_mbuftrace.h"
80 #include "opt_somaxkva.h"
81 #include "opt_multiprocessor.h" /* XXX */
82
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/proc.h>
86 #include <sys/file.h>
87 #include <sys/filedesc.h>
88 #include <sys/kmem.h>
89 #include <sys/mbuf.h>
90 #include <sys/domain.h>
91 #include <sys/kernel.h>
92 #include <sys/protosw.h>
93 #include <sys/socket.h>
94 #include <sys/socketvar.h>
95 #include <sys/signalvar.h>
96 #include <sys/resourcevar.h>
97 #include <sys/uidinfo.h>
98 #include <sys/event.h>
99 #include <sys/poll.h>
100 #include <sys/kauth.h>
101 #include <sys/mutex.h>
102 #include <sys/condvar.h>
103 #include <sys/kthread.h>
104
105 #ifdef COMPAT_50
106 #include <compat/sys/time.h>
107 #include <compat/sys/socket.h>
108 #endif
109
110 #include <uvm/uvm_extern.h>
111 #include <uvm/uvm_loan.h>
112 #include <uvm/uvm_page.h>
113
114 MALLOC_DEFINE(M_SONAME, "soname", "socket name");
115
116 extern const struct fileops socketops;
117
118 extern int somaxconn; /* patchable (XXX sysctl) */
119 int somaxconn = SOMAXCONN;
120 kmutex_t *softnet_lock;
121
122 #ifdef SOSEND_COUNTERS
123 #include <sys/device.h>
124
125 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
126 NULL, "sosend", "loan big");
127 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
128 NULL, "sosend", "copy big");
129 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
130 NULL, "sosend", "copy small");
131 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
132 NULL, "sosend", "kva limit");
133
134 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++
135
136 EVCNT_ATTACH_STATIC(sosend_loan_big);
137 EVCNT_ATTACH_STATIC(sosend_copy_big);
138 EVCNT_ATTACH_STATIC(sosend_copy_small);
139 EVCNT_ATTACH_STATIC(sosend_kvalimit);
140 #else
141
142 #define SOSEND_COUNTER_INCR(ev) /* nothing */
143
144 #endif /* SOSEND_COUNTERS */
145
146 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR)
147 int sock_loan_thresh = -1;
148 #else
149 int sock_loan_thresh = 4096;
150 #endif
151
152 static kmutex_t so_pendfree_lock;
153 static struct mbuf *so_pendfree = NULL;
154
155 #ifndef SOMAXKVA
156 #define SOMAXKVA (16 * 1024 * 1024)
157 #endif
158 int somaxkva = SOMAXKVA;
159 static int socurkva;
160 static kcondvar_t socurkva_cv;
161
162 static kauth_listener_t socket_listener;
163
164 #define SOCK_LOAN_CHUNK 65536
165
166 static void sopendfree_thread(void *);
167 static kcondvar_t pendfree_thread_cv;
168 static lwp_t *sopendfree_lwp;
169
170 static void sysctl_kern_socket_setup(void);
171 static struct sysctllog *socket_sysctllog;
172
173 static vsize_t
174 sokvareserve(struct socket *so, vsize_t len)
175 {
176 int error;
177
178 mutex_enter(&so_pendfree_lock);
179 while (socurkva + len > somaxkva) {
180 SOSEND_COUNTER_INCR(&sosend_kvalimit);
181 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock);
182 if (error) {
183 len = 0;
184 break;
185 }
186 }
187 socurkva += len;
188 mutex_exit(&so_pendfree_lock);
189 return len;
190 }
191
192 static void
193 sokvaunreserve(vsize_t len)
194 {
195
196 mutex_enter(&so_pendfree_lock);
197 socurkva -= len;
198 cv_broadcast(&socurkva_cv);
199 mutex_exit(&so_pendfree_lock);
200 }
201
202 /*
203 * sokvaalloc: allocate kva for loan.
204 */
205
206 vaddr_t
207 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so)
208 {
209 vaddr_t lva;
210
211 /*
212 * reserve kva.
213 */
214
215 if (sokvareserve(so, len) == 0)
216 return 0;
217
218 /*
219 * allocate kva.
220 */
221
222 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask,
223 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA);
224 if (lva == 0) {
225 sokvaunreserve(len);
226 return (0);
227 }
228
229 return lva;
230 }
231
232 /*
233 * sokvafree: free kva for loan.
234 */
235
236 void
237 sokvafree(vaddr_t sva, vsize_t len)
238 {
239
240 /*
241 * free kva.
242 */
243
244 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY);
245
246 /*
247 * unreserve kva.
248 */
249
250 sokvaunreserve(len);
251 }
252
253 static void
254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size)
255 {
256 vaddr_t sva, eva;
257 vsize_t len;
258 int npgs;
259
260 KASSERT(pgs != NULL);
261
262 eva = round_page((vaddr_t) buf + size);
263 sva = trunc_page((vaddr_t) buf);
264 len = eva - sva;
265 npgs = len >> PAGE_SHIFT;
266
267 pmap_kremove(sva, len);
268 pmap_update(pmap_kernel());
269 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
270 sokvafree(sva, len);
271 }
272
273 /*
274 * sopendfree_thread: free mbufs on "pendfree" list.
275 * unlock and relock so_pendfree_lock when freeing mbufs.
276 */
277
278 static void
279 sopendfree_thread(void *v)
280 {
281 struct mbuf *m, *next;
282 size_t rv;
283
284 mutex_enter(&so_pendfree_lock);
285
286 for (;;) {
287 rv = 0;
288 while (so_pendfree != NULL) {
289 m = so_pendfree;
290 so_pendfree = NULL;
291 mutex_exit(&so_pendfree_lock);
292
293 for (; m != NULL; m = next) {
294 next = m->m_next;
295 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0);
296 KASSERT(m->m_ext.ext_refcnt == 0);
297
298 rv += m->m_ext.ext_size;
299 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf,
300 m->m_ext.ext_size);
301 pool_cache_put(mb_cache, m);
302 }
303
304 mutex_enter(&so_pendfree_lock);
305 }
306 if (rv)
307 cv_broadcast(&socurkva_cv);
308 cv_wait(&pendfree_thread_cv, &so_pendfree_lock);
309 }
310 panic("sopendfree_thread");
311 /* NOTREACHED */
312 }
313
314 void
315 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg)
316 {
317
318 KASSERT(m != NULL);
319
320 /*
321 * postpone freeing mbuf.
322 *
323 * we can't do it in interrupt context
324 * because we need to put kva back to kernel_map.
325 */
326
327 mutex_enter(&so_pendfree_lock);
328 m->m_next = so_pendfree;
329 so_pendfree = m;
330 cv_signal(&pendfree_thread_cv);
331 mutex_exit(&so_pendfree_lock);
332 }
333
334 static long
335 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
336 {
337 struct iovec *iov = uio->uio_iov;
338 vaddr_t sva, eva;
339 vsize_t len;
340 vaddr_t lva;
341 int npgs, error;
342 vaddr_t va;
343 int i;
344
345 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace))
346 return (0);
347
348 if (iov->iov_len < (size_t) space)
349 space = iov->iov_len;
350 if (space > SOCK_LOAN_CHUNK)
351 space = SOCK_LOAN_CHUNK;
352
353 eva = round_page((vaddr_t) iov->iov_base + space);
354 sva = trunc_page((vaddr_t) iov->iov_base);
355 len = eva - sva;
356 npgs = len >> PAGE_SHIFT;
357
358 KASSERT(npgs <= M_EXT_MAXPAGES);
359
360 lva = sokvaalloc(sva, len, so);
361 if (lva == 0)
362 return 0;
363
364 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len,
365 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE);
366 if (error) {
367 sokvafree(lva, len);
368 return (0);
369 }
370
371 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
372 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]),
373 VM_PROT_READ, 0);
374 pmap_update(pmap_kernel());
375
376 lva += (vaddr_t) iov->iov_base & PAGE_MASK;
377
378 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so);
379 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP;
380
381 uio->uio_resid -= space;
382 /* uio_offset not updated, not set/used for write(2) */
383 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space;
384 uio->uio_iov->iov_len -= space;
385 if (uio->uio_iov->iov_len == 0) {
386 uio->uio_iov++;
387 uio->uio_iovcnt--;
388 }
389
390 return (space);
391 }
392
393 struct mbuf *
394 getsombuf(struct socket *so, int type)
395 {
396 struct mbuf *m;
397
398 m = m_get(M_WAIT, type);
399 MCLAIM(m, so->so_mowner);
400 return m;
401 }
402
403 static int
404 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
405 void *arg0, void *arg1, void *arg2, void *arg3)
406 {
407 int result;
408 enum kauth_network_req req;
409
410 result = KAUTH_RESULT_DEFER;
411 req = (enum kauth_network_req)arg0;
412
413 if ((action != KAUTH_NETWORK_SOCKET) &&
414 (action != KAUTH_NETWORK_BIND))
415 return result;
416
417 switch (req) {
418 case KAUTH_REQ_NETWORK_BIND_PORT:
419 result = KAUTH_RESULT_ALLOW;
420 break;
421
422 case KAUTH_REQ_NETWORK_SOCKET_DROP: {
423 /* Normal users can only drop their own connections. */
424 struct socket *so = (struct socket *)arg1;
425
426 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0)
427 result = KAUTH_RESULT_ALLOW;
428
429 break;
430 }
431
432 case KAUTH_REQ_NETWORK_SOCKET_OPEN:
433 /* We allow "raw" routing/bluetooth sockets to anyone. */
434 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE
435 || (u_long)arg1 == PF_BLUETOOTH) {
436 result = KAUTH_RESULT_ALLOW;
437 } else {
438 /* Privileged, let secmodel handle this. */
439 if ((u_long)arg2 == SOCK_RAW)
440 break;
441 }
442
443 result = KAUTH_RESULT_ALLOW;
444
445 break;
446
447 case KAUTH_REQ_NETWORK_SOCKET_CANSEE:
448 result = KAUTH_RESULT_ALLOW;
449
450 break;
451
452 default:
453 break;
454 }
455
456 return result;
457 }
458
459 void
460 soinit(void)
461 {
462
463 sysctl_kern_socket_setup();
464
465 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM);
466 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
467 cv_init(&socurkva_cv, "sokva");
468 cv_init(&pendfree_thread_cv, "sopendfr");
469 soinit2();
470
471 /* Set the initial adjusted socket buffer size. */
472 if (sb_max_set(sb_max))
473 panic("bad initial sb_max value: %lu", sb_max);
474
475 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
476 socket_listener_cb, NULL);
477 }
478
479 void
480 soinit1(void)
481 {
482 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL,
483 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree");
484 if (error)
485 panic("soinit1 %d", error);
486 }
487
488 /*
489 * socreate: create a new socket of the specified type and the protocol.
490 *
491 * => Caller may specify another socket for lock sharing (must not be held).
492 * => Returns the new socket without lock held.
493 */
494 int
495 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l,
496 struct socket *lockso)
497 {
498 const struct protosw *prp;
499 struct socket *so;
500 uid_t uid;
501 int error;
502 kmutex_t *lock;
503
504 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET,
505 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type),
506 KAUTH_ARG(proto));
507 if (error != 0)
508 return error;
509
510 if (proto)
511 prp = pffindproto(dom, proto, type);
512 else
513 prp = pffindtype(dom, type);
514 if (prp == NULL) {
515 /* no support for domain */
516 if (pffinddomain(dom) == 0)
517 return EAFNOSUPPORT;
518 /* no support for socket type */
519 if (proto == 0 && type != 0)
520 return EPROTOTYPE;
521 return EPROTONOSUPPORT;
522 }
523 if (prp->pr_usrreqs == NULL)
524 return EPROTONOSUPPORT;
525 if (prp->pr_type != type)
526 return EPROTOTYPE;
527
528 so = soget(true);
529 so->so_type = type;
530 so->so_proto = prp;
531 so->so_send = sosend;
532 so->so_receive = soreceive;
533 #ifdef MBUFTRACE
534 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner;
535 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner;
536 so->so_mowner = &prp->pr_domain->dom_mowner;
537 #endif
538 uid = kauth_cred_geteuid(l->l_cred);
539 so->so_uidinfo = uid_find(uid);
540 so->so_cpid = l->l_proc->p_pid;
541
542 /*
543 * Lock assigned and taken during PCB attach, unless we share
544 * the lock with another socket, e.g. socketpair(2) case.
545 */
546 if (lockso) {
547 lock = lockso->so_lock;
548 so->so_lock = lock;
549 mutex_obj_hold(lock);
550 mutex_enter(lock);
551 }
552
553 /* Attach the PCB (returns with the socket lock held). */
554 error = (*prp->pr_usrreqs->pr_attach)(so, proto);
555 KASSERT(solocked(so));
556
557 if (error) {
558 KASSERT(so->so_pcb == NULL);
559 so->so_state |= SS_NOFDREF;
560 sofree(so);
561 return error;
562 }
563 so->so_cred = kauth_cred_dup(l->l_cred);
564 sounlock(so);
565
566 *aso = so;
567 return 0;
568 }
569
570 /*
571 * fsocreate: create a socket and a file descriptor associated with it.
572 *
573 * => On success, write file descriptor to fdout and return zero.
574 * => On failure, return non-zero; *fdout will be undefined.
575 */
576 int
577 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout)
578 {
579 lwp_t *l = curlwp;
580 int error, fd, flags;
581 struct socket *so;
582 struct file *fp;
583
584 if ((error = fd_allocfile(&fp, &fd)) != 0) {
585 return error;
586 }
587 flags = type & SOCK_FLAGS_MASK;
588 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0);
589 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)|
590 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0);
591 fp->f_type = DTYPE_SOCKET;
592 fp->f_ops = &socketops;
593
594 type &= ~SOCK_FLAGS_MASK;
595 error = socreate(domain, &so, type, proto, l, NULL);
596 if (error) {
597 fd_abort(curproc, fp, fd);
598 return error;
599 }
600 if (flags & SOCK_NONBLOCK) {
601 so->so_state |= SS_NBIO;
602 }
603 fp->f_socket = so;
604 fd_affix(curproc, fp, fd);
605
606 if (sop != NULL) {
607 *sop = so;
608 }
609 *fdout = fd;
610 return error;
611 }
612
613 int
614 sofamily(const struct socket *so)
615 {
616 const struct protosw *pr;
617 const struct domain *dom;
618
619 if ((pr = so->so_proto) == NULL)
620 return AF_UNSPEC;
621 if ((dom = pr->pr_domain) == NULL)
622 return AF_UNSPEC;
623 return dom->dom_family;
624 }
625
626 int
627 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l)
628 {
629 int error;
630
631 solock(so);
632 if (nam->sa_family != so->so_proto->pr_domain->dom_family) {
633 sounlock(so);
634 return EAFNOSUPPORT;
635 }
636 error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l);
637 sounlock(so);
638 return error;
639 }
640
641 int
642 solisten(struct socket *so, int backlog, struct lwp *l)
643 {
644 int error;
645
646 solock(so);
647 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING |
648 SS_ISDISCONNECTING)) != 0) {
649 sounlock(so);
650 return EINVAL;
651 }
652 error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l);
653 if (error != 0) {
654 sounlock(so);
655 return error;
656 }
657 if (TAILQ_EMPTY(&so->so_q))
658 so->so_options |= SO_ACCEPTCONN;
659 if (backlog < 0)
660 backlog = 0;
661 so->so_qlimit = min(backlog, somaxconn);
662 sounlock(so);
663 return 0;
664 }
665
666 void
667 sofree(struct socket *so)
668 {
669 u_int refs;
670
671 KASSERT(solocked(so));
672
673 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) {
674 sounlock(so);
675 return;
676 }
677 if (so->so_head) {
678 /*
679 * We must not decommission a socket that's on the accept(2)
680 * queue. If we do, then accept(2) may hang after select(2)
681 * indicated that the listening socket was ready.
682 */
683 if (!soqremque(so, 0)) {
684 sounlock(so);
685 return;
686 }
687 }
688 if (so->so_rcv.sb_hiwat)
689 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0,
690 RLIM_INFINITY);
691 if (so->so_snd.sb_hiwat)
692 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0,
693 RLIM_INFINITY);
694 sbrelease(&so->so_snd, so);
695 KASSERT(!cv_has_waiters(&so->so_cv));
696 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
697 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
698 sorflush(so);
699 refs = so->so_aborting; /* XXX */
700 /* Remove acccept filter if one is present. */
701 if (so->so_accf != NULL)
702 (void)accept_filt_clear(so);
703 sounlock(so);
704 if (refs == 0) /* XXX */
705 soput(so);
706 }
707
708 /*
709 * soclose: close a socket on last file table reference removal.
710 * Initiate disconnect if connected. Free socket when disconnect complete.
711 */
712 int
713 soclose(struct socket *so)
714 {
715 struct socket *so2;
716 int error = 0;
717
718 solock(so);
719 if (so->so_options & SO_ACCEPTCONN) {
720 for (;;) {
721 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
722 KASSERT(solocked2(so, so2));
723 (void) soqremque(so2, 0);
724 /* soabort drops the lock. */
725 (void) soabort(so2);
726 solock(so);
727 continue;
728 }
729 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
730 KASSERT(solocked2(so, so2));
731 (void) soqremque(so2, 1);
732 /* soabort drops the lock. */
733 (void) soabort(so2);
734 solock(so);
735 continue;
736 }
737 break;
738 }
739 }
740 if (so->so_pcb == NULL)
741 goto discard;
742 if (so->so_state & SS_ISCONNECTED) {
743 if ((so->so_state & SS_ISDISCONNECTING) == 0) {
744 error = sodisconnect(so);
745 if (error)
746 goto drop;
747 }
748 if (so->so_options & SO_LINGER) {
749 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) ==
750 (SS_ISDISCONNECTING|SS_NBIO))
751 goto drop;
752 while (so->so_state & SS_ISCONNECTED) {
753 error = sowait(so, true, so->so_linger * hz);
754 if (error)
755 break;
756 }
757 }
758 }
759 drop:
760 if (so->so_pcb) {
761 KASSERT(solocked(so));
762 (*so->so_proto->pr_usrreqs->pr_detach)(so);
763 }
764 discard:
765 KASSERT((so->so_state & SS_NOFDREF) == 0);
766 kauth_cred_free(so->so_cred);
767 so->so_state |= SS_NOFDREF;
768 sofree(so);
769 return error;
770 }
771
772 /*
773 * Must be called with the socket locked.. Will return with it unlocked.
774 */
775 int
776 soabort(struct socket *so)
777 {
778 u_int refs;
779 int error;
780
781 KASSERT(solocked(so));
782 KASSERT(so->so_head == NULL);
783
784 so->so_aborting++; /* XXX */
785 error = (*so->so_proto->pr_usrreqs->pr_abort)(so);
786 refs = --so->so_aborting; /* XXX */
787 if (error || (refs == 0)) {
788 sofree(so);
789 } else {
790 sounlock(so);
791 }
792 return error;
793 }
794
795 int
796 soaccept(struct socket *so, struct sockaddr *nam)
797 {
798 int error;
799
800 KASSERT(solocked(so));
801 KASSERT((so->so_state & SS_NOFDREF) != 0);
802
803 so->so_state &= ~SS_NOFDREF;
804 if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
805 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
806 error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam);
807 else
808 error = ECONNABORTED;
809
810 return error;
811 }
812
813 int
814 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l)
815 {
816 int error;
817
818 KASSERT(solocked(so));
819
820 if (so->so_options & SO_ACCEPTCONN)
821 return EOPNOTSUPP;
822 /*
823 * If protocol is connection-based, can only connect once.
824 * Otherwise, if connected, try to disconnect first.
825 * This allows user to disconnect by connecting to, e.g.,
826 * a null address.
827 */
828 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
829 ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
830 (error = sodisconnect(so)))) {
831 error = EISCONN;
832 } else {
833 if (NULL != nam &&
834 nam->sa_family != so->so_proto->pr_domain->dom_family) {
835 return EAFNOSUPPORT;
836 }
837 error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l);
838 }
839
840 return error;
841 }
842
843 int
844 soconnect2(struct socket *so1, struct socket *so2)
845 {
846 KASSERT(solocked2(so1, so2));
847
848 return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2);
849 }
850
851 int
852 sodisconnect(struct socket *so)
853 {
854 int error;
855
856 KASSERT(solocked(so));
857
858 if ((so->so_state & SS_ISCONNECTED) == 0) {
859 error = ENOTCONN;
860 } else if (so->so_state & SS_ISDISCONNECTING) {
861 error = EALREADY;
862 } else {
863 error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so);
864 }
865 return (error);
866 }
867
868 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
869 /*
870 * Send on a socket.
871 * If send must go all at once and message is larger than
872 * send buffering, then hard error.
873 * Lock against other senders.
874 * If must go all at once and not enough room now, then
875 * inform user that this would block and do nothing.
876 * Otherwise, if nonblocking, send as much as possible.
877 * The data to be sent is described by "uio" if nonzero,
878 * otherwise by the mbuf chain "top" (which must be null
879 * if uio is not). Data provided in mbuf chain must be small
880 * enough to send all at once.
881 *
882 * Returns nonzero on error, timeout or signal; callers
883 * must check for short counts if EINTR/ERESTART are returned.
884 * Data and control buffers are freed on return.
885 */
886 int
887 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
888 struct mbuf *control, int flags, struct lwp *l)
889 {
890 struct mbuf **mp, *m;
891 long space, len, resid, clen, mlen;
892 int error, s, dontroute, atomic;
893 short wakeup_state = 0;
894
895 clen = 0;
896
897 /*
898 * solock() provides atomicity of access. splsoftnet() prevents
899 * protocol processing soft interrupts from interrupting us and
900 * blocking (expensive).
901 */
902 s = splsoftnet();
903 solock(so);
904 atomic = sosendallatonce(so) || top;
905 if (uio)
906 resid = uio->uio_resid;
907 else
908 resid = top->m_pkthdr.len;
909 /*
910 * In theory resid should be unsigned.
911 * However, space must be signed, as it might be less than 0
912 * if we over-committed, and we must use a signed comparison
913 * of space and resid. On the other hand, a negative resid
914 * causes us to loop sending 0-length segments to the protocol.
915 */
916 if (resid < 0) {
917 error = EINVAL;
918 goto out;
919 }
920 dontroute =
921 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
922 (so->so_proto->pr_flags & PR_ATOMIC);
923 l->l_ru.ru_msgsnd++;
924 if (control)
925 clen = control->m_len;
926 restart:
927 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
928 goto out;
929 do {
930 if (so->so_state & SS_CANTSENDMORE) {
931 error = EPIPE;
932 goto release;
933 }
934 if (so->so_error) {
935 error = so->so_error;
936 so->so_error = 0;
937 goto release;
938 }
939 if ((so->so_state & SS_ISCONNECTED) == 0) {
940 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
941 if (resid || clen == 0) {
942 error = ENOTCONN;
943 goto release;
944 }
945 } else if (addr == 0) {
946 error = EDESTADDRREQ;
947 goto release;
948 }
949 }
950 space = sbspace(&so->so_snd);
951 if (flags & MSG_OOB)
952 space += 1024;
953 if ((atomic && resid > so->so_snd.sb_hiwat) ||
954 clen > so->so_snd.sb_hiwat) {
955 error = EMSGSIZE;
956 goto release;
957 }
958 if (space < resid + clen &&
959 (atomic || space < so->so_snd.sb_lowat || space < clen)) {
960 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) {
961 error = EWOULDBLOCK;
962 goto release;
963 }
964 sbunlock(&so->so_snd);
965 if (wakeup_state & SS_RESTARTSYS) {
966 error = ERESTART;
967 goto out;
968 }
969 error = sbwait(&so->so_snd);
970 if (error)
971 goto out;
972 wakeup_state = so->so_state;
973 goto restart;
974 }
975 wakeup_state = 0;
976 mp = ⊤
977 space -= clen;
978 do {
979 if (uio == NULL) {
980 /*
981 * Data is prepackaged in "top".
982 */
983 resid = 0;
984 if (flags & MSG_EOR)
985 top->m_flags |= M_EOR;
986 } else do {
987 sounlock(so);
988 splx(s);
989 if (top == NULL) {
990 m = m_gethdr(M_WAIT, MT_DATA);
991 mlen = MHLEN;
992 m->m_pkthdr.len = 0;
993 m->m_pkthdr.rcvif = NULL;
994 } else {
995 m = m_get(M_WAIT, MT_DATA);
996 mlen = MLEN;
997 }
998 MCLAIM(m, so->so_snd.sb_mowner);
999 if (sock_loan_thresh >= 0 &&
1000 uio->uio_iov->iov_len >= sock_loan_thresh &&
1001 space >= sock_loan_thresh &&
1002 (len = sosend_loan(so, uio, m,
1003 space)) != 0) {
1004 SOSEND_COUNTER_INCR(&sosend_loan_big);
1005 space -= len;
1006 goto have_data;
1007 }
1008 if (resid >= MINCLSIZE && space >= MCLBYTES) {
1009 SOSEND_COUNTER_INCR(&sosend_copy_big);
1010 m_clget(m, M_DONTWAIT);
1011 if ((m->m_flags & M_EXT) == 0)
1012 goto nopages;
1013 mlen = MCLBYTES;
1014 if (atomic && top == 0) {
1015 len = lmin(MCLBYTES - max_hdr,
1016 resid);
1017 m->m_data += max_hdr;
1018 } else
1019 len = lmin(MCLBYTES, resid);
1020 space -= len;
1021 } else {
1022 nopages:
1023 SOSEND_COUNTER_INCR(&sosend_copy_small);
1024 len = lmin(lmin(mlen, resid), space);
1025 space -= len;
1026 /*
1027 * For datagram protocols, leave room
1028 * for protocol headers in first mbuf.
1029 */
1030 if (atomic && top == 0 && len < mlen)
1031 MH_ALIGN(m, len);
1032 }
1033 error = uiomove(mtod(m, void *), (int)len, uio);
1034 have_data:
1035 resid = uio->uio_resid;
1036 m->m_len = len;
1037 *mp = m;
1038 top->m_pkthdr.len += len;
1039 s = splsoftnet();
1040 solock(so);
1041 if (error != 0)
1042 goto release;
1043 mp = &m->m_next;
1044 if (resid <= 0) {
1045 if (flags & MSG_EOR)
1046 top->m_flags |= M_EOR;
1047 break;
1048 }
1049 } while (space > 0 && atomic);
1050
1051 if (so->so_state & SS_CANTSENDMORE) {
1052 error = EPIPE;
1053 goto release;
1054 }
1055 if (dontroute)
1056 so->so_options |= SO_DONTROUTE;
1057 if (resid > 0)
1058 so->so_state |= SS_MORETOCOME;
1059 if (flags & MSG_OOB) {
1060 error = (*so->so_proto->pr_usrreqs->pr_sendoob)(so,
1061 top, control);
1062 } else {
1063 struct sockaddr *sin = NULL;
1064 if (addr) {
1065 sin = mtod(addr, struct sockaddr *);
1066 }
1067 error = (*so->so_proto->pr_usrreqs->pr_send)(so,
1068 top, sin, control, l);
1069 }
1070 if (dontroute)
1071 so->so_options &= ~SO_DONTROUTE;
1072 if (resid > 0)
1073 so->so_state &= ~SS_MORETOCOME;
1074 clen = 0;
1075 control = NULL;
1076 top = NULL;
1077 mp = ⊤
1078 if (error != 0)
1079 goto release;
1080 } while (resid && space > 0);
1081 } while (resid);
1082
1083 release:
1084 sbunlock(&so->so_snd);
1085 out:
1086 sounlock(so);
1087 splx(s);
1088 if (top)
1089 m_freem(top);
1090 if (control)
1091 m_freem(control);
1092 return (error);
1093 }
1094
1095 /*
1096 * Following replacement or removal of the first mbuf on the first
1097 * mbuf chain of a socket buffer, push necessary state changes back
1098 * into the socket buffer so that other consumers see the values
1099 * consistently. 'nextrecord' is the callers locally stored value of
1100 * the original value of sb->sb_mb->m_nextpkt which must be restored
1101 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL.
1102 */
1103 static void
1104 sbsync(struct sockbuf *sb, struct mbuf *nextrecord)
1105 {
1106
1107 KASSERT(solocked(sb->sb_so));
1108
1109 /*
1110 * First, update for the new value of nextrecord. If necessary,
1111 * make it the first record.
1112 */
1113 if (sb->sb_mb != NULL)
1114 sb->sb_mb->m_nextpkt = nextrecord;
1115 else
1116 sb->sb_mb = nextrecord;
1117
1118 /*
1119 * Now update any dependent socket buffer fields to reflect
1120 * the new state. This is an inline of SB_EMPTY_FIXUP, with
1121 * the addition of a second clause that takes care of the
1122 * case where sb_mb has been updated, but remains the last
1123 * record.
1124 */
1125 if (sb->sb_mb == NULL) {
1126 sb->sb_mbtail = NULL;
1127 sb->sb_lastrecord = NULL;
1128 } else if (sb->sb_mb->m_nextpkt == NULL)
1129 sb->sb_lastrecord = sb->sb_mb;
1130 }
1131
1132 /*
1133 * Implement receive operations on a socket.
1134 * We depend on the way that records are added to the sockbuf
1135 * by sbappend*. In particular, each record (mbufs linked through m_next)
1136 * must begin with an address if the protocol so specifies,
1137 * followed by an optional mbuf or mbufs containing ancillary data,
1138 * and then zero or more mbufs of data.
1139 * In order to avoid blocking network interrupts for the entire time here,
1140 * we splx() while doing the actual copy to user space.
1141 * Although the sockbuf is locked, new data may still be appended,
1142 * and thus we must maintain consistency of the sockbuf during that time.
1143 *
1144 * The caller may receive the data as a single mbuf chain by supplying
1145 * an mbuf **mp0 for use in returning the chain. The uio is then used
1146 * only for the count in uio_resid.
1147 */
1148 int
1149 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
1150 struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
1151 {
1152 struct lwp *l = curlwp;
1153 struct mbuf *m, **mp, *mt;
1154 size_t len, offset, moff, orig_resid;
1155 int atomic, flags, error, s, type;
1156 const struct protosw *pr;
1157 struct mbuf *nextrecord;
1158 int mbuf_removed = 0;
1159 const struct domain *dom;
1160 short wakeup_state = 0;
1161
1162 pr = so->so_proto;
1163 atomic = pr->pr_flags & PR_ATOMIC;
1164 dom = pr->pr_domain;
1165 mp = mp0;
1166 type = 0;
1167 orig_resid = uio->uio_resid;
1168
1169 if (paddr != NULL)
1170 *paddr = NULL;
1171 if (controlp != NULL)
1172 *controlp = NULL;
1173 if (flagsp != NULL)
1174 flags = *flagsp &~ MSG_EOR;
1175 else
1176 flags = 0;
1177
1178 if (flags & MSG_OOB) {
1179 m = m_get(M_WAIT, MT_DATA);
1180 solock(so);
1181 error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK);
1182 sounlock(so);
1183 if (error)
1184 goto bad;
1185 do {
1186 error = uiomove(mtod(m, void *),
1187 MIN(uio->uio_resid, m->m_len), uio);
1188 m = m_free(m);
1189 } while (uio->uio_resid > 0 && error == 0 && m);
1190 bad:
1191 if (m != NULL)
1192 m_freem(m);
1193 return error;
1194 }
1195 if (mp != NULL)
1196 *mp = NULL;
1197
1198 /*
1199 * solock() provides atomicity of access. splsoftnet() prevents
1200 * protocol processing soft interrupts from interrupting us and
1201 * blocking (expensive).
1202 */
1203 s = splsoftnet();
1204 solock(so);
1205 restart:
1206 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) {
1207 sounlock(so);
1208 splx(s);
1209 return error;
1210 }
1211
1212 m = so->so_rcv.sb_mb;
1213 /*
1214 * If we have less data than requested, block awaiting more
1215 * (subject to any timeout) if:
1216 * 1. the current count is less than the low water mark,
1217 * 2. MSG_WAITALL is set, and it is possible to do the entire
1218 * receive operation at once if we block (resid <= hiwat), or
1219 * 3. MSG_DONTWAIT is not set.
1220 * If MSG_WAITALL is set but resid is larger than the receive buffer,
1221 * we have to do the receive in sections, and thus risk returning
1222 * a short count if a timeout or signal occurs after we start.
1223 */
1224 if (m == NULL ||
1225 ((flags & MSG_DONTWAIT) == 0 &&
1226 so->so_rcv.sb_cc < uio->uio_resid &&
1227 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
1228 ((flags & MSG_WAITALL) &&
1229 uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
1230 m->m_nextpkt == NULL && !atomic)) {
1231 #ifdef DIAGNOSTIC
1232 if (m == NULL && so->so_rcv.sb_cc)
1233 panic("receive 1");
1234 #endif
1235 if (so->so_error) {
1236 if (m != NULL)
1237 goto dontblock;
1238 error = so->so_error;
1239 if ((flags & MSG_PEEK) == 0)
1240 so->so_error = 0;
1241 goto release;
1242 }
1243 if (so->so_state & SS_CANTRCVMORE) {
1244 if (m != NULL)
1245 goto dontblock;
1246 else
1247 goto release;
1248 }
1249 for (; m != NULL; m = m->m_next)
1250 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) {
1251 m = so->so_rcv.sb_mb;
1252 goto dontblock;
1253 }
1254 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
1255 (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
1256 error = ENOTCONN;
1257 goto release;
1258 }
1259 if (uio->uio_resid == 0)
1260 goto release;
1261 if ((so->so_state & SS_NBIO) ||
1262 (flags & (MSG_DONTWAIT|MSG_NBIO))) {
1263 error = EWOULDBLOCK;
1264 goto release;
1265 }
1266 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
1267 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
1268 sbunlock(&so->so_rcv);
1269 if (wakeup_state & SS_RESTARTSYS)
1270 error = ERESTART;
1271 else
1272 error = sbwait(&so->so_rcv);
1273 if (error != 0) {
1274 sounlock(so);
1275 splx(s);
1276 return error;
1277 }
1278 wakeup_state = so->so_state;
1279 goto restart;
1280 }
1281 dontblock:
1282 /*
1283 * On entry here, m points to the first record of the socket buffer.
1284 * From this point onward, we maintain 'nextrecord' as a cache of the
1285 * pointer to the next record in the socket buffer. We must keep the
1286 * various socket buffer pointers and local stack versions of the
1287 * pointers in sync, pushing out modifications before dropping the
1288 * socket lock, and re-reading them when picking it up.
1289 *
1290 * Otherwise, we will race with the network stack appending new data
1291 * or records onto the socket buffer by using inconsistent/stale
1292 * versions of the field, possibly resulting in socket buffer
1293 * corruption.
1294 *
1295 * By holding the high-level sblock(), we prevent simultaneous
1296 * readers from pulling off the front of the socket buffer.
1297 */
1298 if (l != NULL)
1299 l->l_ru.ru_msgrcv++;
1300 KASSERT(m == so->so_rcv.sb_mb);
1301 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
1302 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
1303 nextrecord = m->m_nextpkt;
1304 if (pr->pr_flags & PR_ADDR) {
1305 #ifdef DIAGNOSTIC
1306 if (m->m_type != MT_SONAME)
1307 panic("receive 1a");
1308 #endif
1309 orig_resid = 0;
1310 if (flags & MSG_PEEK) {
1311 if (paddr)
1312 *paddr = m_copy(m, 0, m->m_len);
1313 m = m->m_next;
1314 } else {
1315 sbfree(&so->so_rcv, m);
1316 mbuf_removed = 1;
1317 if (paddr != NULL) {
1318 *paddr = m;
1319 so->so_rcv.sb_mb = m->m_next;
1320 m->m_next = NULL;
1321 m = so->so_rcv.sb_mb;
1322 } else {
1323 MFREE(m, so->so_rcv.sb_mb);
1324 m = so->so_rcv.sb_mb;
1325 }
1326 sbsync(&so->so_rcv, nextrecord);
1327 }
1328 }
1329
1330 /*
1331 * Process one or more MT_CONTROL mbufs present before any data mbufs
1332 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we
1333 * just copy the data; if !MSG_PEEK, we call into the protocol to
1334 * perform externalization (or freeing if controlp == NULL).
1335 */
1336 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) {
1337 struct mbuf *cm = NULL, *cmn;
1338 struct mbuf **cme = &cm;
1339
1340 do {
1341 if (flags & MSG_PEEK) {
1342 if (controlp != NULL) {
1343 *controlp = m_copy(m, 0, m->m_len);
1344 controlp = &(*controlp)->m_next;
1345 }
1346 m = m->m_next;
1347 } else {
1348 sbfree(&so->so_rcv, m);
1349 so->so_rcv.sb_mb = m->m_next;
1350 m->m_next = NULL;
1351 *cme = m;
1352 cme = &(*cme)->m_next;
1353 m = so->so_rcv.sb_mb;
1354 }
1355 } while (m != NULL && m->m_type == MT_CONTROL);
1356 if ((flags & MSG_PEEK) == 0)
1357 sbsync(&so->so_rcv, nextrecord);
1358 for (; cm != NULL; cm = cmn) {
1359 cmn = cm->m_next;
1360 cm->m_next = NULL;
1361 type = mtod(cm, struct cmsghdr *)->cmsg_type;
1362 if (controlp != NULL) {
1363 if (dom->dom_externalize != NULL &&
1364 type == SCM_RIGHTS) {
1365 sounlock(so);
1366 splx(s);
1367 error = (*dom->dom_externalize)(cm, l,
1368 (flags & MSG_CMSG_CLOEXEC) ?
1369 O_CLOEXEC : 0);
1370 s = splsoftnet();
1371 solock(so);
1372 }
1373 *controlp = cm;
1374 while (*controlp != NULL)
1375 controlp = &(*controlp)->m_next;
1376 } else {
1377 /*
1378 * Dispose of any SCM_RIGHTS message that went
1379 * through the read path rather than recv.
1380 */
1381 if (dom->dom_dispose != NULL &&
1382 type == SCM_RIGHTS) {
1383 sounlock(so);
1384 (*dom->dom_dispose)(cm);
1385 solock(so);
1386 }
1387 m_freem(cm);
1388 }
1389 }
1390 if (m != NULL)
1391 nextrecord = so->so_rcv.sb_mb->m_nextpkt;
1392 else
1393 nextrecord = so->so_rcv.sb_mb;
1394 orig_resid = 0;
1395 }
1396
1397 /* If m is non-NULL, we have some data to read. */
1398 if (__predict_true(m != NULL)) {
1399 type = m->m_type;
1400 if (type == MT_OOBDATA)
1401 flags |= MSG_OOB;
1402 }
1403 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1404 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1405
1406 moff = 0;
1407 offset = 0;
1408 while (m != NULL && uio->uio_resid > 0 && error == 0) {
1409 if (m->m_type == MT_OOBDATA) {
1410 if (type != MT_OOBDATA)
1411 break;
1412 } else if (type == MT_OOBDATA)
1413 break;
1414 #ifdef DIAGNOSTIC
1415 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1416 panic("receive 3");
1417 #endif
1418 so->so_state &= ~SS_RCVATMARK;
1419 wakeup_state = 0;
1420 len = uio->uio_resid;
1421 if (so->so_oobmark && len > so->so_oobmark - offset)
1422 len = so->so_oobmark - offset;
1423 if (len > m->m_len - moff)
1424 len = m->m_len - moff;
1425 /*
1426 * If mp is set, just pass back the mbufs.
1427 * Otherwise copy them out via the uio, then free.
1428 * Sockbuf must be consistent here (points to current mbuf,
1429 * it points to next record) when we drop priority;
1430 * we must note any additions to the sockbuf when we
1431 * block interrupts again.
1432 */
1433 if (mp == NULL) {
1434 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1435 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1436 sounlock(so);
1437 splx(s);
1438 error = uiomove(mtod(m, char *) + moff, len, uio);
1439 s = splsoftnet();
1440 solock(so);
1441 if (error != 0) {
1442 /*
1443 * If any part of the record has been removed
1444 * (such as the MT_SONAME mbuf, which will
1445 * happen when PR_ADDR, and thus also
1446 * PR_ATOMIC, is set), then drop the entire
1447 * record to maintain the atomicity of the
1448 * receive operation.
1449 *
1450 * This avoids a later panic("receive 1a")
1451 * when compiled with DIAGNOSTIC.
1452 */
1453 if (m && mbuf_removed && atomic)
1454 (void) sbdroprecord(&so->so_rcv);
1455
1456 goto release;
1457 }
1458 } else
1459 uio->uio_resid -= len;
1460 if (len == m->m_len - moff) {
1461 if (m->m_flags & M_EOR)
1462 flags |= MSG_EOR;
1463 if (flags & MSG_PEEK) {
1464 m = m->m_next;
1465 moff = 0;
1466 } else {
1467 nextrecord = m->m_nextpkt;
1468 sbfree(&so->so_rcv, m);
1469 if (mp) {
1470 *mp = m;
1471 mp = &m->m_next;
1472 so->so_rcv.sb_mb = m = m->m_next;
1473 *mp = NULL;
1474 } else {
1475 MFREE(m, so->so_rcv.sb_mb);
1476 m = so->so_rcv.sb_mb;
1477 }
1478 /*
1479 * If m != NULL, we also know that
1480 * so->so_rcv.sb_mb != NULL.
1481 */
1482 KASSERT(so->so_rcv.sb_mb == m);
1483 if (m) {
1484 m->m_nextpkt = nextrecord;
1485 if (nextrecord == NULL)
1486 so->so_rcv.sb_lastrecord = m;
1487 } else {
1488 so->so_rcv.sb_mb = nextrecord;
1489 SB_EMPTY_FIXUP(&so->so_rcv);
1490 }
1491 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1492 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1493 }
1494 } else if (flags & MSG_PEEK)
1495 moff += len;
1496 else {
1497 if (mp != NULL) {
1498 mt = m_copym(m, 0, len, M_NOWAIT);
1499 if (__predict_false(mt == NULL)) {
1500 sounlock(so);
1501 mt = m_copym(m, 0, len, M_WAIT);
1502 solock(so);
1503 }
1504 *mp = mt;
1505 }
1506 m->m_data += len;
1507 m->m_len -= len;
1508 so->so_rcv.sb_cc -= len;
1509 }
1510 if (so->so_oobmark) {
1511 if ((flags & MSG_PEEK) == 0) {
1512 so->so_oobmark -= len;
1513 if (so->so_oobmark == 0) {
1514 so->so_state |= SS_RCVATMARK;
1515 break;
1516 }
1517 } else {
1518 offset += len;
1519 if (offset == so->so_oobmark)
1520 break;
1521 }
1522 }
1523 if (flags & MSG_EOR)
1524 break;
1525 /*
1526 * If the MSG_WAITALL flag is set (for non-atomic socket),
1527 * we must not quit until "uio->uio_resid == 0" or an error
1528 * termination. If a signal/timeout occurs, return
1529 * with a short count but without error.
1530 * Keep sockbuf locked against other readers.
1531 */
1532 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 &&
1533 !sosendallatonce(so) && !nextrecord) {
1534 if (so->so_error || so->so_state & SS_CANTRCVMORE)
1535 break;
1536 /*
1537 * If we are peeking and the socket receive buffer is
1538 * full, stop since we can't get more data to peek at.
1539 */
1540 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1541 break;
1542 /*
1543 * If we've drained the socket buffer, tell the
1544 * protocol in case it needs to do something to
1545 * get it filled again.
1546 */
1547 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1548 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1549 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1550 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1551 if (wakeup_state & SS_RESTARTSYS)
1552 error = ERESTART;
1553 else
1554 error = sbwait(&so->so_rcv);
1555 if (error != 0) {
1556 sbunlock(&so->so_rcv);
1557 sounlock(so);
1558 splx(s);
1559 return 0;
1560 }
1561 if ((m = so->so_rcv.sb_mb) != NULL)
1562 nextrecord = m->m_nextpkt;
1563 wakeup_state = so->so_state;
1564 }
1565 }
1566
1567 if (m && atomic) {
1568 flags |= MSG_TRUNC;
1569 if ((flags & MSG_PEEK) == 0)
1570 (void) sbdroprecord(&so->so_rcv);
1571 }
1572 if ((flags & MSG_PEEK) == 0) {
1573 if (m == NULL) {
1574 /*
1575 * First part is an inline SB_EMPTY_FIXUP(). Second
1576 * part makes sure sb_lastrecord is up-to-date if
1577 * there is still data in the socket buffer.
1578 */
1579 so->so_rcv.sb_mb = nextrecord;
1580 if (so->so_rcv.sb_mb == NULL) {
1581 so->so_rcv.sb_mbtail = NULL;
1582 so->so_rcv.sb_lastrecord = NULL;
1583 } else if (nextrecord->m_nextpkt == NULL)
1584 so->so_rcv.sb_lastrecord = nextrecord;
1585 }
1586 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1587 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1588 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1589 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l);
1590 }
1591 if (orig_resid == uio->uio_resid && orig_resid &&
1592 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1593 sbunlock(&so->so_rcv);
1594 goto restart;
1595 }
1596
1597 if (flagsp != NULL)
1598 *flagsp |= flags;
1599 release:
1600 sbunlock(&so->so_rcv);
1601 sounlock(so);
1602 splx(s);
1603 return error;
1604 }
1605
1606 int
1607 soshutdown(struct socket *so, int how)
1608 {
1609 const struct protosw *pr;
1610 int error;
1611
1612 KASSERT(solocked(so));
1613
1614 pr = so->so_proto;
1615 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1616 return (EINVAL);
1617
1618 if (how == SHUT_RD || how == SHUT_RDWR) {
1619 sorflush(so);
1620 error = 0;
1621 }
1622 if (how == SHUT_WR || how == SHUT_RDWR)
1623 error = (*pr->pr_usrreqs->pr_shutdown)(so);
1624
1625 return error;
1626 }
1627
1628 void
1629 sorestart(struct socket *so)
1630 {
1631 /*
1632 * An application has called close() on an fd on which another
1633 * of its threads has called a socket system call.
1634 * Mark this and wake everyone up, and code that would block again
1635 * instead returns ERESTART.
1636 * On system call re-entry the fd is validated and EBADF returned.
1637 * Any other fd will block again on the 2nd syscall.
1638 */
1639 solock(so);
1640 so->so_state |= SS_RESTARTSYS;
1641 cv_broadcast(&so->so_cv);
1642 cv_broadcast(&so->so_snd.sb_cv);
1643 cv_broadcast(&so->so_rcv.sb_cv);
1644 sounlock(so);
1645 }
1646
1647 void
1648 sorflush(struct socket *so)
1649 {
1650 struct sockbuf *sb, asb;
1651 const struct protosw *pr;
1652
1653 KASSERT(solocked(so));
1654
1655 sb = &so->so_rcv;
1656 pr = so->so_proto;
1657 socantrcvmore(so);
1658 sb->sb_flags |= SB_NOINTR;
1659 (void )sblock(sb, M_WAITOK);
1660 sbunlock(sb);
1661 asb = *sb;
1662 /*
1663 * Clear most of the sockbuf structure, but leave some of the
1664 * fields valid.
1665 */
1666 memset(&sb->sb_startzero, 0,
1667 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero));
1668 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) {
1669 sounlock(so);
1670 (*pr->pr_domain->dom_dispose)(asb.sb_mb);
1671 solock(so);
1672 }
1673 sbrelease(&asb, so);
1674 }
1675
1676 /*
1677 * internal set SOL_SOCKET options
1678 */
1679 static int
1680 sosetopt1(struct socket *so, const struct sockopt *sopt)
1681 {
1682 int error = EINVAL, opt;
1683 int optval = 0; /* XXX: gcc */
1684 struct linger l;
1685 struct timeval tv;
1686
1687 switch ((opt = sopt->sopt_name)) {
1688
1689 case SO_ACCEPTFILTER:
1690 error = accept_filt_setopt(so, sopt);
1691 KASSERT(solocked(so));
1692 break;
1693
1694 case SO_LINGER:
1695 error = sockopt_get(sopt, &l, sizeof(l));
1696 solock(so);
1697 if (error)
1698 break;
1699 if (l.l_linger < 0 || l.l_linger > USHRT_MAX ||
1700 l.l_linger > (INT_MAX / hz)) {
1701 error = EDOM;
1702 break;
1703 }
1704 so->so_linger = l.l_linger;
1705 if (l.l_onoff)
1706 so->so_options |= SO_LINGER;
1707 else
1708 so->so_options &= ~SO_LINGER;
1709 break;
1710
1711 case SO_DEBUG:
1712 case SO_KEEPALIVE:
1713 case SO_DONTROUTE:
1714 case SO_USELOOPBACK:
1715 case SO_BROADCAST:
1716 case SO_REUSEADDR:
1717 case SO_REUSEPORT:
1718 case SO_OOBINLINE:
1719 case SO_TIMESTAMP:
1720 case SO_NOSIGPIPE:
1721 #ifdef SO_OTIMESTAMP
1722 case SO_OTIMESTAMP:
1723 #endif
1724 error = sockopt_getint(sopt, &optval);
1725 solock(so);
1726 if (error)
1727 break;
1728 if (optval)
1729 so->so_options |= opt;
1730 else
1731 so->so_options &= ~opt;
1732 break;
1733
1734 case SO_SNDBUF:
1735 case SO_RCVBUF:
1736 case SO_SNDLOWAT:
1737 case SO_RCVLOWAT:
1738 error = sockopt_getint(sopt, &optval);
1739 solock(so);
1740 if (error)
1741 break;
1742
1743 /*
1744 * Values < 1 make no sense for any of these
1745 * options, so disallow them.
1746 */
1747 if (optval < 1) {
1748 error = EINVAL;
1749 break;
1750 }
1751
1752 switch (opt) {
1753 case SO_SNDBUF:
1754 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) {
1755 error = ENOBUFS;
1756 break;
1757 }
1758 so->so_snd.sb_flags &= ~SB_AUTOSIZE;
1759 break;
1760
1761 case SO_RCVBUF:
1762 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) {
1763 error = ENOBUFS;
1764 break;
1765 }
1766 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1767 break;
1768
1769 /*
1770 * Make sure the low-water is never greater than
1771 * the high-water.
1772 */
1773 case SO_SNDLOWAT:
1774 if (optval > so->so_snd.sb_hiwat)
1775 optval = so->so_snd.sb_hiwat;
1776
1777 so->so_snd.sb_lowat = optval;
1778 break;
1779
1780 case SO_RCVLOWAT:
1781 if (optval > so->so_rcv.sb_hiwat)
1782 optval = so->so_rcv.sb_hiwat;
1783
1784 so->so_rcv.sb_lowat = optval;
1785 break;
1786 }
1787 break;
1788
1789 #ifdef COMPAT_50
1790 case SO_OSNDTIMEO:
1791 case SO_ORCVTIMEO: {
1792 struct timeval50 otv;
1793 error = sockopt_get(sopt, &otv, sizeof(otv));
1794 if (error) {
1795 solock(so);
1796 break;
1797 }
1798 timeval50_to_timeval(&otv, &tv);
1799 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO;
1800 error = 0;
1801 /*FALLTHROUGH*/
1802 }
1803 #endif /* COMPAT_50 */
1804
1805 case SO_SNDTIMEO:
1806 case SO_RCVTIMEO:
1807 if (error)
1808 error = sockopt_get(sopt, &tv, sizeof(tv));
1809 solock(so);
1810 if (error)
1811 break;
1812
1813 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) {
1814 error = EDOM;
1815 break;
1816 }
1817
1818 optval = tv.tv_sec * hz + tv.tv_usec / tick;
1819 if (optval == 0 && tv.tv_usec != 0)
1820 optval = 1;
1821
1822 switch (opt) {
1823 case SO_SNDTIMEO:
1824 so->so_snd.sb_timeo = optval;
1825 break;
1826 case SO_RCVTIMEO:
1827 so->so_rcv.sb_timeo = optval;
1828 break;
1829 }
1830 break;
1831
1832 default:
1833 solock(so);
1834 error = ENOPROTOOPT;
1835 break;
1836 }
1837 KASSERT(solocked(so));
1838 return error;
1839 }
1840
1841 int
1842 sosetopt(struct socket *so, struct sockopt *sopt)
1843 {
1844 int error, prerr;
1845
1846 if (sopt->sopt_level == SOL_SOCKET) {
1847 error = sosetopt1(so, sopt);
1848 KASSERT(solocked(so));
1849 } else {
1850 error = ENOPROTOOPT;
1851 solock(so);
1852 }
1853
1854 if ((error == 0 || error == ENOPROTOOPT) &&
1855 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) {
1856 /* give the protocol stack a shot */
1857 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt);
1858 if (prerr == 0)
1859 error = 0;
1860 else if (prerr != ENOPROTOOPT)
1861 error = prerr;
1862 }
1863 sounlock(so);
1864 return error;
1865 }
1866
1867 /*
1868 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt()
1869 */
1870 int
1871 so_setsockopt(struct lwp *l, struct socket *so, int level, int name,
1872 const void *val, size_t valsize)
1873 {
1874 struct sockopt sopt;
1875 int error;
1876
1877 KASSERT(valsize == 0 || val != NULL);
1878
1879 sockopt_init(&sopt, level, name, valsize);
1880 sockopt_set(&sopt, val, valsize);
1881
1882 error = sosetopt(so, &sopt);
1883
1884 sockopt_destroy(&sopt);
1885
1886 return error;
1887 }
1888
1889 /*
1890 * internal get SOL_SOCKET options
1891 */
1892 static int
1893 sogetopt1(struct socket *so, struct sockopt *sopt)
1894 {
1895 int error, optval, opt;
1896 struct linger l;
1897 struct timeval tv;
1898
1899 switch ((opt = sopt->sopt_name)) {
1900
1901 case SO_ACCEPTFILTER:
1902 error = accept_filt_getopt(so, sopt);
1903 break;
1904
1905 case SO_LINGER:
1906 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0;
1907 l.l_linger = so->so_linger;
1908
1909 error = sockopt_set(sopt, &l, sizeof(l));
1910 break;
1911
1912 case SO_USELOOPBACK:
1913 case SO_DONTROUTE:
1914 case SO_DEBUG:
1915 case SO_KEEPALIVE:
1916 case SO_REUSEADDR:
1917 case SO_REUSEPORT:
1918 case SO_BROADCAST:
1919 case SO_OOBINLINE:
1920 case SO_TIMESTAMP:
1921 case SO_NOSIGPIPE:
1922 #ifdef SO_OTIMESTAMP
1923 case SO_OTIMESTAMP:
1924 #endif
1925 case SO_ACCEPTCONN:
1926 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0);
1927 break;
1928
1929 case SO_TYPE:
1930 error = sockopt_setint(sopt, so->so_type);
1931 break;
1932
1933 case SO_ERROR:
1934 error = sockopt_setint(sopt, so->so_error);
1935 so->so_error = 0;
1936 break;
1937
1938 case SO_SNDBUF:
1939 error = sockopt_setint(sopt, so->so_snd.sb_hiwat);
1940 break;
1941
1942 case SO_RCVBUF:
1943 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat);
1944 break;
1945
1946 case SO_SNDLOWAT:
1947 error = sockopt_setint(sopt, so->so_snd.sb_lowat);
1948 break;
1949
1950 case SO_RCVLOWAT:
1951 error = sockopt_setint(sopt, so->so_rcv.sb_lowat);
1952 break;
1953
1954 #ifdef COMPAT_50
1955 case SO_OSNDTIMEO:
1956 case SO_ORCVTIMEO: {
1957 struct timeval50 otv;
1958
1959 optval = (opt == SO_OSNDTIMEO ?
1960 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1961
1962 otv.tv_sec = optval / hz;
1963 otv.tv_usec = (optval % hz) * tick;
1964
1965 error = sockopt_set(sopt, &otv, sizeof(otv));
1966 break;
1967 }
1968 #endif /* COMPAT_50 */
1969
1970 case SO_SNDTIMEO:
1971 case SO_RCVTIMEO:
1972 optval = (opt == SO_SNDTIMEO ?
1973 so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1974
1975 tv.tv_sec = optval / hz;
1976 tv.tv_usec = (optval % hz) * tick;
1977
1978 error = sockopt_set(sopt, &tv, sizeof(tv));
1979 break;
1980
1981 case SO_OVERFLOWED:
1982 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed);
1983 break;
1984
1985 default:
1986 error = ENOPROTOOPT;
1987 break;
1988 }
1989
1990 return (error);
1991 }
1992
1993 int
1994 sogetopt(struct socket *so, struct sockopt *sopt)
1995 {
1996 int error;
1997
1998 solock(so);
1999 if (sopt->sopt_level != SOL_SOCKET) {
2000 if (so->so_proto && so->so_proto->pr_ctloutput) {
2001 error = ((*so->so_proto->pr_ctloutput)
2002 (PRCO_GETOPT, so, sopt));
2003 } else
2004 error = (ENOPROTOOPT);
2005 } else {
2006 error = sogetopt1(so, sopt);
2007 }
2008 sounlock(so);
2009 return (error);
2010 }
2011
2012 /*
2013 * alloc sockopt data buffer buffer
2014 * - will be released at destroy
2015 */
2016 static int
2017 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag)
2018 {
2019
2020 KASSERT(sopt->sopt_size == 0);
2021
2022 if (len > sizeof(sopt->sopt_buf)) {
2023 sopt->sopt_data = kmem_zalloc(len, kmflag);
2024 if (sopt->sopt_data == NULL)
2025 return ENOMEM;
2026 } else
2027 sopt->sopt_data = sopt->sopt_buf;
2028
2029 sopt->sopt_size = len;
2030 return 0;
2031 }
2032
2033 /*
2034 * initialise sockopt storage
2035 * - MAY sleep during allocation
2036 */
2037 void
2038 sockopt_init(struct sockopt *sopt, int level, int name, size_t size)
2039 {
2040
2041 memset(sopt, 0, sizeof(*sopt));
2042
2043 sopt->sopt_level = level;
2044 sopt->sopt_name = name;
2045 (void)sockopt_alloc(sopt, size, KM_SLEEP);
2046 }
2047
2048 /*
2049 * destroy sockopt storage
2050 * - will release any held memory references
2051 */
2052 void
2053 sockopt_destroy(struct sockopt *sopt)
2054 {
2055
2056 if (sopt->sopt_data != sopt->sopt_buf)
2057 kmem_free(sopt->sopt_data, sopt->sopt_size);
2058
2059 memset(sopt, 0, sizeof(*sopt));
2060 }
2061
2062 /*
2063 * set sockopt value
2064 * - value is copied into sockopt
2065 * - memory is allocated when necessary, will not sleep
2066 */
2067 int
2068 sockopt_set(struct sockopt *sopt, const void *buf, size_t len)
2069 {
2070 int error;
2071
2072 if (sopt->sopt_size == 0) {
2073 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2074 if (error)
2075 return error;
2076 }
2077
2078 KASSERT(sopt->sopt_size == len);
2079 memcpy(sopt->sopt_data, buf, len);
2080 return 0;
2081 }
2082
2083 /*
2084 * common case of set sockopt integer value
2085 */
2086 int
2087 sockopt_setint(struct sockopt *sopt, int val)
2088 {
2089
2090 return sockopt_set(sopt, &val, sizeof(int));
2091 }
2092
2093 /*
2094 * get sockopt value
2095 * - correct size must be given
2096 */
2097 int
2098 sockopt_get(const struct sockopt *sopt, void *buf, size_t len)
2099 {
2100
2101 if (sopt->sopt_size != len)
2102 return EINVAL;
2103
2104 memcpy(buf, sopt->sopt_data, len);
2105 return 0;
2106 }
2107
2108 /*
2109 * common case of get sockopt integer value
2110 */
2111 int
2112 sockopt_getint(const struct sockopt *sopt, int *valp)
2113 {
2114
2115 return sockopt_get(sopt, valp, sizeof(int));
2116 }
2117
2118 /*
2119 * set sockopt value from mbuf
2120 * - ONLY for legacy code
2121 * - mbuf is released by sockopt
2122 * - will not sleep
2123 */
2124 int
2125 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m)
2126 {
2127 size_t len;
2128 int error;
2129
2130 len = m_length(m);
2131
2132 if (sopt->sopt_size == 0) {
2133 error = sockopt_alloc(sopt, len, KM_NOSLEEP);
2134 if (error)
2135 return error;
2136 }
2137
2138 KASSERT(sopt->sopt_size == len);
2139 m_copydata(m, 0, len, sopt->sopt_data);
2140 m_freem(m);
2141
2142 return 0;
2143 }
2144
2145 /*
2146 * get sockopt value into mbuf
2147 * - ONLY for legacy code
2148 * - mbuf to be released by the caller
2149 * - will not sleep
2150 */
2151 struct mbuf *
2152 sockopt_getmbuf(const struct sockopt *sopt)
2153 {
2154 struct mbuf *m;
2155
2156 if (sopt->sopt_size > MCLBYTES)
2157 return NULL;
2158
2159 m = m_get(M_DONTWAIT, MT_SOOPTS);
2160 if (m == NULL)
2161 return NULL;
2162
2163 if (sopt->sopt_size > MLEN) {
2164 MCLGET(m, M_DONTWAIT);
2165 if ((m->m_flags & M_EXT) == 0) {
2166 m_free(m);
2167 return NULL;
2168 }
2169 }
2170
2171 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size);
2172 m->m_len = sopt->sopt_size;
2173
2174 return m;
2175 }
2176
2177 void
2178 sohasoutofband(struct socket *so)
2179 {
2180
2181 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so);
2182 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT);
2183 }
2184
2185 static void
2186 filt_sordetach(struct knote *kn)
2187 {
2188 struct socket *so;
2189
2190 so = ((file_t *)kn->kn_obj)->f_socket;
2191 solock(so);
2192 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext);
2193 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist))
2194 so->so_rcv.sb_flags &= ~SB_KNOTE;
2195 sounlock(so);
2196 }
2197
2198 /*ARGSUSED*/
2199 static int
2200 filt_soread(struct knote *kn, long hint)
2201 {
2202 struct socket *so;
2203 int rv;
2204
2205 so = ((file_t *)kn->kn_obj)->f_socket;
2206 if (hint != NOTE_SUBMIT)
2207 solock(so);
2208 kn->kn_data = so->so_rcv.sb_cc;
2209 if (so->so_state & SS_CANTRCVMORE) {
2210 kn->kn_flags |= EV_EOF;
2211 kn->kn_fflags = so->so_error;
2212 rv = 1;
2213 } else if (so->so_error) /* temporary udp error */
2214 rv = 1;
2215 else if (kn->kn_sfflags & NOTE_LOWAT)
2216 rv = (kn->kn_data >= kn->kn_sdata);
2217 else
2218 rv = (kn->kn_data >= so->so_rcv.sb_lowat);
2219 if (hint != NOTE_SUBMIT)
2220 sounlock(so);
2221 return rv;
2222 }
2223
2224 static void
2225 filt_sowdetach(struct knote *kn)
2226 {
2227 struct socket *so;
2228
2229 so = ((file_t *)kn->kn_obj)->f_socket;
2230 solock(so);
2231 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext);
2232 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist))
2233 so->so_snd.sb_flags &= ~SB_KNOTE;
2234 sounlock(so);
2235 }
2236
2237 /*ARGSUSED*/
2238 static int
2239 filt_sowrite(struct knote *kn, long hint)
2240 {
2241 struct socket *so;
2242 int rv;
2243
2244 so = ((file_t *)kn->kn_obj)->f_socket;
2245 if (hint != NOTE_SUBMIT)
2246 solock(so);
2247 kn->kn_data = sbspace(&so->so_snd);
2248 if (so->so_state & SS_CANTSENDMORE) {
2249 kn->kn_flags |= EV_EOF;
2250 kn->kn_fflags = so->so_error;
2251 rv = 1;
2252 } else if (so->so_error) /* temporary udp error */
2253 rv = 1;
2254 else if (((so->so_state & SS_ISCONNECTED) == 0) &&
2255 (so->so_proto->pr_flags & PR_CONNREQUIRED))
2256 rv = 0;
2257 else if (kn->kn_sfflags & NOTE_LOWAT)
2258 rv = (kn->kn_data >= kn->kn_sdata);
2259 else
2260 rv = (kn->kn_data >= so->so_snd.sb_lowat);
2261 if (hint != NOTE_SUBMIT)
2262 sounlock(so);
2263 return rv;
2264 }
2265
2266 /*ARGSUSED*/
2267 static int
2268 filt_solisten(struct knote *kn, long hint)
2269 {
2270 struct socket *so;
2271 int rv;
2272
2273 so = ((file_t *)kn->kn_obj)->f_socket;
2274
2275 /*
2276 * Set kn_data to number of incoming connections, not
2277 * counting partial (incomplete) connections.
2278 */
2279 if (hint != NOTE_SUBMIT)
2280 solock(so);
2281 kn->kn_data = so->so_qlen;
2282 rv = (kn->kn_data > 0);
2283 if (hint != NOTE_SUBMIT)
2284 sounlock(so);
2285 return rv;
2286 }
2287
2288 static const struct filterops solisten_filtops =
2289 { 1, NULL, filt_sordetach, filt_solisten };
2290 static const struct filterops soread_filtops =
2291 { 1, NULL, filt_sordetach, filt_soread };
2292 static const struct filterops sowrite_filtops =
2293 { 1, NULL, filt_sowdetach, filt_sowrite };
2294
2295 int
2296 soo_kqfilter(struct file *fp, struct knote *kn)
2297 {
2298 struct socket *so;
2299 struct sockbuf *sb;
2300
2301 so = ((file_t *)kn->kn_obj)->f_socket;
2302 solock(so);
2303 switch (kn->kn_filter) {
2304 case EVFILT_READ:
2305 if (so->so_options & SO_ACCEPTCONN)
2306 kn->kn_fop = &solisten_filtops;
2307 else
2308 kn->kn_fop = &soread_filtops;
2309 sb = &so->so_rcv;
2310 break;
2311 case EVFILT_WRITE:
2312 kn->kn_fop = &sowrite_filtops;
2313 sb = &so->so_snd;
2314 break;
2315 default:
2316 sounlock(so);
2317 return (EINVAL);
2318 }
2319 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext);
2320 sb->sb_flags |= SB_KNOTE;
2321 sounlock(so);
2322 return (0);
2323 }
2324
2325 static int
2326 sodopoll(struct socket *so, int events)
2327 {
2328 int revents;
2329
2330 revents = 0;
2331
2332 if (events & (POLLIN | POLLRDNORM))
2333 if (soreadable(so))
2334 revents |= events & (POLLIN | POLLRDNORM);
2335
2336 if (events & (POLLOUT | POLLWRNORM))
2337 if (sowritable(so))
2338 revents |= events & (POLLOUT | POLLWRNORM);
2339
2340 if (events & (POLLPRI | POLLRDBAND))
2341 if (so->so_oobmark || (so->so_state & SS_RCVATMARK))
2342 revents |= events & (POLLPRI | POLLRDBAND);
2343
2344 return revents;
2345 }
2346
2347 int
2348 sopoll(struct socket *so, int events)
2349 {
2350 int revents = 0;
2351
2352 #ifndef DIAGNOSTIC
2353 /*
2354 * Do a quick, unlocked check in expectation that the socket
2355 * will be ready for I/O. Don't do this check if DIAGNOSTIC,
2356 * as the solocked() assertions will fail.
2357 */
2358 if ((revents = sodopoll(so, events)) != 0)
2359 return revents;
2360 #endif
2361
2362 solock(so);
2363 if ((revents = sodopoll(so, events)) == 0) {
2364 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) {
2365 selrecord(curlwp, &so->so_rcv.sb_sel);
2366 so->so_rcv.sb_flags |= SB_NOTIFY;
2367 }
2368
2369 if (events & (POLLOUT | POLLWRNORM)) {
2370 selrecord(curlwp, &so->so_snd.sb_sel);
2371 so->so_snd.sb_flags |= SB_NOTIFY;
2372 }
2373 }
2374 sounlock(so);
2375
2376 return revents;
2377 }
2378
2379
2380 #include <sys/sysctl.h>
2381
2382 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO);
2383 static int sysctl_kern_sbmax(SYSCTLFN_PROTO);
2384
2385 /*
2386 * sysctl helper routine for kern.somaxkva. ensures that the given
2387 * value is not too small.
2388 * (XXX should we maybe make sure it's not too large as well?)
2389 */
2390 static int
2391 sysctl_kern_somaxkva(SYSCTLFN_ARGS)
2392 {
2393 int error, new_somaxkva;
2394 struct sysctlnode node;
2395
2396 new_somaxkva = somaxkva;
2397 node = *rnode;
2398 node.sysctl_data = &new_somaxkva;
2399 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2400 if (error || newp == NULL)
2401 return (error);
2402
2403 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */
2404 return (EINVAL);
2405
2406 mutex_enter(&so_pendfree_lock);
2407 somaxkva = new_somaxkva;
2408 cv_broadcast(&socurkva_cv);
2409 mutex_exit(&so_pendfree_lock);
2410
2411 return (error);
2412 }
2413
2414 /*
2415 * sysctl helper routine for kern.sbmax. Basically just ensures that
2416 * any new value is not too small.
2417 */
2418 static int
2419 sysctl_kern_sbmax(SYSCTLFN_ARGS)
2420 {
2421 int error, new_sbmax;
2422 struct sysctlnode node;
2423
2424 new_sbmax = sb_max;
2425 node = *rnode;
2426 node.sysctl_data = &new_sbmax;
2427 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2428 if (error || newp == NULL)
2429 return (error);
2430
2431 KERNEL_LOCK(1, NULL);
2432 error = sb_max_set(new_sbmax);
2433 KERNEL_UNLOCK_ONE(NULL);
2434
2435 return (error);
2436 }
2437
2438 static void
2439 sysctl_kern_socket_setup(void)
2440 {
2441
2442 KASSERT(socket_sysctllog == NULL);
2443
2444 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2445 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2446 CTLTYPE_INT, "somaxkva",
2447 SYSCTL_DESCR("Maximum amount of kernel memory to be "
2448 "used for socket buffers"),
2449 sysctl_kern_somaxkva, 0, NULL, 0,
2450 CTL_KERN, KERN_SOMAXKVA, CTL_EOL);
2451
2452 sysctl_createv(&socket_sysctllog, 0, NULL, NULL,
2453 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
2454 CTLTYPE_INT, "sbmax",
2455 SYSCTL_DESCR("Maximum socket buffer size"),
2456 sysctl_kern_sbmax, 0, NULL, 0,
2457 CTL_KERN, KERN_SBMAX, CTL_EOL);
2458 }
2459